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Abstract — The unpredictability and variability of wind power 
increasingly challenges real-time balancing of supply and demand 
in electric power systems. In liberalised markets, balancing is a 
responsibility jointly held by the TSO (real-time power balancing) 
and PRPs (energy programs).  
In this paper, a procedure is developed for the simulation of power 
system balancing and the assessment of AGC performance in the 
presence of large-scale wind power, using the Dutch control zone as 
a case study.  The simulation results show that the performance of 
existing AGC-mechanisms is adequate for keeping ACE within 
acceptable bounds. At higher wind power penetrations, however, 
the capabilities of the generation mix are increasingly challenged 
and additional reserves are required for keeping ACE at the same 
level. 
Index Terms — Wind Power, System Integration, Secondary 
Control, Automatic Generation Control, Dynamic Simulation 

1. INTRODUCTION 
In the past decade wind power has become a generation 
technology of significance in a number of European 
countries. With further development of wind power on the 
horizon, the impacts of wind power on power system 
operation will increase as well. In particular the 
unpredictability and variability of wind power challenge real-
time balancing of supply and demand in electric power 
systems. This is because significant amounts of wind power 
not only introduce additional power variations and 
uncertainty but may also decrease generation capacity 
available for secondary control. For balancing the 
fluctuations of wind power, additional power reserves may 
be required on top of power reserves already held for 
managing existing power variations in the system, which are 
caused by load variations and unscheduled generation 
outages.  

In liberalized markets throughout Europe, participants 
have been made free to make arrangements for trading power 
in a number of forward markets. In order to guarantee a 
balanced power system, generation, load and energy trades 
are scheduled on beforehand and laid down in energy 
programs, which are sent to the system operator (TSO). In 
the Netherlands, the responsibility for maintaining the power 
balance in the system lies not only with the TSO but also 
with market participants responsible for delivering according 
to their energy programs. Based on the energy exchange 
programs received from these program responsible parties 
(PRPs) day-ahead, the TSO takes care of all real-time power 
imbalances using reserve power. PRPs are penalized for 
energy exchanges with the system different from specified in 
their energy program. Interestingly, in the Netherlands, wind 
power is subject to program responsibility as well, compared 
to the more common priority dispatch. Failure of a Dutch 
PRP to balance the partial predictability and variability of 

wind power with other generation/load in its portfolio 
therefore results in the payment of an imbalance price to the 
TSO [1]. Wind power will therefore impact the secondary 
control actions performed by PRPs. 

Little research has been performed on the impacts of wind 
power on secondary control performance in general, and the 
integration of wind power into liberalized electricity markets 
in particular. Dynamic interactions between wind power and 
system frequency have been investigated in [2]. It is shown 
that the displacement of conventional generation with wind 
results in increased rates of change of system frequency for 
that particular system. However, for larger systems, system 
inertia may be considerably larger and impacts of wind 
power on this can be delineated as being less severe or absent 
[3]. Impacts of wind power on secondary control and the 
need for spinning reserves [3], [4] may however be more 
significant, also at low wind power penetration levels. 
Quantifying these using classical models for power-
frequency control (Automatic Generation Control, AGC) 
does not consider energy program responsibility since these 
approaches implicitly assume a direct physical link between 
a secondary control signal by the TSO and a generator set-
point change. Furthermore, any strategic behaviour by 
market participants is assumed to be absent. It is the 
objective of this paper to demonstrate a possible extension of 
existing models with such aspects and to illustrate the 
impacts wind power may have when fully integrated into 
program responsibility. 

This research is focused on modelling load-frequency 
control dynamics in the presence of large-scale wind power 
subject to program responsibility. Simulation results are 
presented for different variants with wind power balancing 
by separate conventional generation portfolios subject to 
program responsibility, such as the case in the current market 
design in the Netherlands. A two-area power system model, 
representing a control area as part of a large interconnection, 
is set-up based on realistic data for generation units, loads, 
wind power production and forecasts. The novel contribution 
of this work consists in modelling the imbalance control by 
PRPs via minimization of their energy program deviations. 
The impact is assessed of different market designs on the 
total amount of reserve and regulation applied for balancing 
wind power and on Area Control Error performance. 

This paper is organised as follows. First, the Dutch market 
design and its impact on wind power are briefly re-
introduced in Section 2. Section 3 describes the development 
of a dynamic power system model for frequency stability and 
secondary control adequacy assessment, from both the 
perspective of the TSO and PRPs. In Sections 4 and 5, the 
set-up and the results obtained from the simulations are 
covered. Conclusions and an outlook on further work a 
presented in Section 6. 
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2. MARKET INTEGRATION OF WIND POWER 
The responsibility for balancing large interconnected 

systems such as UCTE is typically divided between different 
transmission system operators (TSOs), each responsible for 
balancing its respective area (control zone). The whole 
process of power system balancing comprises many stages, 
starting with energy trade en ending with real-time balancing 
of unscheduled power exchanges of market participants with 
the system. In order to organise trade and guarantee a 
balanced system on beforehand, the concept of program 
responsibility is applied. This is illustrated and discussed in 
more detail below for the Netherlands. 

2.1. Program Responsibility 
With program responsibility, PRPs or program responsible 

parties (PRPs) have been made responsible for keeping their 
own energy balance. Each customer (generator or load) 
connected to the system is associated to a PRP. A PRP must 
maintain its energy balance (MWh) for each market 
settlement period or program time-unit (PTU). Program 
responsibility requires program responsible parties to provide 
energy programs (e-programs) to the TSO, describing the 
energy exchange with the system for each PTU, and to act 
accordingly. The e-programs in fact contain the sums of all 
scheduled generation, load and trade of one PRP with other 
PRPs: generation is delivered to the power system only if 
there is a load to match it. The sum of all e-programs of all 
PRPs should add up to zero.  

PRPs have different markets to their disposal for trade, 
comprising bilateral contracts (blocks for long terms for 
physical position settlement), spot markets (up to one day 
preceding operation) and adjustment markets (up to one or a 
few hours before the hour of operation). At gate closure, all 
trading for the physical delivery of electrical energy ceases: 
PRPs submit their final schedules to the TSO. The schedules 
contain their intended energy exchanges with the system for 
each trading period. It is then the TSO who manages power 
reserves for maintaining the system balance. On top of the 
automated primary actions for system security, the TSO 
continuously manages secondary (available within 15 
minutes) and tertiary reserves (available after 15 minutes) in 
order to maintain the balance in the system in real-time. 
Secondary and tertiary reserves are in general made available 
by PRPs submitting bids for operating reserves to the TSO. 
Since the capacity for system balancing is made available by 
PRPs who themselves must keep their energy balance as 
well, it should be noted that secondary control actions by the 
TSO and PRPs will coincide or, occasionally, interfere 
during operation. Furthermore, it is important to realise that 
program responsibility is based on economic incentives: the 
balancing costs encountered by the TSO are passed on to 
PRPs deviating from their submitted energy programs. Thus, 
PRPs will behave strategically in order to minimize their 
imbalance costs.  

2.2. Program Responsibility for Wind Power 
In the Netherlands, wind power is subject to program 

responsibility, just like conventional generation, which is 
unlike most market designs for wind power. PRPs are 
thereby financially encouraged to limit possible imbalances 
resulting from wind power variability and partial 
unpredictability: a power imbalance as a result of wind 
power implies an energy program deviation. In order to 

prevent imbalance costs, Dutch PRPs therefore monitor and 
manage their unit portfolio taking into account wind power 
predictions and real-time measurements.  

Balancing wind power output deviations can be done by 
adjusting generation or load within the PRPs' portfolio or by 
taking precautionary measures on the market [1]. In order to 
be able to do so, wind power unpredictability and variability 
must be taken into account during unit commitment and 
dispatch calculations of an individual PRP with wind power 
in its portfolio. Wind power thereby is part of the overall 
operating decisions continuously made by PRPs.  

As the amount of wind power increases, individual PRPs 
will be inclined to reserve more of the generation capacity 
within their portfolio for minimization of energy program 
deviations, while the TSO may not need significant extra 
reserves for balancing wind power. At the same time, any 
imbalances remaining after secondary control actions by 
PRPs must still be matched by the TSO, using the capacity 
made available by the PRPs. Wind power therefore 
challenges existing AGC-mechanisms applied both by PRPs 
and by the TSO for imbalance minimization. 

3. POWER SYSTEM MODEL DEVELOPMENT 

In order to assess the impacts of wind power on the 
performance of secondary control or automatic generation 
control (AGC) mechanisms, a power system simulation 
model for the UCTE-area is developed. This dynamic model 
can be used for the simulation of long-term frequency 
stability, i.e. the ability of a power system to maintain steady 
frequency following a severe system upset, resulting in a 
significant imbalance between generation and load [5]. As an 
immediate consequence of such power imbalances, the 
system frequency changes and an area control error (ACE) is 
introduced. The TSO will then send out signals to selected 
PRPs for secondary response in order to re-install the system 
frequency at the set value. Below, the development of the 
model is described. 

3.1. System Inertia and Primary Control 
From a system point of view, frequency stability is 
determined by two system parameters comprising the 
response of the system as a whole: power system inertia and 
the system power frequency characteristic.  

The model developed here effectively describes the power 
system as a mass rotating at a speed of 50 Hz. The actual 
rotational speed is dependent on the amounts of mechanical 
power added to or taken from this mass. A uniform 
frequency is assumed using an aggregated inertia constant of 
an equivalent one-machine infinite bus system, such as 
applied in [6]. The power frequency characteristic (the 
overall dynamic response of generation and load to a power 
balance) consists of a load self-regulation factor of 1 and an 
aggregated primary response of generators in the UCTE as a 
whole. Detailed primary responses of 70 units in the Dutch 
system have been modelled explicitly using historical unit 
models available to the authors. The resulting aggregated 
primary response of the model has been compared to 
frequency data supplied by Dutch TSO TenneT, using an 
approach as presented in [7]. 

For the estimation of system inertia and primary response 
of the UCTE-interconnection, 4s. frequency deviation 
measurements were obtained for 88 significant instantaneous 
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power imbalances in the UCTE-interconnection from 
10/2004 to 12/2006. The power frequency characteristic was 
found to lie between 19·10e3 MW/Hz and 47·10e3 MW/Hz, 
with a mean of 26·10e3 MW/Hz and a standard deviation of 
9·10e3 MW/Hz. With an allowable measurement inaccuracy 
of 10 mHz in place for generators on primary control, a 
primary response of the model is obtained as shown in Fig. 1, 
illustrated with a small number of recordings representative 
of the full data set. 

3.2. Secondary Control 
The area control error (ACE) represents the total power 

deviation of a system (MW) and comprises unscheduled 
power exchanges of the area with neighbouring areas and the 
frequency deviation of the system. For secondary control 
purposes, ACE is typically processed using a PI-controller 
(processed ACE, PACE) before it is sent to units on 
secondary control. The PACE-logic has the objective of 
minimizing ACE while neglecting fast dynamics in system 
frequency, which would result in unnecessary, fast changes 
in demands for secondary control. In this model, it is 
assumed that ACE occur in the Dutch area only and that 
Dutch secondary control alone returns ACE to zero. The rest 
of the UCTE-system is balanced but will contribute to 
primary reaction in case of significant frequency deviations. 
Dutch ACE and PACE have been modelled using the 
mechanisms developed and currently applied by Dutch TSO 
TenneT. A power frequency characteristic of 900 MW 
obtained from operational experiences of the TSO is applied, 
which is then compared to a two-stage threshold for fast 
response to significant events. Also, PACE is set such that its 
integral term does not increase (decrease) further in case 
ACE is positive (negative) but decreasing (increasing).  

For real-time power system balancing, the TSO applies 
secondary reserves made available by PRPs through a 
bidding ladder (selection of cheapest bids). Bids are orderly 
arranged based on price in a power reserve bidding ladder, a 
separate ladder for upward and downward reserves. During 
real-time operation, the TSO continuously determines the 
amount of reserve power that is needed, based on the actual 
PACE. Using the bidding ladder, the amount of required 
reserves is mirrored onto the available bids which are then 
called off by the TSO. This is done by sending a delta-signal 
(MW-set point) to the PRP associated with each bid called, 
using a separate delta for both upward and downward 
reserves. The rate-of-change of delta does not exceed a ramp-
rate value pre-specified by the associated PRP. Every four 
seconds, the PACE is re-calculated to determine whether the 
sum of all bids called (MW) is sufficient for balancing the 
control zone and which bid should be used up to which 
extent. In case PACE drops below an active bid’s threshold 
and the bid is no longer necessary, the bid is reduced with a 
ramp rate no more than the maximum specified in the bid. 
Because of this ramp rate limitation, positive and negative 
bids may be active simultaneously. It is the responsibility of 
the market party associated with the bid called off to adjust 
its generation operating points and/or load schedules 
accordingly. 

3.3. Energy Program Responsibility 
When a power imbalance is picked up by the TSO (i.e. ACE) 
and secondary control is activated, the generation/load 
deviations from scheduled values causing it will also be 

picked up by the PRP responsible for it. Simultaneously with 
secondary control at the system level, the PRP will take 
measures in order to minimize its energy program deviation 
(not necessarily its power imbalance) in order to avoid 
imbalance costs. The PRP will not only monitor its power 
imbalance (MW), but also physical position within the PTU 
(MWh). The actual power imbalance of each PRP is 
constantly assessed by monitoring generation and load 
deviations from scheduled values while settling the 
secondary control signal received from the TSO. For 
imbalance minimization, a fraction of the actual power 
imbalance is integrated and subtracted from the set-point of 
generation units selected by the PRP for imbalance 
management. Because participation in secondary control is 
taken into account in calculating its imbalance, both the 
PRPs' imbalance and the system imbalance are eventually 
returned to zero. 

Since imbalance costs are settled not on a MW but on an 
MWh/PTU basis, the energy imbalance for each PTU is the 
most relevant parameter for a PRP. The MWh-value 
specified in the PRPs' energy program is the operational 
objective: during each PTU, the overall energy deficit or 
surplus compared to the energy program must be minimized. 
For the counter-balancing of power deviations, different 
operating strategies for imbalance minimization may be 
applied in order to reach the energy value objective, as 
shown in Fig. 2 (area under all three modi is equal). 
Interviews by the authors with Dutch PRPs have revealed 
that the preferable operation modus is the most gradual one 
(B), even though this involves a continuous adjustment of 
operation set-points of units under secondary control, which 
could partially be prevented by opting for strategies A and C, 
or other. In the model, the energy program deviation is 
constantly calculated and fed back into the secondary control 
signal. At the start of each PTU, the energy-program 
deviation is reset to zero. 

 
Fig. 1. Validation of system inertia and power frequency characteristic 
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3.4. Generation Units 
A number of existing dynamic generation unit models for 
Dutch plant have been compared to literature models [8]. It is 
found that, for long-term frequency control simulations, a 
differentiation must be made between initial responses and 
more persistent ones. The former are determined mainly by 
the governing system (valve positions) while in the longer 
term, the physical processes in the boiler become more 
important. For unit start-up or shut-down, these physical 
processes may require hours up to days, which must be taken 
into account when calculating the unit commitment and 
economic dispatch (UC-ED) of these units.  

In this work, dynamic response (seconds) and primary 
reaction of 70 Dutch units part of PRPs’ portfolios have been 
modelled explicitly. The models incorporate typical aspects 
as primary reaction and speed, power-frequency, turbine and 
fuel control. Longer-term physical aspects (minutes) have 
been delineated; instead, fixed ramp-rates not governed by 
physical limitations but by controls have been assumed, as is 
current practice for all units part of the PRPs’ dispatch.    
UC-ED (weeks to hours) of the main Dutch generation units 
is calculated using a commercial optimization tool previously 
applied in [9].  

As an example of the dynamic models of the generation 
units, Fig. 3 shows the simulated responses of some unit 
models developed for this research: a coal unit, a combined 
cycle gas turbine (CCGT) and a cokes gas unit in the Dutch 
system. All units are at a 0.6 p.u. operating set-point. At t = 0 
s., a frequency drop of 0.004 p.u.  is introduced, leading to a 
primary response of all units (a dead zone of 0.002 p.u. is 
assumed), resulting in a full primary response within 10-20 
seconds. As can clearly be seen, the units all show a fast 
initial and a slower, more persistent response. At t = 30 s., 
the operating set-point is stepped up from 0.6 to 0.65 p.u. In 
this case, the dynamic response of the unit is governed by the 
unit ramp-rate controls. More detailed modelling of the unit 
dynamics therefore does not translate into added value for 
the simulations and have therefore not been incorporated. 
Notably, several Dutch PRPs have indicated to the authors 
that detailed physical models of their units are in fact not 
available to them. 

 

3.5. Wind Power 
With the modelling of wind power, it has been borne in mind 
that it is the objective this work to investigate the impacts of 

wind power on automatic generation control performance. 
Since the overall power fluctuations of wind power clusters 
are of importance here, detailed models for wind turbines fall 
outside of the scope of this paper. Wind speeds at 
representative locations of Dutch wind parks onshore and 
offshore have been developed using wind speed data 
obtained from the Royal Dutch Meteorological Institute 
(KNMI). The data concerns 10-minute wind speed averages 
with a resolution of 0.1 m/s for 18 locations in the 
Netherlands (9 onshore, 3 coastal and 6 offshore) measured 
between June 1, 2004 and May 31, 2005. Wind speed time 
series for the study period are created for 15-minute time 
intervals in such a way that the spatial correlation between 
the sites is taken into account. The development of wind 
speed data is described in more detail in [9]. For 
simplification, it has been assumed that the effects of 
turbulence on the aggregated output of each wind farm 
within each 15 min. interval are small because of smoothing 
of fluctuations [10]. 

4. SIMULATION SET-UP 

4.1. Simulation Method 
The operation schedules of conventional generation units are 
governed by a number of longer-term aspects which fall 
outside the scope of the dynamic simulation model 
developed here. These aspects include scheduling of 
maintenance, market trading and settlement procedures of 
markets, which lead to the calculation of UC-ED schedules 
for each unit in the system. In order to arrive at a realistic 
starting point for the dynamic simulations, the following 
simulation set-up is applied: 
 
• Calculation of UC-ED: A chronological UC-ED model 

with the same make-up as the dynamic model 
(generation units, wind power etc.) is run for a week or 
any longer period of time using a 15-min. time step. 
Steady-state operating set-points for each generation unit 
are obtained and saved. 

• Select cases: The output of the UC-ED model is 
analysed and interesting cases for dynamic simulation 
(simultaneous wind power drop and load increase, 
generation outages etc.) are selected. A small number of 

 
Fig. 2. Different operating strategies between energy-programme set-points 

 
Fig. 3. Simulated responses of three generation unit responses to frequency 

and a operating set-point steps 
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consecutive states including the selected state are 
isolated. 

• Import of unit set-points: The operating set-points for all 
units are imported into the dynamic model. Interpolation 
is applied to obtain continuous operating signals serving 
as an input for the dynamic model of each unit. 

• Initialization and dynamic simulation: The dynamic 
model is initialised around the operating points of the 
first state and then run. Power deviations occurring in 
real-time may be simulated by adding these deviations 
(i.e. wind gusts or random noise) to the set-points 
imported from the UC-ED-results. Valid parameters 
such as system frequency, ACE and PACE and power 
imbalances and energy program deviations of PRPs are 
reported. 

 
For each PRP, one or more units are selected for AGC by the 
PRP, based on daily operating routines of Dutch PRPs. 
Furthermore, PRPs make bids available to the TSO for 
secondary reserves, which are then taken into account with 
the scheduling of UC-ED. Notably, PRPs prefer to use base-
load coal units – if available within the portfolio of the PRP 
– for managing e-program deviations. 

4.2. Simulated Variants 
The following simulations are run: 
 
a) System operation without wind power 
b) Large variation of 2 GW wind power 
c) Forecast error and large variation of 2 GW wind power 
d) Large variation of 4 GW wind power  
e) Forecast error and large variation of 4 GW wind power 

 
Simulation a) is used to provide a base-case for comparison 
with the simulations with wind power. Since for this 
simulation, no data are added compared to the set-points 
imported from the UC-ED-model and no wind power is 
present, the power imbalance at any moment in time should 
be small, resulting in a small ACE and PACE. Also, the 
results imported from UC-ED will be different since wind 
power will impact the scheduling of conventional units. 

In simulations b) and c), wind power increases between 
t = 450s. and t = 1350s from 553 MW to 1207 MW (+654 
MW) and then decreases between t = 1350s. and t = 3150s. 
to 707 MW. In simulation b) it is assumed that wind power is 
perfectly predicted and no real-time deviations occur. 
Therefore, the UC-ED will incorporate wind power and ACE 
and e-program deviations resulting from wind power 
imbalances can be expected to be small, although a more 
dynamic operation of conventional units is expected. In 
simulation c), a ‘real-time deviation’ signal of wind power is 
added to the wind power set-points imported from the      
UC-ED-results in order to simulate unscheduled wind power 
output. Thus, PRPs and the TSO will apply secondary 
reserves to balance forecast errors and ACE as a result of it. 
PRPs experiencing wind power deviations in real-time apply 
secondary control in order to avoid energy program 
deviations.  

Fig. 6. ACE  for the Dutch control zone with 4 GW wind power with perfect 
forecast d)(line) and with forecast errors e) (dotted line). 

 
Fig. 4. Area Control Error (ACE, black line) and Processed Area Control 

Error (PACE, grey line) of the Dutch control zone with 0 GW wind power. 

 
Fig. 5. ACE  for the Dutch control zone with 2 GW wind power with perfect 

forecast  b)(line) and with forecast error c)(dotted line). 
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In simulations d) and e), wind power increases between 
t = 450s. and t = 1350s from 983 MW to 1736 MW (+753 
MW) and then decreases between t = 1350s. and t = 3150s. 
back to 743 MW. In simulation d) it is assumed that wind 
power is perfectly predicted, in simulation e) wind power 
deviates in real-time from scheduled values. 

5. SIMULATION RESULTS 

5.1. System Perspective: ACE 
In Fig. 4, the simulation results for a selected one-hour 

simulation period of the model is shown. Since for this 
simulation model, the generation and load set-point results 
from the UC-ED calculations are directly imported into the 
dynamic program and no sudden changes in unit output are 
present, ACE is very close to zero. As a result, PACE is also 
small.  

Fig. 5 shows the simulation results of the same one-hour 
period, but now with 2 GW wind power. The UC-ED of 
other units in the system is scheduled to respond to this. As a 
result of the significant wind power variations, the UC-ED is 
changed compared to the situation without wind power: two 
units are now taken out of operation (t = 2250s. and 
t = 3150s.) and one unit starts operation (t = 1350s). Since 
these conventional generation units have a minimum power 
output level, committing or de-committing these units results 
in a sudden steps in ACE. ACE is also influenced by wind 
power forecast errors: apparently, PRPs are unable to take 
these into account fast enough as to prevent power 
imbalances, which directly result in an increase of ACE, as 
can be seen in the figure. 

 In simulation variants d) and e), the variations of wind 
power are even higher than in simulation variants b) and c) 
and therefore a different UC-ED schedule has been chosen. 
At t = 1350s, one large unit is taken out of operation while at 
t = 2250s. a smaller unit is committed. Because of the large 
wind power variations, ACE significantly increases between  
t = 450s. and t = 1350s. Apparently, the reserves committed 
for balancing the wind power variations (Fig. 6) are not 
sufficient to keep ACE within a range comparable to Fig. 5.  

It can be noted that for simulation e), the forecast errors 
actually improve ACE performance. For some PRPs, forecast 
wind power variations were actually larger than actual wind 
power variations. Because of this, more capacity was 
available for secondary control actions requested by the 
TSO. It can also be noted that UC-ED calculates the de-
commitment of a large unit at t = 1350s. Apart from the high 
possible risk for a PRP actually doing so, ACE performance 
would suggest the commitment of more power reserves. 

5.2. Market Perspective: E-Program Deviation 
In Fig. 7, above, scheduled generation and total generation 

level delivered during real-time operation are shown for one 
program responsible party, PRP1, for simulation b) (2 GW 
wind power, perfect wind power prediction). The scheduled 
total generation of this PRP is rather constant. Because PRP1 
does have wind power in its portfolio, its other generation 
units have apparently been scheduled in such a way that wind 
power variations are balanced. Initially, PRP1 stays very 
close to its scheduled generation output, but at t = 450s. it 
increases its generation. This can be explained by 
considering the demand for secondary control by the TSO, to 
which PRP1 then responds by increasing generation units 

selected for this and by any secondary control actions of 
PRP1 itself in order to minimize energy program deviations. 

In the lower graph of Fig. 7, the real-time power imbalance 
and energy program deviation of PRP1 are shown for the 
same simulation. Clearly, PRP1 is initially very successful in 
minimizing its real-time power imbalance and energy 
program deviations. After t = 2250s., however, the real-time 

 

Fig. 7. Above: Scheduled (MW, grey line) and actual generation (MW, 
black line). Below: power imbalance (MW, grey line) and energy program 

deviation (MWh, black line). All for  PRP 1 for simulation b). 

 

Fig. 8. Power imbalance (MW, grey line) and energy program deviation 
(MWh, black line) .for PRP 1 for simulation b) 

 

Fig. 9. Power imbalance (MW, grey line) and energy program deviation 
(MWh, black line) .for PRP 2 for simulation d). 
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imbalance increases considerably, although strategic 
imbalancing between t = 2700s. and t = 3600s. still keeps the 
energy program deviation small. It should be noted that the 
energy program deviation at the end of each PTU (900s., 
1800s., 2700s., 3600s.) is the value which the final 
imbalance costs are based upon. At the beginning of each 
PTU, the e-program deviation is reset.  

Fig. 8 shows PRP2 who intends to minimize its energy 
deviation by strategically timing its power imbalance. Since 
this PRP has chosen to take two large units out of operation 
during this period in order to balance the foreseen wind 
power decrease between t = 1350s. and t = 3150s. In order to 
minimize its energy program deviation, PRP2 first 
overshoots, then takes its first unit out of operation, after 
which it reduces its imbalance again. The overall result of 
these actions is that the energy program deviation at the end 
of PTU 3 is very close to zero. However, PRP2’s control 
actions have an impact on ACE as can be seen in Fig. 5. 

In case PRP2 has more wind power in its portfolio, a 
different UC-ED is chosen. Apparently, it is now more 
optimal to de-commit one unit at t = 1350s., compared to the 
two units in simulation b) / Fig. 8. However, PRP2 is not 
able to balance its own portfolio including wind power while 
responding to secondary control signals from the TSO at the 
same time. Since its ramping capabilities for balancing wind 
power balances are already heavily used, PRP2 runs into a 
large power imbalance since it is unable to respond to the 
TSO signal. The secondary control actions upwards and 
downwards are not enough to prevent significant energy 
program deviations. PRP2 needs larger amounts of  
secondary reserves and/or reserves with higher ramp rates in 
order to prevent this. 

6. CONCLUSIONS 
A model has been developed for the simulation of power 
system balancing and the assessment of AGC performance in 
the presence of wind power. The Dutch control zone is used 
as a case study for the integration of wind power under 
program responsibility.  The simulation results show that the 
performance of existing AGC-mechanisms of both TSO and 
program responsible parties are adequate for returning ACE 
to small values within one PTU (15 min.) and energy 
program deviations within bounds. It is shown that the 
variability of wind power may lead to higher ACE, especially 
if insufficient amounts of reserves are taken into account 
during the unit commitment and economic dispatch 
calculations. 

A notable simulation result is that the variability of wind 
power not only has a direct impact on ACE and power 
imbalances of program responsible parties, but also an 
indirect one. Significant wind power variations are shown to 
have an impact on commit and de-commit decisions of 
conventional units in the system, which in turn trigger 
strategic imbalancing by PRPs. The ACE as a result of this 
then requires the TSO to apply additional secondary reserves. 
Thus, even though the steady-steady UC-ED schedule is in 
balance for each state, variations in real-time as well as 
demands for secondary control by the TSO may require 
additional ramping capabilities of the units. These must be 
taken into account in the UC-ED in order to minimize power 
imbalances during operation.  
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