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René Hiemstra M.Sc. Thesis



Preface

Reaching the summer of 2009 I finished CFD1, a first years master course given by Dr.
Ir. Marc Gerritsma at the TU Delft faculty of Aerospace Engineering. This was my first
real acquaintance with the field of Computational Fluid Dynamics. Being familiar with
splines from the context of Computer Aided Design, I asked Marc, whether splines were
also considered as a basis for finite element analysis in CFD. I thought, why use C0 finite
elements, when you can use splines which have continuous derivatives resulting in a continuous
representation of field quantities and derivatives.

Marc introduced me to the recent developments of IsoGeometric Analysis, a novel concept
employing CAD technology in finite element analysis, with as main goal the seamless inte-
gration of the two fields. I was directly convinced that this new technology would change
Analysis for good.

Some nine months later, when I returned from my study abroad at the University of
Southampton, I showed Marc a few pages I wrote down on a finite volume type of discretiza-
tion technique which employed B-splines as a computational basis. In this, Marc recognized
that B-splines are also a possible basis for the mimetic discretization methods, he and his stu-
dents were working on. And so, we decided to combine IsoGeometric Analysis with Mimetic
Methods as a topic for my master thesis.

This thesis represents the last milestone in becoming a maritime engineer. I would like to
express my gratitude to those who helped to reach the fulfillment of my thesis. Special
thanks goes to Marc, who was a guide throughout this thesis work, and always supported
my ideas. To Dennis Ernens, with whom I had fruitful discussions concerning IsoGeometric
Analysis. Most gratitude goes towards my family. Especially my mother and father, who
always supported me without having any idea what I was actually doing. And Lastly, to my
girlfriend, Ece, who was always there to distract me with her smile and with whom I shared
the good and bad moments during this final year. She is probably even more thrilled that I
am finally finishing, then I am myself.
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Summary

In this thesis I present a novel discretization procedure which combines two relatively new
technologies for solving partial differential equations (PDE’s):

IsoGeometric Analysis (IGA) is a new paradigm which provides an exact geometry de-
scription and tight integration of Computer Aided Design (CAD) and Finite Element
Analysis (FEA) by using the same basis for representation of the unknown field variables
as is used for describing the geometry in CAD.

Mimetic Discretization Methods on the other hand combine concepts from the Finite
Element Method (FEM) and the Finite Volume Method (FVM) and provide a unified
and straightforward approach to model any physical field problem. Mimetic Methods
aim at preserving as much as possible the structure of a PDE by ’mimicking’ at the
discrete level, important properties of the continuous realm, such that symmetries and
conserved quantities are preserved. Central in this framework is the relation between
physics and geometry.

The Mimetic Discretization approach developed in this thesis is based upon B-splines1 for
representing the unknown field variables. Besides inheriting all advantages from the IsoGe-
ometric Analysis framework, B-splines appear as a natural basis for Mimetic Discretization
Methods. They can be seen as higher order Whitney forms and provide vector spaces which
are discretely conservative by construction. The resulting discretization approach resembles
a Finite Volume Method on a staggered grid for the representation of the conservation laws
and a Finite Element Method for the representation of the constitutive equations. In short,
the scheme features the following advantages,

- exact geometry description and tight integration with CAD;

- fundamentally a higher order approach, featuring spectral like convergence. In practice
though, IGA is confined to low or medium order due to bad conditioning of inner product
mass matrices as a function of the polynomial order;

1All modern CAD technologies are derived from B-splines
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- increased continuity resulting in continuous representations of field variables and deriva-
tives;

- a strong indication exists that these methods automatically meet the inf-sup conditions,
leading to naturally stable discretizations of any physical problem;

- local conservation of primal variables (strong) and secondary variables (weak);

- in contrast to FVM and FEM which describe variables only locally, the Mimetic dis-
cretization is induced with a global topology which makes it possible to make useful
decompositions of field variables.

We have made use of this final property to perform numerical calculations of irrotational
incompressible flows that include lift. Although these problems seem elementary, conventional
methods, like the FEM and FVM are unable to solve these kind of problems without resorting
to an engineering approach. We presented a novel procedure, which provides a discrete
analogue to the harmonic function, which can directly be related to the lift. Although this
procedure has only been applied to flows around a single object, it can readily be applied to
lifting flows around more than one object. The results show that the lift can accurately be
approximated, already on quite coarse meshes.
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Chapter 1

Introduction

In this thesis we combine the strengths of IsoGeometric Analysis and Mimetic Discretization
methods. IsoGeometric Analysis provides an exact description of the geometry and seamless
integration with CAD. This is achieved by using CAD technology in the discretization process.

Mimetic methods combine concepts from the Finite Element Method (FEM) and the Finite
Volume Method (FVM) and provide a unified and straightforward approach to model any
physical field problem. Mimetic Methods aim at preserving as much as possible the structure
of a PDE by ’mimicking’ at the discrete level, important properties of the continuous realm,
such that fundamental symmetries and quantities are conserved. Central in this framework
is the relation between physics and geometry.

1.1 IsoGeometric Analysis

Traditionally, geometry has been represented differently in the fields of Computer Aided
Design (CAD) and Finite Element Analysis (FEA). This means that CAD geometry, which
can be seen as exact, must be translated into an analysis suitable geometry (ASG) for meshing
and input into a FEA program. This process is highly labor intensive, often costing more
time than the actual analysis, and is accompanied by a loss of geometric precision.

A precise geometry description is important in many practical applications. Fluid structure
interaction (FSI) requires a precise description of the fluid structure interface; non-linear
phenomena like transition to turbulence and shell buckling analysis are extremely sensitive to
small deviations in the geometry. An example where spurious oscillations arise due to crude
geometric approximation with straight sided elements at the boundary is shown in Figure 1.1.

The trend towards increasingly complex and larger problems also demands higher order ap-
proximations and automatic adaptive mesh refinement. Efficient numerical procedures that
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2 Introduction

converge to a satisfactory result are in most cases impossible for large scale complex problems
without accurate geometry description, higher order approximations and mesh adaptivity.
The last one has not been widely adopted in the industry since mesh refinement requires
access to the exact geometry, and therefore requires direct communication with the CAD-
representation.

(a) (b)

Figure 1.1: The two-dimensional Boussinesq equations, modeling shallow water free surface flows.
The x-component of velocity obtained using 552 triangles with fifth order polynomials on each
triangle. (a) The spurious oscillations in the solution are due to the use of straight-sided elements
for the geometric approximation. (b) The cylinder is approximated by elements with curved edges,
and the oscillations are eliminated. From Eskilsson and Sherwin [31]

IsoGeometric Analysis (IGA), introduced by Hughes et al. [42], addresses these issues, by
directly integrating FEA with CAD. The IsoGeometric Analysis concept unifies the two fields
of engineering design and analysis by expanding the unknown field variables in the same basis
as that of the geometry description from CAD.

There are several CAD technologies available to the IsoGeometric Analysis framework, all
of which are derived from B-splines. NURBS, short for Non Uniform Rational B-splines,
are the standard technology employed in CAD systems. NURBS generalize B-splines and
consequently inherit all their favorable properties for use in free form design. NURBS, how-
ever, extend B-splines by allowing the exact representation of conic sections like circles and
ellipsoids. Furthermore, many efficient and numerically stable algorithms exist to generate
NURBS and their derivatives [22, 54]. B-splines and NURBS also posses some mathematical
properties desirable in Analysis:

- They feature linear independence, compact support and form a partition of unity;

- They are not polluted by spurious oscillations, such as the Runge phenomena;

- Polynomial order of accuracy is merely an input parameter allowing ’spectral like’ con-
vergence. in practice though, IGA, is confined to low or medium order due to the bad
conditioning of mass matrices with respect to the polynomial order.
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- Variation diminishing property, which causes B-splines to respond less to a change in
the coefficients for increasing degree.

- Splines of degree p have up to p− 1 continuous derivatives at element interfaces.

IsoGeometric Analysis based on B-splines have refinement procedures analogous to the h-
and p-refinement in FEA, which are knot insertion and degree elevation, respectively. In-
teraction with the CAD-representation is not necessary because the geometric model from
a CAD program is directly used as a coarse mesh within the analysis program. Despite the
geometry being fixed at the coarsest level of discretization, the mesh and the corresponding
basis, can then be refined and order elevated while maintaining the exact original geometry
without interaction with the CAD system. An example that displays these properties for a
linear elasticity problem using solid elements is shown in figure 1.2(a) to 1.2(d) with optimal
convergence results shown in 1.3(b).

(a) (b) (c) (d)

Figure 1.2: (a) CAD geometric model of a horseshoe. (b) coarse mesh straight from CAD system.
(c) and (d) model is refined for analysis without affecting geometry. From Hughes et al. [42].

(a) (b)

Figure 1.3: (a) Vertical stress component after analysis. (b) ’Spectral’ like convergence. From
Hughes et al. [42].
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The property of splines of having a high level of derivative continuity at knot (element)
interfaces gives rise to a new type of refinement, called k-refinement, where the degree is
elevated together with the continuity at knots. This new type of refinement has proven to be
potentially more powerful than p-refinement where C0 continuity is maintained across knot
interfaces while the degree is elevated.

Besides all practical advantages provided by the IGA framework, B-splines and consequently
NURBS have proven to be outstanding basis functions for analysis. The increased continuity
of the B-spline basis has resulted in a dramatic improvement of the spectral properties, as
compared to C0 finite elements. This is perhaps best illustrated in the one-dimensional test
problems of pure convection and pure diffusion, where geometry does not play any role.
The case of pure convection, the wave equation, is shown in Figure 1.4(a). We note that
linear B-splines give identical results as linear FEM. Unfortunately the authors don’t show
any FEM results of higher order then quadratic. It is however clear that the B-spline basis
performs much better than C0 finite elements and converges with increasing order. Figure
1.4(b) depicts the comparison between C0 FEM and Cp−1 continuous B-splines for the heat
equation, the case of pure diffusion. Observe that the results obtained using B-splines are
more accurate throughout the entire spectrum and that the entire NURBS spectrum converges
for all modes with increasing order using the new concept of k-refinement, whereas increasing
the order of the finite element approximation with p-refinement results in divergence of the
higher frequencies.

(a) Pure convection in the first order wave equa-
tion. Phase errors versus non-dimensional wave
numbers. Comparison of linear and quadratic
finite elements, C1 quadratic and C2 cubic B-
splines.

(b) Pure diffusion in the heat equation. Phase er-
rors versus non-dimensional wave numbers. Com-
parison of classical C0 -continuous finite elements
and B-splines for p = 1 to 4.

Figure 1.4: Comparison of C0 finite elements and Cp−1 Isogeometric Analysis employing B-
splines. From Cottrell et al. [22].

The superior spectral properties of the B-spline basis, as compared to C0 finite elements, sug-
gests that B-splines and NURBS might provide more accurate approximations to general fluid
flow problems, which show a combination of convective and diffusive behavior. This might
especially be apparent in applications such as wave propagation and turbulence where the
entire discrete spectrum may contribute significantly in the solution [22]. This presumption
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has been verified by Akkerman et al. [3] who have studied the role of continuity in turbulent
flows.

A combination of convective and diffusive behavior is frequently studied using the linear
convection-diffusion equation. This is a good starting point for more complicated non-linear
systems like the Navier-Stokes equations, because many difficulties also arise in this simpler
linear setting. When the ratio of convection/diffusion is large, sharp boundary layers arise
which can be difficult to capture. The conventional Galerkin FEM is not able to resolve these
sharp boundary layers and spurious oscillations may result. These oscillations are frequently
suppressed by adding some artificial diffusion while attempting to minimize the negative
impact on the solution. Generally these oscillations become more pronounced when the
polynomial order is increased. However the variation diminishing property plus the concept
of k-refinement illustrate the robustness of B-splines and NURBS based IsoGeometric Analysis
when order is increased. Increased robustness is also confirmed by several researchers [14, 48]

(a) p=1 (b) p=3 (c) p=5 (d) p=8

Figure 1.5: Convection-Diffusion in two dimensions. Problem features sharp boundary layers
skew to the mesh is 45 deg. The mesh is uniform and spans 20 by 20 elements. The number
of dofs is (20 + p)2 where p is the degree of the basis. Obtained results with increasing degree.
From Hughes et al. [42].

when it comes to mesh distortion of IsoGeometric elements as compared to standard finite
elements. In the study of Lipton et al. [48] it is further noted that robustness increases
with order. This robustness makes them potentially attractive for many large deformation
problems like free surface deformation and fluid structure interaction problems.

1.1.1 Practical application of IGA

Since its introduction, IGA has successfully been applied to a wide variety of problems in
several fields of physics and engineering [42, 48, 14, 45, 23, 43, 3, 7, 8, 10, 11, 29, 30, 66, 18,
20, 19, 17, 21]. Development is ongoing and IsoGeometric Analysis has over the years reached
a certain level of maturity. In the following we give a glimpse at some applications of IGA to
real world problems in fluid dynamics and structural mechanics.

Structural vibrations of the NASA testbed cylinder

In Cottrell et al. [23] an example is depicted of IsoGeometric analysis applied to structural
vibrations of a ’real world’ geometry found in the aerospace industry: the NASA aluminum
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6 Introduction

testbed cylinder (ATC). This example demonstrates that the IsoGeometric concept can be
applied on large-scale problems. Figure 1.6(a) shows the frame assembly of the ATC, where
every geometric feature of the real geometry is exactly represented in the model. The mesh
consisted of 228.936 rational quadratic elements and 2.219.184 degrees of freedom. As seen
in Figure 1.6(b) quite satisfactory frequency results have been obtained compared to the
experimental data.

(a) IsoGeometric model of frame assembly. (b) Comparison of numerical and experimen-
tal frequency results for the frame assembly

Figure 1.6: Every geometric feature of the NASA Aluminum testbed cylinder (ATC) is accounted
for, Figure 1.6(a). The mesh consisted of 228.936 rational quadratic elements and 2.219.184
degrees of freedom. Figure 1.6(b) compares numerical results with experiments illustrating that
IsoGeometric Analysis can be applied to large complex problems. From Cottrell et al. [23]).

Fluid structure interaction of a 5 MW wind turbine at full scale

In Bazilevs et al. [12] and Bazilevs et al. [13] the interaction between airflow and structure
is simulated around 5MW wind turbine blades at full scale. Every structural feature of the
composite blades has been exactly accounted for in the fluid structure simulation. Advantage
is taken from symmetry, such that only one third of the model needs to be taken into account.
The structure and fluid domain is modeled using quadratic NURBS elements and the total
number of degrees of freedom of the flow domain is approximately 1.5 million. The fluid
formulation makes use of the residual-based variational multi scale method [41, 9] which is
currently the most sophisticated Large Eddy Simulation (LES).
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1.1 IsoGeometric Analysis 7

(a) Problem setup (b) NURBS modeling of flow domain

(c) Pressure contours at several blade cross sec-
tions

(d) Isosurfaces of air speed

(e) Isocontours of relative wind speed at a 30m radial cut at different time instances
superposed on a moving blade.

Figure 1.7: (a) Problem setup and (b) construction of analysis suitable geometry of one third of
the flow domain consisting of approximately 1.5 million degrees of freedom. From Bazilevs et al.
[12]. (c) Pressure contours at several blade cross-sections viewed from the back of the blade
plotted on the deformed configuration. The large negative pressure at the suction side of the
airfoil creates a favorable aerodynamic torque. (d) Iso-surfaces of air speed. The flow exhibits
complex behavior. The vortical feature generated at the blade tip is convected downstream of the
rotor with very little decay. (e) Iso-contours of relative wind speed at a 30m radial cut at different
time instances superposed on a moving blade. The flow stays fully attached on the pressure side
and separates on the suction side. Note the deflection of the blades. From Bazilevs et al. [13]
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8 Introduction

Free surface phenomena for the dam break problem and the Wigley hull

In Akkerman et al. [4] two-phase air fluid simulations are performed using the level set ap-
proach. Level set methods represent the free surface interface implicitly through the intro-
duction of a scalar field [44]. Both the air and fluid are modeled using the incompressible
Navier-Stokes equations in the variational multi scale framework [41, 9].

A typical test case which can asses the performance for complex free surface phenomena is
the dam brake problem. The problem setup is shown in Figure 1.8. Experiments for this
test case were performed at the Maritime Research Institute Netherlands (MARIN), and
the data is often used to validate free-surface software for marine engineering applications.
The simulation is performed using two quadratic NURBS meshes, consisting of 32 x 16 x 16
(coarse) and 64 x 32 x 32 elements for the problem domain, and 2 x 6 x 3 and 4 x 12 x 6
elements for the object.

Figure 1.9 shows two snapshots for the two different meshes. In Figure 1.10 results for the
pressure at two different points are compared with experiments from MARIN. The main trend
is captured on both meshes. However, the fine mesh does not seem to perform much better
than the coarse mesh, compared to the experimental results.

Figure 1.8: Problem setup dam break with
obstacle problem . From Akkerman et al.
[4]

Figure 1.9: Comparison of the solution
produced by the coarse and fine meshes..
From Akkerman et al. [4]

A typical test case to asses the performance of free surface calculations around ships is the
quasi static flow around the Wigley Hull. The geometry is exactly modeled using quadratic
NURBS elements on one half of the domain with symmetry boundary conditions. The problem
mesh consists of 96 x 48 x 32 quadratic NURBS elements. Reasonable results are obtained,
compared to the ITTC experiments, see Figure 1.11.
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1.2 Mimetic Discretization Methods 9

Figure 1.10: Dam break with obstacle. Pressure time history at four points on the object-
comparison between experimental data (labeled MARIN) and computational results. The main
trend is captured on both meshes. From Akkerman et al. [4]

(a) Wave pattern around the Wigley hull at Fr =
0.25.

(b) Free surface level along the length of
the Wigley hull at Fr = 0.25. Comparison
of numerical solution with ITTC experi-
mental results

Figure 1.11: Free surface flow around a Wigley hull at Fr = 0.25. From Akkerman et al. [4]

1.2 Mimetic Discretization Methods

IsoGeometric Analysis seems to be an exciting new technology with a lot of potential in
many fields of engineering. To summarize, it features many advantages over classical FEM: it
provides seamless integration of CAD and analysis, making the cumbersome meshing-process
redundant; exact geometry representation; increased robustness and accuracy; and finally
making refining strategies become practically applicable. Important is to realize that these
advantages are simply the result of the choice of basis functions!!

The discretization procedure of current IsoGeometric analysis methods, however, is based
upon the finite element method and therefore also inherit its drawbacks. These drawbacks
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10 Introduction

are especially apparent in our main field of interest, being fluid dynamics. The most severe
issues which IGA consequently shares with FEM in the field of fluid dynamics are:

- The finite element basis is incapable of generating a divergence free velocity field for
incompressible flow.

- Stable basis for the velocity and pressure is only obtained under some stringent require-
ments called the inf/sup conditions.

These issues are unwanted artifacts which emerge during discretization. It appears that in the
discretization process we lost the connection between physical quantities and the underlying
geometry. In the derivation of physical laws of a physical theory, for instance, we usually start
with analysis on geometrical objects such as a control volume and its bounding surfaces. These
geometric features are lost however, when the resulting mathematical model is represented
in the form as set of partial differential equations (PDE’s). Popular methods, like the finite
element method, take such a PDE as a starting point and consequently lose the connection
between physical quantities and their related geometric elements, leading to instabilities and
the inability to preserve conserved quantities.

In this thesis I present a new discretization procedure which displays all advantages of the
IsoGeometric approach, yet naturally leads to stable consistent discretizations with strong
conservation of the primal variables. The proposed method belongs to the class of Mimetic
Discretization Methods, also known as Compatible Discretizations or Discrete Exterior Cal-
culus (DEC). Mimetic Methods attempt to preserve as much as possible the structure of the
physical problem at hand - i.e. to adequately mimic the properties of the continuous physical
world in the discrete setting - such that fundamental symmetries and conserved quantities
are preserved. A strong presumption exists that these methods naturally lead to consistent
and stable approximations.

1.2.1 Preliminary classification of field quantities

If we take a closer look at the different physical quantities in a theory, we can observe that
it’s possible to structure them in roughly two distinct groups. In mechanical terms we have:

1. configuration variables which describe the state of a mechanical system, such as position,
displacement, velocity, and acceleration

2. source variables which drive the state of the mechanical system, such as force, pressure,
stress and electric charge

The relation among different configuration variables, or source variables respectively, is given
by the physical laws. These relations are topological and do not contain any material relations.
The connection between the configuration variables and sources variables is where the metric

René Hiemstra M.Sc. Thesis



1.2 Mimetic Discretization Methods 11

dependent part comes in. These relations are given by the so called constitutive equations,
which contain the material specific relations.

A preliminary classification of the different physical quantities in a physical theory can look
as follows

source variablescon�guration variables

3S

3L

1P

1V

3S

3L

1P

1V

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

constitutive

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

Source variablesCon�guration variables

constitutive equations

physical laws physical laws

Figure 1.12: Preliminary classification of physical quantities in a theory

We shall see in Chapter 2, Section 2.3), that we can exactly represent the physical laws in
discrete terms, by introducing the concepts of chain and cochain from the mathematical field
of Algebraic Topology. The discretization of these relations is finite volume like, so we stay
on familiar ground. Because the physical laws do not contain any metric they have the same
form and value on topologically equivalent grids. The discretization of these relations is the
same on a nice uniform Cartesian mesh and on a highly curved grid! Secondly these relations
don’t change on moving meshes, as long as the topology stays the same.

The constitutive equations - the metric and material dependent relations - is where the dis-
crete approximation comes in, and requires a continuous representation of the field variables.
First the mathematical model in the form of a PDE is reformulated using concepts from Dif-
ferential Geometry - introduced in Chapter 2, Section 2.2- expressing the variables in terms of
differential forms. This ensures that the connection of quantities with their related geometric
entities is maintained in the continuous formulation.

In Chapter 4 the continuous and the discrete are connected by introducing B-spline basis
functions which can reconstruct finite dimensional continuous representations of differential
forms from discrete cochains. As we shall see B-splines provide a natural basis for Mimetic
Methods.

Before we construct B-spline vector spaces of differential forms, we introduce them in the
context of geometry and mesh generation, in Chapter 3. Here we will thoroughly examine the
properties of B-splines and NURBS that make them attractive as a pre-analysis tool. During
our discussion we will frequently make the comparison with FEA.

In the final chapter, we apply the theory developed in Chapter 2, 3 and 4 to the incompress-
ible irrotational flow over lifting bodies. At first glance, these problems seem elementary.
Conventional approaches like the FEM and FVM, are however not able solve these problems
without resorting to an engineering approach. We use the so called Hodge decomposition
and explicitly calculate the component of the flow which is responsible for a net circulation
and associated lift force, see Figure 1.13. This procedure can only be performed using global
relations. The FEM and FVM will consequently not be able to follow the same approach,
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12 Introduction

since they describe relations only locally.

NACA0012

® = 8deg

NACA0012

® = 8deg

NACA

® = 8

+

=

Figure 1.13: Hodge decomposition of an inviscid flow around a lifting airfoil. (Top) Contribution
due to gradient of potential. (Middle) Contribution due to harmonic function. (Bottom) Resulting
flow.

René Hiemstra M.Sc. Thesis



Chapter 2

Foundations of Mimetic Discretization
Methods

Discretization is the process of transforming a continuous field problem - usually represented
as a set of continuous partial differential equations (PDE’s) - in to a set of discrete equations
which can be handled by a computer. This process is always accompanied by a loss of
information, since an infinite dimensional problem is reduced to a finite number of discrete
equations.

Mimetic Discretization Methods, however, aim to preserve as much as possible the structure
of the continuous field problem at hand. They attempt to adequately ’mimic’ the properties
of the continuous realm in the discrete setting, such that important symmetries and conserved
quantities are preserved discretely.

2.1 Structure of physical problems

Understanding the structure of the physics behind the equations is in my opinion of vital
importance if one wishes to successfully discretize a continuous field problem. Fortunately,
many different physical phenomena, like for example electromagnetism, elasticity and fluid
flow, all share a common structure. This can be explained by the common ’geometric back-
ground upon which the physics is build’ [52]. Tonti [65] and later Mattiussi [52] studied the
structure of physical phenomena extensively and they emphasize the following very important
observations

A In every physical theory there are physical quantities which are naturally related to the
most basic geometric and chronometric objects.

B The need to consider two kinds of orientation of the associated geometric objects: inner
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14 Foundations of Mimetic Discretization Methods

or outer orientation.

C Distinction between local (continuous) quantities and global (discrete) quantities, which
are related by integration of field variables over a geometric object.

D The existence of a basic set of discrete physical conservation laws within each theory which
state that a global physical quantity referring to a geometric object, is equal to another
global physical quantity referring to its boundary.

2.1.1 Physical quantities, geometry and orientation

All physical quantities are naturally related to the most basic geometrical and chronometrical
objects, like points, lines, surfaces, volumes, time instants and time intervals. In order to
perform operations like summation and integration, the associated orientation of the geometric
objects needs to be taken into account. We can distinguish between inner and outer oriented
geometric objects. We shall discuss some examples, many of which are open for interpretation.

Charge of a particle, pressure, temperature, velocity potential and electric potential can be
considered as scalar functions defined in points at a certain time instant ; velocity of a fluid
element is measured as the displacement along a line segment during a time interval ; strain
of a fiber is measured as the stretching along a line during a time interval ; vorticity can be
measured as the amount of rotation in a plane during a time interval.

inner oriented

outer oriented

(a) in a point

inner oriented

outer oriented

(b) along line

inner oriented

outer oriented

(c) in a plane

inner oriented

outer oriented

(d) inside a vol-
ume

Figure 2.1: Physical field quantities related to inner oriented geometric objects in R3

Similarly, there are field quantities which are naturally related to outer oriented geometrical
objects (Figure 2.2): mass density, electric charge or energy can flow out of a volume during
a time interval ; energy, momentum and velocity fluxes are measured as the transfer through
a surface during some time interval ; angular momentum of a body is measured around an
axis of rotation at a specific time instant ; a vortex potential can be defined as the rotation
around a point at a particular time instant.

We emphasize that most examples are open for discussion, for example vorticity could also
be considered around an axis of rotation during a time interval (Biot-Savart).
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2.1 Structure of physical problems 15

outer oriented

(a) out of volume (b) through a
plane

(c) around a line (d) around a point

Figure 2.2: Physical field quantities related to outer oriented geometric objects in R3

2.1.2 Local verses global quantities

In the mathematical representation of physical quantities we make a distinction between local
and global quantities. Local quantities represent a continuous distribution of some physical
quantity. These are typically the mathematical variables used to describe physical phenomena
in the form of a PDE.

The local variables, or field variables, are mathematical abstractions that can only be ap-
proximated by means of global, discrete variables. This approximation process is done by
measuring. How we measure a local quantity in terms of global quantities is usually clear
from its units. For example, velocity is measured as the distance in meters per second; density
is measured as mass per unit of volume and pressure is measured as force per unit square
meters. The operation that connects these local (continuous) quantities with the global (dis-
crete) quantities is integration. Some examples are, integration of velocity v in time yields
distance s̄; integration of density ρ over a volume yields mass m̄ and integration of the pressure
p over a finite surface results in a discrete value of force F̄ .

s̄ =

∫

t

v dt, m̄ =

∫

V

ρ dV and F̄ =

∫

S

p dS,

where global quantities are denoted with a bar. Note that a local quantity is associated with
an infinitesimal geometric object, while global quantities are related to finite dimensional
analogues.

2.1.3 Topological relations

In every physical theory there are basic physical conservation laws which state that a global
physical quantity referring to a geometric object is equal to another global quantity associated
with its boundary. In R3 these equations are given by the well known fundamental theorem
of calculus, relating the change of a quantity over a line segment as the difference between
the boundary points, Figure 2.3(a); Stokes theorem, stating that the amount of rotation in a
plane is equal to the circulation around its boundary, Figure 2.3(b); and finally the divergence
theorem, relating the change of a global physical quantity in a volume as the difference between
the in- and out-going fluxes, Figure 2.3(c).
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(a) Fundamental theorem of calculus: ū =
∫
C

gradφ dc = φ̄(b)− φ̄(a)
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(b) The Stokes theorem: v̄ =
∫∫
S

curl u · dS =
∫
C

u dc = ūx
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(c) The divergence theorem: f̄ =
∫∫∫
V

div q dV =
∫∫
S

q dS = q̄x2 − q̄x1 + q̄y2 − q̄
y
1 + q̄z2 − q̄z1

Figure 2.3: Fundamental theorem of calculus, Figure 2.3(a), relating global quantities associated
with lines to global quantities at the boundary points. The Stokes theorem, Figure 2.3(b),
relating global quantities associated with surfaces to global quantities along its boundary curves.
The divergence theorem, Figure 2.3(c), relating global quantities associated with a volume to
global quantities at the bounding surfaces. Observe that a change in geometry doesn’t affect the
discrete relations.

The physical laws are the same on topological equivalent grids, i.e. are the same on a highly
curved grid as on a square Cartesian grid; that’s why we refer to them as topological relations.
Topological relations have an intrinsically discrete nature and can thus exactly be represented
in terms of global quantities.
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2.1 Structure of physical problems 17

The variables in these equations are only related by summation, differentiation and integra-
tion. They do not involve any physical or material parameters. Figure 2.4 illustrates how
the topological relations appear as the horizontal links between quantities associated with
geometric objects of the same orientation.

inner oriented

outer oriented

topological - intrinsically discrete

topological - intrinsically discrete

inner oriented

outer oriented

constitutive

inner oriented

outer oriented

constitutive

topological - intrinsically discrete

topological - intrinsically discrete

Figure 2.4: The topological relations form the horizontal connections in the diagram. These
relations thus involve only objects of the same orientation.

2.1.4 Constitutive relations

The constitutive relations is where the metric (length, angle, etc) and material parameters
start to play a role. Constitutive relations invoke a connection between dual geometric objects,
see Figure 2.5. This operation can only be performed in continuous space and it is generally
here where the discrete approximation comes in.

An example of a constitutive relation from the field of linear elasticity, linking stress σij and
strain εkl by the material stiffness tensor cijkl, is Hooke’s law in three dimensional space

σij = cijkl · εkl

The strain, the stretching of a fiber, is clearly associated with inner oriented line segments
and the stress is a physical quantity related to outer oriented surfaces.

To model the constitutive relations, we require a continuous representation in terms of field
variables. This is achieved using B-spline basis functions which reconstruct continuous rep-
resentations from global discrete quantities (Chapter 4).
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18 Foundations of Mimetic Discretization Methods

inner oriented

outer oriented

topological - intrinsically discrete

topological - intrinsically discrete

inner oriented

outer oriented

constitutive

inner oriented

outer oriented

constitutive

topological - intrinsically discrete

topological - intrinsically discrete

Figure 2.5: The constitutive relations appear as the vertical links between dual geometric objects

2.1.5 Classification of physical quantities

The association of physical quantities with geometric objects in space and time naturally
leads to the classification of physical quantities within a physical theory, Figure 2.6.
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outer oriented

inner oriented

3S3L1P 1V

3S 3L 1P1V

topological - intrinsically discrete

outer oriented

inner oriented

topological - intrinsically discrete

Figure 2.6: The Tonti classification diagram of physical quantities in three dimensional space.
Each slot represents a physical quantity referred to a geometric object; that is scalar quantities
living in points 1P , vector valued quantities related to lines 3L, vector valued quantities related
to surfaces 3S and scalar valued quantities associated with volumes 1V . The topological relations
appear as the horizontal links between quantities associated with geometric objects of the same
orientation, and have an intrinsically discrete nature. The constitutive relations appear as the
vertical connections between quantities of opposed orientation. It is in general here where the
discrete approximation comes in. Diagonal connections are also possible. These processes are,
however, irreversible. From Mattiussi [52]

In this chapter we introduce the necessary mathematical tools upon which the mimetic frame-
work is built. Section 2.2 starts with an introduction to Differential Geometry, which provides
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2.2 Continuous modeling - concepts from Differential Geometry 19

us with a continuous mathematical representation of physical quantities in terms of exterior
differential forms and the mathematical tools to represent the topological relations and the
constitutive equations in continuous space. Differential forms allow us to rewrite a partial
differential equation in a way that the connection with geometry is maintained in the math-
ematical formulation.

Section 2.3 introduces important concepts from Algebraic Topology, the discrete analogue of
Differential Geometry. We shall see that we can rephrase the topological equations in discrete
form which is exact and metric free.

Finally, in Section 2.4, we discuss how these two branches of mathematics are connected, by
introducing the two basic operations of reduction and reconstruction. Local quantities can be
reduced to yield global quantities and vice versa, global quantities can be used to reconstruct
local quantities.

2.2 Continuous modeling - concepts from Differential Geom-
etry

This section introduces geometry and related physical quantities in terms of the theory of
exterior differential forms. For an extensive introduction into Differential Geometry the reader
is referred to Flanders [33] and Frankel [34] .

2.2.1 Manifolds

In order to describe geometry and related physical quantities we need to take a closer look
at the space in which we represent them. In the general case this space is curved and under
some requirements such a space is called a manifold.

Definition 1 An n-dimensional manifold Mn in Rm is a parametric space which locally looks like
Rn. It is covered by a family of curvilinear coordinate patches Vi ⊂ Rm ,

Mn = V1 ∪ V2 ∪ . . . ,

where each coordinate patch is the image of an embedding Ui ⊂ Rn,

ψi(x) : Ui(x) 7→ Vi(y)

The map ψ maps a point in the parameter space x ε U to a point y on the manifold. It is required
that ψ is a smooth one-to one map, meaning that the inverse map ψ−1 exist, and is continuously
differentiable1. We further require that the parameters of overlapping coordinate patches Vi ∩ Vj ,
can be written in terms of one-another

xVi
= F (xVj

) and vice versa xVj
= F−1(xVi

)

1In Differential Geometry this is called a diffeomorphism
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20 Foundations of Mimetic Discretization Methods

The inverse map ψ−1 is called a chart, analogue to charts of the earth’s surface. In fact, you
can think of a manifold as being an n-dimensional world which is represented by an atlas
consisting of a set of charts. Each chart maps a part of the world to a planar surface. From
an observer on earth the earth’s surface is indistinguishable from euclidean space R2, however
the sphere differs from the plane on a larger scale.

Figure 2.7: The earth (surface of a sphere) is a two-dimensional manifold in R3 since it can be
represented by a collection of two-dimensional charts.

The straightforward examples of manifolds which we will encounter in R3 are smooth curves
- Figure 2.8, smooth surfaces - Figure 2.9 - and smooth volumes. Manifolds, however, also
arise in more abstract ways as solutions to differential equations or configuration spaces.

ψ

U

( )ψ=1M  U

t

1y

2y

3y

( )ψ= ty

TyM

1e

Figure 2.8: The tangent space of a 1-manifold in R3

An important consequence of the definition of a manifold is that it has a well-defined tangent
space TyMn, which is a local copy of Rn containing all tangent vectors at a point y ε Mn.
This fact allows us to apply the methods of differential and integral calculus and linear algebra
to the study of manifolds.
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Figure 2.9: The tangent space of a 2-manifold in R3

The Tangent Space

A basis in which to represent the tangent vectors is easily obtained as follows. Consider the
coordinate map from Figure 2.9. ψ : U(x) 7→ V (y), maps a point in the parameter space
x ∈ U ⊂ Rn to a point on the manifold y ∈ Mn ⊂ Rm; thus maps m coordinates from n
parameters,

y = ψ(x) =





y1 = ψ1
(
x1, ..., xn

)
...

...
ym = ψm

(
x1, ..., xn

)

where n ≤ m. Observe that the vectors tangent to the coordinate lines ei (obtained by keeping
all but one parameter xi constant), form a natural basis in which to represent tangent vectors.
This basis, the collection E = (e1, ..., en), is called the primal basis and can easily be obtained
by use of the chain rule

ei =
∂

∂xi
=

∂

∂yj
∂yj

∂xi
=




1 �
. . .

� 1







∂ψ1

∂xi
...

∂ψm

∂xi


 =

∂ψ

∂xi
(2.1)

Observe that the tangent space at y is the linear space spanned by the collection of the
tangent basis vectors, i.e. the columns of the Jacobian matrix Dψ, leading to the following
definition

Definition 2 If Mn is an n-dimensional manifold, and y εMn, then the tangent space at y is the
set TyMn, the span of all tangent vectors at y and is defined by

TyMn = col {Dψ(x)} where Dψ(x) = (e1 · · · en) =




∂ψ1

∂x1 · · · ∂ψ1

∂xn

...
. . .

...
∂ψm

∂x1 · · · ∂ψm

∂xn
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Connection between vectors and the primal basis

It is apparent that mathematical objects like points and vectors do not depend on the co-
ordinate system in which we represent them; they are so called invariant under coordinate
transformations.

EXAMPLE 2.2.1 We may write a vector in any coordinate system, where it is represented by a
different set of coefficients and basis vectors, yet still describes the same object.

2 1x =

2 0x =

1 0x =

1 1x =
1 2x =

1 3x =

1 4x =
1 5x =

1 0x = 1 1x = 1 2x = 1 3x = 1 4x =

2 0x =

2 1x =

2 2x =

(a) α = 3 · e1 + 1 · e2

2 1x =

2 0x =

1 0x =

1 1x =
1 2x =

1 3x =

1 4x =
1 5x =

1 0x = 1 1x = 1 2x = 1 3x = 1 4x =

2 0x =

2 1x =

2 2x =

(b) α = 4 · ẽ1 + 0 · ẽ2

Figure 2.10: The same vector α in two different coordinate systems

Consider the vector α described in the primal basis2

α =
m∑

i=1

aiei = aiei

In order to see how the coefficients and basis change, we define new coordinates x̃j expressed
in terms of the old coordinates xi

x̃j = x̃j
(
x1, . . . , xn

)
and corresponding basis ẽj =

∂

∂x̃j
=
∂xi

∂x̃j
∂

∂xi

Then we can write for the vector α

α = aiei = ai
∂

∂xi
= ai

(
∂

∂x̃j
∂x̃j

∂xi

)
=

(
ai
∂x̃j

∂xi

)
∂

∂x̃j
= ãj ẽj

We can further deduce that the coefficients and basis vectors are related in the following way

α =

(
ai
∂x̃j

∂xi

)(
∂xk

∂x̃j
ek

)
= ai

(
∂xk

∂xi

)
ek = aiδki ek = aiei

We can conclude that a change of coordinates transforms the coefficients ai in exactly the
opposite way as the basis ek. The coefficients are called contra variant (denoted with super-
script) and the primal basis is called covariant (denoted with a subscript).

2Note that in the latter expression we used the Einstein summation convention which implies that whenever
an index appears twice, once as a subscript and once as a superscript, a summation needs to be performed
over this index.
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Connection between co-vectors and the dual basis

We might as well switch the roles of the coefficients and basis to obtain co-variant coefficients
and a contra variant basis.

α =

(
ak
∂xk

∂x̃j

)(
∂x̃j

∂xi
ei
)

= aie
i

This mathematical object, similar to a tangent vector, is called a co-vector or one-form. Co-
vectors live in the co-tangent space, usually called dual space. The contra variant basis is
called the dual basis.

Definition 3 The dual basis Ẽ is the collection
(
e1, ..., en

)
and is defined by

ei · ej = δji =

{
1 if i = j

0 if i 6= j

Figure 2.11 shows vector α in terms of the primal basis α = a1e1 + a2e2 and in terms of the
dual basis α = a1e

1 + a2e
2. The figure also illustrates the relation between the primal and

dual basis vectors ei · ej = δji

α

1
1ea

2
2ea

1
1ea

2
2ea

Figure 2.11: Vector α in terms of the primal and dual basis

So far we know that the dual basis acts dual to the primal basis, but what do the dual basis
vectors actually look like? The definition of the dual basis leads to the fact that ej = dxj

ei · ej = δji ⇒ ∂

∂xi
dxj =

∂xj

∂xi
= δji

The dxj provides a basis for the co-tangent space and a co-tangent vector β can consequently
be written as

β = bje
j = bj dx

j
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24 Foundations of Mimetic Discretization Methods

This is the more familiar notation of a 1-form. As can be concluded from the mathematical
representation, 1-forms are the natural entities which ’live beneath a line integral’ [33]. They
can represent the same quantities as ordinary vectors, like velocity and acceleration, however,
because of their mathematical representation can be readily integrated over line segments
to yield global quantities. This is the main reason why to use differential forms instead of
vectors.

2.2.2 The exterior product between forms

Thus far we are able to describe 0-forms - point wise defined scalar functions - and 1-forms
- vector valued functions defined along line segments. To define their higher dimensional
relatives, we introduce the exterior, or wedge product ∧.

Definition 4 The exterior product ∧ is defined by the following basic properties [33]

1. Antisymmetry: dxi ∧ dxj = −dxj ∧ dxi

2. Linear independence: dxi ∧ dxi = 0

3. Linearity:
(
c · dxi

)
∧ dxj = dxi ∧

(
c · dxj

)
= c

(
dxi ∧ dxj

)

and
(
dxk + dxl

)
∧ dxm = dxk ∧ dxm + dxl ∧ dxm

4. Associativity:
(
dxk ∧ dxl

)
∧ dxm = dxk ∧

(
dxl ∧ dxm

)

Property 1 induces an orientation to every k-form. Property 2 shows that when any two
differential forms are linearly dependent, are in the same linear space, then their exterior
product is zero. The third property illustrates that the exterior product only acts upon the
basis, not the coefficients and it is linear in its arguments. Associativity, property number 4,
means that the order in which the operations are performed does not matter as long as the
order of the operands is not changed.

The exterior product between forms in R3

Consider the following three 1-forms α, β and γ, depicted in Figure 2.12(a) and 2.12(b)

α = a1dx
1 + a2dx

2 + a3dx
3, β = b1dx

1 + b2dx
2 + b3dx

3 and γ = c1dx
1 + c2dx

2 + c3dx
3

The exterior product of α and β is the 2-form α∧β, see Figure 2.12(a) and can be represented
in terms of basis 2-co-vectors as

α ∧ β =
(
a1dx

1 + a2dx
2 + a3dx

3
)
∧
(
b1dx

1 + b2dx
2 + b3dx

3
)

= (a2b3 − a3b2) dx2 ∧ dx3 + (−a1b3 + a3b1) dx3 ∧ dx1 + (a1b2 − a2b1) dx1 ∧ dx2

Note that the coefficients are those which would have appeared in the usual vector cross
product of α and β. The difference between the vector cross product and the exterior product
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2.2 Continuous modeling - concepts from Differential Geometry 25

is that the exterior product doesn’t require the linear space to possess a metric, in contrast
to the vector cross product which naturally assumes a metric, since it is defined as the vector
orthogonal to another vector, and orthogonality is a metric concept. Furthermore the wedge
product is defined in Rn for all n, whereas the cross product only for R3.

α β
α β∧

α β γ∧ ∧

α β

γ
1dy

2dy

3dy

(a)

α β
α β∧

α β γ∧ ∧

α β

γ
1dy

2dy

3dy

(b)

Figure 2.12: 2.12(a) The exterior product of two 1-forms α and β yields the 2-form α ∧ β.
2.12(b) Multiplying by yet another 1-form γ give the 3-form α ∧ β ∧ γ

The exterior product between α ∧ β and γ is the 3-form α ∧ β ∧ γ, Figure 2.12(b), and can
be expanded in terms of the basis 3-form dx1 ∧ dx2 ∧ dx3

α ∧ β ∧ γ =
(
a1dx

1 + a2dx
2 + a3dx3

)
∧
(
b1dx

1 + b2dx
2 + b3dx

3
)
∧
(
c1dx

1 + c2dx
2 + c3dx

3
)

= (a1b2c3 − a3b2c1 + a2b3c1 + a3b1c2 − a2b3c2 − a2b1c3) dx1 ∧ dx2 ∧ dx3

The single coefficient of a 3-form in R3 is the determinant of the coefficients of the original
three 1-forms. In vector calculus this would be (a× b, c), representing the volume of the
parallelepiped, spanned by the vectors a b and c.

The exterior product between forms in Rn

In general the action of the wedge product is given by a single operation between a p-form
and a q-form

αp ∧ βq = (−1)pq βq ∧ αp (2.2)

In particular for odd degree forms α2r+1 ∧ α2r+1 = 0. So

dxi ∧ dxj = −dxj ∧ dxi and dxi ∧ dxi = 0

which are the first two basic rules we introduced in definition 4.

2.2.3 Exterior Differential Forms

Exterior differential forms occur implicitly in all aspects of physics and engineering because
they are the natural objects appearing as integrands of line, surface, and volume integrals.
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26 Foundations of Mimetic Discretization Methods

The exterior product allows us to define a k-dimensional linear independent basis for k-forms.
Let E∗ be an n-dimensional vector space for 1-forms on an n-dimensional manifold Ω

E∗ =
{
dx1, dx2, ..., dxn

}
(2.3)

Then a space for k-forms is obtained by exterior multiplication

k∧
(Ω) = E∗ ∧ E∗ ∧ ... ∧ E∗, dim

k∧
(Ω) =

(
n
k

)
(2.4)

The dimension of the space for k-forms is equal to the binomial coefficient which gives the
number of ways, disregarding order, in which k objects can be chosen among n objects. An
object from this space, a k-form, can generally be represented as

α(k) =
∑

I

fI(x)dxI where dxI = dxi1 ∧ dxi2 ∧ ..... ∧ dxik (2.5)

Here the coefficients of α, fI(x), are smooth functions, which denote the spatial distribution
of some quantity, and dxI refers to the geometric object it is associated with. As can be
expected from the notation, k-forms can be readily integrated over a k-dimensional manifold.

Differential forms in R3

In three dimensional space, R3, we have 0-forms which are related to points, 1-forms to line
segments, 2-forms to surfaces and 3-forms which are associated with volumes. To define these
mathematical quantities we distinguish the following continuous spaces and corresponding
basis

∧0 (Ω) - HP - the space of 0-forms,

∧1 (Ω) - HL - the space of 1-forms, spanned by the basis 1-forms dx1, dx2 and dx3.

∧2 (Ω) - HS - the space of 2-forms, spanned by the basis 2-forms dx2 ∧ dx3, dx3 ∧ dx1 and
dx1 ∧ dx2

∧3 (Ω) - HV - the space of 3-forms, spanned by the basis 3-form dx1 ∧ dx2 ∧ dx3

Some examples of differential forms in R3 are

0-form

3S

3L

1P

1V

3S

3L

1P

1V

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

constitutive

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

outer orientedinner oriented

( )xϕ

( )1 xu ( )2 xu

( )3 xu

( )1 xq

( )2 xq

( )3 xq

( )xρ

A 0-form is simply a scalar function related to points - e.g. the velocity
potential of a perfect fluid.

ϕ0 = ϕ(x)

where x =
(
x1, x2, x3

)
are general curved coordinates.
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1-form

3S

3L

1P

1V

3S

3L

1P

1V

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

constitutive

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

outer orientedinner oriented

( )xϕ

( )1 xu ( )2 xu

( )3 xu

( )1 xq

( )2 xq

( )3 xq

( )xρ

A 1-form is a smooth function that lives on line-segments - e.g. the
velocity of a fluid element along a line segment.

u1 = u1(x)dx1 + u2(x)dx2 + u3(x)dx3

You can think of the dxi as infinitesimal increment in the general curved
coordinate xi.

2-form

3S

3L

1P

1V

3S

3L

1P

1V

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

constitutive

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

outer orientedinner oriented

( )xϕ

( )1 xu ( )2 xu

( )3 xu

( )1 xq

( )2 xq

( )3 xq

( )xρ

A 2-form dwells on surfaces - e.g. fluid flux through a surface.

q2 = q1(x)dx2 ∧ dx3 + q2(x)dx3 ∧ dx1 + q3(x)dx1 ∧ dx2

You can think of the dxi ∧ dxj as a surface element with sides dxi and
dxj .

3-form

3S

3L

1P

1V

3S

3L

1P

1V

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

constitutive

to
po

lo
gi

ca
l -

 in
tr

in
si

ca
lly

 d
is

cr
et

e

outer orientedinner oriented

( )xϕ

( )1 xu ( )2 xu

( )3 xu

( )1 xq

( )2 xq

( )3 xq

( )xρ

Finally we have a 3-form, a smooth function related to a volume element
- e.g. the specific mass (density) of a fluid-element.

ρ3 = ρ(x) dx1 ∧ dx2 ∧ dx3

dx1 ∧ dx2 ∧ dx3 can be regarded as an infinitesimal, possibly curved,
volume element with sides in the three basis directions.

Primal and dual complex of differential forms in R3

Following the reasoning from Section 2.1 we can distinguish between inner and outer oriented
differential forms. Figure 2.13 illustrates the different spaces for differential forms in R3,
where the outer oriented spaces are denoted with a tilde.
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inner orientation

outer orientation

PH

LH
SH

VH

VH


SH


LH


PH


Figure 2.13: Inner and outer oriented spaces for exterior differential forms in R3

We shall see that the different spaces are horizontally connected by the topological relations,
for which we shall introduce a single operator in Section 2.2.4, the exterior derivative d. The
vertical links are given by the constitutive equations, which are modeled by the Hodge- (dual)
star ∗. This operator contains all the metric properties and is treated in Section 2.2.5.

2.2.4 The exterior derivative d

Just like ordinary continuous smooth functions, differential forms can be differentiated. When
a k-form is differentiated, a (k + 1)-form is obtained. It is not more difficult to compute d in
a curvilinear coordinate system then in a Cartesian one.

Differential of a 0-form

Consider the 0-form ϕ0 = ϕ(x), then its differential is a 1-form, and is given in R3 by:

dϕ0 =

(
∂ϕ

∂x1

)
dx1 +

(
∂ϕ

∂x2

)
dx2 +

(
∂ϕ

∂x3

)
dx3

Observe that in Cartesian coordinates these coefficients are the components of the gradient
of ϕ(x)
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Exterior derivative of a 1-form

A 1-form in general coordinates is given by:

u1 = u1(x)dx1 + u2(x)dx2 + u3(x)dx3

then applying the exterior derivative d yields

du1 =du1(x) ∧ dx1 + du2(x) ∧ dx2 + du3(x) ∧ dx3

=

((
∂u1

∂x1

)
dx1 +

(
∂u1

∂x2

)
dx2 +

(
∂u1

∂x3

)
dx3

)
∧ dx1

+

((
∂u2

∂x1

)
dx1 +

(
∂a2

∂x2

)
dx2 +

(
∂u2

∂x3

)
dx3

)
∧ dx2

+

((
∂a3

∂x1

)
dx1 +

(
∂a3

∂x2

)
dx2 +

(
∂u3

∂x3

)
dx3

)
∧ dx3

=

(
∂u3

∂x2
− ∂u2

∂x3

)
dx2 ∧ dx3 +

(
∂u1

∂x3
− ∂u3

∂x1

)
dx3 ∧ dx1 +

(
∂u2

∂x1
− ∂u1

∂x2

)
dx1 ∧ dx2

In Cartesian coordinates these coefficients are the components of the curl.

Exterior derivative of a 2-form

Finally, for a 2-form q2 = q1(x)dx2 ∧ dx3 + q2(x)dx3 ∧ dx1 + q3(x)dx1 ∧ dx2 we obtain after
differentiation:

dq2 = dq1(x) ∧ dx2 ∧ dx3 + dq2(x) ∧ dx3 ∧ dx1 + dq3(x) ∧ dx1 ∧ dx2

=

(
∂q1

∂x1
+
∂q2

∂x2
+
∂q3

∂x3

)
dx1 ∧ dx2 ∧ dx3

whose single component is given in Cartesian coordinates by the divergence.

Important is to realize that we have a single operator, the exterior derivative d, which de-
pending on the k-form on which it acts, encodes the gradient, the curl or the divergence.

De Rahm complex

The examples above show that the exterior derivative d is a generalization of the grad, curl
and div operators and that

grad : HP → HL, curl : HL → HS and div : HS → HV , (2.6)

The (k + 1)-form obtained after applying the exterior derivative is called an exact form.
Applying the exterior derivative to an exact form dαk leads to the associated null space

d(dαk) = d2αk = 0k+2, (2.7)
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which in terms of the differential operators of vector calculus is written as

curl · grad = 0 and div · curl = 0 (2.8)

This gives rise an exact sequence, called De Rahm complex, which can be set up for both
the complex of inner oriented differential forms and the complex of outer oriented differential
forms

inner orientation

outer orientation

grad
curl

div

grad
curl

div
d

d

d

d

d

d

PH

LH
SH

VH

VH


SH


LH


PH




0



0

Figure 2.14: Double De Rahm sequence for respectively the inner oriented and outer oriented
differential forms in R3

2.2.5 The Hodge star operator ∗

Since the gradient maps 0-forms to 1-forms and the divergence maps 2-forms to 3-forms, we
can observe that it’s not directly possible to apply the Laplacian ∆ = div grad to a 0-form.

grad : HP → HL and div : HS → HV ,

To establish a link between the gradient and the divergence operator, we introduce the Hodge
star operator - ∗ - which assigns quantities to new ’dual’ geometric objects. In fact, the
Hodge maps k-forms to (n-k)-forms of opposite orientation. Some examples of the action of
the Hodge in R3 are

∗ 1 = dy1 ∧ dy2 ∧ dy3 and ∗ dy1 ∧ dy2 ∧ dy3 = 1
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∗ dy1 = dy2 ∧ dy3, ∗ dy2 = dy3 ∧ dy1 and ∗ dy1 = dy2 ∧ dy3

The Hodge star operator establishes a connection between the primal complex and the dual
complex. This mathematical operator encodes the metric dependency as part of the consti-
tutive relations in a physical theory.

inner orientation

outer orientation

grad
curl

div

grad
curl

div

∗
∗

∗

∗
d

d

d

d

d

d

PH

LH
SH

VH

VH


SH


LH


PH




0



0

Figure 2.15: The Hodge star operator ∗ establishes the vertical links between dual differential
forms of opposite orientation.

The metric is contained in the following inner product, which defines the Hodge

αk ∧ ∗βk =
〈
αk, βk

〉
dΩ (2.9)

The inner product between 0-forms is simply the inner product between two scalar functions.
More interesting is the inner product between 1-forms. Consider the following 1-forms u1 and
w1 in R2,

u1(x) = u1 dx
1 + u2 dx

2 and w1(x) = w1 dx
1 + w2 dx

2 (2.10)

written in terms of it’s vector components in local coordinates xi. The Hodge star inner
product, in equation 4.51, can consequently be written in terms of local coordinates as,

w1 ∧ ∗u1 =
(
w1 w2

)( 〈
dx1, dx1

〉 〈
dx1, dx2

〉
〈
dx2, dx1

〉 〈
dx2, dx2

〉
)(

u1

u2

)
dΩ (2.11)

MSc. Thesis René Hiemstra
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The matrix containing the inner products
〈
dxi, dxj

〉
is the covariant version of the metric

tensor, and is often denoted by gij . We can calculate these components, given a parametric
map y = Φ(x), stating physical coordinates yi in terms of local coordinates xj . We will
illustrate how to do this in Chapter 4, when we apply B-spline basis functions in mimetic
discretizations.

The co-derivative d∗

While the exterior derivative maps a k-form to a (k+1)-form, the co-derivative maps a k-form
to a (k − 1)-form

d :

(k)∧
(Ω) 7→

(k+1)∧
(Ω) and d∗ :

(k)∧
(Ω) 7→

(k−1)∧
(Ω) (2.12)

The exterior derivative is purely topological. The co-derivative, however, contains a metric
part and can be written in terms of the Hodge and the exterior derivative as

d∗ = (−1)n(k+1)+1 ∗ d∗ (2.13)

Note that from dd = 0 and ∗∗ = ±1 we have

d∗d∗ = ±(∗d∗)(∗d∗) = 0 (2.14)

The metric is given by an inner product, which illustrates that the co-derivative d∗ is the
Hilbert adjoint operator of the exterior derivative d

〈
dϕ(0), u(1)

〉
=
〈
ϕ(0), d∗u(1)

〉
(2.15)

The Laplacian ∆

The Laplacian is a very important operator in physics and also within this thesis. The
Laplacian acting on a differential k-form can be written in terms of the exterior derivative d
and the co-derivative d∗. Since d∗d∗ = d d = 0, we can write ∆ as

∆ = (d d∗ + d∗d)2 = d∗d + d d∗ (2.16)

In many physical problems the Laplacian is applied to a 0-form. Because d∗ϕ(0) = 0 (check
this in the De Rahm sequence in Figure 2.15), the Laplacian acting on a 0-form can be written
as

∆ ϕ(0) = (d∗d + d d∗)ϕ(0) = d∗d ϕ(0) (2.17)
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2.2.6 Pulling back forms

This section shows that the integration and differentiation of differential forms are operations
that can be entirely done without any notion of metric. By the use of a parametric map we can
differentiate and integrate differential forms in a rectangular domain and subsequentally make
a transformation to the real curvilinear domain. This makes calculation using differential
forms in curved domains as easy as calculation in rectangular domains.

Suppose αk is a k-form defined on an m-dimensional sub-manifold Ω of Rn, where the coor-
dinates are denoted by Y

(
y1, y2, ....., yn

)
:

α(k) =
∑

I

fI(y)dyI

We can substitute for ’new’ coordinates X
(
x1, x2, ....., xm

)
by restating the old variables in

terms of the new ones by functions:

y1 = φ1

(
x1, x2, ....., xm

)

...

yn = φn
(
x1, x2, ....., xm

)

In short notation we can write y = φ (x), where φ (x) = [φ1(x) ... φn(x)]T . The functions
φi are assumed to be smooth and defined on a common domain Ω′, an open subset of Rn
(diffeomorphism).

Applying the pull back φ∗ to αk basically comes down to applying a change of variable. We
substitute the ’old’ coordinate variables y with φ(x) and subsequently use the ’new’ variables
x as a linear basis. This means that

φ∗αk =
∑

I

(φ∗fI(y))
(
φ∗dyI

)
= fI (φ(x)) dφI (2.18)

Observe that the pullback operation turns k-forms on the target domain Ω into k-forms on
the parametric domain. Thus while φ : Ω′ 7→ Ω,

φ∗ :

k∧
(Ω) 7→

k∧
(Ω′) (2.19)

The pullback operation is nicely compatible with exterior differentiation and integration of
forms. This is because the pull back operator φ∗ commutes with respect to the exterior
derivative d and the wedge product ∧, i.e.

φ∗dαk = dφ∗αk and φ∗(αk ∧ βl) = (φ∗αk) ∧ (φ∗βl) (2.20)
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The proof in case of a 0-form f (0) looks as follows

φ∗df (0) = φ∗

(
∂f (0)

∂yi
dyi

)
=
∂φ∗f (0)

∂φi
dφi =

∂φ∗f (0)

∂φi
∂φi

∂xj
dxj =

∂φ∗f (0)

∂xj
dxj = dφ∗f (0)

The fact that the pull back commutes with the exterior derivative and the wedge product is
why integration of differential forms in curved space is no more difficult as in Cartesian space.
Consider the pull back of the 1-form in example 2.2.2

EXAMPLE 2.2.2 Suppose α = a1(y)dy1 + a2(y)dy2 is a 1-form on the two-dimensional manifold
Ω in R2, where the euclidean coordinates are denoted by Y

(
y1, y2

)
. Substituting for ’new’ coordinates

X
(
x1, x2

)

y1 = Φ1

(
x1, x2

)

y2 = Φ2

(
x1, x2

)

y = Φ (x) can be regarded as a parametric map from domain Ω′ to Ω

Φ : Ω′ 7→ Ω

α

1x

2x

1y

2y

Φ

'Ω Ω

1
1a dy

2
2a dx

1
1a dx

2
2a dy

∗Φ

Figure 2.16: Pulling back 1-form α from physical space Ω to the reference domain Ω′.

The basis co-vectors change in the following sense

dy1 =
∂y1

∂x1
dx1 +

∂y1

∂x2
dx2 and dy2 =

∂y2

∂x1
dx1 +

∂y2

∂x2
dx2

In terms of the parametric map Φ this transformation looks as follows

(
dy1

dy2

)
=

(
∂Φ1

∂x1
∂Φ1

∂x2

∂Φ2

∂x1
∂Φ2

∂x2

)(
dx1

dx2

)
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2.2 Continuous modeling - concepts from Differential Geometry 35

The 1-form α can be expressed in the new coordinate system as

α = (a1(y) a2(y))

(
∂Φ1

∂x1
∂Φ1

∂x2

∂Φ2

∂x1
∂Φ2

∂x2

)(
dx1

dx2

)
= ã1(y)dx1 + ã2(y)dy2

Since α is now expressed in terms of the dx1 and dx2, we can perform topological operations like
differentiation and integration in the reference domain.

Now let us try to find an explicit expression for the pullback of forms that we are going to
encounter in R3. Suppose α(k) is a k-form defined on a sub manifold Ω of R3, where the
coordinates are denoted by Y

(
y1, y2, y3

)
. The pullback φ∗αk is a k-form in the reference

domain defined on an open subset U also in R3 with coordinates X
(
x1, x2, x3

)
.

Pullback of 0-forms in R3

The pullback of the 0-form α(0) = f(y) in R3 , the pullback of a single function, has already
been shown to be

φ∗α(0) = f(φ(x)) (2.21)

Pullback of 1-forms in R3

The pullback of the 1-form α1 =
3∑
i=1

fi(y)dyi in R3 is

φ∗α1 =
3∑

j=1

3∑

i=1

fi(φ(x))
∂φi

∂xj
dxj (2.22)

Pullback of 2-forms in R3

For a 2-form

α2 =
∑

1≤i<j≤3

fij(y)dyi ∧ dyj (2.23)

the pullback is given by:

φ∗α2 =
∑

1≤k<l≤n

∑

1≤i<j≤m
fij (φ(x))

∣∣∣∣∣
∂φi

∂xk
∂φi

∂xl
∂φj

∂xk
∂φj

∂xl

∣∣∣∣∣ dx
k ∧ dxl (2.24)

Here the geometric significance of determinants becomes clear. They act as a kind of volume
change factor on the parametric space. Higher degree differential forms act similar when the
pullback operator is applied.
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36 Foundations of Mimetic Discretization Methods

Pullback of 3-forms in R3

The result of the pullback on the 3-form α(3) = f(y)dy1 ∧ dy2 ∧ dy3 in 3-dimensional space
is:

φ∗α(3) = f(φ(x))

∣∣∣∣∣∣∣

∂φ1

∂x1
∂φ1

∂x2
∂φ1

∂x3

∂φ2

∂x1
∂φ2

∂x2
∂φ2

∂x3

∂φ3

∂x1
∂φ3

∂x2
∂φ3

∂x3

∣∣∣∣∣∣∣
dx1 ∧ dx2 ∧ dx3 (2.25)

2.2.7 Integrating forms

Exterior differential forms are the natural mathematical objects appearing as integrands over
k-dimensional geometric manifolds. Integration is thus straightforward. Taking orientation
into account we can pull back a k-form and perform the integration in the reference domain

∫

Ω

α(k) =

∫

Ω′

φ∗α(k) (2.26)

The topological relations can be stated in discrete form by the generalized Stokes theorem.
It contains as special cases the classical integration definitions of vector calculus, namely the
gradient, Gauss and Stokes theorem.

Theorem 2.2.1 Generalized Stokes Theorem. Let α be a (k− 1)-form on a sub manifold Ωk of Rn
with boundary ∂Ωk, then ∫

Ωk

dα(k−1) =

∫

∂Ωk

α(k−1) (2.27)

Usually the domain under consideration, Ωk and ∂Ωk, is partitioned into sub domains (cells),
we can collect in a k-chain. Performing integration over this k-chain provides us a collection
of discrete global quantities, we can similarly collect in a so called k-cochain. The concept
of chain and cochain are fundamental to Algebraic Topology, the discrete counterpart of
Differential Geometry. In fact, cochains are the discrete analogue of differential forms. In the
next section we shall study some important concepts from Algebraic Topology which provides
us with the tools to set up a discrete analogue to the De Rahm sequences for both inner and
outer oriented differential forms.

2.3 Discrete modeling - concepts from Algebraic Topology

In this section we introduce discrete geometry by means of Algebraic Topology. Topology
describes the relations between different geometric objects, however without the notion of
distance or measure.
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2.3 Discrete modeling - concepts from Algebraic Topology 37

Because topological relations do not contain any metric they have the same form and value
on topological equivalent grids. The discretization of these relations is the same on a nice
uniform Cartesian mesh and on a highly curved grid, see Figure 2.17! Secondly these relations
don’t change on moving meshes, as long as the topology doesn’t change. In this section we
shall work in topological space only; most examples will be given for the 2-dimensional case,
since these are more illustrative.

chart

physical domain reference domain
1x

2x

Figure 2.17: Topologically equivalent grids

2.3.1 Cell complexes

The geometric domain under consideration can be subdivided into a series of discrete sub
domains, which in the context of Algebraic Topology are called cells. In three dimensional
space we make distinction between

- 0-cells - representing vertices (points);

- 1-cells - edges (lines);

- 2-cells - faces (surfaces);

- 3-cells - representing volumes:

0-cells are logically connected to 1-cells, 1-cells to 2-cells and similarly 2-cells are connected
to 3-cells. If a k-cell is the boundary of a (k + 1)-cell, we shall call them the face of the
(k+ 1)-cell, see Figure 2.18(a). The opposite connection - when a (k+ 1)-cell is connected to
a k-cell - the (k + 1)-cell is called the coface of the k-cell, illustrated in Figure 2.18(b).

MSc. Thesis René Hiemstra



38 Foundations of Mimetic Discretization Methods

(a) Faces (b) Cofaces

Figure 2.18: Faces and cofaces in R2. Figure (a) depicts a 1-cell and a 2-cell and their accom-
panying faces, the 0-cells and 1-cells at their boundary. Figure (b) illustrates the inverse relation.
The co-faces of a 1-cell are its neighboring 2-cells and the co-faces of a 0-cell are its neighboring
1-cells.

Definition 5 In Rn, the collection of all oriented 0, 1,... ,n-cells is called the cell complex K

Figure 2.19 depicts a cell complex in two-dimensional space. In practice a cell complex is
simply the computational mesh in topological space.

1x

2x

Figure 2.19: The two dimensional mesh in Figure 2.17 can for example be divided into 0-,1-
and 2-cells. The collection of all these k-cells forms the cell complex, which in practical terms is
simply our primal grid in topological space.

In order to assign quantities to the different k-cells in a cell-complex and to perform operations
on them, we need to number and orient all cells inside the complex. The numbering can be
performed in any arbitrary fashion, but the orientation needs to be chosen. Analogous to
continuous space where we made distinction between differential forms associated to inner
or outer oriented infinitesimal geometric objects, discrete k-cells are induced with either an
inner or outer orientation. Figure 2.20 illustrates the two types of orientations for geometric
objects in 2-dimensional space.
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+

+

+ −

−

−

+

+

+

−

−

−

x

y

x

y

(a) Inner orientation

+

+

+ −

−

−

+

+

+

−

−

−

x

y

x

y

(b) Outer orientation

Figure 2.20: Inner and outer oriented geometric objects in R2, showing a ’+’ sign for compatible
directions and ’-’ sign for incompatible directions between a k-cell and its boundary (k − 1)-cell.

Since we make the distinction between inner and outer oriented geometric objects, we can
choose to place all inner oriented objects on a primal complex and all outer oriented objects
on a dual complex, or vice versa.

1P 2P 3P 4P

6P5P

2S1S 3S

4S
5S 6S

1L 2L 3L

5L 6L 7L

8L 9L 10L

11L 12L 13L 14L

15L 16L 17L

4L

7P 8P

10P9P 11P 12P

1x

2x

Figure 2.21: A numbered, outer oriented 2-dimensional primal cell complex. In the numbering of
the different cells we make the distinction between 0-cells assigned by P̃ , 1-cells by L̃ and 2-cells
by S̃, where the tilde refers to the outer orientation. The numbering is arbitrary

If the outer oriented objects are placed on the primal cell complex, the inner oriented objects
should be placed on the dual cell complex. The dual cell complex associates to every k-cell on
the primal complex an (n-k)-cell of opposite orientation. The number assigned to a (n-k)-cell
on the dual cell-complex is chosen the same as the connecting k-cell on the primal complex.
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1P 2P 3P

4P 5P 6P

8L 9L 10L

11L
12L 13L

15L 16L
17L

1L 2L 3L

4L 5L 6L 7L

14L

4S

5S 6S

1S 2S 3S

7S 8S

9S 10S 11S 12S

1P 2P 3P 4P

6P
5P

2S1S 3S

4S 5S 6S

1L 2L 3L

5L 6L 7L

8L 9L 10L

11L 12L 13L
14L

15L 16L 17L

4L

7P 8P

10P9P 11P
12P

1x

2x

Figure 2.22: The dual cell complex in R2. Inner oriented 0-cells Pi are associated with outer
oriented 2-cells S̃i on the primal complex; inner oriented 1-cells Li act dual to outer oriented
1-cells L̃i on the primal cell complex; and finally inner oriented 2-cells Si on the dual complex act
dual to inner oriented 0-cells P̃i on the primal complex.

2.3.2 Chains and the boundary operator ∂

Following the numbering, we can collect all k-cells inside the cell complex K to form a k-chain,
denoted by c(k). A k-chain is formal linear combination of k-cells,

c(k) =
{
s1c

(k)
1 , s2c

(k)
2 , . . . , sp−1c

(k)
p−1, spc

(k)
p

}
(2.28)

where si is either +/ − 1, denoting whether the k-cell is induced with a positive or negative
sense of direction with respect to the coordinate axes, the rules from Figure 2.20.

The different k-chains inside the cell complex are connected by means of the boundary oper-
ator, denoted as ∂. Applying the boundary operator to a chain returns its boundary (k− 1)-
chain,

∂ : cp 7→ cp−1 (2.29)

So for a two dimensional cell complex we have c(2) ∂→ c(1) ∂→ c(0). Applying the boundary
operator twice leads to the null space; i.e. the boundary of the boundary is empty,

∂∂cp = 0 (2.30)

This is illustrated in Example 2.3.1 and Figure 2.24.
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2.3 Discrete modeling - concepts from Algebraic Topology 41

EXAMPLE 2.3.1 Consider the numbered and oriented primal and dual cell complexes in Figure
2.23. We can collect all outer oriented 0-,1- and 2-chains on the primal complex in corresponding
k̃-chains. All k̃-cells have been given positive direction with respect to the coordinate axes, so

c(0̃) =
{
P̃1, P̃2, P̃3, P̃4, P̃5, P̃6

}
, c(1̃) =

{
L̃1, L̃2, L̃3, L̃4, L̃5, L̃6, L̃7

}
and c(2̃) =

{
S̃1, S̃2

}

Similarly we can collect all inner oriented k-cells from the dual complex in k-chains

c(0) = {P1, P1} c(1) = {L1, L2, L3, L4, L5, L6, L7} and c(2) = {S1, S2, S3, S4, S5, S6}

x

y

1P 2P 3P

4P 6P5P

2S1S

1L 2L

3L 4L 5L

6L 7L

(a) Primal cell complex

x

y

1L 2L

3L
4L 5L

6L
7L

1S 2S

1P 2P

1P 2P 3P

4P 6P5P

2S1S

1L 2L

3L 4L 5L

6L 7L 6S5S

3S

4S

(b) Dual cell complex

Figure 2.23: A numbered and positively oriented two dimensional cell complex
Taking the boundary of the outer oriented 2-chain twice leads to an empty 0-chain.

c(2̃) = S̃1 + S̃2

∂c(2̃) = ∂S̃1 + ∂S̃2 =
{
L̃1 + L̃3 − L̃4 − L̃6

}
+
{
L̃2 + L̃4 − L̃5 − L̃7

}

∂∂c(2̃) = ∂L̃1 + ∂L̃3 − ∂L̃6 + ∂L̃2 − ∂L̃5 − ∂L̃7

=
{
P̃1 − P̃2

}
+
{
P̃2 − P̃3

}
+
{
−P̃1 + P̃4

}
−
{
−P̃3 + P̃6

}
−
{
P̃4 − P̃5

}
−
{
P̃5 − P̃6

}

= 0

(a) c(3) (b) ∂c(3) (c) ∂∂c(3)

Figure 2.24: The boundary of the boundary is empty. Observe that the third figure shows opposed
orientation of the 1-cells that comprise the edges of the volume. They consequently cancel each
other out.
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42 Foundations of Mimetic Discretization Methods

2.3.3 Cochains and the co-boundary operator δ

We have seen in the previous section that exterior differential k-forms are the natural math-
ematical objects appearing as integrands over k-dimensional manifolds. After the pull back
is applied, integration can be performed in topological space, and we can integrate ωk over a

k-chain c(k) =
{
s1c

(k)
1 , s2c

(k)
2 , . . . , sp−1c

(k)
p−1, spc

(k)
p

}

∫

c(k)

ωk =

p∑

i=1

si

∫

c
(k)
i

ωk =

p∑

i=1

si · ω̄(k)
i = ω̄(k) (2.31)

ω̄(k) is called a k-cochain. A cochain is in fact, simply a set of ordered discrete numbers,
which are associated with k-chains of the same orientation and numbering. For example, in
the dual cell complex of Figure 2.23, we can associate discrete values of the potential ϕ̄i to
all inner oriented 0-cells in the cell complex and collect these in a 0-cochain; assign discrete
values of the velocity ūi to all inner oriented 1-cells, collected in a 1-cochain; and associate
discrete values of the vorticity ω̄i with all inner oriented 2-cells, collected in a 2-cochain:

ϕ̄(0) = {ϕ̄1, ϕ̄2, . . . , ϕ̄5, ϕ̄6} , ū(1) = {ū1, ū2, . . . , ū6, ū7, } and ω̄(2) = {ω̄1, ω̄2}

Similarly we can associate outer oriented discrete quantities to all k̃-cells of the outer oriented
primal cell complex in Figure 2.23 and collect these in k̃-cochains,

ψ̄(0̃) =
{
ψ̄1, ψ̄2

}
, q̄(1̃) = {q̄1, q̄2, . . . , q̄6, q̄7, } and m̄(2̃) = {m̄1, m̄2, . . . , m̄5, m̄6, }

Here ψ̄i can represent for example discrete values of the stream function; q̄i discrete values of
fluxes and m̄ discrete mases.

Next we introduce a very important operation, the co-boundary operator δ. It allows us to
transfer quantities from k-cells to (k + 1)-cells, and is the formal adjoint of the boundary
operator ∂. The co-boundary operator can be introduced by means of the generalized Stokes
theorem in terms of chains and cochains,

δω̄(k−1)
(
c(k)
)

= ω̄(k−1)
(
∂c(k)

)
(2.32)

Compare this with the generalized Stokes theorem in terms of exterior differential forms,

∫

c(k)

dω(k−1) =

∫

∂c(k)

ω(k−1) (2.33)

The co-boundary operator δ thus performs the same task on cochains as the exterior deriva-
tive d on forms and can consequently be considered as the discrete analogue of the exterior
derivative. It allows us to state the topological relations in purely discrete form by use of
the generalized Stokes theorem, stated in terms of chains and cochains. As we have seen, the
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(a) ψ̄(0̃) = {−5, 9, 4,−1, 7, 2}
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(b) δψ̄(0̃) = q̄(1̃) = {−14, 5, 4,−2,−2,−8, 5}

Figure 2.25: Action of the co-boundary operator on an outer oriented 0̃-cochain, relating for
example discrete values of the streamfunction ψ̄(0̃) with discrete fluxes q̄(1̃).
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(a) q̄(1̃) = {−1,−2, 2, 7, 4, 9,−5}
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(b) δq̄(1̃) = m̄(2̃) = {−15, 6}

Figure 2.26: Action of the co-boundary operator on an outer oriented 1̃-cochain, relating for
example discrete fluxes q̄(1̃) with discrete mass-densities m̄(2̃).
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(b) δϕ̄(0) = ū(1) = {7, 15, 7, 8,−15,−7,−15}

Figure 2.27: Action of the co-boundary operator on a 0-cochain, relating for example discrete
potentials ϕ̄(0) and discrete velocities ū(1).

exterior derivative d behaves like the gradient, curl and divergence, The co-boundary operator
is the discrete version of the exterior derivative and can consequently be associated with the
gradient curl and divergence in the same way. Figures 2.25, 2.26, 2.27 and 2.28 illustrate the
action of the co-boundary.

Similar to a double action of the exterior derivative, a double action of the co-boundary
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(a) ū(1) = {8,−2, 3,−5, 4,−7, 6}
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(b) δū(1) = ω̄(2) = {5,−5,−2,−4, 8,−2}

Figure 2.28: Action of the co-boundary operator on a 1-cochain, relating for example discrete
velocities ū(1) with discrete vorticity ω̄(2)

operator is zero

δδ = 0 (2.34)

This property is illustrated for a two-dimensional cell complex in Figure 2.29.
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Figure 2.29: The vector identities curl · grad and div · curl lead to the associated null space. A
double action of the co-boundary operator to a k-cochain leads to an empty (k + 2)-cochain.

Remember the exact sequence, or De Rahm complex

R → HP
grad→ HL

curl→ HS
div→ HV → 0 (2.35)

with the familiar vector identities grad , curl and div ; the gradient mapping values from
points to lines, the curl mapping from lines to surfaces and the divergence mapping values
from surfaces to volumes.

The co-boundary operator is the discrete version of the div, grad and curl operators, allowing
us to formulate (2.35) as an exact discrete sequence

R → C(0) δ→ C(1) δ→ C(2) δ→ C(3) → 0 (2.36)

where C(k) represents the space of k-cochains. In such a way an exact discrete sequence can
be set up for both the primal and dual cell complex
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2.3.4 Incidence matrices

A numbered and oriented cell complex possesses a matrix representation of the coboundary
operator. These so called incidence matrices thus allow metric free, discrete representations
of the grad, curl and div operators.

Definition 6 Given a cell complex consisting of a collection of k-cells and its cofaces, a set of (k+1)-
cells. If all k-cells and (k+1)-cells are numbered and oriented, then we can set up an incidence matrix,
defined by

D(k+1,k)
ij =





0 if the j-th k-cell is not a face of the i-th (k + 1)-cell

1 if the j-th k-cell is a face of the i-th (k + 1)-cell with the same orientation

−1 if the j-th k-cell is a face of the i-th (k + 1)-cell with opposite orientation

(2.37)

In n dimensions we have n incidence matrices. For instance in three-dimensional space we
have the three matrices

D(3,2), D(2,1) and D(1,0)

Consider the numbered and oriented cell complex in Figure 2.30. D(1̃,0̃) connects outer oriented
points with outer oriented lines and D(2̃,1̃) connects outer oriented lines with outer oriented
surfaces.
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(b) Incidence matrix from points to lines
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(c) Incidence matrix from lines to surfaces

Figure 2.30: Incidence matrices on the primal cell complex K in R2
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One can readily check that the incidence matrices are a matrix representation of the
coboundary-operator.

EXAMPLE 2.3.2 Take ψ̄(0̃) = {−5, 9, 4,−1, 7, 2, } and δψ̄(0̃) = q̄(1̃) = {−14, 5, 4,−2,−2,−8, 5}
from Figure 2.25. The action of the coboundary δ on ψ̄(0̃) in terms of the incidence matrix D(1̃,0̃) is

δψ̄(0̃) = q̄(1̃) =⇒ D(1̃,0̃) ψ̄(0̃) =




1 −1 0 0 0 0
0 1 −1 0 0 0
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
0 0 0 1 −1 0
0 0 0 0 1 −1




·




−5
9
4
−1
7
2




=




−14
5
4
−2
−2
−8
5




EXAMPLE 2.3.3 In example 2.25 we had the 1̃-cochain q̄(1̃) = {−1,−2, 2, 7, 4, 9,−5} and 2̃-

cochain m̄(2̃) = {−15, 6}. The action of the coboundary operator on q̄(1̃) in terms of the incidence
matrix D̃(2,1) is,

δq̄(1̃) = D(2̃,1̃) · q̄(1̃) = m̄(2̃) =⇒
(

1 0 1 −1 0 −1 0
0 1 0 1 −1 0 −1

)
·




−1
−2
2
7
4
9
−5




=

(
−15

6

)

Incidence matrices can also be set up for the dual cell complex. Consider the numbered
and oriented dual cell complex in Figure 2.31. D(1,0) connects points with lines on the dual
complex. Similarly D(2,1) connects lines with surfaces on the dual complex.
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(a) Dual cell complex K̃
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(b) Incidence matrix from points
to lines
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(c) Incidence matrix from lines to surfaces

Figure 2.31: Incidence matrices on the dual complex in R2. Note that the orientation of the
dual cell complex is opposite to that of the primal complex.

The incidence matrices ’mimic’ some very important properties of the continuous vector
identities, the div, grad and the curl. First of all,

D(2̃,1̃) · D(1̃,0̃) = 0 and D(2,1) · D(1,0) = 0

In general we have that

D(k+2,k+1) · D(k+1,k) = 0

These discrete relations are analogue to the relations curl · grad = 0 and div · curl = 0 in
continuous space. Furthermore, observe in Figures 2.30 and 2.31 the following important
symmetries between the incidence matrices from the primal complex and the incidence ma-
trices on the dual complex:

D(1,0) = (D(2̃,1̃))T and D(2,1) = (D(1̃,0̃))T

In general we have in n-dimensional space:

D(n−k+1,n−k) = (D( ˜k+1,k̃))T (2.38)
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This corresponds in R3 to the symmetry relations that div = −gradT and curl = −curlT .
Note the absence of the minus sign. These are included in the orientation.

2.3.5 Discrete De Rahm sequence

Similar as (2.35), we can set up an exact discrete sequence for the dual cell complex. This
sequence is set up in reverse order such that discrete quantities associated to p-cells on the
primal complex can be related to quantities associated with (n-p)-cells on the dual complex.

R → C(0) δ→ C(1) δ→ C(2) δ→ C(3) → 0

0 ← C̃(3) δ← C̃(2) δ← C̃(1) δ← C̃(0) ← R
(2.39)

Compare the above discrete De Rahm sequences with Figure 2.14. To summarize, these
two sequences are intrinsically discrete and have a purely topological character. They are
vertically connected by the constitutive equations, which contain the metric and material
parameters. Since the constitutive equations can only be represented in continuous space, we
need a continuous representation constructed from the discrete quantities on the primal and
dual cell complex. In the following section we introduce two basic operations which provide
the connection between the continuous and the discrete.

2.4 Differential Geometry and Algebraic Topology connected

In the previous section we have seen that the topological relations can be exactly represented
by discrete topological structures: the incidence matrices. The metric dependent relations,
however, - the hodge star, the co-differential etc - can only be explained in terms of the
continuous concepts introduced from the mathematical field of Differential Geometry. We
thus need to connect the fields of Differential Geometry and Algebraic Topology.

2.4.1 Interpolation of differential forms / Reduction to cochains

We follow the work of Bochev and Hyman [16, 15] and introduce two separate operators - Rk
and Ik - which define all discrete structures in our framework:

Rk : Λk 7→ C(k) and Ik : C(k) 7→ Λkh (2.40)

Rk is called the reduction map, reducing a continuous differential form fk ∈ Λk(Ω) to a
discrete cochain f̄ ∈ C(k); and Ik the interpolation map, reconstructing the cochain f̄ back to
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2.4 Differential Geometry and Algebraic Topology connected 49

a finite dimensional representation of a continuous differential form fkh ∈ Λkh(Ω). fkh is thus a
finite dimensional approximation of fk.

The map R should satisfy the important property that Rd = DR, i.e. the following is a
commutative diagram:

Λk(Ω)
d

- Λk+1(Ω)

C(k)

Rk
? D(k+1,k)

- C(k+1)

Rk+1

?

Λkh(Ω)

Ik
?

Rk

6

d
- Λk+1

h (Ω)

Ik+1

?

Rk+1

6

Differential forms and cochains are naturally related by integration. The straightforward
choice for the reduction operation is therefore the DeRahm map

〈
Rω, c(k)

〉
=

∫

c(k)

ω (2.41)

The reduction of a 0-form would consequently provide a set of discrete points on the function;
reduction of a 1-form leads to a set of line integrals; similarly the reduction of a 2-form by
the DeRahm map would give a collection of surface integrals, etc.

The DeRahm map follows the commuting diagram Rd = DR by construction. Using the
generalized Stokes theorem and the fact that the boundary operator is the adjoint of the
co-boundary provides the proof,

〈
Rdω, c(k+1)

〉
=

∫

c(k+1)

dω =

∫

∂c(k+1)

ω =
〈
Rω, ∂c(k+1)

〉
=
〈
δRω, c(k+1)

〉
(2.42)

The DeRahm map is however not the only possible reduction operator, as we shall see in
Chapter 4, when we develop a reduction operator for B-splines.

The choice of interpolation operator is quite flexible, since there are a multitude of ways in
which global quantities can be used to reconstruct local approximations. For example, the
Finite Difference Method reconstructs quantities in the form of a Taylor series expansion. The
Finite Element Method uses an expansion in terms of basis functions. However, to obtain
consistent discrete approximations, I should satisfy two conditions. First of all, I should be
the right inverse of R,

RI C(k) = C(k) =⇒ RI = id (2.43)
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Secondly, the interpolation map I should be an approximate left inverse of R

IR Λk = Λkh = Λk +O
(
hp+1

)
=⇒ IR = id+O

(
hp+1

)
(2.44)

where h and p+ 1 denote respectively the partitioning size and the approximation order. Of
course the approximation order also depends on the smoothness of the exact solution.

Appendix A illustrates interpolation of cochains by a general class of basis functions.

Before we apply B-splines to connect the two fields of Differential Geometry and Algebraic
Topology in Chapter 4, we introduce them in the context of geometry and mesh generation
in the following chapter.
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Chapter 3

B-splines and NURBS as a basis for
geometry and mesh generation

In this chapter we introduce B-splines and Non-Uniform Rational B-splines (NURBS) in the
context of geometry and mesh generation. We will see that the properties that make B-splines
and NURBS attractive for use in CAD, also make them attractive for use in analysis. We will
first introduce some of the common CAD vocabulary, and relate with FEA. Subsequently we
introduce B-splines in one and two dimensions and study its interesting refinement properties.
Finally, we discuss the construction of NURBS from B-splines and review the state of the art
concerning geometry and mesh generation for IsoGeometric Analysis.

Knowledge of the construction of B-splines, thoroughly explained in this chapter, will provide
a solid background for Chapter 4, where we construct B-spline spaces of differential forms for
use in analysis.

3.1 Things to know about CAD before starting IsoGeometric
Analysis

Computer Aided Geometric Design (CAGD) is concerned with the generation of smooth
curves and surfaces, which generally have to satisfy a large number of constraints. To achieve
this using a single polynomial requires a high degree, since a p-degree polynomial can satisfy
p + 1 constraints. High degree polynomials are inefficient to process, can become unstable
and have the disadvantage that changes are global, while local control is demanded [54].

These issues can obviously be overcome by using more than one polynomial element. Succes-
sive polynomial elements should join with some level of continuity and this continuity should
be maintained during editing of the piecewise polynomial. A function constructed from poly-
nomial elements joined together with some prescribed level of continuity between element
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52 B-splines and NURBS as a basis for geometry and mesh generation

interfaces, is called a spline.

The word spline, finds its origin in shipbuilding, where it refers to a bendable stroke of wood,
along which smooth curves could be drawn for the lines plan of a ship. Metal weights, called
ducks, were placed such that the spline had its preferred shape on the drawing board, see
Figure 3.1. Basic theory of structures explains that the bending moment M is a continuous

Figure 3.1: Ducks holding the spline in place on the drawing board

function along the spline, except at a duck, where M is generally only C0 continuous. Since
the curvature of the spline is proportional to M , κ = M

EI , the spline is curvature continuous
everywhere. Curvature continuity is an important requirement in design, since it guaran-
tees the smooth change of reflections. A spline of degree three (4th order) has a maximum
continuity of C2, and is thus curvature continuous. Cubic degree splines are therefore most
commonly used in CAD.

For a polynomial basis to be useful in a CAD environment, the required continuity should
be build directly into the basis. Otherwise, inter-element smoothness would be cumbersome
to maintain. This is exactly what made B-splines such a success in CAGD. B-splines, where
the B stands for basis, are the natural basis functions in which to define splines. Smoothness
is directly built into the B-spline basis and can be arbitrarily chosen from C0, to maximum
Cp−1 continuity, between elements.

While B-splines are convenient for free form modeling, they are not capable of exactly rep-
resenting some simple conic sections like circles and ellipsoids, making them less suitable for
CAD. This why today, the facto standard technology in CAD is a generalization of B-splines
called NURBS. NURBS stands for Non-Uniform Rational B-splines and are rational functions
of B-splines. NURBS inherit all their favorable properties for use in free form design, like the
build-in inter-element continuity and the local control. NURBS, however, extend B-splines
by allowing the exact representation of conic sections.

In the context of IsoGeometric Analysis, CAD is not merely a tool to create the geometric
model. It simultaneously delivers a coarse mesh, which is ready for use in analysis. Because
this coarse mesh represents the exact geometry, the mesh can be refined and order elevated,
without communication with the CAD program. This means a giant leap forward compared to
traditional FEA, where CAD geometry needs to be translated into a format which is suitable
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for finite element analysis. This process is highly labor intensive, often costing more time
than the actual analysis, and besides is accompanied by a loss in geometric precision [42].
Moreover, at every refinement step, communication is required with a CAD -program.

Just as with standard polynomials applied in iso-parametric FEM, we define NURBS and
B-spline geometry using a parametric map which consist of a linear combination of a set of
basis functions and associated degrees of freedom. In the curve case we have

C(x) =

n∑

i=0

P̄i Ni,p(x), a ≤ x ≤ b,

where the counter n is either bigger or equal to the degree p. (Remember that for standard
polynomials, n is always equal to p).

Figure 3.2 illustrates such a parametric map y = C(x), from parameter space to physical
space, for a B-spline curve of degree 3. The curve consist out of four polynomial pieces which
join smoothly (C2 continuous) at element interfaces. These locations are called the knots or
breakpoints. In the following we shall only refer to them as knots. The degrees of freedom are
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Figure 3.2: A cubic B-spline curve in two-dimensional space defined as C(x) =
6∑
i=0

P̄i Ni,3(x), 0 ≤ x ≤ 4. The curve consists out of 4 polynomial pieces joined together

with curvature continuity.

called control points. Their collection forms a control polygon, generally called the control
mesh. At the start and end points, the spline is clamped in. This allows to accurately
define the start/end points and the tangent, see figure 3.2. The control mesh is a first order
approximation of the curve. In fact, the spline is always confined in the convex hull of the
control mesh. This is called the convex hull property, which in practice means that the spline
cannot wiggle more than the control mesh does. This is exactly why splines are not polluted
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by Runge’s phenomena. The control mesh allows intuitive editing of the B-spline or NURBS
curve. This is yet another reason why B-splines and NURBS are so convenient in geometric
design.

Unlike standard finite element basis functions, B-splines and NURBS basis functions are local
to patches, rather than elements, see Figure 3.3. A patch is a rectangular sub domain which
is partitioned into elements. Patches can therefore, in the context of finite element analysis,
be seen as macro- or super-elements. As illustrated in Figure 3.3(b), geometry is defined
patch wise by way of a single parametric map from parameter space to the physical space. In
contrast, standard finite elements each have their own mapping from the parent element to
physical space, see Figure 3.3(a).

1x

2x 2y

1y

(a) FEA

1x

2x 2y

1y

(b) IGA

Figure 3.3: In classical finite element analysis (3.3(a)), the parameter space is local to elements.
Each element has its own mapping from the reference element to physical space. In NURBS based
IsoGeometric Analysis on the other hand (3.3(b)), the B-spline parameter space is local to the
entire patch. Internal knots partition the patch into elements. A single B-spline maps parameter
space to physical space. From Cottrell et al. [22]

In contrast to standard polynomial bases, B-spline and NURBS geometry allow two definitions
of a mesh. As in standard FEM there is the physical mesh denoting the geometry partitioned
into elements. Secondly there is the notion of the control mesh which controls the geometry.
An example illustrating the two definitions of the mesh, is given in Figure 3.4. This example
shows a CAD-model of a sailing yacht, where only half of the hull is modeled because of
symmetry. This geometry is modeled using one patch only.

(b) Physical mesh (c) Control mesh

(a) CAD half model of a sailing yacht
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(b) Physical mesh (c) Control mesh

Figure 3.4: A CAD half model of a sailing yacht, modeled using one patch only. NURBS are
characterized by two definitions of a mesh: a physical mesh of the geometry, Figure (b); and a
control mesh, which controls the geometry, Figure (c).

3.2 B-splines

Now we are familiar with the CAD vocabulary, we can discuss the generation of NURBS and
their derivatives. Because NURBS are constructed from B-splines, it is straightforward to
start discussing B-splines.

3.2.1 B-spline basis functions

There are several ways to define B-spline basis functions and to prove their important prop-
erties. Originally, B-splines were invented by Schoenberg [58, 59], whom is most often called
the father of splines. He derived B-splines using divided differences [26], showing that B-
splines have in fact much in common with finite differencing. From this definition on, Cox
[24] and de Boor [27] independently deduced a stable algorithm which recursively computes
the B-spline basis of certain degree and continuity, known as the Cox-DeBoor recursive for-
mula. This algorithm paved the way of application of B-splines in computer graphics and
computer-aided geometric design.

A totally different way of looking at B-spline theory, are Polar Forms [55, 56, 63]. This
elegant classical mathematical tool, also called blossoming, is based on the principle that
polynomials are equivalent to multi-affine maps. Polar forms can simplify the construction
of polynomial and piecewise polynomial curves and surfaces [63] and have led to new surface
representations and algorithms. Take for example, smooth piecewise polynomial surfaces over
arbitrary triangulations [25], which are otherwise very hard to construct.

Since this is merely an introduction into B-spline theory, we shall introduce B-splines and
deduce some of their important properties directly from the Cox-DeBoor recursive formula.
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56 B-splines and NURBS as a basis for geometry and mesh generation

The recursion starts with piecewise constants and builds higher order basis functions by the
use of the so called knot vector.

Definition 7 Let X = {x0, ..., xm} be a non-decreasing sequence of real numbers, i.e. xi ≤ xi+1,
i = 0, ...,m− 1. The xi are called knots, and X is the knot vector. The ith B-spline basis function of
degree p, denoted by Ni,p(x), is defined as

Ni,0(x) =

{
1 if xi ≤ x ≤ xi+1,

0 otherwise ,

For p =1,2,3,..., they are defined by

Ni,p(x) =
x− xi

xi+p − xi
Ni,p−1(x) +

xi+p+1 − x
xi+p+1 − xi+1

Ni+1,p−1(x). (3.1)

(By convention 0
0 is defined as 0)

Figure 3.4 illustrates the recursive generation of a cubic degree B-spline basis, by the Cox-
DeBoor formula.
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Figure 3.4: Recursive generation of a cubic B-spline basis using the De Boor formula and a knot
vector of X = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
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The recursion marches through the knot vector X = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} (This will be
made clear in Section 3.2.2) and takes linear combinations of two (p−1)-degree basis functions
to generate a p-degree basis function. Observe also that for increasing degree, the continuity
increases together with its support. The support of a p-degree B-spline is p + 1 knot spans.
Note that the recursion always generates a triangular table.

In Figure 3.5 we zoom into the cubic basis function N3,3(x) generated in Figure 3.4. This
figure illustrates how B-spline basis functions are composed out of different polynomial pieces.
The basis function is nonzero only from x = 0 to 4 and has internal knots at x = 1, 2 and 3.
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Figure 3.5: The cubic B-spline basis function N3,3(x) is composed out of 4 different polynomial
pieces.

B-splines posses several important properties for use in CAD as well as analysis, which can
directly be derived from the recursive formula. Some of these properties can immediately be
obtained from figure 3.4.

1. The basis constitutes a partition of unity,

n∑

i=0

Ni,p(x) = 1 (3.2)

2. The basis functions always form a linear independent basis. This is particularly impor-
tant in analysis.

3. B-splines feature local support, i.e. they are non-zero in a finite part of the domain. In
fact, the support is minimal since it spans p+ 1 knots. Local support makes sure that
changes have a local effect only, and leads to sparsely banded matrices.

4. Continuity between polynomial elements can be prescribed resulting up to p − 1 con-
tinuous derivatives. This is possibly the most striking feature of B-splines compared to
standard polynomial bases applied in FEA.
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5. The basis functions are strictly positive, as can be seen in Figure 3.4. This is why
a B-spline is always confined in the convex hull of its control polygon. We already
mentioned that the convex hull property makes B-splines well behaved, since a B-spline
cannot wiggle more than the control polygon does.

6. Variation of a B-spline curve decreases with increasing degree. This is called the vari-
ation diminishing property of B-splines, see Figure 3.6. B-splines respond less to a
change in the coefficients (control points) with increasing degree. This can be good or
bad. Good in the sense that small disturbances in the coefficients do not lead to exces-
sive differences in the final representation of the polynomial curve, when the degree goes
up (standard polynomial bases are notorious for this, known as Runge’s phenomenon).
Bad, because high order B-splines respond less to a change in the coefficients leading
to ill conditioned interpolation or mass matrices, already for medium to high order.

 

 control polygon

p=2

p=4

p=6

Figure 3.6: The variation decreases for increasing degree. Note also that the B-spline is confined
in the convex hull of its control polygon.

3.2.2 The knot vector

The p-degree B-spline basis is uniquely defined by the knot vector. This is why it is very
important to understand exactly how the knot vector influences the basis functions. We
already know that the knot vector is an increasing set of numbers which partitions a patch
into elements. The general representation of the knot vector looks like

X = { a, ..., a︸ ︷︷ ︸
p+1

, xp+1, ..., xi, xi+1, ..., xm−p−1, b, ..., b︸ ︷︷ ︸
p+1

} , xi+1 ≥ xi (3.3)

This knot vector contains m+ 1 knots and in general we choose a = 0 and b = 1.
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Two special cases arise from (3.3). First of all if h = xi+1 − xi is constant, then the knot
vector is uniform. The corresponding B-splines are called cardinal. The second special case
occurs when no internal knots are present (3.4), in which case the B-spline consist of one
polynomial element and reduces to a Bezier curve.

X = { a, ..., a︸ ︷︷ ︸
p+1

, b, ..., b︸ ︷︷ ︸
p+1

} (3.4)

The definition of the knot vector in (3.3) provides two ways in which we can manipulate the
p-degree B-spline basis

1. Choose a non-uniform distribution of the knots.

2. Introduce repeated knots.

A non-uniform distribution of the knots allows more resolution in a certain part of the domain.
Repeated knots allow local control over the continuity of the basis. Every multiple knot
decreases the continuity by one. The knot vector in (3.3) starts and ends with p+ 1 multiple
knots, hence the continuity is locally decreased from Cp−1 to C0 continuity. This means that
the begin and end control points of the B-spline will be a nodal interpolation. Such a knot
vector is called clamped. Unclamped B-splines are not common in CAD, and we will not
discuss these type of B-spline basis here.
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Figure 3.7: Figure 3.7(a) shows a uniform quadratic B-spline curve. The repeated knot in the
knot vector X in figure 3.7(b) causes a kink in the curve, by introducing a new basis function
and changing the existing basis functions only in span x ∈ [3, 5].

Figure 3.7 illustrates the effect of multiple knots. Both curves are clamped at the begin and
end-point, because the knot vectors start and end with p+1 repeated knots. The knot vector
which defines the B-spline basis in Figure 3.7(b) contains 1 multiple knot at x = 4. This
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repeated knot only affects the basis functions in span x ∈ [3, 5]. An extra basis function is
created and the continuity is locally decreased from C1 to C0 at x = 4.

Although knot vectors constitute a global partitioning of the parametric domain, they have a
local character as far as the basis functions are concerned. Table 3.1 depicts how the global
knot vector X = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}, used to construct the basis in Figure 3.7(b), can
be decomposed into a local knot vector relevant to basis function Ni,2. In general, the basis

Table 3.1: Local knot vector associated with basis function Ni,2

X : 0 0 0 1 2 3 4 4 5 5 5

N0,2 : 0 0 0 1
N1,2 : 0 0 1 2
N2,2 : 0 1 2 3
N3,2 : 1 2 3 4
N4,2 : 2 3 4 4
N5,2 : 3 4 4 5
N6,2 : 4 4 5 5
N7,2 : 4 5 5 5

function Ni,p(x) is defined by the p+ 1 knots xi to xi+p+1. The begin and end knots give us
the support of the basis function, i.e. where the basis function is non-zero. This support is
minimal and spans p+ 1 knots. Observe that at every parametric point x ∈ [xi, xi+1], p+ 1
basis functions are non-zero. Take for example x = 2.5 ∈ [2, 3]. In Table 3.1 we see that the
three non-zero basis functions are N2,2, N3,2 and N4,2.

3.2.3 B-spline curves

A B-spline curve of degree p is defined as a linear combination of control points P̄i and
p-degree B-spline basis functions Ni,p(x),

C(x) =
n∑

i=0

P̄i Ni,p(x), a ≤ x ≤ b, (3.5)

where the basis functions are defined on the non-uniform knot vector as defined in (3.3).

An example of a parametric B-spline curve in two-dimensions is shown in Figure 3.8

y = C(x) can be seen as a parametric map, mapping a point x in parameter space to each of
the physical coordinates yj .

y1 = C1(x) =

7∑

i=0

P̄ 1
i Ni,2(x) and y2 = C2(x) =

7∑

i=0

P̄ 2
i Ni,2(x).

In order to calculate a point on a B-spline curve three steps are necessary
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Figure 3.8: A quadratic B-spline curve is mapped from parameter space to physical space. The
B-spline basis is defined by knot vector X = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

1. Determine local knot span in which the point lies;

2. Calculate the p+ 1 non-vanishing basis functions;

3. Multiplying the nonzero basis functions with the corresponding control points;

Lets say we want to compute the value on the quadratic degree B-spline curve, shown in
Figure 3.8, at parameter value x = 2.5. The local knot span in which x lies is obviously
2− 3. On the left hand side of Figure 3.8 and in Table 3.1 we can see that the nonzero basis
functions are N2,2, N3,2 and N4,2. We can now calculate the values of the non-zero basis
functions at x = 2.5, by applying the De Boor algorithm (Definition 7) as in Figure 3.9.

N2,2(2.5) =

(
3− 2.5

3− 2

)
·
(

3− 2.5

3− 1

)
= 1/8

N3,2(2.5) =

(
3− 2.5

3− 2

)
·
(

2.5− 1

3− 1

)
+

(
2.5− 2

3− 2

)
·
(

4− 2.5

4− 2

)
= 6/8

N4,2(2.5) =

(
2.5− 2

3− 2

)
·
(

2.5− 2

4− 2

)
= 1/8

Subsequentally we multiply the non-zero basis functions by their corresponding control points,
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Figure 3.9: Recursive generation of quadratic b-spline basis, defined by knot vector X =
{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}, in knot span x ∈ [2, 3]

see Figure 3.8.

C(2.5) =
4∑

i=2

P̄i Ni,2(2.5) = 1/8 · P̄2 + 6/8 · P̄3 + 1/8 · p̄4

= 1/8 ·
(
1 2

)
+ 6/8 ·

(
2 1

)
+ 1/8 ·

(
3 1

)
=
(
2 9/8

)

So y1 = 2 and y2 = 9/8.

3.2.4 B-spline surfaces

There are roughly two ways in which the uni-variate B-splines can be extended to higher
dimensions. By the theory of polar forms, B-splines have been generalized to arbitrary tri-
angulations. These triangular B-splines [25, 53] share many interesting properties with the
uni-variate case, they are, however, difficult to construct. Most other methods to construct
B-spline bases in higher dimensions rely on tensor products of the uni-variate basis functions.
This is how we shall extend B-splines to higher dimensions.

Similar to the curve case, a B-spline surface is defined as a linear combination of its control
points Pij and corresponding tensor product basis functions Ni,p(x

1) ·Nj,q(x
2).

S(x1, x2) =

n∑

i=0

m∑

j=0

P̄ij Ni,p(x
1) Nj,q(x

2). (3.6)

Note that the tensor product basis functions Ni,p(x
1) · Nj,q(x

2) are simply the product of
univariate B-spline basis functions, each parameterized in a different coordinate xj , defined
on a separate knot vector Xj and possibly of a different degree. Some examples of bi-cubic
tensor product B-spline basis functions are presented in Figure 3.10.
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Figure 3.10: Some examples of bi-cubic two-dimensional B-spline basis functions constructed by
tensor products of cubic uni-variate basis functions. The one-dimensional bases are defined by the
knot vectors X1 = X2 = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}. The black selection denotes the support of
the respective basis function
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y = S(x), in 3.6, can be seen as a parametric map, mapping local coordinates x1 and x2

to the physical coordinates yi. An example of a bi-quadratic surface patch spanning two
elements, is shown in Figure 4.13. Its bases are defined on knot vectors X1 = {0, 0, 0, 2, 2, 2}
and X2 = {0, 0, 0, 1.5, 3, 3, 3} and the physical coordinates are calculated using

y1 = S1(x1, x2) =

2∑

i=0

3∑

j=0

P̄ 1
ij Ni,2(x1)Nj,2(x2)

y2 = S1(x1, x2) =
2∑

i=0

3∑

j=0

P̄ 2
ij Ni,2(x1)Nj,2(x2)
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Figure 3.11: Bi-quadratic tensor product B-spline surface constructed from knot vectors X1 =
{0, 0, 0, 2, 2, 2} and X2 = {0, 0, 0, 1.5, 3, 3, 3}

3.2.5 Derivatives of B-splines

The recurrence relation (Definition 7) leads to an interesting result for derivatives of B-spline
basis functions (proof see Piegl and Tiller [54])

∂

∂x
Ni,p(x) =

p

xi+p − xi
Ni,p−1(x)− p

xi+p+1 − xi+1
Ni+1,p−1(x). (3.7)

We can directly use (3.7) to define the derivative of a B-spline curve

C′(x) =
n∑

i=0

P̄i
∂

∂x
Ni,p(x), (3.8)
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or we can insert (3.7) into (3.8) to obtain the derivative of the curve in terms of a B-spline
basis of one degree lower

C′(x) =
n∑

i=0

P̄i

(
p

xi+p − xi
Ni,p−1(x)− p

xi+p+1 − xi+1
Ni+1,p−1(x)

)

=
n∑

i=0

P̄i

(
p
Ni,p−1(x)

xi+p − xi

)
−
n+1∑

i=1

P̄i−1

(
p
Ni,p−1(x)

xi+p − xi

)

= P̄0

(
p
N0,p−1(x)

xp − x0

)
+

n∑

i=1

(
P̄i − P̄i−1

)(
p
Ni,p−1(x)

xi+p − xi

)
− P̄n

(
p
Nn+1,p−1(x)

xn+p+1 − xn+1

)

The first and last term evaluate to 0
0 , which is 0 by definition, so

C′(x) =
n∑

i=1

(
P̄i − P̄i−1

)(
p
Ni,p−1(x)

xi+p − xi

)
.

Now let X′ be the knot vector obtained by dropping the first and the last knots from X, i.e.
X′ = { a, ..., a︸ ︷︷ ︸

p

, x1, ..., xm−p−2, b, ..., b︸ ︷︷ ︸
p

}. Then it is easy to check that the function Ni+1,p−1(x),

computed on X, is equal to Ni,p−1(x) computed on X′. We can thus write the derivative of
a B-spline curve as

C′(x) =
n−1∑

i=0

(
P̄i+1 − P̄i

)(
p
Ni,p−1(x)

xi+p − xi

)
. (3.9)

The recursive definition of B-splines makes it possible to write the derivative of a B-spline as
a B-spline of one degree lower and new degrees of freedom Q̄i = P̄i+1 − P̄i. We have thus
obtained an equation of the derivative in purely discrete terms. As we shall see relation (3.9)
is the foundation of our Mimetic Discretization Method.

Note that the Cox-DeBoor recursive formula not only provides the p-degree B-spline basis,
but simultaneously the polynomial bases of the p− 1 continuous derivatives.

3.2.6 Global interpolation in curved coordinates

We shall frequently need to interpolate a given function φ(y) in curved coordinates xj , for
example to obtain Dirichlet boundary conditions. Because B-splines are not interpolary basis
functions, we need to interpolate Dirichlet boundary conditions by solving a system of equa-
tions. In the curve case, for a given knot vector X, we need to determine n+1 control points.
To obtain a solvable system, we need to choose n+1 corresponding interpolation points, each
in the support of the associated basis function. Several choices are available. For example,
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every point is chosen to lie in the middle of the support of the basis functions

x∗j,p =
1

2
· (xj + xj+p+1) . (3.10)

The standard interpolation points, however, are the so called Greville abscissa or Schoenberg
points [26]. These sites represent the location of the control points in parametric space, see
for example figure 3.2, 3.8 and 4.13. The Greville abscissa are given by

x∗j,p =
1

p
·
j+p∑

k=j+1

xk. (3.11)

Let y = C(x) be a parametric map from local coordinate x to global coordinates y, for
example a B-spline or NURBS curve. Then the function to be interpolated at the Greville
abscissa is φ(y) = φ(C(x∗j,p)). Since we have n + 1 interpolation points (j = 0, 1, . . . , n) for

n+ 1 unknown control points φ̄i, we have n+ 1 equations for n+ 1 unknowns

n∑

i=0

φ̄i Ni,p(x
∗
j,p) = φ(C(x∗j,p)) for j = 0, 1 . . . n, (3.12)

which is always a square, invertible system, see de Boor [26]. In the case the boundary is
a surface, as in three dimensional problems, we could use repeated curve interpolation, see
Piegl and Tiller [54].

3.3 Refinement

One of the most powerful aspects of B-splines is the multitude of ways in which the polynomial
bases can be enriched, while the underlying geometry description stays untouched.

The fundamental refinement procedures of B-splines are called knot insertion and degree
elevation, which are analogous to the h- and p-refinement in FEA respectively. Combination
of these two has led to the so called hp-refinement in FEA. In IGA, besides control over the
element size and polynomial order of the basis, we can also manipulate the continuity of the
basis. This leads to a whole new refinement procedure, referred to as k-refinement.

Because the geometry is exactly represented at the coarsest level of discretization, the mesh
and corresponding basis can be refined and order elevated without interaction with the CAD
program.

3.3.1 Knot insertion - h-refinement

The most fundamental way of refining the polynomial basis is by means of knot insertion,
which provides control over element size. Knot insertion is similar to h-refinement in FEA,
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however it is much more general since continuity in between elements can be regulated. As
the term knot insertion implies, h-refinement is achieved by inserting new knots into the
existing knot vector. Inserting a single knot, locally changes the bases, and calculation of the
new degrees of freedom, such that the original geometry is maintained is easy. To insert a
knot t, we first determine the knot span {xk, xk+1} that contains this new knot. Once k is
determined, the p new control points Q̄k−p+1 to Q̄k are calculated as a function of the old
control points P̄i [54]

Q̄i = (1− ai) P̄i−1 + ai · P̄i, (3.13)

where the ratio ai is defined as

ai =
t− xi

xi+p − xi
for k − p+ 1 ≤ i ≤ k.

Figure 3.12 illustrates the insertion of a single knot t at parameter value x = 2.5. This cubic
degree curve is constructed using the knot vector X = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, so t lies in
the local knot span {x5 = 2, x6 = 3}. This means we need to recalculate new control points
Q3 to Q5. The ratio’s ai are determined as

a3 =
t− x3

x6 − x3
=

2.5− 0

3− 0
= 5/6, a4 =

t− x4

x7 − x4
=

2.5− 1

4− 1
= 1/2, a5 =

t− x5

x8 − x5
=

2.5− 2

4− 2
= 1/4

The new control points Q̄i can subsequentally be calculated using 3.13

Q̄0 = P̄0, Q̄1 = P̄1, Q̄2 = P̄2,

Q̄3 = (1− 5/6) P̄2 + 5/6 · P̄3 = 1/6 ·
(
2 2

)
+ 5/6 ·

(
4 2

)
=
(
32

3 2
)

Q̄4 = (1− 1/2) P̄3 + 1/2 · P̄4 = 1/2 ·
(
4 2

)
+ 1/2 ·

(
5 0

)
=
(
41

2 1
)

Q̄5 = (1− 1/4) P̄4 + 1/4 · P̄5 = 3/4 ·
(
5 0

)
+ 1/4 ·

(
3 −2

)
=
(
41

2 −1
2

)

Q̄6 = P̄5, Q̄7 = P̄6

Insertion of the single knot t at x = 2.5 has resulted in 1 more element and one extra basis
function and associated degree of freedom. Although splitting up the third element in two
has resulted in a new and richer basis, the new control points are such that the curve is
geometrically identical to the original.

The above process may be repeated to obtain a refined basis with control over the element
size, by manipulating the spacing between knots, and direct control over the continuity, by
adding existing knots. Knot insertion is thus much more general than h-refinement in FEA.

Interesting to note is that besides providing a simple and elegant way of refinement, knot
insertion is ideal in geometric multi grid solvers, see for example Hollig et al. [40] and Hollig
[39].
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Figure 3.12: Knot insertion for a cubic degree B-spline curve built with knot vector X =
{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}. Inserting a new knot, Xref = {0, 0, 0, 0, 1, 2, 2.5, 3, 4, 4, 4, 4},
changes the basis locally, see Figure 3.12(b) and 3.12(c). The new control points are calcu-
lated such that the geometry does not change, Figure 3.12(a)

3.3.2 Degree elevation - p-refinement

Degree elevation increases the degree of the polynomial basis, without changing the geometry.
In order to maintain the degree of continuity in the derivatives of the B-spline, the continuity
must stay the same while raising the degree. To achieve this, every unique knot in the original
knot vector has to be repeated. For example

Xoriginal = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4} degree elevate
=⇒ Xnew = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4}

Xnew is the knot vector obtained after degree elevating the basis associated with Xoriginal

from degree two to three.

Figure 3.13 shows an example where the cubic B-spline curve from the previous section is
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degree elevated to degree four. This results into four extra fourth-degree basis functions and
associated control points, while the partitioning in elements remains unaltered. Clearly, degree
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(d) Degree elevated basis:
Xnew = {0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4}

Figure 3.13: Degree elevation of B-spline curve. Note the knot multiplicities in the knot vector.
This is necessary in order to maintain the degree of continuity in the derivatives of the curve.

elevation is similar to conventional p-refinement. However, where p-refinement only raises the
degree of C0 continuous finite elements, degree elevation works for arbitrary continuity of the
original basis, C0 to Cp−1. Degree elevation is thus a generalization of p-refinement in FEA.

Degree elevation is more involved than knot insertion. Most algorithms start by decomposing
a B-spline into its Bezier segments by inserting existing knots (a Bezier curve is equivalent
to a one element B-spline curve). Subsequently, the degree of each polynomial element is
increased. Finally, all polynomial elements are sewed together by removing excess knots, in
order to produce a single order elevated B-spline curve.

Unlike knot insertion, degree elevation is a global process. Recently multi-degree B-spline
schemes have been developed [61, 64], which allow a B-spline to consist of polynomial elements
of different degree. In such a B-spline representation, degree elevation could be used as a local
procedure.
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3.3.3 Increased order and continuity - k-refinement

In FEA, the order in which h- and p-refinement are combined, does not lead to differences
in the refined polynomial basis. The order in which degree elevation and knot insertion are
combined, however, does lead to different results. Degree elevation and knot insertion do not
commute. This leads to a whole new type of refinement, referred to as k-refinement [42, 22],
of which no analogue exist in FEA. In k-refinement both order and continuity of the basis
is increased. This is achieved by first order elevating the coarse mesh and subsequentally
performing knot insertion. Because knot insertion is performed after the degree elevation
process, the refined basis consist of basis functions with both increased order and continuity,
see Figure 3.14.

k-refinement is potentially more powerful than both knot insertion and degree elevation,
because the order can be increased without an excessive increase in degrees of freedom. Let
P be a basis for the 1D vector space of all polynomials with given continuity constraints in
between a partitioning of m elements. In classical FEA, C0 continuity is imposed between
polynomial elements and the dimensionality of the vector space P is

dim (P) = m (p+ 1)− (m− 1) · 1 = m · p+ 1, (3.14)

where p stands for the polynomial degree. Raising the order of the basis by one degree results
in an increase in m degrees of freedom. On the other hand if we impose maximum continuity
between elements, then the dimensionality of P is given by

dim (P) = m (p+ 1)− (m− 1) · p = m+ p (3.15)

If we increase the polynomial order of the basis now we obtain one extra degree of freedom.
In higher dimensional space the differences become even more pronounced. The latter is pure
k-refinement. In practice pure k-refinement is never achieved since the continuity at the knots
in the original knot vector can not be raised since this would alter the geometry. Nevertheless,
the effect of k-refinement might still be significant since the initial coarse mesh from CAD is
generally much coarser than the refined mesh required in IsoGeometric Analysis. Figure 3.14
shows the relative differences between hp-refinement in FEA and the novel k-refinement in
IGA.

For a more elaborate discussion on B-spline knot insertion and degree elevation, we refer the
reader to Piegl and Tiller [54]. k-refinement is explained in detail in Hughes et al. [42] and
Cottrell et al. [22]. Currently the most efficient, yet simple, algorithm, which also allows for
simultaneous degree elevation and knot insertion, has been developed by Hua [1].
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(c) p-ref: X = {0, 0, 0, 1, 1, 2, 2, 2}
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(d) hp-ref: X = {0, 0, 0, 0.5, 0.5, 1, 1, 1.5, 1.5, 2, 2, 2}
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(e) k -ref: X = {0, 0, 0, 0.5, 1, 1, 1.5, 2, 2, 2}

Figure 3.14: The original basis of degree 1, Figure 3.14(a), is refined using h-refinement, Figure
3.14(b), and p-refinement in Figure 3.14(c). Figure 3.14(d) shows the standard FEA approach of
hp-refinement, where the basis is obtained after h-refinement and subsequent p-refinement. First
elevating the degree in the original basis to p = 2 (3.14(c)) and subsequent h-refinement leads to
the concept of k-refinement, Figure 3.14(e). Compare Figure 3.14(d) with 3.14(e) and observe
that the increased smoothness of the basis leads to fewer basis functions.
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3.4 NURBS - Non-Uniform Rational B-splines

Fundamental geometric objects like the circle, ellipse, cylinder and sphere are frequently
encountered in engineering applications and other fields. It is thus of vital importance that
the CAD-description can exactly represent these type of geometries. Polynomials fail in this
respect. NURBS, which are rational functions of B-splines, can however exactly represent
these conic sections. Moreover, they generalize B-splines and consequently inherit all their
favorable properties for use in free form geometric design.

3.4.1 NURBS curves

A NURBS curve, can be seen as a weighted B-spline curve and is generated as follows

C(x) =
Cw(x)

W (x)
=

n∑
i=0

P̄i w̄i Ni,p(x)

n∑
i=0

w̄i Ni,p(x)

. (3.16)

The w̄i are called the weights. If these are set to 1, the NURBS curve reduces to a B-spline.
Note that Cw(x) is a vector valued and W (x) a scalar valued B-spline function.

Equivalent to (3.16), we could write the NURBS curve as a linear combination of control
points P̄i and NURBS basis functions N r

i,p

C(x) =
n∑

i=0

P̄i N
r
i,p(x) where N r

i,p(x) =
w̄i Ni,p(x)

W (x)
(3.17)

The basis functions N r
i,p are not polynomial, but rational functions. They inherit the conti-

nuity across knots, the local support, and the positiveness of B-spline basis functions. Fur-
thermore, they always form a partition of unity, since

n∑

i=0

N r
i,p(x) =

n∑
i=0

w̄i Ni,p(x)

n∑
i=0

w̄i Ni,p(x)

= 1

Figure 3.15 illustrates the effect of the weights. The curve is a quarter circle constructed from
quadratic NURBS, where the weight of the middle control point is set to half the square root
of two. Observe that the middle control point pulls the curve less strong as in the case of a
B-spline curve (the dotted line).
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Figure 3.15: A NURBS quarter circle constructed from quadratic basis functions and knot vector
X = {0, 0, 0, 1, 1, 1}. The dotted line denotes the quadratic curve with weights all equal to one.

3.4.2 NURBS surfaces

Similar to (3.16), a NURBS surface can be expanded in terms of control points, B-spline basis
functions and weights as

S(x1, x2) =
Sw(x1, x2)

W (x1, x2)
=

n∑
i=0

m∑
j=0

P̄ij w̄ij Ni,p(x
1)Nj,q(x

2)

n∑
i=0

m∑
j=0

w̄ij Ni,p(x1)Nj,q(x2)

. (3.18)

Where Sw(x1, x2) is a vector valued B-spline and W (x1, x2) a scalar valued B-spline function.

Figure 3.16 illustrates how a NURBS surface is mapped from parameter space to the circular
domain in physical space. The control points and weights have been set such that each side
of the patch maps to a quarter circle in physical space. Hence the circular domain

Next we shall discuss a brief example of a multi patch geometry that we will use in analysis in
a subsequent chapter. The geometry is given by the rectangular domain containing a circular
hole, depicted in figure 3.17(a). The coarse mesh is modeled in a CAD program using four
bi-quadratic NURBS patches. Each patch is mapped from parameter space to physical space
using

S(x1, x2) =
Sw(x1, x2)

W (x1, x2)
=

2∑
i=0

2∑
j=0

P̄ij w̄ij Ni,2(x1)Nj,2(x2)

2∑
i=0

2∑
j=0

w̄ij Ni,2(x1)Nj,2(x2)

.

Figure 3.17(b) shows the control mesh and corresponding weights of the upper left patch.

In order to obtain an Analysis Suitable Geometry (ASG) we need to refine and order elevate
the basis of each patch. The basis of the NURBS patch S(x) can be refined by refining the
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P̄20 : (0, 1)

w̄01 = 0.70711
P̄01 : (−1,−1)

w̄11 = 1
P̄11 : (0, 0)
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Figure 3.16: A NURBS surface is mapped from the parametric domain, to the circular plane
in physical space. The bi-quadratic surface is constructed using the knot vectors X1 = X2 =
{0, 0, 0, 1, 1, 1} and control points and corresponding weights shown.

(a) coarse mesh

w̄00 = 1
P̄00 : (0, 0)

w̄10 = 1
P̄10 : (0.75, 0)

w̄20 = 1
P̄20 : (1.5, 0)

w̄01 = 1
P̄01 : (0, 2)

w̄11 = 1
P̄11 : (0.75, 0.333)

w̄21 = 0.854
P̄21 : (1.5, 0.207)

w̄02 = 1

P̄02 : (0, 2)

w̄12 = 1
P̄12 : (1.667, 1.25)

w̄22 = 0.854

P̄22 : (1.793, 0.5)

w̄03 = 1

P̄03 : (2, 2)

w̄13 = 1

P̄13 : (2, 1.25)

w̄23 = 1

P̄23 : (2, 0.5)

(b) control mesh

Figure 3.17: Figure 3.17(a) shows the coarse mesh of a rectangular domain with circular hole
modeled using four patches in a CAD program. The NURBS geometry is bi-quadratic and build
from knot vectors X1 = {0, 0, 0, 1, 1, 1} and X2 = {0, 0, 0, 0.5, 1, 1, 1} and control points and
weights from Figure 3.17(b). Note that the two control points, P̄01 and P̄02, have the same
location and create the artificial upper left corner. Although this causes a singular point at this
location, this poses no problem in IGA [42].

respective B-spline functions Sw(x) and W (x) as we have learned in the previous sections.
Note that in this process both Sw(x) and W (x) do not change geometrically. An example of
global refinement is shown in Figure 3.18 and an example of single knot insertion near the
boundary is shown in Figure 3.19. Note that knot insertion splits up a hole row or column of
elements. Knot insertion can not be achieved locally due to the tensor product structure of
NURBS.
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(a) mesh 1 (b) mesh 2 (c) mesh 3 (d) mesh 4

Figure 3.18: The coarse mesh of the domain with circular hole is globally refined for analysis.
Meshes produced using global h-refinement, where element size is halved each iteration.

(a) mesh 3 (b) x = 0.90 (c) x = 0.95 (d) x = 0.98

Figure 3.19: Mesh 3 in Figure 3.18 is more locally refined near the boundary of the hole.

Besides the algebraic definition of NURBS as presented here, NURBS also allow an intuitive
geometrical interpretation. NURBS can be seen as B-splines in one extra dimension, projected
onto a plane. Farin [32] discusses the geometric nature of NURBS extensively. We note that
although NURBS is currently the standard technology applied in CAD, other technologies
like trigonometric B-splines [49] would similarly provide an excellent basis.

3.4.3 Derivatives of NURBS

Because NURBS are rational functions of B-splines, derivatives of NURBS will clearly depend
on the B-splines and their derivatives. NURBS derivatives are easily calculated by use of the
the quotient rule. If C(x) = Cw(x)

W (x) is a NURBS curve, then it’s derivative is given by

∂C(x)

∂x
=

1

(W (x))2

(
W (x) · ∂Cw(x)

∂x
− ∂W (x)

∂x
·Cw(x)

)
. (3.19)

A similar expression is obtained for the partial derivatives of a NURBS surface S(x1, x2) =
Sw(x1,x2)
W (x1,x2)

∂S(x1, x2)

∂xj
=

1

(W (x1, x2))2

(
W (x1, x2) · ∂Sw(x1, x2)

∂xj
− ∂W (x1, x2)

∂xj
· Sw(x1, x2)

)
. (3.20)
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These expressions might seem complex, they consist however out of B-splines and their deriva-
tives, which are easy to compute. Efficient algorithms for evaluating NURBS and their kth
order derivatives can be found in Piegl and Tiller [54].

3.5 Current limitations of NURBS as a basis for geometry and
mesh generation

Since B-spline patches are topologically square, they allow for modeling of simple geometries
only. So it can take a significant amount of patches to construct a complicated geometry.
Figure 3.20(a) shows an example of the CAD-model of a ships propeller, modeled using 72
patches. Although continuity within each patch is automatically guaranteed due to the build-
in continuity of B-spline and NURBS bases, maintaining continuity between patches is still
an important issue. Constraints need to be set, in order for the geometry to have some level
of smoothness across patch interfaces. Figure 3.20(b) shows a computer render of the CAD
model of the ships propeller, where these continuity constraints have been set up correctly.
The surface is curvature continuous across patch interfaces. Recently new surface schemes like

(a) (b)

Figure 3.20: A CAD model of a ships propeller can be quite a complicated geometry to model.
The surface description in Figure 3.20(a), consists out of 72 patches. Continuity constraints
between patches make sure that the overall surface is smooth, see Figure 3.20(b).

manifold T-splines [60, 37] and manifold triangular B-splines [25, 36] have been developed,
which allow the modeling of any complex shape, using just a single patch. Continuity is
thus automatically guaranteed, alleviating the cumbersome process of imposing continuity
constraints at patch interfaces. These surface schemes are likely to have a major influence
not only on CAD, but also on IsoGeometric Analysis.

The second major problem concerning NURBS as a basis for geometric design follows from its
tensor product structure. NURBS do not allow local refinement. Refinement is achieved by
knot insertion which introduces a whole new row or column of control points. This has been
one of the major drawbacks of NURBS, both as a basis for CAD and FEA. More recently

René Hiemstra M.Sc. Thesis



3.5 Current limitations of NURBS as a basis for geometry and mesh generation77

T-splines have been introduced by Sederberg et al. [60] to alleviate this problem. Knots are
allowed to terminate at T-sections. T-splines are however tailor made for geometric design
and when applied in an analysis environment several problems arise. T-splines can loose their
linear independence and refinement is not that local as it seems [11, 30]. Hierarchical B-splines
[46, 47] and LR-splines [29] seem to be more suitable in analysis. Linear independence of the
basis is automatically guaranteed and knot insertion can be done locally, as in T-splines, and
leads to the minimum number of inserted control points.

The major drawback of CAD-based IsoGeometric Analysis, at this moment however, is volu-
metric mesh generation [22]. Currently, CAD programs allow modeling of parametric curves
and surfaces only. Volumes are modeled by definition of their bounding surfaces. Since Iso-
Geometric Analysis in three dimensional space requires the parameterization of a volume, we
are faced with a problem. The coarse mesh cannot be supplied by a CAD program. This
is the single most important problem, hampering the application of volumetric IsoGeometric
Analysis, at this time. Generation of a computational mesh in 3D can be as much work as
in conventional approaches. Possible solutions to this problem are available. The T-spline
sewing algorithm, in Sederberg et al. [62], could be generalized to 3D. Triangular B-splines,
introduced by Dahmen et al. [25] and more recently Neamtu [53] would form a convenient
basis, since there exist efficient algorithms in parameterizing volumes using tetrahedra.
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Chapter 4

IsoGeometric Mimetic Discretization
Methods

In this chapter we combine IsoGeometric Analysis with Mimetic discretization methods. The
resulting discretization approach resembles a finite volume type of discretization for the con-
servation laws on a staggered grid, and a finite element type of discretization for the consti-
tutive equations. Besides inheriting all the advantages of the IsoGeometric Analysis concept,
this scheme is locally conservative, naturally stable and of arbitrary order.

4.1 Introduction

Every discretization method starts with reconstructing the physical field variables into a finite
dimensional continuous representation. The Finite Difference Method reconstruct quantities
in the form of a Taylor series expansion; the Finite Volume Method uses a Taylor series
expansion in combination with an integral approach; and the Finite Element Method uses an
expansion in terms of basis functions. The latter more easily deals with curved geometries,
can evaluate a given quantity at arbitrary parameter values and is easily generalized to higher
order.

In this thesis, B-splines are applied to connect the continuous world of Differential Geometry
with its discrete counterpart Algebraic Topology. B-splines and NURBS have been introduced
in a practical setting in the context of geometry and mesh generation in chapter 3. We have
seen that there are two different definitions of the NURBS mesh. The physical mesh, which
represents the geometry, and the control mesh, which controls the underlying geometry. The
control mesh, accompanied by the NURBS geometry from a CAD program, gives us an
initial representation of a primal cell complex, see Figure 4.1. The NURBS control points Pi
can be regarded as 0-cells. These are logically connected by control edges Li (1-cells). We
can further distinguish discrete control faces Si (2-cells) enclosed by four edges. In three-
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80 IsoGeometric Mimetic Discretization Methods

dimensional space the collection of six boundary control faces would form a discrete control
volume Vi(3-cell).
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Figure 4.1: The NURBS control mesh can be seen as a primal cell complex consisting of control
points Pi, control edges Li and control faces Si. The control points, edges and faces have been
given the inner orientation.

Since B-spline basis functions are naturally associated with point values - the control points
- they appear as an appropriate basis in which to represent 0-forms. From B-splines we shall
deduce basis functions which are naturally related with control edges, providing a basis for 1-
forms. These edge basis functions appear simply to be scaled B-splines, known as the Curry
Schoenberg B-splines. By application of the wedge product we can easily construct basis
functions which are naturally associated with control faces (2-forms) and in 3D with control
volumes (3-forms). These spaces are equivalent to those developed by [20, 19, 17, 57, 6]. In
Buffa et al. [19] they show that these spaces are inf-sup-stable for Stokes Flow.

As we shall see, B-spline differential forms follow a discrete DeRahm sequence both in reduced
discrete as in reconstructed continuous form and hence provide a natural basis for Mimetic
Discretization Methods. A strong indication exists that these methods naturally lead to stable
consistent approximations to any physical problem.

4.2 Spline differential forms in 1D

In this section we cover the fundamental properties of the B-spline basis which make them
suitable in Mimetic Methods. The main recipe is that B-splines follow the DeRahm sequences
both in reduced discrete form as well as in reconstructed continuous form. The theory will
be developed in the one dimensional setting. Generalization to higher dimensional space is
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4.2 Spline differential forms in 1D 81

subsequently straightforward. In short, the aim of this section is to define the spaces and
operators in the following commuting diagram,

R - Λ0(Ω)
d
- Λ1(Ω) - 0

R - C(0)

R0

?
δ
- C(1)

R1

?
- 0

R - S0
p,X

I0

?

R0

6

d
- S1

p−1,X

I1

?

R1

6

- 0

(4.1)

The spaces to be constructed should thus follow

δR0 = R1d and dI0 = I1δ (4.2)

As explained in Chapter 2, Section 2.4, we further require that

RkIkC(k) = C(k) and IkRkΛk(Ω) = Skd,X = Λk(Ω) +O(hd+1) (4.3)

where h is a measure of the mesh size and d+ 1 the polynomial order of accuracy. Note that
(4.3) also depends on the function to be approximated.

As is customary in IGA, we use the same partitioning for the definition of the geometry as
for the reconstructed spaces of differential forms. The domain partitioning is thus provided
by the coarse p-degree NURBS geometry and shall be denoted as knot vector X

X = { a, ..., a︸ ︷︷ ︸
p+1

, xp+1, ..., xi, xi+1, ..., xm−p−1, b, ..., b︸ ︷︷ ︸
p+1

} , xi+1 ≥ xi (4.4)

X shall be used to define the univariate spline spaces of differential 0 and 1-forms, S0
p,X

and S1
p−1,X respectively. These spaces can subsequentally be order elevated and refined for

analysis purposes as desired.

4.2.1 Reconstruction of 0-forms

Since B-splines are naturally associated with point values - the control points - they appear
as a convenient basis in which to represent 0-forms. Given a 0-cochain ϕ̄ ∈ C(0) - containing a
set of B-spline control points ϕ̄i- we can reconstruct a continuous representation of a 0-form
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φ0
h(x) ∈ S0

p,X by taking a linear combination of control points ϕ̄i and B-spline basis functions
Ni,p(x),

φ0
h(x) = I0φ̄ =

n∑

i=0

ϕ̄i Ni,p(x) (4.5)

The B-spline basis functions are defined on knot vector X. The univariate space of recon-
structed 0-forms S0

p,X = I0R0Λ0(Ω) can be defined as the span of all p-degree B-spline basis
functions Ni,p(x),

S0
p,X := span {Ni,p(x)}ni=0 (4.6)

Figure 4.2 depicts a B-spline control mesh which can be thought of as a 1D primal cell complex
K. The knot vector X = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} accompanying the NURBS geometry is
used to define the cubic degree B-spline basis for zero-forms. Using this basis, a 0-form is
reconstructed for a given 0-cochain on the primal cell complex K.

ϕ̄0 ϕ̄1 ϕ̄2 ϕ̄3 ϕ̄4 ϕ̄5 ϕ̄6

ū1 ū2 ū3 ū4 ū5 ū6

 

 

(a) 1D primal cell complex K, associated with the cubic
degree B-spline geometry partitioned by knot vector X =
{0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}
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(b) Reconstructing a 0-form: φ0
h(x) = I0ϕ̄ =

6∑
i=0

ϕ̄i Ni,3(x)

Figure 4.2: Given a zero cochain ϕ̄ we can reconstruct a continuous representation of a 0-form
φ0
h(x) ∈ S0

p,X by taking a linear combination of B-spline control points ϕ̄i and B-spline basis
functions Ni,p(x).
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4.2.2 Reconstruction of 1-forms

For the reconstruction of 1-forms we seek a linear combination of coefficients and basis func-
tions which are naturally associated with edges. This reconstruction is required to follow the
commutative diagram,

ϕ̄ ∈ C(0) δ
- ū ∈ C(1)

φ0
h(x) ∈ S0

p,X

I0

?
d
- u1

h(x) ∈ S1
p−1,X

I1

?

(4.7)

for a 1-cochain ū ∈ C(1) which is the co-boundary of ϕ̄ we obtain the following relation for
the coefficients ūi

ū = δϕ̄ =⇒ ūi = ϕ̄i − ϕ̄i−1 for i = 1, . . . , n

The co-boundary process is illustrated in Figure 4.3(a). Observe that the coefficients ūi can be
associated with edges, because ϕ̄i− ϕ̄i−1 represent the difference between subsequent control
points ϕ̄i. The 1-form u0

h(x) which is the exterior derivative of the 0-form φ0
h(x) should thus

be an expression of the form,

u1
h(x) = I1ū =

n∑

i=1

ūi Mi,p−1(x)dx and ūi = ϕ̄i − ϕ̄i−1

Where the Mi,p−1(x) are new basis functions of degree p− 1 defined along edges. Using the
commutative property (4.7) and the fact that the derivative of a B-spline can be written as
a B-spline of one order lower (See Chapter 3, page 65) we obtain an expression of the edge
basis functions Mi,p−1(x) in terms of the B-spline basis functions Ni,p−1(x),

I1δϕ̄ = dI0ϕ̄ = d

n∑

i=0

ϕ̄i Ni,p(x)

n∑

i=1

(ϕ̄i − ϕ̄i−1) Mi,p−1(x)dx =

n∑

i=1

(ϕ̄i − ϕ̄i−1)

(
p
Ni,p−1(x)

xi+p − xi

)
dx (4.8)

The new edge type of basis function of degree p− 1 are thus defined as

Mi,p−1(x) := ci ·Ni,p−1(x) where ci =
p

xi+p − xi
(4.9)

where the B-spline basis functions Ni,p−1(x) of degree p − 1 are defined on knot vector X.
Observe that the edge type of basis functions Mi,p−1 are simply differently normalized B-
splines, see also Figure 4.3(b). This scaling of the B-splines was the original representation,
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derived by Schoenberg [58, 59], and is known as the Curry Schoenberg B-spline. It was later
that B-splines were scaled to form a partition of unity.

Figure 4.3 continues upon Figure 4.2 and illustrates the co-boundary process and the recon-
struction of the 1-form which is the exterior derivative of the 0-form in Figure 4.2.

ϕ̄0 ϕ̄1 ϕ̄2 ϕ̄3 ϕ̄4 ϕ̄5 ϕ̄6

ū1 ū2 ū3 ū4 ū5 ū6

0ϕ− 1ϕ+ 1ϕ− 2ϕ+ 2ϕ− 3ϕ+ 3ϕ− 4ϕ+ 4ϕ− 5ϕ+ 6ϕ+ 5ϕ−

(a) The coboundary process ūi = ϕ̄i − ϕ̄i−1
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(b) reconstruction: u1
h(x) = I1ū =

6∑
i=1

ūi Mi,2(x)dx, where ūi =

ϕ̄i − ϕ̄i−1

Figure 4.3: This figure continues upon Figure 4.2. The coboundary process transfers quantities
from the control points to control edges, Figure 4.3(a), and provides us a discrete relation of
the gradient, ūi = ϕ̄i − ϕ̄i−1. A continuous representation of the gradient u1

h(x) ∈ S1
p−1,X can

subsequently be obtained by reconstruction of ū ∈ C1 using the Curry Schoenberg B-spline basis
functions Mi,p−1 which are associated with control edges. These edge type of basis functions are
simply differently normalized B-splines, see Figure 4.3(b).

The Curry Schoenberg B-spline basis functions Mi,p−1(x) have the following interesting prop-
erty [26],

∫

R

Mi,p−1(x)dx = 1 (4.10)

We shall make use of this property in Chapter 5, where we use it to calculate the circulation
around a lifting object by integrating velocity - a one form - over a path enclosing the object.
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The new basis functions for 1-forms allow us to define the reconstructed space of spline 1-forms
S1
p−1,X as

S1
p−1,X := span {Mi,p−1(x)dx}ni=1 (4.11)

4.2.3 Reduction of 0-forms to B-spline control points

The reconstruction process is simply defined as evaluation of a point on the spline, given a
set of control points or control edges and associated basis functions. The reduction operation
R requires the inverse relation: given a set of points on the spline and/or its derivatives,
calculate the unique set of B-spline coefficients. Since B-spline basis functions are not nodal
- the control points do not interpolate the spline function - we can not use the De Rahm map
as a reduction operator. Remember that the De Rahm map acting on a zero form provides
a collection of points on the function (Chapter 2, page 48). In order to use these function
values directly as discrete degrees of freedom, the reconstruction map I should be a nodal
interpolation. The choice of B-splines as the reconstruction map, implies that we need to
define a new reduction operator.

Consider a spline function fh(x), an element of S0
p,X. Each polynomial piece Ij = (xj , xj+1),

of non-zero length, can be expanded into a Taylor polynomial of order p+ 1 around a point
t ∈ Ij

fh(x) = fh(t) + f ′h(t)(x− t) +
1

2
f ′′h (t)(x− t)2 + . . .+

(x− t)p
p!

Dpfh(t)

=

p∑

d=0

(x− t)d
d!

Ddfh(t) (4.12)

We will need an important identity first proved by Marsden [51], which simplifies many
dealings with splines

Theorem 4.2.1 Marsden’s Identity. For any t ∈ R

(t− x)p =

n∑

j=0

ψj,p(t) Nj,p(x) where ψj,p(t) = (t− xj+1) . . . (t− xj+p) (4.13)

Differentiating Marsden’s Identity p− d times with respect to t we obtain,

Dp−d(t− x)p =
p!(t− x)d

d!
=

n∑

j=0

Dp−dψj,p(t) Nj,p(x)

Rearranging,

(x− t)d
d!

=
(−1)d

p!

n∑

j=0

Dp−dψj,p(t) Nj,p(x)
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Inserting this result in the Taylor expansion of fh(x) from equation 4.12 yields

fh(x) =

p∑

d=0




n∑

j=0

(−1)d

p!
Dp−dψj,p(t) Nj,p(x)


Ddfh(t)

=
n∑

j=0

(
p∑

d=0

(−1)d

p!
Dp−dψj,p(t) D

dfh(t)

)
Nj,p(x)

=
n∑

j=0

λj,pfh Nj,p(x) (4.14)

Since fh(x) ∈ S0
p,X allows an expansion in terms of the linearly independent B-spline basis

functions Ni,p(x), the coefficients λj,pfh in (4.14) are uniquely determined discrete real num-
bers. Hence they must be independent of the parameter t, leading to the following theorem

Theorem 4.2.2 Dual functionals [28]. For any fh(x) ∈ S0
p,X and tj ∈ (xj , xj+p+1)

fh(x) =

n∑

j=0

λj,pfh Nj,p(x) where λj,pfh =

p∑

d=0

(−1)d

p!
Dp−dψj,p(tj) D

dfh(tj) (4.15)

The positioning of the tj is free, however only makes sense if they are chosen to lie in the
support of the respective basis function Nj,p(x), i.e. tj ∈ (xj , xj+p+1). The Greville abscissa
are a likely candidate for the positioning of these points. The λj,pfh are known as the B-spline
dual functionals. Functionals use functions as input and give a real number as output.

The dual functionals have the following important property, see de Boor [26]

λi,pNj,p = δij and hence λi,p




n∑

j=0

f̄jNj,p(x)


 = f̄i (4.16)

Equation (4.16) provides a closed form relation between a point on the spline function fh(x)
and the B-spline coefficients f̄i. The reduction operator R0 acting on zero forms is thus given
by the B-spline dual functionals

R0 := λi,p, for i = 0, 1, . . . , n (4.17)

From (4.16) it follows that reducing a spline to a set of B-spline coefficients and subsequent
reconstruction can be performed without loss in information. The reduction thus preserves
splines,

R0I0f̄ = R0




n∑

j=0

f̄jNj,p(x)


 = f̄ (4.18)
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Furthermore, the spline approximation fh(x) = I0R0f
0(x) to a smooth function f(x), ap-

proximates the function f(x) and simultaneously its p−1 continuous derivatives up to optimal
order of accuracy, at least for regular knot partitions [26],

∥∥Djf(x)−DjIRf(x)
∥∥
L∞(Ω)

= O(hp+1−j) (4.19)

Here the error is measured in the supremum norm, h is a measure of the local mesh size and
p + 1 − j the order of convergence. For sharp error estimates see de Boor and Fix [28] and
Lyche and Schumaker [50].

From (4.18) and (4.19) it follows that the above derived reduction and reconstruction opera-
tors R0 and I0 acting on 0-forms follow the requirements in (4.2) and (4.3)

R0I0 = id and I0R0 = id+O(hp+1)

We will discuss two examples illustrating the reduction and interpolation process.

EXAMPLE 4.2.1 Lets reduce a continuous function f(x) to a collection of B-spline coefficients
Rf(x) = f̄ , in the case the B-spline coefficients f̄i are associated with quadratic B-spline basis func-
tions. Choosing the collocation points tj as the Greville Abscissa t∗j =

xj+1+...+xj+p

p (Chapter 3, page

65) we obtain for the first term 1
p! D

p−dψj,p(t)

1

2!
D0ψj,2(t) =

1

2
(t− xj+1) (t− xj+2) ,

1

2!
D1ψj,2(t) = t− xj+1 + xj+2

2
= t− t∗j

and
1

2!
D2ψj,2(t) = 1

Filling this result into the DeBoor-Fix theorem (4.2.2), at parameter value tj = t∗j , we obtain an explicit

relation for the B-spline coefficients f̄i in terms of the continuous function f(x) and its derivatives.

f̄j = f(t∗j )− 1 · (t∗j − t∗j )D1f(t∗j ) +
1

2

(
t∗j − xj+1

) (
t∗j − xj+2

)
D2f(t∗j )

EXAMPLE 4.2.2 We use the result from Example 4.2.1 to reduce and subsequently reconstruct
a smooth function f0(x) = cos(0.5πx) on the interval x ∈ (0, 4) with quadratic degree B-splines. We
choose the knot partition X = {0, 0, 0, 1, 2, 3, 4, 4, 4}. The interpolation sites tj ∈ (xj , xj+p+1) are
chosen as the Greville abscissa t∗j , which are calculated as t∗ = {0.0, 0.5, 1.5, 2.5, 3.5, 4.0}.

The function and its derivatives at the collocation points tj are

f(t∗j ) = cos(0.5πt∗j ), D1f(t∗j ) = −0.5 ∗ π sin(πt∗j ) and D2f(t∗j ) = −0.25 ∗ π2 cos(πt∗j )
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The reduction Rf(x) = f̄ results in

f̄0 = 1 · cos(0.00π)− π2

8
(0.0− 0.0) (0.0− 0.0) · cos(0.00π) = cos(0.00) = 1

f̄1 = 1 · cos(0.25π)− π2

8
(0.5− 0.0) (0.5− 1.0) · cos(0.25π) = cos(0.25π)

(
1 +

π2

32

)
≈ 0.9252

f̄2 = 1 · cos(0.75π)− π2

8
(1.5− 1.0) (1.5− 2.0) · cos(0.75π) = cos(0.75π)

(
1 +

π2

32

)
≈ −0.9252

f̄3 = 1 · cos(1.25π)− π2

8
(2.5− 2.0) (2.5− 3.0) · cos(1.25π) = cos(1.25π)

(
1 +

π2

32

)
≈ −0.9252

f̄4 = 1 · cos(1.75π)− π2

8
(3.5− 3.0) (3.5− 4.0) · cos(1.75π) = cos(1.75π)

(
1 +

π2

32

)
≈ 0.9252

f̄5 = 1 · cos(2.00π)− π2

8
(4.0− 4.0) (4.0− 4.0) · cos(2.00π) = cos(2.00π) = 1

The reconstructed spline function fh(x) = I f̄ =
n∑
j=0

f̄j Ni,2(x) is depicted in the top Figure 4.4; the

B-spline basis functions Ni,2(x) are shown in Figure 4.4 below; and an analysis of the error is depicted
in Figure 4.5. We observe the expected rate of convergence O(h3)under mesh refinement.

0 1 2 3 4
0

1
N0,2 N1,2

N2,2 N3,2 N4,2
N5,2

x

N
i,
2
(x
)

0 1 2 3 4
-1

0

1
f̄0 f̄1

f̄2 f̄3

f̄4 f̄5

f
(x
)

 

 

fπ(x)

f(x) = cos(π2x)

control points f̄i

knots

x

Figure 4.4: The B-spline coefficients f̄i, obtained by reduction of the continuous function f(x) =
cos(π2x), are interpolated by the B-spline basis functions Ni,p(x), depicted below in Figure 4.4.
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Figure 4.5: The top figure shows the absolute error between the exact function and B-spline ap-
proximation in Figure 4.4. Note that the approximation does not interpolate the exact function at
the collocation points tj . The error reduces however with the expected p+1 order of convergence
in the L2 norm under mesh refinement, Figure 4.5 below.

4.2.4 Reduction of 1-forms to B-spline control edges

Now that the reduction operation of zero forms to B-spline control points is clear, we can easily
derive a reduction operator which reduces 1-forms to control edges. The duality property
(equation 4.16) between B-spline basis functions and the dual functionals implies that the
reduction operator for 1-forms should be given by

R1 :=
1

ci
λi,p−1

∂

∂x
for i = 1, . . . , n (4.20)

The proof is straightforward, applying the scaled dual functional to the 1-form u1
h(x) ∈ S1

p−1,X,

1

ci
λi,p−1

∂

∂x
u1
h(x) =

1

ci
λi,p−1

∂

∂x




n∑

j=1

ūj cjNj,p−1(x)dx


 = ūi (4.21)

Here we have used the fact that λi,p−1Nj,p−1(x) = δij and ∂
∂xdx = 1. The reconstruction

operator R1 is thus a tangent vector that takes a 1-form and gives a discrete real number
(For a discussion about tangent vectors, the reader is referred to the discussion in Chapter 2,
page 22).

From (4.21) it follows that the reduction operator for 1-forms preserves spline 1-forms, i.e.
R1I1 = id. It also follows from (4.19) that the reduction and reconstruction approximate a
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1-form to optimal order of accuracy, i.e. I1R1 = id + O(hp). It can further be shown that
the reduction operator follows the commuting diagram,

ϕ̄ ∈ C(0) δ
- ū ∈ C(1)

φ0
h(x) ∈ S0

p,X

R0

6

d
- u1

h(x) ∈ S1
p−1,X

R1

6

(4.22)

The commuting property in terms of the dual functionals looks as follows

δR0φ
0
h(x) = R1dφ0

h(x) =⇒ (λj,p − λj−1,p)φ
0
h(x) =

xj+p − xj
p

λj,p−1dφ0
h(x)

Using the expression of the dual functionals in terms of the free parameter t, following from
(4.14), we can write the left hand side as

(λj,p − λj−1,p)φ
0
h(x) =

p∑

d=0

(−1)d

p!
Dp−d (ψj,p(t)− ψj−1,p(t)) D

dφ0
h(t) (4.23)

The Newton polynomials ψj−1,p(t) and ψj,p(t) can be rewritten as in terms of a the Newton
polynomial ψj,p−1(t) of one degree lower.

ψj,p(t) = (t− xj+1) . . . (t− xj+p) = (t− xj+p)ψj,p−1(t)

ψj−1,p(t) = (t− xj) . . . (t− xj+p−1) = (t− xj)ψj,p−1(t)

Subtracting the former from the latter yields,

ψj,p(t)− ψj−1,p(t) = −ψj,p−1(t) (xj+p − xj)

Filling the above result into equation 4.23, completes the proof

(λj,p − λj−1,p)φ
0
h(x) =

xj+p − xj
p

p∑

d=0

(−1)d+1

(p− 1)!
Dp−dψj,p−1(t) Ddφ0

h(t)

=
xj+p − xj

p

p∑

d=1

(−1)d+1

(p− 1)!
Dp−dψj,p−1(t) Ddφ0

h(t)

=
xj+p − xj

p

p−1∑

d=0

(−1)d

(p− 1)!
Dp−1−dψj,p−1(t) DdDφ0

h(t)

=
xj+p − xj

p
λj,p−1dφ0

h(t)

In line two we have used Dpψj,p−1(t) = 0. In line four the fact that the exterior derivative
acting on a function is simply the derivative in the classical sense: d = D.
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4.3 Spline differential forms in 2D

In the previous section we introduced a basis for 0- and 1-forms in terms of B-spline basis
functions. In this section we make the extension to the two-dimensional setting. Applying the
wedge product between the B-spline basis functions Ni,p(x) and Curry Schoenberg B-splines
Mi,p−1(x) we can reconstruct the different spaces of inner and outer oriented 0-, 1- and 2-forms
in our cell complex. We shall see that the resulting reconstructed spaces of differential forms
follow an exact De Rahm sequence and hence are conservative by construction. B-splines can
thus be seen as generalizing Whitney forms to arbitrary order. In this section we will define
the spaces and operators in the following commutative diagram which can be set up for both
the primal and dual cell complex,

R - Λ0(Ω)
d
- Λ1(Ω)

d
- Λ2(Ω) - 0

R - C(0)

R0

? D(1,0)
- C(1)

R1

? D(2,1)
- C(2)

R2

?
- 0

R - Λ0
h(Ω)

I0

?

R0

6

d
- Λ1

h(Ω)

I1

?

R1

6

d
- Λ2

h(Ω)

I2

?

R2

6

- 0

(4.24)

4.3.1 Primal cell complex

We assume that the geometric domain under consideration is given by a NURBS map, see
Figure 4.1. The NURBS control mesh provides an initial representation of a primal cell
complex. The accompanying knot vectors X1 and X2 partition the p1 by p2 degree geometric
domain under consideration into elements.

Xd = { ad, ..., ad︸ ︷︷ ︸
pd+1

, xdp+1, ..., x
d
i , x

d
i+1, ..., x

d
md−pd−1, b

d, ..., bd︸ ︷︷ ︸
pd+1

} , xdi+1 ≥ xdi (4.25)

Applying the theory developed in Chapter 2, Section 2.3, we can assign either the inner -
Figure 4.6(a) - or outer orientation -Figure 4.6(b)- to the discrete control points, edges and
faces in the primal cell complex. We can for example associate discrete potentials with the
inner oriented control points; discrete velocities with inner oriented control edges and discrete
vorticity with inner oriented control faces. Similarly we can for example associate discrete
values of the stream function with outer oriented control points; discrete fluxes with outer
oriented control edges; and discrete mass densities with outer oriented control faces. By
means of a linear combination between these discrete co-chains and associated B-spline basis
functions, we can reconstruct continuous representations of differential forms.
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92 IsoGeometric Mimetic Discretization Methods

1P 2P 3P

4P 5P 6P

7P 8P 9P

8L

9L

10L

11L

12L

1L 2L

3L 4L

5L 6L

7L

4S

1S 2S

3S

(
)

1
2

,
x

x
=

y
S

(a) Inner oriented objects on the primal B-spline grid
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(b) Outer oriented objects on the dual B-spline grid

Figure 4.6: Primal cell complex build using X1 = {0, 0, 0, 1, 1, 1}. We can choose to assign
either inner (4.6(a)) or outer (4.6(b)) orientation to the control points, edges and faces.

Reduction / Reconstruction of inner oriented differential forms in 2D

In the previous section we defined the univariate spaces of differential 0- and 1-forms

S0
pd,Xd

:= span {Ni,pd(x)}nd
i=0 and S1

pd−1,Xd
:= span {Mi,pd−1(x)dx}nd

i=1 (4.26)

where Mi,pd−1(x) = ci,pd−1 ·Ni,pd−1(x) and ci,pd−1 = pd
xi+pd

−xi .

Suppose we discretize the inner oriented differential forms on the primal cell complex. Apply-
ing the wedge product between these univariate spaces of differential forms, we can readily
construct two-dimensional spaces Λkh(Ω) of B-spline differential k-forms,

Λ0
h(Ω) : = S0

p1,X1
∧ S0

p2,X2

Λ1
h(Ω) : = S1

p1−1,X1
∧ S0

p2,X2
+ S0

p1,X1
∧ S1

p2−1,X2

Λ2
h(Ω) : = S1

p1−1,X1
∧ S1

p2−1,X2
(4.27)

In the previous section we observed that the reduction process is given in terms of the dual
functionals, which act dual to the B-spline basis functions. Again applying the wedge product
between the reduction operands for 1D space we obtain the reduction operators in 2D space.
The reduction acting on 0-forms is given by,

R0 := λi,p1λj,p2 for i = 0, . . . , n1 and j = 0, . . . , n2 (4.28)

René Hiemstra M.Sc. Thesis



4.3 Spline differential forms in 2D 93

The reduction operator for 1-forms is given by the following tangent vector,

R(1)
1 :=

λi,p1−1λj,p2

c1
i

∂

∂x1
for i = 1, . . . , n1 and j = 0, . . . , n2

R(2)
1 :=

λi,p1λj,p2−1

c2
j

∂

∂x2
for i = 0, . . . , n1 and j = 1, . . . , n2

R1 = R(1)
1 +R(2)

1 (4.29)

Similarly the reduction operator for 2-forms is given by the tangent 2-vector,

R2 :=
λi,p1−1λj,p2−1

c1
i · c2

j

∂

∂x1
∧ ∂

∂x2
for i = 1, . . . , n1 and j = 1, . . . , n2 (4.30)

After the reduction stage we can reconstruct continuous representations of differential forms
using the 2D spaces defined in (4.27). Examples of inner oriented differential forms are
reconstruction of the potential φ0(x), the velocity field u1(x) and the vorticity ω2(x),

φ0
h(x) = I0ϕ̄ =

n1∑

i=0

n2∑

j=0

ϕ̄ij Ni,p1(x1)Nj,p2(x2),

u1
h(x) = I1ū =

n1∑

i=1

n2∑

j=0

ū1
ij Mi,p1−1(x1)Nj,p2(x2)dx1 +

n1∑

i=0

n2∑

j=1

ū2
ij Ni,p1(x1)Mj,p2−1(x2)dx2,

ω2
h(x) = I2ω̄ =

n1∑

i=1

n2∑

j=1

ω̄ij Mi,p1−1(x1)Mj,p2−1(x2)dx1 ∧ dx2, (4.31)

where ϕ̄ ∈ C(0), ū ∈ C(1) and ω̄ ∈ C(2).

Figure 4.7 illustrates some of the B-spline basis functions for inner oriented 0-, 1- and 2-forms
on the primal cell complex, which are applied in the reconstruction phase. In these figures,
the close relation ship between the local field quantities and discrete points, lines and edges
becomes clear. In contrast, in conventional FEA, all local quantities are reconstructed from
point quantities. They consequently loose the ability to conserve some important quantities
like mass and rotation.
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(a) N1,2(x1) ·N0,2(x2) (b) N1,2(x1) ·N1,2(x2)

(c) M1,1(x1) ·N0,2(x2) dx1 (d) N1,2(x1) ·M2,1(x2) dx2

(e) M1,1(x1) ·M1,1(x2) dx1 ∧ dx2 (f) M2,1(x1) ·M2,1(x2) dx1 ∧ dx2

Figure 4.7: Some modes of inner oriented B-spline differential forms on the primal cell complex.
The knot vector which defines the B-spline spaces is X1 = X2 = {0, 0, 0, 1, 1, 1}
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4.3.2 Dual cell complex

While the primal cell complex is defined by the degree pd and knot vector Xd (for d=1,2) of
the NURBS geometry, setting up a dual grid using B-splines in less straight forward. The
B-spline control mesh is a primal grid by definition since it is enclosed by a boundary. For
any B-spline primal grid of dimension n1 by n2 control points, we can construct a dual grid
using a B-spline control mesh of n1 + 1 by n2 + 1 control points and subsequently removing
the boundary control points and edges. There is some freedom in choosing the degree and
knot vector for the dual grid; an obvious choice however is the B-spline control mesh of degree
p1 +1 by p2 +1 with the same interior knots as the primal grid. The excess control points and
edges along the boundary should be removed by incorporating Dirichlet and/or Neumann
boundary conditions in strong form. Imposing Dirichlet boundary conditions strongly is
straight forward. Imposing Neumann boundary conditions in strong form, is however more
difficult, since in general the local coordinate system is not orthogonal. Figures 4.8(a) and
4.8(b) illustrate such a constructed dual of the primal grids depicted respectively in Figures
4.6(a) and 4.6(b).
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(a) Outer oriented objects on the dual B-spline grid
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(b) Inner oriented objects on the dual B-spline grid

Figure 4.8: A B-spline dual grid is obtained by subtracting excess control points o and edges
−−− at the boundary. These can be eliminated by incorporating boundary conditions in strong
form

Reduction / Reconstruction of outer oriented differential forms in 2D

The choice of placing the inner oriented differential forms on the primal cell complex, means
we have to place the outer oriented differential forms on a dual cell complex. Suppose for
the moment we explicitly define a dual cell complex in terms of B-spline basis functions and
associated degrees of freedom, as described above then we can set up the following spaces of
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outer oriented B-spline differential forms in 2D

Λ0̃
h(Ω) : = S0

p1+1,X1
∧ S0

p2+1,X2

Λ1̃
h(Ω) : = S0

p1+1,X1
∧ S1

p2,X2
+ S1

p1,X1
∧ S0

p2+1,X2

Λ2̃
h(Ω) : = S1

p1,X1
∧ S1

p2,X2
(4.32)

The reduction of outer oriented differential forms can be defined in a similar way as for the
inner oriented ones. The only difference is that the 1- and 2- direction for outer oriented
1-forms are reversed. We have the following reduction operator for outer oriented 0-forms,

R0̃ := λi,p1+1λj,p2+1 for i = −1, . . . , n1 and j = −1, . . . , n2 (4.33)

The reduction operator for outer oriented 1-forms is given by the following tangent vector,

R(1)

1̃
:=

λi,p1+1λj,p2

c2
j,p2

∂

∂x2
for i = −1, . . . , n1 and j = 0, . . . , n2

R(2)

1̃
:=

λi,p1λj,p2+1

c1
i,p1

∂

∂x1
for i = 0, . . . , n1 and j = −1, . . . , n2

R1̃ = R(1)

1̃
+R(2)

1̃
(4.34)

Similarly the reduction operator for outer oriented 2-forms is given by the tangent 2-vector,

R2̃ :=
λi,p1λj,p2

c1
i,p1
· c2
j,p2

∂

∂x1
∧ ∂

∂x2
for i = 0, . . . , n1 and j = 0, . . . , n2 (4.35)

Continuous representations of outer oriented differential forms can subsequently be recon-
structed using the 2D spaces defined in 4.32. Examples are reconstruction the streamfunction
ψ0̃(x), the flux q1̃(x) and the mass density ρ2̃(x),

ψ0̃
h(x) = I0ψ̄ =

n1∑

i=−1

n2∑

j=−1

ψ̄ij Ni,p1+1(x1)Nj,p2+1(x2),

q1̃
h(x) = I1q̄ =

n1∑

i=−1

n2∑

j=0

q̄1
ij Ni,p1+1(x1)Mj,p2(x2)dx1 +

n1∑

i=0

n2∑

j=−1

q̄2
ij Mi,p1(x1)Nj,p2+1(x2)dx2,

ρ2̃
h(x) = I2ρ̄ =

n1∑

i=0

n2∑

j=0

ρ̄ij Mi,p1(x1)Mj,p2(x2)dx1 ∧ dx2, (4.36)

where ψ̄ ∈ C(0̃), q̄ ∈ C(1̃) and ρ̄ ∈ C(2̃).

Figure 4.9 illustrates some of the B-spline basis functions for outer oriented 0-, 1- and 2-forms
on the dual cell complex, which are applied in the reconstruction phase.
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(a) N1,3(x1) ·N1,3(x2) (b) N2,3(x1) ·N2,3(x2)

(c) N1,3(x1) ·M1,2(x2) (d) M2,2(x1) ·N1,3(x2)

(e) M1,2(x1) ·M0,2(x2) (f) M1,2(x1) ·M1,2(x2)

Figure 4.9: Some modes of outer oriented B-spline differential forms.
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98 IsoGeometric Mimetic Discretization Methods

The construction of a dual grid is by no means necessary. In Buffa et al. [20, 19, 17] and
[57] they circumvent using a dual grid by discretizing all quantities, whether inner or outer
oriented, on one primal grid. Although they are able to set up exact sequences for both
the inner and outer oriented differential forms in the cell complex, they are not able to
connect them using the Hodge star operator. In stead they use the weak formulation. This
resembles a finite volume type of discretization for the conservation laws on a single grid
and a finite element type of discretization for the constitutive equations. Although their
discretization approach features incidence matrices that mimic the exterior derivative, they

lose the symmetry property D(k+1,k) =
(
D(n−k+1,n−k)

)T
. One Consequence is that the discrete

Laplacian is not symmetric. They also have problems incorporating boundary conditions.

Also in this thesis we shall not explicitly define a dual grid in terms of basis functions and
associated degrees of freedom. We shall implicitly define a dual grid by making use of the

symmetry property D(k+1,k) =
(
D(n−k+1,n−k)

)T
to follow the exact sequence on the dual grid.

We shall make the connection between the primal grid and implicit dual grid by means of the
Hodge star inner product between k-forms on the primal cell complex. The advantage is that
all symmetries are preserved, while no dual grid needs to be explicitly defined. Furthermore
Neumann boundary conditions can be easily applied in weak form.

4.4 Application of B-splines to the topological relations

B-splines can be seen as higher order Whitney forms [20] and thus provide vector spaces which
are discretely conservative by construction. Approximation by these type of basis functions
will result in a reconstructed flow field which locally conserves some important quantities like
mass and rotation. In the following we show that Ik+1δ = dIk and as a consequence we
can use the incidence matrices as a discrete gradient, discrete curl and discrete divergence in
combination with the B-spline reconstruction.

4.4.1 The gradient operator

Let φ0
h(x) be reconstructed in terms of B-spline basis functions from the 0-cochain ϕ̄ ∈ C(0)

φ0
h(x) = I0ϕ̄ =

n1∑

i=0

n2∑

j=0

ϕ̄ij Ni,p1(x1)Nj,p2(x2) (4.37)

Consider the case where u1
h(x) = grad φ0

h(x),

grad φ0
h(x) =

∂

∂x1
φ0
h(x)dx1 +

∂

∂x2
φ0
h(x)dx2 (4.38)
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The first component looks as follows,

∂

∂x1
φ0
h(x)dx1 =

∂

∂x1

n1∑

i=0

n2∑

j=0

ϕ̄ij Ni,p1(x1)Nj,p2(x2)dx1

=

n1∑

i=1

n2∑

j=0

(ϕ̄i,j − ϕ̄i−1,j) Mi,p1−1(x1)Nj,p2(x2)dx1 (4.39)

A similar result is obtained in the 2-direction. Next it can be shown that,

u1
h(x) = I1ū =

n1∑

i=1

n2∑

j=0

ū1
ij Mi,p1−1(x1)Nj,p2(x2)dx1 +

n1∑

i=0

n2∑

j=1

ū2
ij Ni,p1(x1)Mj,p2−1(x2)dx2, ū ∈ C(1)

(4.40)

where the 1-cochain ū ∈ C(1) is given by ū = δϕ̄, in particular (see Figure 4.10)

ū1
i,j = ϕ̄i,j − ϕ̄i−1,j and ū2

i,j = ϕ̄i,j − ϕ̄i,j−1 (4.41)

,i jϕ1,i jϕ −

, 1i jϕ −

2
,i ju

1
,i ju

Figure 4.10: The co boundary process gives a discrete equation of the gradient

A.14 provides a discrete equation for the gradient which is exact, coordinate free and invariant
under C1 transformations

4.4.2 The curl operator

Let u1
h(x) be a 1-form reconstructed from ū ∈ C(1). The 2-form ω2

h(x) is obtained by taking
the curl of the 1-form u1

h(x),

ω2
h(x) = curl u1

h(x) =

(
∂

∂x2
u1(x)− ∂

∂x1
u2(x)

)
dx1 ∧ dx2 (4.42)

MSc. Thesis René Hiemstra
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Next it can be shown that (see figure 4.11)

ω̄i,j = ū1
i,j−1 + ū2

i,j − ū1
i,j + ū2

i−1,j , (4.43)

with

ω2
h(x) =

n1∑

i=1

n2∑

j=1

ω̄i,j Mi,p−1(x1)Mj,q−1(x2) (4.44)

2
,i ju

1
,i ju

1
, 1i ju −

2
1,i ju − ,i jω

+

+−

−

Figure 4.11: The co boundary process provides a discrete equation of the curl

A.16 is discretely exact, coordinate free and invariant under C1 transformations

4.4.3 The divergence operator

Consider the divergence equation,

ρ2̃
h(x) = div q1̃

h(x) =

(
∂

∂x1
q1(x) +

∂

∂x2
q2(x)

)
dx1 ∧ dx2 (4.45)

The flux vector q1̃
h(x) = q1dx2 − q2dx1 can be expanded as

q1(x) =

n1∑

i=−1

n2∑

j=0

q̄1
i,j Ni,p1+1(x1)Mj,p2(x2),

q2(x) =

n1∑

i=0

n2∑

j=−1

q̄2
i,j Mi,p1(x1)Nj,p2+1(x2)
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If ρ2̃
h(x) is expanded in terms of volume basis functions

ρ2̃
h(x) =

n1∑

i=0

n2∑

j=0

ρ̄i,j Mi,p1(x1)Mj,p2(x2) , (4.46)

the divergence equation reduces to ρ̄ = δq̄, more precisely (see Figure 4.12)

ρ̄i,j = q̄1
i,j − q̄1

i−1,j + q̄2
i,j − q̄2

i,j−1 (4.47)

2
,i jq

1
,i jq1

1,i jq −

2
, 1i jq −

,i jρ +

+

−

−

Figure 4.12: The co boundary process provides a discrete equation of the divergence

4.47 is exact, coordinate free and invariant under C1 transformations

4.5 Application of B-splines to the Metric dependent relations

In this section we shall discuss how relations related to metric are taken into account. With
metric we mean the notion of length, scale, measure and angle. Different quantities are also
related by material properties which depend on the metric. In elasticity problems for example,
the stress is measured as the relative elongation, or strain, times the Young’s modulus. The
metric combined with material behavior is described in the constitutive equations.

Recall that the constitutive equations are described by the Hodge star ∗ which maps continu-
ous differential k-forms to (n− k)-forms of opposed orientation and induces a locally defined
inner product (Chapter 2, page 30),

α(k) ∧ ∗β(k) =
〈
α(k), β(k)

〉
dΩ (4.48)

In the discrete setting, the Hodge star should map k-cochains to (n− k)-cochains of opposite
orientation and should similarly induce a globally defined inner product. There are thus two
ways in which we can proceed to develop a discrete Hodge star:
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102 IsoGeometric Mimetic Discretization Methods

1. Define a globally defined inner product and deduce a discrete Hodge operator.

2. Define a discrete Hodge explicitly and induce an inner product.

The first method leads to a finite element type of discretization and is convenient since it is
not necessary to set up a dual grid. The two dimensional discretization method presented in
this thesis follows this approach.

The second approach leads to a finite volume type of discretization and it is necessary to set
up a basis for both grids. Before we explain the approach we have taken in this thesis, we
briefly note that the second approach can lead to a fortunate discretization in terms of the
primal and dual B-spline basis defined earlier. Because the Curry Schoenberg B-splines are
simply scaled B-spline Mi,pd(x) = ci,d ·Ni,pd(x) the following is numerically exact,

∗ : S0
pd,Xd

7→ S1
pd,Xd

(4.49)

This means that in 1D we can set up a discrete Hodge which is a diagonal matrix and is exact.
In terms of the spaces for differential forms in 2D defined earlier, we can obtain a discretely
exact Hodge between 0- and dual n-forms, which is a diagonal matrix. The Hodge between
1- and dual (n− 1)-forms is in all but one direction discretely exact and needs the following
projection step in one dimension

π S1
pd−1,Xd

≈ S0
pd+1,Xd

(4.50)

This even holds in 3D. I think that it is possible to construct a tridiagonal Hodge between
1- and dual (n-1)-forms, irrespective of the polynomial order. The reason why is that the
recursive definition of B-splines makes it possible to find Ni,p+1(x) from Ni,p−1(x), Ni+1,p−1(x)
and Ni+2,p−1(x). This projection should resemble degree elevation process in case of Bezier
splines (One element B-spline patch). The dual functionals might come handy in developing
such a projection.

The discrete Hodge should satisfy some algebraic constraints , see Hiptmair [38]. Since
α(k)∧∗β(k) = β(k)∧∗α(k) in discrete terms will become ᾱTHdβ̄ = β̄THdᾱ, the discrete version
of the Hodge Hd should be square, symmetric, positive definite and preferably a sparse matrix.
Since in this thesis we use the inner product definition, to discretize the Hodge, and B-splines
feature local support, all these properties are met.

4.5.1 Discrete Hodge star

In order to introduce a sense of measure, the geometric domain under consideration should
be fitted with a coordinate system. A NURBS parametric map y = S (x) provides exactly
what we need. Each coordinate (x1, x2) maps to a coordinate (y1, y2) in physical space and
y = S (x) can be regarded as a map from the parameter domain Ω′ to the physical domain
Ω

S : Ω′ 7→ Ω
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Figure 4.13: Bi-quadratic tensor product B-spline surface constructed from knot vectors X1 =
{0, 0, 0, 2, 2, 2} and X2 = {0, 0, 0, 1.5, 3, 3, 3}

By use of this map we can define an inner product which defines the notion of a metric. This
inner product is given by the definition of the Hodge star operator between k-forms.

α(k) ∧ ∗β(k) =
〈
α(k), β(k)

〉
dΩ (4.51)

The Hodge star operator assigns geometric quantities to ’new’ dual geometric objects. In this
thesis we will encounter this inner product between 0-forms and dual 2-forms and between
1-forms and dual 1-forms. Consider the following 1-forms u(1) and w(1), which can be written
in terms of it’s vector components in local coordinates xi as

u(1)(x) = u1 dx1 + u2 dx2 and w(1)(x) = w1 dx1 + w2 dx2 (4.52)

The Hodge star inner product, in equation 4.51, can consequently be written in terms of local
coordinates as

w(1) ∧ ∗u(1) =
(
w1 w2

)( 〈
dx1,dx1

〉 〈
dx1,dx2

〉
〈
dx2,dx1

〉 〈
dx2,dx2

〉
)(

u1

u2

)
S∗dΩ (4.53)

The matrix containing the inner products
〈
dxi, dxj

〉
is the covariant version of the metric

tensor, and shall be denoted by gij . Furthermore S∗dΩ is the pull back of the physical
domain to parameter space.
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The components of the metric tensor

The inner product components of the metric tensor - gij =
〈
dxi,dxj

〉
- depend on the metric

induced by the parametric map S. To make this clear, the pull back is applied to the global
basis co-vectors dyi

S∗dyi =
∂Si

∂xj
dxj

By writing the pullback as a matrix vector equation, we may take the inverse of the Jacobian
matrix J in order to write the dxj in terms of the parametric map S and the dyi components

(
dy1

dy2

)
=

(
∂S1

∂x1

∂S1

∂x2
∂S2

∂x1

∂S2

∂x2

)

︸ ︷︷ ︸
J

(
dx1

dx2

)
⇒

(
dx1

dx2

)
=

1

det J

(
∂S2

∂x2
−∂S1

∂x2

−∂S2

∂x1

∂S1

∂x1

)

︸ ︷︷ ︸
J−1

(
dy1

dy2

)

(4.54)

Filling in the separate terms, we can write the products gij =
〈
dxi, dxj

〉
in terms of the

parametric map S. The result is

g11 =
〈
dx1, dx1

〉
=

1

(det J)2

((
∂S2

∂x2

)2

+

(
∂S1

∂x2

)2
)

g12 = g21 =
〈
dx1,dx2

〉
=

−1

(det J)2

(
∂S2

∂x2

∂S2

∂x1
+
∂S1

∂x2

∂S1

∂x1

)

g22 =
〈
dx2, dx2

〉
=

1

(det J)2

((
∂S2

∂x1

)2

+

(
∂S1

∂x1

)2
)

(4.55)

Pullback of the physical domain to parameter space

In order to perform integration of equation 4.53, we need to a apply the pullback S∗ of the
volumeform dΩ

S∗dΩ = S∗dy1 ∧ dy2 =

∣∣∣∣∣
∂S1

∂x1

∂S1

∂x2
∂S2

∂x1

∂S2

∂x2

∣∣∣∣∣ dx1 ∧ dx2 = det J dΩ′ (4.56)

Both the components of the metric tensor gij and the pull back of the volume form S∗dΩ
consist of derivatives of the parametric map S. Since in our case this map is given by the
NURBS geometry, they are easily evaluated using derivatives of NURBS, as explained in
Chapter 3, page 75.

Discrete Hodge between 1- and dual (n− 1)-forms

In order to condense the notation to some extend, we shall employ vector notation for the
co-chains and basis functions. Vectors will be written in boldface type. Co-chains are denoted
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with a bar on top to show they are a vector containing discrete numbers (degrees of freedom).
Vectors containing functions will be made clear by their input. Furthermore, two-dimensional
basis functions are developed by the use of tensor products of the one-dimensional B-splines
Np(xi) and Mp−1(xi) in the following way

Rk(x) = Ni,p(x1) ·Nj,q(x2) k = i+ j · n
R

(1)
k (x) dx1 = Mi,p−1(x1)dx1 ·Nj,q(x2) k = i+ j · (n− 1)

R
(2)
k (x) dx2 = Ni,p(x1) ·Mj,q−1(x2)dx2 k = j + i · (m− 1)

R
(1,2)
k (x) dx1 ∧ dx2 = Mi,p−1(x1)dx1 ·Mj,q−1(x2)dx2 k = i+ j · (n− 1) (4.57)

The following notations of the expansion of a zero form are thus equivalent

ϕ0(x) =

n∑

i=0

m∑

j=0

ϕ̄ij Ni,p(x1) ·Nj,q(x2) =
∑

k

ϕ̄k Rk(x) = ϕ̄T ·R(x)

Here we shall use the latter vector notation. We further assume that the dimensions of these
vectors are obvious from the context.The one-forms w1(x) and u1(x) from equation 4.53 can
thus be expanded in vector notation as

w1(x) = w̄T
1 ·R(1)(x) dx1 + w̄T

2 ·R(2)(x) dx2

u1(x) = ūT1 ·R(1)(x) dx1 + ūT2 ·R(2)(x) dx2 (4.58)

Substituting the quantities in terms of co-chains and basis functions into equation 4.53, we
obtain the following relation

w(1) ∧ ∗u(1) =
(

w̄T
1 ·R(1)(x) w̄T

2 ·R(2)(x)
)( g11 g12

g21 g22

)(
ūT1 ·R(1)(x)

ūT2 ·R(2)(x)

)
det J dΩ′

(4.59)

Equation (4.59) contains four components which we need to compute. Using indices i and
j to address each of the four components and the fact that g12 = g21, we can rearrange as
follows

w(1) ∧ ∗u(1) =
2∑

i=1

2∑

j=1

(
w̄T
i ·R(i)(x)

)(
R(j)(x)T · ūj

)
gij det J dΩ′

=

2∑

i=1

2∑

j=1

(
w̄T
i ·
(
R(i)(x)⊗R(j)(x)T

)
· ūj
)
gij det J dΩ′ (4.60)

Note that by changing the order of multiplication we have taken the outer product of the two
vectors containing the basis functions. The inner product is still locally defined. In order to
obtain a global representation of the Hodge star operator, we need to perform integration.
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Since the relation is already pulled back to the parameter space, we can perform integration
here.

∫

Ω
w(1) ∧ ∗u(1) =

2∑

i=1

2∑

j=1

w̄T
i ·
{∫

Ω′

(
R(i)(x)⊗R(j)(x)T

)
· gij det J dΩ′

}
· ūj (4.61)

The discrete representation of the Hodge is subsequently given by

H(1̃,1) =



∫

Ω′

(
R(1)(x)⊗R(1)(x)T

)
· g11 det J dΩ′

∫
Ω′

(
R(1)(x)⊗R(2)(x)T

)
· g12 det J dΩ′

∫
Ω′

(
R(2)(x)⊗R(1)(x)T

)
· g21 det J dΩ′

∫
Ω′

(
R(2)(x)⊗R(2)(x)T

)
· g22 det J dΩ′




(4.62)

The integrals in 4.62 are in practice evaluated using Gauss numerical quadrature. This
integration is performed per element in a similar way as for conventional polynomial bases.
For more efficient quadrature see Hug [2]. This Hodge automatically fulfills the requirements
we set up earlier, on page 102. The Hodge between 1- and dual 1-forms is always square,
symmetric, positive definite and sparse.

Discrete Hodge between 0- and volume forms

Given the expansion of a weighting function w0(x) and a 0-form f0(x) in terms of B-spline
basis functions

w0(x) = w̄T ·R(x) and f0(x) = f̄
T ·R(x) (4.63)

we can define an inner product between 0-forms, which defines the Hodge between 0- and
volume forms,

w(0) ∧ ∗f (0) =
〈
w̄T R(x) , R(x)T f̄

〉
dΩ

= w̄T
(
R(x)⊗R(x)T

)
f̄ dΩ (4.64)

To obtain a global representation of the Hodge we can pull the result back to parameter space
and perform integration

∫

Ω′
w(0) ∧ ∗f (0) = w̄T

{∫

Ω′

(
R(x)⊗R(x)T

)
det J dΩ′

}
f̄ (4.65)

The Hodge inner product matrix between 0- and volume forms in 2d is thus given by

H(2̃,0) =

∫

Ω′

(
R(x)⊗R(x)T

)
det J dΩ′ (4.66)

Which is always a square, symmetric, positive definite and sparse matrix.
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Discrete Hodge between volume- and 0-forms

The discrete Hodge between volume- and 0- forms on the dual, is a similar expression. Given
the two form w2(x) and ω2(x) expanded in terms of the B-spline basis for two forms

w2(x) = w̄T ·R(1,2)(x) dx1 ∧ dx2 and ω2(x) = ω̄T ·R(1,2)(x) dx1 ∧ dx2 (4.67)

the Hodge star inner product definition between 2-forms and 0-forms is given as

w2 ∧ ∗ω2 =
〈
w2, ω2

〉
dΩ

=
〈
w̄T ·R(1,2)(x) dx1 ∧ dx2, ω̄T ·R(1,2)(x) dx1 ∧ dx2

〉
dΩ

= w̄T
(
R(1,2)(x)⊗R(1,2)(x)

)
ω̄
〈
dx1 ∧ dx2,dx1 ∧ dx2

〉
det J dΩ′ (4.68)

The metric is contained in the inner product term
〈
dx1 ∧ dx2, dx1 ∧ dx2

〉
which can be rewrit-

ten using the pullback of the volume form (4.56) dΩ = dy1 ∧ dy2 = det Jdx1 ∧ dx2 as follows

〈
dx1 ∧ dx2,dx1 ∧ dx2

〉
=

〈
1

det J
dy1 ∧ dy2,

1

det J
dy1 ∧ dy2

〉
=

1

(det J)2 (4.69)

since
〈
dy1 ∧ dy2,dy1 ∧ dy2

〉
= 1. The inner product definition of the Hodge star can subse-

quently be written as

w2 ∧ ∗ω2 = w̄T
(
R(1,2)(x)⊗R(1,2)(x)

)
ω̄

1

det J
dΩ′ (4.70)

Integrating this relation will provide us a discrete representation of the Hodge star between
volume- and dual 0-forms,

H(0̃,2) =

∫

Ω′

(
R(1,2)(x)⊗R(1,2)(x)T

) 1

det J
dΩ′ (4.71)

Again, this Hodge is square, symmetric, positive definite and sparse.

4.5.2 Boundary conditions

Dirichlet boundary conditions are easy to apply. Once the system of equations has been set
up, the Dirichlet boundary conditions can be enforced strongly by multiplying the boundary
conditions with the associated columns of the system matrix and subsequently subtracting
these from the right hand side vector.

Neumann boundary conditions require a little more effort to impose. These are taken into
account by the following boundary integral,

∫

∂Ω

w(0) ∧ ∗u(1) (4.72)
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Here w(0) can be regarded as a test function and ∗u(1) is the flux. Every differential k-form at
the boundary of a manifold Ω can be decomposed into a component tangent and a component
normal to the boundary. For a 1-form u1(x) we have

u1(x) = utdΓ + undxn (4.73)

where dΓ is tangent and dxn is normal to the boundary, as illustrated in Figure 4.14.

2x
∂
∂

1x
∂
∂

2dx

1dx

dΓnu

dΓ
1dy

2dy

Figure 4.14: The normal flux un dΓ at the east boundary needs to be taken into account.

The flux term q1̃ = ∗u1(x) is then given by,

q1̃(x) = ∗u1(x) = ut(y)dxn + un(y)dΓ (4.74)

The normal flux component, un(y)dΓ, is the boundary condition we wish to implement, and
is thus a known function. The boundary integral in (4.72) can then be stated in terms of this
normal flux as,

∫

∂Ω

w(0) ∧ un(y)dΓ (4.75)

The normal flux un(y)dΓ, in (4.75), is still defined in physical space, so we need to apply the
pull back. Say, we wish to impose Neumann boundary conditions at the east boundary in
Figure 4.14. Then, since ∂

∂x1 = 0 at the east boundary, the pull back of dΓ is given by,

dΓ = dy1 + dy2 where dy1 =
∂S1

∂x2
dx2 and dy2 =

∂S2

∂x2
dx2, (4.76)

and the pull back of un(y)dΓ becomes,

S∗ (un(y)dΓ) = un (S(x))

(
∂S1

∂x2
+
∂S2

∂x2

)
dx2. (4.77)
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Furthermore, the weighting function w0(x) is expanded in terms of one-dimensional B-spline
basis functions as a 0-form

w0(xi) = w̄T ·N(xi) (4.78)

Inserting (4.77) and (4.78) into (4.75) provides us the integral we need to evaluate at the east
boundary,

∫

∂Ω

w(0) ∧ ∗u(1) = w̄T ·
∫

∂Ω

Nq(x
2) · qn(S(1, x2))

(
∂S1

∂x2
+
∂S2

∂x2

)
dx2 (4.79)

4.5.3 Discrete DeRahm sequence revisited

At this moment we have developed the basic tools to discretize a range of physical prob-
lems in space. We introduced the incidence matrices in Chapter 2, Section 2.3, which mimic
the exterior derivative; and in this chapter we developed a discrete Hodge operator using
B-splines. Furthermore, we introduced a reduction R and reconstruction operation I em-
ploying B-splines which connect the continuous with the discrete and commute with the ex-
terior derivative. The commuting diagram in (4.80) summarizes all operators of the proposed
discretization approach.

R - Λ0(Ω)
d

- Λ1(Ω)
d

- Λ2(Ω) - 0

R - C(0)

R0

? D(1,0)
- C(1)

R1

? D(2,1)
- C(2)

R2

?
- 0

R - Λ0
h(Ω)

I0

?

R0

6

d
- Λ1

h(Ω)

I1

?

R1

6

d
- Λ2

h(Ω)

I2

?

R2

6

- 0

R - C(0)

R0

?

I0

6

D(1,0)
- C(1)

R1

?

I1

6

D(2,1)
- C(2)

R2

?

I2

6

- 0

0 � C(2̃)

H2̃,0

?

(
H2̃,0

)−1

6

�

(
D(1,0)

)T
C(1̃)

H1̃,1

?

(
H1̃,1

)−1

6

�

(
D(2,1)

)T
C(0̃)

H0̃,2

?

(
H0̃,2

)−1

6

� R
(4.80)

It is very important to understand the operators in this diagram, and their commuting prop-
erties. The first line represents the spaces Λk(Ω) hosting the local quantities we want to
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approximate. Using the reduction operation Rk we go from local to global quantities and
reduce these infinite dimensional continuous spaces to finite dimensional discrete spaces C(k).
This reduction operation commutes with the exterior derivative, so Dk+1,k Rk = Rk+1 d.
Subsequentally we can reconstruct finite dimensional continuous spaces Λkh(Ω) which approx-
imate Λk(Ω) to a certain order. Again the reconstruction operation commutes with the
exterior derivative, so d Ik = Rk+1 Dk+1,k.

The fourth line represents our discrete primal cell complex. Since we have that Rk Ik =
identity the fourth line is exactly the same as the second. We connect the primal cell complex
with a dual cell complex (line 5) by means of the discrete Hodge star developed in this chapter.
Note that since we have implicitly defined the dual cell complex, we cannot reconstruct
cochains to differential forms on the dual grid.

4.5.4 The discrete co-derivative

Since we have constructed discrete analogues of the exterior derivative and Hodge operators,
we are able to represent a discrete variant of the co-derivative. Analogous to continuous
space (see Chapter 2, Section 2.2.5), the discrete co-derivative is a map from a k-cochain to
a (k − 1)-cochain,

D∗(k−1,k) : C(k) 7→ C(k−1)

In 2D space we have two of these operators. Analogous to continuous space, where the co-
derivative is defined as d∗ = (−1)2(k+1)+1 ∗ d∗ (Chapter 2, Section 2.2.5), we write these
operators in terms of the discrete Hodge and the discrete exterior derivative as,

D∗(0,1) = −
(
H(2̃,0)

)−1 (
D(1,0)

)T
H(1̃,1) (4.81)

D∗(1,2) = −
(
H(1̃,2)

)−1 (
D(2,1)

)T
H(0̃,2) (4.82)

Note that the discrete versions of the co-derivative require the inverse of a discrete Hodge.
These are expensive to calculate and are full matrices. In practice we will always attempt to
circumvent such operations.

4.5.5 Discrete scalar and vector Laplacian

The Laplacian is an important operator in many physical problems. Its building blocks are
the exterior derivative and the co-derivative (Chapter 2, Section 2.2.5). In 2D space we have
three different types of the Laplacian. A scalar Laplacian acting on a 0-form; the vector
Laplacian acting on a 1-form; and yet another scalar Laplacian acting on a 2-form.
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Analogous to continuous space (Chapter 2, Section 2.2.5), the discrete Laplacian acting on a
k-form can be constructed as follows,

∆
(k)
d = D(k,k−1)D∗(k−1,k) + D∗(k,k+1)D(k+1,k) (4.83)

Scalar Laplacian acting on a 0-form

The scalar Laplacian is very common operator in physics. It occurs in many physical phe-
nomena such the diffusion in heat and fluid flow; wave propagation; electric and gravitational
potentials, etc. Also in the Navier-Stokes equation a scalar Poisson problem frequently needs
to be solved for the pressure.

Exactly as in the continuous case, D∗ϕ̄(0) = 0 (follow the discrete De Rahm sequence in 4.80),
and consequently, the scalar Laplacian acting on a 0-form ϕ̄(0) is given by,

∆
(0)
d ϕ̄(0) = D∗(0,1)D(1,0) ϕ̄(0) (4.84)

The Poisson equation, written in terms of the discrete Hodge and the Discrete exterior deriva-
tive, can be stated as,

= −
(
H(2̃,0)

)−1 (
D(1,0)

)T
H(1̃,1)D(1,0) ϕ̄(0) = f̄ (0) (4.85)

We can bring the left Hodge to the right hand, such that we do not need to invert a matrix.

(
D(1,0)

)T
H(1̃,1)D(1,0) ϕ̄(0) = −H(2̃,0) f̄ (0) (4.86)

Furthermore, instead of determining f̄ (0) = R0f
0 and calculating H(2̃,0), we can use the known

function f0 directly in the inner product definition of the Hodge (4.64),

w0 ∧ ∗f0 =
〈
w0, f0

〉
dΩ (4.87)

The right hand side then requires the evaluation of the following integral,

∫

Ω′
w0 ∧ ∗f0 = w̄T

∫

Ω′
R(x) · f0 det J dΩ′ (4.88)

where f0 is the known function.

To illustrate that the mimetic discretization approach to Poisson’s problem involving a 0-
form is equal to the weak formulation (continuous Galerkin), we multiply by a test function,
a 0-form w0, and perform integration over Ω (4.89). In line (4.90) and (4.91) we applied the
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generalized Stokes theorem (Chapter 2, theorem 2.2.1, page 36).

∫

Ω
w0 ∧

(
d ∗ dϕ0

)
=

∫

Ω
w0 ∧ ∗f0 (4.89)

∫

Ω
d
(
w0 ∧ ∗dϕ0

)
−
∫

Ω
dw0 ∧ ∗dϕ0 =

∫

Ω
w0 ∧ ∗f0 (4.90)

∫

Ω
dw0 ∧ ∗dϕ0 = −

∫

Ω
w0 ∧ ∗f0 +

∫

∂Ω
w0 ∧ ∗dϕ0 (4.91)

Finally, using the inner product definition of the Hodge star (4.51) and the result we obtained
earlier in (4.75) regarding Neumann boundary conditions, we can write (4.91) as follows,

∫

Ω

〈
dw0,dϕ0

〉
dΩ = −

∫

Ω

〈
w0, f0

〉
dΩ +

∫

∂Ω
w0 ∧ undΓ (4.92)

This is exactly the weak formulation for the Poisson problem.

Scalar Laplacian acting on a 2-form

Using the weak formulation (4.92) hides the fact that the Laplacian can be applied to other
than point related quantities (0-forms). Application of (4.83) to a 2-form yields,

∆
(2)
d ψ̄(2) = D(2,1)D∗(1,2)ψ̄(2) = −D(2,1)

(
H(1̃,2)

)−1 (
D(2,1)

)T
H(0̃,2)ψ̄(2) (4.93)

Here we used that Dψ̄(2) = 0 (follow the discrete DeRahm sequence in (4.80)). In this case
we do need to invert a Hodge matrix.

Vector Laplacian acting on a 1-form

Besides the well known Laplacian acting on scalar functions, there are also cases where the
Laplacian operator acts on vector valued functions. An example is the diffusion term in the
Navier-Stokes equations. The Laplacian acting on the flux, an outer oriented 1-form, is given
by

∆
(1̃)
d q̄(1̃) =

(
D(1̃,0̃)D∗(0̃,1̃) + D∗(1̃,2̃)D(2̃,1̃)

)
q̄(1̃) (4.94)

In case of incompressible flow, D(2̃,1̃)q̄(1̃) = 0, and the vector Laplacian simplifies to

∆
(1̃)
d q̄(1̃) = D(1̃,0̃)D∗(0̃,1̃) q̄(1̃) (4.95)
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4.6 Numerical experiments - 2D discretization of the poisson
equation

In this section we shall perform numerical experiments for some simple test cases of the scalar
Poisson equation acting on a 0-form, which we can compare with an exact solution. We also
compare the results obtained with our IsoGeometric Mimetic approach with those obtained
from Galerkin based IsoGeometric Analysis.

Consider the scalar Poisson equation in the 2-dimensional interval Ω = [0, 1]2,

∆ϕ0 = f0 (4.96)

of which the exact solution and accompanying right hand side function are given by

ϕ0(y) = sin(iπy1) · sin(iπy2)

f0(y) =
∂2ϕ

∂y2
1

+
∂2ϕ

∂y2
1

= − (iπ)2 sin(iπy1) · sin(i · πy2) (4.97)

where ϕ0 is and f0 are both zero forms. Furthermore, in our experiments we use i = 2. We
can discretely represent (4.96) as

(
D(1,0)

)T
H(1̃,1)D(1,0) ϕ̄(0) = f̄ (2̃) (4.98)

The Dirichlet boundary conditions for this problem are homogeneous and are incorporated
strongly.

We perform numerical experiments on the geometries and meshes depicted in the Figures
4.15, 4.16, 4.17 and 4.18 below. The geometry in Figure 4.18 is self overlapping, which will
illustrate the robustness of the numerical method.

(a) mesh 1 (b) mesh 2 (c) mesh 3 (d) mesh 4

Figure 4.15: Meshes for Curved0, produced with global h-refinement

Figure 4.19 shows the difference between the exact solution and the numerical approximation,
in the L2(Ω) norm. The maximum step width hmax is determined as the largest diagonal
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(a) mesh 1 (b) mesh 2 (c) mesh 3 (d) mesh 4

Figure 4.16: Meshes for Curved1, produced with global h-refinement

(a) mesh 1 (b) mesh 2 (c) mesh 3 (d) mesh 4

Figure 4.17: Meshes for Curved2, produced with global h-refinement

(a) mesh 1 (b) mesh 2 (c) mesh 3 (d) mesh 4

Figure 4.18: Meshes for Curved3, produced with global h-refinement

of all elements in the mesh, divided by the square root of two. We compare a Galerkin
based IsoGeometric Analysis approach (denoted by IGA FEA) with our mimetic discretization
(denoted by IGA MIM). Almost identical results are obtained. This is not unexpected since
in case of the scalar Poisson equation for a 0-form, the Mimetic discretization proposed
here is equal to the weak form (see (4.89) to (4.89)). There are however two differences in
discretization. First of all, derivatives are represented differently. Opposed to the conventional
approach, we have the advantage that derivatives can be stated in either continuous or in
reduced discrete form, resulting in strong conservation properties. Secondly, we calculate the
inner product in curved coordinates, while a conventional FEA approach applies the push
forward and calculates inner products in physical coordinates.
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(d) Convergence of ϕ0(y) in the L2 norm on
Curved3

Figure 4.19: Convergence results for ϕ0
h(y) with respect to step size. IGA MIM stands for the

IsoGeometric Mimetic discretization approach proposed here, and IGA FEA stands for the Galerkin
approach. Almost identical results are obtained for both methods. Observe that convergence rates
start sub-optimal on the curved geometries. After sufficient refinement, however, the convergence
rates are above optimal.

For the linear geometry of Curved0 we obtain the expected convergence rates O(hp+1). The
convergence rates for the non-linear geometries start with suboptimal. This is not unexpected,
since a non-linear geometry map may deteriorate the approximation power. It is however
interesting to see that, once the mesh has been sufficiently refined, the convergence is above
optimal.

Figure 4.20 shows a contour plot of the numerical solution of ϕ0, for the different geometries.
Quite good results are obtained even for the self overlapping geometry. Sufficient refinement
is however needed. We note that a Galerkin based IsoGeometric Analysis approach will give
identical results. The fact that good results are obtained, even on these ridiculous geometries,
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illustrate the robustness of B-spline basis functions.

(a) Results on Curved0, mesh 3, bi-degree 3 (b) Results on Curved1, mesh 3, bi-degree 3

(c) Results on Curved2, mesh 3, bi-degree 3 (d) Results on Curved3, mesh 4, bi-degree 3

Figure 4.20: Contour plot of ϕ0
h(y) for the different geometries. Although Curved3 is self

overlapping, the obtained results on the fine mesh seem quite good.

Figure 4.21 illustrates the conditioning of the system matrix as a function of the polynomial
degree p. These numbers seem quite disturbing. The condition number increases exponen-
tially, with slope p. The bad conditioning can be found in the mass matrices (inner product
matrices - the Hodge) and is solely due to the choice of basis functions: B-splines. Galerkin
based IsoGeometric Analysis features the same bad conditioning. This is probably the biggest
disadvantage of using B-splines or NURBS as basis functions.

Although the conditioning with respect to the polynomial order is very bad, it does not seem
to influence accuracy. The approximation keeps converging towards the exact solution with
good rates of convergence, see Figures 4.19 (a) to (d). This is quite a remarkable observation.
The explanation can be found in the variation diminishing property of B-splines, see Chapter
3, page 58. For high degree B-splines, a change in the coefficients leads to a much smaller
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change in the solution. This is opposite to the general understanding of bad conditioning
where a small change in the coefficients leads to excessive changes in the solution.
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(d) Results on Curved4

Figure 4.21: Condition number of system matrix with respect to the polynomial degree.
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(b) Results on Curved2
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(c) Results on Curved3
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(d) Results on Curved4

Figure 4.22: Condition number of system matrix with respect to the mesh size.

While the conditioning with respect to the polynomial order is lousy, the conditioning with
respect to mesh-size is excellent, see Figure 4.22. The conditioning of the system stays more
or less constant under h-refinement.

Although the bad conditioning with respect to the polynomial order, doesn’t seem to di-
rectly effect the accuracy, it is still an important factor for iterative solvers. IsoGeometric
discretizations based on B-splines or NURBS, employing inner product mass matrices, will
thus in practice be confined to low to medium order.

In the next chapter we shall apply the IsoGeometric Mimetic discretization method to some
practical problems involving incompressible irrotational flows over a lifting cylinder and
NACA0012 airfoil.
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Chapter 5

Practical Applications in 2D

In this chapter we apply the mimetic discretization method, based on B-spline basis functions,
on potential flow problems that include lift. Of course these kind of problems can easily be
tackled by conventional boundary element methods; the motivation of this exercise, however,
is to study the behavior of the so called harmonic function.

According to the classical Helmholtz Hodge decomposition, every quantity can be decomposed
into three basic components: a curl free, a divergence free and a harmonic part.

u = gradϕ+ curlψ + h (5.1)

Since curl · grad and div · curl is zero by definition, gradϕ and curlψ are respectively the curl
and divergence vanishing components. The final part, h, is called the harmonic function and
is both mass and rotationally conservative. These components are geometrically intuitive as
well as useful in practice.

Examining 5.1 in case u represents velocity, then ϕ is the velocity potential, ψ is the stream-
function and h is the harmonic component of velocity. The harmonic function is responsible
for a net global circulation in a non-contactable domain, a domain enclosing a hole. An ex-
ample could be an airfoil under an angle of attack, where a net amount of global circulation
around the airfoil causes a net amount of lift. From the Kutta-Joukowsky theorem, 5.2, we
know that the amount of lift L produced by an airfoil or any other lift producing object, is
proportional to the circulation Γ around the object.

L = ρ∞V∞Γ (5.2)

where ρ∞ is the density of the medium and V∞ the freestreem velocity.

Switching to the notation we use in our Differential Geometry framework, we can write
Helmholtz-Hodge decomposition of a 1-form as

u(1) = dϕ0 + d∗ψ2 + h1 (5.3)
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When the flow is considered to be irrotational, meaning du(1) = 0, the hodge decomposition
simplifies to:

u(1) = dϕ(0) + h(1) (5.4)

In this case all of u(1) = 0 is harmonic. Potential flow can thus be divided into a non-
circulatory flow component and a circulatory flow component. An example for potential flow
around a lifting airfoil is shown in Figure 5.1.

NACA0012

® = 8deg

NACA0012

® = 8deg

NACA

® = 8

+

=

Figure 5.1: Hodge decomposition of an inviscid flow around a lifting airfoil. (Top) Contribution
due to gradient of potential. (Middle) Contribution due to harmonic function. (Bottom) Resulting
flow.

The circulation can be calculated by integrating the velocity along any closed path enclosing
the airfoil. Then since a = b for any closed path

b∮

a

u(1)dr =

b∮

a

(
dϕ(0) + h(1)

)
dr = ϕb − ϕa +

b∮

a

h(1)dr =

b∮

a

h(1)dr (5.5)

Thus if we know the harmonic function, we know the circulation and we can determine the
lift according to 5.2.

Before we dwell further into the derivation of the harmonic function, let’s take a look at how
a conventional FEM would tackle a potential flow problem that includes lift. Suppose the
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harmonic function could be written as the differential of a potential, then

b∮

a

h(1)dr =

b∮

a

dϕ(0)dr = ϕ(0) (b)− ϕ(0) (a) (5.6)

This can only be nonzero for any closed path if a discontinuity of the potential exist at a = b.
Conventional approaches make use of this by making an artificial cut in the domain, from
the trailing edge to the boundary. This will allow a discontinuity in the potential to exist
and thus the simulation of lift. This engineering approach might still work well in case the
domain under consideration features one hole. In the case of multiple holes, this approach
becomes difficult if not impossible.

In this chapter we will explicitly calculate the harmonic function up to a constant and sub-
sequently use the result in our discretization. The model problems we use contain one hole
only. Multiple holes, for example an airfoil with flap, will not pose any problems using our
approach.

5.1 Discrete representation of the harmonic form

We seek a finite dimensional representation of the continuous harmonic form in terms of
discrete degrees of freedom - a co-chain - and associated basis functions. Obviously the basis
functions have been chosen and what rests is to find the harmonic cochain. In this section
we shall discuss how the harmonic cochain can be derived, up to a constant. This constant
is proportional to the circulation.

The discrete analogue to (5.4) is

ū(1) = D(1,0)ϕ̄(0) + h̄(1) · c̄. (5.7)

where ū(1) ∈ C(1). From (5.7) we can observe that the discrete space of 1-cochains C(1) is
spanned by the columns of D(1,0) and the harmonic co-chain h̄(1). Hence, we can use the
columns of D(1,0) and h̄(1) as a linear independent basis for C(1). The number of column
vectors of h̄(1) is equal to the number of holes in the mesh. So for the numerical simulation
of an airfoil with flap the harmonic cochain has two columns.

The velocity 1-form ū(1) should satisfy the two conditions:

Irrotational flow: D(2,1)ū(1) = D(2,1)h̄(1) · c̄ = 0 (5.8)

Mass conservation:
(
D(1,0)

)T
H(1̃,1)ū(1) =

(
D(1,0)

)T
H(1̃,1)

(
D(1,0)ϕ̄(0) + h̄(1) · c̄

)
= 0 (5.9)

In 5.8 we used that D(2,1)D(1,0) is zero by construction. So strictly speaking, D(1,0)ϕ̄(0) nor
h̄(1) · c̄ need to conserve mass, as long as the sum of the terms is mass conservative. Obviously,
in this case h̄(1) is no longer harmonic. It will however still cause a global circulation in a
non-contractible domain.
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There are now two separate ways in which we can find h̄(1) such that together with the
columns of D(1,0), it spans the whole space of C(1). The first possibility is to construct h̄(1)

such that it conserves mass. In this case we require the metric and the two conditions in 5.8
and 5.9 can be combined to set up the following system of equations:

(
D(2,1)

(
D(1,0)

)T H(1̃,1)

)
h̄(1) =

(
0
0

)
(5.10)

As we will shortly see, the dimension of this system is N by N − 1 + a; where a denotes the
number of holes in the mesh. If a = 1, we obtain a square system and we can simply solve
for h̄(1). If a > 1, the a columns of h̄(1) can be found using singular value decomposition.

In the second approach we relax the condition of mass conservation for h̄(1), and construct its
columns such that they are orthogonal to the columns of D(1,0). In this case the columns of
D(1,0) and h̄(1) also span the whole space of C(1). Constructing h(1) orthogonal to the columns

of D(1,0) amounts to stating that
(
D(1,0)

)T
h̄(1) = 0. We can thus find a basis for h̄(1) by

solving the following problem,

(
D(2,1)

(
D(1,0)

)T
)
h̄(1) =

(
0
0

)
(5.11)

Note that (5.11) seems quite similar to (5.10). However, while (5.10) requires the metric
(Hodge star), (5.11) is metric free. The second approach yields a form of mass conservation,
where the Hodge is the identity matrix. We shall illustrate the second approach in an example.

Example 1 Consider a non-contractible cell complex which has been numbered and oriented, see
Figure 5.2. This domain is topologically equivalent to the flow domain around for example an airfoil.

1 2 3

4 5 6 7

8 9 10

11 1312 14

15 16 17

18 19 20 21

22 23 24

1 2 3

4 5

7 86

1 2 3 4

5 6 7 8

9 10 11

13

12

14 15 16

Figure 5.2: Non-contractible cell complex
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5.1 Discrete representation of the harmonic form 123

The topological relations are discretely represented by the incidence matrices. D(1,0) gives the connec-
tivity between 0-chains and 1-chains (points and lines) and represents the discrete grad.

D(1,0)
=



1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



(5.12)

D(2,1) shows the connectivity between 1-chains and 2-chains (from lines to surfaces) repre-
senting the discrete curl

D(2,1)
=



−1 0 0 −1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 −1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 −1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 1 0 0 1


(5.13)

Constructing the harmonic cochain h̄(1) such that it obeys the condition of irrotational flow
and is orthogonal to the columns of D(1,0), amounts to setting

D(2,1) h̄(1) = 0
(
D(1,0)

)T
h̄(1) = 0 (5.14)

In the case of the cell complex shown in figure 5.2, we have 16 0-chains, 24 1-chains and 8
2-chains. This means that the first set of equations in 5.14 is of dimension (8 by 24) and the
second set of equations has dimension (16 by 24). The harmonic 1-cochain can subsequentally
be found by solving a linear system of equations which is of dimension (24 by 24).

(
D(2,1)

(
D(2,1)

)T
)
(
h̄(1)

)
=

(
0
0

)
(5.15)

More generally, if we consider the topology to be Cartesian, we have N by M 0-chains,
M (N − 1) +N (M − 1) 1-chains and (M − 1) (N − 1)− a number of 2-chains, where a is the
number of holes present in the geometry. The final system we have to solve has the following
number of rows and columns

- rows: N ·M + (M − 1) (N − 1)− a = 2 ·N ·M −N −M − a+ 1
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- columns: M (N − 1) +N (M − 1) = 2 ·N ·M −N −M

Thus in the case of 1 hole, we have a square system, which we can solve up to a constant. In
the case of multiple holes in the domain, the harmonic function is a linear combination of a
basis vectors, which can be found using singular value decomposition (SVD). The harmonic
co-chain belonging to the cell complex of figure 5.2 is found by solving the system of equations
in 5.15. The result is given by

h̄
(1)

=
(

1 2 1 1 1 −1 −1 1 4 1 2 4 −4 −2 −1 −4 −1 1 1 −1 −1 −1 −2 −1
)T

(5.16)

One can readily check that both D(2,1) h̄(1) = 0 and
(
D(1,0)

)T
h̄(1) = 0 by substituting.

Interpolation of the harmonic 1-cochain in (5.16), using the edge type of B-spline basis func-
tions reveals that the motion is oscillatory around the hole, see Figure 5.3. Important is to
note that in curved space, the flow is able to cross the boundary, since we did not set up any
boundary conditions. The potential ϕ0 will however be calculated such that u1 satisfies the
boundary conditions.

Figure 5.3: Oscillatory flow around the hole in the non-contractible domain of figure 5.2
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5.2 Kutta condition 125

As is illustrated above, it is quite straightforward to find the harmonic cochain using our
discrete framework. We emphasize however that the harmonic co-chain can only be found by
using global relations. A conventional FEM or FVM will consequently not be able to find the
harmonic function directly, since discrete relations are only locally defined.

5.1.1 The harmonic cochain under mesh refinement

In order to obtain the harmonic cochain we need to solve an additional system of linear
equations, as described above. For a refined mesh this can become very expensive, especially
when multiple holes exist and we need to use SVD. It is however possible to calculate the
harmonic cochain on the initial coarse mesh and subsequently refine it, to find a basis on the
fine mesh.

This is possible because we can determine h̄(1) using only topological structures (5.11). Since
topology doesn’t change under mesh refinement, the columns of the refined harmonic cochain

h̄
(1)
ref will stay orthogonal to the refined columns of D(1,0)

ref ; secondly h̄
(1)
ref will stay irrotational.

We used the transformation rules of B-splines to refine the harmonic cochain. The difference
in normalization between ordinary B-splines and the Curry Schoenberg B-splines should be
taken into account.

5.2 Kutta condition

Since we need to solve for one additional degree of freedom - the constant c̄ associated with the
harmonic cochain h(1) - we need to impose an extra condition on the flow. This is the so called
Kutta condition which selects how the flow leaves the object under consideration. In case of
lifting potential flow around a blunt body, the Kutta condition is given by a stagnation point
on the object. Consider the flow around a cylinder, Figure 5.4, where we require a stagnation
point at Pstag. Since the velocity in the direction of n is already zero, because no flow is
allowed to cross the boundary, we need only to impose zero velocity in the direction of t.

n

t

stagP

Figure 5.4: Kutta condition for the cylinder. We will enforce a stagnation point at Pstag. Since
the velocity in the direction of n is already zero due to Neumann BC’s, we only need to pose zero
velocity in the direction of t.
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126 Practical Applications in 2D

In case of an airfoil with a finite angle trailing edge, the Kutta condition is not given by a
stagnation point. Consider Figure 5.5, which depicts the NACA0012 at an incidence of 10
deg. We can not place a stagnation point at the trailing edge TE of the airfoil, since in this
case we need to impose two conditions: (1) velocity in the direction of t is zero; and (2) the
velocity in the direction of n is zero.

Exactly the same as for the cylinder, we impose the velocity in the direction of t to be zero.
This will enforce the flow to leave the trailing edge smoothly in the direction of n.

α

β

t

nTE

Figure 5.5: Kutta condition for the NACA0012. To enforce that the flow leaves the trailing edge
smoothly we impose that the velocity in the direction of t is zero. In this case the flow leaves the
trailing edge at TE in the direction of n. n is thus tangent to the streamline at TE.

Given the geometry in terms of a parametric NURBS map y = S(x), stating physical coor-
dinates y in terms of local coordinates x, we can determine the vector t at Pstag and TE, in
Figure 5.4 and 5.5 respectively. In case of the cylinder this is a trivial exercise. As for the
airfoil, we first need to determine the vectors α and β, see Figure 5.5. Once these vectors
have been determined, we can calculate the bi-sector n and subsequently t,

n =

(
n1

n2

)
=

1

2 ‖α‖

(
α1

α2

)
+

1

2 ‖β‖

(
β1

β2

)
=⇒ t =

(
n2

−n1

)
= n2

∂

∂y1
− n1

∂

∂y2
(5.17)

Let us denote the position where the Kutta condition is imposed, whether it is for the cylinder
or for the airfoil, by the local coordinate xK . Then we can calculate the velocity at this point
by reconstructing the 1-cochain ū(1),

u1
h(xK) = I1 ū

(1) = ūT1 R(1)(xK)dx1 + ūT2 R(2)(xK)dx2 (5.18)

Here ū(1) ∈ C(1) is given by 5.7. The reconstructed velocity u1
h(xK) is formulated in terms of

local coordinates. To determine the component of velocity in the direction of t we need to
reformulate to physical coordinates y. This means we need to apply the push forward S∗. By
writing the pull back S∗ of a one form as a matrix vector equation, we may take the inverse
of the Jacobian matrix J, such that we obtain an equation for the push forward. We already
showed this in the previous chapter; for the sake of completeness we repeat it here.

(
dy1

dy2

)
=

(
∂S1

∂x1

∂S1

∂x2
∂S2

∂x1

∂S2

∂x2

)

︸ ︷︷ ︸
J

(
dx1

dx2

)
⇒

(
dx1

dx2

)
=

1

det J

(
∂S2

∂x2
−∂S1

∂x2

−∂S2

∂x1

∂S1

∂x1

)

︸ ︷︷ ︸
J−1

(
dy1

dy2

)
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The velocity in the direction of t can then be written as,

S∗
(
u1
h(xK)

)T · t = S∗

((
ūT1 R(1)(xK) ūT2 R(2)(xK)

)(dx1

dx2

))(
n2

∂

∂y1
− n1

∂

∂y2

)

=
1

det J

(
ūT1 R(1)(xK) ūT2 R(2)(xK)

)
(

∂S2

∂x2
−∂S1

∂x2

−∂S2

∂x1

∂S1

∂x1

)(
dy1

dy2

)(
n2

∂

∂y1
− n1

∂

∂y2

)

=
1

det J

(
ūT1 R(1)(xK) ūT2 R(2)(xK)

)
(

∂S2

∂x2
−∂S1

∂x2

−∂S2

∂x1

∂S1

∂x1

)(
n2

−n1

)

=
1

det J

((
∂S2

∂x2
n2 + ∂S1

∂x2
n1

) (
R(1)(xK)

)T (
−∂S2

∂x1
n2 − ∂S1

∂x1
n1

) (
R(2)(xK)

)T)(ū1

ū2

)

= KT ū(1) (5.19)

Here KT is a row vector. Using 5.7 we can state the Kutta condition in terms of this row
vector as,

∗S
(
u1
h(xK)

)T · t = KT ū(1) = KT
(
D(1,0) h(1)

)(ϕ̄(0)

c̄

)
= 0. (5.20)

5.3 Discrete equations for potential flows that include lift

Since we now have an equation for the additional degree of freedom c̄ associated with the
harmonic cochain, we are able to set up a system of equations, to solve for the unknown
potentials ϕ̄(0) and the unknown constant c̄. Since the formulation automatically obeys the
condition of irrotational flow, we only need to impose mass conservation (5.9) and the Kutta
condition (5.20). The final set of equations becomes,

((
D(1,0)

)T H(1̃,1)

KT

)
(
D(1,0) h(1)

)(ϕ̄(0)

c̄

)
=

(
0
0

)
(5.21)

We note that boundary conditions still need to be set.

5.4 Determination of the lift

In order to determine the lift we integrate the harmonic part of velocity over a closed contour
(5.5). We take the boundary of the object under consideration as the contour of integration.
Assume that the object is described by a 2D NURBS map y = S(x1, 0). By keeping the x2

direction constant, the map describes the boundary curve.

The harmonic part of velocity at the boundary is then only a function of x1 and can be
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128 Practical Applications in 2D

reconstructed as,

I1 c̄ · h̄(1) = c̄ ·
n1∑

i=1

h̄1
i Mi(x1)dx1 + c̄ ·

n1∑

i=0

c0 · h̄2
i Ni(x1)dx2. (5.22)

Since ∂
∂x1

is a vector tangent to the boundary, the co-vector dx2 is normal to the boundary
(Chapter 2, definition of the dual space (3) , page 23). We can consequently neglect the
second term in (5.22) and the integral of (5.22) is given by,

Γ =

∮

x1

c̄ ·
n1∑

i=1

h̄1
i Mi(x1)dx1 = c̄ ·

n1∑

i=1

h̄1
i

∮

x1

Mi(x1)dx1 = c̄ ·
n1∑

i=1

h̄1
i (5.23)

Here we used the useful property of the Curry Schoenberg B-splines that the integral under
every basis function is 1 (property (4.10) introduced in chapter 4, page 84).

EXAMPLE 5.4.1 Figure 5.6 depicts a cylinder and its associated primal cell complex near the
boundary. The harmonic cochain h̄i is associated with control edges. The circulation around the
cylinder in Figure 5.6 can be calculated as

Γ = c̄ ·
8∑

k=1

h̄i. (5.24)

1h

2h

3h

4h5h

6h

7h

8h

Figure 5.6: The circulation can be calculated by summing the harmonic cochains on the boundary,
multiplied by c̄.

Since we know the circulation Γ, we can determine the lift according to the Kutta-Joukowski
theorem (5.2).

5.5 Lifting flow over a cylinder

In this section we apply the IsoGeometric Mimetic discretization scheme developed in this
thesis to the incompressible irrotational flow around a cylinder with lift. We will choose
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5.5 Lifting flow over a cylinder 129

several different locations of the stagnation point Pstag (see Figure 5.7), in order to generate a
certain amount of lift, and compare with the analytical solution (see for example Anderson Jr.
[5]). We will do so for several refinement stages of the mesh and for several polynomial orders
of the B-spline basis.

5.5.1 Problem setup

Figure 5.7 shows the problem setup in polar coordinates (r, θ). We choose the radius of
the cylinder as R = 1. The free stream variables are chosen as ρ∞ = 1 and V∞ = 1.
Furthermore we perform numerical experiments for four different cases of the stagnation point:
(1) Pstag = (1, 0); (2) Pstag = (1,−1/4π); (3) Pstag = (1,−1/2π); and (4) Pstag = (2,−1/2π);

R θ

stagP

r

V∞

Figure 5.7: Lifting flow over cylinder.

We shall make the comparison with the analytical solution in a number of ways. We will
compare the lift coefficient CL; The drag coefficient CD, which should obviously be zero; the
pressure coefficient Cp at the cylinder wall; and for the uniform flow around the cylinder we
calculate the error between the analytical and numerical solution of the potential in the L2(Ω)
norm as a function of the element size hmax. hmax is calculated as the maximum diagonal
length of all elements in the mesh.

The lift is determined as explained in the previous section. The drag is calculated by inte-
grating the momentum over the outer boundary using high order quadrature. Below you will
find the analytical solution to some of the variables we compare with.

Analytical solution to the lift

By the Kutta-Joukowski theorem (5.2), lift L is proportional to the vortex strength Γ. The
analytical value of the vortex strength Γ depends on the choice of the stagnation point Pstag =
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(r, θ) by [5],

Γ (Pstag(r, θ)) = −4πrV∞sin(θ) (5.25)

Analytical solution to the velocity potential

For uniform flow around the cylinder we shall compare with the potential in th L2(Ω) norm.
The analytical solution to the potential of the lifting flow around a circular cylinder can be
stated by superimposing a uniform flow, a doublet and a vortex [5]. The result is

Φ(r, θ) = V∞ · r cos(θ)

(
1 +

R2

r2

)
− Γ

2π
θ (5.26)

Analytical solution to the pressure coefficient at the cylinder wall

We will further compare the numerical value of the pressure coefficient at the boundary of
the cylinder with the analytical one. The analytical solution is given by Anderson Jr. [5],

Cp(1, θ) = 1− 4 sin2(θ) +
2Γ sin(θ)

πRV∞
+

(
Γ

2πRV∞

)2

(5.27)

Boundary conditions

We impose Neumann boundary conditions weakly, both at the outer boundary and at the
cylinder wall, by means of a boundary integral containing the analytical solution of the
velocity. The analytical solution to the velocity is obtained by differentiating (5.26),

Vr(r, θ) =

(
1− R2

r2

)
V∞ cos(θ)

Vθ(r, θ) = −
(

1 +
R2

r2

)
V∞ sin(θ)− Γ

2πr
(5.28)

In chapter 4, Section 4.5.2, page 107, it is explained how to implement these boundary
conditions.

5.5.2 NURBS geometry and mesh generation

The flow domain around the circular cylinder is modeled in a CAD environment using four
bi-quadratic NURBS patches, see Figure 5.8. Chapter 3, Section 3.4 explains how such a
geometry can be constructed. The cylinder with radius R = 1 is exactly described at the
coarsest level of discretization. The flow domain is of size 5 by 5.
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(a) Coarse mesh (b) NURBS control mesh

Figure 5.8: NURBS 2D geometric domain around a cylinder of radius R = 1. The geometry is
modeled in a CAD program using four patches. The size of the domain is 5 by 5. The meshes
are obtained by global h-refinement with increased resolution near the cylinder wall.

Numerical calculations are performed using the initial coarse mesh and for three stages of
refinement. The meshes are obtained using global refinement, in such a way that additional
resolution is provided near the cylinder wall, see Figure 5.9

(a) mesh 1 (b) mesh 2 (c) mesh 3 (d) mesh 4

Figure 5.9: Each patch is refined for analysis. Calculations are performed on the above meshes.

Table 5.1 states the number of degrees of freedom, for the different meshes and polynomial
orders we have used.
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Table 5.1: Lifting flow around the cylinder. Number of degrees of freedom for mesh 1 to 4 and
polynomial degree 2 to 6.

degree mesh 1 mesh2 mesh 3 mesh 4

2 25 49 121 361
3 49 81 169 441
4 81 121 225 529
5 121 169 289 625
6 169 225 361 729
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5.5.3 Results for uniform flow around the cylinder

Cnum
L = −4.0742e − 012π

Can
L = 1.1102e − 016π

(a) streamlines of the flow

(b) iso-contours of pressure

Figure 5.10: Uniform flow around a cylinder. The blue circle denotes the stagnation point, which
is chosen at R = 1 and θ = 0 deg. The results have been obtained for bi-degree 6 mesh 3.
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(f) Cp plotted verses θ

Figure 5.11: Convergence results for lifting flow over a cylinder with stagnation point Pstag =
(1, 0). Figures (a) depicts the L2(Ω) error in the potential. Optimal convergence results are
obtained. Figure (b) depict the numerical results for the drag coefficients, which are close to
machine precision. Figures (c) to (f) compare the numerical results for the pressure coefficient
at the cylinder wall against the analytical solution for the different meshes and order of the basis.
The pressure coefficient Cp is plotted in polar coordinates against angle θ
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5.5.4 Results for lifting flow over the cylinder with Pstag = (1,−1/4π)

Cnum
L = 2.8284π

Can
L = 2.8284π

(a) streamlines of the flow

(b) iso-contours of pressure

Figure 5.12: Potential flow around a lifting cylinder. The stagnation point is chosen at R = 1
and θ = −1/4π. The results have been obtained for mesh 3, bi-degree 6.

MSc. Thesis René Hiemstra
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Figure 5.13: Convergence results for lifting flow over a cylinder with stagnation point Pstag =
(1,−1/4π). Figures (a) and (b) depict the numerical results for the lift and drag coefficients.
Figures (c) to (f) compare the numerical results for the pressure coefficient at the cylinder wall
against the analytical solution for the different meshes and order of the basis. The pressure
coefficient Cp is plotted in polar coordinates against angle θ.
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5.5.5 Results for lifting flow over the cylinder with Pstag = (1,−1/2π)

Cnum
L = 4π

Can
L = 4π

(a) streamlines of the flow

(b) iso-contours of pressure

Figure 5.14: Potential flow around a lifting cylinder. The stagnation point is chosen at R = 1
and θ = −1/2π. The results have been obtained for mesh 3, bi-degree 6.
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Figure 5.15: Convergence results for lifting flow over a cylinder with stagnation point Pstag =
(1,−1/2π). Figures (a) and (b) depict the numerical results for the lift and drag coefficients.
Figures (c) to (f) compare the numerical results for the pressure coefficient at the cylinder wall
against the analytical solution for the different meshes and order of the basis. The pressure
coefficient Cp is plotted in polar coordinates against angle θ.
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5.5.6 Results for lifting flow over the cylinder with Pstag = (2,−1/2π)

Cnum
L = 5π

Can
L = 5π

(a) streamlines of the flow

(b) iso-contours of pressure

Figure 5.16: Potential flow around a lifting cylinder. The stagnation point is chosen at R = 2
and θ = −1/2π. The results have been obtained for mesh 3, bi-degree 6.
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Figure 5.17: Convergence results for lifting flow over a cylinder with stagnation point Pstag =
(2,−1/2π). Figures (a) and (b) depict the numerical results for the lift and drag coefficients.
Figures (c) to (f) compare the numerical results for the pressure coefficient at the cylinder wall
against the analytical solution for the different meshes and order of the basis. The pressure
coefficient Cp is plotted in polar coordinates against angle θ.
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5.5.7 Discussion

Good results have been obtained for the lifting flow around the cylinder. In this case we
can compare with an exact solution, which gives us a clear image of how well our numerical
method performs for these kind of problems. The results for the lifting flow over the cylinder
show similar trends for all choices of the stagnation point.

We can observe in 5.13(a), 5.15 (a) and 5.17(a) that we are able to accurately determine the
lift. The relative error in the lift on the coarse mesh is in the order of 10−2, which is already
quite small. The lift seems to converge in most cases at a slope of p.

We further studied the drag, which in the analytical case is zero by d’Alembert’s paradox.
The numerical drag coefficients are in all cases reasonably close to zero. The absolute value
of the drag coefficient seems to be dependent on the total number of degrees of freedom and
not on the polynomial order of approximation.

The increased continuity of the B-spline basis clearly contributes to capturing the qualitative
behavior of the pressure. The Quadratic B-spline expansion of the potential ϕ0

h, is C1 contin-
uous between elements. The velocity - the spatial derivative of the potential - is consequently
piecewise linear with C0 continuity between elements. The pressure, which is proportional
to the square of velocity, is then also C0 continuous. This low order continuity gives the
numerical solution the freedom to behave totally different then the analytical solution. This
is clearly visible in Figures 5.11(c), 5.13(c), 5.15 (c) and 5.17(c), which depict the pressure
coefficient at the cylinder wall. While the analytical solution shows convex behavior, the nu-
merical solution is concave. Refining the mesh shows that the numerical solution converges,
however, this opposite behavior does not disappear.

For the higher order Cp−1 B-spline basis, see Figures 5.11(d-f), 5.13(d-f), 5.15 (d-f) and
5.17(d-f), the pressure at the cylinder wall is at least tangent continuous. In these cases the
numerical solution directly captures the qualitative behavior of the pressure. This illustrates
the strength of Cp−1 continuous B-splines as compared to C0 finite elements.

At patch interfaces, which are situated at θ = 1/4π ± 1/2π, the potential is C0 continuous
in all cases. This means that the velocity and thus the pressure are discontinuous at these
points. This discontinuity in the pressure coefficient is only visible on coarse meshes and low
order approximations.
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142 Practical Applications in 2D

5.6 Lifting potential flow over the NACA0012 airfoil

Next, we apply the new discretization approach to the lifting flow over a NACA0012 airfoil.
Results are obtained for 0,2,4,6 and 8 deg. We compare our results with those obtained from
a 2nd order panel method using 1000 panels. We compare the pressure coefficient over the
surface of the airfoil and the lift as a function of degrees of freedom. As we did for the
cylinder, we calculate the drag.

5.6.1 Problem setup

Figure 5.18 depict the problem setup for the flow around the NACA0012. The flow domain
is of size 22 by 20. The airfoil chord is set to c = 1. The in- and out flow velocity is set to
V = 1. The boundary conditions are weakly enforced.

22.00

20
.0

0

1V = 1V =

1.00

Figure 5.18: Problem setup, flow around the NACA0012

5.6.2 NURBS geometry and mesh generation

The flow domain, depicted in Figure 5.19, is modeled in a CAD environment using two
bi-quadratic patches. The shape of the airfoil has been approximated from a point cloud
generated by the analytical formula of the NACA0012. The angle of attack is controlled by
rotating the boundary control points around the leading edge.
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(a) physical mesh (b) control mesh

Figure 5.19: Coarse model of the flow domain, straight from CAD. Note that the corners have
been artificially created by placing two control points at the same location.

We have performed calculations on the meshes depicted in Figure 5.20. These have been
obtained by several stages of global refinement of the coarse mesh. Refinement is only per-
formed in the radial direction, because the tangential direction is considered fine enough from
the coarsest discretization on. Increased resolution is provided near the airfoil boundary, see
Figure 5.21.

(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 5.20: Meshes obtained using global h-refinement in the radial direction.

MSc. Thesis René Hiemstra
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

Figure 5.21: A closer look at the airfoil reveals the increased resolution we provided near the
boundary

The number of degrees of freedom for the different meshes and different polynomial degrees
are depicted in table 5.2. The meshes in 5.20 are used to perform the calculations for an angle
of attack of zero degrees. For the other angles of attack, similar meshes have been obtained.

Table 5.2: Lifting flow over the NACA0012. Number of degrees of freedom for mesh 1 to for
and polynomial degree 2 to 6.

degree mesh 1 mesh2 mesh 3 mesh 4

2 73 109 181 325
3 205 273 409 681
4 401 501 701 1101
5 661 793 1057 1585
6 985 1149 1477 2133
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5.6.3 Results uniform flow around the NACA0012

NACA0012

α = 0deg

(a) streamlines of the flow

NACA0012

= 0degα

(b) iso-contours of pressure

Figure 5.22: Potential flow around a lifting NACA0012 airfoil at 0 degrees of incidence to the
flow. The results have been obtained for mesh 3, bi-degree 6.
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Figure 5.23: Uniform flow around the NACA0012. Figure (a) depicts the numerical drag coef-
ficients. These are no longer close to machine precision, as for the cylinder. Figures (b) to (f)
depict the pressure coefficient Cp over the airfoil and compares with the results obtained by a
2nd order panel method using 1000 panels.
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5.6.4 Results lifting flow over the NACA0012 with 2 deg of incidence

NACA0012

α = 2deg

(a) streamlines of the flow

NACA0012

= 2degα

(b) iso-contours of pressure

Figure 5.24: Potential flow around a lifting NACA0012 airfoil at 2 degrees of incidence to the
flow. The results have been obtained for mesh 3, bi-degree 6.
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Figure 5.25: Lifting flow over the NACA0012 with 2 degrees of incidence to the flow. Figure (a)
illustrates the convergence behavior of the lift for the different polynomial orders, as a function
of the degrees of freedom. The lift is slightly overestimated, as compared to the panel method.
Figure (b) shows a small numerical drag component. Figures (c) to (f) depict the pressure
coefficient Cp over the airfoil as compared to a 2nd order panel method using 1000 panels .
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5.6.5 Results lifting flow over the NACA0012 with 4 deg of incidence

NACA0012

α = 4deg

(a) streamlines of the flow

NACA0012

= 4degα

(b) iso-contours of pressure

Figure 5.26: Potential flow around a lifting NACA0012 airfoil at 4 degrees of incidence to the
flow. The results have been obtained for mesh 3, bi-degree 6.
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Figure 5.27: Lifting flow over the NACA0012 with 4 degrees of incidence to the flow. Figure (a)
illustrates the convergence behavior of the lift for the different polynomial orders, as a function
of the degrees of freedom. The lift is slightly overestimated, as compared to the panel method.
Figure (b) shows a small numerical drag component. Figures (c) to (f) depict the pressure
coefficient Cp over the airfoil as compared to a 2nd order panel method using 1000 panels.
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5.6.6 Results lifting flow over the NACA0012 with 6 deg of incidence

NACA0012

α = 6deg

(a) streamlines of the flow

NACA0012

= 6degα

(b) iso-contours of pressure

Figure 5.28: Potential flow around a lifting NACA0012 airfoil at 6 degrees of incidence to the
flow. The results have been obtained for mesh 3, bi-degree 6.
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Figure 5.29: Lifting flow over the NACA0012 with 6 degrees of incidence to the flow. Figure (a)
illustrates the convergence behavior of the lift for the different polynomial orders, as a function
of the degrees of freedom. The lift is slightly overestimated, as compared to the panel method.
Figure (b) shows a minor numerical drag component. Figures (c) to (f) depict the pressure
coefficient Cp over the airfoil as compared to a 2nd order panel method using 1000 panels.
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5.6.7 Results lifting flow over the NACA0012 with 8 deg of incidence

NACA0012

α = 8deg

(a) streamlines of the flow

NACA0012

= 8degα

(b) iso-contours of pressure

Figure 5.30: Potential flow around a lifting NACA0012 airfoil at 8 degrees of incidence to the
flow. The results have been obtained for mesh 3, bi-degree 6.
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Figure 5.31: Lifting flow over the NACA0012 with 8 degrees of incidence to the flow. Figure (a)
illustrates the convergence behavior of the lift for the different polynomial orders, as a function of
the degrees of freedom. The lift is slightly overestimated, as compared to the panel method. Figure
(b) shows a minor numerical drag component Figures (c) to (f) depict the pressure coefficient Cp
over the airfoil as compared to a 2nd order panel method using 1000 panels.
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5.6.8 Discussion

In this section we calculated the incompressible, irrotational flow around a lifting airfoil at
several angles of attack. As a reference solution we used the results obtained by a 2nd
order panel method employing 1000 panels. This can give us a qualitative idea how well our
numerical scheme performs.

Reasonable agreement is found between our results and those obtained from the panel method.
Studying Figures 5.25(a), 5.27(a), 5.29(a) and 5.31(a), we can observe a similar trend in the
approximation of the lift, for all angles of attack. The lift we calculate is in all cases, slightly
higher than the lift obtained using the panel method. These differences are in the order of
10−3. Note that the approximation on the coarse mesh is already in the order 10−2.

The effect of increased continuity is visible, although not as pronounced as for the flow around
the cylinder. The convergence behavior of the quadratic degree B-spline approximation to
the lift is quite different than those obtained using the higher degree and continuity approxi-
mations.

The numerical scheme is bothered by a small drag component, see Figures 5.23(a), 5.25(b),
5.27(b), 5.29(b) and 5.31(b). This minor drag component is on average in the order of 10−4.
Such values of numerical drag in potential flows are not uncommon in numerical calculations.
The 2nd order panel method that we compare with obtained similar values of numerical drag.
The source of the numerical drag component is not exactly clear. However, in the contour
plots of the pressure field, Figures 5.22, 5.24, 5.26, 5.28 and 5.30 we can observe that the
iso-contours of pressure at the trailing edge are not that smooth. The source of the small
numerical drag component may originate from the trailing edge.

Reasonable agreement is found between the reference solution and our numerical approxima-
tion of the pressure coefficient Cp on the surface of the airfoil. In Figures 5.23(b-f), 5.25(c-f),
5.27(c-f), 5.29(c-f) and 5.31(c-f), we can observe that the IsoGeometric mimetic discretization
approach converges to the reference solution. As for the flow around the cylinder, the high
order and increased continuity seems to pay off. We do however observe some second order
deviations compared to the reference solution. These may be the result of our approximation
of the geometry.
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Conclusion

The aim of this thesis was to combine the strengths of IsoGeometric Analysis with those
of Mimetic Discretization Methods, to result in an extremely powerful new discretization
approach. B-splines, from which all modern CAD technologies are derived, have made this
combination possible. They have shown to be a natural basis within the mimetic framework,
since they can readily be identified with points, lines surfaces and volumes and lead to vector
spaces which are discretely conservative by construction.

We have provided a proof of concept illustrating many advantages of the proposed com-
bination: exact description of the geometry; tight integration with CAD; arbitrary order
approximations; increased continuity of primal variables and derivatives; local conservation
of primal variables (strong) and secondary variables (weak); a globally defined topology which
makes it possibility to use the hodge decomposition to make useful decompositions of field
variables.

We made use of the last property to model the incompressible irrotational flow over lifting
objects. Although these problems seem elementary, conventional methods, like the FEM and
FVM are unable to solve these kind of problems without resorting to an engineering approach.
We presented a novel procedure, which provides a discrete analogue to the harmonic function,
which can directly be related to the lift. Although this procedure has only been applied to
flows around a single object, it can readily be applied to lifting flows around more than one
object. The results show that the lift can accurately be approximated, already on quite coarse
meshes.

It was further observed that the increased continuity of B-splines can have a huge impact on
the qualitative behavior of the numerical solution. C0 continuity of pressure may allow the
numerical solution to behave concave, where convex behavior is expected. It was observed
that C1 continuity is already sufficient to capture the qualitative behavior of the pressure.

Another important argument, why to apply Mimetic Methods, is that there is a strong in-
dication that these methods naturally lead to stable consistent approximations. We did not
investigate this, since we applied the IsoGeometric Mimetic discretization approach to elliptic
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boundary value problems, for which stability is not so much an issue. Buffa et al. [17], how-
ever, already showed that these spaces of B-spline differential forms are inf-sup stable for more
demanding problems like Stokes flow. This is a topic which should be further investigated in
the near future.

Although the method is of arbitrary order, B-spline based IsoGeometric Analysis is in practice
confined to low or medium order, since the conditioning of inner product mass matrices with
order goes at an exponential rate. This bad conditioning doesn’t directly seam to affect the
accuracy. This can be explained by the variation diminishing property of B-splines. B-splines
respond less to a change in the coefficients for increasing order.

While conditioning with polynomial order appears very bad, the conditioning with decreasing
mesh size is more or less constant. This might be the leading factor in large complex problems
which require many stages of refinement.

We further confirmed the results of several researchers [14, 48] that B-spline based IsoGeo-
metric Analysis is very robust under mesh distortion. We performed some simple test cases of
the scalar Poisson equation. In this case Galerkin based IGA and the proposed discretization
give identical results and we observed that calculations on meshes containing self overlapping
elements give good rates of convergence; at least after sufficient refinement.
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Recommendations

This thesis provides a basis for 2D discretization in space. Differential geometry also provides
operators like the Lie-derivative which governs convection in space and time. We need a
discrete analogue to this operator. A space-time approach might be very interesting in the
case of B-splines since they feature a certain level of continuity and continuity in time is very
important.

In the proposed discretization we define an inner product and deduce the Hodge star operator.
This approach is convenient because it is not necessary to set up a dual grid. For certain
problems this Hodge star needs to be inverted, which is a very expensive operation and leads
to full matrices. In Chapter 4 we also discussed a different approach where we explicitly define
the Hodge star and induce an inner product. We discussed a probable dual grid which might
lead to fortunate discretizations in case of B-splines. This should be further investigated.

I have a suspicion that it may be possible to determine the lift directly on the coarse mesh.
The lift is only dependent on the in and out flow conditions and a Kutta condition. All of
these are set on the boundary. If we are able to impose them exactly, by enforcing boundary
conditions strongly, then all conditions are met. It might be that the lift can then directly be
determined. This would be a very strong result.
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160 Practical Applications in 2D
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Appendix A

Continuous field reconstruction

In this chapter we shall reconstruct continuous representations from global discrete quantities
by the use of basis functions. In fact, we will show how to reconstruct exterior differential
forms from chains and co-chains.

Reconstructing a 0-form in 1D

Consider the zero form ϕ(0)(x) = ϕ(x) in figure A.1, representing for example the potential.

0ϕ

1ϕ

5ϕ

4ϕ

3ϕ
2ϕ

x

( )xϕ

Figure A.1: 1D expansion of a 0-form in terms of nodal basis functions

A 0-form is associated to nodal point values. Consequently ϕ(0)(x) can be expanded in terms
of nodal basis functions hi(x), where the degrees of freedom ϕ̄i represent points values.

ϕ(0)(x) =
5∑

i=0

ϕ̄i hi(x)
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The degrees of freedom can be collected in a 0-chain ϕ̄ = [ϕ̄0, ..., ϕ̄5].

Reconstructing a 1-form in 1D

The fundamental theorem of calculus tells us how 1-forms and 0-forms are related in terms
of discrete quantities

ūi =

∮

C

d ϕ(0) = ϕi+1 − ϕi equal to ū = δϕ̄ = [ū1, ..., ū4] (A.1)

This is equal to taking the co-boundary from the 0-chain, depicted in figure A.5

0ϕ

1ϕ

5ϕ

4ϕ

3ϕ
2ϕ

x

( )xϕ

0u

1u

2u

3u

4u

0ϕ−

1ϕ+
1ϕ−

2ϕ+

2ϕ−

3ϕ+

3ϕ−

4ϕ+

4ϕ−

5ϕ+

Figure A.2: Relation between

We are thus searching for a representation of a 1-form as a linear combination of the integral
quantities ūi and new edge basis functions ei(x), defined along edges

u(1)(x) =
4∑

i=0

ūi ei(x) where ūi = ϕi+1 − ϕi (A.2)

In this setting we can represent the topological relations exactly, using the concepts of chain
and co-chain introduced in the previous chapter, and subsequentally reconstruct continuous
field representations of differential forms.

But what do these edge basis functions look like??
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A.1 Edge functions

In this section we derive the edge basis functions, which represent the cornerstone of the
mimetic approach that we have taken. These basis functions were first derived by Gerritsma
[35], and the result holds for an arbitrary basis h(x).

The general expression for the expansion of a 0-form in 1D looks like

ϕ(0)(x) =
n∑

i=0

ϕ̄i hi(x) (A.3)

Taking the exterior derivative of ϕ(0)(x), we obtain the 1-form u(1)(x) = d ϕ(0). In terms of
the basis in A.3 we have

u1(x) = d
n∑

i=0

ϕ̄i hi(x) =
n∑

i=0

ϕ̄i dhi(x) (A.4)

Partition of unity
n∑
i=0

hi(x) = 1 implies that d
n∑
i=0

hi(x) = 0, so we can add ϕ̄k d
n∑
i=0

hi(x) =

n∑
i=0

ϕ̄k dhi(x) = 0 to A.4 to obtain

u1(x) =
n∑

i=0

(ϕ̄i − ϕ̄k) dhi(x) (A.5)

This looks a bit like the expression we are searching for. A.5 should hold for all choices of k,
but we can make things easier by choosing k = 0 in the expansion

u1(x) =
n∑

i=0

(ϕ̄i − ϕ̄0) dhi(x) =
n∑

i=0




i∑

j=1

(ϕ̄j − ϕ̄j−1)


 dhi(x) =

n∑

i=0

i∑

j=1

ūj dhi(x)

=
1∑

j=1

ūj dh1(x) +
2∑

j=1

ūj dh2(x) + ...+
n∑

j=1

ūj dhn(x)

= ū1

n∑

i=1

dhi(x) + ū2

n∑

i=2

dhi(x) + ...+ ūn

n∑

i=n

dhi(x)

=
n∑

j=1

ūj

n∑

i=j

dhi(x) (A.6)

A 1-form can thus be expanded as

u(1)(x) =

n−1∑

i=0

ūi ei(x) (A.7)
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where the degrees of freedom are the co-chains

ūj = ϕ̄j − ϕ̄j−1 (A.8)

and the new edge basis functions are defined as

ej(x) =

n∑

i=j

dhi(x) (A.9)

This result holds for all basis functions hi(x)

A.2 Application of the edge functions to the grad, curl and
div

Applying tensor products of the nodal basis function h(x) and edge function e(x) we can
reconstruct the different spaces of 0-forms, 1-forms, 2-forms and 3-forms in our complex.

The constructed spaces should be able to represent the exact sequence in both the continuous
and in the discrete setting

R - C(0) D(1,0)
- C(1) D(2,1)

- C(2) - 0

R - HP (Ω)

I0

?

R0

6

d
- HL(Ω)

I1

?

R1

6

d
- HS(Ω)

I2

?

R2

6

- 0

(A.10)

Here R denotes the reduction and I the reconstruction operation.

Reconstruction of HP
grad→ HL

Consider

u(1) = grad ϕ(0) (A.11)

Let φ(0) be expanded as a tensor product of basis functions in the coordinates (x1, x2, x3)

ϕ(x1, x2, x3) =

l∑

i=0

m∑

j=0

n∑

k=0

ϕi,j,k hi(x1)hj(x2)hk(x3) (A.12)
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Then u(1) can be expanded as a tensor product of edge and nodal basis functions

u1(x1, x2, x3) =
l−1∑

i=0

m∑

j=0

n∑

k=0

ū1
i,j,k ei(x1)hj(x2)hk(x3) ,

u2(x1, x2, x3) =
l∑

i=0

m−1∑

j=0

n∑

k=0

ū2
i,j,k hi(x1)ej(x2)hk(x3) ,

u3(x1, x2, x3) =
l∑

i=0

m∑

j=0

n−1∑

k=0

ū3
i,j,k hi(x1)hj(x2)ek(x3) . (A.13)

where ūii,j,k are the co-chains

ū1
i,j,k = φ̄i+1,j,k − φ̄i,j,k , ū2

i,j,k = φ̄i,j+1,k − φ̄i,j,k , and ū3
i,j,k = φ̄i,j,k+1 − φ̄i,j,k (A.14)
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Figure A.3: A.14 is exact, coordinate free and invariant under C1 transformations

Reconstruction of HL
curl→ HS

If u(1) is a 1-form, then

ω(2) = curl u(1) (A.15)

is given by the co-chains

ω̄1
i,j,k = ū2

i,j,k − ū2
i,j,k+1 − ū3

i,j,k + ū3
i,j+1,k ,

ω̄2
i,j,k = −ū1

i,j,k + ū1
i,j,k+1 + ū3

i,j,k − ū3
i+1,j,k ,

ω̄3
i,j,k = ū1

i,j,k − ū1
i,j+1,k − ū2

i,j,k + ū2
i+1,j,k , (A.16)
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172 Continuous field reconstruction

which reconstruct

ω1(x1, x2, x3) =
l∑

i=0

m−1∑

j=0

n−1∑

k=0

ω̄1
i,j,k hi(x1)ej(x2)ek(x3) ,

ω2(x1, x2, x3) =
l−1∑

i=0

m∑

j=0

n−1∑

k=0

ω̄2
i,j,k ei(x1)hj(x2)ek(x

3) ,

ω3(x1, x2, x3) =
l−1∑

i=0

m−1∑

j=0

n∑

k=0

ω̄3
i,j,k ei(x1)ej(x2)hk(x

3) . (A.17)
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Figure A.4: A.16 is exact, coordinate free and invariant under C1 transformations

Reconstruction of HS
div→ HV

consider f = div q (A.18)

The flux vector can be expanded as

q1(x1, x2, x3) =
l∑

i=0

m−1∑

j=0

n−1∑

k=0

q̄1
i,j,k hi(x1)ej(x2)ek(x3) ,

q2(x1, x2, x3) =
l−1∑

i=0

m∑

j=0

n−1∑

k=0

q̄2
i,j,k ei(x1)hj(x2)ek(x3) ,

q3(x1, x2, x3) =

l−1∑

i=0

m−1∑

j=0

n−1∑

k=0

q̄3
i,j,k ei(x1)ej(x2)hk(x3) . (A.19)
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If f is expanded in terms of volume basis functions

f(x1, x2, x3) =

l−1∑

i=0

m−1∑

j=0

n−1∑

k=0

f̄i,j,k ei(x1)ej(x2)ek(x3) , (A.20)

the divergence equation reduces to

f̄i,j,k = q̄1
i+1,j,k − q̄1

i,j,k + q̄2
i,j+1,k − q̄2

i,j,k + q̄3
i,j,k+1 − q̄3

i,j,k (A.21)
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Figure A.5: A.21 is exact, coordinate free and invariant under C1 transformations
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174 Continuous field reconstruction
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