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Spatially Scalable Recursive Estimation of Gaussian
Process Terrain Maps Using Local Basis Functions

Frida Viset , Rudy Helmons, and Manon Kok

Abstract—We address the computational challenges of large-
scale geospatial mapping with Gaussian process (GP) regression
by performing localized computations rather than processing
the entire map simultaneously. Traditional approaches to GP
regression often involve computational and storage costs that
either scale with the number of measurements, or with the spatial
extent of the mapped area, limiting their scalability for real-time
applications. Our method places a global grid of finite-support
basis functions and restricts computations to a local subset of the
grid 1) surrounding the measurement when the map is updated,
and 2) surrounding the query point when the map is queried. This
localized approach ensures that only the relevant area is updated
or queried at each timestep, significantly reducing computational
complexity while maintaining accuracy. Unlike many existing
methods, which suffer from boundary effects or increased com-
putational costs with mapped area, our localized approach avoids
discontinuities and ensures that computational costs remain
manageable regardless of map size. This approximation to GP
mapping provides high accuracy with limited computational
budget for the specialized task of performing fast online map
updates and fast online queries of large-scale geospatial maps.
It is therefore a suitable approximation for use in real-time
applications where such properties are desirable, such as real-
time simultaneous localization and mapping (SLAM) in large,
nonlinear geospatial fields. We show on experimental data with
magnetic field measurements that our algorithm is faster and
equally accurate compared to existing methods, both for recursive
magnetic field mapping and for magnetic field SLAM.

Index Terms—Kalman filters, Gaussian processes, terrain nav-
igation, simultaneous localization and mapping.

I. INTRODUCTION

NAVIGATION in unknown terrains is often performed us-
ing on-board sensors measuring the change in position

and orientation [1]. However, integrating such measurements
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causes unbounded error growth in position and orientation
estimates over time [2], [3]. This error growth can be over-
come if absolute measurements of the position are included,
for example the position relative to a known map. Our focus
is on creating such maps using Gaussian process (GP) regres-
sion, combining measurements with available prior physical
information [4], [5]. Our approach can be used for recursively
estimating these maps, as well as for simultaneous localization
and mapping (SLAM) [6], [7]. The latter allows for obtaining
position estimates and simultaneously estimating a terrain map
to correct for the growing position errors. Examples of terrain
maps that can be used to limit this error growth are magnetic
field maps [8], [9], [10], [11], underwater bathymetry maps
[12], [13], or nonlinear terrain fields [14], [15].

Traditional methods for GP regression face computational
and storage challenges, limiting their applicability for real-
time applications. Many existing methods therefore approx-
imate GPs using basis functions [8], [11], [16], [17]. Basis
function approximations to GPs are for instance used for online
creation of magnetic field maps [8], underwater bathymetry
maps [12] and ground elevation maps [18]. However, for large-
scale fields with small-scale variations a large number of basis
functions is needed [16], [19]. This results in a large compu-
tational complexity even for these approximate methods. To
overcome this limitation, our proposed approximation 1) uses a
global grid of finite-support basis functions to represent the map
and 2) restricts computations to a local subset of the grid around
the region of interest at each timestep. The effect of considering
only a local subset of the grid for map approximation is illus-
trated in Fig. 1. The illustration shows that the map represents
the nonlinear field with high confidence in the region of inter-
est, while not spending computational resources on accurately
representing the entire field. Our method is inherently recursive,
making it suitable both for online creation of GP maps as well
as for SLAM.

The remainder of the paper is organized as follows: Section II
presents related work, while Section III gives an overview
of relevant background information. Specifically, it introduces
GP regression and basis function approximations to GPs.
Section IV gives a description of our method for approximating
a large GP scale map. It also shows how the map can be incor-
porated in an extended Kalman filter (EKF) for SLAM, building
on [20]. Section V presents experimental results comparing our
proposed approach to other mapping and SLAM algorithms.
Section VI gives some concluding remarks and recommenda-
tions for future work.

1053-587X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 08,2025 at 08:12:15 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0007-7891-0492
https://orcid.org/0000-0002-2441-2240
mailto:frida.viset@gmail.com
mailto:r.j.l.helmons@tudelft.nl
mailto:m.kok-1@tudelft.nl


VISET et al.: SPATIALLY SCALABLE RECURSIVE ESTIMATION OF GAUSSIAN PROCESS TERRAIN MAPS 1445

Fig. 1. A locally reconstructed approximation (indicated by the color of the
heatmap) of a simulated large, nonlinear geospatial field (indicated with gray
level curves) based on a local subset (marked with the black circles) of a
global grid of basis functions (marked with the gray circles).

II. RELATED WORK

Our interest lies in online construction of a terrain map us-
ing a constant stream of incoming measurements. Out-of-the-
box GP regression [4] to construct these maps has a compu-
tational complexity that scales with order O(N3), where N
is the number of measurements. The cost to create the maps
hence increases cubically with time. To overcome this lim-
itation, online GP regression typically uses a basis function
approximation [8], [12], [18], [20], [21], [22], [23].1 Using a
finite number of m basis functions gives a computational cost
at each timestep of O(m2). To further mitigate the issue of
computational complexity, [27] proposed to use finite-support
basis functions in combination with a sparse-weight Kalman
filter [28]. This approach reduces the computational complexity
of including a new measurement to O(m). These basis func-
tions are placed in a grid-like pattern over the mapped area. The
bigger the area, the more basis functions are required to cover
it [16]. This means that as the area increases, the number of
basis functions m increases, and the computational complexity
O(m) also increases. However, we still want to be able to create
these large maps, because they can aid navigation when moving
through the mapped area [29], [30], [31], [32]. Our approach
places a grid of basis functions across the entire mapped area,
but only updates values associated with a small local subset of
basis functions when receiving new measurements, and only
uses a small local subset when making predictions, making it
faster than state of the art at both online map creation and online
querying of the map.

Other approaches that overcome the limitations of compu-
tational complexity of basis function approximations e.g. split
the map into subdomains [8], [33] or split the measurements
into local groups of measurements [34], [35], [36], [37]. These
approaches, however, suffer from boundary-effects. Patched
local GPs [36] and domain decomposition methods [37] both
remedy this issue by introducing constraints connecting the
local domains. However, this remedy to the boundary effect

1Note that the widely used inducing point approximations [24], [25] can
be seen as a special case of basis function approximations [26].

problem requires a number of computations that scales with
the number of domains and thus does not truly achieve a pre-
diction time complexity independent of the spatial size of the
nonlinear field [36]. Other spatially scalable alternatives like
KD-tree-based nearest neighbor approaches can include new
measurements with a finite computational cost. However, the
computational cost for querying the map increases with the
number of measurements [11], [30]. In contrast, our approach
has a finite computational cost both for including a new mea-
surement, and for querying the map.

Our method is most closely related to a GP approximation
called SKI [38]. That method can be used to efficiently include a
new measurement in the map using a local subset of basis func-
tions [39], but has a large computational cost for querying the
map. While we use exactly the same strategy as SKI to include
new measurements, we propose a new and faster approach to
query the map, a procedure which is essential to use the terrain
map for navigation purposes.

III. BACKGROUND

A. GP Regression

We are interested in estimating a terrain map using GP regres-
sion. GP regression allows for estimating a nonlinear function
f : Rd → R, distributed according to

f ∼ GP(0, κ(·, ·)), (1)

where κ(x, x′) : Rd × R
d → R is some known kernel function,

and GP(0, κ(·, ·)) denotes the GP prior with a mean of 0 and
covariance defined by the kernel function [4]. The kernel most
commonly used for terrain mapping is the squared exponential
kernel defined as

κSE(x, x
′) = σ2

SE exp

(
‖x− x′‖22

2l2SE

)
, (2)

where ‖·‖2 is the Euclidean norm, σSE is a hyperparameter
representing the magnitude of the spatial variations and lSE is
a hyperparameter representing the expected lengthscale of the
spatial variations. Furthermore, x and x′ are two input locations
in R

d [4]. GP regression uses N noisy measurements of the
function y1:N = {yt}Nt=1 modelled as

yt = f(xt) + et, et ∼N (0, σ2
y ), (3)

where x1:N = {xt}Nt=1 with xt ∈ R
d are known input locations,

et is measurement noise, σ2
y the noise variance, and N (0, σ2

y )
denotes the normal distribution with mean 0 and covariance σ2

y .
The expected value and variance of the function in any arbitrary
location x� ∈ R

d is then given by

E[f(x�)] =K(x�, x1:N )
(
K(x1:N , x1:N ) + σ2

y IN
)−1

y1:N ,
(4a)

Var [f(x�)] =K(x�, x�)−K(x�, x1:N )

×
(
K(x1:N , x1:N ) + σ2

y IN
)−1

K(x1:N , x�),
(4b)

respectively. Here, the matrix K(x1:N , x1:N ) is constructed by
evaluating the kernel along each possible cross-combination of
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the entries in the vector x1:N , such that the entry on the ith row
and the jth column of K(x1:N , x1:N ) is κ(xi, xj). Similarly,
the row vector K(x�, x1:N ) is defined such that the jth column
is κ(x�, xj). Using the same notation, K(x�, x�) is a single-
entry matrix with value κ(x�, x�). In this work we approximate
the GP posterior from (4a), (4b). To distinguish the posterior in
(4a), (4b) from any approximation of it, we refer to it as the full
GP posterior. Computing the full GP posterior has a complexity
of O(N3), as it requires the inversion of a N ×N matrix.

B. Sparse Approximations to GP Regression With
Basis Functions

Sparse approximations to GP regression approximate the
function f with a linear combination of m basis functions
according to

f ≈ Φ�w, w ∼N (0, P ), (5)

where w = [w1, . . . , wm]� is a vector of m scalar weights, and
Φ= [φ1, . . . , φm]� is a vector of m basis functions φi : R

d →
R [24]. The prior covariance on the weights P ∈ R

m×m is
chosen so that (5) approximates (1) [24].

There exist different methods to approximate predictions
using the assumption in (5). A commonly used method is the
Deterministic Training Conditional (DTC) approximation [24].
The sparse predictions with DTC are given by

E [f(x�)]≈ Φ(x�)�
(
Φ(x1:N )Φ(x1:N )� + σ2

yP
−1

)−1

× Φ(x1:N )y1:N , (6a)

Var [f(x�)]≈ σ2
yΦ(x

�)�
(
Φ(x1:N )Φ(x1:N )� + σ2

yP
−1

)−1

× Φ(x�) +K(x�, x�)− Φ(x�)�PΦ(x�).
(6b)

We refer to the entry on the ith row and the jth column of the
matrix Φ(x1:N ) as φi(xj), and to the ith row of the column
vectorΦ(x�) as φi(x

�). The expressions in (6a) and (6b) require
O(Nm2 +m3) operations to compute, and O(Nm2) storage.
This is significantly smaller than the computational cost and
storage associated with the full GP predictions (4a), (4b) when
the number of basis functions m is much smaller than the num-
ber of data points N . The number of basis functions required to
accurately approximate the GP scales with the size of the input
domain relative to the lengthscale (lSE in (2)) of the kernel [16].

IV. METHOD

In terrain mapping we typically have large areas and small
lengthscales. The approach from Section III-B therefore needs
many basis functions resulting in a high computational com-
plexity. To remedy this, we instead propose to use a large grid
of finite-support basis functions but only use a local subset
of these at each timestep. Section IV-A introduces the finite-
support basis functions. Section IV-B describes how we include
a new measurement.

Section IV-C describes how we use this trained map to make
a prediction.

Section IV-D presents how our proposed GP map approxi-
mation can be integrated into EKF SLAM with GP maps.

A. Choice of Basis Functions

We choose a set of truncated basis functions {φj}mj=1

with centers uj ∈ R
d distributed uniformly on a d-dimensional

grid as

φj(x) =

{
κ(uj , x), ‖x− uj‖∞ ≤ r

0, ‖x− uj‖∞ > r
, (7)

where ‖ · ‖∞ denotes the sup-norm and r the truncation limit.
Since the function κSE(uj , x) tends to zero as ‖x− uj‖∞ →∞,
this truncation means that values which are close to zero are
approximated as exactly zero. This approximation has a low
impact on the accuracy when r is chosen large relative to the
lengthscale lSE from (2).

The finite support of our basis functions from (7) ensures
that there is always only a finite number of basis functions
with overlapping support in any given location. We denote this
number of basis functions by m′. This results in sparsity in the
matrices requiring inversion in (6a) and (6b).

B. Constructing the Map

The GP approximation in terms of basis functions (see (5))
is a parametric model that is linear in the weights w. Hence, the
posterior of these weights can be found using stochastic least
squares. We solve this stochastic least squares problem recur-
sively using an information filter without any dynamics. Specif-
ically, obtaining the posterior on information form corresponds
to computing the terms Φ(x1:N )y1:N and Φ(x1:N )Φ(x1:N )�

in (6a) and (6b) recursively [40]. In the remainder of this
paper, we let the information vector at time t be defined as
ι1:t =Φ(x1:t)y1:t, and the information matrix at time t be de-
fined as I1:t =Φ(x1:t)Φ(x1:t)

�. The information vector and
the information matrix encode the aggregated information from
all the available measurements up until and including time t. We
update the information vector ι1:t and the information matrix
I1:t as [40]

ι1:t = ι1:t−1 +Φ(xt)yt, (8a)

I1:t = I1:t−1 +Φ(xt)Φ(xt)
�. (8b)

This only requires updating a finite amount of elements m′ 	
m in each update step due to the finite support of our basis
functions (7). Specifically, since only m′ basis functions have
overlapping support in any given location, the terms Φ(xt)yt
and Φ(xt)Φ(xt)

� only contain m′ non-zero elements. Which
elements of the information vector and matrices need to be
updated can be identified by defining the subset S of the basis
functions from (7) that are non-zero in xt as

S(xt, r) = {j | ‖xt − uj‖∞ ≤ r}. (9)

The updates (8a), (8b) only need to be applied to entries
j ∈ S(xt, r) for the information vector, and j, j′ ∈ S(xt, r)×
S(xt, r) for the information matrix. The contribution from the
term φj(xt)yt and φj(xt)φj′(xt) will inherently be zero for all
other entries.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 08,2025 at 08:12:15 UTC from IEEE Xplore.  Restrictions apply. 
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C. Querying the Map - Prediction of Terrain Values in
New Locations

To use a map constructed using the method from
Section IV-B for navigation purposes, we need to be able
to predict terrain value at new locations. In other words, we
need to evaluate the GP posterior mean E[f(x∗)] and variance
Var[f(x∗)] at that point.

In principle, we could straightforwardly use the full infor-
mation vector ι1:N and information matrix I1:N in (6a), (6b).
However, this requires inversion of the information matrix, an
O(m3) operation. To optimize computation, we instead utilize
a smaller, local subset of basis functions, denoted as S∗, that
are near the prediction point. This subset S∗ consists of all basis
functions within a distance r∗ from the prediction point x∗, as
illustrated in Fig. 1. Note that the entries of the information
vector and matrix can be expressed as

Ii,j
1:N =

N∑
t=1

φi(xt)φj(xt), ιi1:N =

N∑
t=1

φi(xt)yt, (10)

where i ∈ 1, . . . ,m and j ∈ 1, . . . ,m are indices correspond-
ing to each entry of the information matrix. Hence, using this
property, we define the local information vector ι∗1:N and matrix
I∗
1:N as

ι∗1:N =ΦS∗(x1:N )y1:N , (11a)

I∗
1:N =ΦS∗(x1:N )ΦS∗(x1:N )�, (11b)

where ΦS∗(x) represent the evaluations of the basis functions
in the local subset S∗ at any location x. We now use ι∗1:N , I∗

1:N

to approximate the predicted mean and variance as

E[f(x∗)]≈ ΦS∗(x∗)�(I∗
1:N + σ2

yP
∗)−1ιS∗ , (12a)

Var[f(x∗)]≈ σ2
yΦS∗(x∗)�(I∗

1:N + σ2
yP

∗)−1ΦS∗(x∗)

+K(x∗, x∗)− ΦS∗(x∗)�P ∗ΦS∗(x∗). (12b)

Here, P ∗ is the prior covariance of the basis function weights,
set to recover the prior accurately at the centers of the selected
basis functions. The detailed derivation of P ∗ is provided in
Appendix A. Note that the maximum size of the local subset
S∗ is m′′ ≤ ( 2r

∗

lu
+ 1)d, where d is the dimension of the input

vector. The computational complexity for computing (12) is
therefore O(m′′3).

D. Integration of Mapping Algorithm Into an EKF for
Magnetic Field SLAM

Our approach allows for constructing a map (see
Section IV-B) and for querying the map to use it for navigation
(see Section IV-C). In this section we combine both, and show
that our approach can also be used for SLAM. We illustrate
this for magnetic field SLAM using an extended Kalman filter
(EKF), which we refer to as EKF Mag-SLAM. We specifically
modify the algorithm presented in [20], but use our proposed
map approximation instead of the Hilbert space (HS) basis
functions used in [20].

Our task for SLAM is to estimate the joint posterior
distribution:

p(pt, qt, wt | y1:t),

where pt is a three-dimensional position vector, qt is a
4-dimensional unit quaternion representing the orientation, and
wt is an m-dimensional vector of weights associated with finite-
support basis functions φi(p) representing the magnetic field.
This posterior is approximated in the EKF framework using a
Gaussian distribution. To deal with the fact that orientations are
non-Euclidean, we implement an error-state EKF. This implies
that the EKF not only consists of a dynamic update and a mea-
surement update, but also a re-linearization step. In line with
Sections IV-B, IV-C, we implement this EKF on information
form. This means that instead of keeping track of the state
estimates p̂t|t, q̂t|t, m̂t|t and their corresponding covariances,
we keep track of the corresponding information matrix IEKF

t|t
and information vector ιEKF

t|t .
1) State-Space Model: Let us assume that information about

the change in position and orientation between two time steps
is available, e.g. from wheel encoders or inertial sensors. Fur-
thermore, let us assume that the magnetic field map is constant
over time. The dynamic model of our states is then

pt+1 = pt +Δpt + ep,t, ep,t ∼N (0, σ2
pI3), (13a)

qt+1 = qt 
Δqt 
 expq(eq,t), eq,t ∼N (0, σ2
qI3), (13b)

wt+1 = wt. (13c)

Here, 
 is the quaternion product and expq is the operator that
maps an axis-angle orientation deviation to a quaternion (see
[3] for details on quaternion algebra).

Our map of the magnetic field, expressed in a world-fixed
frame, assumes that the field is curl-free. It can therefore be ex-
pressed as the gradient of a scalar potential ϕ(pt) with respect to
the position pt [41]. We model the scalar potential ϕ : R3 →R

as a GP with prior

ϕ∼N (0, κSE(·, ·) + κlin(·, ·)), (14)

where κlin(·, ·)) is a linear kernel [4] used to model the static
Earth’s magnetic field. The squared exponential kernel is used
to model the local magnetic field anomalies.

We assume that measurements yt ∈ R
3 of the magnetic field

expressed in a sensor-fixed frame are available. Approximat-
ing the scalar potential field in terms of the finite-support ba-
sis functions from Section IV-A results in the measurement
model

yt =Rt∇pΦ(pt)
�wt + em,t, em,t ∼N (0, σ2

mI3). (15)

Here, em,t denotes the zero-mean measurement noise with co-
variance σ2

mI3, and Rt the rotation from the world-fixed to the
sensor-fixed frame.

In line with existing SLAM literature, we use choose the prior
on the position and orientation to be zero-mean with a very
small covariance. The GP prior results in a prior mean of zero
for the states wt with a covariance based on the GP prior [20].
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2) Dynamic Update: The dynamic update on information
form [42] is given by

IEKF
t+1|t = (IEKF

t|t +Q−1)−1, (16)

where Q is the process noise covariance for the model (13).
Since we assume the map to be static, the matrix Q can be
factorized according to[

Q̃ 0
0 0

]
= V �QV, V =

[
I 0

]
, (17)

where Q̃ is a 6× 6 matrix representing the process noise on the
position and orientation.2 After applying the matrix inversion
lemma to (16), it reduces to

IEKF
t+1|t = IEKF

t|t − IEKF
t|t V �(V IEKF

t|t V � + Q̃−1)−1V IEKF
t|t .

(18)

3) Measurement Update: The Kalman filter measurement
update EKF Mag-SLAM is given by [42]

ιEKF
t|t =

1

σ2
m
Htyt, (19a)

IEKF
t|t = IEKF

t|t−1 +
1

σ2
m
HtH

�
t , (19b)

where the Ht is the Jacobian of the measurement model (15).
Note the absence of a summation in (19a) due to the error-
state implementation of the EKF. The update of the information
matrix in (19b) is inherently sparse due to our use of finite-
support basis functions. This is similar to the sparsity in (8b),
and has a complexity of O(m′′).

4) Re-Linearization: The re-linearization of the estimated
position, orientation and magnetic field of our error-state EKF
requires evaluation of the error-state. For this, an inversion
of the information matrix is essential. We instead perform an
approximate re-linearization by only using the basis functions
that are close to the prediction point (which in this case is the es-
timated location). This allows us to execute the re-linearization
at a computational cost of O(m′′3) as

[
δ�t η�t ν��,t

]�
= (IEKF

t,� )−1ιEKF
t,� , (20a)

p̂t|t = p̂t|t−1 + δt, (20b)

q̂t|t = q̂t|t−1 
 expq(ηt), (20c)

ŵ�,t|t = ŵ�,t|t−1 + ν�,t. (20d)

Here, δt, η are the error states for the position and orientation,
respectively. Furthermore, ν�,t is the error state corresponding
to the weights of the basis functions in the subset S�, see
also (9) and Section IV-C. In other words, we only correct the
linearization point of a local subset of the magnetic field map.

5) Note on Computational Complexity: As shown above,
the computational complexity of the measurement update of our
EKF Mag-SLAM algorithm is O(m′′) and of the relinearization
is O(m′′3). In principle, the dynamic update would have a
computational complexity of O(m2). However, there are large

2Note that the error state representing the orientation is three-dimensional.

(a) 1D grid (b) 2D grid (c) 3D grid

Fig. 2. Sparsity patterns illustrating which entries i, j in the information
matrix correspond to pairs of basis function locations xi, xj that are closer
than 2r� according to the infinity norm (dark blue) and which are not
(light blue). The patterns arise from the ordering of the indexes of the basis
functions, relative to their locations along each of the three dimensions.

portions of the matrix IEKF
t that never need to be explicitly

computed. The only entries of IEKF
t that need to be computed,

are entries that affect the output of the relinearization, the mea-
surement update, or the dynamic update.

Firstly, we will describe the set of entries in IEKF
t,� that affect

the output of the relinearization and the measurement update.
There are many basis function pairs i, j that are so far away
from each other that they are never used at the same time in the
relinearization step, nor in the measurement update. We denote
the set of all pairs of basis functions i, j that are close enough
to each other that we do need to compute the corresponding
entries in IEKF

t,� by S∀�. We can formally define this set of
nearby index pairs as S∀� = {i, j|‖pi,t − pj,t‖∞ ≤ 2r�}. This
definition includes all index pairs i, j where the corresponding
basis functions are closer to each other according to the infin-
ity norm than 2r�. The set S∀� contains O(mm′′2) elements.
Assuming m>>m′′, we simplify this notation, and say that
S∀� contains O(m) elements. Fig. 2 illustrates examples of
where the entries i, j in S∀� are located in an information matrix
corresponding to a one-dimensional, a two-dimensional, and
a three-dimensional grid of equispaced basis functions. In the
one-dimensional grid, four basis functions are located along
the x-axis at [−1.5,−0.5, 0.5, 1.5], and the indices are ordered
correspondingly in Fig. 2. In the two-dimensional grid, 16 basis
functions are located along the x and y-axis at[

−1.5 −1.5 −1.5 . . . 1.5 1.5
−1.5 −0.5 0.5 . . . 0.5 1.5

]
, (21)

and also indexed chronologically. The sparsity pattern shows
a fractal-like structure that is explained by the fact that we
are displaying the pattern for a 3D grid of basis functions,
and the nature of the ordering of the indexes of these basis
functions. In all cases, only O(m) elements are part of the set
S∀�, meaning that only O(m) elements need to be computed in
the information matrix to carry out the relinearization and the
measurement update.

Secondly, we describe the set of entries in IEKF
t,� that affect the

output of the dynamic update. The dynamic update would, in
general, require knowledge of the entire information matrix. In
our case, the only entries of the information matrix that are used
to compute the term IEKFV �(V IEKFV � + Q̃−1)−1V IEKF are
the entries in the first 6 rows and the first 6 columns of the
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Fig. 3. Sparsity pattern illustration of the information matrix for the full
state consisting of the position, orientation and magnetic field. The dark blue
entries indicate entries which are necessary to compute with our assumptions,
and the light blue entries indicate values that are not necessary to compute.
The first sparsity pattern indicate the values we need associated with the
position and orientation (the first 6 states in the full state-space). The second
sparsity pattern has a dark blue color in the entries in the set S∀� of all entries
that can possibly be necessary to make a map prediction in any location. The
last sparsity pattern is the union of these two sets.

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF

EKF MAG-SLAM

EKF EKF
Mag-SLAM with Mag-SLAM with

Step our method Hilbert Space functions
Meas update O(m′2) O(m2)

Prediction O(m′′3) O(m)
Dyn update O(m) O(m2)

information matrix. The only entries of the information matrix
we need to keep track to ensure the output of the dynamic update
is correct of are therefore the union of the first 6 columns and
the first 6 rows and the values in S∀�. Fig. 3 shows an illustration
of the set of indices necessary to perform the dynamic update
(the leftmost matrix), the indices necessary to perform the mea-
surement update and the relinearization (the middle matrix) and
the union of these two sets (the rightmost matrix). The union
of the sets of indices are all possible indices necessary to get a
correct output from the measurement update, the relinearization
and the dynamic update. In other words, the union of these sets
of indices are the only entries of the information matrix IEKF

t

we need to compute to for our EKF Mag-SLAM algorithm.
In conclusion, an overview of the computational complexities

of EKF Mag-SLAM with our mapping technique compared
to EKF Mag-SLAM with Hilbert Space basis functions from
[20] is given in Table I. When m′ and m′′ are chosen to be
considerably smaller than m, our proposed algorithm will be
faster than the approach from [20]. This is a reasonable choice
when the terrain is large relative to the spatial variations we
wish to map.

V. RESULTS

In this section, we first compare the performance of our
method with existing approaches on two low-dimensional
benchmark data sets. We also study how long it takes for
our method to make online predictions using a short length
scale and millions of basis functions on a bathymetry dataset
that is too large for existing approaches given our hardware
constraints.

Fig. 4. KL divergence (KLD) between the full GP posterior, and approxima-
tions with various local domain sizes r, trained on the audio dataset. The error
bars indicate the average deviation above and below the mean, respectively,
after 100 repeated experiments with 100 randomly sampled measurements
from the training set.

As the data sets considered in Sections V-B and V-C are
geospatial data with a non-zero mean value, the average
of the output is subtracted before training. This average is
subsequently added to each prediction. All computation times
reported are measured while running on a Dell XPS 15 9560
laptop, with 16 GB RAM and an Intel Core i7-7700HQ CPU
running at 2.80 GHz. In all experiments we set r = 2r�, as
picking r >= 2r� gives that the expression for P−1

� reduces
to P−1

� =K(uS� , uS�), as derived in Appendix A. This means
that we have a closed-form expression for the inverse of the
prior covariance which does not rely upon computing any nu-
merical inverses, further reducing the necessary computational
efforts to make each prediction.

A. One-Dimensional Sound Map

In this section we will construct a one-dimensional GP map
of the amplitude of a sound wave using the data from [43]. We
treat time as the spatial axis of this map. The same data and
approach was used in [38] and [39] to demonstrate the ability
of their approximations to learn a GP model from a large dataset
with a large input domain relative to the size of the spatial
variations in the field. The dataset contains a training set of
59 309 measurements of sound amplitude collected at a known
input time and a fixed test set of 691 points. We compare the
accuracy and required computation time of our method with
existing work. To this end, similar to [39] we use a squared
exponential kernel (2) with hyperparameters σSE = 0.009, lSE =
10.895, σy = 0.002.

In Fig. 4 we investigate how large the size of the local
domain r (see Section IV-A) has to be for our approach to
accurately approximate the posterior. We assess our results in
terms of the KL divergence between the approximate posterior
and the full GP posterior. The KL divergence is a measure that
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Fig. 5. Online inference time of the sound map for a growing domain size.
We compare our proposed method (with various local domain sizes r) to the
inducing input approximation using inducing inputs on a grid, the Hilbert
space basis function approximation, and SKI. All methods were run using the
same amount of basis functions. The error bars indicate the average deviation
above and below the mean after 100 repeated experiments, respectively.

compares how similar distributions are. It can attain values be-
tween 0 and ∞, where a lower value means that the distributions
are more similar. First of all, it can be seen that a higher basis
functions density (measured in the number of basis functions
per lengthscale) results in a smaller KL divergence, i.e. a better
approximation, of the inducing input approximation. Our
method can be seen to approach the inducing input approxi-
mation for larger r.

To measure how long it takes for our approach to perform
online mapping, we measure the time it takes to include one
additional measurement and perform one prediction step. In
Fig. 5, we compare our proposed method to the inducing input
solution implemented with an online Kalman filter [23], an
online Kalman filter implementation with Hilbert space basis
functions [16], and an online implementation of SKI [39], for
increasing domain sizes. As the domain size increases, we keep
the basis function density constant to retain the same approxi-
mation accuracy. The amount of basis functions m is therefore
increasing linearly. As the online inference time of SKI is af-
fected by how many iterations are used in the conjugate gradient
solver to improve the approximation accuracy, we measure the
run-time using just one iteration in the solver. To compare the
prediction accuracy of SKI to our approach in Table II, however,
we use the exact solution that the solver is approximating.
We can therefore conclude that an online evaluation of our
algorithm is faster than competing approaches while being able
to recover the same or better SMAE (standardized mean average
error) and MSLL (mean squared log loss) scores (see Table II).
The online computational complexity of both Hilbert space
basis functions and inducing inputs increases quadratically as
the domain size increases. The computational complexity of our
approach is bounded by O(m′3) independent of the increase
in the domain size, which is why our online computational

complexity remains lower than 10−3 seconds independent of
the growth of the domain size.

B. Mapping Daily Precipitation Levels

In this section, we compare the prediction accuracy and com-
putation time of our mapping approach to alternative methods
on a large geo-spatial dataset which is used as a benchmark
dataset for evaluation accuracy and computation time by [39],
and [38]. The dataset contains 528 474 measurements of daily
precipitations from the US in the training set, and 100 000 mea-
surements in the test set [39]. The input dimensions are latitude,
longitude, and time. We use the squared exponential kernel
using the same hyperparameters as [39]. These hyperparame-
ters are σSE = 3.99, σy = 2.789 and lSE = [3.094, 2.030, 0.189],
where the three lengthscales lSE apply to each of the three
dimensions, respectively.

In Table III, the standardized mean squared error (SMSE)
of our approach with r� = 3.5lSE is compared to the full GP
prediction, and to the inducing input approximation with basis
functions placed on the same grid. The SMSE of our approach
almost matches the inducing input approximation with the same
number of basis functions. Using 200 000 basis functions, it
matches the GP prediction accuracy with the same number
of measurements. Using all the measurements and 200 000
basis functions gives the highest prediction accuracy, which
is a combination that is computationally infeasible given our
hardware constraints for both the full GP regression and the
inducing input approximation to give a prediction. However,
our proposed method has an online training time of only 0.017
seconds per measurement and 0.016 seconds per prediction.

C. Global Bathymetry Field Mapping

To investigate the time required for our method to include a
new measurement and make a prediction in a large geospatial
field with fine-scale variations, we run it on a dataset contain-
ing values of the height difference with respect to sea level
across the globe [44]. The input domain of this data is huge
compared to the scale of the spatial variations, and the data is
therefore challenging to train on using state-of-the-art methods.
We retrieve 37.5 million depth values from the database, and we
consider the latitude and longitude as input locations.

We test our approach using the squared exponential kernel
from (2). We choose σ2

SE equal to the variance of the 37.5
million measurements and σy = 0.1σSE to ensure a reasonable
signal-to-noise ratio. Furthermore, we set the lengthscale lSE =
0.16 degrees, which corresponds to 18.3 km on the equator.
Note that this lengthscale can straightforwardly be changed to
a more physically informed value by an end-user.

The result in Fig. 6 shows the bathymetry map learned using
10% of the measurements and 2.33 million (M) basis functions
(Fig. 6(a)), the map learned using 100% of the measurements
and 268 thousand (K) basis functions (Fig. 6(b)), and map
learned using 100% of the measurements and a dense grid
of 2.33 million basis functions (Fig. 6(c)). We use a local
subset contained within r� = 3lSE to approximate the GP pos-
terior mean. For the results in Fig. 6(c), including each new
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TABLE II
STANDARDISED MEAN ABSOLUTE ERRORS (SMAES), COMBINED TIME TO INCLUDE A NEW MEASUREMENT AND MAKE

A NEW PREDICTION, MEAN STANDARDIZED LOG-LIKELIHOOD (MSLL) SCORES FOR CONSTRUCTING THE SOUND MAP.
THE RESULTS THAT ATTAIN THE LOWEST RUN-TIME WHILE ALSO ATTAINING THE LOWEST SMAE ARE HIGHLIGHTED.
SMAES AND MSLL SCORES ARE EVALUATED ON ALL STANDARDIZED TEST POINTS INSIDE THE CONSIDERED DOMAIN,

AND THE AVERAGE TIME PLUS MINUS ONE STANDARD DEVIATION IS CALCULATED BASED ON 100 REPETITIONS

10% of Domain, m= 800 100% of Domain, m= 8000

SMAE Time[s] MSLL SMAE Time[s] MSLL

r = 6lSE 0.42 6.2 · 10−5 ± 2.1 · 10−5 37.5 0.34 7.3 · 10−5 ± 2.2 · 10−5 48.0

r = 12lSE 0.22 9.4 · 10−5 ± 2.1 · 10−5 4.18 0.20 1.1 · 10−4 ± 1.6 · 10−5 12.2

r = 18lSE 0.22 1.3 · 10−4 ± 2.7 · 10−5 3.94 0.20 1.6 · 10−4 ± 2.1 · 10−5 12.2

SKI 0.22 8.0 · 10−4 ± 1.2 · 10−4 5.74 0.20 1.6 · 10−3 ± 1.7 · 10−4 18.2

Inducing inputs 0.22 1.0 · 10−2 ± 7.4 · 10−4 3.81 0.20 2.1 · 10−1 ± 1.6 · 10−3 12.2

Hilbert space 0.22 9.5 · 10−3 ± 5.1 · 10−4 3.80 0.20 2.2 · 10−1 ± 4.6 · 10−3 12.2

TABLE III
SMSE ACCURACIES OF DAILY PRECIPITATION LEVEL PREDICTIONS. THE PREDICTIONS ARE

OBTAINED WITH A LOCAL DOMAIN WITH SIZE r� = 3lSE, WHICH CORRESPONDS TO USING AT

MOST 144 BASIS FUNCTIONS IN EACH LOCAL PREDICTION FOR THE HIGHEST m= 200K

Inducing Inputs Local Information Filter

N full GP m=10K m=20K m=10 K m=20K m=100K m=200K

10 000 0.823 0.957 0.905 0.957 0.906 0.824 0.823

20 000 0.766 0.946 0.861 0.947 0.862 0.770 0.766

100 000 N/A 0.907 0.782 0.907 0.786 0.561 0.545

528 474 N/A 0.894 0.746 0.895 0.751 0.468 0.435

Fig. 6. Bathymetry dataset reconstruction with GP regression. The color corresponds to the posterior predicted elevation of the earth surface both above
and below the sea, and the opacity is inversely proportional to the variance of the approximate GP prediction in each location.

measurement takes 3.7× 10−4 ± 0.12× 10−4 seconds. Each
prediction takes 0.0097± 0.017 seconds. These results demon-
strate that our proposed approach can remain computationally
feasible in cases where the measurement density is high, and
the map area is large relative to the length scale of the spatial
variations. The disadvantage of discarding measurements is
visible in Fig. 6(a). When fewer measurements are included,
less information is available about the map, causing the image to
appear blurry. The disadvantage of discarding basis functions is
visible in Fig. 6(b). When there are not enough basis functions,
the map is not represented at a high enough resolution, causing
the image to appear grid-like.

D. Using Local Information Filter for Faster Mag-SLAM

To experimentally compare our EKF Mag-SLAM approach
from Section IV-D with that from [20], we apply both

algorithms to a dataset from a foot-mounted sensor that was
collected by [45] and subsequently used in [20] to demonstrate
the performance of the method. We measure the average com-
putation time required for each iteration of our algorithm and
compare this with the average computation time required, on
the same laptop, for each iteration of the algorithm from [20].

In Fig. 7(a), the odometry obtained by using only accelerom-
eter and gyroscope measurements from a foot-mounted sen-
sor using the algorithm in [46] is displayed. In Fig. 7(e), the
estimated trajectory using the EKF with Hilbert space basis
functions as in [20] is displayed. All estimates are overlayed
on the floorplan of the building where the measurements were
collected. This gives a rudimentary means of evaluating the
position estimation accuracy, since the subject walked through
the same hallways in a repeated pattern 8-motion. The drift
in the odometry in Fig. 7(a) therefore shows up as a slow
displacement of the position estimate away from the hallway. In
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Fig. 7. (a) Trajectory estimates for indoor pedestrian walking laps in a hallway using only foot-mounted odometry, (b)–(d) EKF Mag-SLAM with various
sizes of the local domain determined by r, and (e) the baseline algorithm that uses with Hilbert space basis functions. The average computation time in
milliseconds for one iteration of each filter (dynamic update + measurement update) is written below each subfigure.

contrast, the estimates obtained using our approximate mapping
(see Fig. 7(d)) and using the algorithm from [20] (see Fig. 7(e))
compensate for this drift. The notable difference between our
approach and the approach from [20], is that the latter uses
Hilbert space basis functions resulting in a time of 26± 4.6 ms
to run at each iteration, while our equally accurate algorithm
requires only 5.6± 1.3 ms to run at each iteration. Although
comparing the computational time of different algorithms de-
pends heavily on implementation, we used the same implemen-
tation as [20], and wrote the implementation of our algorithm
in the same language and on the same format, simply swapping
the terms used by [20] with ours.

VI. CONCLUSION

To improve position estimation online with few computa-
tional resources, we have presented an efficient online mapping
technique that approximates the GP posterior. The required
number of computations neither scales with the number of mea-
surements, nor with the spatial extent of the map. The storage
requirements of our presented mapping algorithm scale linearly
with the spatial extent of the map, and also does not scale
with the number of measurements. We have also demonstrated
the ability of our mapping algorithm to match the accuracy
of previously proposed approximations on benchmark datasets
using a lower computation time. Our mapping algorithm can
also be used for SLAM. We have shown experimentally that
our proposed method achieves the same prediction accuracy
for magnetic field SLAM using a foot-mounted sensor as in
previous work, while requiring a shorter computation time. Fu-
ture work could investigate the existence of theoretical bounds
on the approximation errors, or investigate ways to incorpo-
rate the mapping technique for SLAM in different geospatial
fields, and for other applications such as navigation of robots or
vehicles.

APPENDIX A
PRIOR COVARIANCE FOR THE PREDICTION-POINT DEPENDENT

BASIS FUNCTION APPROXIMATION

The prior for the parametric approximation to the GP regres-
sion using the local subset of basis functions is given by

f̃� =Φ�
S�wS� , wS� ∼N (0, P�), (22)

where P� is the prior covariance on the local weights. The con-
dition that the prior should be recovered in the center locations
of the basis functions is given as

p(f̃�(uS�)) = p(f(uS�))), (23)

where uS� denotes the center locations of the basis functions
contained in the set S�. As both distributions in (23) are normal
distributions with mean 0, this condition holds if and only if the
two covariances are equal according to

ΦS�(uS�)TP�ΦS�(uS�) =K(uS� , uS�). (24)

This results in the closed-form expression for P�

P� = (ΦS�(uS�)T)−1K(uS� , uS�)ΦS�(uS�)−1, (25)

when (ΦS�(uS�)T) and ΦS�(uS�) are invertible. The entry in
row i and column j of the matrix ΦS�(uS�) is φi(uj), which
is defined using (7) as

φi(uj) =

{
κ(ui, uj), ‖ui − uj‖∞ ≤ r

0, ‖ui − uj‖∞ > r
(26)

For all inducing input pairs i, j in the set S(x�, r�), it holds that
‖ui − uj‖∞ ≤ 2r�. If r ≥ 2r�, the condition ‖ui − uj‖∞ ≤ r
holds for all i, j ∈ S�. This implies that φi(uj) = κ(ui, uj) for
all i, j ∈ S� and henceΦS�(uS�) =K(uS� , uS�). Inserting this
result into (24) gives P� =K(uS� , uS�)−1.
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DATA AVAILABILITY STATEMENT

All code and files required to reproduce the results can be
found on https://github.com/fridaviset/fastgpmapping.
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