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Abstract: Networks of interconnected dynamical systems may exhibit a so-called partial
synchronization phenomenon, which refers to synchronous behaviors of some but not all
of the systems. The patterns of partial synchronization are often characterized by partial
synchronization manifolds, which are linear invariant subspace of the state space of the network
dynamics. Here, we propose a Lyapunov-Krasovskii approach to analyze the stability of partial
synchronization manifolds in delay-coupled networks. First, the synchronization error dynamics
are isolated from the network dynamics in a systematic way. Second, we use a parameter-
dependent Lyapunov-Krasovskii functional to assess the local stability of the manifold, by
employing techniques originally developed for linear parameter-varying (LPV) time-delay
systems. The stability conditions are formulated in the form of linear matrix inequalities (LMIs)

which can be solved by several available tools.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

In recent decades, synchronization of networks with in-
terconnected dynamical systems has received increasing
attention. Synchronization of networked systems has been
observed widely in various fields, ranging from nature
(Buck and Buck (1976), Lewis et al. (2014)) to engineering
(Nijmeijer and Rodriguez-Angeles (2003), Pettersen et al.
(2006), Ploeg et al. (2014)). In nature, synchronization
often happens spontaneously, while in engineering, it is
generally a designed phenomenon.

Sometimes, networks may show a form of incomplete
synchronization, called partial synchronization or cluster
synchronization, which refers to the situation where only
some but not all the systems in the networks synchronize,
Pogromsky et al. (2002), Belykh et al. (2008), Dahms et al.
(2012). Partial synchronization is often observed in com-
plex systems; for example, synchronous firing of neurons in
parts of the human brain, Gray (1994). Besides, it should
be pointed out that complete (full) synchronization is
not always desirable: synchronization of excessive amount
of neurons can cause brain disorders like epilepsy and
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project UCoCoS, funded by the European Unions Horizon 2020
research and innovation programme under the Marie Sklodowska-
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Parkinson’s decease, Bennett and Zukin (2004). Therefore,
partial synchronization has become an important topic
in complex systems like biological networks (especially
neural networks), power grids, communication networks,
etc., see Sorrentino et al. (2016) and references therein. It
is also noticed that in some networks, there may exist time
delays in and between the systems, which can impact the
existence and stability of partial synchronization. Some
research has been done to study partial synchronization of
networked systems with delayed coupling, see, e.g. Dahms
et al. (2012), Orosz (2012), Steur et al. (2016), Ryono and
Oguchi (2015). In Dahms et al. (2012), a master stability
function (Pecora and Carroll (1998)) based method is
used for characterization and stability analysis of partial
synchronization of such networks. In Orosz (2012), the
network dynamics are decomposed around cluster states
for stability analysis of delay-coupled networks of identical
systems. In Ryono and Oguchi (2015), an LMI-based con-
dition for stability of partial synchronization is presented
for delay-coupled systems with diffusive couplings which
are invasive (couplings that do not vanish when systems
are synchronized).

In this paper, we focus on partial synchronization in net-
works of systems interconnected via linear diffusive time-
delay couplings. The systems may have one or more types
of input-output dynamics. More precisely, it is allowed for
some (but not all) systems to have different dynamics.

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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The couplings can be invasive (coupling terms remain
when systems are synchronized) or non-invasive (coupling
terms vanish when systems are synchronized). Here, we use
synchronization manifolds to describe patterns of partial
synchronization, which are linear invariant subspaces of
the state space of the systems in networks (Steur et al.
(2016)). To analyze the stability of such manifolds, firstly,
the synchronization errors dynamics (differences between
the states of the system within each cluster) are isolated
from the network dynamics and then linearized around
the zero equilibrium solution; secondly, such dynamics
are viewed as a linear parameter-varying (LPV) system.
In this way, by assessing the stability of the LPV time
delay system, we can derive sufficient condition for the
local stability of partial synchronization manifolds. Several
papers have been devoted to the stability analysis of LPV
time-delay systems, see Wu and Grigoriadis (2001), Zhang
et al. (2002), Briat (2014). The stability of such systems is
often assessed by using the Lyapunov-Krasovskii theorem
with a quadratic Lyapunov-Krasovskii functional candi-
date. The condition for the derivative of the functional
along the solutions can be expressed in linear matrix
inequalities (LMIs). By choosing appropriate Lyapunov
functionals and techniques for the LMIs, the conservatism
can be reduced (see Zhang et al. (2002), Briat (2008)). Al-
though similar LMIs conditions deduced from parameter-
independent Lyapunov functionals have been used for sta-
bility analysis of full synchronization (see Li and Chen
(2004),Li et al. (2008) and Oguchi et al. (2008)), few
works exploit this framework for partial synchronization
case. Therefore, we will use here such method based on a
delay- and parameter-dependent Lyapunov functional for
stability analysis of partial synchronization manifolds.
The structure of this paper is as follows. Section 2 in-
troduces some basic concepts on partial synchronization,
including the definition of partial synchronization mani-
folds and their existence conditions. Section 3 shows the
separation of the synchronization error dynamics from
the network dynamics. Section 4 shows its local stability
condition inferred from a Lyapunov-Krasovskii functional.
Section 5 presents an example where the method is applied
to a network of Hindmarsh-Rose neuron models. Finally,
Section 6 provides the conclusions.

2. PARTIAL SYNCHRONIZATION MANIFOLDS

In this section, we introduce some basic concepts regarding
partial synchronization of delay-coupled networks, adopt-
ing the setting and results from Steur et al. (2016). First,
the definition of partial synchronization manifolds is pre-
sented. Second, existence conditions for such manifolds are
provided.

Here, we focus on networks of systems which interact via
linear time-delay couplings. The networks are represented
by directed graphs G = (V, &, A), where

e V is a finite set of nodes with cardinality |V| = N €
Z4 (i.e., the number of nodes);

e £ C VXV is the ordered set of edges, where the edge
(i,7) points from node i to node j;

o A= (a;;) € RV*¥ is the weighted adjacency matrix,
where a; ; > 0 represents the weight of edge (3,7)
when (4,7) € €, and a; ; = 0 when (¢,5) ¢ €.

The networks we consider are simple and strongly con-
nected. A graph G is simple if it contains neither self-
loops nor multiple edges. Self loops are edges connecting
a node to itself, and multiple edges are two or more edges
connecting an ordered pair of nodes, Gibbons (1985). A
graph G is strongly connected if and only if, for any two
nodes i,j € V, there exist a directed path from ¢ to j and
a directed path from j to i, Bollobas (1998).

Every node in the networks hosts a time-invariant dynam-
ical system of the following form

&i(t) = fi(wi(1)) + Biwi(t) (1)
where i € V, state z;(t) € R, sufficiently smooth function
fi : R™ — R™, input(s) u,;(t) € R™, output(s) y;(t) € R™,
input matrices B; € R™ ™ and output matrices C; €
R™*" ¢ = 1,...,N. Here, f;, B; and C; can vary for
different nodes, that is, in this setting, it is allowed for
some systems to have different input-output dynamics.

Assumption 1. Systems (1) are strictly C!-semipassive.

The definition of semipassive is given below.

Definition 2. Pogromsky and Nijmeijer (2001) Consider a
system of the following form
@(t) = f(x(t), u(t)) @)
y(t) = h(z(t)),
where z(t) € R”, u(t) € R™, y(t) € R™, and sufficiently
smooth functions f : R* — R™ and h : R* — R™.
This system is strictly C"-semipassive if there exist a
nonnegative storage function V(z(t)) € C"(R",Ry),r > 1

and a scalar function S : R™ — R positive outside some
ball B = {x € R"| |z| < R} such that

V(z(t) <y’ (tult) - S((1)). (3)

The systems (1) interact via either one of the following
two types of diffusive couplings:

wilt) =k Y aigly;(t—7) = yi(b)], (4)

JEN;

wilt) =k Y aigly;(t—m) =yt = 7)], (5)
JEN;

where N; is the neighboring set of node 4, defined as
N, :={j € V|(i,j) € £}, and 7, k are, respectively, the
time-delay and coupling strength. To distinguish between
these two types of couplings, we adopt the terminologies
“invasive” and “non-invasive”, which are commonly used
in literature (see Scholl et al. (2009), Jingling et al.

(2011), Unal and Michiels (2013), Steur et al. (2014),
etc.). Coupling (4) is called invasive coupling since the
coupling does not vanish when all the nodes synchronize;
while coupling (5) is called non-invasive coupling since the
coupling vanishes when all the nodes synchronize, Steur
et al. (2014).

For the coupled systems (1), (4) or (1), (5), a solution is
a partial synchronous solution if there exist i, 7 € V with
1 # j such that

or

zi(t) = x;(t), Vt = to, (6)
whenever x;(t) = x;(t) for t € [to — T, to].
For every set of nodes satisfying condition (6), they are
grouped into one cluster. To describe the clustering of the
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nodes, a natural way is to use the concept of partition
which is a set of nonempty, disjoint subsets of V while the
union of these subsets is V. The subsets are referred as
parts of the partition, and one part represents one cluster
of the nodes. The number of parts is denoted by k. Here,
a partition P is parameterized by a N x N permutation
matrix II associated with an equivalence relation ~ such
that i ~ j if the ij*® entry of II is equal to 1. It is easy to
prove k = dim ker(Iy — II).

Let C([—7,0],RN™) be the space of continuous functions
that map the interval [—7,0] C R into RV, That is,
C([-7,0],RN™) is the state space of the delay-coupled
systems. Denote z; € C([—7,0],RV") as the state of
the network, the condition (6) can be expressed as z; €
M(ID),Vt > to, where

M(H) = {¢ € C([_T7 0]7RNn) |¢(9) = C01(¢1(9)7
7¢N(9))7¢2(9) S Rn7 i=1,...,N,
#(0) € ker(In, —II® I,) V0 € [—7,0]}
is the set of partially synchronous states induced by the
permutation matrix II.

Definition 3. Steur et al. (2016) The set M(II) with
permutation matrix IT for which 1 < k¥ < N is a partial
synchronization manifold for the coupled systems (1), (4),
or (1), (5), if and only if it is positively invariant under the
dynamics (1), (4), or (1), (5), respectively.

If the set M(II) is a partial synchronization manifold, the
partition P associated with II is called wviable.
Given a partition P, the nodes can be relabelled by clusters
such that the first K, nodes belong to cluster 1, the second
ko belong to cluster 2 and so on, where k;,i =1,..., Kk are
the sizes of clusters of P. This can also be done by using
another permutation matrix R, which is called reordering
matriz, which satisfies

e (k1) - 0

K

RTIR = o)

K
) E K:i:N;
i=1

(7
where II¢(k;),i = 1,...,k are k; X k;-dimensional cyclic
permutation matrices. Using R, the reordered adjacency
matrix can be constructed.

0 - HC(KH)

RTAR = OO, A eRRL(8)

With the reordered adjacency matrix defined, the exis-
tence condition of partial synchronization manifolds can
be formulated below.

Theorem 4. Su et al. (2018) Given an adjacency matrix
A and a permutation matrix II of the same dimension.
Assume system (1) is left-invertible (the system input-
output map is injective), then the following statements
are equivalent:

1) M(II) is a partial synchronization manifold for (1)
and (4), respectively (1) and (5);

2) all blocks, respectively all off-diagonal blocks, of the
reordered adjacency matrix (8), partitioned in blocks
of size k; x k; have constant row-sums and, in addi-
tion, F, B and C defined by

Ji() By cy
F = fQ() ,B = B:2 ,C = C2T
fz\./(') Bx C’X,

satisfy the conditions F = (II® I,)F, B= (II1® 1,)B
and C = (II® I,,)C.

Here, the conditions F = (I ® I,)F, B = II® I,)B
and C = (II ® I,)C indicate all the nodes in the same
cluster host systems with the same dynamics. Note that
this theorem is an extension of Theorem 3 and 4 in Steur
et al. (2016) where only networks of identical systems are
considered.

3. DYNAMICS DECOMPOSITION OF PARTIALLY
SYNCHRONIZED NETWORK

In this section, we show how to separate the synchroniza-
tion error dynamics from the network dynamics, using the
procedure presented in Su et al. (2018). The synchroniza-
tion error dynamics are linearized and will be used for
analyzing the local stability of the partial synchronization
manifolds.

For simplicity, we assume the systems have been pre-
ordered by clusters according to a viable partition P
associated with II as follows

1,1, T1,2,...,T1,,, cluster 1,
T2,1, T2,2,...,%2k, cluster 2,
Tily T2y Tk, cluster k,

. . . . K
where x; is the number of nodes in cluster ¢ with > " | x; =
N.Here, 21,1,...,2,1 are referred as the reference systems
of each cluster. Now, we denote the synchronization errors
by

— T

by

€i,2 €2

E=|:|= di=1,...,5  (9)

€ik; Li; — Li,1

We also denote R; ; as the value of the row sums of the 75!
block of the adjacency matrix for i,7 € {1,...,k} (in case
of non-invasive coupling, ¢ # j). Note that these blocks
has constant row sums, since P is viable. In case of non-
invasive coupling, we define R;; = 0 when ¢ = j. Recall
that the nodes in each cluster host the same dynamical
system, we denote the dynamics of the nodes in cluster ¢ by

gi7Bi70i7i:1727"'7"€a where g1 :fl :f2 = :fﬁla
92 = fait1 = i1 = - = fui4ry, B = B1 = By =
-=B,,C;=0,=0Cy=---=C,,, and so on.

3.1 Networks with invasive coupling

When denoting the row sums of the adjacency matrix,
corresponding to each cluster by

K
R,‘,: E Ri,j, ’L'Zl,...,lﬁ
j=1

the linearized error dynamics (around the zero equilibrium
solution F; = 0,i=1,---, N) can be expressed as
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El (t) El (t) El (t - T)
: = Aro : + An : . (10)
E.(t) E.(t) E.(t—7)
with
Ao =
Iy —1® (%(xl,l(t)) —kR1BCy) 0
0 Ilih-fl &® (%(xn,l(t)) - kRNBNéK)
(11)
AIl - kB(Ared & Im)éa (12)
B = diag([,ﬂ_l & Bl, ‘e ;L@,,.,—l (24 B,{),
é = diag(]nl,l ® C~’1, ey I,{N,1 ® én),
and

Aveq = TVATT — TH ATT

where Ty, T, € RIV=m)*N are defined as

T1 = diag(Tn, .o ,Tl,g),Tg = diag(Tgl, ‘e ,112%)7
with
. . 10---0
Ty = Ty = e R~ xn
10 N :

For more information on the derivation and a detailed
interpretation of Ty AT}" and TR AT}, refer to Su et al.
(2018).

3.2 Networks with non-invasive coupling

Defining a series of vectors R; € R® ! with their elements
being the row sums of the rows in A corresponding
to Ti2,...,Ti,, for ¢ = 1,...,K, the linearized error
dynamics of networks with non-invasive couplings can be
expressed as

Eq(t) E;(t) Ei(t—1)
: = Ano E + AN : (14)
B, () EL(t) E.(t—7)
with
Loy—1 ® %8 (214(t)) 0
Ano = .
0 L, -1 ® %= (201 (1))
(15)
Ayt = —kB(Lyea ® I,,)C, (16)
Lueq = diag (1%1, . RK) ~ Ay (17)

4. STABILITY ANALYSIS OF PARTIAL
SYNCHRONIZATION MANIFOLDS

After comparing the structure of (10) with that of (14),
we notice that they can be re-written in a unified form,

X(t) = Alp(t) X () + AaX (t — 7), (18)
where

T

X(t)=[E (1) - El(t)]
_ [Aro

Alp(t) = {ANO non-invasive coupling,

p(t) = [z1,1(t), ..., ze1 ()],

AR
Aa= {ANI

invasive coupling,

invasive coupling,
non-invasive coupling.

In this way, we can interpret the error dynamic system
as a linear parameter-varying (LPV) time-delay system,
whose dynamics depend on exogeneous non-stationary
parameters p(t). Then the synchronization problem of
the delay-coupled networks can be reformulated as the
stability analysis problem of LPV time-delay systems.
Due to the time-varying natures of LPV systems, the
existing results based on the frequency-domain method
or eigenvalue-based analysis techniques cannot be applied
for the analysis of this class of systems. Alternatively, we
resort to the Lyapunov method to analyze the stability of
underlying systems. In particular, some sufficient delay-
dependent conditions to check the partial synchronization
problems can be obtained in what follows.

Recall that under Assumption 1, the systems (1) are
strictly C!-semipassive. That is, systems (1) have ra-
dially unbounded storage functions Vi(z1), Va(z2), -,
Vn(zn), satisfying (3). Then, networks of such systems
interconnected via the invasive coupling (4) have ulti-
mately bounded solutions (Steur and Nijmeijer (2011)).
Furthermore, there exists a radially unbounded nonneg-
ative function V(z1, 22, - ,an) = Zszl 9;Vi(x;), where
¥; is the i-th entry of the vector ¥ € RN with all entries
positive and ¥ L = 0, and a constant 7* > 0 such that
V(z1,22, - ,xn) < 0, for any n > n* and all possible
(z1,22, -+ ,xn) subject to V(x1,xe, - ,xn) > 1. More
precisely, the set {x € RN"|V(z1,29, - ,zy) < 1} is a
compact forward invariant set in the context of dynamics
(1) coupled via (4), and all solutions converge to this
compact set in finite time. In the non-invasive case, similar
results hold, but in general conditions on the coupling
strength and delay are needed.

Based on the discussion above, we can conclude that
the parameters x;1(t), ¢ = 1,2,---,k range between
some extremal values p. and p;, ie., z;1(t) € [p,,pi.
The boundedness of z;(t) also leads to the variation
rates Z;(t) can be confined as #;1(t) € [v;,0], i =
1,2,--- Kk, where v, and ¥; are, respectively, the lower
and upper bounds on #;1(t). The latter can be readily

derived from X (t) = A(p(t))X (t)+AqX (t—7). Specifically,
if |X(t)| < po for all ¢ > 0, it follows that ||X(t)| <
MAX (|| x (1)||<po. | X (t—7) [ <po} AP X () + AaX(t — 7]
holds. However, as || A(p(t))| and |Aq4| also depend on
the coupling parameter k, the bounds of #;1(t) relate
to k. So, it is reasonable to assume that, given a fixed
pair of coupling parameters (k,7), (p(t),p(t)) € T'p x I'y,
that is, the parameter vector p(t) is constrained into a
hypercube I',, and the variation rate of p(t) also belongs
to a hypercube T',,. Hence, parameter-dependent analysis
conditions for all (p(t), p(t)) € I', x Ty, as we now provide,
are sufficient for the stability of the partial synchronization
manifold.
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Theorem 5. The LPV time-delay system (18) is asymp-
totically stable if there exist positive definite symmetric
matrices P(p),Q;,Z; € R(Nn=rn)x(Nn—rn) and matrices
Gj € RWNn—rn)x(Nn—rn) 5 —1 9 3 such that the follow-
ing LMI holds for all posable (p, p)el, xT,,

¢ 2G1 3G2 3Gs
* *IZ1 0 0
« % -zz, o | <0 (19)
* % *  —2Z3
where (letting He(A) := (A + AT))

_ 3 _ 3 _
[ORES (I)l +H6(P(p)./4+ Z GjAj) +AT (73— Z ZJ>A
j=1

Jj=1

(I)l = d1ag(Q1 + ngp) /); 7Q1 + Q27
—Q2+Q3,—Q3),

A= [A(p) 00 Ag],

Ay :[I —IOO},

Ao _[OI_IO]a

A3 :=[001 —I].

(20)

Proof. By constructing the following parameter-dependent
Lyapunov-Krasovskii functional,

V(t,p) = X T (t)P(p)X () + Vi(t) + Va(t) + Va(t)  (21)
where
-G-13
V(1) ;:/ AT ()@ X(s)ds
L e )
T 3 ST .
+§ /—jg t+eX (5)Z;X(s)dsdf

together with the free-weighting matrix techniques (He
et al. (2004)), we can readily arrive at the conclusion.

Remark 6. It is noted that the delay-dependent conditions
in Theorem 5 are semi-infinite inequalities due to their
parametric dependence. To cast the parameter-dependent
conditions into a finite-dimensional optimization problem,
the Lyapunov matrix P(p) in (21) can be approximated by
a finite set of basis functions (Wu and Grigoriadis (2001)).
The basis functions {h;(p)};""; for P(p) should guarantee

that
-t

To further eliminate the dependence on the parameter
vector p, a finite gridding {p, }X_; of the parameter space
can be introduced to generate finite-dimensional convex
optimization conditions (Zhang et al. (2002)). We note
that sufficient conditions in terms of finite LMIs can
be obtained using Polya’s relaxation or sum-of-squares
techniques (Oliveira and Peres (2007)).

Remark 7. Tt should be pointed out that, by setting Z; =
0 in (22), we can also derive the delay-independent condi-
tion for the stability of system (18). In that case, the only
change is that the inequality (19) becomes

o <0,

)P, P = (23)

(24)
with

® = ®; + He(P(p)A). (25)

Libo Su et al. / IFAC PapersOnLine 51-33 (2018) 198-204

5. NUMERICAL EXAMPLE

Consider a network of four Hindmarsh-Rose neurons de-
scribed by the following dynamics:

(ﬁi 1(t) =C— d.’ﬂ?g(t) — xi,l(t)

i 2(t) = ri(s(zi3(t) + vo) — T42(t))

di3(t) = —aa} 5(t) + b} 5(t) + x51(t) — Ti2(t) + Ep + u(t)
(t) =

yi(t) = wis(t)

(26)
where the parameters a, b, ¢, d, r;, s, vg, E,, are constants,
and z;1(+), x;2(-), z;3(-) and u;(-) are the recovery vari-
able, the adaptation variable, the membrane potential, and
the external current of the i-th, i = 1,2, 3,4, Hindmarsh
and Rose (1984). It has been proved in Steur et al. (2009)
that this Hindmarsh-Rose model is strictly semipassive.
The values of these parameters are a = 1, b = 3, ¢ = 1,
d = 5, r = r3 = 0004, ro = T4 = 0005, s = 4,
vg = 1.618 and FE,, = 3.25, and the structure of the
network is described by the adjacency matrix below
0201
2010
0102
1020

Here, we assume that the systems are coupled via (4). It is
easy to identify a viable partition {{1,3},{2,4}}, and the
corresponding linearized synchronization error dynamics

A= (27)

X(t) = AX(t) + AgX(t — 1), (28)
where

.A = diag(Al, Ag),

-1 0 72dl‘173(t)
A1 = 0 —T1 1S R

1 —1 —3axi 3(t) + 2bx1 3(t) — 3k

-1 0 —2d$2’3(t>
A2 = 0 —T2 28 s

1 —1 —3ax3 3(t) + 2bxa3(t) — 3k
Agi=kAqa®BC, B=CT =1001]T,

01
Ared = |:1 O:| .

In this network of Hindmarsh-Rose neurons, for a pair of
(k,T), the stability analysis of the partial synchronization
manifolds is done at two steps: 1) estimate the parameter
(z1,3(t) and z2 3(¢)) space and the corresponding variation-
rate (£1,3(t) and @2 3(t)) space by numerical simulation
of the networks; 2) check the feasibility of the LMIs in
Theorem 5. Specifically, to solve the stability analysis
problem, we pick five basis functions in expansion (23)
as follows:

hi(p) =1, ha(p) = 213(t), hs(p) = a7 4(1),
ha(p) = x2,3(t), hs(p) = 3 5(t).

To this end, by solving the condition (19), it has been
checked that the Hindmarsh-Rose neurons with networks
described by (27) are partially synchronous with x; 3(t) =
x3,3(t) and xo3(t) = z4,3(t) when k = 1.05 and 7 = 10.
Meantime, by testing the feasible solution of the condition
(19) with different values of k and 7, it has also been
shown that for k € [0,5], when k& > 1.05, the partial
synchronization manifold is locally stable even for a quite
large value of time-delay 7.

Remark 8. Using Theorem 5, it has been validated that
when k is large enough (k > 1.05), the Hindmarsh-Rose

(29)
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Fig. 1. Partial synchronization region (grey-colored area)
in (k,7) parameter space computed via Theorem 5

neurons are partially synchronized (z1,3(t) = x33(¢) and
x23(t) = w43(t)) with a large range of 7. In fact, it is
verified that (24) is satisfied provided that k& > 1.05,
that is, the partial synchronization manifold is locally
stable independent of time delay. This case can also be
explained via the concept of convergent dynamics (Steur
and Nijmeijer (2011)). In particular, bearing in mind
that the input matrix B = [0 0 1]T and output matrix
C = B' in this example, it can be easily checked that
CB = 1 > 0. Then, the system can be equivalently
transformed into the following form:

{i(t) =91 (X().9(1), ] (30)
§(t) = g2(y(1), X (1)) — kbDy(t) + kbAy(t — 7),

where A := T, ATy, D := diag(R1,Rs), b = CB = 1,
in addition, the X(t) subsystem with %(¢) as input is
convergent. For this family of delay-coupled systems, it
has been shown in Ryono and Oguchi (2015) that the
coupled networks can realize the delay-independent partial
synchronization when k is larger than some positive num-
ber k. However, it is difficult to compute the exact value
of this threshold k¢ by the synchronization conditions in
Ryono and Oguchi (2015). Resorting to Theorem 5 in this
paper, we can estimate the value of k.

Furthermore, by using Theorem 5, we have calculated the
synchronization region for k € [0,5] and 7 € [0, 100],
see Fig. 1, where the grey-colored area characterizes the
occurrence of the partial synchronization ({{1,3},{2,4}}).
For comparisons, the synchronization region detected by
comparing the state trajectories of the same network is
also depicted in Fig. 2. The trajectories are calculated by
simulating the network in MATLAB. It can be seen from
the two figures that the partial synchronization region
obtained by Theorem 5 is smaller than the one obtained
by simulation. This is not unexpected since the Lyapunov
method generally comes with conservatism. Besides, the
systems considered are treated as a LPV time delay sys-
tem. On one hand, it is an over-approximation when
regarding the synchronization error dynamics as a LPV
time-delay system, on the other hand, the properties of
LPV functions and time-delay also increase the conser-
vatism of the Lyapunov method.

To further demonstrate our method, let us re-consider
the delay-coupled Hindmarsh-Rose neurons shown above,

100
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80

70r

60 [

delay 7

50

401

30

20

0 0.5 1 15 2 25 3 3.5 4 4.5 5
coupling strength k

Fig. 2. Partial synchronization region (grey-colored area)
in (k, T) parameter space characterized via the system
state trajectories

100]"
but with the input matrix B = 001 and output
matrix C' = 8 (1) (1) , where CB = [8 (1)] does not satisfy

the strict condition CB > 0. Typically, we cannot apply
the analysis conditions proposed in Ryono and Oguchi
(2015) for the synchronization validity of the underlying
networks of nonlinear systems. Fortunately, by utilizing
the partial synchronization analysis criterion in Theorem
5 with k& = 1.02 and 7 = 0.04, one obtains the feasible
solution for the stability analysis of the invasive coupled
networks.

6. CONCLUSIONS

In this paper, the local stability of partial synchronization
manifolds is addressed by utilizing the Lyapunov method.
First, the synchronization error dynamics are isolated from
the network dynamics, whose stability equates the stability
of partial synchronization manifolds. Second, it is shown
that the linearized synchronization error dynamics can
be over-approximated by a LPV time delay system. By
choosing a parameter- and delay-dependent Lyapunov-
Krasovskii functional, the stability conditions are formu-
lated as LMIs, which can be solved efficiently. A numerical
example is also presented, where we apply this method to
a network consisting of Hindmarsh-Rose neuron models. It
has been shown that our method can apply to a boarder
range of systems compared to some existing methods.
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