

Delft University of Technology

Continuous Delivery Practices in a Large Financial Organization

Vassalo, Carmine; Zampetti, Fiorelli; Romano, Daniele; Beller, Moritz; Panichella, Annibale; Di Penta,
Massimiliano; Zaidman, Andy
DOI
10.1109/ICSME.2016.72
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings - 2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016

Citation (APA)
Vassalo, C., Zampetti, F., Romano, D., Beller, M., Panichella, A., Di Penta, M., & Zaidman, A. (2016).
Continuous Delivery Practices in a Large Financial Organization. In Proceedings - 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016 (pp. 519-528). IEEE.
https://doi.org/10.1109/ICSME.2016.72
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSME.2016.72
https://doi.org/10.1109/ICSME.2016.72

Continuous Delivery Practices
in a Large Financial Organization
Carmine Vassallo1, Fiorella Zampetti1, Daniele Romano2, Moritz Beller3,

Annibale Panichella3, Massimiliano Di Penta1, Andy Zaidman3
1University of Sannio, Italy, 2ING NL, Amsterdam, The Netherlands, 3Delft University of Technology, The Netherlands

Abstract—Continuous Delivery is an agile software develop-
ment practice in which developers frequently integrate changes
into the main development line and produce releases of their
software. An automated Continuous Integration infrastructure
builds and tests these changes. Claimed advantages of CD include
early discovery of (integration) errors, reduced cycle time, and
better adoption of coding standards and guidelines. This paper
reports on a study in which we surveyed 152 developers of a large
financial organization (ING Netherlands), and investigated how
they adopt a Continuous Integration and delivery pipeline during
their development activities. In our study, we focus on topics
related to managing technical debt, as well as test automation
practices. The survey results shed light on the adoption of
some agile methods in practice, and sometimes confirm, while
in other cases, confute common wisdom and results obtained
in other studies. For example, we found that refactoring tends
to be performed together with other development activities,
technical debt is almost always “self-admitted”, developers timely
document source code, and assure the quality of their product
through extensive automated testing, with a third of respondents
dedicating more than 50% of their time to do testing activities.

Index Terms—Continuous Delivery, Continuous Integration,
DevOps, Agile Development, Technical Debt, Refactoring, Test-
ing, Test-Driven Development

I. INTRODUCTION

Continuous Integration (CI) was originally introduced by
Grady Booch in 1991 [1], and came into fashion as one of the
twelve Extreme Programming practices in 1997 [2]. Fowler
defines CI as [3]:

A software development practice where members
of a team integrate their work frequently, usually
each person integrates at least daily – leading to
multiple integrations per day. Each integration is
verified by an automated build (including test) to
detect integration errors as quickly as possible.

CI has multiple assumed benefits, for example, that in-
tegration errors among different components of a software
application can be detected earlier, easier, and with less manual
effort [4]. At the heart of CI stands a testing phase, possibly in
multiple integration environments, in which unit, integration,
system, and even acceptance tests can automatically be exe-
cuted [5], [3]. This is complemented by running Automated
Static Analysis Tools (ASATs), e.g., FindBugs, Checkstyle,
or JSHint as part of the CI can augment the dynamic testing
phase [6]. In addition to these checks of code and system
quality, CI is said to improve release frequency and pre-
dictability [7], increase developer productivity [8] and improve

communication [9], hence reducing the time-to-market and
allowing users to benefit from continuous updates of their soft-
ware. Continuous Delivery (CD) is the development practice
that enables frequent releases by help of a CI process [10].
Ståhl and Bosch observed that CI, and by extension CD, have
become increasingly popular in software development [11].

However, Ståhl and Bosch observed that there is not one
homogeneous practice of continuous integration, indeed there
are variations points with the term continuous integration
acting as an umbrella for a number of variants [11]. Moreover,
they showed that there is no clear insight into how the practice
of CD influences other aspects of the development process.

The goal of this paper is thus to shed light on the
interaction between CI and CD from the aspect of (i) the
general development process, (ii) managing technical debt,
(iii) testing activities, (iv) technical questions about the CI
infrastructure.

To bootstrap this investigation, one of the authors spent three
months as an intern in a large financial organization, namely
ING Netherlands (https://www.ing.nl, in the following referred
as ING NL) and observed how their newly adopted CD
environment enables developers to run their own operations,
called DevOps [12]. Based on these inside observations by
an outsider to ING NL, we have designed a survey in which
we asked developers about various practices they adopted in
the CD pipeline. By consulting and embedding an external
technical expert without domain knowledge, ING NL wanted
to gain an independent understanding of their process and
identify potential areas of improvement with regard to testing
and managing technical debt.

Paper Structure. Section II provides an overview of the CD
pipeline in ING NL. Section III defines the study, formulates
its research questions, and details its planning. Then, Section
IV reports and discusses the study results. Threats to validity
of the conducted studies are then discussed in Section V, while
Section VI discusses related literature on CD and build-release
management. Finally, Section VII concludes the paper.

II. CONTINUOUS DELIVERY IN ING NL

ING is a large financial organization with about 94,000
employees and over 67 million customers in more than 40
countries.

Nine years ago, ING NL realized the need to fundamentally
change the organization of its Information Technology (IT)
department. The main rationale was to bridge the gap from the

Fig. 1. Continuous Delivery pipeline.

IT and ING NL’s core business. Before that, the IT activities
were mainly outsourced, which created managerial effort and
costs, while taking resources away from the development.

Moreover, the previously adopted development process ex-
hibited a communication gap between the department aimed
at “changing the business”, i.e., changing its software, and
the department aimed at “running the business’, i.e., operating
and maintaining the software. Such a gap was mainly bridged
by complex processes and procedures for managing changes.
This rigor was mainly introduced to ensure stability of the
software systems being developed. To “change the business,
the focus was on guaranteeing short release cycles. This
created conflicting objectives between developers (“Devs”)
whose goal it was to meet deadlines, and operators (“Ops”)
whose goal it was to reduce the risk of runtime incidents.

The development process changed when ING NL decided
to introduce a mobile application for online banking, since that
long development cycles would have led to an outdated appli-
cation. For this reason, development activities were changed
from the previous outsourcing model to a development process
in which the development was internal to the company.

When changing the development process, DevOps teams
have been introduced. Such teams take charge of the appli-
cation over its whole lifetime, i.e., during development and
operations. The next step was the introduction of a CD pipeline
enforcing an agile development process to reduce the testing
and deployment effort and duration, especially because such
activities were used to be mainly manual work for two separate
teams.

Fig. 1 depicts the CD pipeline that has been put in place
in ING NL. As the figure shows, the pipeline is composed
of two layers. A base layer (depicted in the bottom), which
is a typical CD pipeline, and an additional layer (top) which
deals with continuous monitoring. As soon as the developer
pushes a commit, this is detected by the CI server, Jenkins
[13], and triggers the software build. Its main task is to run
build scripts, mainly Maven scripts, but also, for a minority
of projects, Ant, Gradle and other build scripts.

Similar to most Open-Source CI builds [5], builds at ING
NL are considered broken for a number of reasons, ranging
from traditional compiling errors to failing test cases, up to
software quality problems – e.g., the presence of a code smell

Fig. 2. Monitoring layer in the CD pipeline.

like too high McCabe cyclomatic complexity – detected by
ASATs. In ING NL, such the ASAT of choice is SonarQube
[14].

In case the build succeeds, the artifacts are stored in the
Repository stage using the Artifactory [15]. This introduces
several advantages, such as the possibility of implement-
ing caching mechanisms for rapid application re-deployment.
Once the Repository stage is reached, the application is
ready to be deployed in different environments, i.e., DEV
(development), TST (testing), ACC (acceptance), and PRD
(production).

The monitoring layer in the pipeline collects (top part in
Fig. 1) a series of metrics for evaluating the CD pipeline per-
formance. This comprises the three phases of (i) instantiating
a CD pipeline, (ii) performing measurements on the pipeline,
and (iii) learning from such measurements to further improve
the pipeline.

The monitoring layer is detailed in Fig. 2. It is composed
of one event bus, implemented using Apache Kafka [16], and
aimed at collecting events (e.g., build failures or successes)
from the pipeline and storing them in a database, implemented
using MongoDB [17]. Then, the information stored in the
database is utilized by different monitoring tools, shown in
the top part of Fig. 2.

The system health monitoring tool monitors the pipeline’s
software and hardware resources and its primary purpose is
ensuring the pipeline’s availability. The automated acceptance
criteria tool aims at checking whether the release meets
the acceptance criteria defined by the organization, before
promoting it to the ACC or PRD stage. The automated team
maturity and test analytics tools inform teams about releases
(e.g., mean cycle time a team is able to handle) and statistics
about test execution, such as the percentage of failed tests.

The whole monitoring approach reflects the Lean cycle [18],
in which DevOps engineers continuously learn by observing
metrics and adapt the pipeline when needed.

ING NL has monitored the effect of CD adoption in terms of
costs, productivity, and customer satisfaction. In three years,
from 2011 to 2013, ING NL has increased the number of
delivered function points by 300% and reduced the cost of a
single function point to one third. Additionally, between 2012
and 2014, the release frequency has doubled, reaching one
release every four days.

III. STUDY DESIGN

The goal of this study is to better understand the imple-
mentation of CD practices in industry, by surveying how

software engineers use relevant methods and tools during the
development process. The context is the CD pipeline of a large
financial organization (ING NL).

More specifically, the study aims at addressing the following
four research questions:

• RQ1: What are general development practices within the
Continuous Delivery pipeline? This research question is
preliminary to the ones going deeper into the CD process,
and mainly aims at investigating to what extent devel-
opers share a common development methodology, and
how they plan, schedule, and monitor their development
activities.

• RQ2: What are the practices adopted to manage technical
debt? This research question aims at understanding how
developers manage technical debt by commenting source
code, by reviewing it, and by performing any sort of static
analysis or metric extraction.

• RQ3: What are the testing practices adopted within the
Continuous Delivery pipeline? This research question
aims at understanding how testing is framed within
the software development process, e.g., whether DevOps
adopt a Test-Driven Development approach [19].

• RQ4: How is Continuous Integration performed? This
research question investigates on the developers’ attitude
to coordinate changes through the CD infrastructure,
including the use of private builds and the priority given
to fix build breakages.

A. Context Selection

As a population of candidate participants to the survey, we
selected a total of 176 DevOps engineers belonging to various
development teams of ING NL. Such participants have been
identified through the projects’ mailing lists.

B. Survey Design

The four research questions have been addressed by means
of a survey. The survey has been designed by the authors
observing the development activities (by looking at the life-
cycle of user stories and participating in daily stand-up meet-
ings), and talking with developers to get insights about the CD
pipeline and the way it has been implemented in ING NL.

The survey also addresses specific knowledge needs at
ING NL, triggered by one of the authors who is affiliated
with ING NL. The survey is organized into four sections,
plus a preliminary section aimed at investigating demographic
characteristics of the respondents (age, years of experience,
years in ING NL, and technical skills). Overall, it consists
of 48 questions, plus five demographics questions. The ques-
tionnaire allowed the respondent to select among one or more
answers (in most cases multiple answers were allowed), and if
needed to provide a textual answer (i.e., by selecting “Other”
among the options). In Tables 1–4, we give an abbreviated
summarization of the questions we asked developers.1

1The original survey with all questions is available at https://figshare.com/
s/fa8c4e11fc9fa4b8f8cb

Table I reports the questions aimed at addressing RQ1. As
it can be noticed, besides the first question, mainly aimed at
understanding whether DevOps engineers share the method-
ology being adopted, all other questions clearly refer to agile
development practices and in particular to Scrum [20]. For
example, we ask questions about sprint planning and user
story progress monitoring, but also specific questions about
how DevOps manage issues and schedule/perform refactoring
actions. We asked specific questions about refactoring as
in this study we were particularly interested to understand
activities related to technical debt management.

Specific questions about managing technical debt – reported
in Table II – compose the second part of the survey, aimed at
addressing RQ2. We ask questions about (i) how developers
document source code by means of comments, (ii) how they
perform code review, (iii) what kinds of problems do they
detect by means of code review and using automated smell
detection tools, as well as how they remove problems by means
of refactoring, and (iv) whether they perceive that smells are
usually introduced because of deadline pressure.

The third part of the survey aims at addressing RQ3 and fea-
tures questions about testing activities, as shown in Table III.
After having asked a question aimed at understanding whether
DevOps engineers use TDD, we asked questions about the
effort spent on writing test cases and to what extent test cases
are kept up-to-date. Also, we ask questions about information
and strategies being used to derive test cases for different
testing levels. Then we ask questions about test execution (i.e.,
to what extent is this done within private builds or on the CI
server), and how developers assess test effectiveness and deal
with low coverage.

Finally, the fourth part of the survey addresses RQ4 and
is composed of questions (see Table IV) about (i) promotion
policies2, (ii) how DevOps engineers handled build failures,
(iii) how they used branches and (iv) how frequently they
pushed their changes.

C. Survey Operation

The survey questionnaire was uploaded onto a survey
management platform internal to ING NL, and the candidate
participants were invited using an invitation letter explaining
the general goals of the survey, its length and estimated time
to complete, and highlighting how its results have the purpose
of understanding the CD process within ING NL, also in order
to identify directions for its improvement.

Respondents had a total of three weeks to participate to
the survey, and a reminder to those who did not participate
yet was sent every week. In total, we obtained 152 filled
questionnaires, i.e., we achieved a return rate of 85%. We
left respondents the choice not to answer a question. The
number of answers for each question is reported in the last
column of the tables enumerating the questions. Overall, the
median number of responses per question was 129 for RQ1

2A promotion entails the selection of a release candidate and subsequent
deployment to the correct environment [21].

TABLE I
DEVELOPMENT PROCESS - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.
Q1.1 What is your software development methodology? S 150
Q1.2 Is the product vision always clear to you? Why? Why not? S,M 149
Q1.3 Do you prefer to use a physical board or an electronic one? Why? S,M 125
Q1.4 During a sprint why do you add some tasks to the already planned ones? R 138
Q1.5 Which is the main topic you address during the sprint retrospective? S 138
Q1.6 Which is the average percentage of completed user stories at the end of a sprint? S 138
Q1.7 Which Scrum metrics do you usually collect? M 128
Q1.8 Which is the main reason why a “done” user story comes back to “in-progress”? S 130
Q1.9 Do you consider non-functional requirements as definition of “done” of a user story? S 130
Q1.10 Which kind of non-functional requirements do you consider as definition of “done” of a user story? M 120
Q1.11 You detect a defect that was previously resolved: how to deal with it? S 129
Q1.12 Do you usually schedule refactoring tasks? Why? S 129
Q1.13 Which priority do you usually assign to refactoring tasks? S 128
Q1.14 How frequently are refactoring tasks included in other tasks? S 128
Q1.15 Which is the average percentage of scheduled refactoring tasks that are completed at the end of a sprint? S 123

TABLE II
MANAGING TECHNICAL DEBT - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.
Q2.1 To what extent do you introduce method and class level comments? S 116
Q2.2 To what extent do you introduce statement level comments? S 116
Q2.3 To what extent do you update code documentation/comments? S 116
Q2.4 Do you perform code review? Why? S,M 116
Q2.5 How do you usually detect code smells? M 110
Q2.6 Which of those problems do you usually detect? (null pointers, interface misuse, memory leaks, unreachable code, unused

variables, uninitialized variables)
M 116

Q2.7 Which of these bad design/implementation choices do you usually detect during code reading? (function having huge size,
method with many responsibilities, high module coupling, module exposing its attributes)

M 116

Q2.8 Which source code metrics do you usually look at? M 116
Q2.9 Do you sometimes do poor implementation choices because of near deadline? S 116
Q2.10 Do you usually use a tool in order to do code refactoring? Why? S 116

TABLE III
TESTING - QUESTIONS - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.
Q3.1 Do you use TDD (Test Driven Development)? Why/why not? S,M 125
Q3.2 Which percentage of your time do you spend on writing tests? S 124
Q3.3 How frequently do you review and (if necessary) update the tests for every change to production code? S 124
Q3.4 Do you usually test the code written earlier by others? Why (not) S,M 124
Q3.5 Which strategy do you usually use to categorize inputs for each test case? S 122
Q3.6 Which information do you need in order to perform Unit Testing? M 122
Q3.7 Which information do you need in order to perform Integration Testing? M 122
Q3.8 Do you usually automate the generation of the test cases? S 122
Q3.9 In which kind of testing do you usually automate the generation of the test cases? M 21
Q3.10 Which kinds of testing are executed automatically? Why (not)? M 120
Q3.11 Where do you test code? M 120
Q3.12 Which percentage of written tests are executed? S 120
Q3.13 Do you always run all test cases together? Why? S 120
Q3.14 How frequently do tests pass? S 120
Q3.15 Which types of code coverage do you measure? M 107
Q3.16 Which is the average percentage of code coverage that you usually score during unit testing? S 103
Q3.17 How do you deal with low coverage? S 103
Q3.18 Which of those test metrics do you find useful? M 116
Q3.19 How do you react to a failure? R 116

TABLE IV
CONTINUOUS INTEGRATION - QUESTIONS - QUESTIONS (S/M/R STANDS FOR SINGLE, MULTIPLE, OR RANKING ANSWER QUESTION).

Summarized Question S/M/R # of Resp.
Q4.1 Promotion policies: what do you do when you are ready to push code on the master branch? S 112
Q4.2 How do you deal with failures at building/packaging time? S 112
Q4.3 Branching issues: how do you deal with parallel development? S 112
Q4.4 When do you usually push your changes? S 112

TABLE V
RESPONDENTS’ DEMOGRAPHICS: AGE, YEARS OF DEVELOPMENT

EXPERIENCE, AND YEARS SPENT IN ING NL.
Age Years of experience Years spent in ING NL

< 30 24 < 1 2 <1 24
30-39 55 1 5 1 27
40-50 60 2-5 19 2-5 56
> 50 13 6-10 32 6-10 19

>11 94 >11 26

Ex
pe

rti
se

Java

JavaScript

SQL-databases

no-SQL-databases

PHP

.NET

Objective-C

TIBCO

Other

Number of respondents
0 30 60 90 120 150

41

19

20

28

29

45

102

127

135

Fig. 3. Technological Knowledge.

questions, 116 for RQ2, 120 for RQ3 and 112 for RQ4.
Only for one question (Q3.9, dealing with specific aspects
of test automation) the number of answers was below 100,
i.e., 21. Both the overall return rate and the return rate for the
single answers are higher than typical return rates for software
engineering surveys conducted in industry, which often range
between 10% and 25% [22], [23]. The high return rate gives
us confidence that our survey accurately reflects the opinion
of the sampled developers.

IV. STUDY RESULTS

In this section, we highlight key results of our study that
directly address the research questions from Section III.

A. Respondents’ demographics

Table V and Fig. 3 report demographics information about
the study respondents, and namely their age, years of experi-
ence, years spent in ING NL, and their main skills (multiple
answers were allowed). Most of the respondents are relatively
senior both in term of age and development experience (the
majority of them has an age between 30 and 50, and over 11
years of experience). The main technological expertise they
possess are related to Java or JavaScript programming, and
both relational and NoSQL databases.

B. RQ1: What are general development practices within the
Continuous Delivery pipeline?

Methodology. When we asked about the kind of methodol-
ogy being adopted in the development process (Q1.1) almost
all developers (97%) mentioned they use on Scrum as devel-
opment methodology. At the same time, the product vision
(Q1.2) is clear to 68% of the respondents only. One important

%
 o

f r
es

po
nd

en
ts

0%

10%

20%

30%

40%

Sprint completion percentage
< 80% 80% 90% 95% 100%

3%

14%

28%

36%

18%

Fig. 4. Q1.6 – User story completion percentage in a sprint.

reason for the lack of clarity is due to frequent changes, which
are pretty common in agile development.

Interestingly, while most of the respondents (69%) prefer
to use an electronic Scrum board (Q1.3), there is a quite high
percentage (31%) still preferring a physical Scrum board3. On
the one hand, they say that an electronic Scrum board facil-
itates distributed team work (84%), and provides automated
calculation of sprint progress metrics (59%). On the other
hand, a physical board is always visible in the room (90%),
and improves the team cohesion (64%).

Sprint Management. Developers declared that, during a
sprint, they add some tasks to the already planned ones (Q1.4).
As a main reason for that, 60% of them indicate bug fixing,
followed by missing detailed requirements (33%) and only 7%
mentioned high-level, business requirements missing during
the planning.

During the sprint retrospective (Q1.5), i.e., the meeting
in which the sprint activities were discussed in order to
understand what went well, what went wrong, and how things
can be improved for the next sprint, developers mainly discuss
and try to harmonize the way they work (88%). Few responses
concern bad implementation (1%), the product not meeting
functional (1%) or non-functional (1%) requirements, and
other issues (7%).

Fig. 4 reports the average percentage of completed user
stories at the end of a sprint (Q1.6). In most cases, respondents
agree that no less than 80% of user stories are completed.
Other than dealing with functional requirements, user story
completion concerns with dealing with different kinds of non-
functional requirements, where developers consider as high
priority requirements security (89%), reliability (86%) and
maintainability (82%). The main monitoring mechanisms for
the sprint progress (Q1.7) are the sprint burn-down (60%,
tracking the sprint completion), and the velocity, i.e., the
number of story points [24, page 87] per hour (58%). A small
percentage of respondents consider the number of defects post-
poned (3%), or the technical debt occurred (7%) as important
indicators which are able to influence the completeness of a
user story.

3https://en.wikipedia.org/wiki/Scrumban#/media/File:Simple-kanban-
board.jpg

Almost always

Often

Sometimes

Seldom

Almost never

% of respondents
0% 10% 20% 30% 40% 50%

5%

12%

37%

30%

16%

Fig. 5. Q1.14 – Refactoring being performed together with other tasks.

In some cases, a completed user story may be rolled back
to “in-progress” (Q1.8), but mainly because developers realize
that functional (34%) or non-functional (25%) requirements
are not completely implemented. Only in 22% of the cases
does this occur because of changes in users’ expectations. 7
respondents (5%) explicitly specified that in case they realize
changes in requirements, e.g., because of changed users’ ex-
pectations – they rather open a new user story than reopening
a previously closed one. One respondent even clarified that a
“done” user story should be considered to be in production
already, and therefore should not be reopened again.

When a previously resolved defect occurs again (Q1.11),
52% of the respondents indicate that they open a new issue
anyway. This can either indicate a careful approach in which
developers try to keep the new occurrence of the defect
separated from the previous one.

Refactoring activities. When we asked about refactoring
tasks (Q1.12), 64% of respondents indicated that refactoring
is usually properly scheduled. The main reasons for refactor-
ing include improving program comprehension (87%), allow
making changes easier (77%), and help to find bugs (24%).
Those who not schedule refactoring tasks, they do it either
because they are too time consuming and take effort away
from feature implementation tasks (27%), or because they
do not clearly perceive refactoring advantages (9%). A large
proportion of respondents (64%) indicate other reasons. For
example, they mentioned that “refactoring is just performed as
it pops up”, that they “naturally consider refactoring as part
of other development tasks”, or that “code should be made
maintainable right away”. Also, some respondents indicated
planning reasons, i.e., part of the user story effort calculation.
Last, but not least, someone indicates that all depends on
the size of the refactoring activity to be performed is, i.e.,
small refactorings are performed together with development,
whereas larger ones are kept separate.

When being scheduled (Q1.13), refactoring tasks often
have a medium priority (70%) than other tasks, with 9%
assigning a high priority and 23% a low priority. Indeed, 42%
of respondents indicate that more than 80% of the planned
refactorings within a sprint are actually completed (Q1.15).

Differently from what Fowler reported [25], refactoring

Finding bad smells

Sharing code knowledge

Finding defects

Finding alternative solutions

% of respondents
60% 70% 80% 90% 100%

75%

81%

85%

90%

Fig. 6. Q2.4 – Purposes of code review.

tasks are often performed together with other tasks, as shown
in Fig. 5 (Q1.14). Only 5% of respondents declare that they
clearly separate refactoring from other tasks.

C. RQ2: What are the practices adopted to manage technical
debt?

Source code comments. The first block of questions we
asked about managing technical debt concerned the way
and the extent to which developers comment source code.
Respondents said they almost always (23%), often (34%),
and sometimes (24%) introduce class-level and method-level
comments (Q2.1). Instead, as expected only 3% and 15% of
the respondents introduce statement-level comments always
and often, respectively (Q2.2). Still, 38% of the respondents
introduce them sometimes.

In line with the CD process, and with the aim of preserv-
ing program understanding, 79% of the respondents’ update
comments immediately when changing the source code, while
13% postpone such changes to a specific phase aimed at
producing/updating documentation (Q2.3).

Code reviews. Code review (Q2.4) is adopted by almost
the whole set of respondents (95%) and, as shown in Fig. 6,
the obvious purposes are detecting bad smells (90%) and
finding defects (81%). However, code review is also used a
lot to share code knowledge (85%), or to find alternative ways
for implementing a feature (75%). These results are partially
in line with the observations on the code review process at
Microsoft [26] and on open-source projects [27]. At Microsoft,
finding defects was the most important motivation, followed
by code improvement and finding alternative solutions, while
sharing code ownership was only ranked seventh.

Analysis of bad code smells. Respondents indicate (Q2.5)
that code reviews are the premier way for detecting code
smells (92%), while 63% of the respondents also use static
analysis tools4. The main problems detected (Q2.6) either by
means of automated or manual code review are reported in
Fig. 7 (a): the majority indicated as main problems detected
unused (78%) or uninitialized (62%) variables, null pointers5

4Due to confidentiality reasons, we cannot disclose the list of tools being
used.

5Including null references in languages not directly using pointers, e.g.,
Java.

Unused variables

Use of unintialized variables

Null pointers/references

Unreachable code

Interface misuse

Memory leaks

% of respondents
0% 25% 50% 75% 100%

24%

33%

61%

62%

62%

78%

(a) Q2.6 – Software defects

Large (function) size

Low cohesion

High coupling

Lack of encapsulation

Other

% of respondents
0% 25% 50% 75% 100%

13%

34%

49%

70%

75%

(b) Q2.7 – Bad design choices
Fig. 7. Problems detected by automated and manual code review.

(62%), and unreachable code (61%). In terms of bad design
choices (Q2.7) (Fig. 7 (b)) as expected respondents mainly
deal with large function size (75%). Surprisingly, they focus
more on low cohesion (71%) than high coupling (49%),
although in previous studies [28], [29] the latter has been
perceived by developers as a negative factor for software
maintainability and comprehensibility.

The majority of respondents (58%) rejected the common
wisdom that poor implementation choices occur because of
deadline pressure (Q2.9), confirming previous results obtained
in the open source [30]. Interestingly, almost all respondents
(88%) annotate these poor implementation choices: hence
the principle of self-admitted technical debt – previously
investigated in open source [31], [32] – is pretty well applied
in ING NL. When time allows, developers try to refactor
such smells using some automated tool support: 71% use
tools automatically enacting refactoring actions, such as the
Eclipse refactoring infrastructure, and not tools recommending
refactorings (i.e., tools such as JDeodorant [33]), while 29%
do it manually. The latter indicate as main reason for manual
refactoring the lack of adequate tools (76%) but also the
lack of trust in automated refactoring tools (15%), confirming
results studies showing the dangers of using automated tools
for applying refactorings [34].

Metric collection. Other than identifying specific defects,

Amount of duplicated codes

Cyclomatic complexity

Number of function parameters

Lines of Code (LOC)

Comment words

Number of source files

Other

% of respondents
0% 25% 50% 75% 100%

15%

16%

18%

44%

51%

69%

78%

Fig. 8. Metrics collected to monitor source code quality.

Always

When I have time

Only for certain kinds of systems

No

% of respondents
0% 10% 20% 30% 40% 50%

22%

12%

33%

34%

Fig. 9. Q3.1 – Adoption of Test-Driven Development.

developers collect a series of metrics to monitor source code
quality (Q2.8). The main metrics used are reported in Fig. 8.
Surprisingly, the most important metric is the amount of
duplicated code (78%) which traditionally is considered as
a kind of bad smell too. Other than that, the cyclomatic
complexity (69%, again, indicator of some code smells such as
Complex Method) and number of function parameters (51%,
indicator of Long Parameter List bad smell). Only 44% of
respondents mention LOC.

D. RQ3: What are the testing practices adopted within the
Continuous Delivery pipeline?

Test-Driven Development (TDD) and Testing in general.
TDD is the practice of “driving development with tests” [35].
As reported in Fig. 9, 34% of the respondents say they
always use TDD (Q3.1). 33% answered they use TDD for
certain kinds of (sub) systems, and 12% use it when time
pressure allows. 22% do not use TDD at all. Respondents
reported to adhere to a TDD style when they can create
or have existing unit (96%), integration (53%), acceptance
(25%), or performance (15%) tests for the functionality they
are about to implement. Reasons for not using TDD are mainly
related to TDD not being directly applicable for many types of
code changes, e.g., when developing graphical user interfaces
(59%), which triggers the need for other kinds of tools, such
as capture-replay tools. Another important reason was TDD’s
time consuming nature (33%).

Regarding testing in general, 47% of the respondents allo-

cate between 25% and 49% of their time for testing (Q3.2),
and 31% more than 50% of their time. Developers in the
WatchDog study [35] estimated to spend on average around
50% of their time on automated, codified testing, very closely
resembling the estimates in our study.

One may wonder how accurate developers’ self-estimations
are and whether developers who claim to use TDD do indeed
apply it. Beller et al. [35] found in their WatchDog study that
developers spent a quarter of the work time on testing (instead
of half, which they originally estimated), and that, even when
they reported that they were using TDD, developers practi-
cally never applied it strictly [35]. A similar observational
study on developers’ testing habits could identify whether
and how these findings apply in our given context. Casual
evidence from another context (not at ING NL) suggests that,
some developers were referring to acceptance testing with the
Framework for Integrated Testing (FIT) [36] as TDD, but
meant Behavior-Driven Development (BDD) [37]. Generally,
our survey answers suggest that quality assurance through
testing is a crucial concern at ING NL. A significant amount
of manual work is required for TDD in particular and testing
in general. Automated tool support, including test case gen-
eration, might help further reduce it. When asking a specific
question on automation of test generation (Q3.8, Q3.9), 17%
of the respondents indicated they use some techniques and tool
to automate test case generation.

A factor that highlights the cost of testing and that TDD
may indeed be followed is the answering to the question of
continuous updating of test suites for every change (which is
in line with the idea of CI). Most of the respondents claim
they almost always (58%) or often (28%) update tests when
changing production code (if necessary).

Testing strategies and criteria. We found that developers
make use of specific testing strategies such as black box
testing relatively seldom (Q3.5). 52% of the respondents say
they do not use any strategy. As regard black box testing,
only 20% and 19% use equivalence class testing and category
partitioning [38] criteria respectively. Regarding white box
testing, the main criteria being used (Q3.15) are statement
coverage (94%), branch coverage (84%), multiple condition
coverage (68%), and in some cases path coverage (42%).
Most of the respondents picked multiple options indicating that
depending on the feature under test, they choose whichever
strategy is most suitable.

Overall, about statement coverage (Q3.12), 84% of the
respondents indicated they try to achieve a coverage level of at
least 80%. Other than that, as it is shown in Fig. 10, developers
rely on a number of different metrics, mostly the number of
failed/passed/blocked test cases (77%) but, for example, also
related on how well test cases cover user stories (27%).

For unit testing purposes, test cases are often written using
(Q3.6) requirements for black box testing (78% of respon-
dents) and source code for white box testing (80%). Only
24% of respondents rely on models. As for integration testing
(Q3.7), code is less used (43%) while developers mainly rely
on module interfaces (66%).

of test cases written for each user story

of executed/un-executed test cases

of failed/passed/blocked test cases

of detected defects grouped by priority

Other

% of respondents
0% 25% 50% 75% 100%

9%

27%

32%

34%

77%

Fig. 10. Q3.18 – Test metrics.

E. RQ4: How is Continuous Integration performed?

The first question we asked (Q4.1) was about the use of
testing in private builds before opening a pull request. As
one can expect, results indicate how the use of CI changes
the promotion management policies one may adopt. While in
principle [39] one can be tempted to promote code as long as it
compiles, with CI developers are encouraged to perform some
tests (e.g., unit testing) in the private builds. Indeed, 97% of
the respondents indicated they actually do it, while only 3%
let the CI perform all tests when builds are performed.

In case of build breaking changes (Q4.2), 96% of the
developers confirmed that they interrupt their implementation
activities and focus on fixing the build.

To minimize conflicts, the majority of respondents (62%)
create a feature branch and merge it later in the master branch,
even if only 22% of them perform a daily merge (Q4.3).
Regarding the frequency of pushing changes in the master
branch (Q4.4) results indicate that 60% of developers push
changes whenever a small piece of a task is completed, while
30% do it only when a whole task is completed. Only few
respondents (10%) push changes more than one time in a
week.

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. In a survey, such threats may
mainly occur because respondents could possibly interpret a
question in a different way than it has been conceived, possibly
producing misleading results. For example, when answering
to Q3.1, and as explained in Section IV-D, it is possible that
developers believe they are applying TDD, while this is not
the case. Whenever possible, the quantitative findings obtained
with the survey were confirmed by the observations made by
one of the authors, who observed the ING NL development
process for three months. Possibly, the most suitable way of
complementing the survey would have been a follow-up live
interview or a longitudinal study, which is plan for future work.

Threats to internal validity concern with factors that could
have influenced our results. One such factor could be the
evaluation apprehension [40]. For example, answers to Q2.9
indicated that deadline pressure is not a major cause for poor

implementation choices. Another threat is related to the survey
return rate. We have shown that the overall return rate is quite
high (85%), and generally higher than other surveys conducted
in the area of software engineering.

Threats to external validity concern the generalization of
our findings. The obtained findings are clearly and intendedly
confined to the specific case of ING NL, and may or may
not generalize to other organizations, even within the same
domain. In some cases, e.g., for the use of code reviews,
we have shown how our results confirm what seen in other
organizations [26].

VI. RELATED WORK

In recent years, researchers have conducted different studies
on the adoption of CI and CD in industry and open source.

Experience reports. Laukkanen et al. [41] interviewed 27
developers at Ericsson R&D to understand their perception
of CI. They observed that developers face many technical
and social challenges when adopting CI, such as the test
infrastructure. An industrial experience report from Kim et
al. [42] details a CI setup at the package level, rather than
at source code line level, hence increasing the responsibility
of package maintainers. Ståhl and Bosh [11] conducted a
literature review on CI practices and found that different soft-
ware development projects use different CI implementations
because of several contextual factors such as size, longevity,
budget, competences, organizational structure, or geographical
distribution. This suggests that contradicting elements in the
results of our survey when compared to other studies can
possibly be explain by variations in context.

Build failures. A challenge in CI is dealing with build fail-
ures, which might negatively impact developers’ productivity.
Thus, researchers have investigated the most common causes
of these failures. For example, Miller [8] at Microsoft reported
that, for the Service Factory system, build failures are mainly
due to compilation failures, failing tests, static analysis tool
issues, and server failures. Seo et al. [43] at Google found that
most failures are due to dependency-related issues between
software components. In contrast, Beller et al. [5] analyzed
build failures due to test executions. In particular, they found
that testing is an important part in CI and it is also the most
frequent reason for build failures.

Benefits of CI practices. Other researchers have inves-
tigated the effect of CI on code quality and developers’
productivity. For example, Miller [8] reported that for the
Service Factory system the CI cost was about 40% of the cost
of an alternative (non-CI) process achieving the same level of
quality. Deshpande and Riehle [44] analyzed commit data from
open source projects and found that, differently from industrial
development, in open source the adoption of CI has not yet
influenced development and integration practices. However,
Vasilescu et al. [45] mined GitHub projects and found that CI
makes teams more productive and improves the likelihood of
pull request mergers, without sacrificing the projects’ quality.

Tools and techniques. Brandtner et al. [46] focus on
improving common CI practices, in particular, they developed

a platform that dynamically integrated data from various CI-
tools and tailors the information for developers. In other
work, Brandtner et al. [47] propose a rule-based approach to
automatically profile stakeholders based on their activities in
version control systems and issue tracking platforms. platform,
namely SQA-Mashup, which dynamically integrates data from
various CI-tools and tailors the information for developers. El-
baum et al. [48] presented regression test selection techniques
to make continuous integration processes more cost-effective.

While the studies described above focused on CD expe-
rience itself or introducing new tools and techniques, our
survey conducted in ING NL focuses more on the development
practices within the CD pipeline, with a particular emphasis
on how DevOps engineers manage technical debt and perform
testing.

VII. CONCLUSIONS

This paper reported results of a survey – conducted with
152 developers of a large financial organization (ING Nether-
lands) – about their use of Continuous Delivery. The survey
featured questions about (i) the development process and task
management, (ii) managing technical debt, (iii) testing, and
(iv) Continuous Integration activities. The main findings of
the survey suggest that:

• While refactoring is properly scheduled, contrarily to both
common wisdom and to Fowler stated [25], it is often
performed together with other development activities, as
it is considered as part of a user story effort, and this
prevents to release poorly maintainable source code.

• Respondents tend to “self-admit” technical debt when
writing source code, in order to be able to fix it when pos-
sible. Instead, they reject the hypothesis that such smells
are introduced because of deadline pressure. Then, they
use both code reviews and automated tools to identify
and refactor code smells.

• The majority of developers mention they use TDD, al-
though we do not know whether they are strictly applying
TDD. At the same time, quality assurance in the form
of (manual) testing requires a significant portion of the
allocated time for a sprint.

• The use of a Continuous Integration infrastructure encour-
ages developers to test their changes using private builds,
and to give very high priority to fix build breakages.

In conclusion, our survey-based study shows how practices
such as TDD or the identification and refactoring of bad
smells (with the help of automated tools) are put in practice
in a large organization as ING NL, sometimes confirming
common beliefs, sometimes contradicting them. This study
requires replications in other organizations, and needs to be
complemented with other studies, e.g., case studies, controlled
experiments and longitudinal field studies, in which devel-
opers’ activities can be closely observed to have a better
understanding of their behavior when working within a CD
pipeline.

ACKNOWLEDGMENTS

The authors would like to gratefully thank all the study
participants as well as all developers from ING NL that
provided precious inputs for the planning of this study.

REFERENCES

[1] G. Booch, Object Oriented Design: With Applications. Benjamin
Cummings, 1991.

[2] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[3] M. Fowler and M. Foemmel, “Continuous integration,”
2006. http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-
14/lecturas/10 Fowler Continuous Integration.pdf.

[4] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley
Signature Series). Addison-Wesley Professional, 2007.

[5] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
An analysis of travis CI builds with GitHub,” PeerJ PrePrints, vol. 4,
2016.

[6] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in Proc. Int’l Conf on Software Analysis, Evolution, and Reengineering
(SANER), pp. 470–481, IEEE, 2016.

[7] D. Goodman and M. Elbaz, “It’s not the pants, it’s the people in the
pants — learnings from the gap agile transformation,” in Agile 2008
Conference, pp. 112–115, 2008.

[8] A. Miller, “A hundred days of continuous integration,” in Agile 2008
Conference, pp. 289–293, 2008.

[9] J. Downs, B. Plimmer, and J. Hosking, “Ambient awareness of build
status in collocated software teams,” in Proceedings of the International
Conference on Software Engineering (ICSE), pp. 507–517, IEEE, 2012.

[10] P. Debois, “Just enough documented information. Agile 2008, Toronto,
Canada http://www.jedi.be/blog/2008/10/09/agile-2008-toronto-agile-
infrastructure-and-operations-presentation/,” 2008.

[11] D. Stahl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and
Software, vol. 87, pp. 48–59, 2014.

[12] F. Erich, C. Amrit, and M. Daneva, “A mapping study on cooperation
between information system development and operations,” in Product-
Focused Software Process Improvement - 15th International Conference,
PROFES 2014, Helsinki, Finland, December 10-12, 2014. Proceedings,
pp. 277–280, 2014.

[13] CloudBees, “Jenkins – https://jenkins.io,” June 2016 (last accessed).
[14] SonarSource, “SonarQube – http://www.sonarqube.org,” June 2016 (last

accessed).
[15] JFrog, “JFrog Artifactory – https://www.jfrog.com/artifactory/,” June

2016 (last accessed).
[16] A. S. Foundation, “Apache Kafka – http://kafka.apache.org,” June 2016

(last accessed).
[17] MongoDB, Inc., “MongoDB – https://www.mongodb.com,” June 2016

(last accessed).
[18] M. Poppendieck and T. Poppendieck, Lean Software Development: An

Agile Toolkit. Addison-Wesley Professional, 2003.
[19] K. Beck, Test Driven Development: By Example. Addison-Wesley

Professional, 2002.
[20] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,

2004.
[21] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Pearson,
2010.

[22] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in Proceedings of the International
Conference on Software Engineering (ICSE), pp. 12–23, ACM, 2014.

[23] E. K. Smith, R. T. Loftin, E. R. Murphy-Hill, C. Bird, and T. Zim-
mermann, “Improving developer participation rates in surveys,” in 6th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), pp. 89–92, IEEE, 2013.

[24] M. Cohn, User Stories Applied: For Agile Software Development.
Addison Wesley, 2004.

[25] M. Fowler, Refactoring: Improving the design of existing programs.
Addison Wesley, 1999.

[26] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference
on Software Engineering (ICSE), pp. 712–721, IEEE, 2013.

[27] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: which problems do they fix?,” in
Proceedings of the working conference on mining software repositories
(MSR), pp. 202–211, ACM, 2014.

[28] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De
Lucia, “An empirical study on the developers’ perception of software
coupling,” in Proceedings of the International Conference on Software
Engineering (ICSE), pp. 692–701, IEEE, 2013.

[29] F. Beck and S. Diehl, “On the congruence of modularity and code
coupling,” in Proceedings of the joint meeting of the European Software
Engineering Conference and the International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pp. 354–364, ACM, 2011.

[30] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De
Lucia, and D. Poshyvanyk, “When and why your code starts to smell
bad,” in Proc. Int’l Conf. Softw. Engineering (ICSE), pp. 403–414, 2015.

[31] A. Potdar and E. Shihab, “An exploratory study on self-admitted tech-
nical debt,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), pp. 91–100, IEEE, 2014.

[32] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in Proceedings of the International Conference on
Mining Software Repositories (MSR), pp. 315–326, ACM, 2016.

[33] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in Proc.
Int’l Conf. on Software Engineering (ICSE), pp. 1037–1039, 2011.

[34] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in Proc. joint meeting of the European Software
Engineering Conference and the International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pp. 185–194, ACM, 2007.

[35] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how, and
why developers (do not) test in their IDEs,” in Proc. joint meeting Euro-
pean Software Engineering Conf. and Int’l Symposium on Foundations
of Softw. Engineering (ESEC/FSE), pp. 179–190, ACM, 2015.

[36] R. Mugridge and W. Cunningham, Fit for Developing Software: Frame-
work for Integrated Tests. Prentice Hall, 2005.

[37] C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in Proceedings Conference on Software Engineering and
Advanced Applications (SEAA), pp. 383–387, IEEE, 2011.

[38] T. J. Ostrand and M. J. Balcer, “The category-partition method for
specifying and generating functional tests,” Commun. ACM, vol. 31,
no. 6, pp. 676–686, 1988.

[39] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns, and Java (3rd Edition). Pearson, 2009.

[40] N. B. Cottrell, D. L. Wack, G. J. Sekerak, and R. H. Rittle, “Social
facilitation of dominant responses by presence of others,” Journal of
Personality and Social Psychology, vol. 9, no. 3, pp. 245–250, 1968.

[41] E. I. Laukkanen, M. Paasivaara, and T. Arvonen, “Stakeholder percep-
tions of the adoption of continuous integration - A case study,” in Agile
Conference (AGILE), pp. 11–20, 2015.

[42] S. Kim, S. Park, J. Yun, and Y. Lee, “Automated continuous integration
of component-based software: An industrial experience,” in Proc. Int’l
Conf. Automated Software Engineering (ASE), pp. 423–426, IEEE, 2008.

[43] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: A case study (at Google),” in Proc. Int’l
Conference on Software Engineering (ICSE), pp. 724–734, ACM, 2014.

[44] A. Deshpande and D. Riehle, Continuous Integration in Open Source
Software Development, pp. 273–280. Boston, MA: Springer US, 2008.

[45] B. Vasilescu, Y. Yu, H. Wang, P. T. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in GitHub,” in
Proc. joint meeting of the European Software Engineering Conference
and the International Symposium on Foundations of Software Engineer-
ing (ESEC/FSE), pp. 805–816, ACM, 2015.

[46] M. Brandtner, E. Giger, and H. C. Gall, “Supporting continuous inte-
gration by mashing-up software quality information,” in 2014 Software
Evolution Week — Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE), pp. 184–193, IEEE, 2014.

[47] M. Brandtner, S. C. Müller, P. Leitner, and H. C. Gall, “Sqa-profiles:
Rule-based activity profiles for continuous integration environments,” in
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), pp. 301–310, IEEE, 2015.

[48] S. G. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proc. Int’l Symp. on Foundations of Software Engineering (FSE),
pp. 235–245, 2014.

