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Summary

Efficient numerical methods for the instationary solu-

tion of laminar reacting gas flow problems

Sander van Veldhuizen

Production processes of high-purity, high performance solid materials in
the form of a thin solid film or a powder are of significant importance
in various industries, such as the fabrication of micro-electronics, optical
and mechanical coatings, and solar cells. Numerous techniques to produce
these layers are available, e.g. sputtering, evaporation and Chemical Vapor
Deposition (CVD). CVD distinguishes itself by involving chemistry in the
process, whereby its greatest advantage is the capability to deposit layers
of uniform thickness on highly irregularly shaped surfaces.

Numerical simulations are widely used to design CVD reactors and to
optimize the process itself. Over the last decades many researchers have
been developing mathematical models to describe the various physical
and chemical processes in a CVD reactor. For gas flow with heat and
mass transfer in CVD reactors, models based on continuum equations are
generally used, having the advantage of being applicable to a wide range
of reactor geometries.

Up till recent times, the total process times were large compared to the
transient start up and shut-down cycli, such that it was sufficient to perform
steady state simulations of these processes. However, with the deposited
films getting thinner and thinner, process times are reduced and transient
times become more important. Further, besides the classical (steady state)
CVD processes, more attention is going to inherently transient processes
such as Atomic Layer Deposition and Rapid Thermal CVD.

At the same time, many research groups have been developing computer
codes to compute steady state solutions of the traditional processes. The
emphasis has always been on the modeling and validition of these models.
Much less attention is paid to the computational efficiency of the codes.
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However, the solution of the involved mathemical equations is difficult,
due to the stiffness caused by the modeled chemistry. Many commercial
CFD codes, which are sometimes tailored for these applications, therefore
have often great problems to compute the solution. Solutions computed by
various codes have been reported to differ a lot and the computational times
needed to find solutions are generally excessive. Where most commercial
CFD codes already have problems to compute the steady state solution,
similar or worser problems are expected for time accurate simuations.

Equivalent difficulties on the numerical modeling of laminar reacting
gas flows are found in other applications. Examples are the numerical mod-
eling of laminar combustion and Solid Oxide Fuel Cells. The mathematical
models describing the physics involved in all these applications are con-
stantly under development, and create a need for efficient solvers capable
of rapid and robust solution of the model equations.

In this thesis a rigorous mathematical approach has been applied to
these problems, with the aim to reduce computational times. Besides sta-
bility issues due to the stiff reaction term, non-negativity of the species
concentrations is very important to enable stable time integration. To fulfill
this extra constraint is in general very difficult, and for unconditionally sta-
ble higher order time integration impossible. The discretization techniques
proposed in this thesis are non-negativity conserving on the level of spatial
discretization, time integration and iterative solvers.

Positive spatial discretization techniques are widely known. However,
at the reacting boundaries we proposed a discretization that conserves non-
negativity, where straightforward techniques lack that property. For higher
order time integration it appears that for reacting gas flow problems this
property is impossible to fulfill. Of course, the inherent stiffness of the
involved chemistry causes parts of the equations to be integrated implicitly.
Consequently, we use the implicit Euler Backward time integration method,
which is proven to be unconditionally positive and unconditionally stable.

On the level of nonlinear solvers Projected Newton methods are intro-
duced. In the field of constrained optimization such techniques are widely
known, but they are unknown in the field of PDEs and reacting flows.
To gain computational efficiency, Krylov Subspace methods are used to
approximate the solution of the interior linear algebra problem. The stiff
reaction terms in the transport equations cause the linear systems to be ill-
conditioned, such that inaccurate solution and slow convergence of these
methods are observed. This problem is tackled by incorperating effective
preconditioning techniques. Various techniques are reviewed and adapted
to make them suitable for the applications considered in this thesis.

Choosing the best preconditioners combined with our Projected Newton
methods enables us to perform instationary, multi-dimensional gas flow
simulations with multi-species, multi-reaction CVD chemistry from inflow
conditions until steady state in a computationally efficient way.



Samenvatting

Efficiënte numerieke methoden voor de instationare op-

lossing van reagerende laminaire stromingen

Sander van Veldhuizen

De productie processen van geavanceerde en zuivere materialen in de vorm
van een poeder of een dunne film vorm zijn onmisbaar in verschillende
industrieën, zoals in het fabricageproces van micro-electronica, optische
en mechanische coatings, en zonnecellen. Er zijn verschillende technieken
om deze films, of poeders, te produceren. Voorbeelden zijn sputtering,
opdamping en Chemical Vapor Deposition (CVD). De chemische reacties
in CVD onderscheiden deze productietechniek van de overige. Een van de
belangrijkste voordelen van CVD is dat films van uniforme dikte kunnen
worden gedeponeerd op onregelmatige oppervlakten.

Voor zowel het ontwerp als de optimalisatie van CVD reactoren en pro-
cessen zijn numerieke simulaties een belangrijk stuk gereedschap. In de
laatste decennia zijn veel wiskundige modellen ontwikkeld om de fysische
en chemische processen in een CVD reactor te beschrijven. Voor gasstro-
men met warmte en massa transport worden in het algemeen modellen
gebaseerd op continue beschrijvingen gebruikt. Deze hebben het voordeel
dat ze toepasbaar op uiteenlopende reactoren.

De totale duur van CVD processen uit het verleden is lang in vergelijking
met de transiente opstart en afsluit-cycli. In dit geval kon worden volstaan
met steady state simulaties van het CVD proces. Echter, de te deponeren films
worden dunner en dunner, zodat de tijdsduur van het CVD proces korter
wordt, en transiente verschijnselen steeds belangrijker worden. Ten tweede
beweegt de technologie zich meer en meer naar inherent transiente CVD
processen, zodat steady state simulaties niet langer zullen voldoen. Twee
voorbeelden van transiente CVD technologien zijn Atomic Layer Deposition
en Rapid Thermal CVD.

Door onderzoekers wereldwijd zijn er computercodes ontwikkeld om
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de stationaire oplossing te berekenen van ‘traditionele’ CVD processen.
Hierbij ging de meeste aandacht uit naar de modelering en validatie van
deze modellen, en minder naar de rekenkundige efficientie van de computer
codes. Echter, in het algemeen is het vinden van de oplossing van de on-
derliggende wiskundige vergelijkingen in deze specifieke toepassing geen
eenvoudige taak. De stijve chemie term in de transportvergelijkingen voor
de chemische componenten (stofjes) in het gasmengsel maakt deze vergelij-
kingen moeilijk op te lossen. Commerciële CFD software pakketten, soms
specifiek voor deze toepassing geschreven, hebben vaak problemen om de
oplossing te berekenen. Naast dat oplossingen berekend door verschillende
codes veel van elkaar verschillen, zijn vaak de rekentijden excessief groot.

De meeste commerciële CFD pakketten al problemen hebben met het
berekenen van de steady state oplossing, worden dezelfde of ergere moei-
lijkheden verwacht om tijdsnauwkeurige oplossingen te berekenen.

In de numerieke modellering van laminaire reagerende gasstromingen
van gerelateerde toepassingen zoals laminaire verbranding en Solid Oxide
Fuel Cells spelen dezelfde moeilijkheden een rol. De onderliggende fysische
modellen zijn voortdurend in ontwikkeling, en mede daardoor is er vraag
naar een algemene efficiente computer code voor dit type problemen.

Het onderwerp van deze dissertatie is het reduceren van de rekentij-
den voor instationaire simulaties van laminair reagerende gasstromingen.
Naast stabiliteitseisen voor tijdsintegratie, hetgeen belangrijk is door de
stijve chemie bronterm in de transportvergelijkingen, is het behoud van
niet-negativiteit van chemische concentraties belangrijk. Het is onmoge-
lijk voor onvoorwaardelijke stabiele hogere orde tijdsintegratie methoden
te voldoen aan deze positiviteitseis te voldoen. Alle in deze dissertatie
voorgestelde oplossingstechnieken zijn positviteit behoudend op zowel het
niveau van plaats-discretizatie, tijds-discretizatie en iteratieve solvers.

Projected Newton methoden zijn voorgesteld om de oplossingen op het
tijdsniveau positief te houden. Voor ‘traditionele’ Newton methoden is
dit niet noodzakelijk waar, hetgeen met numerieke experimenten is aan-
getoond. Om een hogere efficiency te halen worden Krylov deelruimte
methoden toegepast om de Newton stap te benaderen. De stijve reactieter-
men zorgen echter voor een slecht-geconditioneerd lineair systeem, met als
gevolg onnauwkeurige oplossingen en een trage convergentie. Met effec-
tieve preconditionering technieken is dit probleem opgelost. Verschillende
technieken zijn getest en zonodig aangepast voor de huidige toepassing.

Met de Projected Newton solver, gecombineerd met de beste precondi-
tioner, zijn we in staat om instationaire, multi-dimensionale simulaties van
gasstromingen met een multi-component, multi-reactie CVD chemie model
door te rekenen van de instroom condities tot de stationaire oplossing is
bereikt op een rekenkundig efficiente manier.
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CHAPTER 1

Introduction

1.1 General Problem Description

Nowadays mathematical modeling is a common resource for the design
and/or optimization of industrial processes and equipment. Well known
examples are casting of metals, production of ceramics, electrolysis and thin
film deposition. In this study we aim to develop efficient numerical software
for the simulation of laminar chemically reacting gas flow processes and
equipment. The applications considered in this study are Chemical Vapor
Deposition and Solid Oxide Fuel Cells.

Most research performed in this study has been devoted to the time
accurate simulation of Chemical Vapor Deposition processes. In the last
chapter we report on the numerical results with respect to Solid Oxide Fuel
Cell modeling.

For both applications finding the solution of the mathematical equations
describing the physical processes is generally difficult due to the inherent
mathematical stiffness of the equations describing the chemistry. Time
scales of the various chemical reactions may differ orders of magnitude
from each other depending on the process conditions such as pressure,
temperature, species concentrations, flowrate and reactor or fuel cell ge-
ometry. Further, time scales of the transport of species and the gas phase
chemistry may differ orders of magnitude from each other, and cause stiff-
ness as well. Hence, the presence of stiffness is all around in the reacting
flow models.

In this study we assume the mathematical models for the laminar re-
acting gas flow process to be given. The emphasis is fully on efficient
computational methods for the numerical solution of the model equations.
For Chemical Vapor Deposition, the computational era started in the early

1



2

1980s by the work of Wahl (1977), Jensen & Graves (1983) and Coltrin et al.
(1984). The mathematical models for CVD development since then consist
of sets of mathematical equations describing the macro- and microscopic
physical and chemical processes in the gas phase and at the deposition
surface. Ideally, the models are applicable to a wide range of (reactor)
geometries and processes.

For the CVD processes considered in this thesis, mathematical models
are used that have been developed in the early 1990s, and are currently
still in use. These models consist of a set of partial differential equations
describing the transport phenomena and production/destruction rates of
species due to chemical reactions at the macroscopic scale. Usually, the
transport properties apearring in these equations are evaluated through
various submodels. This is also the case for the chemical reaction rates.
Various codes have been developed over the last decades to compute the
steady state solution of such CVD models. Examples are the SANDIA codes
CHEMKIN and SPIN, see Coltrin et al. (1993), Kee et al. (1989) and Coltrin
et al. (1996), Phoenics-CVD of CHAM, see Phoenics-CVD (1995), the CVD
modules of Fluent, see Fluent (1995), and the CVDMODEL code developed
at the Delft University of Technology, see Kleijn et al. (1989), Kleijn (1991),
Kuijlaars et al. (1995) and Kleijn (2000).

However, there is an increasing need to compute time accurate transient
solutions of these models. Such simulation results give, for example, in-
sights in start-up and shut-down cycli of CVD processes. Moreover, time
dependent simulations are indispensable for inherently transient CVD pro-
cess such as Atomic Layer Deposition, see for instance Lankhorst et al.
(2007), and Rapid Thermal Chemical Vapor Deposition, see for instance
Bouteville (2005).

Most commercial Computational Fluid Dynamics (CFD) codes have
great problems to combine multi-dimensional CFD modeling and detailed
chemistry modeling. Although some commercial CFD codes claim to
be able to handle stiff chemistry, no succesfull attempts to model multi-
dimensional gas-flow with multi-species, multi-reaction CVD chemistry
using commercial CFD codes have been reported in literature.

The numerical stiffness of the discretized transport and chemistry terms
leads generally to poor convergence and the obtained results can be unre-
liable. Geyling (1994) performed a study to the differences in simulation
results produced by various CVD-tailored CFD codes. As was reported
in Geyling (1994), differences of an order of magitude were observed in
species concentrations computed by the various codes. Lastly, the compu-
tation times are excessive, in particular for time accurate solutions.

The Solid Oxide Fuel Cells (SOFC’s) considered in this thesis are mod-
eled by means of macroscopic continuum models of the composite elec-
trodes. More specifically, the distributed charge-transfer model developed
by Zhu & Kee (2008), and extended for so-called segemented-in-series
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SOFCs in Kee et al. (2008) is briefly discussed. Over the last years sig-
nificant progress has been made in the development of numerical models
for SIS-cells, see Costamagna et al. (2004) and Haberman & Young (2008), in
which fluid and mass transport are coupled with chemical and electrochem-
ical processes. Compared to prior literature, the model used in this thesis
makes significant advances in the fundamental representation of chemistry
and electrochemistry. As for the used CVD models, most attention in lit-
erature was on their validation, and much less on their efficient numerical
solution.

Finding time dependent solutions for the mentioned CVD and SOFC
models involves a range of difficulties. First of all, the advection-diffusion-
reaction equations describing the species transport and chemical interac-
tions are stiffly and nonlinearly coupled through the reaction terms. Due
to stability requirements, it is necessary to integrate the stiff reaction terms
implicitly. Secondly, the solution represents a set of physical quantities, and
must reflect the physical properties of these quantaties. The most important
in this respect is the non-negativity of species concentrations. It appears
that, in particular, during time integration it is extremely hard to preserve
this property. Thirdly, partly or fully implicit time integration implies that
per time step one or more nonlinear systems have to be solved. Doing that
in an computationally efficient way is not a straightforward task. Further,
the usage of approximation techniques for the solution of the involved non-
linear equations does not necessarily guarantee the conservation of physical
properties such as non-negativity.

Besides on the number of spatial dimensions and the number of mesh
points in each spatial dimension, the number of unknowns in these prob-
lems depends also on the number of reactants in the model. For models
containing a large number (typically several dozens) of reactants the solu-
tion of the resulting nonlinear systems becomes very expensive. Moreover,
the conservation of the physical properties of the solution returned from
standard nonlinear solver techniques is not guaranteed.

In this study it has been chosen to use Newton-type methods to solve the
system of nonlinear algebraic equations. The efficiency of such methods
is mainly determined by the computational costs of solving the interior
linear algebra problem. Since the linear systems are always large and
sparse, iterative methods are ideal candidates to solve these problems. The
computational efficiency of these methods is mainly determined by effective
preconditing. Of course, the stiffness of the system of PDEs that model the
reacting flow can have quite some effect on the convergence behavior and
accuracy of iterative solution techniques.

The main difficulty in all laminar reacting gas flow simulations is the
solution of the system of advection-diffusion-reaction equations describing
the transport and their conversion due to chemical reactions of all species in
the gas mixture. Compared to the solution of these stiff systems of transport
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equations, the solution of the accomponying hydrodynamics problem is
a relatively trivial task. Therefore, the emphasis of this thesis is on the
numerical solution of systems of advection-diffusion-reaction equations.

The aims of this study are summarized as follows:

(i) to develop robust and efficient numerical methods to perform time
accurate transient simulations;

(ii) guarantee non-negative species concentrations without clipping, and
thus conserve mass for all species.

(iii) to study the influence of stiffness on the linear solutions, and develop
efficient and robust iterative linear solvers. In particular, efficient
preconditioners need to be constructed.

As mentioned before, the major part of this study has been devoted to the
time accurate transient simulation of Chemical Vapor Deposition. Conse-
quently, more details on this specific application are provided than on Solid
Oxide Fuel Cell modeling.

1.2 Outline of the Thesis

This dissertation is organized as follows.

• The mathematical framework, in which the transport phenomena
and homogeneous and heterogeneous chemical reactions in thermal
Chemical Vapor Deposition reactors are being described, is presented
in Chapter 2. This model is generally applicable to a large variety of
thermal Chemical Vapor Deposition processes and reactors, and also
to other reacting flow processes such as laminar combustion.

• In Chapter 3, the use of the Method of Lines approach, as well as
the method itself, are discussed. In particular, attention is paid to
a discretization of the reacting surface boundary condition which
preserves positivity.

• In Chapter 4, the notion of positivity is discussed in detail. Positivity
of the species concentrations in the gas mixture is of great importance
to avoid blow up of the solution. Some mathematical results on this
subject are formulated.

• In Chapter 5, a review of various stiffODE methods from literature is
presented. The emphasis is on both positivity and computational ef-
ficiency. Details of the implementation are given if necessary. Finally,
these ODE methods are applied to a benchmark problem, of which
the numerical results are presented.
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• Chapter 6 is devoted to the solution of large systems of nonlinear al-
gebraic equations. A review of Inexact Newton methods is presented.
The key feature of such solution techniques is that the internal linear
systems are solved in an approximated manner. Essential for the per-
formance of these methods is the choice of the forcing term, which
determines the accuracy of the linear solver. Further, an extension of
Newton methods is proposed, which conserves the positivity prop-
erty when needed.

• In Chapter 7 suitable iterative solution techniques are discussed for
the approximation of the solution of the Newton equation in New-
ton’s method. Various preconditioning techniques are reviewed, or
extended to make them suitable for the applications considered in
this dissertation. Typically, for these applications the number of un-
knowns depends on the number of grid points and the number of
species. Essential for the performance of iterative solution techniques
for linear systems is the ordering of unknowns. Two orderings of
unknowns are discussed. Numerical experiments are used to show
that one of these orderings is most effective.

• In Chapter 8 the numerical results of transient simulations on Chem-
ical Vapor Deposition are presented. Two chemistry models and two
reactors configurations are studied. If possible, the numerical re-
sults are benchmarked against results obtained by other well known
simulation codes. Transient results are presented for both two and
three-dimensional computational domains. In particular, the compu-
tational costs are evaluated for the numerical methods proposed in
preceeding chapters.

• Chapter 9 is devoted to the numerical modeling of Solid Oxide Fuel
Cells. The essential parts of the mathematical model are briefly pre-
sented, as well as the numerical results for an illustrative example.

• Finally, in Chapter 10, the results from the previous chapters are re-
viewed and some general conclusions are formulated.





CHAPTER 2

Chemical Vapor Deposition

Thin solid films are widely used in many technological areas with ap-
plications varying from insulating and (semi-)conducting layers in micro-
electronics and photovoltaics, to optical, mechanical and/or decorative coat-
ings on various materials. The production of such thin layers can be done
by various deposition processes, e.g. sputtering, evaporation and Chemical
Vapor Deposition (CVD). The fact that it involves chemical reactions clearly
distinguishes CVD from the other production technologies, whereby the
most important advantage is its capability of depositing films of uniform
thickness on highly irregularly shaped surfaces, see for instance Hitchman
& Jensen (1993).

Basically, a CVD system is a chemical reactor in which precursor gases
containing the atoms to be deposited are introduced, usually diluted in an
inert carrier gas. Furthermore, the reactor chamber contains substrates on
which the deposition takes place. In this study it is assumed that the energy
to drive the (gas phase and surface) reactions is thermal energy, provided
by external heat sources.

In numerical simulation the following six steps occuring in every CVD
process have to be mathematically modeled:

1. Convective and diffusive transport of reactants from the reactor inlet
to the reaction zone within the reactor chamber,

2. Chemical reactions in the gas phase leading to a multitude of new
reactive species and byproducts,

3. Diffusive transport of the initial reactants and the reaction products
from the homogeneous reactions to the susceptor surface, where they
are adsorped on the susceptor surface,
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4. Surface diffusion of adsorbed species over the surface and hetero-
geneous surface reactions catalyzed by the surface, leading to the
formation of a solid film,

5. Desorption of gaseous reaction products, and their diffusive transport
away from the surface,

6. Convective and/or diffusive transport of reaction products away from
the reaction zone to the outlet of the reactor.

For fully heterogeneous CVD processes the second step in the above enu-
meration does not take place. Steps one to six are illustrated in Figure
2.1.

Figure 2.1: Schematic representation of the six basic steps in CVD after
Jensen (1988).

2.1 Basic Assumptions

To mathematically model a CVD process, the gas flow, the transport of
thermal energy, the transport of species and the chemical reactions in the
reactor have to be described. We assume that the gas mixture in the reactor
behaves as a continuum, as an ideal gas and in accordance with Newton’s
law of viscosity. The gas flow in the reactor is assumed to be laminar.

The continuum approach can be safely used when the Knudsen num-
ber Kn is below 0.01, see Kleijn (1991). The Knudsen number Kn is the
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ratio of the mean free path length ξ of the molecules in the reactor and a
characteristic dimension L of the reactor, i.e.,

Kn =
ξ

L
. (2.1)

For pressures larger than 100 Pa and typical reactor dimensions larger than
1 cm it is safe to use the continuum approach, see Kleijn (1991).

2.2 Gas Species Concentrations

Before the partial differential equations of the model are formulated, we
introduce the notion of mass fractions and molar fractions. The composition
of the N component gas mixture is described in terms of the dimensionless
mass fractions, which are defined as

ωi =
ρi

ρ
, (2.2)

where ρi is the partial mass density of species i in the gas mixture and ρ
the mass density of the gas mixture. The mass density of the gas mixture,
defined as

ρ =
N

∑

i=1

ρi, (2.3)

is in general a function of temperature T, pressure P and composition of the
gas mixture. From (2.2) and (2.3) if follows that the mass fractions have the
property to sum up to one, i.e.,

N
∑

i=1

ωi = 1. (2.4)

In order to describe the chemical processes in the gas mixture, it is
more convenient to describe the gas mixture composition in terms of mole
fractions. The mole fraction of species i, denoted as fi, is the number of
moles of species i in a volume divided by the total number of moles in the
volume. The mass fractions and molar fractions are related through

ωi =
fimi

m
. (2.5)

In (2.5) the molar mass of species i is denoted as mi, whereas m denotes the
average molar mass. The latter can be computed from

m =

N
∑

i=1

fimi, (2.6)
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or,

m =















N
∑

i=1

ωi

mi















−1

. (2.7)

2.3 Model for Fluid Flow and Heat Transfer

Conservation of total mass, momentum and heat are described respectively
by the continuity equation, i.e.,

∂ρ

∂t
= −∇ · (ρv), (2.8)

the Navier-Stokes equations, i.e.,

∂(ρv)

∂t
= −(∇ρv) · v + ∇ ·

[

µ
(

∇v + (∇v)T
)

− 2

3
µ(∇ · v)I

]

− ∇P + ρg, (2.9)

and the transport equation for thermal energy

cp
∂(ρT)

∂t
= −cp∇ · (ρvT) + ∇ · (λ∇T) +

+∇ ·














RT

N
∑

i=1

DT
i

Mi

∇ fi

fi















+

N
∑

i=1

Hi

mi
∇ · ji

−
N
∑

i=1

K
∑

k=1

HiνikR
g

k
, (2.10)

Here,ρdenotes the gas mixture density,v the mass averaged velocity vector,
µ the viscosity, I the unit tensor, g the vector of gravitational acceleration,
cp specific heat, λ the thermal conductivity, R the universal gas constant,
DT

i
the thermal diffusion coefficient of species i, Hi the molar enthalpy of

species i, and ji the diffusive mass flux. The stoichiometric coefficient of the
ith species in the kth gas-phase reaction with net molar reaction rate R

g

k
is

denoted as νik. In Section 2.4 the exact definitions of the diffusive mass flux,
thermal diffusion coefficients and net molar reaction rate are presented.

Under the assumption that the gas mixture behaves as an ideal gas, the
system of equations (2.8) - (2.10) is closed by the ideal gas law

Pm = ρRT. (2.11)

The third term on the right-hand side of (2.10) is due to the Dufour effect,
or diffusion-thermo effect. The Dufour effect is the “inverse” process of
thermal diffusion, which is described in Section 2.4.2. The Dufour effect
causes an energy flux due to concentration gradients in the gas mixture.
The fourth term on the right represents the transport of heat associated
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with the inter-diffusion of the chemical species. Both terms have found to
be not important in CVD, see Kleijn (1995).

The fifth term on the right-hand side describes the consumption and
production of heat due to the chemical reactions. For most CVD systems,
especially when the reactants are highly diluted in an inert carrier gas,
the heat of reactions has a negligible influence on the gas temperature
distribution. For such systems, the computation of the laminar flow and
the temperature field is a relatively trivial task. The difficulty, however,
lies in solving the set of highly nonlinear and strongly coupled species
equations.

2.4 Model for Species Transport and Chemical Reac-

tions in the Gas Phase

The transport of species is formulated in terms of mass fractions and mass
fluxes. The convective mass flux of species i is ρωiv. The mass diffusion
flux ji of species i is composed of ordinary diffusion jC

i
, which is a result of

concentration gradients in the gas mixture, and thermal diffusion jT
i

, which
is the result of a temperature gradient, i.e.,

ji = jC
i + jT

i . (2.12)

2.4.1 Ordinary Diffusion

For a multicomponent gas mixture there are several approaches to model
ordinary diffusion. The Stefan-Maxwell equations give an exact, general ex-
pression for ordinary diffusion fluxes, see Kee et al. (2003). An approximate
approach, which is used in this study, is to model the ordinary diffusive
mass fluxes according to Fick’s Law, making use of effective multicompo-
nent diffusion coefficients. The ordinary diffusion flux is then computed
as

jC
i = ρD

′
i∇ωi, (2.13)

with effective multicomponent diffusion coefficient

D
′
i = (1 − fi)

















N
∑

j=1, j,i

f j

Di j

















−1

. (2.14)

For gas mixtures, in which the reactants are highly diluted in a carrier gas,
i.e.,

f1, . . . , fN−1 ≪ 1, (2.15)

the approximate approach of equations (2.13) and (2.14) is identical to the
exact Stefan-Maxwell approach.
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2.4.2 Thermal diffusion

The Soret effect, or the effect of thermal diffusion, separates an initially
homogeneous gas mixture under the influence of a temperature gradient.
Compared with ordinary diffusion the Soret effect is in general small. How-
ever, for CVD systems in which large temperature gradients are present this
effect may be important. A cold wall CVD reactor is an example where large
temperature gradients, up to several hundreds Kelvin per centimeter, can
be found. In general, thermal diffusion causes a movement of relatively
large and heavy molecules to ‘colder’ regions and a movement of relatively
smaller and lighter molecules to hotter parts of the reactor chamber.

The thermal diffusive mass flux is modeled as

jT
i = −D

T
i ∇(ln T). (2.16)

In expression (2.16)DT
i

is the multi-component thermal diffusion coefficient

for species i. In general, DT
i

is a function of the temperature T and the
composition of the gas mixture, but independent of the pressure. For large
and heavy molecules we have that DT

i
> 0, whereas for small and light

molecules we haveDT
i
< 0. Furthermore,

N
∑

i=1

D
T
i = 0. (2.17)

2.4.3 Balance Equations for Gas Species Concentrations

We assume that K reversible chemical reactions take place in the gas phase,
with a net molar reaction rate R

g

k
(k = 1, . . . ,K) and stoichiometric coef-

ficients νik, which are further discussed in the next section. The balance
equation for the ith gas species, i = 1, . . . ,N, in terms of mass fractions and
diffusive mass fluxes is then given as

∂(ρωi)

∂t
= −∇ · (ρvωi) − ∇ · ji +mi

K
∑

k=1

νikR
g

k
. (2.18)

In equation (2.18) the left-hand side accounts for the transient variations
in concentrations, whereas the first and second term on the right-hand
side account for the convective and diffusive species transport. The total
diffusive mass flux ji of species i is composed of ordinary diffusion and
thermal diffusion, see expression (2.12). The third term on the right-hand
side of equation (2.18) represents the creation and destruction of gaseous
species due to homogeneous gas-phase reactions.
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2.4.4 Reaction Rates for Gas-Phase Reactions

Under the assumption that K reversible gas-phase reactions of the form

N
∑

i=1

ν′ikAi

k
g

k,forward

⇄
k

g

k,backward

N
∑

i=1

ν′′ikAi (2.19)

take place, the net molar reaction rate R
g

k
for the kth reaction, see the last

term on the right hand side of equation (2.18), is defined as

R
g

k
= k

g

k,forward

N
∏

i=1

(

Pωim

RTmi

)ν′
ik

− k
g

k,backward

N
∏

i=1

(

Pωim

RTmi

)ν′′
ik

. (2.20)

In (2.19), Ai are the species in the gas mixture, ν′
ik

the forward stoichio-
metric coefficient for species i in reaction k, ν′′

ik
the backward stoichiometric

coefficient for species i in reaction k. The net stoichiometric coefficient νik

is then defined as νik = ν
′′
ik
− ν′

ik
. In equation (2.20), P is the pressure, T the

temperature, R the universal gas constant, mi the molar mass of species i
and m the average molar mass, computed as in formula (2.7).

The values of k
g

k,forward
and k

g

k,backward
depend strongly on the temper-

ature, and are independent of the pressure for sufficiently high pressures.
At lower pressures, the so-called pressure fall-off regime, they may also
depend on the pressure. For more details we refer to Kleijn (1991) and
Kleijn (1995). Usually, the forward reaction rate constant k

g

k,forward
is fitted

according to a modified Arrhenius expression:

k
g

k,forward
(T) = AkTβk e

−Ek
RT , (2.21)

where Ak, βk and Ek are fit parameters. The backward reaction rate constants
k

g

k,backward
are computed self-consistently from the forward reaction rate

constants and reaction thermo chemistry, as

k
g

backward
(T) =

k
g

forward
(T)

Kg(T)

(

RT

P0

)

∑N
i=1 νik

, (2.22)

where the reaction equilibrium constant is given by

Kg(T) = exp













−
∆H0

k
(T) − T∆S0

k
(T)

RT













, (2.23)

with

∆H0
k
(T) =

N
∑

i=1

νikH0
i (T) and ∆S0

k
(T) =

N
∑

i=1

νikS0
i (T). (2.24)
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In formula (2.22) the atmospheric pressure is denoted as P0. In expression
(2.24) H0

i
(T) is the standard heat of formation as function of temperature

and S0
i
(T) the standard entropy as function of temperature. For more details

we refer to Kleijn (1991) and Kleijn (1995).
Typically, the forward and backward rate constants of the fastest and

slowest reactions can differ many orders of magnitude. For example, in the
classical 17 species and 26 reactions chemistry model of the CVD process
of silicon from silane, developed by Coltrin et al. (1989), the slowest and
fastest reactions differ some 25 orders of magnitude at a temperature of
1000 K. Due to these huge differences the set of species equations (2.18) is
extremely stiff.

2.5 Modeling surface chemistry

Usually, heterogeneous surface reactions are characterized by complicated
reaction mechanisms that consist of a number of steps. The surface reaction
rate will therefore depend on the partial pressures of gaseous species, the
rate constants of the individual steps (as functions of local temperature),
temperature, surface concentrations and other surface properties. How-
ever, there is in general little or no information available on the individual
reaction steps and rate constants.

In this study we are not interested in the fundamental modeling of
surface chemistry; we will make use of published surface reaction models in
which it is assumed that at the wafer surface S irreversible surface reactions
take place transforming gaseous reactants into solid products and gaseous
byproducts. The s-th transformation of gaseous reactants into solid and
gaseous reaction products is of the form

N
∑

i=1

σ′isAi
RS

s−→
N

∑

i=1

σ′′isAi +

M
∑

j=1

χ jsB j, (2.25)

with Ai as before, B j the solid reaction products, M the number of solid
reaction products, σ′

is
and σ′′

is
the stoichiometric coefficients for gaseous

species i in surface reaction s and χis the stoichiometric coefficient for the
solid species. Again, the net stoichiometric coefficient σis is defined as
σis = σ

′′
is
− σ′

is
. For further details on surface reaction modeling we refer to

Kleijn (1991).
If the surface reaction rate RS

s is known, then the growth rate G j of solid
species j is defined as

G j =
m j

ρ j

S
∑

s=1

RS
sχ js, (2.26)

with m j the molecular mass of solid species j and ρ j the density of solid
species j.
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2.6 Boundary Conditions

Within the reactor we have inflow and outflow boundaries, nonreacting
solid walls and one or more reacting surface(s). At the inlet and outlet the
usual boundary conditions are supplied, i.e.,

• at the inlet there is a prescribed temperature, prescribed species mass
fractions and a prescribed inflow velocity, and,

• at the outflow there are homogeneous Neumann conditions for all
unknowns.

For adiabatic nonreacting solid walls we impose zero normal temperature
gradients, whereas for isothermal walls the temperature is prescribed. For
the velocities at nonreacting walls the no-slip and impermeability condi-
tions hold. For the species mass fractions the total mass flux vector normal
to a nonreacting surface is equal to zero for each species, i.e.,

n · ji = 0, (2.27)

where n is a unity vector normal to the surface of the wall. Note that, due to
the presence of thermal diffusion this does not imply a zero normal gradient
for the species concentrations.

Due to the irreversible surface reactions (2.25) there is a net mass con-
sumption rate Pi of gaseous species i at the wafer surface according to

Pi = mi

S
∑

s=1

σisR
S
s . (2.28)

For the velocity component in normal direction we have

n · v = 1

ρ

N
∑

i=1

Pi, (2.29)

while for all other components of the velocity the no-slip condition holds.
The temperature on the wafer surface is fixed. The total mass flux of species
i normal to the wafer is equal to Pi., i.e.,

n · (ρωiv + ji
)

= Pi. (2.30)

The reactants in the CVD processes considered in this thesis are highly
diluted in a carrier gas. Therefore, it is justified to assume that

• the velocity-, temperature-, density- and pressure fields are in steady
state and not influenced by the transient chemistry, and,

• the velocity component normal to the wafer surface is negligibly small.



16

Thus, in the simulations presented in this thesis we only account for bound-
ary condition (2.30), whereas for the steady state flow field boundary con-
dition (2.29) is replaced by

n · v = 0. (2.31)



CHAPTER 3

Methods of Lines Approach

Most numerical solvers for time dependent problems follow the popular
Method of Lines (MOL) approach, in which space and time discretizations
are considered separately. The popularity of this approach is based on its
simple concept, flexibility, the fact that various discretizations can easily be
combined and that nowadays many well developed ODE methods exist.

Here, the spatial discretization of the stiff system of species equations
(2.18) is done in a Finite Volume (FV) setting,yielding a semi-discrete system

w′(t) = F(t,w(t)), t ≥ 0, (3.1)

with the initial value w(0) = w0 given. According to the MOL approach,
fully discrete approximations are obtained by applying a suitable time inte-
gration method with time step size τ for the time levels tn = nτ, n = 1, 2, . . .

Furthermore, we want that the natural property of species mass fractions
being non-negative to be conserved in the spatial discretization. In Chapter
4 we go into further details on positivity for the numerical model of CVD.
The focus of Chapter 4 is on positivity conserving time integration methods.
The emphasis of Section 3.1 will be on positivity conservation of the FV
discretization.

Special attention is needed for the FV discretization of the boundary
condition at the reacting surface. The reacting surface flux is modeled in
such a way that from the mathematical point of view, mass is extracted from
the system. If this boundary condition is discretized in a straightforward
way, then positivity of the species concentrations along the reacting surface
is not guaranteed. In Section 3.4 a positive FV discretization of the particular
boundary condition is presented.
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3.1 Hybrid Finite Volume Discretization

By defining a computational grid in either two or three spatial dimensions,
a Finite Volume semi-discretization can be built for the system of species
equations (2.18). In this study the computational grid is always a set of
adjoining rectangular control volumes. The unknowns are located in the
control volume centers. Each of those grid cells is surrounding one grid
point in which all scalar variables, i.e., pressure P, temperature T and the
species mass fractions ωi, are computed. The vector quantities, i.e., the ve-
locity v and the mass diffusion fluxes ji, are evaluated at the cell boundaries
leading to a staggered grid arrangement.

In this section we shortly present the Finite Volume discretization for
the two-dimensional case in cylindrical coordinates. The control-volume
surrounding cell center C with cell faces n, e, s,w and corresponding grid
points indicated by N(orth), E(ast), S(outh) and W(est), is illustrated in
Figure 3.1. The species equations (2.18) are written in the general two-
dimensional axisymmetric form

∂(rρφ)

∂t
= −∇ · (rρvφ) + ∇ · (rΓ∇φ) + rS, (3.2)

with φ as the unknown, ρ the density, v the velocity, Γ the diffusion coeffi-
cient, r the radial coordinate and S the reaction term. The two-dimensional
cartesian version of the species equations (2.18) is retrieved by setting r = 1
in equation (3.2). Integrating equation (3.2) over the control-volume ∆r∆z
surrounding cell center C and applying the Gauss Divergence Theorem
gives

∂(rCρφC)

∂t
∆r∆z =

∑

i=n,e,s,w

∫

Si

(rρvφ + rΓ∇φ) · ndS + rCSC∆r∆z. (3.3)

The Finite Volume formulation is completed by approximatingφ and its first
derivative on the cell walls. In the literature several methods are proposed
to approximate both quantities, see for instance Patankar (1980). In this
study we approximate them by the central scheme if possible and by the
first order upwind scheme if neccesary.

This is illustrated for the two-dimensional case on the n-wall. Define
the cell-Péclet number on the n-wall as

Pen =
ρnvn∆zn

Γn
. (3.4)

The hybrid scheme approximates φn as

φn =



















φN for Pen < −2
1
2 (φN + φC) for |Pen| ≤ 2
φC for Pen > 2

, (3.5)
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Figure 3.1: Grid cells

and its first partial derivative with respect to z on the n-wall as

∂φ

∂z

∣

∣

∣

∣

∣

∣

n

=
φN − φC

∆zn
, (3.6)

for all Pen.

It is generally known that the second order accurate central scheme is
stable for cell-Péclet numbers in absolute value less than two, i.e., |Pe| ≤ 2,
and becomes unstable otherwise. The first order accurate upwind scheme,
on the other hand, is stable for all cell-Péclet numbers. Its price is the
loss of accuracy with respect to the central scheme, and its large numerical
diffusivity, see for instance Hundsdorfer & Verwer (2003). To summarize,
combining these two schemes gives a stable and positive spatial Finite
Volume discretization of the species equations (2.18), which is second order
accurate if possible.

3.2 Higher Order Upwinding

Instead of first order upwinding one could also use higher order upwinding
schemes to discretize the advection flux. In this section we show that one
has to be careful when using higher order upwinding. It is known that
such schemes are not positivity preserving for all mesh sizes. For example,
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consider the constant coefficient one-dimensional advection equation

∂φ

∂t
+ a
∂φ

∂x
= 0, (3.7)

on the spatial domain 0 ≤ x ≤ 1 with a > 0 a constant advection coefficient.
At x = 0 we impose the Dirichlet boundary condition

φ(0, t) = 1, t ≥ 0, (3.8)

whereas at x = 1 a homogeneous Neumann boundary condition is imposed.

For a > 0 the third-order upwind-biased scheme reads

∂φ j

∂t
=

a

h

(

−1

6
φ j−2(t) + φ j−1(t) − 1

2
φ j(t) −

1

3
φ j+1(t)

)

, (3.9)

where h is the mesh-width. In vector notation the semi-discrete system (3.9)
reads

φ′(t) = Aφ(t) + b, (3.10)

where the entries of A are determined through (3.9) and b is the vector
corresponding to the Dirichlet boundary condition at x = 0. The exact
solution of (3.10) is given by

φ(t) = etA
(

y0 + A−1b
)

− A−1b. (3.11)

In Figure 3.2 the exact solution (3.11) is presented for the third-order
upwind-biased scheme with h = 1/50 and a = 1. The solution is stable, but it
has negative values for 0.55 ≤ x ≤ 0.65. For the second order central scheme
and the first order upwinding scheme applied to equation (3.7) the exact
solutions of the resulting semi-discrete system are shown as well. From
Figure 3.2 it can be seen that for h = 1/50 the second order central schemes
returns unstable solutions. The first order upwind scheme produces nei-
ther oscillations nor negative values, but it has the drawback to damp the
solution, see also Hundsdorfer & Verwer (2003).

In the CVD processes considered in this study some species have con-
centration profiles with steep gradients. In the case that the |Pe| < 2 con-
dition is not satisfied, we would like to have a discretization such that
positivity is ensured. The second order central scheme and the third-order
upwind-biased scheme clearly do not preserve positivity of the solution for
all mesh-sizes, whereas the first order upwinding scheme does. The damp-
ing of the solution due to the local use of this scheme is further discussed
in the next section.
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Figure 3.2: Numerical tests for linear advection equation (3.7) with mesh-
width h = 1/50. Dashed: First order upwinding. Dash-dot: Third order
upwind-biased scheme (3.9). Solid: Second order central scheme.
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3.3 Damping of the Hybrid Scheme for Low Reynolds

Number CVD Flows

Typically, for the CVD processes in this study the Reynolds numbers

Re =
UL

ν
, (3.12)

where L is a characteristic length, U is a characteristic velocity and ν is the
kinematic viscosity, are below 100. Consequently, cell Péclet numbers

U∆x

D′
i

, (3.13)

for the species equations are below 2 when

∆x

L

ν

D′
i

< 0.02. (3.14)

Since for gases

D′
i

ν
∼ 1, (3.15)

we have that

∆x < 0.02L. (3.16)

For this reason, on meshes with ∼ 50 or more cells per direction, the hybrid
scheme (3.5) - (3.6) usually results in a central differencing scheme.

In Figure 3.3 the cell-Péclet numbers are presented for the numerical
simulations on the finest mesh in Chapter 8 of this thesis. Indeed, from
Figure 3.3(a) it can be concluded that there is only a small region in the
computational domain where the cell Péclet number in the vertical direction
is larger than two in absolute value. In this small region of the reactor there
are no gas phase reactions, nor is it in the region of interest above the
reacting surface. The cell Péclet numbers in horizontal direction, see Figure
3.3(b), are less than two in the entire computational domain. Thus, for this
reactor configuration, the hybrid scheme (3.5) - (3.6) is almost everywhere
in the computational domain second order accurate.

To conclude, the damping of the first order upwinding in the hybrid FV
scheme (3.5) - (3.6) is usually not occuring for the CVD problems considered
in this study. If first order upwinding is needed to ensure stability and
positivity, then it is only needed in areas of the computational domain that
are not critical to the accuracy of the solution. The fact that the hybrid
scheme (3.5) - (3.6) is unconditionally positive for all mesh sizes is more
important.
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(a) Vertical mesh-Péclet numbers

(b) Horizontal mesh-Péclet numbers

Figure 3.3: Cell Péclet numbers on the finest mesh for the reactor geometry
used in Kleijn (2000), van Veldhuizen et al. (2008b) and Chapter 8 of this
thesis. In Figure 3.3(a) the cell Péclet numbers in vertical direction are given.
In Figure 3.3(b) the cell Péclet numbers in horizontal direction are given.
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3.4 Discretization of the Surface Reaction Flux

Recall that on the boundary which corresponds to the reacting wafer surface
the following boundary condition is imposed: The total mass transport flux
of species i in the outward normal direction is equal to the mass production
rate Pi of species i (see equation (2.28)). For dilute systems, with n · v = 0 at
the reacting surface, this condition mathematically is denoted as

n · ji = Pi. (3.17)

On the cell wall of the control volume that corresponds to the reacting
surface as illustrated in Figure 3.4, the diffusion flux in normal direction is
approximated as

n · ji = ρwallD
′
i

(ωi,wall − ωi,center)
1/2∆z

+
DT

Twall

Twall − Tcenter

1/2∆z
, (3.18)

where

• ρwall denotes the density of the gas mixture at the wafer,

• D′
i

denotes the effective diffusion coefficient, see equation (2.14),

• DT is the effective thermal diffusion coefficient for species i, see equa-
tion (2.16),

• 1/2∆z denotes the distance from the reacting surface to the cell center
of the corresponding control volume, see Figure 3.4,

• ωi,center is the mass fraction of species i at the cell center of the corre-
sponding control volume,

• ωi,wall is the mass fraction of species i at the wafer,

• Tcenter is the temperature at the cell center of the corresponding control
volume, and,

• Twall is the temperature at the wafer.

Remark that the species mass fraction ωi,wall of species i at the wafer is an
unknown in equation (3.17). However, we are not interested in computing
the mass transport flux, but in computing the mass production rate Pi

of species i, which is a function of the species mass fraction at the wafer.
Therefore, an approximation ofωi,wall is needed. This approximation should
satisfy the requirements of a mass fraction being positive and less than or
equal to one.
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3.4.1 Extrapolating Cell Centered Species Mass Fractions

The most straightforward way to approximate ωwall is by linear extrapola-
tion. This approach, amongst others, is followed in Kleijn (1991) and Kleijn
(2000). In the situation illustrated in Figure 3.4, ωwall would be approxi-
mated as

ωwall = ωcenter +
1/2∆z

∆zN
(ωcenter − ωN). (3.19)

Then, ωwall is neither guaranteed to be positive nor to be less or equal than
one. For dilute systems as studied in this thesis, species mass fractions
are not likely to be larger than one, even when inaccurate extrapolation is
applied (remember that the mass fraction of the carrier gas is computed as
one minus the sum of the other mass fractions). However, there is a serious
danger that inaccurately extrapolated mass fractions of species that are
consumed at a wall will become negative. This is confirmed by numerical
simulations in which equation (3.19) was applied. We will therefore focus
on a method to compute wall mass fractions of consumed species in a way
that preserves non-negativity.

3.4.2 A Positive Approximation of ωwall

All surface reactions considered in this study are unimolecular decomposi-
tion reactions, see Section 2.5. Therefore, the mass consumption rate at the
surface is linearly proportional to the species molar concentration, and con-
sequently, for dilute systems, also proportional to the species mass fraction.
The mass consumption rate Pi, see expression (2.28), can be written as

Pi = −miKiωi,wall, (3.20)

with Ki a positive constant (Ki depends on local surface temperature and
local pressure).

In the dilute mixture approach, see for instance Kleijn (1995), the effec-
tive thermal diffusion coefficientDT

i
for species i is written as

D
T
i = αTDωiρD

′
i , (3.21)

with αTD the thermal diffusion factor of species i in the carrier gas. Then, for
these species, ωi,wall can be computed from expressions (3.17), (3.18), (3.20)
and (3.21) as

ωi,wall =
ωi,center

1 + αTD
Twall−Tcenter

Twall
− ∆zmiKi

2ρwallD
′
i

. (3.22)

For sufficiently fine meshes along the reacting boundary |Twall − Tcenter| ≪
Twall. Further, |αTD| = O(1).

To summarize, ωi,wall, computed via expression (3.22), is a mass fraction
(meaning that 0 ≤ ωi,wall ≤ 1) as long as ωi,center is a mass fraction, because
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1. if ωi,center < 1, then also ωi,wall < 1, and,

2. if ωi,center is positive, then also ωi,wall is positive.

ωcenter

N
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∆z / 2

Reacting wall
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Rwall

ωwall

Τwall

Τcenter

∆ zN

vwall

∆z

∆ rE

Figure 3.4: Grid cells along the reacting boundary. The south cell, with
cell center S, is a virtual cell. The species mass fraction ωwall is computed
according to expression (3.22), whereas Twall is prescribed (see Section 2.6).



CHAPTER 4

Positivity

The physical interpretation of the solutions ωi of the system of species
equations (2.18) tells us that

ωi(x, 0) > 0 for all x implies ωi(x, t) > 0 for all x and t > 0.

This property is called positivity, which is an abbreviation of ‘non-negativity
preserving for the species concentrations in the solution vector’. Looking
closer to this property, we remark that first of all the mathematical model
proposed in Kleijn (1991) and discussed in Chapter 2 should be positive.
Obviously, the advection and diffusion parts are non-negativity preserv-
ing. Positivity of the reaction terms (2.20) in the species equations (2.18) is
discussed in Section 4.1.

As we have seen in Chapter 3, it is in general not guarantueed that
spatial discretizations preserve non-negativity. The hybrid Finite Volume
discretization of the species equations (2.18) introduced in Chapter 3 is
stable and positive for all mesh sizes. Following the MOL approach, the
obtained positive semi-discretization should be integrated in time. Again,
we would like to have one or more critera that tell us when positivity is
preserved. It appears that this extra condition on time integration methods,
besides stability, is much more restrictive towards the time step size than
stability.

In Section 4.1 we discuss positivity of semi-discretizations and/or ODE
systems. Thereafter, in Section 4.2, positivity for time integration methods
is considered. Relations between positivity and other monoticity properties
like Total Variation Diminishing (TVD) are addressed in Section 4.3.
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4.1 Positive Semi-Discretizations

In this section we investigate positivity for ODE systems

w′(t) = F(t,w(t)). (4.1)

In this thesis the ODE system (4.1) represents a semi-discrete system of
the time dependent species equations (2.18), which is obtained through
discretization in space by means of the hybrid Finite Volume method of
Chapter 3.

Throughout this chapter we assume that the semi-discrete system (4.1)
consists of m = n · N, with N the number of species and n the number of
spatial grid points, time dependent ODEs,
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. (4.2)

Further, by w(t) ≥ 0 it is meant that this inequality is satisfied component-
wise, i.e.,

w(t) ≥ 0 =⇒ w1(t) ≥ 0, . . . ,wm(t) ≥ 0. (4.3)

Definition 4.1. An ODE system w′(t) = F(t,w(t)), t ≥ 0, is called positive, or
non-negativity preserving, if w(0) ≥ 0 (component-wise) =⇒ w(t) ≥ 0, for all
t > 0.

The next theorem provides a simple criterion on F(t,w(t)) to test whether
the ODE system w′(t) = F(t,w(t)), t ≥ 0, is positive. For a proof we refer to
Hundsdorfer & Verwer (2003).

Theorem 4.2. Suppose that F(t,w) is continuous and satisfies a Lipschitz condition
with respect to w. Then the ODE system w′(t) = F(t,w(t)), t ≥ 0, is positive if and
only if for any vector w ∈ Rm and all i = 1, . . . ,m, and t ≥ 0 yields

w ≥ 0 (componentwise), wi = 0 =⇒ Fi(t,w) ≥ 0. (4.4)

The goal of this section is to investigate positivity for semi-discrete
systems. Consider, for instance, the one dimensional linear advection-
diffusion equation

∂

∂t
u(x, t) +

∂

∂x
(a(x, t)u(x, t)) =

∂

∂x

(

d(x, t)
∂

∂x
u(x, t)

)

, (4.5)

with periodic boundary conditions, and where a(x, t) is the space and time
dependent advection coefficient, and d(x, t) > 0 the space and time depen-
dent diffusion coefficient. Application of Theorem 4.2 shows that Finite
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Volume discretization by means of central differences gives a positive semi-
discretization if and only if the cell Péclet numbers, defined as ah/d, satisfy

max
x,t

|a(x, t)|h
d(x, t)

≤ 2. (4.6)

Discretizing the advection part by means of first order upwind, and second
order central differences for the diffusive part, gives an unconditionally
positive semi-discretization.

In Chapter 3 an equivalent 2D approach is presented for a Finite Volume
discretization. Positivity of the semi-discrete system is achieved when the
spatially discretized reaction terms (2.20) are also positivity preserving.

The reaction terms (2.20) can be written in the production-loss form

R
g

k
(t,w) = p(t,w) − L(t,w)w, (4.7)

where p(t,w) ≥ 0 (componentwise) is a vector and L(t,w) ≥ 0 (componen-
twise) a diagonal matrix. The components pi(t,w) of p(t,w) and Li(t,w) of
the diagonal matrix L(t,w) are of polynomial type in w with non-negative
coefficients. These coefficients are easily found for practical examples.

Addition of reaction terms (2.20), which can be written in the production-
loss form (4.7), to the advection-diffusion equation (4.5) and applying
Theorem 4.2 gives a positive semi-discretization for the one dimensional
advection-diffusion-reaction equation if and only if p(t,w) ≥ 0, see also
Hundsdorfer & Verwer (2003).

The one-dimensional results above are easily generalized to higher di-
mensions and to FV schemes, as has been done in Chapter 3. In Chapter 3
it has already been remarked that the hybrid FV scheme preserves positiv-
ity, whereas in this section a mathematical foundation is presented for the
derivation of these conditions.

Further, note that by establishing the positivity of the (discretized) re-
action terms (2.20) implies that the mathematical model of the gas-phase
chemistry is positive.

4.2 Positive Time Integration

Definition 4.3. A time integration method wn+1 = ϕ(wn) is called positive if for
all n ≥ 0 holds, wn ≥ 0 =⇒ wn+1 ≥ 0.

The positivity requirement restricts the choice of time integration meth-
ods. In this section we will present results for general ODE systems, i.e.,
non-linear systems w′(t) = F(t,w(t)). First, we start exploring the positiv-
ity property for the Euler Forward and Euler Backward time integration
methods.
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4.2.1 Positivity for Euler Forward and Euler Backward

Suppose that the right hand side of the non-linear semi-discretization w′(t) =
F(t,w(t)) satisfies:

Condition 4.4. There is an α > 0, depending on F(t,w), such that for a time step
τ holds:

if ατ ≤ 1, then w + τF(t,w) ≥ 0 for all t ≥ 0 and w ≥ 0.

Provided that wn ≥ 0, Condition 4.4 guarantees positivity for wn+1 com-
puted via Euler Forward. For linear semi-discrete systems w′(t) = Aw(t)
with entries Ai j ≥ 0 for i , j, Aii ≥ −ζ for all i and ζ > 0 fixed, Condition
4.4 is easily illustrated. Application of Euler Forward to this system gives
a positive solution if 1 + τAii ≥ 0 for all i. This will hold if ζτ ≤ 1. To write
down such an expression for α for equation (2.18) is undoable, because of
the complicated structure of the chemical source terms. At least, α should
be such that Euler Forward gives stable numerical solutions.

Secondly, assume that F(t,w(t)) satisfies :

Condition 4.5. For any v ≥ 0, t ≥ 0 and τ > 0 the equation

w = v + τF(t,w), (4.8)

has a unique solution w that depends continuously on τ and v.

According to the following theorem we have unconditional positivity
for Euler Backward. The proof is taken from Hundsdorfer & Verwer (2003).

Theorem 4.6. Conditions 4.4 and 4.5 imply positivity for Euler Backward for any
time step size τ.

Proof. For given t, v and with a chosen τ, we consider the equation w =
v + τF(t,w) and we call its solution w(τ). We have to show that v ≥ 0
implies w(τ) ≥ 0 for all positive τ. By continuity it is sufficient to show that
v > 0 implies w(τ) ≥ 0. This is true because if we assume that w(τ) > 0
for τ ≤ τ0, except for the ith component wi(τ0) = 0, then 0 = wi = vi +

τ0Fi(t,w(τ0)). According to Condition 4.4 we have Fi(t,w(τ0)) ≥ 0 and thus
vi + τ0Fi(t,w(τ0)) > 0, which is a contradiction. �

Remark 4.7. Application of Euler Backward to the nonlinear semi-discretization
w′(t) = F(t,w(t)) needs the solution of the nonlinear vector equation

wn+1 − τF(tn,wn+1) = wn. (4.9)

Theorem 4.6 ensures for every time step size τ positivity of the exact solution of
(4.9). In practice, however, the solution of (4.9) is approximated by an iterative
solver, and thus, it is not guaranteed to be positive.
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4.2.2 Higher Order Positive Time Integration

Implicit time integration methods are useful in the sense that they eliminate
the time-step restriction associated with stability. Therefore, uncondition-
ally positive schemes can be implicit schemes only. We would like to pre-
serve the unconditional positivity of Euler Backward in higher order time
integration methods.

Unfortunately, this is not possible. Look for instance to the second order
Runge-Kutta method

w(1) = wn + β1τF(tn + β1τ,w
(1)) (4.10)

wn+1 = α1wn + α2w(1) + β2τF(tn+1,w
n+1). (4.11)

Note that (4.10) - (4.11) contains no explicit terms in order to avoid time-step
restrictions for stability and positivity requirements. Second order accuracy
requires the coefficients in (4.10) - (4.11) to satisfy

α2 =
1

2β1(1 − β1)
, α1 + α2 = 1, and, β2 =

1 − 2β1

2(1 − β1)
. (4.12)

Under the assumption that wn ≥ 0, Theorem 4.6 guarantees w(1) ≥ 0 .
Further, Condition 4.4 and 4.5 and Theorem 4.6 imply wn+1 to be positive
when α1 ≥ 0 and α2 ≥ 0. Elementary calculations show that either α2 ∈
[2,∞), or α2 ∈ (−∞, 0), which implies that either α1 is negative, or α2 is
negative. Thus, we have shown that the second order implicit Runge-Kutta
scheme (4.10) - (4.11) cannot be unconditionally positive. In fact, we have
proven that it cannot be positive for any time step size τ.

The simple analysis on the second order implicit Runge-Kutta scheme
(4.10) - (4.11) presented above is perfectly generalized for all higher order
time integration methods in the following result, due to Bolley & Crouzeix
(1973).

Theorem 4.8. Any unconditionally positive time integration method has order
p ≤ 1.

For a proof we refer to Bolley & Crouzeix (1973). The consequence
is that the only well-known method having unconditionally positivity is
Euler Backward. Finally, we remark that for higher order methods the need
to preserve positivity may necessitate the use of impractically small time
steps.

4.3 Positivity and TVD

Like positivity, Total Variation Diminishing (TVD) is a form of super stabil-
ity. The TVD property is developed for studying the properties of numerical
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schemes to solve hyperbolic conservation laws, see, for instance, Gottlieb
et al. (2001), Hundsdorfer & Verwer (2003), Hundsdorfer et al. (2003),
LeVeque (2002) and Wesseling (2001). If a system of ODEs

w′(t) = F(t,w(t)), (4.13)

with an appropriate initial condition w(0) = w0, stands for a semidiscretiza-
tion of a hyperbolic conservation law, then it is important that the fully
discrete process is monotonic in the sense that

‖wn‖ ≤ ‖wn−1‖, (4.14)

for a certain norm ‖ · ‖. If a numerical scheme satisfies the monoticity
property (4.14), where for ‖ · ‖ the seminorm

|y|TV =

n
∑

j=1

|y j − y j−1|, with y0 = yn, for y ∈ Rn, (4.15)

is used, then such a scheme is called Total Variation Diminishing (TVD). If
a numerical scheme satisfies

|wn|TV ≤ |wn−1|TV, (4.16)

then localized over- and undershoots are prevented. In the case that wn−1 ≥
0, then inequality (4.16) implies that wn ≥ 0.

Conditions on time integration methods to ensure positivity or TVD are
derived in the same way, see for instance Hundsdorfer et al. (2003) and van
Veldhuizen et al. (2008b). For certain implicit schemes these conditions are
identical. For instance, the Euler Backward method is both unconditionally
positive and unconditionally TVD. Also for Diagonal Implicit Runge-Kutta
methods the conditions for positivity and TVD are the same, see Hunds-
dorfer & Verwer (2003) and van Veldhuizen et al. (2006b).

As for positivity, it is shown that higher order unconditional TVD time
integration methods do not exist. In Gottlieb et al. (2001) this has been
proven for implicit Runge-Kutta schemes and for implicit multi-step meth-
ods. Recall that explicit schemes always have to fulfill a CFL condition in
order to be TVD, or positive, see Gottlieb et al. (2001).

Higher order time integration methods satisfying the TVD property
(4.14) must have explicit stages, see Gottlieb et al. (2001) and van Veld-
huizen et al. (2008b). Addition of explicit stages to an implicit higher order
time integration method could retrieve the TVD, or positivity property, see
Gottlieb et al. (2001) or van Veldhuizen et al. (2006b). However, due to
the huge stiffness of the species equations (2.18) explicit time integration is
ruled out by stability requirements.
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4.4 Conclusions

Clearly, for time accurate simulations of reacting gas flows higher order
time integration is desired. On the other hand, negative species are abso-
lutely undesired, because they cause blow up of the solution in finite time.
Conservation of non-negativity is therefore essential. However, as has been
shown in this chapter, unconditionally positive time integration methods
can be first order accurate only. Euler Backward is the only known time
integration method being unconditionally positive.

Higher order time integration of the stiff species equations will require a
tight restriction on the time step in order to maintain positivity. Other alter-
natives like time splitting or IM(plicit)-EX(plicit) time integration combined
with higher order schemes could also be considered. In the next chapter we
will amongst others discuss the advantages and the disadvantages of such
methods.

Since in practice the solutions of the nonlinear vector equations arising
from implicit time discretizations are approximated by iterative methods,
their non-negativity is not even ensured when Euler Backward time inte-
gration is used (compare with Remark 4.7). In Chapter 6 and 7 we discuss
positivity issues for Newton’s method and for Krylov methods,respectively.





CHAPTER 5

Comparison of Some Stiff ODE
Methods

From the previous chapter it can be concluded that Euler Backward is an
almost ideal time integration method. It has the advantages of being uncon-
ditionally stable and positive. Disadvantages are the first order consistency
and its damping. In this chapter, we will discuss a selection of higher order
time integration methods that are suitable to integrate equation (2.18) from
a theoretical point of view.

This chapter is organized as follows. First we start off by recalling
some basic notions on stability, operator splitting and variable time step
size selection. All ODE schemes which have been tested are equipped
with a variable time step selector, as is usual in the ODE field. Detailed
descriptions on variable time stepping can be found in Hairer & Wanner
(1996), Hundsdorfer & Verwer (2003), van Veldhuizen et al. (2006a) and
van Veldhuizen et al. (2007b).

In Sections 5.2 - 5.5, the actual implemented ODE schemes are presented.
For each particular scheme stability issues, positivity conditions and imple-
mentation details are provided. This chapter is concluded with numerical
results.

If in this chapter, and subsequent chapters, the norm ‖ · ‖ is not specified,
then the L2 norm is used.

5.1 Basic Notions

In this section we introduce the notation used throughout this chapter, as
well as some notions on stability of time integration methods. Further,
advantages and disadvantages of splitting methods are shortly discussed.

35
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To obtain an efficient code, the implementation of a time step size selector
is indispensable. This issue is addressed in Section 5.1.3.

5.1.1 Stability

Consider the Dahlquist test equation, see Hairer & Wanner (1996),

w′(t) = λw(t), (5.1)

with λ ∈ C. Application of a one-step method, like for instance a Runge-
Kutta method, to equation (5.1) gives the recursion

wn+1 = R(z)wn, z = τλ, (5.2)

with τ the time step size τ = tn+1 − tn. The function R(z) is called the
stability function of the particular method. The stability region of this
particular method is the set S ∈ C defined as

S = {z ∈ C : |R(z)| ≤ 1}. (5.3)

A time integration method is called A-stable if the left half plane C−,

C
− = {z ∈ C : Re(z)| ≤ 0}, (5.4)

is contained in S, i.e.,
C
− ⊂ S. (5.5)

Further, a time integration method is called L-stable if this method is A-
stable and R|∞| = 0. Unconditional stability of a time integration method
is obtained when Re(λ) < 0 and the time integration method is A-stable.

In order to derive the stability region for linear multistep methods extra
notions are needed. Since the scope of this study is not on the derivation
of such results, we restrict ourselves to referring to the comprehensive
descriptions, for instance Hairer et al. (1987), Hairer & Wanner (1996),
Hundsdorfer & Verwer (2003) and van Veldhuizen (2005).

5.1.2 Splitting Methods

For a general advection-diffusion-reaction problem

∂w

∂t
+ ∇ · (aw) = ∇ · (D∇w) + R(w), (5.6)

it is generally inefficient to apply the same time integration method to
different parts of the system. If the reaction terms R(u) are stiff, as in the
case of the species equations (2.18), then that part of equation (5.6) calls for
an implicit time integration method. Discretized advection terms are often
more suitable to be integrated explicitly.
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Solving the spatially discretized system of ODEs (5.6) by means of a sim-
ple implicit integration rule results in a large system of nonlinear algebraic
equations. Due to the underlying spatial connectivity of the discretized
advection and diffusion terms the nonlinear systems becomes large, and
hence computationally expensive to solve. The basic idea behind splitting
is to treat each term in equation (5.6) separately, such that each term is
efficiently integrated in time.

Operator Splitting

First, we shortly discuss a splitting technique called operator-, or time
splitting. Consider a general ODE system

w′(t) = F(t,w(t)), (5.7)

with a two term splitting

F(t,w) = F1(t,w) + F2(t,w). (5.8)

We illustrate the time splitting method by the first order splitting

d
dt w
∗(t) = F1(t,w∗(t)) for tn < t ≤ tn+1 with w∗(tn) = wn,

d
dt w∗∗(t) = F2(t,w∗∗(t)) for tn < t ≤ tn+1 with w∗∗(tn) = w∗(tn+1),

giving wn+1 = w∗∗(tn+1) as the next approximation.
The splitting error can be derived by Taylor expansions of w∗(tn+1) and

w∗∗(tn+1) around t = tn. It is equal to

ρn =
1

2
τ

[

∂F1

∂w
F2 −

∂F2

∂w
F1

]

(tn,w(tn)) +O(τ2). (5.9)

If the bracketed term equals zero the splitting error is of order τ2, but this
is generally not true.

Following the idea of Strang (1968) to use symmetry in splitting meth-
ods, a second order splitting can be obtained. Multiple application of the
second order Strang splitting operator, see Strang (1968), gives higher order
splittings. For more comprehensive descriptions of these methods we refer
to Hundsdorfer & Verwer (2003).

Remark 5.1. For linear ODE problems with a two term splitting as in equation
(5.8), where we assume that ‖F1‖ is bounded and F2 has an eigenvalue equal to
1/ε, with 1≫ ε > 0, Sportisse (2000) and Verwer & Sportisse (1998) have proven
that the first order splitting remains first order accurate. The second order Strang
splitting gives, in general, also a first order accurate splitting. Thus, in the stiff case
we can expect that first order splitting is, in general, the most accurate splitting
one can obtain. First order splitting for nonlinear hyperbolic equations with stiff
source terms has been analyzed by Tang (1998). Further references and discussion
can, for instance, be found in Hundsdorfer & Verwer (2003).
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Remark 5.2. Operator splitting always gives a splitting error; for the first order
splitting (5.8) this error is equal to expression (5.9). This implies that steady states
are not returned exactly. For codes that compute a time accurate transient solution
until a steady state is reached, this property is not desired.

IMEX

IM(plicit)-EX(plicit) methods are methods that are a suitable mix of implicit
and explicit methods. The concept of IMEX can be applied to both Runge-
Kutta type and multistep type of time integration methods. The concept is
illustrated by combining Euler Forward and Euler Backward to the general
ODE (5.7), where F(t,w) has a two term splitting (5.8). Further, assume that
F1(t,w) is a non-stiff term, and F2(t,w) is too stiff to be integrated explicitly.
The IMEX approach is then

wn+1 = wn + τF1(tn,wn) + τF2(tn+1,wn+1). (5.10)

By Taylor series expension we obtain for the truncation error

ρn = −
1

2
τw“(tn) + τF′1(tn,wn) +O(τ2). (5.11)

With respect to stability the following is derived. If we assume that the
implicit part of method (5.10) is stable, then the stability region for the ex-
plicitly integrated F1(tn,wn) is equal to the stability region of Euler Forward.
The stability region of Euler Forward is illustrated in Figure 5.1.

Figure 5.1: Stability region of Euler Forward
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On the other hand, if we assume that the explicit part of method (5.10) is
stable, then it can be derived that the implicit part is unconditionally stable.
For a derivation of these results we refer to van Veldhuizen (2005).

Remark 5.3. It is straightforward to show that steady states are returned exactly
for the IMEX method (5.10).

5.1.3 Variable Time Step Selection

Nowadays, many ‘off the shelve’ ODE codes and MOL solvers for PDEs
integrate with variable time step sizes. Usually, users need to specify a cer-
tain (relative) tolerance and norm, and then the code automatically adjusts
the time step size to the local variation in the solution to meet a certain local
error tolerance in that norm. In this section we summarize the variable time
step controller as it is implemented in our code. A more detailed descrip-
tion can be found in Hundsdorfer & Verwer (2003). More comprehensive
descriptions are found in Hairer et al. (1987), Hairer & Wanner (1996) and
Shampine (1994).

Consider an attempted step τn in time from tn to tn+1 = tn + τn that is
performed by a pth order time integration method. Suppose an estimate Dn

of order p̄ ≤ p of the local truncation error is available. Define the parameter
Tol as a user specified tolerance for the local error.

An attempted time step is accepted when Dn ≤ Tol. Rejection of the time
step takes place when Dn > Tol, and redone with a halved time step size,
i.e.,

τn ←
1

2
τn. (5.12)

In the case of an accepted time step the new time step size τn+1 is computed
as

τn+1 = r · τn, (5.13)

with

r =
(

Tol

Dn

)1/(p̄+1)

. (5.14)

Since estimates are used and additional control on decrease and increase of
the time step size is desirable, the expression for the new (trial) time step
size τn+1 is implemented as

τn+1 = min(rmax,max(rmin, ζr))τn. (5.15)

In (5.15), rmax and rmin are the maximal and minimal growth factor, respec-
tively, and ζ < 1 serves to make the estimate conservative so as to avoid
repeated rejections. Typical values are ζ ∈ [0.7, 0.9], rmin ∈ [0.1, 0.5] and
rmax ∈ [1.5, 10].



40

Besides checking for meeting the error criteria and estimating the new
time step size, we also check whether the solution is positive (component-
wise) and whether Newton’s method is converged. When either of these
conditions is not met, we halve the time step size and redo the time step.

For each time integration method discussed further in this chapter, an
estimate of the local error, which is needed for the time step controller, is
given in each of the accompanying sections.

5.2 Euler Backward

In order to be self-contained, the Euler Backward method is shortly dis-
cussed in this section. The Euler Backward scheme belongs to the family of
implicit Runge-Kutta schemes, is first order accurate and given as

wn+1 = wn + τF(tn+1,wn+1). (5.16)

It is easy to show that Euler Backward is L-stable. Further, as seen in Chapter
4, this ODE scheme is the only known scheme to be unconditionally positive.

Implementing the method of equation (5.16) is straightforward. In order
to solve the system of nonlinear algebraic equations (5.16) a Newton-type
method has to be implemented.

When a variable time step size controller is used, then the local trunca-
tion error for non-stiff systems is given by

ρn = −
1

2
τ2w′′(tn) +O(τ3), (5.17)

which can be estimated by

Dn = −
1

2
‖wn+1 − wn − τF(tn,wn)‖. (5.18)

For stiff systems the local truncation error is

ρn = −
1

2
τ2(I − τAn)−1w′′(tn) +O(τ3), (5.19)

with An an integrated Jacobian matrix. Expression (5.19) can be approxi-
mated by

(I − τÃn)−1Dn, with Ãn = F′(wn), (5.20)

and Dn as in expression (5.18). The solution of the linear system with
matrix (I − τF′(wn)) is relatively cheap, since the same matrix is involved in
Newton’s method to solve the implicit relation. Often, an LU decomposition
or a good preconditioner is available. If not, then the estimator (5.18) gives
good results in practice as well. For a derivation we refer to Hundsdorfer
& Verwer (2003).
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5.3 Rosenbrock Methods

Rosenbrock methods are linearly implicit Runge-Kutta type methods for
stiffODEs, which have proven to be effective for low to moderate accuracy
for various stiff problems, see, for instance, Hairer & Wanner (1996) and
Hundsdorfer & Verwer (2003). In literature different forms of these schemes
have been used. These methods are named after Rosenbrock (1963), who
was the first to propose schemes of this kind. Nowadays, Rosenbrock
schemes are understood to solve an autonomous ODE system w′(t) = F(w(t))
by means of the s-stage one step formula presented in Definition 5.4.

Definition 5.4. An s-stage Rosenbrock method is defined as

ki = τF

















wn +

i−1
∑

j=1

αi jk j

















+ τJF

i
∑

j=1

γi jk j, i = 1, . . . , s, (5.21)

wn+1 = wn +

s
∑

i=1

biki, (5.22)

where JF is the Jacobian F′(w(t)).

The number of stages s and the coefficients bi j, αi j and γi j define a particular
method and are selected to obtain a desired level of consistency and stability.

Remark that to compute an approximation wn+1 from wn, in each stage
(5.21) a linear system of algebraic equations with the matrix (I − γiiτJF)
has to be solved. To save computing time the coefficients γii are taken
constant, e.g., γii = γ. Then, in every time-step the matrix (I − γiiτJF) is
identical, such that the LU factorization can be re-used. In the case that a
preconditioned iterative linear solver is used, the preconditioner, e.g., an
incomplete factorization of (I − γiiτJF), can be re-used.

Define the coefficients βi j, ci and di as

βi j = αi j + γi j, ci =

i−1
∑

j=1

αi j, and, di =

i−1
∑

j=1

βi j. (5.23)

Using the coefficients βi j, ci and di, defined in (5.23), the order conditions
for Rosenbrock schemes of order p ≤ 3, a maximum number of stages s ≤ 4
and γii = γ = constant can easily be derived. They are presented in Table
5.1. For a derivation of these conditions we refer to either Hairer & Wanner
(1996), or Hundsdorfer & Verwer (2003).

Of particular interest is the second order Rosenbrock scheme ROS2

wn+1 = wn + b1k1 + b2k2, (5.24)

k1 = τF(tn,wn) + γτJFk1, (5.25)

k2 = τF(tn + α21τ,wn + α21k1) + γ21τJFk1 + γτJFk2, (5.26)
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Table 5.1: Order conditions of Rosenbrock methods with γii = γ for s ≤ 4
and p ≤ 3.

order p order conditions

1 b1 + b2 + b3 + b4 = 1

2 b1d2 + b3d3 + b4d4 = 1/2 − γ
3 b2c2

2
+ b3c2

3
+ b4d2

4
= 1/3

b3β32d2 + b4(β42d2 + β43d3) = 1/6 − γ + γ2

with coefficients

b1 = 1 − b2, α21 =
1

2b2
and γ21 = −

γ

b2
. (5.27)

In method (5.24) - (5.26) JF is the Jacobian of F(tn,wn) with respect to wn.
This method is of order two for arbitrary γ as long as b2 , 0 . The stability
function is given as

R(z) =
1 + (1 − 2γ)z + (γ2 − 2γ + 1

2 )z2

(1 − γz)2
. (5.28)

The method is A-stable for γ ≥ 1/4 and L-stable if γ = 1 ± 1/2
√

2.

5.3.1 Positivity of ROS2

By selecting for γ the larger value γ+ = 1 + 1/2
√

2, we have the property
that R(z) ≥ 0, for all negative real z. For diffusion-reaction problems, which
have negative real eigenvalues, this property ensures positivity of the so-
lution. In the case that advection is added to the system, the matrix has
eigenvalues with negative real parts and relatively small imaginary parts.
Then, the positivity property is no longer guaranteed. It appears that the
second order Rosenbrock method performs quite well with respect to the
positivity property, as has been experienced in Verwer et al. (1999). An
explanation for this behavior is lacking, but for a linearized chemical system
the following property can be derived.

Consider the nonlinear chemical kinetics system w′(t) = f (w), with f (w)
a production-loss form (see equation (4.7))

f (w) = P(w) − L(w)w. (5.29)

Recall that P(w) > 0 contains the production terms for all species, and L(w)w
represents the destruction terms of all species. Suppose that for species k
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the production and destruction terms are constant. Thus, we consider the
kth ordinary differential equation

w′k = Pk − Lkwk, (5.30)

with Pk ≥ 0 and Lk ≥ 0 both constant. Applying the ROS2 scheme (5.24) -
(5.26) to the ordinary differential equation (5.30) gives the approximation

wn+1
k = R(z)wn

k +
R(z) − 1

z
τPk, with z = −τLk. (5.31)

Hence, wn+1
k

can be negative when R(z) < 0. If, on the other hand, 0 ≤
R(z) ≤ 1, then the positivity of wn+1

k
is guaranteed. For nonlinear systems

the reasoning above does not hold. However, for species concentrations
that are close to their steady state concentration, the linear reasoning comes
close to what happens in the actual computation in the Rosenbrock scheme
(5.24) - (5.26) to the ordinary differential equation (5.30). For further details
we refer to Verwer et al. (1999).

5.3.2 Implementation Details

This section is concluded with a remark on the implementation of the second
order Rosenbrock scheme (5.24) - (5.26). In our code it is implemented with
the parameters

b1 = b2 =
1

2
and, γ = 1 +

1

2

√
2. (5.32)

The matrix-vector multiplication in the second stage of (5.26) is avoided by
introducing

k̃1 = k1, and, k̃2 = k2 − k1. (5.33)

The ROS2 scheme is then implemented as

wn+1 = wn + 3/2k̃1 + 1/2k̃2, (5.34)

k̃1 = τF(wn) + γτJFk̃1, (5.35)

k̃2 = τF(wn + k̃1) − 2k̃1 + γτJFk̃2. (5.36)

5.3.3 Local Error Estimation

Note that within ROS2 the intermediate approximation

w̃n+1 = wn + k1, (5.37)

is first order consistent. Since it is directly available within the solver, w̃n+1

can be used to provide a cheap local error estimation as

Dn = wn+1 − w̃n+1. (5.38)
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5.4 Backward Differentiation Formulas

In computational chemistry applications the Backward Differentiation For-
mulas belong to the most widely used methods to solve stiff species equa-
tions (2.18). Mainly, this is due to their favorable stability properties, but
other properties also play a role. The Backward Differentation Formulas,
usually denoted as BDFs, belong to the class of linear multistep methods.

Definition 5.5. The linear k-step method is defined as

k
∑

j=0

α jwn+ j = τ
k

∑

j=0

β jF(tn+ j,wn+ j). (5.39)

Note that the most advanced level is tn+k instead of tn+1 and that the k past values
wn, . . . ,wn+k−1 are used to compute wn+k. The method (5.39) is explicit when
βk = 0, and implicit otherwise.

The order conditions for the k-step linear multistep method (5.39) are sum-
marized as:

The method (5.39) is of order p if and only if

k
∑

j=0

α j = 0,
k

∑

j=0

αi
j = i

k
∑

j=0

β j j
i−1 for i = 1, 2, . . . , p. (5.40)

These conditions are easily derived by Taylor series expansion, see, for
instance, Hundsdorfer & Verwer (2003) and Hairer & Wanner (1996).

Definition 5.6. The k-step Backward Differentation Formulas, usually called
BDFs, are implicit linear multistep methods. For the coefficients β j, j = 0, . . . , k,
holds that

βk = 1 and β j = 0 for j = 0, . . . , k − 1. (5.41)

The coefficients α j, j = 0, . . . , k, are chosen such that the order is optimal, which is
k for a k-step BDF method.

The 1-step BDF method is Euler Backward,i.e.,

wn+1 − wn = τF(tn+1,wn+1). (5.42)

Applying the order conditions (5.40) for second order accuracy lead to the
BDF-2 method

3

2
wn+2 − 2wn+1 +

1

2
wn = τF(tn+2,wn+2), (5.43)

whereas the order conditions for third order accuracy gives the BDF-3

11

6
wn+3 − 3wn+2 +

3

2
wn+1 −

1

3
wn = τF(tn+3,wn+3). (5.44)

Of practical interest is the BDF-2 method, since for this method positivity
conditions can be derived.
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5.4.1 Stability for BDFs

Unlike Runge-Kutta methods, there are not many A-stable linear multistep
methods. Dahlquist (1963) derived that an A-stable linear multistep method
is of order equal to or less than two. This result is also known as the second
Dahlquist barrier.

Indeed it can be derived that the BDF-1 and BDF-2 methods are A-stable,
see Hundsdorfer & Verwer (2003) and Hairer & Wanner (1996). For k > 2
up to k = 6 the BDF methods are A(α)-stable, which means that the set

{z ∈ C : z = 0,∞ or | arg(−z) ≤ α|} (5.45)

is contained in the stability region of that particular method. For BDF-3,
BDF-4, BDF-5 and BDF-6 the angle α in degrees depends on k as:

k 3 4 5 6

α 86◦ 73◦ 51◦ 17◦

The BDF methods are unstable for k > 6, see Hairer et al. (1987). For
3 ≤ k ≤ 6 the stability regions of the BDF-k methods are illustrated in Figure
5.2.

Popularity of the BDF methods is due to the good absolute stability
properties. At infinity, the stability properties are surpassed since the zeros
of the stability polynomial

k
∑

j=0

α jz
j + βkτλzk, (5.46)

tend to zero when |τλ| → ∞. One of the roots of polynomial (5.46) approx-
imates eτλ up to order p + 1 for |τλ| → 0. That particular root is called the
principle root and the remaining (k−1) roots are called spurious roots. Thus,
for BDF methods applied to stiff problems, the (k− 1) spurious roots do not
cause oscilatory behavior of the solution. This means that the time step size
τ can be increased without any risk of generating spurious oscillations.

5.4.2 Implementation

When implementing a linear multistep scheme, and in particular a BDF-k
scheme, one has to take into account that the first (k − 1) approximations
cannot be computed with this scheme. Specifically, one also has to take care
that the starting procedure returns stable solutions. A possible, and often
used, solution is to use the BDF-1 scheme to compute w1, the BDF-2 scheme
to compute w2, . . . , and the BDF-(k − 1) scheme to compute wk−1. Another
solution is to compute w1, . . . ,wk−1 by means of a Runge-Kutta method.
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Figure 5.2: Stability regions for BDF-k, 3 ≤ k ≤ 6. The boundaries of the
A(α)-stability regions are illustrated by the bold lines.
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5.4.3 Positivity

As for Runge-Kutta methods, the requirement of positivity does place a
severe time step size restriction on BDF methods. For the BDF-2 methods
we will derive conditions for which positivity is ensured. The BDF-2 scheme
(5.43) can be rewritten as

wn+2 −
2

3
τF(tn+2,wn+2) =

4

3
wn+1 −

1

3
wn. (5.47)

Based on the analysis carried out in Hundsdorfer et al. (2003) for the Total
Variation Diminishing property of BDF-2 type schemes, positivity of the
BDF-2 method (5.47) will be considered.

Since no claims can be made on the positivity of the right hand side
of formula (5.47), no conditions for positivity of wn+2 can be obtained. In
order to circumvent this, the BDF-2 scheme (5.47) will be rewritten up to
and including its starting values w1 and w0. Letθ ≥ 0 be a parameter, which
will be specified later. Then, for n ≥ 3, formula (5.47) can be written as

wn+2 −
3

2
τF(tn+2,wn+2) =

(

4

3
− θ

)

wn+1 + θ
2

3
τF(tn+1,wn+1) +

(

θ
4

3
− 1

3

)

wn + θ
1

3
wn−1. (5.48)

Continuing this way of subtracting and adding θ jwn− j and substituting in
formula (5.47) gives for n ≥ 3

wn+2 −
3

2
τF(tn+2,wn+2) =

(

4

3
− θ

)

wn+1 + θ
2

3
τF(tn+1,wn+1) +

n
∑

j=4

θ j−4
((

−1

3
+ θ

4

3
− θ2

)

wn− j+2 + θ
2 2

3
τF(tn− j+2,wn− j+2)

)

θn−3
((

−1

3
+ θ

4

3

)

w1 − θ
1

3
w0 + θ

2

3
τF(t0,w0)

)

. (5.49)

We assume that w0 ≥ 0, and that w1 is computed via an appropriate starting
procedure such that w1 ≥ 0. Further, assume as well that

(

−1

3
+ θ

4

3

)

w1 − θ
1

3
w0 + θ

2

3
τF(t0,w0) ≥ 0. (5.50)

Then, by applying Condition 4.5, wn+2 is positive when the right-hand
side of equation (5.49) is positive. By inequality (5.50) we have that the
right-hand side of equation (5.49) is positive if and only if the scaled Euler
Forward steps

(

4

3
− θ

)













wn+1 − τ
2
3θ

4
3 − θ

F(tn+1,wn+1)













, (5.51)
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and

(

−1

3
+

4

3
θ − θ2

)













wn− j+2 − τ
2
3θ

2

− 1
3 +

4
3θ − θ2

F(tn− j+2,wn− j+2)













, (5.52)

are positive. Thus, expressions (5.51) and (5.52) are positive when τ ≤
r(θ)τEF, where τEF is the time step size such that Euler Forward is positive
(see Condition 4.4), and

r(θ) = min













4
3 − θ

2
3θ
,
− 1

3 +
4
3θ − θ2

2
3θ

2













. (5.53)

For practical use it is useful to find the maximum of r(θ). After some tedious
computations we obtain that

max
θ≥0

r(θ) =
1

2
. (5.54)

Thus, we find that BDF-2 is positive, when ατ ≤ 1/2τEF. This means that
the implicit and unconditionally stable BDF-2 scheme has a time step size
restriction which is 2 times tighter than for Euler Forward in order to be
positive.

5.4.4 Local Error Estimation

Multi-step methods use information from at least two previous time levels.
When using variable time step sizes, the formula coefficients need to be
adjusted for maintaining the order consistency. Let τn+1 = tn+2 − tn+1 and

r =
τn+1

τn
. (5.55)

The variable step size version of the BDF-2 scheme is then given as

wn+2 −
(1 + r)2

1 + 2r
wn+1 +

r2

1 + 2r
wn =

1 + r

1 + 2r
τF(tn+2,wn+2). (5.56)

For a derivation of this scheme we refer to Hairer et al. (1987). Following
Hundsdorfer & Verwer (2003), the following first order local error estimator
is available

Dn =
1 + r

1 + 2r

(

wn+2 + (r2 − 1)wn+1 − r2wn − (1 + r)τnF(tn+1,wn+1)
)

. (5.57)

For the first step the Euler Backward method with its first order local error
estimator

D0 =
1

2
(w1 − w0 − τ0F(t0,w0)) , (5.58)

is used.
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5.5 IMEX Runge-Kutta Chebyshev Methods

The IMEX extension of the class of Runge-Kutta Chebyshev (RKC) methods,
developed by Verwer and co-workers (see Verwer & Sommeijer (2004) and
Verwer et al. (2004)), is designed to solve stiff systems of ODEs that repre-
sent semi-discrete advection-diffusion-reaction equations. In this IMplicit-
EXplicit RKC integration method the advection and diffusion terms are
treated simultaniously and explicitly, whereas the highly stiff reaction terms
are integrated implicitly.

The RKC methods belong to the class of stabilized explicit Runge-Kutta
methods. Whereas the principal goal of Runge-Kutta methods is to achieve
the highest order of accuracy possible for a given number of stages s, stabi-
lized explicit RK methods use a few stages to achieve a low order of accuracy
such that the additional stages are exploited to increase the stability region.
The RKC method is stable on a segment of the negative real axis, which is
bounded by the origin and the stability boundary β(s).

Definition 5.7. The stability boundary β(s) is the number β(s) such that
[−β(s), 0

]

is the largest segment of the negative real axis contained in the stability region

S = {z ∈ C : |R(z)| ≤ 1} .

The method has a greater applicability when this strip is wider, but for
diffusion dominated flow problems larger stability bounds β(s) are more
important. For the RKC method discussed in this section the size of β(s)
increases quadratically in s.

In this thesis we will not go into the full details on the construction of
the RKC scheme. We only consider schemes of order 2, because they are
believed to be more efficient than the first order schemes, see Verwer &
Sommeijer (2004).

First, we will give the scheme, and thereafter we briefly discuss its
stability function. The second order explicit RKC formula has the form

wn0 = wn, (5.59)

wn1 = wn + µ̃1τF(tn,wn0), (5.60)

wnj = (1 − µ j − ν j)wn + µ jwn, j−1 + ν jwn, j−2 +

+µ̃1τF(tn + c j−1τ,wn, j−1) + γ̃ jτF(tn,wn0), (5.61)

wn+1 = wns, (5.62)

with j = 2, . . . , s. For s ≥ 2 all coefficients in formulas (5.59) - (5.62) are
available in analytical expressions as:

ω0 = 1 +
ε

s2
, ω1 =

T′s(ω0)

T′′s (ω0)
, (5.63)
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b j =
T′′

j
(ω0)

(T′
j
(ω0))2

, c j =
T′s(ω0)

T′′s (ω0)

T′′
j

(ω0)

T′
j
(ω0)

≈ j2 − 1

s2 − 1
, (5.64)

µ̃1 = b1ω1, µ j =
2b jω0

b j−1
, ν j = −

b j

b j−2
, (5.65)

µ̃ j =
2b jω1

b j−1
, γ̃ j = −a j−1µ̃ j, and a j = 1 − b jT j(ω0). (5.66)

In formulas (5.63), (5.64) and (5.66) T j(z) is the jth order Chebyshev polyno-
mial of the first kind. For z ∈ C it is recursively defined as

T j(z) = 2zT j−1(z) − T j−2(z), (5.67)

with T0(z) = 1 and T1(z) = z. The stability function of the RKC scheme
(5.59) - (5.62) is

R(z) = as + bsTs(ω0 + ω1z). (5.68)

For derivations of the stability function and the method itself we refer to
Sommeijer et al. (1997), Hundsdorfer & Verwer (2003), Verwer & Sommeijer
(2004) and Verwer et al. (2004).

The parameter ε ≥ 0 inω0 in formula (5.63) is called a damping parame-
ter. For ε = 0 stability regions as in Figure 5.3(a) are obtained. For practical
reasons a stability region as in Figure 5.3(a) is undesirable, i.e., along the
negative real axis we do not have that R(z) is strictly less than one. The
corresponding stability bound β(s) is

β(s) =
3

2
(s2 − 1), (5.69)

see Verwer & Sommeijer (2004). In van der Houwen (1996) it can be found
that for second order stability polynomials the optimal stability bound β(s)
increases quadratically with s as s increases by means of the approximation

β(s) = 0.82s2. (5.70)

Thus, for ε = 0 the stability polynomial (5.68) generates about 80% of the
optimal stability bound (5.70).

For ε > 0 we see that along the negative real axis the strip becomes
wider. This is clearly illustrated in Figure 5.3(b) for s = 5 and ε = 0.1.
Under the assumption that ε is small the real stability bound β(s) is given
as

β(s) =
3

2
(s2 − 1)

(

1 − 2

15
ε
)

. (5.71)

For more details we refer to Verwer & Sommeijer (2004).
The IMEX extension of the above scheme is as follows. Suppose we

have an ODE system w′(t) = F(t,w(t)), where F(t,w) can be split as

F(t,w) = FE(t,w) + FI(t,w) (5.72)
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with FI(t,w) the part of F(t,w) which is too stiff to be integrated explicitly,
i.e., in our case the reaction terms. The term FE(t,w) is the moderately stiff
part of F that can be integrated explicitly by the RKC method, which are
the advection and diffusion terms. Then, the IMEX extension of the explicit
RKC scheme (5.59) - (5.62) from Verwer et al. (2004) reads

wn0 = wn, (5.73)

wn1 = wn + µ̃1τFE(tn + c0τ,wn0) + µ̃1τFI(tn + c1τ,wn1), (5.74)

wnj = (1 − µ j − ν j)wn + µ jwn, j−1 + ν jwn, j−2 (5.75)

+µ̃ jτFE(tn + c j−1τ,wn, j−1) + γ̃ jτFE(tn + c0τ,wn0)

+(γ̃ j − (1 − µ j − ν j)µ̃1)τFI(tn + c0τ,wn0)

−ν jµ̃1τFI(tn + c j−2τ,wn, j−2) + µ̃1τFI(tn + c jτ,wnj) (5.76)

wn+1 = wns. (5.77)

Note that the highly stiff part FI(t,w) of F(t,w) is treated implicitly. If the
stiff reaction term FI(t,w) is absent, then the explicit scheme (5.59)-(5.62) is
recovered.

For the IMEX-RKC scheme the implicit part is unconditionally stable
as long as the eigenvalues of the Jacobian of FI(t,w) are real, whereas the
stability condition for the explicit part remains unchanged, see Verwer &
Sommeijer (2004).

Steady states are returned exactly, which is not true for other operator
splittings, see Hundsdorfer & Verwer (2003). Unconditional positivity is
not guaranteed; the exact condition is not known to the author.

5.5.1 Implementation details

We conclude with some remarks on the implementation of the IMEX-RKC
solver. In each of the s stages in the IMEX-RKC scheme (5.73) - (5.77) a
system of nonlinear algebraic equations

wnj − µ̃1τFI(tn + c jτ,wnj) = v j, (5.78)

with v j given and wnj a vector of unknowns, has to be solved. For efficiency
reasons it is beneficial that µ̃1 is independent of j. Further, a modified
Newton iteration is used to solve the nonlinear equation (5.78), where as
initial guess wn0 is taken. Consequently, the Jacobian of FI(tn,wn0) has to
be computed once per time step. The LU factorization needed within the
modified Newton iteration is then identical over the s stages.

With respect to the Jacobian of the left-hand side of equation (5.78) the
following can be noted. The reaction terms have no underlying spatial
grid connectivity. If the unknown species concentrations are ordered per
grid point, then this Jacobian consists of a number (i.e., the number of grid
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points) of decoupled small sized subsystems with dimension equal to the
number of species. The LU factorization of such a matrix is easily obtained.

Details of the variable time step controller, which tests the current solu-
tion for accuracy and the explicitly integrated part for stability, can be found
in Verwer et al. (2004). This controller also adjusts the number of stages s,
depending on the time step size and the conditions for stable integration
of advection and diffusion (called IRKC(full)) or for stable integration of
diffusion only (called IRKC(fly)).

Conditions for stable explicit integration of advection and diffusion are
obtained via von Neumann stability analysis. The approach of Wesseling
(1996) is followed in which time step size conditions are given to guarantee
that the eigenvalues emerging from van Neumann stability analysis to lie
inside geometric figures like squares, ellipses and ovals. This approach is
described in Wesseling (1996) and in Chapter 5 of Wesseling (2001). For the
explicit integration of advection and diffusion via the RKC method ovals
are used, because they give a better fit near the origin. For s = 5 an inscribed
oval in the stability region of the RKC method is illustrated in Figure 5.4.
Technical details can be found in Verwer et al. (2004).

5.5.2 Local Error Estimation

Shampine et al. (2005) comprehensively describe how the local error esti-
mation is derived and implemented in the computer code.

5.6 Numerical Results

The ODE methods presented in the above section have been tested on the
benchmark problem of Kleijn (2000). All specific details of this two dimen-
sional Chemical Vapor Deposition process are discussed in Chapter 8. The
number of gaseous species in the used chemistry model for this Chemi-
cal Vapor Deposition process is 17, of which 16 participate in the reaction
mechanism consisting of 26 gas-phase reactions. Furthermore, the surface
chemistry reaction model with 14 surface reactions as described in Section
8.1.2 is included. The reactor configuration for all simulations is described
in Section 8.2.1 and illustrated in Figure 8.1. Because of axisymmetry, the
computational domain is two-dimensional.

The simulation runs from the the instant that the reactor is completely
filled with helium carrier gas and a mixture of helium and silane starts to
enter the reactor, until steady state. The spatial computational grid consists
of 35 equidistant grid points in radial direction, and 32 non-equidistant
grid points in axial direction. The grid spacing in axial direction gradually
decreases towards the wafer surface. In our experiments steady state is
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(b) The damped case with ε = 0.1

Figure 5.3: Stability regions of the second order shifted Chebyshev polyno-
mial (5.68) with s = 5.
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Figure 5.4: Stability region of (5.61) with inscribed oval
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assumed to be obtained when for a certain time step tn the inequality

‖wn+1 − wn‖2
‖wn‖2

≤ 10−6, (5.79)

holds, where wn is the numerical solution of the semi-discretization w′(t) =
F(t,w) on time t = tn. The validation and interpretation of the results is
done in Chapter 8. For now, we are only interested in the performance of
the various ODE integrators.

We compared the unconditionally positive Euler Backward method, the
ROS2 scheme, the conditionally positive BDF-2 and the IMEX RKC scheme.
We have to remark that the BDF-2 scheme is implemented in such a way
that when negative solutions are obtained, first the time step is halved and
redone. If it then again returns negative species solutions, then it switches
back to the BDF-1 scheme. After a succesful BDF-1 step it tries to return to
the BDF-2 scheme.

In both the Euler Backward and the BDF solver, a system of nonlinear
algebraic equations has to be solved for each time step. We have done exper-
iments with both a full Newton method, and a modified Newton method.
In Full Newton the Jacobian is evaluated in each Newton iteration. If the
initial guess is in a neighborhood of a solution, then quadratric convergence
is obtained.

In the Euler Backward and/or BDF solver it is also possible to update
the Jacobian occasionally, such that Newton’s method becomes a modified
Newton iteration. Define the convergence rate of the Newton iteration as

Θn =
‖dn‖
‖dn−1‖

, n ≥ 1, (5.80)

where dn is the Newton update. Then, we do not recompute the Jacobian in
the next time step when (i) the Newton process converges in one iteration,
or, (ii) the convergence rate in the last Newton iteration was very small,
e.g., Θn ≤ 10−3, which means that the last Newton iteration gives fast
convergence, see also, for instance, Hairer & Wanner (1996). By updating
the Jacobian only occasionally, the quadratic convergence behavior of the
full Newton iteration is lost; usually linear convergence is retained.

The linear systems are solved directly by means of an LU factorization
of the Jacobian-matrix. To reduce the amount of work to factorize the
Jacobian, the unknown species mass fractions are ordered per grid point.
As has been pointed out in van Veldhuizen et al. (2007b), this ordering gives
the smallest bandwith in the Jacobian. As is commonly known, the smaller
the bandwidth is, the less work is needed to compute the LU-factors in the
Jacobian-matrix.

In Table 5.2, 5.3 and 5.4 numerical results are given for the various time
integration methods, with either the full or modified Newton iteration to



5.6. Numerical Results 55

solve the nonlinear systems. Also shown are the relative errors in the L2

norm with respect to a time accurate ODE solution, on some fixed times.
We used relative errors, because the solution contains relatively small com-
ponents. The user-specified quantity TOL (see Section 5.1.3) to monitor the
local truncation error is taken equal to 10−3. For the time accurate ODE
solution this value was set to 10−6. We observe that for the global errors as
presented in Table 5.2, 5.3 and 5.4, the behavior is as expected.

For the unconditionally positive Euler Backward time integration scheme
the modified Newton (see above) influences the positivity of the solution,
i.e., the number of rejected time steps due to negative species increases
(compare Tables 5.2 and 5.3), from 1 to 31. Rejected time steps due to nega-
tive entries in the solution vector should be redone with smaller time steps,
resulting in a larger number of F evaluations (the number of Jacobian eval-
uations is approximately equal). Thus, as a result of an increasing number
of Newton iterations, the total computational costs increase.

For the BDF2 scheme (compare Tables 5.2 and 5.3), application of mod-
ified Newton strategy, as explained above, gives more satisfying results.
From Table 5.3 it can be concluded that for BDF2 an increasing number of
cheaper Newton iterations is computationally cheaper than factorizing the
Jacobian in every Newton iteration.

With respect to the other higher order time integration schemes (see
Table 5.4), we note the following. ROS2 is the cheapest higher order time
integrator for this Chemical Vapor Deposition process. For the IMEX-RKC
scheme we see that both versions perform equally well. Since there is no
gain in efficiency by using ‘on the fly’ stability conditions for the explicit
part, the more robust fully CFL-protected IMEX-RKC(full) is preferred.

With respect to positivity of the solution during transient simulations
we note the following. Omission of the reacting surface and thermal dif-
fusion in the reaction Jacobian gives very poor Newton convergence. We
also observed that in this case the solution conserves positivity for very
small time steps only, even for Euler Backward. We conclude that for this
Chemical Vapor Deposition problem it is required to use the exact Jacobian,
in which also the derivatives of the reacting surface and thermal diffusion
are included.

From the integration statistics presented in Tables 5.2 - 5.4 it is concluded
that for long time steady state simulations Euler Backward is, in spite of its
first order accuracy, the most efficient time integrator. In van Veldhuizen
et al. (2008b) it is concluded that the unconditional postivity of Euler
Backward is preferred over the conditional higher order methods present
in this section.

The conclusions drawn in van Veldhuizen et al. (2008b) are based on
time accurate numerical simulations from inflow conditions until steady
state. For highly accurate time dependent simulations over a smaller time
frame the integration statistics are different. Again, the Euler Backward
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Table 5.2: Integration statistics for EB and BDF-2, with full Newton solver

Number of EB BDF-2

F 190 757

F′ 94 417

Linesearch 11 0

Newton iters 94 417

Rej. time steps 1 10

Acc. time steps 38 138

CPU Time 6500 30500

Relative error on t = 1.6 s 6.8 · 10−3 2.2 · 10−3

on t = 3.2 s) 7.9 · 10−4 1.4 · 10−4

Table 5.3: Integration statistics for EB and BDF2, with modified Newton.

Number of EB BDF-2

F 720 1786

F′ 84 163

Linesearch 39 33

Newton iters 463 1441

Rej. time steps 31 33

Acc. time steps 88 121

CPU Time 10800 17000

Relative error on t = 1.6 s 6.8 · 10−3 2.2 · 10−3

on t = 3.2 s 7.9 · 10−4 1.4 · 10−4
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Table 5.4: Integration statistics for ROS2, IRKC(fly), where stability for the
explicitly integrated part is tested for diffusion only, and IRKC(full), where
stability conditions are forced for both advection and diffusion, schemes.

Number of ROS2 IRKC(fly) IRKC(full)

F 424 429662 427911

F′ 142 2005 2008

Linesearch 0 50 30

Newton iters 0 17425 17331

Rej. time steps 2 729 728

Acc. time steps 140 1276 1284

CPU Time 8000 20000 19500

Relative error on t = 1.6 s 1.1 · 10−3 1.8 · 10−3

on t = 3.2 s 2.5 · 10−4 8.3 · 10−5

method, with full Newton, is computationally the cheapest. However, the
IMEX-RKC schemes performs much better than the other higher order time
integration schemes. Its computationally cheaper time steps are in this case
paying off compared to the more expensive time steps of BDF2 and ROS2.
The integration statistics are summarized in Tables 5.5 and 5.6.

Table 5.5: Integration statistics over a small, purely transient, time frame
for EB and BDF-2, with full Newton solver

Number of EB BDF-2

F 143 259

F′ 66 148

Linesearch 8 0

Newton iters 66 148

Rej. time steps 1 7

Acc. time steps 31 52

CPU Time 1250 2750



58

Table 5.6: Integration statistics over a small, purely transient, time frame for
ROS2, IRKC(fly), where stability for the explicitly integrated part is tested
for diffusion only, and IRKC(full), where stability conditions are forced for
both advection and diffusion, schemes.

Number of ROS2 IRKC(fly) IRKC(full)

F 350 21140 20500

F′ 139 207 199

Linesearch 0 21 20

Newton iters 0 5319 5163

Rej. time steps 2 68 65

Acc. time steps 137 139 134

CPU Time 3000 2500 2450

For three-dimensional simulations the IMEX-RKC scheme is an attrac-
tive alternative to the unconditionally positive Euler Backward. Despite
its conditional positivity, its advantage over the other ODE methods is its
efficiency which is independent of the number of spatial dimensions. The
dimensions of the linear systems appearing in the IMEX-RKC scheme do not
change when going from two to three spatial dimensions. For all other ODE
methods the dimension of the linear systems to be solved changes when go-
ing up in the number of spatial dimensions. In particular, the linear systems
within fully implicit schemes are expensive to solve for three-dimensional
problems. Iterative linear solvers are indispensable in that case.

The remaining chapters in this thesis will be devoted on the design of the
Euler Backward solver. In particular, attention is paid to the robustness, and
thus positivity, of the solver, and, of course, the reduction of computational
costs.



CHAPTER 6

Solving the Nonlinear
Equations: Inexact Newton

Methods

The huge stiffness of the species equations (2.18) causes that (part of) the
time integration should be done implicitly. For most ODE schemes, except
for the Rosenbrock schemes, one or more systems of nonlinear algebraic
equations have to be solved in each time step. In this chapter a system of
nonlinear algebraic equations is denoted as

F(x) = 0. (6.1)

In equation (6.1) F is assumed to be a continuously differentiable vector
function F : Rn → Rn, with n ≥ 1. A classical algorithm to solve a sys-
tem of nonlinear algebraic equations (6.1) is Newton’s method, which is
presented as Algorithm 1. Newton-based methods have been within the
applied mathematics community the dominating approach to solve non-
linearly implicit PDEs. On the other hand, in the computational physics
and computational fluid dynamics communities the emphasis is more on
Picard-type linearizations, and splitting per equation or coordinate direc-
tion. This latter approach often allows a splitting error to remain in time,
and little attention is paid to the nonlinear residual within a time step.

As remarked in Knoll & Keyes (2004), more recently computational sci-
entists are taking a deeper look at the resulting errors in these splitting
methods and resulting errors. As a result, the computational physics com-
munity is driven towards nonlinear multigrid methods, see, for instance,
Wesseling (1992), and Newton-based methods, see, for instance, Kelley
(1995) and Knoll & Keyes (2004).

59



60

Algorithm 1: Newton’s method

Let x0 be given.
for k = 1, 2, . . . until ‘convergence’ do

Solve F′(xk)sk = −F(xk).
Set xk+1 = xk + sk.

end for

The major strength of the classical Newton method is its local conver-
gence property. If x0 is sufficiently close to a solution x∗, then the Newton
sequence {xn} generated by Algorithm 1 converges superlinearly to x∗. Fur-
ther, under the assumptions that the Jacobian F′(x∗) is nonsingular and F is
Lipschitz continuous at x∗ quadratic convergence is obtained. For a proof
we refer to Ortega & Rheinboldt (2000).

In the classical Newton method there are mainly two difficulties. First,
for large n the computation of the ‘exact’ Jacobian F′(xk) at iteration k can
be expensive. Alternatives considered in literature are, for instance,

• computing the Jacobian F′(xk) numerically by means of finite differ-
ences, see , for instance, Kelley (2003),

• Broyden’s method, which is a rank one update secant method, see,
for instance, Ortega & Rheinboldt (2000), and,

• Jacobian-Free Newton-Krylov methods, in which the linear systems
are solved using Krylov Subspace methods where the Jacobian matrix-
vector product F′(u)v, with u and v arbitrary vectors, is approximated
as

F′(u)v =
F(u + εv) − F(u)

ε
, (6.2)

with ε a small number. A nice survey is found in Knoll & Keyes (2004).

The second difficulty in the classical Newton method is to solve the so-called
Newton equation

F′(xk)sk = −F(xk), (6.3)

in each nonlinear iteration. In practice, when n is usually large, solving (6.3)
exactly can be expensive or even infeasable. Computing an exact solution
of the Newton equation (6.3) may in particular not be justified when the
kth iterate xk is far from a solution x∗. In that case it makes more sense to
compute an approximation of the Newton update sk.

The extension of the classical Newton methods by allowing computed
approximations of the solution of the Newton equation (6.3) are called In-
exact Newton methods. In Section 6.1 this class of Inexact Newton methods
is discussed. Section 6.3 is devoted to global convergence properties of
Newton’s method.
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Under the assumption that a time integration method is positivity con-
serving, it is generally not guaranteed that the nonlinear solutions are pos-
itive. In Section 6.4 a projected Newton method is introduced to overcome
this difficulty. Its properties are discussed in Section 6.4.

6.1 Inexact Newton Methods

Instead of solving the Newton equation

F′(xk)sk = −F(xk), (6.4)

exactly, the Newton step sk in Inexact Newton solvers is approximated by
an iterative linear solver. In our case a preconditioned Krylov Subspace
method is used. In Chapter 7 the linear solvers used are discussed. The
approximated Newton step sk has to satisfy the so-called Inexact Newton
condition

‖F(xk) + F′(xk)sk‖ ≤ ηk‖F(xk)‖, (6.5)

for a certain ‘forcing term’ ηk ∈ [0, 1). In general form, the algorithm is
presented as Algorithm 2. Note that the Inexact Newton condition (6.5)
expresses

1. a certain reduction in the norm of F(xk) + F′(xk)sk, which is the local
linear model of F in a neighborhood of xk, and,

2. a certain (relative) accuracy in solving the Newton equation F′(xk)sk =

F(xk) by means of an iterative linear solver.

Algorithm 2: Inexact Newton

Let x0 be given.
for k = 1, 2, . . . until ‘convergence’ do

Find some ηk ∈ [0, 1) and sk that satisfy

‖F(xk) + F′(xk)sk‖ ≤ ηk‖F(xk)‖.
Set xk+1 = xk + sk.

end for

Of course, the local convergence behavior of the inexact Newton method
depends on the sequence of forcing terms ηk. The intuitive idea that smaller
values of the forcing terms leads to fewer Newton iterations is illustrated
in Dembo et al. (1982). Under the natural assumption that the sequence of
forcing terms is uniformly less than one and that x0 is sufficiently close to
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x∗, Dembo et al. (1982) showed that a sequence of inexact Newton iterates
{xk} converges linearly to x∗. Further, if

lim
k→∞
ηk = 0, (6.6)

then {xk} converges superlinearly to x∗. In the case that F′ is Lipschitz
continuous at x∗ and

ηk = O‖F(xk)‖, (6.7)

then the convergence is quadratically.
However, away from the solution, the function F and its local linear

model may disagree considerably at a step that closely approximates the
Newton step. When choosing ηk too small, this can lead to oversolving
the Newton equation; meaning that imposing an accurate linear solution
to an inaccurate Newton correction may result in a poor Newton update,
and, therefore, little or no progress towards a solution. The latter has been
experienced in, for instance, Shadid et al. (1997) and Tuminaro et al. (2002).
Moreover, for Newton solvers with forced global convergence algorithms,
like line-search (or backtracking), in which additional accuracy in solving
the Newton equation requires additional expense, it may entail pointless
costs. Then, a less accurate approximation of the Newton step is cheaper,
and probably more effective.

6.2 Choosing the forcing term

In the literature several choices for the forcing term have been proposed. In
this section we present the ones proposed by Eisenstat & Walker (1996). In
their paper Eisenstat & Walker (1996) aimed to come up with forcing terms
that achieve desirable fast convergence and tend to avoid oversolving. For
a broader comparison other choices from literature are included. We start
with the first forcing term.

6.2.1 Choice 1

The first choice, taken from Eisenstat & Walker (1996),is the following.
Given the initial forcing term η0 ∈ [0, 1), then choose

ηk =

∣

∣

∣

∣

‖F(xk)‖ − ‖F(xk−1) − F′(xk−1)sk−1‖
∣

∣

∣

∣

‖F(xk−1)‖ , k = 1, 2, . . . . (6.8)

Observe that (6.8) directly reflects the agreement between F and its local
linear model at the previous Newton step. If the initial iterate x0 is suffi-
ciently near a solution x∗, then the sequence {xk} produced by Algorithm 2
and the forcing term as in (6.8), converges super-linearly towards a solu-
tion. As in the classical case of the secant method, it follows that the order
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of convergence equals (1+
√

5)/2; see, for instance, Stoer & Bulirsch (1980),
page 293. The irrational number (1+

√
5)/2 is known as the golden ratio, see

Hertz-Fischler (1998).
Usually the forcing term (6.8) avoids oversolving, but it might happen

that it is chosen too small. As a safeguard we restrict ηk to be no less than a
certain minimal value, which depends on ηk−1 according to

η(1+
√

5)/2
k−1

. (6.9)

Note that this safeguard should only be activated as ηk−1 is relative large.

Therefore we first check whether η(1+
√

5)/2
k−1

is larger than a certain threshold,
and if so, the safeguard becomes active. As was done in Eisenstat & Walker
(1996), the threshold we use is 0.1. It appeared that this threshold value
worked fine in our experiments,and therefore it was not necessary to change
it. To summarize:

Modify ηk ← max{ηk, γη
(1+
√

5)/2
k−1

}whenever γη(1+
√

5)/2
k−1

> 0.1.

6.2.2 Choice 2

Another way to base the forcing term on residual norms is

ηk = γ
‖F(xk)‖2
‖F(xk−1)‖2 , (6.10)

with γ ∈ [0, 1) a parameter. Again, we have the safeguard:

Modify ηk ← max{ηk, γη
2
k−1
}whenever γη2

k−1
> 0.1.

Note that for the choice of (6.10) as forcing term, the order of convergence
of Inexact Newton equals 2, see Eisenstat & Walker (1996). In Kelley (2003),
(6.10) is chosen as forcing term. A brief discussion on the use of this forcing
term can be found in Kelley (2003).

6.2.3 Choice 3

Following Dembo & Steihaug (1983) we put

ηk = min
(

1

k + 2
, ‖F(xk)‖

)

. (6.11)

With forcing terms as in (6.11) the Inexact Newton method converges
quadratically towards a solution x∗. Note that for the first few Newton
iterations, thus for small k, relatively inaccurate approximations of Newton
steps sk are allowed. Although some information on F is incorporated, it
does not reflect the agreement of F and its local linear model. Note as well
that the forcing term (6.11) is scaling dependent.
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6.2.4 Choice 4

Superlinear convergence of the Inexact Newton method is obtained if we
take the forcing term

ηk =
1

2k+1
. (6.12)

Brown & Saad (1990) used this forcing term in their solver package called
NKSOL for solving the classical driven cavity problem for incompressible
fluid flow. For the forcing term (6.12) holds that for the first few New-
ton iterations inaccurate approximations of sk are allowed. However, no
information about F is incorporated.

6.2.5 Choice 5

Another possibility is to set the forcing term to a fixed value for all nonlin-
ear iterations. For instance, ηk = 10−1 gives moderately accurate approx-
imations of the Newton step, whereas ηk = 10−4 demands more accurate
approximations of sk. For this type of forcing terms we have linear conver-
gence towards x∗.

In Section 6.6 these five forcing terms are compared in terms of robust-
ness and efficiency. Further, an overall best, or more overall best forcing
terms are appointed.

6.3 The Globalized Inexact Newton Algorithm

In general, the initial iterate x0, which is mostly the best guess of the solu-
tion x∗ available, is not in a neighborhood of x∗. In that case, the (Inexact)
Newton method diverges. Thus, it is useful to augment the (Inexact) New-
ton method with a sufficient decrease condition on ‖F‖ such that global
convergence can be obtained.

In our work we use the Inexact Newton method globalized by back-
tracking, or linesearch, which can be found in Eisenstat & Walker (1994).
The algorithm is written down as Algorithm 3.

The sufficient decrease condition in the Globalized Inexact Newton
method is formulated as

‖F(xk + sk)‖ ≤ (1 − t(1 − ηk))‖F(xk)‖, (6.13)

with 0 < t < 1. The starting point of the derivation of inequality (6.13) is
the Goldstein-Armijo α-condition

f (xn + dn) ≤ f (xn) + α∇ f (xn)Tdn, (6.14)

where 0 < α < 1, see Dennis & Schnabel (1983). Condition (6.14) is a
sufficient condition on f to let dn be a sufficient decrease direction, see
Dennis & Schnabel (1983).



6.3. The Globalized Inexact Newton Algorithm 65

Proposition 6.1. Let f = 1/2‖F‖2
2
. If inequalities (6.5) and (6.14) hold, then

inequality (6.13) also holds with t = α.

Proof. Substituting f = 1/2‖F‖2
2

into the Goldstein-Armijo α-condition (6.14)
gives

‖F(xk + sk)‖22 ≤ ‖F(xk)‖22 + 2αF(xk)TF′(xk)sk. (6.15)

The last term on the right-hand side of inequality (6.15) can be bounded as

F(xk)TF′(xk)sk = F(xk)T [F′(xk)sk + F(xk) − F(xk)] (6.16)

= −‖F(xk)‖22 + F(xk)T [F′(xk)sk + F(xk)] (6.17)

≤ −‖F(xk)‖22 + [F′(xk)sk + F(xk)]T [F′(xk)sk + F(xk)](6.18)

= −‖F(xk)‖22 + ‖F′(xk)sk + F(xk)‖22. (6.19)

Using the inexact Newton condition (6.5), inequality (6.19) yields

F(xk)TF′(xk)sk ≤ −(1 − ηk)‖F(xk)‖22. (6.20)

To summarize, inequality (6.15) is rewritten as

‖F(xk + sk)‖22 ≤ (1 − 2α(1 − ηk))‖F(xk)‖22. (6.21)

Note that the left-hand side of inequality (6.21) is always positive. Inequality
(6.21) is only valid when the right-hand side of (6.21) is positive, which is
true if and only if

2α(1 − ηk) ≤ 1. (6.22)

For |x| ≤ 1 holds the inequality
√

1 − x ≤ 1 − x/2, (6.23)

such that inequality (6.21) reduces to

‖F(xk + sk)‖ ≤ (1 − α(1 − ηk))‖F(xk)‖. (6.24)

Indeed, inequality (6.13) holds with t = α. �

In implementing Algorithm 3 we choose each initial forcing term, where
for the Choices 1 and 2 we select η0 = 1/2, and then determine an initial
approximated Newton step sk by solving the Newton equation using an
iterative linear solver. In the while-loop, each λwas chosen in the following
way. In the case that after two reductions by halving the Newton step does
not lead to sufficient decrease, then a quadratic polynomial model of

φ(λ) = ‖F(xk + λsk)‖22, (6.25)

is build, which is based on the three most recent values of λ. The next λ
is the minimizer of (6.25), subject to the safeguard that the reduction is at
least one half and at most a tenth. Comprehensive descriptions of how to
build this quadratic polynomial model can be found in Kelley (2003) and
van Veldhuizen et al. (2007c).
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Algorithm 3: Globalized Inexact Newton

1: Let x0, ηmax ∈ [0, 1), t ∈ (0, 1) and 0 < λmin < λmax < 1 be given.
2: for k = 1, 2, . . . until ‘convergence’ do

3: Find some ηk ∈ [0, ηmax] and sk that satisfy
4:

‖F(xk) + F′(xk)sk‖ ≤ ηk‖F(xk)‖.
5: while ‖F(xk + sk)‖ > (1 − t(1 − ηk))‖F(xk)‖ do

6: Choose λ ∈ [λmin, λmax]
7: Set sk ← λsk and ηk ← 1 − λ(1 − ηk)
8: end while

9: Set xk+1 = xk + sk.
10: end for

6.4 Globalized Projected Newton Methods

Preservation of non-negativity of species concentrations in the solution of
the species equations (2.18) is crucial to avoid blow up of the solution. Sup-
pose that the species equations (2.18) are discretized, in space and time,
such that positivity is ensured. Thus, for example, spatial discretization by
means of the hybrid Finite Volume scheme (3.5) - (3.6), and in time by Euler
Backward. In Chapter 3, 4 and 5 we have seen that the exact solution of the
resulting fully discrete system is positive. However, solving the resulting
implicit relation by means of a Globalized (Inexact) Newton Method, see
Sections 6.1 and 6.3, does not guarantee positivity of the solution vector
of species concentrations. Moreover, numerical experiments revealed that
certain preconditioned Krylov methods return repeatedly nonlinear solu-
tions containing negative species concentrations. Thus, in practice, even for
the unconditional positive Euler Backward method, (repetitions of) nega-
tive species concentrations can be observed. For this lacking property of
the (Globalized) (Inexact) Newton method we present an adaptation to the
algorithm such that it preserves positivity.

The idea is to generate sequences {xn} in the positive orthant which
converge to a solution x∗ of the nonlinear problem F(x) = 0, where it is
assumed that such a positive solution exists. The fact that {xn} is in the
positive orthant, gives that the solution x∗ contains positive entries. These
so-called Projected Newton methods originate from nonlinear optimization
problems with constraints, and were first proposed by Bertsekas (1982). To
the author’s knowledge, these kind of ideas have not been applied into the
field of PDEs.

Application of Projected Newton in the field of PDEs can be done as
follows. Suppose we have computed a Newton direction sk and that the new
solution vector xk+sk contains negative entries. In Figure 6.1 this situation is
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illustrated for a two-dimensional case. Then, in order to maintain positivity
of these entries we project the negative entries to zero and check whether
this projected solution is still in the steepest descent direction. To be more
specific, we test whether the projected solution suffices the augmented
sufficient decrease condition, i.e.,

‖F(P(xk + sk))‖ > (1 − t(1 − ηk))‖F(xk)‖, (6.26)

where P is the projection on the positive orthant and α a typical small
parameter. The ith entry of P(x) is given as

Pi(x) =

{

xi if xi ≥ 0
0 if xi < 0

. (6.27)

When condition (6.26) is not satisfied, the search direction sk and ηk will be
adjusted by means of a linesearch procedure as described in Section 6.3. The
resulting algorithm, called Globalized Inexact Projected Newton, is given
as Algorithm 4.

Algorithm 4: Globalized Inexact Projected Newton

1: Let x0, ηmax ∈ [0, 1), t ∈ (0, 1) and 0 < λmin < λmax < 1 be given.
2: for k = 1, 2, . . . until ‘convergence’ do

3: Find some ηk ∈ [0, ηmax] and sk that satisfy
4: ‖F(xk) + F′(xk)sk‖ ≤ ηk‖F(xk)‖.
5: while ‖F(P(xk + sk))‖ > (1 − t(1 − ηk))‖F(xk)‖ do

6: Choose λ ∈ [λmin, λmax]
7: Set sk ← λsk and ηk ← 1 − λ(1 − ηk)
8: If such λ cannot be found, terminate with failure.
9: end while

10: Set xk+1 = P(xk + sk).
11: end for

As in the case of linesearch, or backtracking methods, we cannot prove
that inequality (6.26) can always be satisfied. Neither can we derive condi-
tions for which it surely does not hold. However, we can plead on the fact
that it is a useful extension.

The unconditional positivity of Euler Backward ensures that a non-
negative solution exists. If we start with a positive initial guess in a neigh-
borhood of the positive solution, then we may expect that the algorithm
converges towards this solution. However, due to the use of approximate
Jacobians and/or preconditioned Krylov solvers the solution is most likely
approached from a non-positive direction. By projecting the negative en-
tries to zero, it is still likely that we remain in a neighborhood of the solution.

It is a straightforward exercise to prove that when the augmented suffi-
cient decrease condition (6.26) is satisfied and Algorithm 4 does not break
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Figure 6.1: Illustration of the Projected Newton Method for a nonlinear
problem of 2 variables, where x = [x1, x2]T and s the Newton search direc-
tion.

down, it converges to a solution. The proof is an analogue of the proof of
Theorem 3.4 in Eisenstat & Walker (1994), except that the sufficient decrease
condition has to be replaced by the augmented sufficient decrease condition
(6.26).

6.5 Convergence Criteria

Convergence of the various Newton method’s presented in this section is
declared when

‖F(xk)‖ < TOLrel‖F(x0)‖ + TOLabs, (6.28)

where TOLrel and TOLabs are, respectively, the relative termination tolerance
and the absolute termination tolerance of the Newton process. Failure, or
divergence, is declared when

• k reached the maximum number of Newton iterations kmax,

• the iterative linear solver does not succeed in finding a suitable New-
ton step within the maximum number of allowed linear iterations, or,
if applicable,

• the linesearch algorithm is not able to find a suitable Newton step
after 10 iterations. (Taking more linesearch iterations into account
would not make sense, because then the Newton update sk would be
too small to obtain convergence in the next iterations)



6.6. Numerical Experiments 69

In the case that Newton’s method diverges, then the common way to over-
come divergence is to decrease the time-step size. In our code, as in many
other codes, we halve the time step size and repeat Newton’s process.

6.6 Numerical Experiments

In this section we report on numerical experiments with the forcing term
choices outlined in Section 6.2. For Choice 1 and 2 the safeguards as pre-
sented in Section 6.2.1 and 6.2.2 are used, whereas for the other forcing term
choices there are no safeguards. Numerical experiments are done for

1. the two-dimensional benchmark problem of Kleijn (2000) on spatial
grids varying from 35 × 32 to 70 × 82 grid cells, and,

2. the similar chemistry problem as above on a three-dimensional com-
putational grid consisting of 35 × 32 × 35 grid cells.

Since the convergence of the Bi-CGSTAB algorithm depends heavily
on the effectivity of the preconditioner, numerical experiments have been
carried out with both effective and less effective preconditioners. Time
integration is done by the Euler Backward scheme. In all simulations it is
required that the species mass fractions remain positive.

The emphasis of the numerical experiments in this section is on the be-
havior of the various forcing terms. The numerical tests where the emphasis
is on the Projected Newton method of Section 6.4 are presented in Chapter
8. If the computational costs for the Globalized Inexact Projected Newton
method are favorable over the Globalized Inexact Newton method, then we
use them, and vice versa.

In Table 6.1 the geometric averages1 of the number of Newton iter-
ations, function evaluations and Bi-CGSTAB iterations are listed for the
forcing terms discussed in Section 6.2. These geometric averages are taken
over simulations on various grid sizes and preconditioners. Conclusions
drawn from Table 6.1 are discussed below. In Table 6.2 the results for the
simulations with the most effective preconditioner only are summarized.
These results are broken out in a separate table because in practice only the
most effective preconditioner(s) are used.

The most expensive operations in these type of simulations are the
construction of the Jacobian and to find the solution of the Newton equation.
On the other hand, it is also important that the ‘correct’ solution of the
nonlinear system of algebraic equations is found.

1The geometric mean of a data set [a1, a2, . . . , an] is given by

( n
∏

i=1

ai

)1/n

= n
√

a1 · a2 · · · · · an
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Comparing the results presented in Tables 6.1 and 6.2 it is seen that with
respect to the number of Bi-CGSTAB iterations the forcing term

ηk =

∣

∣

∣

∣

‖F(xk)‖ − ‖F(xk−1) − F′(xk−1)sk−1‖
∣

∣

∣

∣

‖F(xk−1)‖ , (6.29)

is clearly the best over the others. With respect to the number of Newton
iterations it is observed that Choices 3,4 and 5 are much better than the other
two. Certainly, it is expected that fixing the forcing term, as in Choice 5, is
generally not an optimal strategy. In particular, the computational costs for
three-dimensional simulations with forcing term 5 are high.

As remarked above, also the correctness of the nonlinear solutions is
important. Various test with relatively weak preconditioners have re-
vealed that most forcing terms cause convergence towards ‘wrong’ solu-
tions. However, Choice 1 for the forcing term was the only one capable of
finding the correct solution.

Choice 2 illustrates that more aggressive choices for the forcing term
may decrease the number of Newton iterations. However, these ‘aggres-
sive’ forcing terms can lead to oversolving, more linear iterations and less
robustness. Less aggressive forcing terms, such as

ηk =

∣

∣

∣

∣

‖F(xk)‖ − ‖F(xk−1) − F′(xk−1)sk−1‖
∣

∣

∣

∣

‖F(xk−1)‖ , (6.30)

might need less linear iterations, improve robustness and lead to an in-
creasing number of Newton iterations. However, experiments with weaker
preconditioners have shown that less aggressive forcing terms return cor-
rect solutions, where aggressive forcing terms lack that property.

Finally, Choice 4 for the forcing term, e.g.,

ηk =
1

2k+1
, (6.31)

gives, unexpectedly, also very good results. It has a drawback that it is
not based on the agreement of F(xk) and its local linear model. In the case
that the number of Newton iterations increases to obtain convergence, the
required accuracy of the solution of Newton’s equation might become too
high to obtain fast Bi-CGSTAB convergence. It has to be remarked that
although good results are found for the succesful runs with forcing term
(6.12), there were also fatal failures due to the above described drawback.

The forcing term of choice would be forcing term (6.8), because it re-
turned always a correct solution and the least number of linear iterations is
needed to obtain the time-accurate solution. Since the computational costs
are mainly determined by the costs of computing, or approaching, the so-
lution of the Newton equation in each Newton iteration, also forcing term
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(6.10) is a good choice. Combined with the most powerful preconditioners
it gave good results, whereas combining it with less effective precondition-
ers occasionally no solution is found at all. Thus, to summarize, the two
‘best’ forcing terms are Choice 1 (6.8) and Choice 2 (6.10). Although their
numerical experiments dealt with other physical problems, and problems
out of the PDE world, Eisenstat & Walker (1996) concluded as well that
these forcing terms are overall the best.

Table 6.1: Summary of the number of BI-CGSTAB and Newton iterations
and number of function evaluations over all simulations with various pre-
conditioners.

Choice ηk F Newton Bi-CGSTAB

1 ηk =

∣

∣

∣

∣

‖F(xk)‖−‖F(xk−1)−F′(xk−1)sk−1‖
∣

∣

∣

∣

‖F(xk−1)‖ 352.4 201.4 3120.3

2 ηk = γ‖F(xk)‖2/‖F(xk−1)‖2, γ = 0.5 320.8 176.8 3480.2

3 ηk = min (1/k+2, ‖F(xk)‖) 303.4 161.5 6953.2

4 ηk = 1/2k+1 264.3 147.1 3809.6

5 ηk = 10−1 311.0 172.2 3721.9

5 ηk = 10−4 270.5 127.0 6395.7

Table 6.2: Summary of the number of BI-CGSTAB and Newton iterations
and number of function evaluations over the simulations with effective
preconditioner only.

Choice ηk F Newton Bi-CGSTAB

1 ηk =

∣

∣

∣

∣

‖F(xk)‖−‖F(xk−1)−F′(xk−1)sk−1‖
∣

∣

∣

∣

‖F(xk−1)‖ 339.0 193.0 1237.1

2 ηk = γ‖F(xk)‖2/‖F(xk−1)‖2, γ = 0.5 327.8 175.8 1428.6

3 ηk = min
(

1
k+2 , ‖F(xk)‖

)

258.8 137.1 2276.4

4 ηk = 1/2k+1 259.1 143.2 1532.0

5 ηk = 10−1 333.5 176.5 1562.6

5 ηk = 10−4 231.8 122.5 2880.0





CHAPTER 7

Preconditioned Krylov Methods

In Chapter 6 Inexact Newton methods, and extensions of such methods,
have been discussed. Within these nonlinear solvers the Newton equation
(6.3) is assumed to be solved inexaclty, i.e., the Newton step is approxi-
mated in some way. In Chapter 6 it has not been specified how such an
approximation is obtained.

The Jacobian matrix in the Newton equation (6.3) is large and sparse. For
such linear systems direct solution methods, such as the LU factorization,
can be impractical, because the lower triangular matrix L and the upper
triangular matrix U can be dense. Nowadays, with the computational
power available for general two-dimensional problems the LU factorization
of a sparse matrix is feasable. However, for three-dimensional problems,
iterative solution methods are in general much more efficient.

For the problems considered in this study the number of unknowns
depends on the number of spatial dimensions, the number of grid points in
each spatial direction and the number of species in the gas mixture. In that
case, considerable improvements are found in the two-dimensional case on
the total workload to find the solution of the Newton equation when using
iterative solution methods over direct solution methods. The computational
effort to factorize the Jacobian matrix in the two-dimensional case is mainly
due to the fill-in in the zeros between the most outer subdiagonal (and
superdiagonal) and the main diagonal. The distance of these diagonals
depends besides the number of mesh points also on the number of species.

For these type of computations the need for a computationally efficient
linear solver is essential. Suitable candidates to solve such large and sparse
linear systems are Krylov Subspace methods, see for instance Saad (2003).
In Section 7.1 a comparison is made for the two major Krylov methods for
general linear systems. For symmetric positive definite linear systems the
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best iterative method is the conjugate gradient method, see for instance
Saad (2003). Due to the partial derivatives of the reaction terms present in
the Jacobian matrix one has to deal with unsymmetric linear systems.

In Section 7.2 the condition of the Newton equation and the conse-
quences for the convergence behavior of the Krylov methods are studied.
Section 7.3 is devoted to the different orderings of the unknowns and the
consequence for the nonzero structures of the Jacobian matrix. To acclerate
the convergence speed of Krylov Subspace methods effective precondition-
ers are crucial. In Section 7.4 various preconditioners are presented.

The construction of an effective preconditioner is a combination of art
and science. In this case the science part represents two important observa-
tions. The ordering of the unknowns should be in such a way that solving
equations involving the preconditioner can be done efficiently. Secondly,
the computational algorithms and their implementation, should be optimal.
This chapter is concluded by some numerical results.

7.1 Krylov Solver: Bi-CGSTAB versus GMRES

Generally speaking, for non-symmetric linear systems there are two choices
for an iterative Krylov solver, i.e.,

• the class of GMRES-type methods and all its variations, see, for in-
stance, Saad (2003), and,

• the class of Bi-CGSTAB methods and its variations, see, van der Vorst
(1992).

For a description and discussion of these methods we refer to a standard
text like that of Saad (2003). Most recently, Sonneveld & van Gijzen (2007)
introduced the family of IDR(s) methods, which has like Bi-CGSTAB modest
memory requirements. In their work, Sonneveld & van Gijzen (2007) ob-
served that the IDR(s) method performs as well as or better than Bi-CGSTAB.
However, in this study this family of methods has not been considered.

In Faber & Manteuffel (1984) it has been shown that it is impossible to
obtain a Krylov method for general matrices which is optimal and has short
recurrences. In this case, optimality is related to the minimization of the
linear residual in a certain norm.

A GMRES-like iterative method has long recurrences and minimizes the
linear residual in a certain norm. Per GMRES iteration one matrix-vector
product has to be computed, but on the other hand a considerable number
of vectors have to be in memory. To be more precise, if k iterations are
needed to find an approximation of the solution, then k vectors have to be
in memory. Further, when the number of iterations increases, also the work
on vector updates grows. Usually, a restarted version of GMRES is used
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to reduce the amount of vectors in memory. When restarting the GMRES
algorithm after k̃ iterations, then at most k̃ vectors have to be in memory.
A well known difficulty with restarted GMRES is that it can stagnate when
the matrix is not positive definite. Further details are found in Saad (2003).

Bi-CGSTAB-type methods are not minimizing the residual, but have
short recurrences. Each Bi-CGSTAB iteration needs two matrix-vector prod-
ucts, and needs seven vectors in memory.

For the applications considered in this study it is important to find the
nonlinear solutions arriving from the implicit time integration efficiently.
Finding those nonlinear solutions are done by means of an Inexact Newton
method, in which the solution of the Newton equation is approximated
up to a certain accuracy. The speed of convergence for both the GMRES
and Bi-CGSTAB Krylov solvers is mainly determined by the strength of a
preconditioner. Since neither of the two classes gives better convergence
results for the type of problems considered the Bi-CGSTAB methods are
selected. From the point of view of memory usage the Bi-CGSTAB method
is favorable over the GMRES method as well, i.e., the number of vectors
in memory are seven. Secondly, in this study the matrices are structured,
and thus, the matrix-vector product is in that case relatively cheap. This
also supports our choice of Bi-CGSTAB as the iterative linear solver in our
codes.

7.2 Condition of the Newton Equation

The forward and backward reaction rate constants in the reaction terms
of the species equations (2.18) differ orders of magnitude from each other,
and from the advection and diffusion terms. Thus, the partial derivatives
of the advection, diffusion and reaction terms differ orders of magnitude
from each other as well. These partial derivatives are, multiplied by the
time step size τ, the entries of the Jacobian matrix, such that the individual
entries within the Jacobian matrix differ orders of magnitude from each
other. Consequently, a large spread in the eigenvalue distribution of the
Jacobian might occur.

Definition 7.1. The condition number for matrix inversion with respect to a
matrix norm ‖·‖ of a square matrix A is defined by

κ(A) = ‖A‖ · ‖A−1‖ (7.1)

if A is non-singular; and κ(A) = +∞ if A is singular.

Based upon the reasoning above and the fact that the spectral radius
ρ(A) ≤ ‖A‖, the condition number of the Jacobian matrix can be very large
too. When integrating the advection, diffusion and reaction terms implicitly,
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the Jacobian matrix JF is of the following general form

JF = cI − τ(A +D + R), (7.2)

where

• c ∈ R is a scalar,

• A is the discretized advection operator,

• D is the discretized diffusion operator,

• R is the discretized and linearized reaction operator, and,

• τ the time step size.

From relation (7.2) it follows that the magnitude of the entries in the Jacobian
matrix also depends on the time step size τ. For small time step sizes the
condition number is orders of magnitude smaller than for relatively larger
time step sizes.

For the two-dimensional benchmark problem of Kleijn (2000), see Chap-
ter 8 as well, the estimated condition number for each linear system to be
solved within the time accurate simulations has been estimated. The LA-
PACK package is used to compute these estimations, see Andersen et al.
(1995). The Euler Backward time integration method has been used, such
that the time step size remains relatively large. Further, a projected New-
ton method has been used to maintain positive approximated solutions. If
more than one Newton equation per time step has to be solved, then the
average of these condition numbers is shown. As a function of real time
in seconds, a typical order of magnitude of the condition number of the
Jacobian is shown in Figure 7.1.

The simulation starts with a small time step size, which drops the condi-
tion number considerably. Between t = 10−5 s and t = 10−4 s the condition
number increases as fast as the time step size increases. In the transition
period between t = 10−4 s and t = 1 s, the increasing condition number is a
combination of increasing the time step size and the partial derivatives of
the chemistry terms which are increasing in order of magnitude.

With an average inflow velocity of 0.1 m/s, and a distance of 0.1 m to
be crossed by the gas mixture to enter the reaction zone, it takes about less
than 1 s for the gas mixture to start reacting. In Figure 7.1 it can be seen that
around t = 1 s the condition number is still growing up to O(1011).

It is well known that the convergence speed of a Krylov method depends
on the condition number. For the most prominent Krylov method, the
Conjugate Gradient method, see for instance Saad (2003), it has been derived
that

‖x − xk‖A ≤ 2
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K(A) − 1
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k

‖x − x0‖A, (7.3)
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where ‖ · ‖A is the norm

‖y‖A =
√

yTAy, (7.4)

for a symmetric positive definite matrix A. Inequality (7.3) implies that for
matrices A with a large condition number, the convergence towards the
solution is slow.

For the GMRES method similar results are derived. If A is a symmetric
positive definite matrix, then

‖rk‖ ≤
(

κ2(A) − 1

κ2(A)

)k/2

‖r0‖, (7.5)

for a sequence xk generated by GMRES, and rk = b − Axk. For positive
definite matrices A it can be derived that

‖rk‖ ≤
(

1 − λmin(AT + A)

λmax(AT + A

)k/2

‖r0‖. (7.6)

For general matrices A, which are assumed to be diagonalizable, i.e., A =
XΛX−1, where Λ is the diagonal matrix of eigenvalues, it holds that

‖rk‖ ≤ κ2(X)

(

min
p∈Pk

max
i=1,...,m

|p(λi)|
)

‖r0‖, (7.7)

where Pk is the set of polynomials p of degree k with p(0) = 1, m is the
dimension of A and λi the i-th eigenvalue of A. Roughly speaking, expres-
sions (7.5) - (7.7) say that fast convergence is obtained when the eigenvalues
of A are clustered away from the origin. However, due to the stiff chemistry
terms we always have a few eigenvalues that are very large in absolute
value, and thus slow GMRES convergence will be obtained.

For the class of Bi-CGSTAB methods similar relations will, most likely,
hold, but no explicit expressions are available. To conclude, the linear sys-
tems in this study require effective preconditioners to decrease the condition
number of the preconditioned system, and thus the number of linear itera-
tions needed to converge towards the solution. This issue will be covered
in Section 7.4.

7.3 Ordering of Unknowns

Essential for the performance of the direct linear solvers and iterative linear
solver combined with an incomplete factorization type preconditioners is
the ordering of unknowns. For the reacting flow problems studied here, the
number of unknowns is equal to N · n, where N is the number of species in
the gas-mixture and n the total number of gridpoints resulting from either
a two-dimensional or three-dimensional spatial discretization.
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Figure 7.1: Condition-number of the Jacobian as function of time (in sec-
onds)

Since the computational domain is usually k-dimensional rectangular
parallelepiped, with k = 2, 3, and the computational grid is structured, the
ordering of the n unknowns for a gas mixture of one species is straighfor-
ward. For a two-dimensional rectangularly shaped computational grid, the
Jacobian matrix containing the partial derivatives of the discretized advec-
tion, diffusion and reaction operators has a nonzero pattern as presented in
Figure 7.2. This ordering is called a natural ordering.

Following the description above, one gets for more than one species a
repetition of the nonzero pattern illustrated in Figure 7.2 along the diagonal
blocks. The partial derivatives of the reaction terms in equation (2.18) with
respect to the remaining (N - 1) species appear as extra sub- or super-
diagonals. For a two-dimensional computational mesh with n grid points
the bandwidth of the Jacobian matrix is then (N − 1)n. The nonzero pattern
of the Jacobian matrix for the natural ordering is illustrated in Figure 7.3.

The bandwidth can be decreased considerably by ordering the unknown
species mass fractions per grid point. For a two-dimensional computational
grid with nr grid points in radial direction and nz grid points in axial
direction, the bandwidth of the Jabobian matrix equals nr ·N. Remark that
in this case we label the unknowns first in radial direction and thereafter in
axial direction. The corresponding nonzero pattern of the Jacobian matrix
is shown in Figure 7.4.
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Figure 7.2: Nonzero pattern of the Jacobian matrix for a 5 × 3 grid

Figure 7.3: Nonzero pattern of the Jacobian-matrix for s = 6 and the un-
knowns ordered in a natural way.
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Figure 7.4: Nonzero pattern of the Jacobian-matrix for s = 6 for the per grid
point ordering.
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In van Veldhuizen et al. (2008b) an LU factorization of the Jacobian
matrix is used, instead of an iterative linear solver, to find the solution
of the Newton equation. Obviously, due to the amount of fill-in in the
factorization of the sparse Jacobian matrix, the natural ordering is ruled
out. However, the considerably much smaller bandwidth of the Jacobian
matrix for the per grid point ordering reduces the amount of fill-in. Hence,
the LU factorization is computationally feasable. Numerical results are
found in Chapter 5 of this thesis and in van Veldhuizen et al. (2008b).

7.4 Preconditioners

As remarked in Section 7.1 the computational efficiency of the Krylov solver
is for a great deal determined by the effectivity of the preconditioner. In
this section we present two incomplete factorization based preconditioners,
and two block diagonal based preconditioners.

7.4.1 Incomplete LU Factorization Preconditioners

For regularly structured computational grids, like present in this study,
the Jacobian matrix is regularly structured as well. This property can be
exploited to formulate incomplete LU factorization preconditioners in a
simple way. In standard texts like for instance Saad (2003) and Barret
et al. (1994), this has been illustrated for the inhomogenuous steady state
advection-diffusion equation on a rectanglar domain. Spatial discretization
is done by central Finite Volumes, where of course, it is assumed that
this discretization is stable. The corresponding discretization matrix has a
nonzero structure as in Figure 7.2.

These algorithms are easily extended for the species equations (2.18)
with more than one species. The extra nonzero sub- and superdiagonals
should be treated in the same way as the off-diagonals for the advection-
diffusion case described above. For both ordering discussed in Section 7.3
with corresponding nonzero structures as in Figures 7.3 and 7.4, this exten-
sion is straightforward.

Basic iterative methods like Jacobi or Gauss-Seidel converge more quickly
if the diagonal entry is relative large to the off-diagonals in its row or col-
umn. Techniques like block iterative methods can benefit if the entries in the
diagonal blocks are large. For preconditioning techniques it is intuitively
evident that large diagonals should be beneficial, see Duff & Koster (1999).
Comparing both orderings, it is seen that for the per grid point ordering,
the partial derivatives are clustered in the diagonal blocks, see Figure 7.4.
Numerical experiments reveal that this ordering enhances the convergence
speed of the iterative linear solver. The results are presented in Section 7.5.
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Block Incomplete Factorization

For both orderings there is a natural block structure in the Jacobian matrix.
For the natural ordering, see Figure 7.3, a block structure with blocks of
dimension n, with n the number of grid points, over the species is present.
Building an incomplete factorization on block level for this nonzero struc-
ture converts the diagonal blocks in the strictly lower triangular part of
the nonzero structure into dense blocks. For fine two-dimensional and
three-dimensional meshes, and a large number of reactive species in the
gas mixture, it is impossible to store the strictly lower triangular part in
computer memory.

Building an incomplete LU factorization on block level for the per grid
point ordering appears to be efficient. In this section it will be illustrated for
a reactangular computational grid on which the species equations (2.18),
in cylindrical coordinates, are discretized by means of the hybrid Finite
Volume scheme of Chapter 3.

Denote nr as the number of grid points in radial direction and nz the
number of grid points in axial direction, such that the total number of grid
points is n = nr · nz. Ordering the unknown species mass fractions per
grid point generates a Jacobian matrix with a nonzero structure consisting
of blocks with a dimension equal to the number of species N. The blocks
on the diagonal Aii, i = 1, . . . , n are not sparse. The other nonzero blocks
Ai−1,i,Ai,i−1,Ai−nr,i and Ai,i−nr are diagonal (sub)matrices, see Figure 7.4.

The Jacobian matrix can be split into three matrices, namely,

1. a matrix D, containing all blocks Aii on the main diagonal,

2. the strictly upper part U, containing the blocks Ai−1,i and Ai−nr,i, and,

3. the strictly lower part L, containing the blocks Ai,i−1 and Ai,i−nr.

The block incomplete LU factorization preconditioner is then written as

M = (D + L)D−1(D +U), (7.8)

where D is the block diagonal matrix containing the block pivots gener-
ated. Algorithm 5 described how this preconditioner is constructed. Since
the upper and lower triangle parts of the matrix remain unchanged, only
storage space for D is needed.

In the preconditioned Bi-CGSTAB algorithm the so-called precondi-
tioned linear systems

Mx = b, (7.9)

with M defined as in (7.8), have to be solved. In the computer code the
following equivalent formulation has been implemented:

1. Solve z from (D + L)z = b, and,
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Algorithm 5: Block ILU

Put Dii = Aii for all i = 1, . . . , n
for i = 2, . . . , n do

if mod (i, nr) , 0 then

Di+1,i+1 = Di+1,i+1 − Ai+1,iD
−1
ii

Ai,i+1

end if

if i + nr ≤ N · n then

Di+nr,i+nr = Di+nr,i+nr − Ai+nr,iD
−1
ii

Ai,i+nr

end if

end for

2. Solve x from (I +D−1U)x = z.

Solving Mx = b using this formulation is outlined in Algorithm 6.

Algorithm 6: Preconditioner solve of a system Mx = b, with M =

(D + L)D−1(D +U)

for i = 1, . . . , n do
Solve Diizi = bi −

∑

j<i Li jz j

end for

for i = n, . . . , 1 do

Solve Diiy =
∑

j>i Ui jx j

Put xi = zi − y
end for

With respect to solving systems

Diiy =
∑

j>i

Ui jx j, (7.10)

and
Diizi = bi −

∑

j<i

Li jz j, (7.11)

as formulated in Algorithm 6, is done by building an LU factorization of
Dii. Since the dimension of Dii equals the number of species, and is small
with respect to the number of grid points, this is a cheap operation.

For the right multiplication of D−1
ii

and the diagonal matrix Ai,i+1, as
found in Algorithm 5, we proceed as follows. The inverse of Dii is computed
exactly using the Gauss-Jordan decomposition, see for instance Strang
(2003). The resulting inverse matrix is then multiplied by the diagonal
matrix Ai,i+1. To solve the systems

Diiy =
∑

j>i

Ui jx j, (7.12)



84

and
Diizi = bi −

∑

j<i

Li jz j, (7.13)

as formulated in Algorithm 6, the Gauss-Jordan factorization of Dii can be
re-used.

Another approach to compute D−1
ii

Ai,i+1 is to compute the LU factoriza-
tion of Dii and subsequently solve N linear systems. In terms of floating
point operations, or shorter flops, this approach costs 2/3N3 +N ·N2 flops.
The approach using the Gauss-Jordan decomposition needs N3 flops to
compute the exact inverse, and N2 for the multiplication with the diagonal
matrix. Based on the amount of flops we use the first approach, i.e., the
Gaus-Jordan decomposition.

7.4.2 Block Diagonal Preconditioners

For the per grid point ordering of unknowns the nonzero pattern of the
Jacobian matrix is as in Figure 7.4. As an approximation of the Jacobian
matrix one could use the block diagonal matrix, which is easily obtained
by omitting the off block diagonal elements. The resultant approximate
Jacobian is easily invertable, because it consists of small, easily factorizable
subsystems on the diagonal blocks.

Lumping

For the per grid point ordering another approximation of the Jacobian can
be obtained, whose nonzero structure resembles the nonzero structure of
the block diagonal preconditioner. This can be achieved by ‘lumping’ the
Jacobian matrix. Note that it important to lump the same species. Thus,
in the case of Figure 7.4 the four off-block diagonals are added to the main
diagonal.

From a mathematical point of view this is a valid approximation of the
Jacobian matrix as well. The off-block diagonal elements represent the con-
tributions of the discretized advection-diffusion operator of the neighboring
points of a certain grid point C in the computational grid, see Figure 3.1.
Since these approximations are mostly second order accurate, see Chapter
3, such a contribution of a neighbor point of grid point C equal to the value
of the solution in grid point C up to a first order truncation error. Thus, the
contribution of this neighbor can be replaced by this first order approxima-
tion. Hence, a second order accurate approximation of the Jacobian matrix
has been constructed.

This mass lumping approach can also be applied to the Jacobian matrix
with the unknowns ordered in the natural ordering, see Figures 7.3 and 7.5.
In that case, the diagonals marked by circles in Figure 7.5 should be added
to the main diagonal. When constructing the resulting lumped matrix, wich
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us a diagonal matrix (N-1) superdiagonals and (N-1) subdiagonals, the LU
factors have the same nonzero pattern as the lumped matrix. However,
the implementation for this ordering is more difficult than for the per grid
point ordering.

7.4.3 Comparison of Costs: Flops

To indicate the amount of work for one of the above preconditioners, we
present for each of them the number of floating point operations (flops)
needed to build the preconditioner P, and the number of flops to solve
Px = b. Note that per Newton iteration the preconditioner is built once,
and the Px = b is solved twice in each Bi-CGSTAB iteration. From Table
7.1 it can be concluded that the incomplete LU-factorization, the lumped
Jacobian and the block diagonal are, in terms of flops, the cheapest to build,
i.e., the number of flops scales linearly and n and cubically in N. The
most expensive preconditioner to build is the blocked version of ILU. Thus,
the extra fill-in in this preconditioner expresses itself in, of course, extra
computational costs.

Table 7.1: Number of floating point operations to build the preconditioner
P and to solve Px = b. The total number of grid points is denoted as n and
N denotes the number of species.

Building P Solving Px = b

ILU(0) 8nN3 2n(N2 + 4N)
Lumped Jacobian 2/3N3n 2N2n

Block ILU 2n(N3 + 3N2) 6N2n
Block diagonal 2/3N3n 2N2n

The extra fill-in for block ILU results also in extra computational costs
for solving Px = b. The cheapest preconditioned systems to solve, in terms
of flops, are those belonging to the lumped Jacobian and the block diagonal.

7.5 Numerical Results

In Sections 7.3 and 7.4 the influence of the ordering of unknowns came
up for discussion. In Section 7.4.1, in particular, it is stated that linear
systems with relatively large diagonal elements, compared the off-diagonal
elements, converge quicker towards the solution. Further, it is stated that
intuitively also holds for the preconditioners.

In Table 7.2 the results of simulations with the incomplete LU factoriza-
tion, which is discussed in Section 7.4.1, as preconditioner. As test problem
the benchmark problem of Kleijn (2000) is used, of which further details are
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Figure 7.5: Nonzero pattern of the lumped approximations to the Jacobian
matrix, where the unknowns are ordered according to the natural ordering.
The super- and sub-diagonals marked by circles should be added to the
main diagonal.
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found in Chapter 8. As time integration Euler Backward is used and the
nonlinear systems are solved by the Inexact Newton method discussed in
Section 6.3.

It is quite clear that the various orderings have significant effect on the
total computational effort needed to perform the simulation. Mainly, the
computational costs are due to the linear solver. When less Bi-CGSTAB iter-
ations are needed to find the solution, up to a certain accuracy, the total costs
are expected to be lower. From Table 7.2 can be seen that the total number of
linear iterations for the per grid point ordering is significantly less than for
the natural ordering. Secondly, the approximated linear solutions obtained
in the per grid point ordering are more accurate than those obtained with
the natural ordering. This results in a lower number of Newton iterations.

per grid point natural

Mesh size 35 × 32 35 × 47 70 × 82 35 × 32 35 × 47 70 × 82

F 203 407 675 205 476 811
F’ 108 213 353 114 252 461
Newton 108 213 353 114 252 461
linesearch 9 61 124 8 76 138
lin iter 848 2111 7171 1131 2455 7942

Table 7.2: Integration statistics for GIN with ILU(0) as preconditioner for
two orderings of the unknowns.

In Chapter 8 a comprehensive overview is given on the performance
of the various preconditioners discussed in Section 7.4. Besides the perfor-
mance of the preconditioners individually, the performance of these pre-
conditions combined with the various Newton methods studied in Chapter
6 is discussed. To decrease the amount of total computational costs it is
important to ‘tune’ the various parts of the solver.





CHAPTER 8

Numerical Results: Chemical
Vapor Deposition

Numerical simulations presented in Chapter 5 and in this chapter are done
for the Chemical Vapor Deposition process of silicon from silane. The
gas phase and surface chemistry are modeled according to one of the two
reaction models presented in this chapter. In Section 8.1.1 a chemistry model
consisting of 7 species and 5 gas phase reactions without surface chemistry
is presented, which can easily be used as a small test problem. Section 8.1.2
is devoted to the description of the classical model of the same process as
published by Coltrin et al. (1989), which includes 17 gas species, 26 gas
phase reactions and 14 surface reactions.

Further, two reactor configurations are considered. The first reactor
configuration is the one used in the benchmark solution of Kleijn (2000).
Since this benchmark problem is axisymmetric, the computational domain
reduces to two spatial dimensions. Further details are discussed in Sec-
tion 8.2.1. The second reactor configuration results in a three-dimensional
computational domain. A detailed description can be found in Section 8.2.2.

As already mentioned in Section 2.6, silane and the formed reactive
intermediates are highly diluted in the inert carrier gas helium. Since the
velocity-, temperature-, density- and pressure fields are not influenced by
the transient chemistry, it is justified to use the steady state flow field. For the
two-dimensional simulations the steady state flow problem is solved using
the computer code CVDMODEL of Kleijn, see for instance Kleijn (2000).
The three-dimensional steady state flow is computed by the proprietary
CFD software package CVD-X, which is developed at TNO Science and
Industry, see TNO Science and Industry (2007).

89



90

8.1 Chemistry Models

In the first test case, published in van Veldhuizen et al. (2006c) and van
Veldhuizen et al. (2006d), time accurate transient simulations are presented
of the Chemical Vapor Deposition process of silicon from silane according
to a reaction model with 7 species and 5 gas phase reactions. This reaction
model does not account for surface chemistry. The chemistry model is
discussed in Section 8.1.1. To facilitate easy reproduction, the diffusion
coefficients and molecular weights for all species are presented as well. The
computational domain is two-dimensional, because of axisymmetry (i.e.,
assuming that the tangential derivatives of all variables to be zero).

The second test case in this study, is the same Chemical Vapor Deposi-
tion process of silicon from silane, now modeled according to the classical 17
species and 26 gas phase and 14 surface reactions chemistry model as pub-
lished by Coltrin et al. (1989). Kleijn (2000) published a two-dimensional
steady state benchmark solution of this process for an axisymmetric stag-
nation flow Chemical Vapor Deposition reactor. Time accurate transient
results for this benchmark problem are published in van Veldhuizen et al.
(2007a) and van Veldhuizen et al. (2008b). The reaction model, diffusion
coefficients and molecular weights are given in Section 8.1.2.

8.1.1 Chemistry model I: 7 species and 5 gas phase reactions

The 5 gas phase reactions are listed in Tables 8.1 and 8.2, in which all reactive
gas phase species, except for the carrier gas helium He, can be found. Note
that for this model only 6 nonlinearly and stiffly coupled species equations
(2.18) have to be solved, because the mass fraction of He can be computed
via the property that the mass fractions of all species in the gas mixture
add up to one, see expression (2.4). The reaction terms in the species
equations (2.18) are constructed as in expressions (2.20) and (2.21). The
fit parameters Ak, βk and Ek needed in the modified Arrhenius expression
(2.21) are presented in Table 8.1. The backward rates are computed self-
consistently from

k
g

backward
(T) =

k
g

forward
(T)

Kg(T)

(

RT

P0

)

∑N
i=1 νik

, (8.1)

with Kg(T) the reaction equilibrium constants, see Section 2.4.4. To facilitate
easy reproduction of the solutions presented in this thesis, the reaction
equilibrium constants are fitted to a modified Arrhenius expression

Kg(T) = Ak,eqTβk,eqe
−Ek,eq

RT . (8.2)

In expression (8.2) Aeq, βeq and Eeq are fit parameters, which are given Table
8.2.
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Table 8.1: Gas phase reaction mechanism and fit parameters of the forward
reaction rate constant k

g

k,forward
, see expression (2.21), for the 6 species and 5

reactions model described in Section 8.1.1. The parameter βk is dimension-
less, while Ek has unit kJ ·mol−1 and the unit of Ak depends on the order of
the reaction, but is expressed in units mole, m3 and s.

Reaction Ak βk Ek

SiH4⇄ SiH2 + H2 1.09 × 1025 −3.37 256

Si2H6⇄ SiH4 + SiH2 3.24 × 1029 −4.24 243

Si2H6⇄H2SiSiH2 +H2 7.94 × 1015 0 236

SiH2 + Si2H6⇄ Si3H8 1.81 × 108 0 0

2SiH2 ⇄ H2SiSiH2 1.81 × 108 0 0

Table 8.2: Gas phase reaction mechanism and fit parameters of the reaction
equilibrium constants Kg, see expression (8.2), for the 6 species and 5 reac-
tions model described in Section 8.1.1. The parameter βeq is dimensionless,
while Eeq has unit kJ · mol−1 and the units of Aeq depends on the order of
the reaction, but is expressed in units mole, m3 and s.

Reaction Ak,eq βk,eq Ek,eq

SiH4⇄ SiH2 + H2 6.85 × 105 0.48 235

Si2H6⇄ SiH4 + SiH2 1.96 × 1012 −1.68 229

Si2H6⇄ H2SiSiH2 +H2 3.70 × 107 0 187

SiH2 + Si2H6⇄ Si3H8 1.36 × 10−12 1.64 −233

2SiH2⇄ H2SiSiH2 2.00 × 10−7 0 −272

In order to be self contained, the expressions for the effective multicom-
ponent diffusion coefficients D′

i
are presented subsequently. For species i

the effective multicomponent diffusion coefficientD′
i

is fitted as a function
of local temperature according to

D
′
i = D

′
i,300

(

T

300

)1.7

, (8.3)

with the diffusion coefficient at T = 300 K, D′
i,300

as in Table 8.3. The
molecular weights mi of reactive species i in the gas mixture are listed in
Table 8.3 as well.
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Table 8.3: Fitting coefficients for the effective multicomponent diffusion
coefficients and molecular weights of the various species in the gas mixture.
The unit of the fitting constantD′

i,300
is m2 · s−1, and molecular weights are

expressed in kg ·mol−1.

Species D′
i,300

m

SiH4 4.77 · 10−6 0.032118

SiH2 5.38 · 10−6 0.030102

H2SiSiH2 3.94 · 10−6 0.060204

Si2H6 3.72 · 10−6 0.062219

Si3H8 3.05 · 10−6 0.092321

H2 8.02 · 10−6 0.002016

8.1.2 Chemistry model II: 17 species and 26 gas phase reactions

In this reaction model after Coltrin et al. (1989) the decomposition of silane
into silylene and hydrogen, initiates a chain of 25 homogeneous gas phase
reactions leading to the formation and deformation of 14 silicon containing
gas phase species. Again, the reaction terms in the species expressions
(2.18) are constructed as in expressions (2.20) and (2.21). The backward
rates are computed selfconsistently from expressions (8.1) and (8.2). The
26 reactions and the fit parameters Ak, βk and Ek needed in the modified
Arrhenius expression (2.21) for the forwad reaction rate constants are listed
in Table 8.4. The fit parameters Ak,eq, βk,eq and Ek,eq needed in the modified
Arrhenius expression (8.2) for the reaction equilibrium constants, are listed
Table 8.5.

Each of the silicon containing species in the gas mixture may diffuse
towards and react at the susceptor. In this model it is assumed that film
growth is due to irreversible, unimolecular decompostion reactions of these
species at the surface, leading to the deposition of solid silicon atoms and
the desorption of gaseous hydrogen according to:

SinH2m

RS
SinH2m−→ n Si (s) +m H2 (g), (8.4)

SinH2m+1

RS
SinH2m+1−→ n Si (s) +m H2 (g) +H (g), (8.5)

where n = 1, 2, or 3, and m = 0, 1, 2, 3, or 4. The molar reaction rate RS
i

for
the decomposition of gas species i is given as

RS
i =

γi

1 − γi/2

P fi

(2πmiRTs)
1/2
, (8.6)
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Table 8.4: Fit parameters of the forward reaction rates (2.21) for the bench-
mark problem. The parameter βk is dimensionless, while Ek has unit kJ ·
mol−1 and Ak depends on the order of the reaction, but is expressed in units
mole, m3 and s.

Reaction Ak βk Ek

SiH4⇋ SiH2 +H2 1.09 × 1025 −3.37 256

SiH4⇋ SiH3 +H 3.69 × 1015 0.0 390

Si2H6⇋ SiH4 + SiH2 3.24 × 1029 −4.24 243

SiH4 + H⇋ SiH3 +H2 1.46 × 107 0.0 10

SiH4 + SiH3⇋ Si2H5 +H2 1.77 × 106 0.0 18

SiH4 + SiH⇋ Si2H3 + H2 1.45 × 106 0.0 8

SiH4 + SiH⇋ Si2H5 1.43 × 107 0.0 8

SiH2⇋ Si +H2 1.06 × 1014 −0.88 189

SiH2 + H⇋ SiH + H2 1.39 × 107 0.0 8

SiH2 + H⇋ SiH3 3.81 × 107 0.0 8

SiH2 + SiH3⇋ Si2H5 6.58 × 106 0.0 8

SiH2 + Si2⇋ Si3 + H2 3.55 × 105 0.0 8

SiH2 + Si3⇋ Si2H2 + Si2 1.43 × 105 0.0 68

H2SiSiH2⇋ Si2H2 + H2 3.16 × 1014 0.0 222

Si2H6⇋ H3SiSiH + H2 7.94 × 1015 0.0 236

H2 + SiH⇋ SiH3 3.45 × 107 0.0 8

H2 + Si2 ⇋ Si2H2 1.54 × 107 0.0 8

H2 + Si2 ⇋ SiH + SiH 1.54 × 107 0.0 168

H2 + Si3 ⇋ Si + Si2H2 9.79 × 106 0.0 198

Si2H5⇋ Si2H3 +H2 3.16 × 1014 0.0 222

Si2H2+H⇋ Si2H3 8.63 × 108 0.0 8

H + Si2⇋ SiH + Si 5.15 × 107 0.0 22

SiH4 + H3SiSiH⇋ Si3H8 6.02 × 107 0.0 0

SiH2 + Si2H6⇋ Si3H8 1.81 × 108 0.0 0

SiH3 + Si2H5⇋ Si3H8 3.31 × 107 0.0 0

H3SiSiH⇋ H2SiSiH2 1.15 × 1020 −3.06 28
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Table 8.5: Fit parameters of the gas phase equilibria constants (8.2) for the
benchmark problem. The parameter βeq is dimensionless, while Eeq has
unit kJ · mol−1 the unit of Aeq depends on the order of the reaction, but is
expressed in units mole, m3 and s.

Reaction Ak,eq βk,eq Ek,eq

SiH4⇋ SiH2 +H2 6.85 × 105 0.48 235

SiH4⇋ SiH3 +H 1.45 × 104 0.90 382

Si2H6⇋ SiH4 + SiH2 1.96 × 1012 −1.68 229

SiH4 + H⇋ SiH3 +H2 1.75 × 103 −0.55 −50

SiH4 + SiH3⇋ Si2H5 +H2 1.12 × 10−6 2.09 −6

SiH4 + SiH⇋ Si2H3 + H2 1.82 × 10−4 1.65 21

SiH4 + SiH⇋ Si2H5 1.49 × 10−10 1.56 −190

SiH2⇋ Si +H2 1.23 × 102 0.97 180

SiH2 + H⇋ SiH + H2 2.05 × 101 −0.51 −101

SiH2 + H⇋ SiH3 2.56 × 10−3 −1.03 −285

SiH2 + SiH3⇋ Si2H5 1.75 × 10−12 1.60 −241

SiH2 + Si2⇋ Si3 +H2 5.95 × 10−6 1.15 −225

SiH2 + Si3⇋ Si2H2 + Si2 2.67 × 100 −0.18 59

H2SiSiH2⇋ Si2H2 + H2 1.67 × 106 −0.37 112

Si2H6⇋ H3SiSiH +H2 1.17 × 109 −0.36 235

H2 + SiH⇋ SiH3 1.42 × 10−4 −0.52 −183

H2 + Si2 ⇋ Si2H2 7.47 × 10−6 −0.37 −216

H2 + Si2 ⇋ SiH + SiH 1.65 × 103 −0.91 180

H2 + Si3 ⇋ Si + Si2H2 1.55 × 102 −0.55 189

Si2H5⇋ Si2H3 + H2 1.14 × 106 0.08 210

Si2H2+H⇋ Si2H3 3.43 × 10−4 −0.31 −149

H + Si2⇋ SiH + Si 1.19 × 103 −0.88 29

SiH4 + H3SiSiH⇋ Si3H8 7.97 × 10−16 2.48 −233

SiH2 + Si2H6⇋ Si3H8 1.36 × 10−12 1.64 −233

SiH3 + Si2H5⇋ Si3H8 1.06 × 10−14 1.85 −318

H3SiSiH⇋ H2SiSiH2 9.58 × 10−3 0.50 −50
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where Ts denotes the temperature of the wafer surface and fi is the species
mole fraction computed from relation (2.5).

The sticking coefficient γi of species i, 0 ≤ γi ≤ 1, is equal to one for all
silicon containing species, except for

• γSi3H8
= 0,

• γSi2H6
= 0.537exp(−9400

Ts
), and,

• γSiH4
= 1/10γSi2H6

.

In Kleijn (2000) it is remarked that it is not clear which values of the reactive
sticking coefficients are used for Si3H8 and Si2H5 in Coltrin et al. (1989). In
the text of their work, Coltrin et al. (1989) mention values equal to one for
the sticking coefficients of Si3H8 and Si2H5, whereas the presented results
seem to indicate that actually values equal to zero are used. In this thesis,
we use the values used in Kleijn (2000), which are given above.

For this second chemistry model both concentration diffusion and ther-
mal diffusion are considered. The effective multi-component diffusion co-
efficientsD′

i
in expression (2.13) for the ordinary diffusion flux are fitted as

function of the temperature according to

D
′
i = D

′
i,300

(

T

300

)βD,i

. (8.7)

The fitting constantsD′
i,300

and βD,i are listed in Table 8.6. For a dilute gas
mixture as in the present study, with all species except helium present in
trace amounts only, the multi-component thermal diffusion coefficient DT

i
in the thermal diffusion flux for species i, see expression (2.16), is fitted as a
function of temperature, species concentration and density as

D
T
i = ρωiαTD,iD

′
i , (8.8)

see also Kleijn (1995). The fitting constants αTD,i are listed in Table 8.6. The
molecular weights of the reactive gaseous species in the gas mixture are
listed in Table 8.6 as well.

8.2 Reactor Geometry and Configuration

This section is devoted to the description of the two reactor geometries and
configurations mentioned in the introduction of this chapter. For both con-
figurations the gas mixture at the reactor inlet consists of 0.1 mole% silane
diluted in the inert carrier gas helium. Further, for both configurations
the temperature of the gas mixture at the inflow is 300 K, and the suscep-
tor is heated up to 1000 K. Two-dimensional computations have also been
performed for other wafer temperatures.
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Table 8.6: Fitted properties of the various species in the gas mixture accord-
ing to expression (8.7) and (8.8), and the molecular weights of the reactive
species. The unit of the fitting constantD′

i,300
is m2 · s−1, whereas the fitting

constants βD and αTD are dimensionless. The unit of molecular weight is
kg ·mol−1.

Species D′
i,300

βD αTD mi

H 2.66 × 10−4 1.67 −0.25 0.001008

H2 1.58 × 10−4 1.65 −0.16 0.002016

Si 6.29 × 10−5 1.75 0.57 0.028086

SiH 7.20 × 10−5 1.66 0.73 0.029094

SiH2 6.78 × 10−5 1.67 0.80 0.030102

SiH3 6.30 × 10−5 1.67 0.85 0.031110

SiH4 5.86 × 10−5 1.67 0.91 0.032118

Si2 5.34 × 10−5 1.75 0.74 0.056172

Si2H2 5.03 × 10−5 1.67 1.13 0.058188

Si2H3 4.88 × 10−5 1.67 1.17 0.059196

H2SiSiH2 4.74 × 10−5 1.67 1.20 0.060204

H3SiSiH 4.74 × 10−5 1.67 1.20 0.060204

Si2H5 4.59 × 10−5 1.67 1.24 0.061212

Si2H6 4.47 × 10−5 1.67 1.24 0.062219

Si3 4.82 × 10−5 1.75 0.84 0.084258

Si3H8 3.62 × 10−5 1.67 1.61 0.092321
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More details on the reactor configuration for the two-dimensional ax-
isymmetric simulations are given in Section 8.2.1. The three-dimensional
reactor is discussed in Section 8.2.2.

8.2.1 Two-Dimensional Reactor

The first reactor configuration is illustrated in Figure 8.1. Because of ax-
isymmetry, the computational domain consists of one half of the (r-z) plane.
The boundary conditions along the computational domain are summarized
in Figure 8.1.

The pressure in the reactor is equal to the atmospheric pressure. From
the top a gas mixture, consisting of 0.1 mole% silane diluted in helium,
enters the reactor with a uniform temperature Tin = 300 K and uniform
velocity vin = 0.1 m/s. At a distance of 0.1 m below the inlet a susceptor
with a diameter of 0.3 m and a surface temperature of Ts = 1000 K is placed.
In the hot region above the susceptor the reactive gas silane decomposes
into silylene and hydrogen. On this susceptor surface reactions take place
leading to the deposition of solid silicon. The outer walls have a temperature
Twall = 300 K. Like the benchmark problem in Kleijn (2000), we study the
case where the susceptor is not rotating. Then, strong radial variations in
the species concentrations, the velocity profile and the temperature profile
are observed. For a susceptor rotating a suitable speed the flow field in the
reactor is virtually one-dimensional, see, for instance, Kleijn (2000). The
rotating susceptor case is not studied in this thesis.

Since the gas phase reactants are highly diluted, we use the steady state
velocity-, temperature-, density- and pressure fields, see Section 2.6. The
steady state flow problem is solved using the computer code CVDMODEL,
which has been tested in detail over the last decades, see, for instance, Kleijn
et al. (1989), Kuijlaars et al. (1995) and Kleijn (2000). For the present reactor
chamber, the streamlines and temperature field with the wafer temperature
equal to 1000 K, which are computed via the code CVDMODEL, are shown
in Figure 8.2.

8.2.2 Three-Dimensional Reactor

The reactor configuration that results in a three-dimensional computational
domain is illustrated in Figure 8.3. The reactor chamber is a cuboid, with a
length and a width of 0.35 m, and an height of 0.1 m. Exactly in the center
of the top plane is a cuboidic inlet-pipe placed, with a length and a width
of 0.10 m, and an height of 0.05 m. The square wafer, with edges of 0.30
m, is placed exactly in the center of the bottom plane of the cuboid. An
outlet-pipe is attached to the bottom plane in the remaining 0.05 m of space
between the wafer and the side wall.
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Figure 8.1: Reactor geometry and boundary conditions.
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Figure 8.2: Streamlines and temperature field in Kelvin for the right half
part of the reactor illustrated in Figure 8.1. The wafer temperature is equal
to Ts = 1000 K.



100

(a) Side view

(b) Bottom view

Figure 8.3: Side and bottom view of the reactor geometry which leads to
three-dimensional computational domain. The typical measures, which are
given in Section 8.2.2, are illustrated as well.
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The computational domain is reduced to one quarter of the actual reactor
by imposing symmetry conditions on the two symmetry planes. The bound-
ary conditions for the species transport equations (2.18) and the steady state
flow problem are summarized in Figure 8.4.

The pressure in the reactor is equal to the atmospheric pressure. Further,
for the steady state flow problem of the inert carrier gas helium the following
boundary conditions are imposed:

• at the inlet we take a uniform inflow velocity profile with vin = 0.1 m/s,

• the temperature of the gas mixture at the inlet is uniformly distributed
with Tin = 300 K,

• the non-reacting solid walls are adiabatic resulting in zero normal
temperature gradients, and,

• at all solid walls, both non-reacting and reacting, no-slip conditions
are imposed.

The steady state flow problem is solved using the proprietary CFD package
CVD-X, which is developed at TNO Science and Industry, see TNO Science
and Industry (2007).

Since the area of interest for the species equations (2.18) is the reactor
chamber, the transient simulations are done for that part of the reactor
only. Thus, the computational domain for the species equations (2.18)
reduces, after imposing the symmetry conditions, into the configuration
illustrated in Figure 8.4 without inflow- and outflow-pipe. The streamlines
and temperature distribution for the reactor, without inflow- and outflow
pipes, are shown in Figure 8.5.

8.3 Validation of Two-Dimensional Steady State Solu-

tions

Correctness of our steady state solution, obtained after long time integra-
tion, is validated against the steady state solution obtained with the soft-
ware of Kleijn (2000). All simulations presented in this section are test cases
where the wafer is not rotating.

The results presented in this section are obtained via Euler Backward
time integration, in which the system of nonlinear algebraic equations is
solved with the globalized Inexact Newton method discussed in Section
6.3. The Newton equation is solved by the preconditioned Bi-CGSTAB
algorithm by van der Vorst (1992). As preconditioner, the block version
of the incomplete LU factorization is used. The steady state solutions are
obtained after long time transient simulations by the solution strategy as
described above.
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(a) Side view

(b) Symmetry-plane view

Figure 8.4: Three-dimensional reactor geometry and corresponding bound-
ary conditions. Recall that ji denotes the total diffusive flux of species i
and Pi the net mass production rate of gaseous species i at the wafer. The
computational grid has 35 grid cells in the x and z direction, and 32 in the
y direction. Note that the grid is finer above the heated susceptor.
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Figure 8.5: Streamlines and temperature distribution in Kelvin for the re-
actor chamber of Figure 8.4, without inflow- and outflow pipes. The flow
field has been computed by CVD-X, see TNO Science and Industry (2007).
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In van Veldhuizen et al. (2006b) solutions with gas phase Chemistry
Model I are validated against solutions from Kleijn’s code CVDMODEL.
The agreement between the solutions was found to be excellent. Here, we
restrict ourselves to the validation of the much more demanding Chemistry
Model II.

8.3.1 Steady State Solutions for Chemistry Model II

In Figure 8.6 steady state mass fraction profiles are presented for some
selected species, as well as the ones obtained by Kleijn (2000), for a wafer
temperature equal to 1000 K. In this case, the total steady state deposition
rate of silicon at the symmetry axis as found by Kleijn (2000) is 1.92 nm/s,
whereas a deposition rate of 1.93 nm/s has been found with the present
numerical method as described above. Both values compare excellently to
those obtained with the well-known 1-dimensional CVD simulation code
SPIN within the Chemkin family Coltrin et al. (1993).

Figure 8.7 shows radial profiles of the total steady state deposition rates
for wafer temperatures varied from 900 K up to 1100 K. Again, the agree-
ment is for all wafer temperatures excellent. For all studied temperatures,
the steady state growth rates obtained with the present transient solution
method were found to differ less than 5% from those obtained with Kleijn’s
steady state code.

From Figure 8.7 various conclusions are drawn. First of all, it is con-
cluded that the silicon deposition rate depends strongly on the wafer tem-
perature, i.e., higher wafer temperatures lead to higher silicon deposition
rates. For low wafer temperatures the deposition rate is mainly reaction
limited, meaning that the deposition follows an Arrhenius dependence on
temperature. However, for increasing wafer temperatures the chemical re-
actions become faster, causing mass transport to become rate limiting. In
other words, the gases mainly responsible for silicon deposition cannot be
transported to the wafer as fast as they are consumed chemically. As a result,
the deposition rate does not increase any further for higher temperatures.

Secondly, the total deposition rates illustrated in Figure 8.7 are strongly
non-uniform in radial direction. For wafer temperatures larger than or
equal to 1000 K the total deposition rate increases towards the edge of the
reacting surface, whereas for wafer temperatures below 1000 K the total
deposition rate decreases towards the edge of the susceptor. These effects
are, again, ascribed to the transition from kinetic to transport limitation,
due to the decreasing thermal and concentration boundary layer thickness
towards the susceptor edge. On the one hand, a decreasing thermal bound-
ary layer thickness leads to reduced residence times of the gas species in
the boundary layer, and thus reduced gas phase decomposition. On the
other hand, a reduced concentration boundary layer thickness increases
the mass transport for transport limited deposition growth. This explains
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the increasing deposition rate towards the edge of the wafer for increasing
wafer temperatures.
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Figure 8.6: Axial steady state concentration profiles along the symmetry
axis for some selected species. Solid lines are solutions from Kleijn (2000),
circles are long time steady state results obtained with the present transient
time integration methods.
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temperatures varied from 900 K up to 1100 K. Solid lines are Kleijn’s steady
state results, circles are long time steady state results obtained with the
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8.4 Transient Two-Dimensional Solutions for Chem-

istry Model II

In Figure 8.8 transient deposition rates are presented for some selected
species, as well as the transient total deposition rate. It can be seen that
the time dependent behavior of these deposition rates is monotonically
increasing and stabilizes when the solution is in steady state. Also shown
are the steady state deposition rates obtained with the software of Kleijn
Kleijn (2000), which are in very good agreement with our current results. In
Figure 8.9 we present transient total deposition rates for simulations with
wafer temperatures varying from 900 K up to 1100 K. The time dependent
behavior of all deposition rates is monotonically increasing until the species
concentrations are in steady state.

In Figure 8.10 the transient behavior of the gas phase chemistry can be
seen quite clearly. At time t = 0.5 s we see that reactive silane, entering the
reactor from the top has not yet reached the reactive susceptor surface. At
an inlet velocity of 0.1 m/s and a distance between the inlet and the susceptor
of 0.1 m this actually takes approximately 1 s. This is confirmed by Figure
8.8 and 8.9, in which it can be seen that deposition does not start until t ∼ 1
s. A couple of seconds later, at time t = 5 s, when the CVD process is almost
in steady state, we see that along the reacting surface almost all silane
molecules either have been decomposed into volatile reaction products, or
have been adsorped to the susceptor surface to form a solid silicon film, see
Figure 8.10.

8.4.1 Further Discussion on the Deposition Rates for Chemistry
Model II

Clearly, the purpose of (transient and steady state) simulations is to un-
derstand the relative effects of fluid transport and chemistry within these
processes. For example, it can be determined which gas-species are most
responsible for bringing silicon to the surface for deposition. As mentioned
before, this depends on the wafer temperature, but can also depend on the
carrier gas, see Coltrin et al. (1989). However, the latter is not considered
in this study.

Figure 8.11 shows radial profiles of deposition rates due to various
chemical species in the reaction mechanism for various wafer temperatures.
It illustrates that the reactive intermediate species are mainly responsible
for the deposition.

In Figure 8.12 the concentrations of SiH2 for wafer temperatures Ts = 900
K and Ts = 1100 K are shown. We see indeed that for Ts = 1100 K the
concentrations of SiH2 are much higher along the reacting surface than for
Ts = 900 K. Note that in Figure 8.12 the legends of both concentration fields
differ two orders of magnitude. For the species concentrations of H2SiSiH2,
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Figure 8.8: Transient deposition rates due to some selected species on the
symmetry axis for simulations with a non-rotating wafer at 1000 K. On
the right vertical axis: steady state deposition rates obtained with Kleijn’s
steady state code Kleijn (2000).
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Figure 8.9: Transient total deposition rates on the symmetry axis for wafer
temperatures varying from 900 K up to 1100 K. On the right vertical axis:
steady state total deposition rates obtained with Kleijn’s steady state code
Kleijn (2000).
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(a) t = 0.5 s

(b) t = 5 s

Figure 8.10: Mass fraction profiles of silane on time t = 0.5 s (a) and t = 5 s
(b).
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(a) 900 K
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(b) 950 K
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(c) 1000 K
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(d) 1050 K
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Figure 8.11: Radial deposition profiles for wafer temperatures from 900 K
up to 1100 K.
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(a) Ts = 900 K

(b) Ts = 1100 K

Figure 8.12: Mass fraction profiles of Si2H2 for wafer temperature Ts = 900
K (a) and Ts = 1100 K (b). Note that the legends differ two orders of
magnitude.
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(a) Ts = 900 K

(b) Ts = 1100 K

Figure 8.13: Mass fraction profiles of H2SiSiH2 for wafer temperature Ts =

900 K (a) and Ts = 1100 K (b). Note that the legends are not identical.



112

which are shown in Figure 8.13, we see that the concentration of H2SiSiH2

for Ts = 1100 K is nearly zero along the wafer. This results in a relative
small contribution of H2SiSiH2 to the deposition rate.

This section is concluded by discussing the influence of thermal diffu-
sion on the (transient and steady state) deposition rate. In Section 2.4.2
it is mentioned that for reactors in which large temperature gradients are
present, the thermal diffusion effect is important. In Figure 8.14 deposition
rates for simulation with and without thermal diffusion are shown. The
wafer temperature was set to 1000 K. Comparing transient computations
with and without thermal diffusion gives an average difference of 20 – 25 %
in deposition rate. For computations as these it is thus important to include
thermal diffusion.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

D
ep

os
iti

on
 r

at
e 

(n
m

/s
)

Time (s)

With Thermal Diffusion
Without Thermal Diffusion

Figure 8.14: Total time accurate deposition rates on the symmetry axis as
a result of computations with and without thermal diffusion. The wafer
temperature is set to 1000 K.

8.5 Three-Dimensional Simulations

For the three dimensional transient simulations again only results are pre-
sented for the chemistry model with 17 (gas phase) species, 26 gas phase
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reactions and 14 surface reactions. To the author’s knowledge, similar re-
sults on this problem, or a problem of similar complexity have not been
published earlier. First, a validation of the steady state solution is done.

8.5.1 Validation of Steady State Solution

To validate the steady state solution obtained via the simulations on the
three-dimensional computational domain, we compare the species mass
fractions along the intersection of the two symmetry planes. It is ex-
pected that the solution along this intersection line agrees well with the
two-dimensional results at the r = 0 symmetry axis. In Figure 8.15 the
steady state mass fraction profiles are presented for some selected species,
as well as the ones obtained by Kleijn (2000), see also Figure 8.6. From
Figure 8.15 can be concluded that these mass fraction profiles agree quite
well.

The total steady state deposition rate of silicon along this symmetry line
is 1.85 nm/s. Again, this value compares excellently to those found for the
two-dimensional axisymmetric case in Section 8.3.

In Figure 8.16 the total deposition rate, the deposition rate due to most
important growth species along the diagonal from the center of the wafer
to the corner point of the wafer, as well as the radial deposition profiles
belonging to two-dimensional axisymmetric simulations are shown. Com-
paring the two-dimensional and three-dimensional deposition profiels in
the neighborhood of the symmetry axis it is concluded that all deposition
rates agree very well. Towards the boundary of the wafer the flow fields of
the two-dimensional and three-dimensional simulations differ too much to
expect any agreement on the deposition rates at all.

Figure 8.17 shows the total steady state silicon deposition rate on the
wafer. This figure clearly illustrates the strongly non-uniform,three-dimensional
behavior of the reactor under the operation conditions described in Section
8.2.2.

8.5.2 Time Accurate Transient Results

In Figure 8.18 the total transient deposition rate of solid silicon on two
locations on the wafer is displayed for Ts = 1000 K. Again, the deposition
rates are monotically increasing in time. From this illustration it can be seen
that at the corner point of the wafer it takes much longer for the deposition
rate to reach its steady state value.

8.6 Discussion on the Integration Statistics

For all simulations in this section the simulations are being run from inflow
conditions until the steady state solution is reached. We allow the maximum
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Figure 8.15: Axial steady state concentration profiles along the intersection
of the two symmetry planes. Solid lines are the profiles belonging to the
three-dimensional simulations, circles are profiles along the symmetry axis
belonging to the two-dimensional axisymmetric case.
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Figure 8.17: Steady state total deposition rate above the wafer.



8.6. Discussion on the Integration Statistics 117

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

D
ep

os
iti

on
 r

at
e 

(n
m

/s
)

Time (s)

center
corner

Figure 8.18: Transient total deposition rate in the center axis and in the cor-
ner (that is (x, y, z) = (0.15, 0, 0.15)) of the susceptor for a wafer temperature
equal to Ts = 1000 K.

number of time steps to be 1000. With respect to the allowed number of
Newton iterations per time step we remark the following. The strongly
nonlinear reaction terms sometimes cause difficulties in finding the correct
search direction. More specific, in the time frame right before steady state is
reached, we experienced that to find the correct search direction might take a
few extra Newton iterations. Therefore, the maximum number of Newton
iterations is set to 50, whereas in most nonlinear solvers the maximum
number of Newton iterations is set to 20 or 25.

Further, it has to be mentioned that in this section time accurate tran-
sient results are shown for different wafer temperatures varying from 900
up to 1100 K. Because of the large activation energies of some of the reac-
tions (see Tables 8.1, 8.2, 8.4 and 8.5), such temperature differences lead to
large qualitative and quantitative differences in the solutions. The behav-
ior and the integration statistics of the computational method is, however,
not influenced by the wafer temperature. Therefore, we will restrict our-
selves to present the integration statistics for one wafer temperature per
computational grid.

First, integration statistics are presented for the two-dimensional sim-
ulations. For the 6 species and 5 gas phase reactions chemistry model we
present the most relevant integration statistics only. Integration statistics for
the benchmark problem with 17 (gas phase) species, 26 gas phase reactions
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and 14 surface reactions are discussed in detail. In particular, the behavior
of the various preconditioners presented in Chapter 7 is highlighted.

Integration statistics for the three-dimensional simulations with the 17
(gas phase) species, 26 gas phase reactions and 14 surface reactions chem-
istry model are presented in Section 8.6.2.

8.6.1 Integration Statistics for Two-Dimensional Simulations

Chemistry Model I

We only present the integration statistics for the optimal combination of
Euler Backward time integration, Inexact Newton method and precondi-
tioner. Combining the Globalized Inexact Newton method with the Block
ILU preconditioner is the most efficient choice with respect to total compu-
tational costs. The forcing term in the Inexact Newton method used is the
one of Section 6.2.2, i.e.,

ηk = γ
‖F(xk)‖2
‖F(xk−1)‖2 , with γ = 0.5. (8.9)

The integration statistics for this configuration of the solver for three differ-
ent computational grids are listed in Table 8.7.

The three computational grid are equidistant in radial direction and the
grid spacing in axial direction is gradually decreasing towards the wafer
surface. The coarsest grid consists of nr = 35 grid points in radial direction
and nz = 32 grid points in axial direction. The remaining two grids consist
of nr = 35 by nz = 47 grid cells, and nr = 70 by nz = 82 grid cells.

The effect of different grid sizes reflects in the number of linear iterations
and CPU time. Looking at the CPU times in Table 8.7 it can be seen that
the CPU times increases pretty much proportional with the number of grid
points. Due to the high quality of the block ILU preconditioner, no rejected
time steps are observed in these simulations.

For the other forcing terms and preconditioners similar integration
statistics are found, see van Veldhuizen et al. (2008a). The number of
rejected time steps due to negative species concentrations is restricted to
one or two for the other preconditioners combined with the various forc-
ing terms. Thus, it can be concluded that for this test problem with a
small chemistry model the Projected Newton method will not improve the
computational efficiency. On the other hand, the robustness will slightly
increase, since no rejected time steps are found for all preconditioners.

Chemistry Model II

Due to its stronger nonlinearity and a larger stiffness, the number of Newton
iterations increases for the 17 species and 26 gas phase reactions chemistry
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Table 8.7: Number of operations for the 7 species and 5 reactions problem on
three computational grids. The wafer temperature is for each computational
grid different.

Grid size 35 × 32 35 × 47 70 × 82
Wafer temperature 1000 K 950 K 900 K

Newton iters 80 89 91
Rej. time steps 0 0 0
Acc. time steps 36 36 36

Line search 9 6 7
Lin iters 430 1,137 1,003

CPU time (sec) 140 230 690

model, see Tables 8.8 and 8.9. In these tables relevant statistics are listed for
the forcing terms presented in Sections 6.2.1 and 6.2.2 and the precondition-
ers of Chapter 7. The simulations have been performed on the same three
grids as discussed in the previous section. Further, in Figure 8.19 the CPU
times are shown. With respect to CPU time it can be concluded that the
incomplete factorization preconditioners perform significantly better than
the block diagonal preconditioners. For the finer grid, the solver equipped
with these preconditioners even do not return a time dependent solution
over the time frame from inflow to steady state. The block incomplete fac-
torization preconditioner is favorable over the ILU(0) preconditioner, when
looking to CPU times. Further, note that for the most preconditioners us-
ing projected Newton instead of globalized Inexact Newton leads to slight
improvements in terms of computational efficiency. However, combining
the projected Newton method with the block diagonal preconditioners and
forcing term (6.10) gives a considerable improvement of the computational
effort needed.

From Tables 8.8 and 8.9 it can clearly be seen that for larger meshes the
number of Bi-CGSTAB and Newton iterations increases considerably. With
respect to the approximate linear relation between the number of grid points
and the total CPU time, the following can be remarked. For the two coarser
grids, i.e., the 35 × 32 and 35 × 47, the CPU times increase pretty much
proportional with the number of grid points. However, the CPU times
for the finer 70 × 82 grid do not scale linearly with the CPU times of the
coarser grids. The finer grid is much finer in the thermal and concentration
boundary layer than the other two grids, such that the system of species
equations becomes much stiffer. This is being reflected in Jacobian matrices
in the Newton iteration having much higher condition numbers. Even
effective preconditioners like Block ILU are not able to drop the condition
number sufficiently in order to obtain very fast Bi-CGSTAB convergence
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as was the case on the coarser grids. Hence, for the simulations on this
fine grid the number of linear iterations increases faster than for the coarser
grid, which reflects itself in the CPU times.

Looking at the results of the ILU(0)- and Block ILU preconditioner, it
can be concluded that both behave well with respect to positivity, and
thus the differences between the projected and regular Newton method are
minimal. As remarked above, the Block ILU preconditioner is overall com-
putationally cheaper than ILU(0). This can be explained by the fact that a
considerably smaller amount of linear iterations is needed, see Tables 8.8
and 8.9. Apparently, the extra fill-in generated by the Block ILU precon-
ditioner, which is a combination of large and small entries, gives a much
better approximation of the Jacobian matrix than the ILU(0) preconditioner.

Both block diagonal precondioners are performing bad with respect to
positivity, in particular combined with forcing term (6.10). In this case the
projected Newton method brings relief. The computational costs descrease
by a factor 10, but are still higher than for the incomplete factorization type
preconditioners. Mainly, this is due to the total number of linear iterations,
which is between a factor of 5−10 higher. Probably, the fact that the inverse
of the Jacobian is approximated by inverting only the ‘large’ terms, is not
close enough.

For the author it is not clear why the incomplete factorization pre-
conditioners perform better with respect to positivity than the others. In
Appendix A a related question is discussed. As far as known to the author,
it is even not clear whether linear systems Ax = b, with A symmetric pos-
itive definite and satisfying the M-matrix property, and b component-wise
positive, whose solution is approximated (up to a certain accuracy level)
via the Conjugate Gradient method, is positive. Moreover, the conditions a
preconditioner needs to fulfill in order to maintain this positivity property
are unknown. We think, that answering these questions might explain the
behavior observed in our experiments.

8.6.2 Integration Statistics for Three-Dimensional Simulations

As remarked at the beginning of Section 8.6, for the three-dimensional sim-
ulations we only report numerical results for the 17 species, 26 gas phase
reactions and 14 surface reations model after Coltrin et al. (1989). Numer-
ical experiments reveal that simulations running from inflow conditions
to steady state give multiple time step rejections due to negativity for all
preconditioners presented in Chapter 7. For all simulations on the three-
dimensional meshes no solutions are found without the application of the
Globalized Inexact Projected Newton method, see Section 6.4.

Numerical experiments have been carried out on two computational
grids. The first one consists of 35 × 32 × 35 grid cells, whereas the second
one has 70 × 70× 70 grid cells. The integration statistics for the simulations
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Table 8.8: Number of Bi-CGSTAB and Newton iterations for forcing terms
(6.8) and (6.10) and various preconditioners on three computational grids
for the Globalized Inexact Newton method. Choice 1 corresponds to forcing
term (6.8) and Choice 2 corresponds to forcing term (6.10). If a steady state
has not been reached then we write nf in the corresponding entry. Further,
the number of rejected time steps due to negative species are specified.
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Choice 1
ILU(0) 848 108 1 2,073 205 0 7,522 353 0

Block ILU 624 111 2 772 153 0 2,069 325 0
Lump 4,987 152 0 72,091 1,241 177 nf nf nf

Block diag 4,219 149 1 22,498 285 2 nf nf nf

Choice 2
ILU(0) 1129 101 1 2,541 194 1 11,100 395 3

Block ILU 838 104 2 859 148 0 2,144 299 0
Lump 7,927 149 2 106,833 1,391 122 nf nf nf

Block diag 13,371 1,379 403 28,140 2,054 583 nf nf nf

Table 8.9: Number of Bi-CGSTAB and Newton iterations for various forcing
terms and preconditioners on three computational grids for the Globalized
Inexact Projected Newton method. Choice 1 corresponds to forcing term
(6.8) and Choice 2 corresponds to forcing term (6.10). If a steady state has
not been reached then we write nf in the corresponding entry.

35 × 32 35 × 47 70 × 82
# lin it. # Newt. # lin. it. # Newt. # lin. it. # Newt.

Choice 1
ILU(0) 825 101 2,086 211 7,930 385

Block ILU 556 97 772 153 1,921 308
Lump 4,654 149 10,655 250 nf nf

Block diag 4,313 133 25,605 290 nf nf

Choice 2
ILU(0) 1,009 94 2,505 202 8,895 351

Block ILU 718 93 859 148 2,290 306
Lump 5,819 127 23,598 196 nf nf

Block diag 6,275 125 29,253 223 nf nf
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Figure 8.19: CPU times for various grids and forcing terms.

from inflow conditions until steady state with the Euler Backward solver
combined with the Globalized Inexact Projected Newton method for the
coarsest grid are listed in Table 8.10. The statistics for the simulations on the
finest grid with the same solver configuration are given in Table 8.11. The
number of rejected time steps in both tables corresponds to the number of
time that the Globalized Inexact Projected Newton method diverged; when
using this method time step rejections due to negative species is impossible.

Two components of the Euler Backeard solver are expensive and might
cause an increase in computational costs. The first on is the Krylov solver. In
Table 8.10 we see that the total computational costs are mainly determined
by the number of linear iterations, i.e., for the block diagonal precondition-
ers the number of Newton iterations is low and linear iterations is high.

On the other hand, per Newton iteration the Jacobian is evaluated an-
alytically. For the numerical experiments in the present paper the partial
derivatives of the chemistry term can be calculated at low cost, such that
the exact Jacobian matrix is relatively cheaply assembled, but still a relative
expensive component in the solver. For the experiments on the coarse grid
we see an increasing number of Newton iterations for the ‘weaker’ block
diagonal preconditioners compared to the incomplete factorization precon-
ditioners. Again, this will increase the computational costs for the block
diagonal preconditioners. For the numerical experiments on the fine grid
we observe larger number of Newton iterations for the incomplete factor-
ization preconditioners. Apparently, for these effective preconditioners in
some time steps the Newton step was oversolved. For the ILU(0) precon-
ditioner this phenomena leads to somewhat longer simulations times.

When going to finer grids in these three-dimensional simulations the
preconditioned Krylov solvers can be accounted for the rise in computa-
tional costs. Generally, the relation between the number of grid points and
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total cpu time will not longer scale linearly, as was the case in the two-
dimensional axisymmetric case. As can be seen from Tables 8.10 and 8.11,
eight times more grid points leads to approximately 35 times higher CPU
times.

To summarize, from Tables 8.10 and 8.11 the following conclusions can
be drawn. In term of computational times the Block ILU preconditioner
combined with the Globalized Inexact Projected Newton method is the
best method to compute a fully time-accurate transient solution of laminar
reacting gas flow problems. Secondly, the reduction of computational costs
is most effectively done by reducing the computational costs of the linear
solver, for instance by effective preconditioning.

Table 8.10: Number of operations for the 17 species and 26 reactions problem
on the three-dimensional computational grid consisting of 35× 32× 35 grid
cells. The wafer temperature has been set to 1000 K.

Preconditioner ILU(0) block Lumped block
ILU Jac diag

Newton 239 156 332 327
Rej. time steps 3 0 0 0
Acc. time steps 44 43 43 43

Line search 51 20 31 29
Lin iters 3,196 2,481 17,472 18,392
CPU (s) 20,100 17,500 28,000 29,000

Table 8.11: Number of operations for the 17 species and 26 reactions problem
on the three-dimensional computational grid consisting of 70× 70× 70 grid
cells. The wafer temperature has been set to 1000 K.

Preconditioner ILU(0) block Lumped block
ILU Jac diag

Newton iters 539 436 366 367
Rej. time steps 11 11 9 9
Acc. time steps 55 53 52 52

Line search 223 142 114 107
Lin. iters 7,830 5,525 47,105 48,810
CPU (hrs) 200 167 203 260
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8.6.3 Integration Statistics for IMEX-RKC methods for Three-
Dimensional Simulations

As remarked earlier in Section 5.6, the IMEX-RKC method described in
Section 5.5, is an attractive alternative to the unconditional Euler Backward
time integration method. However, the IMEX-RKC method is conditional
positive, but its computational efficiency is independent of the number of
spatial dimensions. The dimesion of the linear systems appearing in the
solver do not change when going from two to three spatial dimensions.

Numerical simulations on the three dimensional meshes reveal that,
again, the positivity requirement on the species concentrations is crucial for
the computational costs. Repeatedly rejected time steps due to negativity
are observed. Moreover, because the physical time towards steady state is
larger than in the two-dimensional axisymmetric case, the computational
costs for simulations from t = 0 until steady state are higher than for the
projected Newton Euler Backward solver.

8.7 Comparing Projected Newton Methods with Clip-

ping

As mentioned in Chapter 6, there are two approaches to avoid negative
species concentrations, i.e., clipping on the time level, and Euler Backward
time integration combined with the Projected Newton method. In this sec-
tion we compare the numerical results of the two-dimensional benchmark
problem with the 16 species and 26 reactions chemistry model (see also
Section 8.4), obtained via these positivity conserving strategies.

Fortunately, for this benchmark problem the steady state solutions found
with both the projected Newton and clipping methods are identical. How-
ever, looking at the time dependent solutions differences are found. To
show the differences between the clipping on time level and the projected
Newton method we compute the integral

∫ t

0

Qdep,Sidt, (8.10)

where Qdep,Si is the molar deposition rate of silicon atoms at the reacting
surface. Thus, integral (8.10) is the total number of moles of silicon atoms
deposited in a certain time frame.

The integral (8.10) has been computed for the time frame between t = 0
s and t = 2 s, and for the time frame between t = 0 s and steady state .
These computations have been done on the 35 × 32 and 35 × 47 meshes.
On both spatial meshes we computed a time accurate solution, in which
only spatial errors are present. Remark that due to the stringent accurary
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requirements in the time accurate solution the time step size is very small,
such that postivity is no issue.

The total number of moles of deposited silicon for both methods are
presented for the purely transient time frame between inflow conditions
and 2 s in Table 8.12, and from inflow conditions until steady state in Table
8.13. In both tables the number of moles of deposited silicon found in the
time accurate solutions are listed as well. Comparing the number of mole
of deposited silicon computed with both strategies, with a time accurate
solution shows which strategy gives most accurate results. The spatial
error is for all computations identical, such that the differences can only be
assigned to errors due to time discretization and the solution techniques to
solve the nonlinear system(s). Obviously, it is expected that the projected
Newton method, which is mass conserving, is more accurate than clipping,
in which mass is added when putting negative species concentrations to
zero.

As can be found in Table 8.12, the number of moles of deposited silicon
in the transient time frame between inflow and 2 s found by the clipping
method differs about 8 % with the result found in the time accurate solution.
For our projected Newton method the differences are in the order of 2 %.

Table 8.12: Number of moles of deposited silicon in the time frame from
inflow conditions to 2 s for Projected Newton methods, clipping and a time
accurate solution.

Proj. Newt. Clipping Time accurate

35 × 32 1.30 · 10−5 1.38 · 10−5 1.28 · 10−5

35 × 47 1.28 · 10−5 1.35 · 10−5 1.25 · 10−5

Table 8.13: Number of moles of deposited silicon in the time frame from
inflow conditions until steady state for Projected Newton methods and
clipping. The difference in percents is listed as well.

Proj. Newt. Clipping Time accurate

35 × 32 1.65 · 10−4 1.68 · 10−4 1.64 · 10−4

35 × 47 1.62 · 10−4 1.64 · 10−4 1.60 · 10−4

When measuring until steady state the differences between both ap-
proaches are smaller. For the clipping strategy a difference with the time
accurate solution is about 2 – 2.5 % for both meshes. The projected Newton
method gives a difference of 1 %, see Table 8.13. The smaller differences are
explained by (i) both clipping and projected Newton eventually return the
same steady state solution, and, (ii) the molar deposition rate just before
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steady state is much larger than the deposition rate in the purely transient
time frame.

Moreover, when looking at mass balances at time t = 2 s for the atoms
e = Si, H and He the differences between the projected Newton method and
clipping are even more elaborated. At time t = 2 s we compute for atom e

∫ 2

0
Qin,e −Qdep,e −Qout,e dt −

∫

reactor
ce(2, r, z) dS

∫ 2

0
Qin,e dt

, (8.11)

where ce(2, r, z) is the molar concentration of atom e in the reactor at time
t = 2 s and spatial coordinate (r, z). For simulations with the projected
Newton method on the 35 × 32 and 35 × 47 grids the absolute value of
expression (8.11), which should be zero, is of order O(10−8) for all atoms
e. However, when using the clipping strategy, in which mass is added
when negative species concentrations are set to zero, following values for
expression (8.11) are found:

• expression (8.11) for the silicon atom is −2.3 · 10−2 for simulations on
the 35 × 32 grid, and −1.02 · 10−2 for simulations on the 35 × 47 grid,

• for the H atoms expression (8.11) equals −3.1 · 10−2 mol on the 35× 32
grid, and −2.4 · 10−2 for simulations on the 35 × 47 grid, and,

• for the helium atoms He expression (8.11) is of the order O(10−10) for
both grids.

Thus, on the 35 × 32 grid 2% is added to the total moles of silicon atoms
that entered the reactor, and 3.1% is has been added to the total moles of
H atoms that entered the reactor. On the 35 × 47 grid this is 1% and 2.4%
for the silicon and hydrogen atoms respectively. This results clearly show
that the projected Newton method preserves mass, whereas clipping fails.
We believe that larger differences are found when performing numerical
experiments for inherently transient chemically reacting flow problems.

8.8 Conclusions

From the numerical results on Chemical Vapor Deposition presented in this
chapter several conclusions can be drawn. The numerical methods tested
all use Euler Backward time integration and Globalized Inexact Newton
methods to solve the nonlinear system in each time step. Also tests are
performed where the Globalized Inexact Projected Newton method is used.
Further, the performance of various preconditioners is compared.

For two-dimensional simulations of an axisymmetric reactor it is con-
cluded that application of projected Newton methods instead of the ‘regu-
lar’ type of Newton methods gives occasionally an improvement in com-
putational efficiency. These slight improvements are only observed when
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the weaker block-diagonal type preconditioners are used. However, for
three-dimensional experiments, the Projected Newton methods are indis-
pensable. Further, we have shown through numerical experiments that
traditional clipping methods, which are not mass conserving, give less ac-
curate time dependent solutions than the projected Newton methods,which
conserve mass.

On the other hand, the total computational costs are also determined
by the efficiency of the linear solver. In this chapter preconditioned Krylov
solvers are used. Various preconditioners are presented and compared.
Choosing the best preconditioner, in this case block ILU, combined with the
project Newton methods enables us to compute time dependent solutions,
from inflow until steady state, on a 70×70×70 grid with 17 reactive species.





CHAPTER 9

Numerical Modeling of Solid
Oxide Fuel Cells

The emphasis of the numerical methods and simulation results in this thesis
has been mainly on Chemical Vapor Deposition (CVD). As mentioned in
Chapter 1 all numerical methods should also be applicable to the numerical
modeling of other chemically reacting (laminar) flow problems. Another
typical example of such an application are Solid Oxide Fuel Cells (SOFC).
SOFC’s are electrochemical conversion devices that produce electricity di-
rectly from oxidizing a fuel and have a wide variety of applications from
use as auxiliary power units in vehicles to stationary power generation with
outputs from 100 W to 2 MW, see for instance Singhal & Kendall (2003).
Typically, they operate at temperatures between 600 ◦C and 1000 ◦C. The
models and results discussed in this chapter are on Segmented-in-Series
architectures of SOFCs, see for instance Gardner et al. (2000) and Naka-
mura et al. (2005). In Section 9.1 a brief introduction is given on SIS-SOFC
modeling.

The mathematical and numerical difficulties in the numerical modeling
of SIS-SOFCs and CVD are to a large extent identical. For both stationary
and instationary computations the inherent stiffness of the reaction terms
in the transport equations for the reactive species cause the simulations to
be computationally expensive.

With respect to instationary simulations and positivity of the species
mass fractions, it is remarked that the absence of advection terms in the
SOFC model equations is favorable. As mentioned in Section 5.3.1, the
second order Rosenbrock schemes are positive (in the linear sense) for all
time step sizes for diffusion - reaction equations. From that perspective, the
set of suitable positive time integration methods is larger for this particular
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application. However, in this chapter we only present steady state solutions,
which are computed by the (adapted) Euler Backward solver, combined
with Inexact Newton methods and preconditioners as presented in Chapters
5, 6 and 7.

This chapter is organized as follows. In Section 9.2 the mathematical
model of Solid Oxide Fuel Cells (SOFC) is shortly discussed, with special
attention for the electrochemistry, species transport in porous media and
elementary catalytic chemistry in so-called segmented-in-series SOFCs.

Section 9.3 is devoted to the numerical methods used in the simulations.
In Section 9.4 some steady state numerical results are presented, which
have already been published in Kee et al. (2008). Further, in Section 9.5
we enumerate a collection of mathematical challenges with respect to the
numerical modeling of SIS-SOFCs.

9.1 Introduction

Figure 9.1: Segmented-in-series SOFC module after Kee et al. (2008)

In Figure 9.1 a section of a segmented-in-series (SIS) SOFC module is
illustrated. In this module, the planar SIS cells are arrayed on the outside
of a porous-ceramic support structure, where fuel is flowing inside the
support and air flows on the outside. Each cell is composed of a membrane-
electrode assembly (MEA) that consists of a cermet anode (e.g., Ni-YSZ),
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dense electrolyte (e.g., YSZ), and composite cathode (e.g., LSM-YSZ). Each
layer is usually on the order of a few tens of microns thick. The inset
of Figure 9.1 shows that each cell is connected electrically in series with
its neighboring cells. The width of each cell is typically in the order of
tens of millimeters. As illustrated here, there is a porous catalyst layer
applied to the interior of the support structure, which can assist reforming
hydrocarbon fuel streams.

In each unit cell, electrons are introduced into the cathode via elec-
tric conduction. Electrochemical reduction of oxygen transfers the electron
to an oxygen ion O2− in the ion-conducting phase. With the dense elec-
trolyte being purely an ion conductor, only oxygen ions can be transferred
from the cathode into the dense electrolyte. On the anode side fuel is
electrochemically oxidized by the oxygen ions to deliver electrons in the
electronic-conducting phase. In Figure 9.2 this is illustrated in the balloon.
For detailed descriptions we refer to Zhu et al. (2005) and Zhu & Kee (2008)
and the references therein.

Rolls-Royce is developing such planar architectures, see Gardner et al.
(2000) and Agnew et al. (2007), and call their particular design an Integrated
Planar Solid Oxide Fuel Cell (IP-SOFC). Potential benefits of using SIS
architectures over others are, for instance, the short current paths and the
series connection that builds up voltage on the module, such that internal
resistance is lowered. Furthermore, the cells can be fabricated at relative low
cost technologies, see Kee et al. (2008). The model presented in this chapter
of the thesis is a quantitative tool to assist evaluating design alternatives.

Over the last years significant advances have been made in developing
numerical models for IP-SOFC systems. For instance, Haberman and Young
developed a three-dimensional CFD model, which incorporates porous me-
dia flow, reforming chemistry and electrochemistry, to investigate the effects
of fuel and air flow as well as heat and mass transport on the system level,
see Haberman & Young (2004), Haberman & Young (2006) and Haberman
& Young (2008). Costamagna et al. (2004) developed an electrochemical
model, in which fluid and mass transport are coupled with chemical and
electrochemical processes, to represent an IP-SOFC system.

The model presented in this chapter and published in Kee et al. (2008)
is a two-dimensional numerical model for an SIS unit cell. Compared to
prior literature, this model makes significant advances in the fundamental
representation of chemistry and electrochemistry. Electric potentials for
both ion- and electron-conducting phases are modeled throughout the en-
tire cell. Hence, both ionic and electron fluxes are predicted throughout
the system. Electrochemical charge-transfer chemistry depends on the lo-
cal temperature, gas-phase composition, and electric-potential differences
between phases. The spatial extent of the charge-transfer region depends
on electrode structure, including primary particle sizes, phase densities,
porosity, tortuosity, etc. Porous media gas-phase transport is represented
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with a Dusty-Gas model. The model also represents elementary catalytic
chemistry (typically tens of elementary reactions) within the anode, which
is important to represent internal reforming when using hydrocarbon fuels.

9.2 Mathematical Description of SOFC

In Figure 9.2 the two-dimensional representation of an MEA unit cell of
the SIS-SOFC module illustrated in Figure 9.1 is given. For the present
study holds that the modeling of the distributed charge-transfer chemistry
and catalytic reforming only consider the unit cell. Thus, the modeling
of the fuel flow and the porous media transport in the support layer are
not considered. Modeling these components and the system as a whole
is certainly important. However, the modeling of the other components is
relatively straightforward compared to the modeling of the chemistry in
the MEA.

The balloon in Figure 9.2 shows ion and electron transport at the micro-
scopic particle scale. Considering the dimensions of one MEA unit cell it is
impractical to model at the particle scale. Instead, the problem is posed as
continuum partial differential equations that describe the electric potentials
for the electrode and electrolyte phases as well as Faradaic charge transfer
between phases. Percolation theory is used to make the connection be-
tween particle and continuum representations, see Zhu & Kee (2008). The
porous-media flow of gases in the pore spaces is modeled with a Dusty-Gas
model. Catalytic reforming and partial oxidation within the anode is based
upon an elementary reaction mechanism. Because the anode and cathode
thicknesses of a SIS-SOFC cell are on the order of 50 µm, the electrochemi-
cal charge-transfer processes are likely distributed throughout most of the
porous electrode structure, see Zhu & Kee (2008). Therefore, SIS models
must accommodate charge-transfer electrochemistry throughout the MEA.
The derivation of the distributed charge-transfer model used in this chap-
ter is published in Zhu & Kee (2008). In Sections 9.2.1, 9.2.2 and 9.2.3 a
summary of this model is presented.

9.2.1 Porous Media Transport and Chemistry

For chemically reacting gas flows in porous media the transport equation
for gas-phase species i, i = 1, . . . ,N, is given by

∂(φgρωi)

∂t
+ ∇ · ji = miṡi, (9.1)

where φg is the porosity and ṡi is the molar production rate per unit volume
of the gas phase species via thermal and electrochemical reactions. Ac-
cordingly, ṡi is function of temperature, gas concentrations, surface species
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Figure 9.2: Unit cell and its physical dimensions used in the present study
after Kee et al. (2008)

coverages and the electric potential among the electrode and electrolyte
phases. The overall mass continuity equation is

∂(φgρ)

∂t
+

N
∑

i=1

∇ · ji =

N
∑

i=1

miṡi. (9.2)

Remark that in this case the diffusive fluxes and molar production rate do
not add up to zero. In the diffusive fluxes is also accounted for transport
due to pressure gradients such that they do not add up to zero. Due to
the dependence of the molar production rates on local electric potential
differences, the molar production rate do not add up to zero.

Recall that instead of solving equation (9.1) for all species in the gas
mixture, the mass fraction of species N is computed via the property that
all mass fraction add up to one, i.e.,

ωN = 1 −
N−1
∑

i=1

ωi. (9.3)

The species mass fluxes ji are evaluated by the the Dusty-Gas model, see
Mason & Malinauskas (1983). Mathematically the Dusty-Gas model is
denoted as the implicit relationship

∑

i,k

ciJk − ckJi

ctotD
e
ki

+
Jk

De
k,Kn

= −∇ck −
ck

De
k,Kn

Bg

µ
∇P, (9.4)



134

where ci is the molar concentration of species i, ctot = P/RT the total molar
concentration, Bg the permeability, Ji is the molar diffusion flux of species i
and µ the mixtue viscosity. Molar diffusion and mass diffusion are related
through

Ji =
ji

mi
. (9.5)

Further, in equation (9.4), De
ki

is the effective diffusion coefficient and
De

k,Kn
is the effective Knudsen diffusion coefficient. Knudsen diffusion is a

means of diffusion caused by gas-wall collisions between the gas molecules
and the walls of the pores in the porous medium. Clearly, the Knudsen
diffusion coefficients depends upon the porous media structure, which is
characterized by the porosity, the average pore radius rp and tortuosity τg.
The effective binary and Knudsen diffusion coefficients are evaluated as

De
ki =
φg

τg
Dki, (9.6)

and

De
i,Kn =

2

3

rpφg

τg

√

8RT

πmi
. (9.7)

Remark that Knudsen diffusion becomes more important for Knudsen num-
bers Kn, defined as

Kn =
ξ

rp
, (9.8)

with ξ the mean free path length, larger than 0.01. Typically, the mean free
path lengths for the species in the SOFC models considered in the present
are of the order of the pore diameter. Thus, Kn > 0.01. The binary diffusion
coefficients Dki in expression (9.6) is determined from kinetic theory, see for
instance Kee et al. (2003). Finally, the permeability can be evaluated from
the Kozeny-Carman relationship as

Bg =
φ3

gd2
p

72τg(1 − φg)2
, (9.9)

where dp is the particle diameter. Further details of the Dusty Gas Model
can be found in Zhu et al. (2005).

With respect to the molar production rate of the gas-phase species ṡi the
following is remarked. Typically, the pore spaces are sufficiently small such
that the most likely collisions are between gas molecules and surfaces of the
particles in the porous media. Consequently, the gas-phase homogeneous
kinetics is usually negligible, such that ṡi is a function of local temperature,
gas composition, surface coverage and electric potential differences between
electrode and electrolyte phases.

The boundary conditions needed to solve equations (9.1) and (9.2) are:
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• at the interface with the air and fuel compartments the gas-phase
composition is assumed to be equal to that within either the bulk fuel
or air flow, and,

• at the interfaces with the dense electrolyte and interconnectors the
gas-phase species fluxes vanish.

The results presented in this chapter use a reaction mechanism that is
developed for Ni-YSZ composites, see Hecht et al. (2005). This mechanism,
which does not specifically account for coke-formation reactions, considers
42 reactions among 6 gas-phase species and 12 additional surface-adsorbed
species. It is presented in Table 9.1.

9.2.2 Charge Conservation

In the MEA structure there are two participating electric phases, i.e., the
electron conducting phase and the ion-conducting phase. The electrochem-
ical charge-transfer reactions depend on the electric-potential difference
between these participating phases. The mathematical model of the charge
transport involves three electric potentials:

• the electric potential for the electron-conducting phase in the anode
Φa, and,

• the electric potential for the electron-conducting phase in the cathode
Φc, and,

• the electric potential for the ion-conducting phase Φe,

which satisfy the conservation equations

∂qe

∂t
= ∇ · σe

e∇Φe −



















ṡa,e within the anode
0 within the electrolyte
ṡc,e within the cathode

, (9.10)

∂qa

∂t
= ∇ · σe

a∇Φa + ṡa,e within the anode, and, (9.11)

∂qc

∂t
= ∇ · σe

c∇Φc + ṡc,e within the cathode. (9.12)

In equations (9.10), (9.11) and (9.12) qm (m = a, c, e) is the charge in the
particular phase, ṡm,e (m = a, c, e) is the charge-transfer rate between the
phases, σe

a is the effective conductivity of the electron-conducting phase in
the anode, σe

c is the effective conductivity of the electron-conducting phase
in the cathode and σe

e is the effective conductivity of the ion-conducting
phase in the electrolyte.
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Table 9.1: Heterogeneous reaction mechanism for CH4 reforming on Ni-
based catalysts. This mechanism is taken from Zhu et al. (2005).

H2 + (Ni) + (Ni)→ H(Ni) + H(Ni) H(Ni) + H(Ni)→ (Ni) + (Ni) +H2

O2 + (Ni) + (Ni)→ O(Ni) + O(Ni) O(Ni) + O(Ni)→ (Ni) + (Ni) + O2

CH4 + Ni→ CH4(Ni) CH4(Ni)→ (Ni) + CH4

H2O + (Ni)→ H2O(Ni) H2O(Ni)→ (Ni) + H2O

CO2 + (Ni)→ CO2(Ni) CO2(Ni)→ (Ni) + CO2

CO + (Ni)→ CO(Ni) CO(Ni)→ (Ni) + CO

O(Ni) +H(Ni)→ OH(Ni) + (Ni) OH(Ni) + (Ni)→ O(Ni) +H(Ni)

OH(Ni) +H(Ni)→H2O(Ni) + (Ni) H2O(Ni) + (Ni)→ OH(Ni) +H(Ni)

OH(Ni) + OH(Ni)→ O(Ni) +H2O(Ni) O(Ni) +H2O(Ni)→ OH(Ni) + OH(Ni)

O(Ni) + C(Ni)→ CO(Ni) + (Ni) CO(Ni) + (Ni)→ O(Ni) + C(Ni)

O(Ni) + CO(Ni)→ CO2(Ni) + (Ni) CO2(Ni) + (Ni)→ O(Ni) + CO(Ni)

HCO(Ni) + (Ni)→ CO(Ni) +H(Ni) CO(Ni) +H(Ni)→ HCO(Ni) + (Ni)

HCO(Ni) + (Ni)→ O(Ni) + CH(Ni) O(Ni) + CH(Ni)→ HCO(Ni) + (Ni)

CH4(Ni) + (Ni)→ CH3(Ni) + H(Ni) CH3(Ni) +H(Ni)→ CH4(Ni) + (Ni)

CH3(Ni) + (Ni)→ CH2(Ni) + H(Ni) CH2(Ni) +H(Ni)→ CH3(Ni) + (Ni)

CH2(Ni) + (Ni)→ CH(Ni) +H(Ni) CH(Ni) +H(Ni)→ CH2(Ni) + (Ni)

CH(Ni) + (Ni)→ C(Ni) +H(Ni) C(Ni) +H(Ni)→ CH(Ni) + (Ni)

O(Ni) + CH4(Ni)→ CH3(Ni) + OH(Ni) CH3(Ni) + OH(Ni)→ O(Ni) + CH4(Ni)

O(Ni) + CH3(Ni)→ CH2(Ni) + OH(Ni) CH2(Ni) + OH(Ni)→ O(Ni) + CH3(Ni)

O(Ni) + CH2(Ni)→ CH(Ni) + OH(Ni) CH(Ni) + OH(Ni)→ O(Ni) + CH2(Ni)

O(Ni) + CH(Ni)→ C(Ni) + OH(Ni) C(Ni) + OH(Ni)→ O(Ni) + CH(Ni)

Equations (9.1) and (9.2) are nonlinearly coupled through the reaction
terms to equations (9.10), (9.11) and (9.12). As mentioned earlier in Section
9.2.1, the molar production rate for each species in the k-th reaction can be
represented as

ṡi,k = (ν′′ik − ν
′
ik)qk, (9.13)

where qk is the rate-of-progress variable for the k-th reaction. If the charge-
transfer rate is represented in a Butler-Volmer equation, see Section 9.2.3,
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the rate-of-progress qk of the electrochemical step k can be calculated as

qk =
ie,k

ne,kF
. (9.14)

In expression (9.14) ne,k represents the number of electrons transferred and
ie,k the current density per unit length resulting from the k-th electrochem-
ical reaction. The total charge-transfer rate per unit volume from all the
electrochemical reactions can be expressed as

ṡm,e =

I
∑

i=1

λV
TPBie,i, (9.15)

with λV
TPB

the triple-phase-boundary length per unit volume. For detailed
information we refer to Zhu & Kee (2008).

The boundary conditions needed to solve the system of equations (9.1),
(9.2), (9.10), (9.11) and (9.12) are summarized in Figure 9.3.

Figure 9.3: Boundary conditions

9.2.3 Charge Transfer Processes

Although the fuel stream on the anode may consist of hydrogen, hydro-
carbons and carbon monoxide, in this study it is assumed that hydrogen
is the only electrochemically active fuel species, see Zhu et al. (2005). The
electrochemical H2 oxidation within the anode and O2 reduction within the
cathode is written globally as

H2(g) +O2−(el)⇋ H2O(g) + 2e−(a), and (9.16)
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1/2O2(g) + 2e−(c)⇋ O2−(el), (9.17)

where O2−(el) are oxygen ion within the bulk electrolyte, e−(a) are the elec-
trons within the anode and e−(c) are the electrons within the cathode. The
local charge transfer rates for electrochemical H2 oxidation within the anode
and O2 reduction within the cathode can be represented in Butler-Volmer
form as

ie,BV = i0

{

exp

(

αaFηact

RT

)

− exp

(

−
αcFηact

RT

)}

, (9.18)

where αa and αc are the anodic and cathodic symmetric factors, respectively,
and ηact the activation overpotentials.

The local electric-potential difference within the anode Ea and the local
electric-potential difference within the cathode Ec are defined as

Ea = Φa −Φa,e, Ec = Φc −Φc,e. (9.19)

The activation overpotential for the anode ηact is then defined as

ηact,a = Ea − E
eq
a , (9.20)

where E
eq
a is the local equilibrium electric-potential difference in the anode.

Analogously, the activation overpotential for the cathode ηact is defined as

ηact,c = Ec − E
eq
c , (9.21)

with E
eq
c is the local equilibrium electric-potential difference in the cathode.

Under the assumption that throughout the MEA structure the bulk con-
centration O2− is spatially uniform, the local equilibrium electric-potential
differences in the anode and cathode, respectively, can be evaluated as

E
eq
a =

µ◦
H2O
− µ◦

H2

2F
+

RT

2F
ln

(

PH2O,a

PH2,a

)

, and, (9.22)

E
eq
c =

µ◦
O2

4F
+

RT

2F
ln(PO2,c), (9.23)

where µ◦
i

is the standard-state chemical potential of species i, and Pi is the
partial pressure of species i measured in atmospheres.

The exchange current densities i0 in the Butler-Volmer equation (9.18)
represent the temperature and species dependencies for the charge-transfer
reactions. Zhu et al. (2005) derived the following expression for the ex-
change current density of H2 oxidation :

i0,H2
= i∗H2

(

PH2/P∗H2

)(αa−1)/2 (
PH2O

)αa/2

1 +
(

PH2/P∗H2

)1/2
. (9.24)
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The parameter P∗
H2

depends upon hydrogen adsorption and desorption
rates. The temperature dependence can be expressed as

i∗H2
= i∗ref,H2

exp

(

−
Ea,H2

R

[

1

T
− 1

Tref

])

, (9.25)

where Ea,H2
is an activation energy, and the parameter i∗

ref,H2
is assigned

empirically to fit measured polarization data at the reference temperature
Tref. Similarly, the exchange current density for oxygen reduction at the
cathode is

i0,O2
= i∗O2

(

PO2/P∗O2

)αa/2

1 +
(

PO2/P∗O2

)1/2
, (9.26)

where

i∗O2
= i∗ref,O2

exp

(

−
Ea,O2

R

[

1

T
− 1

Tref

])

. (9.27)

In expression (9.26) the parameter P∗
O2

depends upon the adsorption and
desorption rates. In expression (9.27) Ea,O2

is an activation energy and i∗
ref,O2

is assigned empirically. Again, the partial pressures in expressions (9.24)
and (9.26) are measured in atmospheres.

9.3 Numerical Methods

Two numerical approaches are used to compute the numerical solution of
the coupled system of the nonlinear partial differential equations (9.1), (9.2),
(9.10), (9.11) and (9.12) formulated in the previous section. Since the interest
is only in the steady state solution, Kee et al. (2008) computed this steady
state solution by means of solving subsequently and iteratively the model
for electric-potential distributions, the species transport, and the chemical
and electrochemical reactions. Since the reaction terms do not involve
spatial operators, the chemistry and electrochemistry are solved per grid
point throughout the electrode structures by a time-relaxation algorithm.

Another approach, used in this thesis, is to solve the system of partial
differential equations and algebraic constraints using the Euler Backward
solver as described in Chapter 5, 6 and 7. Remark that some adaptations
have to be made for the incorperation of the PDEs describing the electric-
potential distributions (see equations (9.10), (9.11) and (9.12)) and the linear
constraints to compute the diffusive fluxes (see equation (9.4)). The latter
are simply added in the right-hand side of the semi-discrete system,i.e.,

[

w′(t)
0

]

=

[

F1(t,w(t))
F2(t,w(t))

]

, (9.28)
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where F1(t,w) represents the spatially discretized electric-potential and
species equations in the cathode and anode, and F2(t,w) represents the spa-
tially discretized linear constraints for the diffusion fluxes in the cathode
and anode.

The calculation of thermodynamic and transport properties for each
species, and the evaluation of the chemical reaction rates in the detailed
reaction mechanisms, has been done with the C++ Cantera interface, see
Goodwin (2008). However, the solution procedures and remaining other
parts of the code are written in Fortran 90. An interface has been created
such that the Cantera C++ routines can be called from the Fortran subrou-
tines.

The resulting nonlinear algebraic equations are solved with the Glob-
alized Inexact Newton method described in Chapter 6. It appears that for
these simulations Projected Newton methods are not necessary. In the case
one wants to apply the Projected Newton method, the projection only has
to be applied to the species concentrations, since electric potentials can be
negative.

The resulting linear systems are solved with a preconditioned Bi-CGSTAB
method, where a block ILU preconditioner has been used. This precondi-
tioner will be discussed in more detail. The block-nonzero structure of the
fully coupled system is illustrated in Figure 9.4. The diagonal block EP
corresponds to the nonzero structure of the discretized Laplace operator,
whereas the nonzero blocks SC, SA, DC and DA have the nonzero structure
of the Jacobian-matrix as in the species equations appearing in Chemical
Vapor Deposition simulations, see Chapter 7.

The approach to compute a block incomplete factorization of the matrix
with a nonzero structure as in Figure 9.4 is as follows. Here, we recycle
as much as possible of the block ILU preconditioner described in Chapter
7. The block incomplete factorization as implemented in our code uses the
blocks as illustrated in Figure 9.4. To obtain this block incomplete factor-
ization the diagonal blocks EP, SC, SA, DC and DA need to be ‘inverted’.
Instead of computing the ‘exact’ inverse (as was done in Chapter 7) we use
the block ILU factorization of Section 7.4.1 as an approximation of the in-
verse. For the block EP corresponding to the electric-potential equations a
regular incomplete factorization is used. The multiplications of the ‘approx-
imated’ inverse diagonal elements by a matrix D is computationally cheap
to compute, because D is a diagonal matrix. Exactly the same situation is
observed in the construction of the block ILU factorization preconditioner
described in Chapter 7.

Using this solver configuration computing times to calculate the steady
state solution of these problems take about 41/2 - 51/2 hours for moderately
fine meshes. These meshes contain of about 3000 - 5000 finite volume cells
and produce accurate results. However, computing times might be reduced
by incorporating information that is known beforehand. It is expected, and



9.4. Numerical Results 141

this can also be seen in the numerical results in the next section, that the
solution in the direction normal to the cathode-electrode interface behaves
virtually one-dimensionally along a substantial part of this interface. In
our current solver this information is not used in the algorithm to solve the
nonlinear and linear systems.

A first approach to use this information is the following. Over most
of the computational domain where the solution behaves virtually one-
dimensional, a preconditioner could be build based upon a line solver (in
the direction normal to the cathode-electrode interface). Using the correct
ordering of unknowns, this implies that that along this section the precon-
ditioner is locally exact.

Another approach to decrease the total computational costs would be
on the level of Newton iteration. It might be very well possible to improve
the initial guess by using the information that a very large part of the
solution behaves as the solution of a one-dimensional ‘shadow’ problem.
The resulting number of Newton iterations decreases when the initial guess
is ‘closer’ to the solution. In that case the total computational costs will
decrease considerably.

9.4 Numerical Results

The results reported in this section are based on an LSM-YSZ|YSZ|Ni-YSZ
SIS unit cell. The physical dimensions are shown in Figure 9.2 and model
parameters are shown in Table 9.2. The porous cathode consists of two
layers: 30 µm LSM-YSZ functional layer near the dense electrolyte layer to
promote charge-transfer chemistry and a 30 µm LSM layer to increase the
lateral electric conductivity. The dense YSZ electrolyte is 20 µm thick and
the Ni-YSZ anode is 50 µm thick. Overall the unit cell is 2600 µm wide.

As an example, consider the fuel mixture at the interface between the
porous support and the anode to consist of 66.1 mole% H2, 21.8 mole% CO,
11.6 mole% CH4, 0.3 mole% H2O, and 0.2 mole% CO2. This mixture, chosen
somewhat arbitrarily, is the equilibrium product of an initial mixture of 60
mole% CH4 and 40 mole% H2O at 800 ◦C and atmospheric pressure. The
cathode side of the unit cell is exposed to air. The cell is operating at 800 ◦C,
atmospheric pressure and the difference between the cathode interconnect
potential (left side of unit cell) and the anode interconnect (right side of the
unit cell) is 0.5 V.

Figure 9.5 is a composite image that illustrates many aspects of the
solution. The color contours represent electric potentials of the electrolyte
phase Φe. The white lines superimposed on the color contours are “path
lines” for electron flux. These lines originate on nine equal intervals across
the interconnect face. These path lines follow the electron paths from the
interconnect face, but they do not represent the magnitudes of the electron
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Figure 9.4: Nonzero structure of the Jacobian matrix. The block EP cor-
responds to the partial derivatives of the electric-potential equations, the
block SC corresponds to the partial derivatives of the species equations
in the cathode, the block SA corresponds to the partial derivatives of the
species equations in the anode, the block DC corresponds to the partial
derivatives of the algebraic constraints for the diffusion fluxes in the cath-
ode and the block DA corresponds to the partial derivatives of the algebraic
constraints for the diffusion fluxes in the anode. The blocks D are diago-
nal blocks representing partial derivatives of the coupling between various
unknowns.
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Table 9.2: Parameters for modeling the MEA unit cell

Parameter Value Unit

Anode
Thickness Ha 50 µm
Porosity φg 0.35
Ni volume fraction φNi 0.23
YSZ volume fraction φYSZ 0.42
Tortuosity τg 4.50
Ni particle radius rNi 0.50 µm
YSZ particle radius rYSZ 0.50 µm
Effective Ni electric conductivity at 800 ◦C σe

a 1134.42 S · cm−1

Effective YSZ electric conductivity at 800 ◦C σe
e 0.01156 S · cm−1

Exchange current factor i∗
ref,H2

4.80 · 103 A · cm−3

Activation energy Ea,H2
120.0 kJ ·mol−1

Reference temperature Tref 800.0 ◦C
Anodic symmetric factor 1.5
Cathodic symmetric factor 0.5

Cathode
Thickness Hc 60 µm
Porosity φg 0.35
LSM volume fraction φLSM 0.31
YSZ volume fraction φYSZ 0.34
Tortuosity τg 4.00
LSM particle radius rLSM 0.625 µm
YSZ particle radius rYSZ 0.625 µm
Effective LSM electric conductivity at 800 ◦C σe

c 46.03 S · cm−1

Effective YSZ electric conductivity at 800 ◦C σe
e 7.47 · 10−3 S · cm−1

Exchange current factor i∗
ref,O2

130.0 A · cm−3

Activation energy Ea,H2
120.0 kJ ·mol−1

Reference temperature Tref 800.0 ◦C
Anodic symmetric factor 0.75
Cathodic symmetric factor 0.25

Electrolyte
Thickness 20 µm
Effective YSZ electric conductivity at 800 ◦C σe

e 0.04226 S · cm−1
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flux.
There are several interesting observations that can be gathered from

the electron path lines. Assuming that the dense electrolyte is a pure ion
conductor, the electron path lines cannot penetrate into the dense electrolyte
layer. Rather, charge crosses the dense electrolyte in the form of O2−-flux. As
discussed subsequently, in the cathode charge is transferred from electrons
in the electrode phase (LSM) to the oxygen ion in the electrolyte phase
(YSZ). Then, within the anode charge is transferred from the electrolyte
phase (YSZ) to the electrode phase (Ni). The concentration of electron path
lines in the LSM layer is clear evidence of its lower electrical resistance.

Figure 9.5: Steady state solution for a unit cell and nominal operating
conditions

The interconnect structures in the nominal cell are only 80 µm wide.
Thus, all the electrical current produced by the roughly 2200 µm width of
the active cell must be channeled into the relatively small interconnect. This
current concentration can potentially cause local heating, or other possibly
deleterious effects on the cell materials. One expects that careful design of
the interconnect regions is important to cell reliability and lifetime.

The upper graph in Figure 9.5 shows profiles of several variables along
the interface between the cathode and the dense electrolyte. The cathode
layer is LSM-YSZ, and the model assumes that the LSM particles (cathode
phase) are pure electron conductors and the YSZ particles (electrolyte phase)
are pure oxygen-ion conductors. The electric potential of the cathode phase
is always greater than the electrolyte phase. This relationship is the result of
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Figure 9.6: Steady state solution profiles across the MEA unit cell midway
between the anode and cathode interconnectors

local electrical double layers between the electrode and electrolyte particles.
The electric potentials of both the cathode phase Φc and electrolyte phase
Φe increase from left to right. Within the composite cathode structure, both
negatively charged ions and electrons are being transported from left to
right. Such charged-species transport is driven in the direction of the nega-
tive electrochemical-potential gradient. This means that negatively charged
species generally must be transported up the electric-potential gradient (i.e.,
from regions of relatively more negative electric potential toward regions
of relatively more positive electric potential). The activation overpotential
in the cathode structure is negative. Based on the Butler-Volmer equation,
a negative overpotential means that the net electrochemical charge-transfer
is “cathodic” (meaning that electrons are consumed).

Figure 9.5 shows mole-fraction profiles for N2 and O2. As expected,
because of oxygen consumption the N2 mole fraction increases slightly
while the O2 mole fraction decreases slightly.

The lower graph in Figure 9.5 shows solution profiles within the cermet
anode structure along the interface between the dense electrolyte and the an-
ode. Similar to the cathode structure, the electric-potential profiles increase
lightly from left to right. Again, this is because the negatively charged ions
and electrons are transported up the electric potential gradients. However,
because the Ni electrical conductivity is so high, the electric-potential gradi-
ent within the anode phase is small. The lateral electric-potential gradient
within the electrolyte phase (YSZ) is also small. This is because oxygen-ion
flux is dominantly in the direction normal to the dense electrolyte. Upon
transferring charge from the oxygen ion in the YSZ phase to a electron in
the Ni phase, the electron flux toward the anode interconnector provides a
low-resistance path.

Gas-phase species profiles are also shown on Figure 9.5. The gradients
are generally small. The H2 mole fraction is roughly 61% at the dense
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electrolyte interface, while the unreacted level at the interface with the
porous support is roughly 66 %. The decrease near the dense electrolyte
is expected as a result of consumption via electrochemical charge-transfer
reactions. The H2 electrochemical consumption rate decreases slightly from
left to right, causing a slight increase in H2 mole fraction profile. The
consumption rate is highest near the cathode interconnect as a result of
slightly higher activation overpotentials in upper left-hand corner of the
anode structure.

The H2O mole fraction is roughly 7 % at the dense electrolyte interface,
while at the porous-support interface it is only 0.3 %. Because H2O is the
product of electrochemical charge-transfer reactions, the increased levels
are expected. The H2 O decreases slightly from left to right as a result of
decreased charge transfer rates toward the anode interconnect, and some
consumption by steam-reforming of CH4. The CH4 levels are around 11 %,
which is slightly lower than the 11.6 % in the feed. The CH4 is reformed
with electrochemically produced steam to produce some H2 and CO.

Over much of the MEA unit-cell many of the solution components are
essentially one-dimensional. For example, species profiles depend primar-
ily upon the direction normal to the dense electrolyte. The electric potentials
have greater lateral variations than the species profiles, but still vary pri-
marily in the direction normal to the dense electrolyte. In the vicinity of the
interconnectors there is significant two-dimensional behavior as the current
is channeled into the connections between unit cells.

Figure 9.6 shows solution profiles through the MEA and normal to
the dense electrolyte at a lateral position in the middle of the unit cell
(specifically, 1200 µm from the left edge of the anode structure). In this
figure the anode is on the left and cathode is on the right. The anode
phase (Ni) electric potential is essentially uniform at Φa = - 0.014 V and the
cathode phase (LSM) electric potential is essentially uniform at Φa = 0.5 V.
The anode interconnector is at Φa = 0 V and the cathode interconnector is
at Φa = 0.5 V. As discussed in connection with Figure 9.5, the deviations
from the interconnector values are due to the potential gradients needed to
support the lateral current flux.

The electrolyte phase (YSZ) electric potential varies considerably through
the thickness of the MEA. This is because of the relatively low ion conduc-
tivity and the charge-transfer process between the electrode and electrolyte
phases. On the anode side, the electrode (Ni) electric potential is always
lower than the electrolyte (YSZ) potential, and the overpotential is always
positive. This relationship is established because of the electrical double-
layer between the electrode and electrolyte phases. The electric-potential
difference ∆Φ = ΦNi − ΦYSZ is always negative within the anode structure,
but becomes less negative near the dense electrolyte interface. Conse-
quently, the anodic charge-transfer rate is higher near the dense electrolyte
interface. As the magnitude of ∆Φ decreases (i.e., the YSZ particles become
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less positive) the rate of the charge-transfer reaction (9.16) increases. This
can be understood qualitatively in the sense that as the strength of the dou-
ble layer decreases, it becomes easier to transfer negative charge into the
negative electrode.

Within the dense electrolyte the electrolyte-phase electric potential is
linear. The oxygen-ion flux is proportional to the electric-potential gradient
and the ion conductivity. Assuming that YSZ is a pure ionic conductor,
there is no need to consider an electrode-phase electric potential within the
dense electrolyte.

Within the LSM-YSZ cathode structure, the electric potential of the elec-
trode (LSM) phase is positive relative to the electric potential of the elec-
trolyte (YSZ) phase. As in the anode structure, there is significant spatial
variation in the YSZ electric-potential profile. The electric-potential differ-
ence ∆Φ = ΦLSM−ΦYSZ is always positive within the cathode structure, but
becomes less positive near the dense electrolyte interface. Consequently,
the cathodic charge-transfer rate is higher near the dense electrolyte inter-
face. As the magnitude of ∆Φ decreases (i.e., the YSZ particles become
more positive) the rate of the charge-transfer reaction (9.17) increases. This
can be understood qualitatively in the sense that as the strength of the dou-
ble layer decreases, it becomes easier to transfer negative charge from the
electrode into the relatively negative electrolyte. Within the cathode struc-
ture, the activation overpotential is always negative. In the context of the
Butler-Volmer equation, a negative overpotential drives the charge-transfer
reaction in the cathodic direction (i.e., consuming electrons).

The gas-phase mole-fraction profiles shown in Figure 9.6 have expected
behaviors. In the anode pore spaces, the H2 fuel decreases toward the dense
electrolyte as a result of electrochemical consumption. The electrochemical
reaction product H2O decreases toward the interface with the support struc-
ture. CO and CH4 levels are nearly uniform, but both decreases slightly
toward the dense electrolyte interface. On the cathode side, the O2 mole
reaction decreases toward the dense-electrolyte interface where it is con-
sumed by electrochemical reduction of O2 to form O2−. Consequently, the
N2 mole fraction must increase near dense electrolyte interface.

9.5 Summary, Conclusions and Future Challenges

The model presented in this chapter describes the transport, thermal cat-
alytic chemistry and electrochemistry within a unit cell of an SIS-SOFC. The
electrochemical charge-transfer occurs throughout the electrode structures,
whereby the local charge-transfer rate depends on the local gas mixture
composition and electric-potential differences between electrode and elec-
trolyte phases. The reforming chemistry in the anode is modeled by a ele-
mentary reaction mechanism. Charge-transfer chemistry was represented
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in Butler-Volmer form.
Important characteristics of the performance of an SIS-SOFC has been

shown by means of an illustrative example problem. Although the com-
putational model is two-dimensional, the computed solutions behave one-
dimensionally over the largest part of the computational domain. In the
vicinity of the interconnectors, however, there is a strong two-dimensional
behavior as the electronic current is channeled into the interconnection be-
tween cells. For the design of SIS-SOFC stacks, these regions of high current
densities are critical.

The numerical software used is briefly described in Section 9.3. As
remarked earlier, it is believed that the present solver, and in particular
the linear solvers, can be further optimized. Specifically, the behavior of a
substantial part of the solution is virtually one-dimensional. Probably, great
computational advantages can be achieved when this type of information is
included in the numerical solvers. Two potential strategies are formulated
in Section 9.3.

The computing times for the simulation results mentioned in Section 9.3
are hard to compare with those for the numerical experiments performed in
Kee et al. (2008). The implementation of our current solver is not optimal.
In particular, the communication between the C++ routines and the Fortran
90 routines is sometimes time consuming. However, it is believed that the
fully coupled approach, presented in this thesis, gives faster convergence
towards the solution than the approach followed in Kee et al. (2008). Where
we measured computing times of several hours, the computations of Kee
et al. (2008) took a couple of hours more. No significant differences in the
solutions computed with both solvers are found.

The solution strategy used in Kee et al. (2008) has been proven to be very
robust; the solver has been used in numerous other SOFC computations
found in for instance Zhu et al. (2005) and Zhu & Kee (2008). The solver
presented in this chapter has only been applied to the example considered
in Section 9.4. It should be remarked that the convergence speed of the
present solver depends on the initial value. Changing the initial solution
gives either slower, or faster convergence towards the steady state. From
that point of view the present solver is not as robust as the solver of Kee
et al. (2008).

The final remark concerns the need for a general stationary solver for
this type of problems. Since the physical models are constantly under
development, it would be useful when a general solver exists for this type
of problems. The two important properties that this solver needs to have
are:

• it should be capable to deal with extremely stiff systems of nonlinear
equations,

• the iterative linear solver should converge reasonably fast towards a
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linear solution,which means that effective preconditioning is needed.

Generally speaking, the construction of effective preconditioners is cru-
cial for this type of computations.





CHAPTER 10

Conclusions

The aim of this study was to develop robust and efficient numerical methods
for the instationary simulation of laminar reacting gas flows. Typically,
these flows are found in production processes such as Chemical Vapor
Deposition, or in laminar combustion. Another example of non-turbulent
reacting gas flows is a Solide Oxide Fuel Cell, in which the reactants are
flowing and the reactions are taking place in a porous medium. For the
design of time accurate simulation software for these type of problems, it is
important to understand the numerical difficulties one might encounter.

Usually, finding the solution of the flow problem is a rather trivial task
compared to the solution of the system of the advection-diffusion-reaction
equations for a large number of reactants and intermediate species. These
equations are stiffly coupled through the reaction terms, which typically
include dozens of finite rate elementary reaction steps with largely varying
rate constants. The solution of such systems of stiff equations is difficult,
for both stationary and instationary simulations.

The approach followed in this study consists of two parts. The first
step is to study discretization techniques in space and time. In Section
10.1 concluding remarks on discretization techniques are discussed. In
Section 10.2 we review the proposed solution techniques and we present
the concluding remarks concerning this topic. Subsequently, in Section 10.3
the evolution of the computing times of a representative test problem is
discussed. Finally, in Section 10.4 recommendations for future research are
formulated.
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10.1 Concluding Remarks on Discretization Techniques

For the species concentrations it is important that their non-negativity is
conserved. Since the applications studied in this thesis are characterized
by relatively low Reynolds number flows, and consequently low cell-Péclet
numbers, positivity of the species concentration equations is easily con-
served in spatial discretization. For such low cell-Péclet numbers, even the
second order accurate central differencing scheme is positivity preserving.

The story is completely different for time integration of the semi-discrete
ODEs, which are obtained after spatial discretization. Lots of research has
been done by the ODE community, which resulted in a huge amount of
literature on stable integration of stiff ODEs. However, the search for a
stiffly stable time integration method that also preserves positivity of the
solution can be restricted to first order accurate time integration methods.
Higher order time integration methods put a severe criterium on the time
step size to ensure non-negativity of the species concentrations. For reacting
flow problems this criterium is much more restrictive towards the time step
size than stability.

The Euler Backward time integration is the only known method which
is proven to be unconditionally positive. This, and the above motivates
the design of a nonstationary solver using the Euler Backward time inte-
gration method. Solving the species transport equations fully coupled and
fully implicitly involves the solution of huge systems of nonlinear alge-
braic equations. In the next section conclusions on the solution techniques
proposed in this thesis are formulated.

10.2 Concluding Remarks on Solution Techniques

Within the applied mathematics communities the traditional approach to
solve systems of nonlinear algebraic equations is Newton’s method. Com-
bined with a direct method, i.e., computing the exact Newton step, New-
ton’s method shows excellent performance with respect to positivity of the
solution. Additionally, per nonlinear iteration a few line-search iterations
are required to obtain Newton convergence due to the strong nonlinear
reaction terms present.

The computational effort to solve the interior linear algebra problem in
Newton’s method increases cubically in the number of mesh points and
the number of species in the gas mixture. The fact that the linear systems
are large and sparse motivates the introduction of preconditioned Krylov
Subspace methods to compute the solution of the interior system of linear
equations. Again, one might encounter two problems. First, by allowing
iterative linear solution methods the positivity of all species concentrations
is no longer ensured on the nonlinear solution level. Secondly, the stiff
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reaction terms give rise to huge condition numbers. Applying iterative
linear solvers to ill-conditioned linear systems usually results into no or
very poor convergence.

In order to maintain the unconditional positivity of Euler Backward time
integration, combined with Inexact Newton solvers, a projected version
of such Newton methods is applied. If this projected Newton method
converges, then the obtained solution on the new time level is guaranteed
to be positive. It has been illustrated that this approach gives more accurate
results with respect to mass conservation than alternative methods such as
clipping.

On the linear algebra level of these solvers, the influence of various pre-
conditioners on the linear convergence has been studied. Effective precon-
ditioners cluster the eigenvalues of the linear system such that, hopefully,
the condition number drops significantly as well. Consequently, fast con-
vergence of the preconditioned Krylov method is achieved. By means of
numerical experiments it has been illustrated that incomplete factorization
type preconditioners do this much more effectively than block diagonal
type preconditioners. The block incomplete factorization, where a block
corresponds to all species per grid point, has been found to be the most
effective preconditioner.

Combining these iterative solution techniques resulted in a consider-
able reduction of computional costs, compared to nonstationary solvers
equipped with direct linear solvers, and the steady state solvers developed
bij Kleijn and co-workers. Further, these numerical techniques enabled us
to perform three-dimensional time accurate transient simulations from in-
flow conditions until steady state on a 70× 70× 70 mesh in reasonable time.
The chemistry model in this case consists of 17 species that satisfy a reaction
mechanism of 26 gas phase reaction and 14 surface reactions.

10.3 Evolution of Computational Costs

It is particularly interesting to see how the total computational effort, mea-
sured in wall clock time, evolved. Recall, that the instationary computations
are running from inflow conditions until steady state. For two-dimensional
simulations on a 35 × 32 spatial mesh it evolved as:

• 25, 000 CPU sec with steady state solver of Kleijn,

• 20, 000 CPU sec with direct linear solver,

• 6, 500 CPU sec with direct linear solver and efficient ordering,

• 3, 000 CPU sec with preconditioned iterative linear solver,

• 300 CPU sec with preconditioned iterative linear solver and an effec-
tive ordering of the unknowns.
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With our current solvers the CPU time for the time accurate transient solu-
tion on a 70×82 grid has been reduced to approximately one hour, compared
to approximately a few days with the software of Kleijn. The effectivity
of these numerical techniques in the optimal configuration, that is Euler
Backward time integration, Projected Newton methods and the block ILU
preconditioner, is illustrated in the computation of the three-dimensional
nonstationary solutions:

• about 5 hours computation time on a 35 × 35 × 35 grid, and

• about 41/2 days on a 70 × 70 × 70 mesh.

In all cases the chemistry model consisted of 17 species, 26 gas phase and
14 surface reactions.

10.4 Future Research

The primary focus of the research presented in this dissertation has been
on efficient and robust solution techniques for time accurate laminar react-
ing gas flow solvers. A first start has been made on the incorporation of
iterative linear solvers in nonstationary solvers for these type of problems.
The investigated preconditioning techniques are all of the tradional-type.
Further improvements of these techniques could include multigrid based
preconditioners and/or second level preconditioning, such as deflation.

The majority of the detailed CVD chemistry models contain besides
gas phase reactions and species, also surface species and reactions. Then,
partial differential equations describing the gas phase chemistry have to
solved throughout the whole computational domain and coupled to a set
of ordinary differential equations considering the surface reactions. Extend-
ing the current software with more sophisticated surface reaction models
is of great importance, because then the majority of the published CVD
chemistry models can be used.

From a practical point of view, the existing code has to be parallelized, in
order to keep the computing times reasonable when using larger chemistry
models. The same is probably true for memory requirements. It is believed
that parallelization of this code is rather straightforward, except for the
preconditioned Krylov solver.



APPENDIX A

Positive Krylov Methods

Related to the question what conditions spatial discretization and time
integration methods need to fulfill in order to maintain all components of
the solution positive, the following problem statement is put forward. We
start by recalling the definition of an M-matrix, which has been taken from
Saad (2003). Berman & Plemmons (1994) wrote a text on the subject of
M-matrices in the mathematical sciences.

Definition A.1. An n × n matrix A is said to be an M-matrix if it satisfies the
following four properties:

1. (A)ii > 0 for i = 1, . . . , n,

2. (A)i j ≤ 0 for i , j, i, j = 1, . . . , n,

3. A is nonsingular, and,

4. A−1 ≥ 0.

Suppose that A is an M-matrix and that b ≥ 0 (component-wise). Then,
the solution x of the linear system

Ax = b, (A.1)

is component-wise positive as well.
When solving equation (A.1) by means of a preconditioned Krylov Sub-

space method, then it is a priori not known whether the approximated
solution is positive.

In this chapter we investigate the case that A is symmetric positive
definite and satisfies the M-matrix property, and the (preconditioned) linear
system is solved by means of the Conjugate Gradient method. Details of
the Conjugate Gradient method are found in standard texts on this subject,
like that of Saad (2003).
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A.1 Does the Conjugate Gradient Method Return Pos-

itive Approximations?

Assume that A is a symmetric positive definite matrix and that b ≥ 0
(component-wise). Then, it is known that

x = A−1b, (A.2)

is positive as well. When approximating the solution of (A.1) by means of
the Conjugate Gradient method, then each approximated solution that sat-
isfies an arbitrary accuracy criterium (or stop criterium), should be positive.
In other words, each Conjugate Gradient iterate should be positive.

If the initial iterate is equal to the zero-vector, then it is an easy exercise to
show that the first Conjugate Gradient iterate is always positive. Consider
the Conjugate Gradient Algorithm as stated in Algorithm 7, see Saad (2003).

Algorithm 7: Conjugate Gradient

1: Compute r0 = b − Ax0 and p0 = r0,
2: for j = 1, 2, . . . , until convergence do

3: α j = (r j, r j)/(Ap j, p j),

4: x j+1 = x j + α jp
j,

5: r j+1 = r j − α jAp j,

6: β j = (r j+1, r j+1)/(r j, r j),

7: p j+1 = r j+1 + β jp
j.

8: end for

Hence, if x0 equals the zero-vector, then r0 = p0 = b. Since A is positive
definite we have that (Ap, p) > 0 for all nonzero p. It follows that α1 ≥ 0,
and thus that x1 ≥ 0.

For the second Conjugate Gradient it is not clear whether it remains
positive, because the updated residual r2 is not necessarily positive (see line
5 of Algorithm 7). Consequently, the same holds for all subsequent iterates.

On the other hand, we could not find a counterexample for which this is
true. Numerical experiments with symmetric positive definite matrices A
revealed that for (arbitrary) positive right-hand sides b no negative entries in
the approximate solution vector x are observed. To the author’s knowledge,
this question has not been answered.

A.2 What about Preconditioning?

Logically, the second question to be put forward is which preconditioners
maintain these positivity properties. Since the first question has not been
answered (yet), there is not much to mention on this topic.
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When using the preconditioned Conjugate Gradient algorithm, then the
coefficient α1 is computed as

α1 = (r0, z0)/(Ap0, p0), (A.3)

where z0 = P−1r0 and P the preconditioner. Sufficient conditions for the
first iterate to be positive is that α1 is positive. This is true if and only if
z0 is positive. Under the assumption that the initial iterate x0 is the zero-
vector, the initial residual is equal to r0 = b. A sufficient condition for the
preconditioner P to let z0 be positive is that P is an M-matrix.

Since we are not able to proof that subsequent iterates remain positive,
we are also not able to derive conditions on the preconditioner to remain
positive solutions for the preconditioned Conjugate Gradient method.

However, numerical experiments show that for incomplete factorization
preconditioners and diagonal preconditioners all Conjugate Gradient iter-
ates are positive. Therefore, it is conjectured that preconditioners that have
the M-matrix property return positive preconditioned Conjugate Gradient
iterates.

A.3 Other Krylov Subspace Methods

So far, only Krylov methods are discussed for symmetric positive matri-
ces. For non-symmetric matrices there are generally two Krylov methods
available: the family of Bi-CGSTAB methods and the family of GMRES
methods. For both families of methods it is beforehand not even clear
whether the first iterate is positive, if it is assumed that A is an M-matrix
and b ≥ component-wise.

To the author’s knowledge, this is still an unanswered question. How-
ever, since we are not able to proof identical properties for the Conjugate
Gradient method, it is not expected that this is easily done for Krylov meth-
ods for general matrices.
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Nomenclature

A pre-exponential factor for homogeneous reaction rate mol, m3 and s
Aeq pre-exponential factor for fitted equilibrium constant mol, m3 and s
Bg permeability m 2

c molar concentration mol ·m−3

cp specific heat at constant pressure J ·mol−1 · K−1

dp particle diameter m
D binary diffusion coefficient m2 · s−1

De effective binary diffusion coefficient m2 · s−1

De
Kn

effective Knudsen diffusion coefficient m2 · s−1

DT multicomponent thermal diffusion coefficient kg ·m−1 · s−1

D′ effective multicomponent diffusion coefficient m2 · s−1

E activation energy of gas phase reaction J ·mol−1

Ea electric potential difference in the anode V
Ec electric potential difference in the cathode V
Eeq activation energy for fitted equilibrium constant J ·mol−1

f species mole fraction
F Faradaic constant C ·mol−1

g gravity vector m · s−2

H0 standard heat of formation J ·mol−1
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164 Nomenclature

i0 exchange current density A ·m−2

ie,BV charge transfer rate in Butler-Volmer equation A ·m−2

I unity tensor
j mass diffusive flux kg ·m−2 · s−1

J molar diffusive flux mol ·m−2 · s−1

Kg homogeneous reaction equilibrium constant

k
g

k,forward
forward gas phase reaction rate constant mol, m3 and s−1

k
g

k,backward
backward gas phase reaction rate constant mol, m3 and s−1

m average molecular weight kg ·mol−1

mi molecular weight of species i kg ·mol−1

N number of gas-phase species
P pressure Pa
P net mass production rate kg ·m−2 · s−1

qa charge of the anode phase C ·m−3

qc charge of the cathode phase C ·m−3

qe charge of the eletrolyte phase C ·m−3

r radial coordinate m
R universal gas constant J ·mol−1 · K−1

Rg net molar gas phase reaction rate mol ·m−2 · s−1

RS net molar surface reaction rate mol ·m−2 · s−1

ṡ molar production rate mol ·m−2 · s−1

ṡa,e faradic charge-transfer rate in the anode A ·m−3

ṡc,e faradic charge-transfer rate in the cathode A ·m−3

S number of surface reactions
S0 standard entropy of formation J ·mol−1 · K−1

t time s
T temperature K
Tin inlet temperature K
v mass averaged gas velocity m · s−1

z axial coordinate m
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Greek Symbols

αa anodic syymetric factor in Butler-Volmer equation
αc cathodic syymetric factor in Butler-Volmer equation
β temperature coefficient for reaction rate expression
βeq temperature coefficient for fitted equilibrium constant
γ reactive sticking coefficient
Γ diffusion coefficient in general transport equation for m2 · s−1

ηact,a local activation overpotential in the anode V
ηact,c local activation overpotential in the cathode V
λ thermal conductivity of the gas mixture W ·m−1 · K−1

µ viscosity of the gas mixture kg ·m−1 · s−1

µ0 standard-state chemical potential J ·mol−1

ν net stoichiometric coefficient for gas phase reaction
ν′ forward stoichiometric coefficient for gas phase reaction
ν′′ backward stoichiometric coefficient for gas phase reaction
ξ mean free path length m
ρ density kg ·m−3

σ net stoichiometric coefficient for surface reaction
σ′ forward stoichiometric coefficient for surface reaction
σ′′ backward stoichiometric coefficient for surface reaction
σe

a effective electric conductivity of anode phase, S ·m−1

σe
c effective electric conductivity of cathode phase, S ·m−1

σe
c effective electric conductivity of electrolyte phase, S ·m−1

τg tortuosity of gas phase
φ porosity
Φa anode electric potential V
Φc cathode electric potential V
Φe,a electrolyte electric potential in the anode V
Φe,c electrolyte electric potential in the cathode V
χ stoichiometric coefficient for surface reaction
ω species mass fraction



166 Nomenclature

Subscripts

C in grid point C
center at the cell center of control point
dep with respect to deposition

i, j with respect to the ith / jth gas species
i j with respect to gas pair i – j
in at the inflow
k with respect to the kth gas phase reaction
n, s, e,w at the north, south, east or west wall of grid cell
N, S,E,W at the north, south, east or west neighbor grid point
s at the wafer surface
out at the outflow
wall at the wall of the reactor

Superscripts

C due to concentration gradients
g with respect to a gas phase reaction
T due to temperature gradients
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