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Abstract

Navigation from a room inside a building to another room inside a building which is across the street
consists of three parts: first, the indoor part at the building where you start your journey. Secondly,
the outdoor part and thirdly, another indoor part inside the building of destination. As regards to the
outdoor environment, a navigation aid is well used and implemented in many types of applications.
However, it is not common to use an aid to navigate inside a building. While such an indoor navigation
aid is not necessary in small buildings, it is a necessity in more complex buildings like hospitals, airports,
conference venues and large shopping malls. The indoor navigation aid can help visitors finding their
way inside these, for them, unknown locations. The systems behind a navigation aid consist of several
elements like an indoor positioning system, an indoor navigable map, specific destinations (points of
interest) and an appropriate guidance throughout a building. This research focusses on the creation
of indoor navigable maps that can be displayed and used to plan possible routes throughout the entire
building. The indoor environment is far more complex than the outdoor environment. First, most
people lose their orientation inside a building after they change their direction several times. Second,
since there are no pre-existing routes inside a building, there are many different possible ways to arrive
at a destination. Third, there is a large variety of associated spaces which all have their own unique
interior design. Therefore, automating the process of making an indoor map is more challenging and
time consuming than generating an outdoor map.

Most research in the field of automatic generation of indoor maps is focused on the already available 2D
floorplans and only few of them use the more complex 3D representations. Using a 2D floorplans for
the purpose of indoor navigation has its limitations because of various factors. Firstly, the 2D maps are
already a simplification of the complex 3D environment which can lead to difficulties in representation.
Secondly, the connectivity between different floor plans can be difficult as each floor plan is a separate
entity. Thirdly, the maps that are available do not always contain furniture. Fourthly, in addition to the
third one, most existing methods only focus on reconstructing the indoor space as an empty hull which
results in a navigation aid which has does not emphasize the attention to obstacle detection. At last,
most floorplans are out of date because some buildings are not built according to their blue prints. Their
interiors might change after several years through the modification of walls and doors and furniture may
be repositioned to the users preferences. Therefore, information about the indoor environment must be
updated in most cases. This research concentrates on the automatic generation of indoor navigable spaces
for pedestrians based on laser scanning with a Mobile Laser Scanner (MLS) device. These devices scan
the environment continuously along a trajectory which makes them more time efficient than terrestrial
laser scanners.

To aid pedestrians in their indoor navigation, features needed for path computation such as floors, stairs,
walls and furniture elements, need to be identified. These must be extracted from the point cloud which
is generated by the MLS. How to identify these elements, like walls and doors, is investigated a lot.
These researches are built on a set of constraints, like a Manhattan World or a flat surface constraint.
These constraints are not problematic for a regular office building but they will provide difficulties in
more complex buildings. This means that it is important to focus on a method with less or without
constraints.

Scanning the indoor environment of an building often happens during business hours which automatically
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leads to the inclusion of dynamic objects like pedestrians or small vehicles in the final point cloud. These
dynamic elements do not represent any type of building elements (like furniture) and thus need to be
identified and removed.

Beside the point cloud, the MLS also stores the trajectory of the MLS device. This trajectory contains
three types of valuable information. The points directly below the trajectory indicate areas where
pedestrians can walk, since the MLS device was operated by a pedestrian. The height difference between
neighboring trajectory points can be used to detect stairs, slopes and flat surfaces and the trajectory
also provides information about the connection of different surfaces and represents the complexity of the
building.

In this research, a method for the identification of walkable surfaces based on the analysis of a point
cloud and the corresponding trajectory of the MLS is developed. First, the point cloud is voxelized.
Second, the trajectory is analyzed to detect the three different types of navigation surfaces: stairs, slopes
and horizontal surfaces. This classified trajectory is projected vertically on the voxel model to acquire
seed voxels. These seed voxels are then used to create areas by using region growing. These areas can be
modified by identifying dynamic objects, entryways and furniture elements so that each area represents
a specific navigable voxel space inside a building.

Experiments shows that by applying this method, it is possible to create a continuous navigable space
in buildings including several floors, stairs and elevations. Data can be captured during opening hours
because the method detects and removes dynamic objects in the final result. The proposed method can
be used for any type of room without any constraints because the complexity of the building is already
present in the trajectory of the MLS.
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1 Introduction

Navigation from a room inside a building to another room inside a building which is across the street
consists of three parts: first, the indoor part at the building where you start your journey. Second,
the outdoor part and third, another indoor part inside the building of the destination (Thill, Dao, &
Zhou, 2011). As regards to the outdoor environment, a navigation aid is well used and implemented
in many types of applications. It is impossible for GNSS signals to be received inside a building, which
is the reason why navigation aid is not widely available in an indoor environment. While such an
indoor navigation aid is not necessary in small buildings, it is a necessity in more complex buildings
like hospitals, airports, conference venues and large shopping malls. The indoor navigation aid can help
visitors find their way inside these, for them, unknown locations. The indoor navigation systems behind
a navigation aid consist of several elements like an indoor positioning system, an indoor navigable map,
specific destinations (points of interest) and an appropriate guidance throughout a building (Boguslawski,
Mahdjoubi, Zverovich, & Fadli, 2016; Brown, Nagel, Zlatanova, & Kolbe, 2013). Indoor positioning
systems are developed by companies and are often based on new infrastructure systems. Therefore,
these positioning systems are only available in certain buildings whereas a satellite system produces a
worldwide positioning at once.
This research focusses on the creation of indoor navigable maps that can be displayed and used to plan
possible routes throughout an entire building. The indoor environment is far more complex than the
outdoor environment (Zlatanova, Liu, Sithole, Zhao, & Mortari, 2014). First, most people lose their
orientation inside a building after they change their direction several times. Second, since there are no
pre-existing routes inside a building, there are many different possible ways to arrive at a destination.
Third, there is a large variety of associated spaces which all have their own unique interior design.
Therefore, the production of an indoor navigation map is challenging and time consuming. A 3D model
will solve most of these issues but the creation of a 3D model is also time consuming and requires an
experienced operator (Gunduz, Isikdag, & Basaranera, 2016).

1.1 Problem statement

Most research in the field of automatic generation of indoor navigation maps is focused on the already
available 2D floorplans and only few of them use the more complex 3D representations (Zlatanova et al.,
2014). Using 2D floorplans to generate indoor navigation maps has its limitations because of various
factors. Firstly, the 2D maps are already a simplification of the complex 3D environment which can lead
to difficulties in representation. Secondly, the connectivity between different floor plans can be difficult
as each floor plan is a separate entity (Zlatanova et al., 2014). Thirdly, the maps that are available do
not always contain furniture. Fourthly, in addition to the third one, most existing methods only focus
on reconstructing the indoor space as an empty hull. This results in a navigation aid which does not
take obstacle detection into account (Dı́az Vilariño et al., 2016). At last, as discussed by Turner, Cheng,
and Zakhor (2015), most floorplans are out of date. Buildings are not always built according to their
blue prints. Their interior might change after several years through the modification of walls and doors
and the designed location of furniture elements may be repositioned to the users preferences. A possible
solution for this problem is to update all the changes in the original map by hand. Obviously, this method
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is very time consuming, inefficient and expensive. Therefore, up-to-date information about the indoor
environment needs to be collected, which can be done by using a Terrestrial Laser Scanner (TLS) device.
The interior of a building can now be captured more quickly (Dı́az Vilariño et al., 2016). Because of the
number of rooms and the occlusion of elements, capturing the whole building with a TLS is still time
consuming and requires a lot of scan positions (Gunduz et al., 2016). Therefore, recent developments
introduce the MLS device. This device scans the environment continuously along the trajectory of the
operator which makes it more time efficient (Holenstein, Zlot, & Bosse, 2011). This way, scanning the
inside of a building is now a matter of hours instead of days. Therefore, this research concentrates on
the automatic generation of indoor navigable spaces for pedestrians based on laser scanning with a MLS

device.

1.1.1 From point cloud to map

To aid pedestrians in their indoor navigation, features needed for path computation such as floors, stairs,
walls and furniture elements, need to be identified. These must be extracted from the point cloud which is
generated by the MLS. The identification process of these elements, like walls and doors, is investigated a
lot. These researches are mostly built on a set of constraints, like a Manhattan World or a planar surface
constraint (Anagnostopoulos, Pătrăucean, Brilakis, & Vela, 2016; Budroni & Boehm, 2010; Fichtner,
2016; Khoshelham & Dı́az-Vilariño, 2014; Macher, Landes, & Grussenmeyer, 2016). These constraints
are not problematic for a regular office building but they will cause difficulties in more complex buildings.
This means that it is important to focus on a method with less or without constraints.

Scanning the indoor environment of an building often happens during business hours; especially in
buildings that are never closed like hospitals or airports. This leads to the inclusion of dynamic objects
like pedestrians or small vehicles in the final point cloud. These dynamic elements do not represent any
type of building elements (like furniture or floor) and thus need to be identified and removed.

Figure 1.1: Point cloud contains dynamic objects

The captured point cloud contains the local x, y and z coordinates of the points and are represented in
an unstructured space. A voxel model will be used to structure this space. A voxel space is generated
from point clouds using structuring algorithms which groups the points based on their neighborhood (Vo,
Truong-Hong, Laefer, & Bertolotto, 2015). Structuring a point cloud in this way has two advantages.
Firstly, the number of voxels is much smaller than the number of points which makes storage, retrieval
and processing more efficient. Secondly, as discussed before, the voxel grid possesses a spatial structure,
which makes it easier and less time consuming to search for neighbouring voxels (Suzuki, Kitamura,
Amano, & Hashizume, 2010b; Vo et al., 2015).
The representation of the voxelized point cloud depends on the voxel size. A small voxel size improves
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the representation but at the same time increases the number of voxels and the computation time. A
good balance between these two factors is important to get the right results in a reasonable amount of
time.

Beside the point cloud, the MLS also stores the trajectory of the MLS device. The position of the scanner
along this trajectory is used in other research to clean point clouds, to determine the scanner position
or to improve a delaunay triangulation (Holenstein et al., 2011; Verbree & van Oosterom, 2001; Yan
et al., 2016). If the MLS device is operated by a human, the trajectory contains valuable information,
which can be used to distinguish different surfaces. As can be seen in figure 1.2a, the points directly
below the trajectory indicate areas where pedestrian can walk (Li, 2014; Yan et al., 2016). The height
difference between neighbouring trajectory points can be used to detect stairs, slopes and flat surfaces;
see figure 1.2b. The trajectory also contains information about the connection between different spaces
and represents the complexity of a building; see figure 1.2c.

(a) Walkable point below the tra-
jectory

(b) Stair identification by height
differences

(c) Connection between different
objects

Figure 1.2: Available information in a trajectory

All this information is already available in the scanner trajectory but is not yet used in existing methods.
Therefore, this master thesis investigates if it is possible to identify navigable space based on the analysis
of the voxelized point cloud and the corresponding trajectory of the MLS device.

1.2 Research question

To get an answer on this topic, the following research question will be answered:

Which indoor walkable space can be identified from a voxelized point cloud using the trajectory of a
mobile laser scanner?

1.2.1 Sub questions

Before this research question can be answered, the following sub questions need to be investigated:

1. What are the characteristics of a walkable space?
The concept of space is different for everyone. Therefore, it is important to clearly define a walkable
space.

2. In what way can the trajectory of a mobile laser scanner be used to identify a walkable space?
The trajectory of a mobile laser scanner contains three types of semantical information as described
in § 1.1.1. This sub question investigates in which way the trajectory information can be used to
identify different types of walkable spaces.
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3. How can walkable areas, identified by a mobile laser scanner trajectory, be subdivided into different
spaces?
A navigable map is used to create a route to a specific room inside a building. When the indoor
model is created, it is important to clearly identify these different rooms. When rooms are merged
together, pedestrians cannot navigate to these single rooms because they are not identified in the
final model. Therefore, it is important to identify single rooms.

4. In what way does the voxel size influence the accuracy of the generated walkable space?
In this method, the voxel model is used as a representation of the point cloud; see § 1.1.1. The
size of these voxels influence the representation of the end result. A large voxel size could lead to a
smaller or larger navigable space compared to the real situation. A small voxel size could represent
the navigable space more accurate but will probably slow the classification process down. A good
balance between the results and the voxelsize is therefore important.

1.3 Scientific relevance

As described in § 1.1.1, many approaches are based on a set of constraints like a Manhattan World or a
planar surface constraint. Because the trajectory of the MLS is captured at the same time as the point
cloud, the complexity of indoor environment is already present in the trajectory itself and less constraints
need to be applied. To the author’s knowledge, there is no other research that uses the trajectory of
a mobile laser scanner for this purpose. Therefore, this approach is a new method in the field of the
automatic reconstruction of interiors of buildings based on point clouds.

In the literature about path planning algorithms like the A* or the Dijkstra algorithm plan the shortest
path from A to B see figure 1.3. However, there are more types of paths; a path with the most free space,
a path with the nicest view or walking experience, a human preferred path and several other paths. The
shortest path of figure 1.3 is not the most human preferable route. A human will not walk close to a wall
if there is more free space in the hallway, even though this is the shortest path. The trajectory can be
used to predict this path because the MLS trajectory is captured by a human and therefore represents a
human preferred navigation path. This notion could be implemented in the following way:
If the pedestrian navigable space is identified in a voxel model, the voxels below the trajectory get a more
preferred navigable state. If this improved model is used for path planning algorithms, these preferred
voxels will be taken into account. Therefore, the route from A to B will follow a more human preferred
path.

Figure 1.3: A* shortest path planning and a MLS trajectory

As described by Gilliéron, Büchel, Spassov, and Merminod (2004), significant advantages in navigation
support is achieved by the generation of node networks in car navigation systems. These node networks or
graph models can also be used to represent buildings where rooms are represented by nodes and hallways
are represented by edges (Gilliéron et al., 2004). Nodes can represent among others stairs, doors and
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elevators. Karas, Batuk, Akay, and Baz (2006) argue that the generation of node network models is
even needed for optimal route calculation in indoor environments. By converting the identified navigable
space into these nodes and edges, an indoor node network is generated which is suited for this type
of navigation support. Furthermore, these node network systems require far less storage capacity than
a voxelized model of the indoor space. This enables the creation of indoor navigation applications for
devices with a limited storage capacity. These systems could also be suited for the guidance of multiple
types of actors such as pedestrians, pedestrians with walkers, pedestrians in wheelchairs, cleaning cars
and maintenance vehicles.

1.4 Scope

There are multiple fields of interest to investigate based on a voxelized point cloud and its corresponding
trajectory. This MSc thesis investigates if the trajectory of a MLS can be used for the automatic generation
of an indoor navigable voxel space which is used walking pedestrians.

1.5 Research goal

This MSc thesis focusses on the generation of a navigable voxel space. As discussed in § 1.1.1, features
for path computation like floors, stairs, walls and furniture elements need to be identified. Walls do
not represent an area which is walkable for pedestrians; they divide these walkable areas. Therefore,
the identification of walls is not of interest for the identification of a walkable space. A lot of existing
methods are based on constraints like a Manhattan World or a planar surface assumption. By combining
the trajectory with the point cloud, it is assumed that these constraints should not be applied to this
method. As earlier discussed, the detection of different spaces is also very important. Entryways form
the connection between different spaces. Therefore, these entryways need to be detected and identified.
If the data is captured during opening hours, dynamic objects can be present in the point cloud. These
objects do not represent features needed for path computation and need to be detected and removed.
These steps will be based, as far as possible, on the trajectory and the voxelized point cloud. Therefore,
the goal of this research is to:

1. Identify different spaces by detecting the entryways of rooms

2. Detect dynamic objects from the point cloud that were present during the data capture

3. Identify three types of navigation surfaces: stairs, flat and sloped surfaces

4. Identify the navigable space by identifying and removing the furniture object above the navigation
surfaces

1.6 Reading Guide

The research is described in different chapters. The theoretical background and the related work are
introduced in chapter 2. The proposed method to derive the navigable voxel space can be read in
chapter 3. After this, the introduced method is implemented and the results are discussed in chapter 4.
In chapter 5, the research question will be answered. Besides the answering of the research question, the
method will be discussed, conclusions will be drawn and the future work will be introduced.
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2 Theoretical framework

In this chapter the theoretical background and the related work is discussed. First, the theoretical
background about the production of the input point cloud and the several definitions of an indoor space
will be introduced. Second, the related work of this thesis will be discussed.

2.1 Theoretical background

The first topic of the theoretical background discusses the algorithm that calculates the input point
cloud. The second topic introduces diverse definitions of an indoor space.

2.1.1 SLAM

The point cloud of this research is generated using a Simultaneous localization and mapping (SLAM)
algorithm. SLAM is developed in the field of robotics to generate a map of an unknown environment and
to simultaneously locate a robot inside this map as well. Before SLAM, mapping and localization were
studied independently. In a later stage, it was recognised that these two problems depend on each other.
To be able to localize yourself in an unknown environment, a map is required and for the construction
of a map which is precise, it is necessary to be properly localized (Fuentes-Pacheco, Ruiz-Ascencio, &
Rendón-Mancha, 2015). That is why these two processes are happening simultaneously nowadays. The
general approach of a SLAM algorithm consists of two basic elements (Durrant-Whyte & Bailey, 2006):

1. Detecting the change in position of a robot between the current and next position

2. Detecting the displacement of the corresponding landmarks between these two positions

Because of these basic concepts, poor featured environments like large empty spaces or tunnels with a
smooth surface will cause errors in the final result. Environments with a lot of dynamic objects will
also generate errors (Fuentes-Pacheco et al., 2015; GeoSpatial SLAM , n.d.). If there are enough static
landmarks present, dynamic objects can be ignored without effecting the quality of the final point cloud
(Bailey & Durrant-Whyte, 2006).

This method is implemented in the software which belongs to the MLS device; in this case the ZEB-
REVO. This device contains a Lidar sensor to capture the environment and an Inertial Measurement
Unit (IMU) to capture the movements of the device. The IMU is used to estimate the location roughly.
The so called ’surfles’ which represents shapes, are extracted from the corresponding point cloud. By
combining the location and ’surfles’ of the current and the next scanner position, the point cloud is
extended and the position of the points is corrected (GeoSpatial SLAM , n.d.). To diminish drift in the
final result, the data should be captured in closed loops (GeoSLAM, 2016). In this way, the start and
finish ’surfles’ can be matched and the accuracy of the point cloud of the entire loop will be improved
(GeoSpatial SLAM , n.d.).
If a location is scanned multiple times, the SLAM algorithm combines all the measurements in one point
cloud. The points in figure 2.1 all have a colour which corresponds with their scanning time. As can
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be seen in the image underneath, the scanned environment exists of red, blue, light blue and yellow
points. This indicates that the room is scanned four times and that all these scans are combined in one
representation by the SLAM algorithm. As can be seen, the red coloured vehicle exists of only one colour
and therefore was only present during the red scanning time. For each point, the scanning time is saved
in the final point cloud.

Figure 2.1: Point cloud coloured by scanning time

2.1.2 What is the definition of a space?

Most people understand the concept of space. However, forming a definition is far more challenging
(Ekholm & Fridqvist, 2000). In this subsection, the different views of the concept of a space will be
discussed. First, several definitions of a space will be introduced. Second, the different definitions will
be compared.

A very conceptual description of a space is given by Ekholm and Fridqvist (2000): ’A space is by most
of us thought of as an empty volume, enclosed in some respect - materially or experientially.’ In this
context, a materially enclosed space means a space surrounded by physical objects like walls, ceilings
or doors. Experientially enclosed spaces consists of non physical boundaries like a different colour of
pavement or a different type of pavement.
The IFC standard, which is adopted in ISO 16739, describes a space as: ’A space represents an area or
volume bounded actually or theoretically. Spaces are areas or volumes that provide for certain functions
within a building.’(building SMART, n.d.)
Ekholm (1996) describes a space for the construction sector as: ’A room in a building is a space with a
free void that is large enough to accommodate users and equipment; the building parts that make up the
space are enclosing, e.g., to climate, light, sound, or fire. A building space may also be experientially
enclosing, i.e., dependent on a person’s interpretation.’ (Ekholm, 1996; Ekholm & Fridqvist, 2000).
Eastman and Siabiris (1995) describes a space according to a conceptual framework. This framework
can be extended depending on the desired goal and consists of the following four classes:

1. Building
The Building class contains all the other three classes: Constructed Form, Bounded Space and
Activity.

2. Constructed Form
The Constructed Form describes all physical elements of a building like walls and floors but also
electrical wires, plumbing, lighting and water distribution systems.
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3. Bounded Space
The Bounded Space is enclosed in the Constructed Form and represents the empty space inside a
building.

4. Activity
The Activity class describes which activity can take place in a specific Bounded Space. This
definition depends on the goal of the model and research field

The IndoorGML standard created by the OGC is not concerned about architectural components or
physical elements themselves: ’Indoor space is defined as space within one or multiple buildings consisting
of architectural components such as entrances, corridors, rooms, doors, and stairs. In IndoorGML, we
are not concerned about architectural components themselves (e.g. roofs, ceilings, walls) but instead the
spaces (e.g. rooms, corridors, stairs) defined by architectural components, where objects can be located
and navigate. IndoorGML is also concerned with the relationships between spaces.’ (Lee et al., 2016). In
this definition architectural components are first described as entrances and corridors and later described
as roofs, ceilings and walls. Entrances and corridors are then renamed as spaces defined by architectural
components (roofs, ceilings and walls). There is a contradiction in this definition. Therefore it is assumed
that architectural components are roofs, ceilings and walls and spaces describes rooms, corridors and
stairs.
Zlatanova, Liu, and Sithole (2013) are describing a space with a focus on indoor navigation. According
to them, a space is: ’the environment in which humans store resources (items of interest) and engage in
navigation activities. ... A logical compartmentalisation of resources and navigation activities requires
the creation of sub-spaces.’ The sub space is divided in two categories: ’Free sub-spaces’ and (occupied)
’Inert sub-spaces’ which are needed to enable indoor navigation (Zlatanova et al., 2013).

The concept of a space provided by Ekholm and Fridqvist (2000) is not specific which is why it forms
the base for most other concepts. According to the concept of Ekholm and Fridqvist (2000), a space is
bounded by structural and non structural elements. This definition of a space is also present in (building
SMART, n.d.). The IFC concept of a space is extended by adding a specific function to each space.
The addition of this function is also described in the conceptual framework of Eastman and Siabiris
(1995). This framework forms a basic concept of a space that can be extended to the needs of the user.
Ekholm (1996) is not connecting a function to a space but describes the size of a space according to the
accommodation of equipment and users.

According to the four described concepts above, a space is a result of its architectural components which
for the base of these definitions. IndoorGML has an opposite approach and (Lee et al., 2016) does not
store the actual architectural elements themselves but they store spaces like entrances, corridors, rooms,
doors, or stairs which can cross physical boundaries like doors. Zlatanova et al. (2013) is also describing
a space like the IndoorGML standard. They subdivide a space in functional parts like sitting places,
workplaces, navigation places and so on.

In summary, the definition of a space can be categorized into two groups. The first group describes
a space as the result of architectural components. The second group describes a space as a specific
entity with a distinct function. In most cases, the second concept category does not save the actual
architectural components. Forming a general definition that describes all the different definitions of a
space is difficult. This results in a general description such as Ekholm and Fridqvist (2000) introduced.
This definition is in most cases not specific enough and rather vague. Therefore, the definition of a space
will always be given if it is implemented in a research. To be able to work with the concept of a space,
a clear definition is needed. This definition is introduced in § 3.1.
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2.2 Related work

In this section, the related work is discussed. First, different approaches in building reconstruction
techniques are investigated. Second, the detection of dynamic objects will be discussed. After this,
navigation in robotics will be discussed. Subsequently, the voxelization and the identification of entryways
will be introduced.

2.2.1 Building reconstruction

Indoor navigable spaces can be defined as the free surfaces that are used to navigate inside a building
without bumping into any objects. To identify the indoor navigable space, building surfaces need to
be reconstructed. The reconstruction of indoor environments is researched a lot and each research
has its own approach. In this section, the different approaches of several researches in the field of 3D
reconstruction are discussed.

A common approach for surface reconstruction is the calculation of the normal of each point in the point
cloud. Rabbani, Van Den Heuvel, and Vosselmann (2006) designed a method that semantically enriches
point clouds of industrial constructions through normal estimations, plane fitting and the analysis of
the residuals of this plane fitting process. The method uses both the k-nearest neighbour and the fixed
distance neighbour approach. By grouping points together which have the same normal, smooth surfaces
can be defined (Rabbani et al., 2006).

Dı́az Vilariño et al. (2016) proposed a method which segments a point cloud into regions based on these
normals. A plane is fit to each region and these planar regions are then intersected and classified as walls,
ceilings and floors based on the tilt and the position regarding to the centre of the room. The resulting
unclassified points are marked as furniture. After the classification of doors, obstacle aware navigation
is implemented by combining the planar regions together with the furniture points, see figure 2.2.

Figure 2.2: Shortest path planing based on furniture points and planar regions (Dı́az Vilariño et al.,
2016)

Budroni and Boehm (2010) developed a method to reconstruct buildings from point clouds using plane
sweeps. First, horizontal plane sweeps are applied. If the amount of points in these plane sweeps reaches
a threshold, floors or ceilings are detected. Second, a few vertical plane sweeps at random locations are
applied. For each location a histograms is computed. The combined result of these histograms provides
the main direction of all walls in the entire building. Third, the identified floors are decompositioned
into cells. It is assumed that the floor is surrounded by walls. Therefore, the walls are extruded from
the side of the floors into the final building model. This method only focusses on the reconstruction of
flat surfaces, perpendicular and parallel walls (Budroni & Boehm, 2010).
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Fichtner (2016) introduced a similar approach based on histograms instead of plane sweeps. This method
uses an octree method proposed by Broersen et al. (2016) to structure the input point cloud. Because
the octree method starts with a box shape, the method essentially creates voxel models with different
voxel sizes.
Using a voxel model has several advantages. First, the number of voxels is much smaller than the number
of points which makes storage, retrieval and processing far more efficient. Second, the voxel grid possesses
a spatial structure, which makes searching for neighbour voxels quick and easy (Suzuki et al., 2010b; Vo
et al., 2015). Since the voxelization is a generalization of the point cloud, the representativeness of the
voxelized point cloud depends on the voxel size or in this case the amount of subdivisions of the octree
structure.
The method of Fichtner (2016) first rotates the entire point cloud so that the direction of the walls and
floors in the model are aligned with the x, y and z axis. After the voxelization, it continues by deriving
histograms of the occupied leaves (or voxels) in the z direction. If a peak is detected, a possible floor is
detected. The next step consists of wall identification by applying histograms to the x and y direction.
Furthermore, stairs are detected using a filter based approach. This method only works on Manhattan
worlds and it is difficult to distinct small floors in larger point clouds.

The histogram method is also implemented by Khoshelham and Dı́az-Vilariño (2014) which produced a
method for near Manhattan Worlds. The method exists of applying histograms to subdivide a building
into floors. Secondly, walls are detected using vertical histograms just like the method of Fichtner (2016).
Subsequently, cuboids are placed in the free spaces between floors, ceilings and walls. By merging these
cuboids, the interior space is created and identified.

The proposed method by Vo et al. (2015) combines the octree approach of Broersen et al. (2016) with
the smoothness approach of Rabbani et al. (2006). In this approach, the point cloud is structured in
an octree/voxel model. The normal is calculated for the points in each voxel. These voxels are then
grouped together according to this classification. This method improves the speed and accuracy of the
classification of the final output model.

Turner et al. (2015) implements a approach which is based on a moving scanning platform and applies
the raytracing method on the gathered data in the voxel space. The voxel with the gathered points
are marked as boundary voxels. If a laser beam crosses through a voxel it is marked as an interior
voxel. By partitioning the voxel faces into planar regions and representing these regions as a quad tree,
a triangulation is performed. This way, a building representation which contains furniture is created.
Besides this model, a second model without furniture is created based on the 2D floor plans. These floor
plans are generated by the creation of a histogram of the input point cloud. As discussed earlier, the use
of a histogram method limits the detection of small floor areas across the building.

Koopman (2016) produced a method that creates an indoor navigation model for path planning based
on a voxelized model of the indoor space. The method exists of the buffering of a space according to the
dimensions of the actor in a so called dilated model. After this, the voxels are divided in a floor, stairs
or obstacle class. The next step consists of cell generation using a distance transform and a watershed
transformation, see figure 2.3. At the end of this step the voxels of each room are classified as one cell.
The doors and stairs are then used for the creation of a network graph. The final step consists of the
implementation of a path finding algorithm based on the derived graph and cells. Furniture and other
objects in the indoor environment can generate problems during the distance transformation. Therefore,
the cell generation can lead to over-segmentation.

The 3D reconstruction of the indoor free space is a complex problem because of the variety of shapes of
spaces, shapes of objects, high level of dynamic objects like walking humans or small moving vehicles,
occlusions of elements and cluttered surfaces. Therefore, most of the 3D reconstruction approaches
introduce assumptions like Manhattan world or planarity of surfaces and are avoiding the reconstruction
of furniture. In this thesis specific objects which are of interest for the navigation of humans like stairs,
flat and sloped surfaces and furniture are reconstructed.
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Figure 2.3: Watershed transformation (Koopman, 2016)

2.2.2 Detection of dynamic objects

Commonly public buildings like hospitals or airports cannot be closed when the data is captured.
Therefore, the generated point cloud contains dynamic objects like people or small moving vehicles.
These elements have an effect on the final output and should be filtered before further processing.
Detecting moving objects is largely investigated in robotics and mostly done with specific technologies like
range scans, stereo cameras, monocular cameras and recently with consumer RGB-D cameras. However,
identifying dynamic objects from an already merged point clouds is not extensively explored (Litomisky
& Bhanu, 2013). The detection of dynamic elements is even more difficult because they are only present
on a specific location at a specific time, which makes these dynamic elements long-drawn shadows in the
final registered point cloud (Józsa, 2012).

The approach for the detecting of dynamic objects described by Litomisky and Bhanu (2013) is based on
splitting the point cloud into two data frames. These data frames should have a significant overlap and
time difference. Large planes inside these data frames are subtracted, which is followed by a segmentation
of the remaining points. The individual segmented clusters are then compared to the clusters of the other
data frame so that the dynamic elements can be detected and removed.

A different approach is presented by Holenstein et al. (2011). They work with raytracing to divide the
entire space into free and occupied voxels like Turner et al. (2015) does. By combining rays of multiple
measurements, points from dynamic objects are identified and removed. Raytracing methods are costly
because of their computation time. As described by Holenstein et al. (2011), a point cloud of 5 million
points with a voxel size of 5 centimetres took 8 hours and 45 minutes to process. Using raytracing
methods are therefore not advised.

The detection of all dynamic elements in point clouds is difficult because the points form long-drawn
shadows. Therefore, it is difficult to detect pedestrians based on their shape. To detect these elements,
the above described methods can be used which assumes that a dynamic object was present on a specific
location at a specific time. This key assumption will also be used to detect dynamic objects in this thesis.

2.2.3 Navigation in robotics

The detection of navigable space and obstacles are basic features in the research field of robotics where
a lot of different approaches and methods exists. In this section, three voxel based approaches are
discussed.
The method of Adán et al. (2015) automatically scans the interior of a building using a mobile laser
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scanner which is attached to a moving platform. This process starts with the creation of a histogram
of the first scan. Next, the roof and floor are identified and a flatness map is created based on the
calculation of the normals of the points. Afterwards, a bounding box is created around the roof and
floors. The points inside the bounding box are voxelized and classified as occupied, free or occluded
voxels based on raytracing. Thereafter, the next best scan position is determined. This is the location
where based on the flatness map the robot navigates to, which changes the most occluded voxels into
occupied or free voxels. This process continues until the room is completely scanned Adán et al. (2015).

Maier, Hornung, and Bennewitz (2012) implemented a real time navigation application. Their method
exists of two maps: a static voxel map, which is captured before the navigation, and a dynamic voxel
map. The dynamic voxel map is used for path planning in a non-static environment and is continuously
updated using depth cameras. Then, the path to the destination is planned. For the robustness and
the performance of the path planning process, the path is based on a 2D map. This map is created by
projecting the 3D dynamic voxel map on the floor.

Suzuki, Kitamura, Amano, and Hashizume (2010a) implemented an approach to test the positioning
capabilities of a moving robot. They did this by first scanning the outdoor environment with a Mobile
Mapping System (MMS) on a car. After this, the 3D model is voxelized. To accurately represent the
road surfaces which can be used by a robot, a voxel size of 10x10x1 cm was chosen. A robot with various
sensors was manually driven to test its capabilities to position itself inside the pre captured map.

The raytracing and the histogram methods are also applied in building reconstruction processes. To
navigate a robot, real-time information is required to stay free of static and dynamic objects. For this
purpose there are also different techniques like depth cameras, range scans and stereo cameras applied
see § 2.2.2. Since this thesis uses data collected with a laser scanner, these other technologies cannot be
used.

2.2.4 Voxelization

As can be read in 2.2.1, voxelizing a point cloud has it advantages. The voxelization process can be
done in different ways. The voxelization method described by (Nourian, Gonçalves, Zlatanova, Arroyo,
& Ohori, 2016) firstly detects the bounding box of a point cloud. Secondly, it subdivides this bounding
box into voxels. Thirdly, each voxel is checked if it contains points. The voxel is saved when it contains
a point. To reduce the amount of saved data, not all the vertices of a voxel are stored. In most cases
the width of the voxel is saved together with a specific point which represents the centre or one of its
eight corners. In this way, voxelizing gives the position of the voxels without a data structure. A data
structure is required to process the data efficiently during further processing steps.
Another voxelization method is based on an octree structure as described by Broersen et al. (2016). By
generating an octree, a cube or voxel is subdivided into equal smaller cubes. This process is done for each
point in the point cloud until a specific number of subdivisions is reached see figure 2.4. By saving the
cube numbers for each subdivision, the locationalcode, a data structure is created. This data structure
allows to retrieve information about a parent cube at a later time. It also contains information about
the specific neighbouring cubes on each level.

2.2.5 Entryway identification

The detection of entryways can be applied in different ways. The method of Koopman (2016) uses
cell generation and a distance transformation as described earlier. The method of Fichtner (2016) uses
a filter based approach see § 2.2.2. Entryways can also be detected based on the trajectory of a MLS.
(Nikoohemat, 2016) detects entryways by voxelizing the point cloud and applying three basic rules, see
figure 2.5:
1. An entryway center is an empty space
2. Above the entryway center points are present
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Figure 2.4: Octree structure (R. Dumusc et al., 2013)

3. There should be a trajectory close by
With these three rules entryways can be identified in an efficient way (Nikoohemat, 2016)

Figure 2.5: Door centre detection (Nikoohemat, 2016)
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3 Methodology

In this chapter the used method is introduced. First, the definition of a space is discussed. Second, an
overview of the proposed method is given. Third, the different steps which are discussed in the overview
are explained in more detail.

In summary, the definition of a space can be categorized into two groups. The first group describes a
space as the result of the architectural components. The second group describes a space as a specific
entity with a distinct function. In most cases, the second concept category does not save the actual
architectural components. Forming a general definition that describes all the different definitions of a
space is difficult.

3.1 The definition of a space

As discussed in § 2.1.2, a space can be categorized into two groups. The first group describes a space
as the result of architectural components. The second group describes a space as a specific entity with a
distinct function. This last group describes the meaning of a space like an entrance, rooms and corridors
as a semantic value which can cross architectural components. As described in § 1.1, the focus of this
MSc thesis lies in the identification of features needed for path computation such as floors, stairs and
furniture elements. Therefore, this MSc thesis is focussing not primary on the architectural components
as identified in the first approach but is based on the second approach as discussed in § 2.1.2.
The indoor environment is used by actors. Actors are clients that engage in a certain indoor navigation
activity. These clients exists of pedestrians, robots or remotely-controlled vehicles (Zlatanova et al.,
2013). As discussed in 1.4, this thesis will only focus on pedestrians which from now on are called actors.
An actor is described by its following specific dimensions: width, depth, height and the specific types
of navigation surfaces it uses. For example, a pedestrian with a walker can only navigate on horizontal
and sloped surfaces but cannot navigate on stair surfaces because it is based on wheels. Therefore, this
navigation surface type is excluded for the navigation activities of this specific actor.
A space is described as:

• A section of the indoor environment which is enclosed by walls, entryways, windows, floors and
ceilings that can be accessed by an actor through an entryway.

If this definition is applied to an indoor environment, a building is split into different spaces. These spaces
contain different components like furniture elements, lightning features, plants, construction elements and
are used for indoor navigation activities, see figure 3.1a. A single space can contain multiple navigation
surfaces. As described earlier, an actor with a walker cannot navigate on stair surfaces but can navigate
on horizontal or sloped surfaces. Therefore, the space needs to be subdivided into different subspaces
based on the type of its navigation surface.
A subspace is described as:

• A section of a space which only contains one type of connected navigation surface.

As can be seen in 3.1b, this space exists of three subspaces: two horizontal surfaces and one sloped
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surface. These subspaces still contain building and furniture elements above the navigation surfaces
which are not navigable for an actor. Therefore, these elements need to be removed from the navigation
surface.
A navigable subspace per actor is described as:

• The subspace of a space which consists of one type of connected navigation surface where an actor,
with a specific height, can navigate without colliding into any element.

As can be seen in 3.1c, the height of the actor is lower than the air vent but higher than the furniture
element. Therefore, the furniture element is removed from the subspace and the air vent is not eliminated.
This results in the navigable subspace per actor.
A navigable space per actor is described as:

• A section of the indoor environment which is enclosed by walls, entryways, windows, floors and
ceilings that can be accessed through an entryway (the collection of subspaces) where an actor,
with a specific height, can navigate without colliding into any element.

In this way, a 3D navigation environment emerges in which an actor can navigate without bumping into
any obstacle, see figure 3.1d.

(a) An indoor space with an air vent and a furniture
element

(b) Three subspaces with an air vent and a furniture
element

(c) Three navigable subspaces per actor (d) A navigable space per actor

Figure 3.1: Space, subspace, navigable subspace and navigable space
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3.2 Research method

The proposed method is based on the two datasets of the MLS device that are simultaneously produced
during the data capture: the point cloud and the trajectory of the MLS, as can be seen in figure figure 3.2.
The proposed method starts with the voxelization of the point cloud. As described by Vo et al. (2015),
voxelizing a point cloud has two advantages. First, it introduces a spatial structure and second, it
decreases the amount of data points, which improves the processing speed of the proposed method.
After the voxelization, dynamic objects that were present during the data capture are detected and
removed. Following, small gaps in the voxel model are filled. The next step consists of the classification
of the trajectory into three types: stairs, horizontal and sloped surfaces by using the stair and slope
angle parameters between successive points. This classification is only a first indication of the type of
floor element because the correctness of this classification depends on the changes in height of the MLS
device during the data capture. The analysed trajectory is then voxelized in the same voxel space as the
voxelized point cloud. The so called seed vooxels are identified by projecting these trajectory voxels on
the voxelized point cloud.
During the next step entryways like doors, sliding doors and experientially entryways are identified. The
identification of entryways is important because users will navigate to a specific space inside a building
and not to multiple spaces at once. An entryway forms the connection between these different spaces
and therefore needs to be detected and present in the final model. These entryways form one of the
two stopping criteria in the region growing process. The seed voxels and identified entryways are further
processed in a region growing process and implemented in the PostgreSQL database to form floor regions
in each room.
The following step consists of checking the classification of the regions by analysing these seed voxels.
This is based on the height differences of the seed voxels described by the slope and stair angle parameters
used in the trajectory classification.
It is assumed that all the remaining voxels above the floor regions represent building or furniture elements.
To derive the navigable voxel space inside a building, these furniture elements need to be marked as a
non-navigable space. The voxels above the floor regions are considered furniture elements when they are
lower or match the height characteristic of an actor. This results in the final navigable voxel space per
actor, see figure 3.2 and figure 3.3. The point cloud and trajectory are captured using a Zeb Revo laser
scanner provided by Geometius (2017).

Figure 3.2: Proposed method to derive the navigable voxel space per actor
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Figure 3.3: Proposed method explained in images
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3.2.1 Point cloud and trajectory

The input data consists of the two datasets of the MLS: a point cloud figure 3.4 and the corresponding
trajectory figure 3.4. The data has been captured in the Orange hall of the Faculty of Architecture and
the Built Environment at the Delft University of Technology. In the centre of the room multiple groups
of tables are located and the space can only be accessed by stair or sloped surfaces.

Figure 3.4: Point cloud and the corresponding trajectory

3.2.2 Voxelization

As discussed in § 2.2.1, the voxelization of a point cloud creates a spatial structure and reduces the
amount of data points which increases the processing speed of the end model (Vo et al., 2015). After the
voxelization process, the point cloud is transformed into a voxel space, see figure 3.5b

The voxelization is implemented by using the first part of the octree method introduced by Broersen et
al. (2016). By generating an octree, a cube or voxel is subdivided into equal smaller cubes. For each
subdivision level the point cloud is represented with voxels of different sizes. In this research, the smallest
subdivision, also known as the octree leaves, are saved and from now on referred to as the voxel model.
The introduced octree method automatically translates the point cloud to the quadrant where the x, y
and z values are positive. The number of voxels along an axis is represented by integers between 0 and
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(a) A point cloud (b) A voxelized point cloud

Figure 3.5: The voxelization of a point cloud

2nmax. The nmax parameter is represented by the octree depth which is a value describing the desired
number of subdivisions. The point cloud is automatically scaled so that the highest axis of the point
cloud bounding box is equal to 2nmax. This method is scalable to any size of a point cloud with an
almost linear increase of processing time (Broersen et al., 2016).

An octree structure is based on the equal subdivision of a space in eight quadrants. For explanation
purposes, a quadtree is used which divides a square in four pieces. The same principle applies to an
octree structure except that it is a 3D structure which divides the cube into 8 equal pieces. Therefore,
the enumeration is runs from 0 to 7 instead of 0 to 3, see figure 3.6. For each point in the point cloud the
corresponding leaf voxel is calculated. This is done for each level in the quadtree; from root node to leaf
node. The corresponding number of the quadrant is added to the locationalcode for each level. When
the leaf node is reached, depending on the amount of subdivisions, the final locationalcode is found. The
point with a locationalcode of 230 follows the path from 2 to 3 and then to 0 as illustrated in figure 3.6a
(Broersen et al., 2016).

(a) Numbering of a quadtree structure

(b) Numbering of an octree struc-
ture

Figure 3.6: A quadtree and an octree structure (Broersen et al., 2016)
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3.2.3 The removal of dynamic objects

If a building is scanned during opening hours, or a building cannot be closed like hospitals or airports,
the captured point cloud contains dynamic elements like pedestrians or small vehicles. These dynamic
elements do not represent any type of building elements like furniture, walls or floors and therefore need
to be identified and removed, see figure 3.7b.

(a) A voxelized point cloud (b) A cleaned voxel model by dynamic object detection

Figure 3.7: The detection and removal of dynamic objects in a voxel model

In this thesis, the detection of dynamic elements is tested in five different ways:

• Delete voxels containing n-amount of points:
The detection of dynamic elements is based on the amount of points in a voxel. If a voxel contains
less points than a predefined threshold, the voxel is removed as introduced by Fichtner (2016).

• Different time frames:
The detection of dynamic elements is based on the comparison of two different scan frames which
are compared to each other. If a voxel only exists in one scan frame, the voxel is removed.

• Unique time stamps:
The detection of dynamic elements is based on the number of unique scanning seconds per voxel.
If there are less unique scanning seconds than a specific treshold, the voxel is removed.

• Floor voxels with voxels above:
The detection of dynamic elements is based on the number of scanning seconds of the floor voxel
compared to the voxels above. If the number of scanning seconds is different, the voxels above the
floor voxel are removed.

• Count the voxels above a floor voxel:
The detection of dynamic elements is based on the number of voxels above a floor voxel. By
counting the amount of voxels above and assigning a weight to the floor voxels, a map which
consists of mainly one colour is created. By analysing this map pattern, dynamic objects can be
detected and removed.

21



3.2.4 Filling gaps

scan lijnen: iemand voor, occluded by objects, model,cleaning, Due to the occlusion caused by dynamic
or static objects during the data capture, the final voxel model, the input point cloud or the cleaning
described in § 3.2.3, some voxels are removed. This results in small gaps in the voxel model. To close
these gaps, the distance between the voxels in the horizontal plane for the x, y direction is calculated.
If the distance between two voxels is smaller than a certain threshold, the gaps are filled in with new
voxels, see figure 3.8.

(a) A voxel model with its corresponding trajectory (b) The classification of the trajectory points

Figure 3.8: Trajectory classification

3.2.5 Trajectory classification

The trajectory classification forms the basis for the detection of distinct surfaces. The trajectory is
classified into three types: stairs, flat and sloped surfaces, as introduced in 1.5. In order to identify these
different types, the angles between successive trajectory points are analysed. Six parameters are needed
to identify these three types: a minimal raise, a maximal raise and a number of connected elements for
both the stair and the sloped surface.
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(a) Voxelization of the point cloud (b) Trajectory classification

Figure 3.9: Quadtree and octree structure (Broersen et al., 2016)

3.2.6 Voxelmodel + seed voxels

The identification of seed voxels from the classified trajectory to the voxel model is important because
these seed voxels form the basis for the region growing process. In order to identify these seed voxels,
the trajectory is voxelized in the same spatial structure as the voxelized point cloud using the process
described in 3.2.2. The type of trajectory voxel depends on the classified points inside the voxel, see
§ 3.2.5. If two or more types of points are present in one voxel, the voxel type is set to a combination
class. The seed voxels are identified by finding the corresponding voxels for each trajectory voxel which
have the same x, y position, see figure 3.10b.

(a) A voxel model with a classified trajectory (b) Identified seed voxels from a classified trajectory

Figure 3.10: The identification of seed voxels from a classified trajectory
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3.2.7 Voxelmodel + seed voxels + identified entryways

The destination of an indoor navigation activity is most of the time located inside a specific space inside
the building. Therefore, it is important to distinguish the different spaces in the final output data model.
Entryways form the connecting elements between different spaces. When entryways are identified, these
spaces can be split during the region growing process and form separate spaces, see figure 3.11.

(a) Identified seed voxels from a classified trajectory (b) Identified door voxels

Figure 3.11: Identification of door voxels

Detecting doors can be implemented in two different methods. The first method detects entryways in
the z-axis as described by Nikoohemat (2016) and the second method detects entryways by their x, y
plane. Both methods are based on the trajectory of the MLS. If a space is not accessed through all of its
entryways, they cannot be detected. If both of these classification methods are positive, an entryway is
found. If only one of these methods is positive, a possible entryway is identified.

The detection of entryways is based on the height difference along the z-axis as introduces in the method
by Nikoohemat (2016). In this method an entryway is detected if the following rules are met:
1. An entryway centre is an empty space
2. Above the entryway centre there are points present
3. There should be a trajectory close by
If these rules are applied along the trajectory of the MLS, a possible implementation of this method
is based on the continuing calculation of the distance between the seed voxels and the ceiling voxels,
see figure 3.12. Before an entryway is passed, the distance has a value of A. During the passing of the
entryway it has a value of B and after the passing a value C. If this distinct pattern is recognized, an
entryway is detected.

The method only works if the height differences between the seed voxels and the ceiling are big enough.
Furthermore, if a lamp is mounted on the ceiling, the pattern, which is used to detect entryways, can
look the same which results in the detection of a non-existing entryway. Therefore, the second door
identification method is implemented. The second approach is based on the x, y plane. As can be seen
in figure 3.13, the x, y plane of an entryway has a very characteristic shape. The distance to the left and
right is first big, then small and then big again, see situation one. This characteristic pattern can also
be recognized. There are four cases that can occur in the identification of entryways in the x, y plane:
1. there is no wall or furniture perpendicular to the entryway on the other side, see case 1
2. there is a wall or furniture on the other side perpendicular to the entryway on the right side, see case
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Figure 3.12: Identification of an entryway in the z-axis

2
3. there is a wall or furniture on the other side perpendicular to the entryway on the left side, see case 3
4. there is a wall or furniture on the other side perpendicular to the entryway on both sides, see case
4 After the implementation of both methods, the entryways are identified and possible entryways are
found.

Figure 3.13: Identification of an entryway in the x, y plane

After the detection of the location of the entryways, the floor voxels that form the entryway need to be
detected, see 3.14. This is necessary because otherwise the region growing process that is implemented in
the following step does not stop when an entryway is reached which makes it impossible to split multiple
spaces into single spaces.

Figure 3.14: Identification of door voxels in an entryway
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3.2.8 Region growing seed voxels per room

The region growing process is implemented to detect subspaces inside spaces, see figure 3.15. There
are two types of region growing processes: top-down and bottom-up. The bottom-up method uses seed
points to form regions with the same attributes. The top-down methods tries to find large groups of
points with the same type of attributes (Rabbani et al., 2006). In this thesis, the bottom-up method is
used based on the classified seed voxels identified in section 3.2.6.
There are two stopping criteria for the region growing process. The first consists of passing a door, see
figure 3.14, and the second consists of a specific number of existing voxels above the current checked
voxel. This last criteria shows the existence of something on the floor (which is above the seed voxel)
prohibiting the continuation of the growing process of the region in that direction.
The region growing process is implemented in two different ways:

1. The first approach, the ordered checking, is based on the region growing process described in Rovers
et al. (2015). This approach is implemented by identifying the four neighbour voxels of a seed voxel.
If these voxels pass the two stopping criteria, they are added to the region.

2. The second approach is implemented in the PostgresSQL database using the ST ClusterDBSCAN
algorithm (PostgresSQL, 2017).

(a) Identified seed and door voxels (b) Region growing based on seed voxels

Figure 3.15: Region growing from the identified seed voxels

3.2.9 Classification check

Sometimes furniture objects are marked as floors. This is caused by passing the MLS above furniture
objects during the data capture. If the trajectory voxels are projected down on the voxelized point cloud,
these furniture voxels are marked as seed voxels and region grown. To find out if these elements identified
as regions are actually furniture objects, the change in height of the classified seed voxels is analysed.
If the MLS is held above furniture objects, the height of the seed voxels changes rapidly which appears
as large peaks in figure 3.16. These changes in height are bigger than the ramp and stair parameters
introduced in § 3.2.5. Based on these parameters, the peaks are detected and identified as furniture and
the regions are removed from the final model.
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Figure 3.16: Difference between the trajectory and the seedvoxels in the z axis.
Trajectory (red), seedvoxels (blue) and marked areas (green)

It is not possible to define the exact start and end point of a stair based on the trajectory itself, as
can be seen in the green box in figure 3.16. The change at the beginning and the end is caused by
the MLS scanner which steadiness depends on the data capturer and at which position the MLS is held.
Furthermore, when the data capturer is going up the stairs, the trajectory of the MLS is not rising at the
beginning of the staircase. In most cases, the scanner is held in front of the data capturer. When the
data capturer is going up the stairs, the MLS is already above the second riser before the height of the
MLS trajectory changes.
Therefore, the bottom risers can never be found based on merely the trajectory but are present in the
voxel model which makes them detectable. When a seed voxel compared to the previous seed voxel along
the trajectory has a different height and the following seed voxels are marked as stairs (or slopes), the
seed voxel could represent a riser (or part of a slope). By checking the height changes this way, wrongly
classified regions can be identified correctly, see figure 3.17.
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(a) Wrongly classified regions (b) Classification check of the region types

Figure 3.17: Classification check

3.2.10 Subtraction of furniture

The MLS scans the whole interior of a space. Therefore, there are also points present under furniture
objects, construction elements and other indoor objects which are added to the floor regions. To derive
the navigable space per actor, the space below these objects needs to be marked as a non-navigable
voxel space, see figure 3.18. After the detection and removal of the dynamic voxels described in 3.2.3,
the resulting voxels above the floor, stair and slope regions are assumed to be furniture objects and are
therefore removed. The subspaces are checked for furniture objects up to and including the height of the
actor, as described in § 3.1.

(a) Different classified subspaces (b) Navigable subspaces per actor

Figure 3.18: The identification of navigable subspace per actor by furniture subtraction
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3.2.11 Final navigation voxel space

After the subtraction of the furniture, the final navigable voxel space per actor is derived.

(a) Navigable subspace per actor (b) Navigable voxel subspace per actor

Figure 3.19: Quadtree and octree structure (Broersen et al., 2016)

The entire proposed method can be distinguished into three separate phases. The first phase exists of
the data capture of the indoor environment into a point cloud and a trajectory figure 3.20a. The second
phase exists of several data processing steps described in this methodology. The third and last phase
consist of the generation of the final product which is the total navigable voxel space per actor. These
different steps are illustrated in figure 3.20c.

(a) Indoor point cloud (b) Voxel model with classified seed voxels

(c) Final navigable voxel space

Figure 3.20: Three stages of the proposed method
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4 Implementation and results

In this chapter, the implementation and the results of the implemented method are discussed. This
is done by describing the results and implementation step by step, as introduced in § 3.2. After the
description of the individual results, the representativeness and the processing time of the method are
discussed.

4.1 General input

The method is implemented in Python 2.7 and PostgreSQL and is coded in different modules, see
figure 4.1. The modules are executed from a main file which is implemented in Python. However, first,
five parameters need to be set in the main file:
1. The database name
2. The database user
3. The database password
4. The name and the location of the .las file
5. The name and the location of the trajectory.txt file
To be able to connect to the local database three parameters are needed. Besides these three parameters
the right point cloud .las and the trajectory .txt file need to be selected. The different modules are
based on the proposed method discussed in chapter 3. If no comment is made about the origin of the
used programming code, the code is fully implemented by the author. This method is tested on a DELL
laptop running Windows 7 with an Intel(R) Core i7-6820HQ CPU at 2.70 GHz, 16.00 GB RAM and a
250 GB solid state disk (SSD).

Figure 4.1: Main file structure
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4.2 Voxelization

The voxelization process is implemented in Python and the PostgreSQL database. The code of Broersen
et al. (2016) is used to voxelize the input point cloud which automatically saves it in the database. The
calculation of the smallest leaf size and the scale factor introduced by Fichtner (2016) are also used.
These scripts were adjusted and extended to be usable in this research. First, the scale factor, smallest
voxel size, point cloud file name, number of voxels along the axis and the three translation values are
saved in the projectdata table. Second, the corresponding left bottom x,y,z coordinate of each voxel is
saved in the smallestpointleaves table together with the locational code of the voxel. For each point,
a voxel record is created which results in a lot of duplicate records. The amount of duplicate records
per voxel are counted and added, together with the data of the smallestpointleaves to the smallestleaves
table. In this table only one record per voxel is present.

As discussed in § 3.2.2, the method automatically translates and scales the point cloud. If the octree
depth increases by one, the octree structure splits one more time. This results in twice the amount of
voxels along a axis, a scaling factor which is twice as large and a voxel size which is twice as small. If the
same point cloud is voxelized with different octree depths, the different output models are scaled which
result in figure 4.2.

Figure 4.2: Scaling of the voxel model with different depth parameters. A depth and voxelsize of: 10 -
1.8 cm (white), 9 - 3.65 cm (red), 8 - 7.3 cm (blue) and 7 - 14.6 cm (green)

The voxel size has a large influence on the representation of the original point cloud. If a threshold below
an entryway needs to be distinguished from the rest of the floor, the voxel size should be very small.
In this thesis, an indoor space contains different kinds of navigable surfaces like stairs, flat and sloped
surfaces as described in § 3.1. A riser of a stair forms the smallest connected surface that needs to be
detected. Therefore, the detection of this element determines the voxel size. According to the ISO 21542
(2011) standard, the riser of a stair should not be higher than 15 cm. Since the risers should always be
represented, a voxel size around 7 cm should probably be used. This assumption is investigated in the
next part of this section.
figure 4.3a until figure 4.3d, illustrates the voxelization process of the point cloud with different octree
depth values. An octree depth of 7, which is a voxel size of 14.6 cm, represents the height of a riser as one
voxel. If there is noise present before a riser, a voxel is added and the riser gets deformed directly. This
impacts the representation of this riser, see figure 4.3a. Therefore, the octree depth of 7 is not suitable
to detect risers. An octree depth of 8, which has a voxel size of 7.3 cm, represents the height of a riser by
three voxels. These three voxels are enough to detect a riser even if some noise voxels are present. The
voxel models with an octree depth of 9 and 10, which have a voxel size of 3.65 and 1.83 cm, represent
the point cloud of the interior of a building more accurate but also increases the amount of voxels. This
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larger amount of voxels increases the processing time. As also can be seen in the images, a smaller voxel
size creates gaps at the parts which are not scanned thorough enough. As earlier assumed, a voxel size
of around 7 cm is sufficient to detect individual risers of a stair and is not introducing large gaps in the
voxel representation.

(a) Voxelmodel: depth 7, voxel size
14.60 cm and 1 voxels/riser

(b) Voxelmodel: depth 8, voxel size
7.30 cm and 3 voxels/riser

(c) Voxelmodel: depth 9, voxel size
3.65 cm and 6 voxels/riser

(d) Voxelmodel: depth 10, voxel size
1.83 cm and 10 voxels/riser

Figure 4.3: Different voxel depths and voxel sizes

The representativeness of a voxel model compared to the original point cloud depends on the voxel size.
As can be seen in figure 4.4 the green voxels are representing the red points of the point cloud more
accurate than the gray voxels. However, increasing the amount of voxels also increase the processing
time. Therefore, a balance between the voxel size and the amount of voxels is important.

It should be noted that in the current implementation, the voxel size depends on the number of subdi-
visions of the octree and the bounding box of the point cloud as described in section 3.2.2. This voxel
size is automatically calculated and results in a different voxel size dependant on the extensions of the
input point cloud. This means that a fixed octree depth of 8 will not always result in a voxel size of 7.3
cm. Before different point clouds of the same environment can be compared, they need to be rescaled to
their original sizes. It would be less time consuming to ask the operator about the preferred voxel size
before processing the data.
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Figure 4.4: Voxel representation of the point cloud. Voxelsize of 7.3 cm (white), voxelsize of 3.65 cm
(green) and the original point cloud (red)

4.3 Remove dynamic objects

As described in § 3.2.3, many different cleaning techniques are investigated. These techniques will be
discussed in this section. All cleaning methods are implemented in the PostgreSQL database. The most
applicable cleaning method will be chosen and further introduced after the discussion.

4.3.1 Delete voxels containing n-amount of points

As described in 4.2, the amount of points per voxel are saved in the smallestleaves table. If a voxel
of 5 by 5 cm contains two points, the voxel does not represent an important part of an object in the
indoor environment. A possible way to clean this voxel model is to remove the voxels which contain an
n-amount of points. As illustrated in figure 4.5a, most dynamic elements are partly removed when voxels
with less than eight or ten points are detected.
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(a) No voxels removed (b) Voxels which contain more than two points

(c) Voxels which contain more than four points (d) Voxels which contain more than six points

(e) Voxels which contain more than eight points (f) Voxels which contain more than ten points

Figure 4.5: Different removements of voxels with a n-amount of points with a voxel size of 7.3 cm

Cleaning this way does not focus on the dynamic elements themselves but it becomes a general cleaning
method which removes a lot of other data as well. Furthermore, it is still possible that a dynamic object
which was close to the scanner during the data capture contains more than twenty scanning points. This
means that a lot of data must be removed before these dynamic voxels are detected.

4.3.2 Different time frames

The SLAM algorithm which is used to form the final point cloud from the MLS device gives a more
reliable result when the data is captured in closed loops (GeoSLAM, 2016). Because of the loop, parts of
the specific rooms or hallways are scanned multiple times. As can be seen in figure 4.6a, this part of the
room exists of green and orange points which means that the space is scanned twice. A possible way to
identify dynamic objects is by comparing these two time frames. A dynamic object is only present at a
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specific position during a specific time (Józsa, 2012). Therefore, dynamic objects can be present in one
time frame but are not present in the next time frame and are therefore only represented by points of
one colour. Static objects are present in both time frames and consist of both green and orange points.
This is also illustrated in figure 4.6b where dynamic objects are present in the red and blue time frame
whereas the static elements are present in all five time frames.

(a) Point cloud coloured by time. Scan time one
(green) and scan time two (orange)

(b) Point cloud coloured by time. Multiple scan-
ning times

Figure 4.6: Point cloud collored by time

These different time frames are detected by selecting all the points inside the voxels and sort them on
their capturing time. If there is a gap of more than thirty seconds, it indicates a different time frame.
By counting the different time frames per voxel, the amount of time frames can be derived. By removing
all voxels that contain only one time frame, the dynamic objects are removed as illustrated in figure 4.7.

Figure 4.7: Identified dynamic objects in different time frames

To apply this method to the whole point cloud, a room needs to be scanned multiple times if dynamic
objects are present during the data capture. Using different time frames to detect dynamic elements
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requires that first a different space is scanned before the same space can be scanned again. Scanning the
same space multiple times results in a longer scanning time which in the end leads to higher costs for
the entire project.
As can be seen in the right bottom corner of figure 4.7, static elements are also noted as dynamic objects.
This is caused by the dynamic objects which occludes the static objects. Therefore, the second scan needs
to capture the same elements inside a space as the first scan. If a space behind a closet is scanned for
the first time, this space also needs to be scanned during the second scan or the space behind the closet
will be removed. Applying this method in environments with a lot of dynamic objects is difficult since
both the scanned spaces and the order in which they are scanned need to be memorized. Moreover,
environments with a lot of dynamic objects block many static objects which are therefore removed. This
results in a model with many missing static objects.

4.3.3 Unique time stamps

A different method to detect dynamic objects is to calculate the amount of unique scanning seconds
per voxel. If a dynamic object is only present at a specific location during a specific time, the voxel only
contains points that are scanned during a very short period of time. The dynamic objects are identified
by getting the scanning times of the points inside a voxel. By rounding the time records on seconds and
sort them on their data capture time, the different scanning times can be computed. As can be seen
in the figure 4.8, the static voxel A contains four scanning seconds whereas the dynamic voxel B only
contains two scanning seconds and is therefore marked as a dynamic object. This value is described by
the numoftimestamps parameter. Detecting dynamic objects this way does not require to scan every

Figure 4.8: Unique time stamps of a static (A) and dynamic (B) voxel

space twice. Dynamic objects that were at a specific place during the data capture, like actors in line
for a coffee machine, cannot be detected.

4.3.4 Floor voxels with voxels above

A different approach compares the unique scanning seconds of the floor voxels with the time of its voxels
above. As can be seen in figure 4.9a, A,B,C and D are all scanned during the red data capture period. B,
C, and D are all scanned during the green data capture period and A is occluded by a dynamic object.
C and A are scanned during the blue data capture period, B is occluded by the dynamic object and D
is behind the data capture device and is because of this not scanned. A and B are scanned during the
yellow data capture time. This time, the points C and D are behind the capture device and therefore
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not present during the yellow data capture time period. The dynamic object is scanned above the floor
voxels at position A and B. If the data capture time of the floor voxels A,B,C and D are compared with
the data capture time of its voxels above dynamic objects can be detected, see figure 4.9b.

(a) Scanning of points A,B,C and D with a MLS

while a dynamic object is passing (the human
shape)

(b) Comparing the scanning times of floor voxels
with the voxels above

Figure 4.9: Dynamic objects

Floor voxels need to be identified by the region growing process before this approach can be implemented.
After selecting the floor voxels and its voxels above, the individual time frames of the voxels can be
compared. If a floor voxel contains different scanning time frames than the voxels above, a dynamic
object is detected. As mentioned earlier, only dynamic objects that were moving during the data capture
can be detected.
As can be seen in figure 4.10a and figure 4.10b, the floor voxels have a value of 0 and the voxels above
have a value of 1 in the basepoint column. The voxels above this floor voxel have different z values. As
can be seen in figure 4.10a, the bottom voxel contains four different scanning seconds whereas the voxels
above contains only one scanning second. Therefore, the voxels above contain an object that was not
scanned for a longer period of time and would probably be a dynamic object that was moving during the
data capture. figure 4.10b shows the different timestamps of a dynamic element that was not moving
during the data capture. As can be seen, the floor voxel contains four unique scanning seconds and the
voxels above contain one or multiple scan seconds. In this case it is more difficult to decide which voxel
is dynamic and therefore needs to be removed.

(a) A dynamic object: unique rounded seconds of
the floor voxels with the voxels above

(b) A dynamic object that was not moving: unique
rounded seconds of the floor voxels with the
voxels above

Figure 4.10: A dynamic object on the move and a dynamic object at the same position

Cleaning the point cloud from dynamic objects after the region growing process requires that all the
steps before this process are applied to the uncleaned voxel model. Applying a cleaning method after
the seed voxel identification and the region growing process results in a wrong identification of these
seed voxels. The coloured voxels represent the trajectory voxels and the white voxels represent the seed
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voxels, see figure 4.11a. Applying the cleaning method after the seed voxel identification results in wrong
identifications, as can be seen in figure 4.11b. The number of wrong identifications increases when an
environments has a lot of dynamic objects. Therefore, the cleaning method should take place at the
beginning of the proposed MSc classification process. Moreover, it is not possible to detect dynamic
elements that were not moving during the data capture.

(a) Identified seed voxels after the detection of dy-
namic objects

(b) Identified seed voxels before the detection of
dynamic objects

Figure 4.11: Identification of seed voxels in an cleaned and uncleaned environment

4.3.5 Count the voxels above a floor voxel

Instead of comparing the unique scanning seconds between the floor voxels and its voxels above, another
way to detect dynamic objects is by counting its voxels above. This should be counted until the height of
the agent. Afterwards, the floor voxels get the counted weight which is visualized in a map as illustrated
in figure 4.12a and figure 4.12b. In this image, when there is no colour there are no voxels above the
floor voxel and the darker the colour, the more voxels are present above the floor voxels. This map can

(a) 3D view of the voxel model voxel model (b) Counted voxels above Floor voxels

Figure 4.12: Counting voxels above floor voxels

be used to identify a dynamic object based on training samples as illustrated in figure 4.13. Pedestrians
for example have a head and legs, which results in more voxels in the middle and fewer voxels around the
centre of their representation in the voxel model. As introduced by Józsa (2012), pedestrians sometimes
turn into long-drawn shadows in point clouds, as can be seen in the left bottom part of figure 4.12b. In
this case, detecting pedestrians by training samples is a lot harder. Furthermore, the cleaning process
can only take place after the region growing process which results in seed voxel identification errors as
discussed earlier.
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Figure 4.13: A close up of figure 4.12b where a single pedestrian can be seen

4.3.6 Implementation of the detection of dynamic objects

The described cleaning methods above have some limitations that can be seen in Table 4.1. Some
methods are not focused on the identification of dynamic objects and some approaches can only be
implemented after the region growing process. Implementing the cleaning method in a later stage leads
to other complications as described above. A cleaning method that is not focussed on dynamic objects is
also not useful. The different time frames method results in three times a ’NO’ in the table. Scanning a
space twice and a cleaning method which heavenly depends on occlusion is also not practical. Therefore,
the unique time stamps method is chosen as the cleaning method for the detection of dynamic objects
in the voxel model.
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n-amount of voxels NO YES YES YES YES YES
Different time frames YES NO NO NO YES YES
Unique time stamps YES YES YES NO YES YES
Floor and voxels above YES YES YES NO NO YES
Count voxels above YES YES YES YES NO NO

Table 4.1: Positive (YES) and negative (NO) factors of the proposed dynamic detection methods

4.3.7 Detection of dynamic objects: unique time stamps

The chosen cleaning method contains only one parameter, which is called the numoftimestamps param-
eter. Because the unique scanning times of the points inside a voxel are counted, the voxel size has a
large influence on the result. If the voxel size is large, the voxel contains presumably more points than
if the voxel size is small, which results most likely in the voxel containing less points. Therefore, the
unique time stamps method is tested on a voxel model with a voxel size of around 7 cm as described in
§ 4.2. As can be seen in figure 4.14a, removing less than two scanning seconds results in the loss of a lot
of voxels. These voxels exists of unidentified voxels and dynamic objects. These unidentified voxels are
most likely noise or poorly scanned objects which voxels only contain one or two points each.
If the numoftimestamps has a value of 3, whole dynamic objects are detected and removed. There are
also voxels removed from the sides of the voxelized model. Increasing the numoftimestamps parameter
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(a) Voxels witch contain two or more scanning seconds:
numoftimestamps = 2

(b) Removed voxels from figure 4.14a (blue): numof-
timestamps = 1

(c) Voxels witch contain three or more scanning sec-
onds: numoftimestamps = 3

(d) Removed voxels from figure 4.14c (blue): numof-
timestamps = 2

(e) Voxels witch contain four or more scanning seconds:
numoftimestamps = 4

(f) Removed voxels from figure 4.14e (blue): numof-
timestamps = 3

Figure 4.14: Removed voxels containing less than n-unique scanning seconds per voxel

results in the increase of the removal of these voxels. Moreover, it only partly detects and removes
dynamic objects. Therefore, the cleaning parameter is set to a value of less than 3.
As can be seen in figure 4.14c, some dynamic elements are still present after the data cleaning process.
When the unique time stamps of these elements are analysed, a lot of different scanning seconds are
present. This indicates that these voxels were on the same position for a longer period of time during
the data capture.
If there was a large time gap between successive seconds, dynamic objects of different scanning frames
could be present at the same position as discussed in § 4.3.2. This is not the case for the investigated
voxels. The numbers in figure 4.15a are represented by the locationalcodes in figure 4.15b. The difference
between the two numbers is described in Table 4.2.
It should be noted that the detection of the dynamic objects that have remained at the same position
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during the scanning cannot be distinguished at this moment. An example of such objects, as discussed
before, are pedestrians who are waiting in a queue near the coffee machine. Such objects are therefore
still present in the voxel model and will influence the results of the other processing steps.

(a) Voxels containing less than three unique sec-
onds removed

(b) Timestamps of four voxels figure 4.14a

Figure 4.15: Unique scanning seconds per voxel

Number in figure 4.15a locationalcode in figure 4.15b
173569 121364361
173564 121364341
167848 120152550
177437 123150065

Table 4.2: Number translation between figure 4.15a and figure 4.15b

4.4 Filling gaps

The detection of the gaps in the voxelized model is implemented in the PostgreSQL database. First,
the SQL query groups all the voxels based on their height and orders these voxels based on the x- and
y-axis. Second, the voxels are grouped by the x-axis. This way, the distance between the voxels on the
y-axis can be checked. If the distance between two successive voxels is less than the filgaps parameter,
the distance represents a gap and is filled with new voxels. After the identification of the position of
the new voxels, the locationalcode is calculated in the Python environment and the data is added to the
smallestleaves table. This process is repeated for the x-axis.
By using a fillgaps parameter value of 1, most gaps are filled as can be seen in figure 4.16b. If the sides of
the surface are very close to each other, like risers of a stair to the boarding of a stair, the gaps between
these elements are also filled with voxels. This effect increases if the fillgaps parameter increases which
results in a strange representation of elements in the voxel model, see figure 4.16a until figure 4.16d.
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Therefore, the fillgaps parameter will get a value of 1 which results in the addition of 4.5% of the total
voxels.
A possible solution to this problem is to cross-check the added voxels with the original voxelized point
cloud. If a match is found, the voxel is restored. If there is no match found during the cross-check, the
voxel represents new data and can cause problems as described above.

(a) Voxel model after the cleaning (b) Filling distance of one

(c) Filling distance of two (d) Filling distance of three

Figure 4.16: Different filling gaps parameters

4.5 Trajectory classification

The detection of the different types of trajectory points is implemented in Python and described by the
pseudo code in B. The process starts by reading the points from the .txt file. A possible stair or slope
point is saved as a possible surface point if there is a change in height of 10 cm, see figure 4.17.

The following step consists of testing the possible trajectory points regarding the stair thresholds. For
each possible trajectory point and the next point, the distance is calculated. The angle is derived based
on the calculated distance and the height of 10 cm and is compared with the stair thresholds, see Table 4.3
testing set A. If the point falls within the thresholds, it is added to the possible stair list. A point is only
classified as a stair if there are 4 successive stair points in a row. More stair points are added until the
angle thresholds are exceeded. The points between the stair points are classified as stairs and removed
from the possible surface points and the total points lists. The process is repeated to classify slope points
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Figure 4.17: Possible stair/slope points: detected if the trajectory changes more than 10 cm

with the slope thresholds. The points remaining after the two classification rounds are classified as flat
surfaces. A classification result is illustrated in figure 4.18.

Figure 4.18: Classified trajectory: horizontal trajectory (green) and stair trajectory (red)

Defining the different threshold values are based on test cases. For explanation purposes three different
thresholds sets are visualised and analysed. The first set consists of the thresholds which are used during
the process. The second set exists of a lower maximum angle value and the third set exists of a higher
minimum angle value, see Table 4.3. The whole classified trajectory for each set is visible in D.

Testing Name Slope Stair
Set Minimum Maximum connected Minimum Maximum connected

angle angle elements angle angle elements
in degree in degree in degree in degree

a Used parameters 2.3 18.4 2 7.1a 90 4
b Lower maximum 2.3 11.3 2 7.1a 45 4
c Higher minimum 3.8 18.4 2 14 90 4

Table 4.3: Different sets of trajectory analysis parameters
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The environment where the data is captured contains stairs with a small number of risers. These risers
are detected with set a and c, see figure 4.19. These small stairs cannot be detected with set b. This
is because the change in height is calculated based on the trajectory which is based on the movements
of the MLS device during the data capture. Therefore, part of the trajectory and each riser appears
differently in the trajectory and large thresholds are needed. figure 4.20 shows a different staircase. This

(a) (b) (c)

Figure 4.19: Trajectory classification staircase 1, on testing set a, b and c

staircase has four of the same stairs which all have the same amount of risers. As can be seen in set a,
all four stairs are detected and a small part is classified as a slope. In the second image, one of these
stairs has disappeared and part of the bottom stair is removed. This part removed part is still missing
in image c. It contains sudden height changes and therefore, the difference between the minimum and
maximum thresholds should be quite large. figure 4.21 shows the classification of a slope. As can be seen

(a) (b) (c)

Figure 4.20: Trajectory classification staircase 2, on testing set a, b and c

in a, four slopes are detected. In the second and third image, the changes in the thresholds results in the
removal of two slopes. To make sure that all slopes get classified, the difference between the minimum
and maximum angle threshold need to be quite large as well. Especially if the angles of Table 4.3 are
compared with the angles of figure 4.22.
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(a) (b) (c)

Figure 4.21: Trajectory classification slope 1, on testing set a, b and c

Figure 4.22: Angles for stairs and slopes Image from: http://inspectapedia.com/Stairs

Stairs which have a larger tread depth can have the same angle as sloped floors. Therefore, these
trajectory points are classified as sloped floors which is not the case in reality, as can be seen in figure 4.23.
To restore these errors, the classification check described in § 3.2.9 is implemented.

Figure 4.23: Slow stairs: classified as slope
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4.6 Voxel model + seed voxels

The identification of seed voxels has no parameter and is implemented in the PostgreSQL database.
The algorithm works in the following way:

1. The trajectory points are voxelized in the same spatial structure as the voxelized point cloud.

2. The height difference between the trajectory voxels and the corresponding voxels on the same x, y
location are calculated. The seed voxels are the voxels below the trajectory voxels which have the
smallest positive distance regarding the trajectory voxels.

3. The records of the seed voxels are changed in the smallestleaves table. The value of the seedpoint
column is changed from 0 to 1, the locationalcode of the trajectory voxels are added to the trloca-
tional column and the voxel types are added to the voxeltype column. There are seven different
classes which exists of a stair class, a slope class and a flat class and four combination classes. The
combination classes are based on the sum of the first three class ID’s, see Table 4.4.

Database id Surface type
1 slope
2 stair
3 slope + stair
4 flat
5 flat + slope
6 flat + stair
7 flat + slope + stair

Table 4.4: Different classes of seed voxel types

After this process, the seed voxels are identified and classified, see figure 4.24

Figure 4.24: Identified seed voxels. Stair (red), flat (blue), slope (green) and multiple types (yellow)

The voxel directly below the voxelized trajectory is identified as a seed voxel. If the MLS device is held
above furniture or other objects, seed voxels are classified on top of these objects, see figure 4.25. The
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identification of these seed voxels results in the region growing of surfaces which should not be identified
as such. These features do not represent a stair, slope or flat surface and thus need to be removed. This
cleaning step is implemented in the classification check.

Figure 4.25: Voxels of non-floor elements that have a floor seed voxel on them

4.7 Voxel model + seed voxels + identified entry-

ways

The detection of entryways is implemented in the PostgreSQL database and is based on the seed voxels
which are identified by the trajectory. Due to time constraints of this MSc thesis, entryways are only
detected using the height changes in the z-axis method and are not fully implemented in the classification
process. Therefore, entryways are not identified in the final output of this MSc thesis.
The identification of entryways is implemented in the following way:

1. The smallestleaves table is joined with the trajectory table to get the sequence number of the seed
voxels in the originally ordered voxelized trajectory.

2. For each x, y location all corresponding voxels are found and the z distances are calculated. The
negative numbers are deleted and the result is saved in a materialized view.

3. The voxels with the smallest distance to the seed voxels are assumed to be the ceiling voxels.

By ordering the seed voxels on their capturing time and adding the corresponding height value to
the ceiling voxels, a 2D image is created, see figure 4.26. The height of the ceiling in the Faculty of
Architecture is around 5.9 meters. Entryways are far lower height value and can be detected using a
threshold of 2.6 meters. As can be seen in figure 4.26, four entryways are identified. If these entryways
are checked with the captured voxel model, the entryways are classified correctly, see figure 4.27. As
mentioned earlier, entryways can only be detected if they are passed by the MLS during the data capture.
Therefore, not all the entryways in figure 4.27 are detected.
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Figure 4.26: Distance from seed voxels to the ceiling. The entryways are detected with an height of 2.6
meters

Figure 4.27: Enlarged seed voxels of the identified peaks in figure 4.26

Most of the buildings have a ceiling lower than 5.9 meters. If there is less distance between the seed voxels
and the ceiling, the identifying an entryway is more difficult. All infrastructure objects like water pipes,
construction beams, lightning objects and electrical wiring are visible in the Faculty of Architecture which
makes the identification of entryways even more difficult, see figure 4.28. As can be seen in figure 4.26,
the detection of entryways is impossible since all these infrastructure objects produce entryway patterns.
This way it seems like all these infrastructure objects are entryways, which is not the case. If the distance
between the seed voxels and the ceiling is larger, these infrastructure does not influence the detection of
entryways, see .

Currently the detection of entryways is only possible in spaces with a high ceiling. Further research is
needed to identify all the entryways of a building based on the trajectory of a MLS.
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Figure 4.28: Ceiling with visible infrastructure objects

Figure 4.29: Distance from seed voxels to the ceiling

4.8 Regiongrow seed voxels per room

As discussed in § 3.2.8, two region growing methods are implemented. The ordered checking algorithm
does not require any parameters. The ClusterDBSCAN algorithm requires two parameters: the distance
(EPS) and the density (minpoints). The density parameter influences the number of clusters. A cluster
must have more than n-minpoints of data elements to be saved as a cluster. Because the clusters are
only saved if they contain seed points, the amount of points or the minimal size of the cluster does not
matter. Therefore, the parameter is set to 5 which has no influence on the result. The other parameter is
the maximum distance between different region points. Because each voxel is represented by an integer
between 0 and 2octreedepth, all the neighbouring voxels have a distance of 1, see § 4.2 and § 3.2.2: the
four neighbour adjacency. The distance to a neighbour considering an eight neighbour adjacency, in the
horizontal plane, is 1 to the voxels who share a face. The distance to voxels who share a vertex are
described by the Pythagoras theory: a2 + b2 = c2 which results in a distance of

√
2 which is around

1.41, see figure 4.30. Therefore, it is useful to test the The desired distance between two points in the
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ST ClusertDBSCAN algorithm (EPS) parameter for a value below and above 1.41 which results in a
testing value of 1.3 and 1.5. This way the four neighbour and eight neighbour adjacency is tested.

Figure 4.30: Distance to the voxel neighbours

The processing time of both dbscans is ten times as fast as the ordered checking, see Table 4.5. Moreover,
the ordered checking contains more voxels than any of the dbscans. Furthermore, the difference of the
largest region, considering the amount of voxels, between the dbscan with an EPS of 1.5 and the ordered
checking is 0.5%. The difference between the largest region of the ordered checking and the dbscan with
an eps of 1.3 is 5.2% which is ten times larger compared to the dbscan of 1.5.

Region growing type Processing time Number of voxels Largest region
in minutes in voxels

ClusterDBSCAN EPS = 1.3 17 79144 46063
ClusterDBSCAN EPS = 1.5 17 84540 48320
Ordered checking 169 90292 48568

Table 4.5: Results of the region growing process for two the ordered checking, the SBDCAN with an eps
of 1.3 and an eps of 1.5

The visual differences between the three regions are not big, as can be seen in figure 4.31a until fig-
ure 4.31c. As earlier discussed, the ordered checking adds more regions to the region model compared
to the dbscan with an EPS of 1.5. This can be noticed on the right top of the stair. The dbscan with an
EPS of 1.5 is compared to the ordered checking much quicker processed, although it visually almost gives
the same result. This is strange because the ordered checking works with a four neighbour adjacency,
just like the dbscan with an eps of 1.3. The dbscan with an eps of 1.5 which has an eight neighbour
adjacency, looks visually and numerically more like the ordered checking. Because the dbscan with an
EPS of 1.3 also misses some voxels in the middle of the space and has a 10 times faster processing time
than the ordered checking, the dbscan with an eps of 1.5 is used in the main process.
This means that not a four neighbour adjacency described in § 3.2.8 is used but an eight neighbour
adjacency. As can be seen in the images, the furniture elements that contained a seed point introduced
in § 4.6 are also region grown. These wrongly classified regions need to be removed by the classification
check.
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(a) Region growing: ClusterDBSCAN with an EPS of
1.3

(b) Region growing: ClusterDBSCAN with an EPS of
1.5

(c) Region growing: Ordered checking

Figure 4.31: Region growing ordered checking and ClusterDBSCAN

4.9 Classification check

The classification check is implemented in Python. The following steps are implemented in order to
detect the bottom risers of a stair or the first part of a slope:

1. Identify the rise of a slope in an amount of voxels

2. Visit all successive seed voxels along the capture order of the trajectory

3. Compare the height between the previous visited voxel and the current voxel. If the height difference
is negative the voxel is higher than the current voxel. If the height difference is positive the voxel
is lower than the current voxel, see figure 4.32

4. If the height difference (negative or positive) is lower or the same as the slope parameter and if the
frontcheck voxel is classified as a slope voxel or if the backcheck voxel is classified as a slope voxel,
the first part of a slope is detected
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5. This information is updated into the current regions

6. These steps are repeated for the stair parameters. The height difference described in step 4 needs
to be changed. In this case, the height difference needs to be the same as or more than the minimal
stair rise and needs to be the same as or less than the maximal stair rise

Figure 4.32: Up and down a stair or slope results in a negative and a positive height change

The frontcheck and backcheck parameters are based on the length of the stairs and slopes. If a height of
1.5 meters needs to be covered by a stair or slope, the length of the slope is longer than the length of the
stair. Therefore, the frontcheck and backcheck of the slope is larger than the parameters of the stair, see
Table 4.6. The rise of a slope in the point cloud is gradual which results in a voxel representation which
increases gradually with 1 voxel per distance. The bottom stair parameter and top stair parameter are
based on the voxel size of around 7 cm and the risers in the indoor environment that were around 15
cm. Therefore, a riser is always represented by 2 or more voxels or 4 or less voxels, see Table 4.6. These
parameters are checked in multiple test cases.

Parameter slope stair
frontcheck 20 10
backcheck 20 5
Sloperise 1 -
Minimal stair rise - 2
Maximal stair rise - 4

Table 4.6: Classification check slope and stair parameters

The implemented code results in figure 4.33. As can be seen, the seed voxels of the bottom part of the
slope are classified correctly. If the regions are corrected, the result looks like figure 4.34.
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(a) The bottom part of the slope seed voxels (green) are
classified as flat seed voxels (blue)

(b) Improved classification: slope seed voxels (green)
and flat seed voxels (blue)

Figure 4.33: Seed voxels before and after the classification check

Figure 4.34: Corresponding regions to the trajectory voxels before (above) and after (below) the classi-
fication check: flat regions (blue), slope regions (green) and stair regions (red)
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This approach can also be used to detect slow stairs identified as slopes, see figure 4.23. The current
results can be seen in figure 4.35b.

(a) Stair voxels classified as slope (green) and flat sur-
faces (blue)

(b) Partial detection of stair seed voxels (red), slope
seed voxels (green) and flat surfaces (blue)

Figure 4.35: Detection of stairs wrongly classified as slope

As can be seen in figure 4.35b and the bottom part of figure 4.34, the currently implemented code
cannot detect all the stair risers and not all the wrongly identified sloped floors. Also the furniture
objects marked as floors cannot be detected currently and are therefore not removed from the navigable
voxel space in the following processing step. The proposed classification check can be improved by
combining the information of the ordered seed voxels with the floor space belonging to those specific
seed voxels and the amount of other seed voxels that belong to the same region. This information can for
example be used to get the average stair riser acreage which can be applied to identify flat seed voxels
after a stair.

4.10 Subtract furniture

This process is implemented in the PostgreSQL database. The furniture subtraction uses only one
parameter named the maximum checking value. This value depends on the type of actor which for this
thesis is a pedestrian with a preferred height of 2.30 meters. For explanation purposes only the subtrac-
tion of furniture objects of one subspace is shown. The described process can be applied to all subspaces
at once.
The process exists of the following steps:

1. Identify the amount of voxels that need to be free above each floor region. This is done by dividing
the actor height by the retrieved voxel height from the project table. This results in a n-amount
of voxels above the subspaces, the actorheight parameter, which should be kept empty.

2. The voxels of the voxelized point cloud are retrieved from the database and the voxels of the
floor regions are removed from these database voxels. The identified floor regions do not represent
furniture objects themselves.
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3. The floor regions are them joined on the x, y position to the remaining voxels of the voxelized point
cloud.

4. The height of the voxel, the z value, is reduced by the height of the corresponding floor region. The
distance is now described from 0 to the height of the existing voxels. By removing all the negative
heights and the voxels above the actorheight parameter, furniture voxels can be identified.

5. These furniture voxels are removed from the floor regions based on the locationalcode of the corre-
sponding voxel in the floor region.

By removing the voxels which are below the actorheight parameter, the navigable subspaces per actor
are identified. In the current implementation, all voxels above the navigation surface are removed. A
voxel without any neighbours is probably not a real object but represents noise and is subtracted. In
further researches, this voxel should be detected instead of being removed from the navigable subspaces
per actor.
There are also some navigable subspaces per actor which cannot be reached by the actor; this is the case
in cluttered environments. This can be seen close to the table in the left bottom corner of figure 4.36a.
These unreachable voxel subspaces can therefore be removed from the navigable subspace.
A graphical representation of the furniture objects which are subtracted from a subspace is illustrated
in figure 4.37. Dynamic objects like pedestrians that were not moving during the data capture are not
detected and therefore also removed from the navigable subspaces.

(a) A subspace with furniture and building objects
(b) A subspace with furniture and building objects

merged to one height

Figure 4.36: A subspace with furniture elements
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Figure 4.37: Navigable subspace (blue), removed furniture subspace (red), furniture and building ele-
ments above the subspace (white)
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4.11 Final navigation voxel space

The output of the proposed method is described as the navigable voxel space per actor. In this section,
the final output model is compared to the situation in reality and the processing time of the proposed
method will be discussed.

4.11.1 Navigation voxel space

After the different processing steps, the indoor navigable voxel space is identified, see .

(a) Navigable voxel space with surrounding voxels:
sloped surfaces (green), flat surfaces (blue) and stair
surfaces (red)

(b) Navigable voxel space without surrounding voxels:
sloped surfaces (green), flat surfaces (blue) and stair
surfaces (red)

Figure 4.38: Navigable voxel space

4.11.2 Representation

The final output of the described method is the navigable space per actor. If the m2 of the navigable
space of the model is close to the m2 of environment in the real world, the method produces an accurate
m2 model. The accuracy check is implemented on a Computer-aided Design (CAD) model of the Faculty
of Architecture, as can be seen in figure 4.39a. figure 4.39b shows the extends of the navigable space
from the proposed method and the navigable space of the CAD model.

As can be seen in figure 4.39b, some areas are navigable spaces in the CAD model but are not marked
as such in the voxel model. These areas could be removed described by the process in § 4.10 or are not
scanned thorough enough and thus should be scanned more detailed.
Besides the missing data in the corner, an entryway (on the top of the image) is removed from the
navigable space. This is because the entryway falls within the height of the actor. If the entryway
detection was implemented, these entryway voxels would not have been removed in the final output.
There is also a gap visible close to the entryway. This gap is created by a pedestrian that was not on
moving during the data capture which therefore is not removed in the detection of dynamic objects.
These problems influence the total m2 of the final model.
The m2 comparison is applied to two different navigable subspaces:
1. The hallway subspace represents a space with a few objects along a wall. 2. The first floor subspace
of the orange rock represents an environment with a lot of chairs, desks and scale models which is also
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(a) Area calculation in a cad! model
(b) Comparison between identified naviga-

ble space and the real world navigable
space from a cad!

Figure 4.39: Representation of the area

known as a cluttered environment.
Besides the two test cases, the m2 is calculated for the chosen voxel size of 7.3 cm and a smaller voxel
size of 3.65 cm. As can be seen in Table 4.7, there are some differences between the m2 with the 7.3
cm voxel size and the m2 of the CAD model. It can also be noted that the difference in m2 between the
voxel size of 7.3 and 3.65 is not that big. Based on these results it can be assumed that an increase in
voxel size does not influence the representation in m2 a lot. Furthermore, the difference in m2 between
the CAD model and the final navigable space is around 10%. These conclusions are only based on two
test cases. More researches are needed to compare these results with the results of other indoor spaces.

Checking type Halway First floor Orange rock
in m2 in m2

CAD model 74.0 68.0
7.3 cm voxel model 67.7 61.3
3.65 cm voxel model 67.5 61.9
Difference between CAD and 7.3 cm -8.5 % -9.9 %
Difference between CAD and 3.7 cm -8.8 % -9.0 %

Table 4.7: Area calculation in a cad! model compared to the area of the output model with an voxel size
of 7.3 and 3.7 cm
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4.11.3 Performance

The processing time of the method is illustrated in figure 4.40. The method has been tested for different
point clouds of four, eight and sixteen million points. By doubling the amount of points, the processing
time almost doubled as well. As can be seen in the figure, the voxelization process of 4 million points
requires half of the total processing time. However, with 18 million points the voxelization process
requires more than half of the total processing time. Furthermore, it can be noted that the processing
time is decreased significantly by the implementation of the DBSCAN algorithm, see Table 4.5.

Figure 4.40: Processing time of point clouds from 4, 8 and 16 million points. Total time (blue), voxeliza-
tion time (red)

4.11.4 Tresholds: fixed or changeable

There are a lot of parameters used in the development of this method. Some parameters can and other
parameters cannot be changed without large consequences within the final model. This section discusses
what would happen when the parameters which are used would be changed and which effect this would
have on the final model.

1. Octree depth: this parameter is important because it defines the voxel size. The scaling factor of
each point cloud is different which results in different voxel sizes with the same octree depth. The
octree depth parameter needs to be adapted until the preferred voxel size is reached. Therefore,
the effect of a changing voxel size and not the octree depth parameter is further discussed.
In the current implementation, a voxel size of around 7.3 is used. If the voxel size increases, the
voxels will get bigger and there will be problems with the identification of objects like the risers
of stairs. Furthermore, the Numoftimestamps parameter needs to be larger which results in the
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removal of a lot of voxels before the dynamic objects are detected.
If the voxel size is two times as smaller, a voxel size around 3.65, the final result is not influenced
that much as can be seen in § 4.11.2. There will be created more floor regions with the smaller
voxel size because gaps in the voxel surfaces can occur and the six eight neighbour relations during
the region growing process cannot be applied as to a bigger voxel sizes. Even smaller voxel sizes will
probably result in even more gaps in the model which will finally result in only the identification
of navigable space around the seed voxels identified by the trajectory. The detection of the entire
navigable space is then not possible any more.

2. Numoftimestamps: increasing this parameter results in the removal of voxels in the model which
are no dynamic objects. A increase of this parameter results in gaps in the voxel model and gaps
in the final navigable space.

3. Filgaps: when the value of this parameter is changed, it will not have a large impact on the final
output. By increasing the value of this parameter, extra voxels will be added between for example
a stair and a riser border. This results in different representations of the objects in the voxel model.

4. Trajectory classification parameters: as the experiments in this thesis showed, changing the values
of these parameters results directly in stairs and slopes which are not classified correctly. Therefore,
these parameter should not be changed.

5. Entryway height: this parameter is not implemented and therefore not tested. However, this
parameter will probably be heavily influenced when the height difference between the ceiling and
the top of an entryway gets smaller.

6. Region growing, minpoints: this parameter should be kept at a small value because all regions
should be created. The regions containing a seed voxel will be saved.

7. Region growing, EPS: this parameter should also not be changed. Increasing this parameter results
in the detection of neighbours that are not connected to the voxel and are further away which
results in the wrong classification of regions across small walls or furniture objects.

8. Frontcheck and backcheck : the value of these parameters are based on two times the riser depth
and two times the voxel slope length. Therefore, this parameter depends heavily on the voxel size.
There will not be a large impact on the final result if this parameter increases.

9. Sloperise: a slope rises gradually in the point cloud and increases with 1 voxel in the voxel model.
Therefore, this parameter is set to 1 and cannot be changed.

10. Minimal and maximal stair rise: these parameters depend on the amount of voxels which can
represent a stair. In the current model, the risers of a stair are around 15 cm. Therefore, this
parameter cannot be changed. This parameter depends on the voxel size and the smallest and
largest risers of a stair.

11. Actor height: this parameter is necessary and depends on the height of the actor. This value can
be higher than the actor, but should never be smaller than the height of the actor. When the value
is increased a lot, especially in spaces with low ceilings, a lot of navigable space will be removed.
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5 Discussion and conclusion

This thesis investigates the possibilities for the use of the trajectory of a mobile laser scanner to identify
navigable spaces. Before the conclusion can be drawn, the research question and sub questions, as defined
in § 1.2.1, will be answered. After this section, the method will be discussed and final conclusions will
be drawn. Afterwards, recommendation for future researches will be given.

5.1 Research question

In this section, the research question and subquestions introduced in § 1.2 are answered.

1. What are the characteristics of a walkable space?
Forming a definition of a space is difficult based on the amount of literature, as discussed in § 3.1. A
general definition of a space can always be used but is unfortunately not specific enough. Therefore,
the definition of a space is most of the time extended for the current model that is used. This
results in a lot of different definitions of a space. Broadly, the concept of a space can be categorized
in two categories. The first describes a space as the result of the architectural components like
walls, floors, electric cabling and other building components. The second describes a space based
on the function it has like entrances, waiting areas and so on. In this thesis, the definition of a
space a section of the indoor environment which is enclosed by walls, entryways, windows, floors
and ceilings that can be accessed by an actor through an entryway. A spaces contain different
components like furniture objects, lightning features, plants, construction elements and are used
for indoor navigation activities.
Actors that use a space can be categorized in the type of navigation surfaces they can use for their
navigation activities. Some actors can use a flat and sloped floor but cannot use stairs. Therefore,
it is important to further subdivide a space in subspaces. A subspace is a section of a space which
only contains one type of connected navigation surface. A navigable subspace per actor is an
environment in which an actor can navigate without bumping into any obstacles on the ground or
in the air. The navigable space is cleared from obstacles (furniture and building components) until
the height characteristics of the actor are reached.

2. In what way can the trajectory of a mobile laser scanner be used to identify a walkable space?
If the MLS is operated by a human, the trajectory contains information that can be used to identify
walkable spaces. Therefore, points directly below the trajectory represent human navigable points.
By structuring the point clouds into a voxel model, the number of the data records is reduced and
is structured in space. If the trajectory is voxelized in the same spatial structure and projected
on the voxelized model, seed voxels can be identified. These seed voxels are the representation
of the trajectory into the voxelized point cloud. By region growing these seeds in a horizontal
plane, pre-walkable voxel surfaces can be defined. Because the MLS gathers data from the entire
indoor space, surfaces below furniture and building objects are also identified. By removing these
elements from the pre-walkable voxel space, the navigable voxel space can be defined. In this way,
the trajectory forms the basis for the final output and cannot be replaced by other data.
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3. How can walkable areas, identified by a mobile laser scanner trajectory, be subdivided into different
spaces?
The seed voxels described above can be used to detect entryways. By checking the height dif-
ferences between these seed voxels and the ceiling, a sudden height decrease and increase can be
detected. This characteristic pattern indicates the position of an entryway. This way, the scanned
indoor environment can be subdivided into different spaces. These spaces contain different kinds
of navigation surfaces like stairs, slopes and flat surfaces. Not all actors can use the same navi-
gation surface. Therefore, the identification of these surfaces is crucial. Distinction between these
navigation surfaces can be made by further subdividing spaces into subspaces. This is done based
on the change in height of the trajectory of the MLS.

4. In what way does the voxel size influence the accuracy of the generated walkable space?
The voxel size influences the representativeness of the voxel model compared to the input point
cloud. If the voxel size is too large, different components of the indoor space cannot be detected.
This results in a wrong classification of objects which has a negative effect on the final navigable
voxel space. In this thesis, a riser of a stair needs to be identified. For this purpose a voxel size of
7.3 cm has proven to be sufficient. As described in Table 4.7, the actual difference in m2 between
the implemented method and the real world is around 10 % with a voxel size of 7.3 cm. Using a
smaller voxel size does not improve the identified m2. More tests need to be performed to validate
if this value is indeed correct.

After discussing the different sub questions, the main research question can be answered:
Which walkable space can be identified from a voxelized point cloud using the trajectory of a mobile laser
scanner?
Point clouds are unstructured points containing only a x, y and z coordinate. To structure a point cloud
in space, an octree approach is used. The size of the voxels depends on the number of subdivisions. The
point cloud is automatically scaled so that it fits the octree structure. This results in different voxel sizes
based on the extends of the point cloud.
The voxel size is important to detect different objects in the indoor environment. A large voxel size
over simplifies the indoor environment and makes the detection of objects impossible. A small voxel size
represents the indoor environment more accurate but also increases the amount of data elements and
probably the processing time. In this thesis, a voxel size of 7.3 cm is used.
Because the building is not closed during the data capture, dynamic objects that were present during
the data capture are also present in the voxelized model. These dynamic elements are detected and
removed because they do not represent building elements. Dynamic objects that were static during the
data capture have not been removed from the voxel model and are therefore still present in final model.
The trajectory plays an important role in the implemented method. Different navigation surfaces can be
defined by analysing the height differences of the trajectory. These navigation surfaces exists of stairs,
flat floors and sloped floors. This is achieved through the voxelization of the trajectory in the same spatial
structure as the voxelized point cloud. By projecting these voxels on the voxel model, seed voxels can
be identified. Assuming that entryways can be identified using the height between the seed voxels and
the ceiling, different spaces can be split into single spaces. Floor spaces are found by region growing the
seed points into floor regions on the same horizontal plane. These floor regions contain furniture objects,
building objects and dynamic objects that were not moving during the data capture. By removing these
objects from the floor regions, the navigable voxel space can be defined.
The accuracy of this process compared to a CAD model is around 10 %. Further testing is needed to check
the correctness of this value. An increase in the voxel size does not improve the results of the represented
m2. Concluding can be said that the proposed method identifies three different kinds of navigable voxel
subspaces based on the trajectory and the point cloud of the MLS device. This method makes it possible
to create a continuous navigable space inside buildings which may consist of floors, stairs and elevations.
Data can be captured during business hours because the method detects and removes dynamic objects
in the final result. The proposed method can be used for any type of building without any constraints
because the complexity of the building is already present in the trajectory of the MLS.
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5.2 Discussion

The method which is used in this thesis clearly illustrates that by combining the trajectory with a
voxel model of a point cloud, navigation surfaces can be identified without constraints like for example a
Manhattan World or a flat surface constraint. This way, the method is applicable in many more buildings.
Horizontal, sloped and stair surfaces are identifiable when using this method. However, rounded surfaces
cannot be detected in the current implementation. Furthermore, stairs are detected when their risers are
circa 15 cm. Yet, when a riser is lower than this value it could not be identified with the current voxel
size. However, a temporarily smaller voxel size can be applied to detect these risers which are lower than
15 cm. If even smaller voxels sizes are needed, the original point cloud could also be temporarily used
to detect stairs which have an unique riser pattern.
In this research a trajectory of MLS is used. This method can also be applied regarding other trajectories.
If a 3D model is created based on photogrammetry which images are collected by a human operator, the
trajectory which is based on the position of the images could also be used for this method. It is also
possible to draw trajectories in already captured point clouds which are for example captured by a TLS

device. It is not expected that the trajectory of drones can be used which can be applied for this method
since they fly above unnavigable and navigable surfaces. Therefore, this trajectory does not contain the
required walkability aspect that is present when a human operator captures the data.
At this moment, the classification of the different types of sub spaces is based on the trajectory of the
MLS. It would be better when the classification of the different surface types is based on the seed voxels
themselves since the quality of the trajectory of the MLS depends on the movements of the device during
the data capture.
Although this method is only tested for an indoor environment, the method could also be applied in
an outdoor environment. However, a couple of changes to the implemented method which is used in
this thesis should be made. First, the definition of a space needs to be changed since it does not
comply with an outdoor space. Second, an outdoor space has curved roads for the drain of water.
The implemented method will probably work on these roads, a possible smaller voxel size is required.
Furthermore, outdoor spaces contain smaller height differences between surfaces which also require a
smaller voxel size. Outdoor surfaces are also more likely not to be not horizontal. If it is not possible
to use smaller voxels, because they do not touch any more, the original point cloud can be used which
resumes other analysing processes. Third, it would be difficult to distinguish between surfaces which are
on the same horizontal level, for example bicycle paths and pedestrian paths, since they are detected
as one surface even though they are used separated. Colour information could help by identifying these
different surfaces in an outdoor environment. This feature is currently developed by the supplier of the
MLS, which is used in this research. Colour information can also help by the identification of different
objects in the indoor environments like pedestrians and furniture objects.

5.3 Conclusion

The proposed method, which was formed during this thesis, was based on several experiments. As
described in this thesis, the trajectory of a MLS which is operated by a human operator contains valuable
information. Since a human operated the MLS, he has been at exactly the same position as the mobile
laser scanner and thus the surfaces below this trajectory indicates human walkable areas. Combining
this knowledge to reconstruct the indoor space results in a new way of identifying navigable space and
building reconstruction. Since there are no constrains applicable, in contrast to other approaches which
use for example a Manhattan World constraint, there are far more building types where this method
can be applied. Furthermore, this method is also suitable to create up-to-date floor plans in a short
amount of time. This creates even more possibilities for the usage of this method and is especially useful
for companies which want to make quick models of their buildings. Also, when this method is used for
the creation of navigable maps, the method creates one continuous navigate flow throughout the entire
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building. Moreover, this method can identify horizontal spaces, stairs, sloped floors and even small split
level floors. Furthermore, static and dynamic object can be detected, identified and removed which is
the reason why the data can be captured during business hours. Unfortunately, a curved floor is not
detectable at this moment which could be the subject of future research. Furthermore, a new definition
of a space, a subspace and a navigable sub- space per actor is introduced in this thesis;
- A space is a section of the indoor environment which is enclosed by walls, entryways, windows, floors
and ceilings that can be accessed by an actor through an entryway.
- A subspace is a a section of a space which only contains one type of connected navigation surface.
- A navigable subspace per actor is a subspace of a space which consists of one type of connected
navigation surface where an actor, with a specific height, can navigate without colliding into any element.
- A navigable space per actor is a section of the indoor environment which is enclosed by walls, entryways,
windows, floors and ceilings that can be accessed through an entryway (the collection of subspaces) where
an actor, with a specific height, can navigate without colliding into any element.

Concluding, the implemented method can be used for any type of room without any constraints because
the complexity of the building is already present in the trajectory of the MLS and the identification of
the navigable spaces only have a 10% difference in the m2 compared to the environment where the data
was captured.

5.4 Future work: recomended research

This paper proposed a methodology to identify floors, stairs, slopes and furniture objects based on the
point cloud and the trajectory of a MLS device. Future research could be done concerning the following
topics:

1. Identification of walls
A stopping criteria during the region growing process is used to stop adding voxels when the there
exist two voxels directly above the floor voxel. This gives an indication for the location of possible
walls. If the total number of voxels above the floor voxel are summed until a specific height, it
results in a heat map of the indoor space as discussed in § 4.3.5. By detecting linear elements,
walls can be identified.
Walls can also be detected by slicing the different rooms close to the ceiling in the x, y plane.

2. Identify furniture objects
All the resulting voxels above the floor regions are currently marked as furniture objects. These
voxels are subtracted from the floor regions. It would be better to group the furniture features and
identify the type of furniture. A chair for example, can be located in the middle of the room but,
because it is more dynamic than a table, it could also be replaced. Therefore, a chair in the middle
of a free space does not have to be removed from the final navigation voxel space. This way, there
can be more details concerning the furniture types.

3. Identification of dynamic objects which do not move during the scanning
Dynamic objects which were not moving during the data capture are now marked as furniture.
Future research should focus on identifying these objects and should remove them from the voxelized
point cloud. At this moment they can block a path which is normally available and therefore should
be included in the final result. This can be done by using the described process in § 4.3.5. Because
pedestrians were standing at one position they are better scanned which makes their human shape
more recognizable. When objects like these are projected down onto the floor, as discussed in
§ 4.3.5, they could be detected and classified as dynamic objects.

4. Generation of a node network (network graph)
Navigation applications are mostly based on node networks. With the identification of entryways,
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stairs, flat and sloped surfaces, such a network can be generated in for example the IndoorGML
standard. This network is necessary when the identified navigation space investigated in this
research is implemented in mobile applications which have limited memory capabilities. 4.3.3
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A Reflection MSc thesis

Bart Staats 4162552 Navigating from a room inside a building to a room inside another building across
the street consists of three parts: a first indoor part in the building where you start your journey, an
outdoor part and a second indoor part inside the building of your destination. Outdoor navigation is
well implemented and used a lot in daily life. Inside a building, it is impossible for GNSS signals to be
received, which is the reason why a navigation aid is not widely available. This aid is not necessary in
small, simple buildings but is useful in more complex buildings like hospitals, airports, conference venues
and large shopping malls. These systems exist of several elements like an indoor positioning system, an
indoor navigable map, specific destinations (points of interest) and an appropriate guidance to follow the
path inside a large building. By introducing the method proposed in this MSc thesis, navigable maps of
buildings which form one of the required features for indoor navigation, can be automatically created in
a quick way with less to no constraints. This is important because the creation of a navigable maps based
on 2D floor plans which are out of date is time consuming and costly. Installing an indoor navigation
system with an up-to-date map can now be done more quickly. This lowers the costs of installing these
systems in larger buildings like hospitals, airports and venue centres. Therefore, these systems will be
more quickly available to be used by the public who visit these buildings.
The implementation can also be used to generate floor plans of buildings without a with a out of date
map. Generating these maps of recently completed skyscrapers can help fire-fighters enormously during
an emergency situation. It can also help real estate companies by generating accurately measurements
about their different assets.

The developed method fits very well with the concept of the Master Geomatics which is based on
collecting, processing, quality analysing and visualizing the data. All these elements are present in this
MSc thesis. The data is collected in the form of a point cloud from at an indoor environment with
a mobile laser scanner. The captured data is processed to detect dynamic elements, to classify the
trajectory of the mobile laser scanning, to identify different navigable surfaces like slopes, stairs and
horizontal surfaces, to correct wrongly classified surfaces and to subtract furniture objects which in the
end results in the final navigable space. The different results are also visualized in ParaView. The quality
analysis of the processed data is compared to a CAD model of the navigable space which results in a
90% accurate m2 representation.

This MSc thesis covered a lot of different research fields. The identification of dynamic objects, stairs,
slopes, flat surfaces, entryways, furniture objects and navigable spaces could all be the subject of a
separate MSc thesis. Therefore, a lot of different research fields needed to be covered. It was possible to
research all these fields because the trajectory of the mobile laser scanner contains a lot of information
which was not yet used in other researches. Besides all this research, a paper was written which is
accepted for the Indoor3D 2017 conference in Wuhan, China.
All these things costed more time than was planned in the original GANTT chart. Looking back at the
planning of the MSc thesis, the report which was presented during the P2 should have been finished,
but this was not the case. Since this was not finished in time, the work which needed to be done on the
report was getting behind schedule and the GANTT needed to be changed all the time. Also the period
between the P2 until the P3 and the P4 went by far more quickly than expected. This resulted in a lot
of changes of the planning for the completion of this MSc thesis.
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The final product has almost fulfilled all goals that were set at the beginning of the graduation period.
Only the identification of the entryways and the classification check was unfortunately not finished
in time. The proposed method was tested during the Geomatics Day 2017 by scanning the indoor
environment before the venue started and processing the gathered point cloud which was showed in
the CGI booth in the afternoon. This confirmed that the proposed method worked efficiently and well
enough for the generation of a navigable voxel space.
Concluding, I think that there were too much things to investigate in this MSc thesis. If I could change
things now, I would have chosen for less subject which needed to be investigated and would have worked
more and for a lnger period of time on the specific elements of interest than I did in the end.
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B Pseudo code trajectory classifi-
cation

Algorithm 1: Stair and slope detection
1 for all points in trajectory
2 if firsttime
3 startNumber = xyz
4 if next z higher than heightdifference startNumber
5 save startNumber to possible-list
6 startNumber = xyz
7 for all points in possible-list
8 if firsttime
9 prevPosition = xyz
10 else
11 get xyz as curPosition
12 calc xy distance curPosition and prevPositionn
13 if max distance > calc distance > min distance
14 save to posibstair
15 count track += 1
16 else
17 if count track > number of connecting elements
18 save possiblestair to finalstair
19 count track = 0
20 posibstair = empty
21 else:
22 count track = 0
23 posibstair = empty
24 write finalstair to database
25 repeat for slope
26 rest trajectory = flat
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C Pseudo code region growing pro-
cess

This is the method of the self implemented regiongrowing process.

Pseudo code region growing own implementation
seedid = 0
regionlist – list with final region
checkedvoxels – list with checked seedvoxels
needtobechecked – list with voxels that need to be checked

querydata – all voxels
querry seed – all seedvoxels

for seedvoxel in querry seed
if seedvoxel not in checkedlist

neighbours – get neighbours
for each neighbor in neighbours

if len neighbour >1
if present in data

add to needtobechecked

if seeditem not in regionlist
add to regionlist

while exiting = true
if needtobechecked is not empty

checkingvalue = 1st item of needtobechecked
if checkingvalue in datalist

get upperneighbour
if upperneighbour in datalist

remove checkingvalue from datalist
remove checkingvalue from needtobechecked

else
get neighbours
for each neighbor in neighbours (same as earlier on)

if len neighbour > 1
if present in data

add to needtobechecked
add checkingvalue to regionlist
remove checkingvalue from datalist
remove checkingvalue from needtobechecked
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D Different trajectory classification
sets

Figure D.1: Classification set 1
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Figure D.2: Classification set 2

Figure D.3: Classification set 3
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