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Abstract

Quantum computers promise an exponential speed-up over their classical counterparts for cer-
tain tasks relevant to various fields including science, technology, and finance. To unlock this
potential, the technology must be scaled up and the errors at play must be reduced. As de-
velopments in scalable quantum computation devices advance, the demand for scalable bench-
marking techniques that are able to reliably assess the fidelity – the complement of the error
rate – of a device has increased significantly. Randomized benchmarking offers a single, con-
cise number that reflects the average fidelity of multi-qubit operations performed on a quantum
device. While this method is robust against state preparation and measurement errors, it still
suffers from scalability issues. In this thesis, we present a protocol that efficiently predicts the
multi-qubit fidelity obtained from randomized benchmarking by only benchmarking single-
and two-qubit subspaces, greatly increasing the scalability. The protocol uses simultaneous
randomized benchmarking with the aim of catching cross-talk effects while at the same time
reducing the number of required benchmarking sequences. We have run numerical simulations
of the protocol under two noise models, one depolarizing and one dephasing, to verify its per-
formance. The results of these noisy simulations are promising and suggest that our protocol
could offer a valuable tool on the road to developing large-scale quantum computers.
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1 | Introduction

The silicon transistor gave birth to a technological revolution that has changed the way we
interact with the world and with each other. While classical computing power has increased
exponentially over the years and has become widely available, certain classes of problems are
still difficult or infeasible to solve. The emergence of quantum computing technology promises
the ability to solve many of these problems efficiently [1]. A few potential applications are
simulating complex (quantum) systems such as chemical reactions, factoring large integers,
and highly efficient search algorithms [2]. The development of a commercially viable quan-
tum computer may lead to advances in the fields of materials science, chemistry, pharmacy,
cryptography, and many others. The quantum computer aims to surpass classic computers in
certain tasks by exploiting the principles of quantum mechanics [2]. Instead of storing infor-
mation in bits – either 0 or 1 – the information is stored in qubits. A qubit is any 2-level system
with available states |0〉 and |1〉. What distinguishes a quantum computer is the superposition
principle: any normalized sum of the two basis states is again a valid state. The other quantum
mechanical phenomenon crucial to quantum computation is entanglement: two states may be
coupled in such a way that correlations between their measurements are stronger than is classi-
cally possible. There are two major obstacles between the current state-of-the-art devices and
the quantum computer of the future. The first is scaling up the number of qubits. To tackle any
problem of practical interest the number of perfectly controlled noiseless qubits needs to be in-
creased. The words perfectly controlled and noiseless are important and bring us to the second
obstacle: error mitigation. Any system of qubits experiences undesired coupling among qubits
and with the environment. Additionally, it is practically infeasible to reach perfect control,
which means almost all operations are imperfectly performed. With noisy qubits the estimated
required number of qubits for useful applications increases even more because extra qubits are
needed to implement error correction schemes [3]. Instead of using the error rate, the term
fidelity is used throughout the literature. The fidelity is simply the complement of the error
probability, i.e. the success rate.

Although distinct, it is clear that both of these problems must be tackled in tandem. Many
candidates for a scalable quantum computer are currently being researched. Some noteworthy
examples include superconducting qubits [4], trapped ions [5], nitrogen-vacancy centers [6] and
silicon-based quantum dots [7]. This report focuses on a Si/SiGe-based 6-qubit spin qubit setup
developed in the VandersypenLab at QuTech. This device performs a calculation by preparing
a certain state, performing operations on this state – thereby changing it – and measuring the
resultant state. Devices that operate in this fashion are called gate-based quantum computers,
where the term ’gate’ is used to refer to a performed operation.

The need to increase fidelity called for the development of so-called benchmarking or to-
mography protocols. These protocols can be performed on a device in order to quantify the
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fidelity of a specific gate, set of gates, or average gate. Quantum process tomography [8],
for example, enables complete mathematical characterization of a quantum process. This type
of protocol has several important drawbacks. The resources required to perform the protocol
scale exponentially with the number of qubits. Additionally, quantum process tomography is
unable to distinguish errors caused by the application of a gate from the errors inherent to state
preparation and measurement (SPAM). Randomized benchmarking (RB) offers a convenient
alternative approach by providing a single, concise benchmarking metric [9]. Advantages of
randomized benchmarking include its robustness against SPAM errors, relatively low required
resources, and the effectivity in case of low error rates. Despite these advantages, it is still chal-
lenging to scale up randomized benchmarking to higher numbers of qubits. In this report we
present a protocol that can be used to predict the multi-qubit fidelity obtained from multi-qubit
randomized benchmarking using the results of single- and two-qubit randomized benchmark-
ing. Although there a several more advanced variants of the randomized benchmarking protocol
which aim to produce more descriptive metrics such as interleaved randomized benchmarking
[10] and character randomized benchmarking [11], we shall not pursue these here.

In chapter 2 of this report, a brief introduction to quantum information theory is provided.
Additionally, the framework behind randomized benchmarking is laid out. The main body
of the work is contained in chapter 3, which is followed by a discussion in chapter 4 that also
provides additional ideas to advance further. The thesis concludes in chapter 5 with a summary.

This research is done in the context of the Bachelor Applied Physics and Applied Mathe-
matics at the Delft University of Technology to obtain the degree of Bachelor of Science.
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2 | Theory

2.1. Introduction to Quantum Information Theory

2.1.1. Density operator formalism
We want to describe the state of a system that is a statistical ensemble of quantum states. To
make it clear what we mean, suppose we have a state |0〉 and a state |1〉, with probabilities of
p0 and p1 respectively that the system is one of the aforementioned states. Then the system is
in a statistically mixed state consisting of the pure states |0〉 and |1〉. The term pure is used to
clarify the distinction between pure and mixed states. In general we may have a set of states
{|i〉}i≥0 with corresponding probabilities {pi}i≥0, together composing an ensemble of states.
Such a system may be described by a density operator ρ which we define as

ρ ≡
∑
i

pi |i〉 〈i| . (2.1)

The density matrix satisfies the following properties [2]

ρ† = ρ (2.2)

Tr(ρ) =
∑
i

ρii = 1. (2.3)

Additionally, any density matrix describing a pure state has the property that Tr(ρ2) = 1 while
any mixed state satisfies Tr(ρ2) < 1.

Bloch sphere

A qubit is a two-level system described by a pair of vectors {|0〉 , |1〉} spanning a two-dimensional
Hilbert space. One of the principles of quantum mechanics is that any state can be written
as a superposition of the basis states. Additionally any state should be normalized such that
〈i|i〉 = 1 for any i. Using the defined basis and the normalization requirement we find that any
state may be written as

|i〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉 , (2.4)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. It is easily checked that this state stratifies the normalization
condition, thus describing a physical state. The idea is now to interpret θ and φ as angles
describing the surface of a sphere. This idea allows us to visualize all possible states of a
two-level system as unique points on the surface of a unit sphere: the Bloch sphere, as shown
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in Figure 2.1. Equivalently, each physical state has an associated vector that points from the
center of the Bloch sphere to a point on its surface. Such a vector is called a Bloch vector

~a = (sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)). (2.5)

Moreover, the interior of the Bloch sphere is of interest too, describing all possible mixed states.
It turns that any density matrix ρ describing a 2-level system may be expanded in terms of these
matrices as

ρ =
1

2

(
I + ~a · ~σ

)
=

1

2

(
I + axX + ayY + azZ

)
=

1

2

(
1 + az ax − iay
ax + iay 1− az

)
, (2.6)

where the Pauli matrices are given by

P0 ≡ I, X = P1 ≡
(

0 1
1 0

)
, Y = P2 ≡

(
0 −i
i 0

)
, Z = P3 ≡

(
1 0
0 −1

)
.

(2.7)
The eigenvalues of the single-qubit density matrix in equation 2.6 are 1

2
(1 ± |~a|). Due to

physicality constraints we must have that any density operator is positive semi-definite (i.e. all
its eigenvalues λ satisfy λ ≥ 0 we find immediately that |~a| ≤ 1. We have found that all pure
states lie on the surface of the Bloch sphere while all mixed states lie in its interior, with the
length of the Bloch vector revealing the degree of mixture.

Figure 2.1: Illustration of an arbitrary two-qubit state of the Bloch sphere. Each single-qubit
pure state is represented by a point on the surface of the sphere according to equation 2.5.
Mixed states are then in the interior of the sphere. This visualization is helpful in understanding
single-qubit states and quantum operations, which correspond to rotations. The Bloch sphere
visualization does not hold for multi-qubit states. These require a higher-dimensional sphere.

4



POVM

Here we present a brief overview of the Positive-Operator Valued Measure (POVM) in the
context of quantum information theory. The POVM plays the role of an observable, i.e. a
physical and measurable quantity. We will consider the case in which the Hilbert space, as
well as the number of elements of POVM, are finite. A POVM is a set of positive semi-definite
matrices {Fj} on the relevant Hilbert space that sum to the identity

n∑
j

Fj = I. (2.8)

In quantum mechanics each POVM element Fj is linked to the outcome of measurement j and
the probability to find outcome j is given by

p(j) = Tr(Fjρ). (2.9)

We note that in the special case that ρ is a pure state, i.e. ρ = |ψ〉 〈ψ| we find

p(j) = Tr(Fj |ψ〉 〈ψ|) = 〈ψ|Fj|ψ〉 , (2.10)

due to the construction of the density matrix. The POVM formalism provides a mathematical
description of a quantum mechanical measurement giving rise to collapse of the wavefunction.

2.1.2. Quantum operations
A unitary operator action on a state transforms a pure state into a new pure state. For any unitary
matrix U the mapping is given by |i〉 U−→ U |i〉. In the single qubit case, a unitary operation
rotates the Bloch vector around some axis. The information in our system is represented by
the density operator ρ. Changing the state of our system then requires a transformation of the
density operator. Similar to the kets, the density operators are elements of some Hilbert space
H. For some ρ, ρ′ ∈ H a linear map Λ : ρ −→ ρ′ that acts on the space of density operators is
called a superoperator. For the case of a unitary operation, we obtain

ρ =
∑
i

pi |i〉 〈i|
Λ−→
∑
i

piU |i〉 〈i|U † = UρU † = ρ′, (2.11)

where † denotes Hermitian transposition. In quantum information theory, a superoperator act-
ing on a density matrix is usually called a quantum channel or quantum map. In principle the
presented formalism works for arbitrary d-level systems (also called qudits), however, we re-
strict ourselves only to systems of qubits. This means H = Hn where Hn is a 2n-dimensional
Hilbert space whose basis states describe a system of n qubits.

Since the goal is to describe a physical process we must impose some additional constraints
on these operations. Fortunately, there are only two constraints that need to be satisfied. The
first is that after the application of the map, the resultant density operator needs to have non-
negative probabilities for measuring the eigenstate of an arbitrary observable. This constraint
means that that the map is required to be completely positive (CP). Secondly, we demand that
probabilities must be conserved, i.e. the operator must be trace-preserving (TP). In general, this
second condition may be loosened to take into account leakage into the environment. However,
we will not take leakage errors into consideration in this report and thus only consider CPTP
maps.
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Kraus Decomposition

Any CP map can be written in the as [2]

Λ[ρ] =
N∑
i=1

KiρK
†
i , (2.12)

for a certain N ≤ d2, d = 2n with 2n the dimension of the Hilbert space in question. This
is called the Kraus representation of the map. The Ki are called Kraus operators. In order to
include the TP constraint as well we must have that

N∑
i=1

KiK
†
i = I, (2.13)

which is the completeness condition. The decomposition into Kraus operators is in non-unique
in general. Additionally the Kraus operators need not be invertible, unitary or Hermitian.

Pauli completeness

In equation 2.7 we have introduced the Pauli matrices on a single qubit and we have shown that
every single qubit (two-level system) density matrix can be decomposed into these matrices. In
fact, the same holds for any n-qubit density matrix. Therefore we expand the Pauli matrices to
n-qubit spaces by considering tensor products of single-qubit Pauli matrices. For n ≥ 1 there
are 4n generalized Pauli matrices given by

Pn = {I, X, Y, Z}⊗n. (2.14)

The notation Pi ⊗ Pj is often abbreviated as PiPj , where Pi and Pj are arbitrary single qubits
Pauli matrices. We adopt this convention in the remainder of this thesis.

Quantum Errors

Implementing quantum operations on an engineered device is challenging and prone to errors.
There a various mechanisms within real live systems which may cause undesired behavior. This
noise may in general be quite complex: it may both operator- and time-dependent. Furthermore,
in a real device, these errors are often correlated, i.e. each error can depend on all of the
previous errors. In this report, we make the explicit assumption that there is no time dependence
and that the errors are uncorrelated. We additionally do not make an effort to describe gate-
dependent noise. However, we will later comment on why this is not required to obtain a valid
benchmark on systems with said gate-dependent noise. When considering quantum noise we
distinguish between two main types of errors.

Stochastic noise

Stochastic noise is – as implied – of a stochastic nature. This type of noise reduces the amount
of available information. We may describe this type of error, without loss of generality, as a
probabilistic projection onto an n-qubit Pauli basis. It may be seen as a list of tuples (pi, Pi),
where pi is the probability that the state being acted on is projected onto Pi and

∑
i pi = 1. We

consider two types of noise channels that are of this type.
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Depolarising channel

This first stochastic noise channel we consider is the depolarising channel

Λdep[ρ] = αρ+
1− α
d
I, (2.15)

where α is a scalar and I is the identity matrix of the same dimension as the density matrix.
We see that the superoperator acts on a density matrix and returns another density matrix. Intu-
itively this superoperator may be interpreted to do the following: do nothing with probability α,
i.e. leave the state ρ intact, and with probability 1−α, transform the state ρ into the completely
mixed state I. In reality, the state is brought into a statistical mixture of these two options and
a measurement will yield either result with the respective probability. In essence, the depolar-
izing channel destroys all information in the system with probability 1 − α. A depolarising
channel may be visualized as a uniform shrinking of the Bloch sphere, or more precisely as
shrinking of the length of the Bloch vector.

Dephasing channel

A stochastic noise channel that is less extreme than complete depolarization is the dephasing
channel. This channel represents the loss of all phase information only with probability 1− α.
One possible Kraus decomposition is given by

K0 =

√
1− 1− α

2
I, K1 =

√
1− α

2
Z. (2.16)

Visually, this operation projects the Bloch vector onto the Z-axis of the Bloch sphere, thus
deforming the Bloch sphere into a Bloch ellipsoid.

Unitary noise

In contrast to stochastic errors, unitary errors do not reduce the amount of information in the
system. On the Bloch sphere this means that the operation does not shrink the Bloch sphere. In-
stead, the vector is rotated over some axis. These types of errors may therefore be encountered
when gate implementation is imperfect. A very common example is an overrotation when im-
plementing a Pauli X gate. We model this overrotation due to imperfect control using a unitary
noise channel.

2.1.3. Superoperator formalism
One major drawback of working with superoperators of this form is that the composition of
arbitrary maps is tedious and not necessarily insightful. An alternative way of working with
quantum maps is to use a different representation. One of the most convenient representations
is the Pauli Transfer Matrix (PTM). The PTM representation RΛ of a quantum channel Λ is
defined as

(RΛ)ij =
1

d
Tr(PiΛ[Pj]), (2.17)

where Pk are the Pauli matrices (including the identity) on n qubits. PTMs have several use-
ful properties, the most important of which is that their composition is equal to their matrix
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multiplication. The PTM can be understood as acting on a density operator ρ represented as a
vector in a 4n-dimensional space[12]. Essentially the PTM representation is a mapping of Pauli
operators onto Pauli operators.

2.2. Randomized Benchmarking
Randomized benchmarking is a protocol to benchmark the quality of (average) gate operations.
It provides a single number that can be related to the average fidelity of the average applied
operation. Here we introduce a basic version of the randomized benchmarking protocol [13].
We start by introducing the Clifford group Cn on n qubits. The Clifford group on n qubits is
defined as the normalizer in the unitaries of the Pauli group on n qubits Pn. In short, it maps
Paulis to Paulis and is defined as

Cn = NU2n (Pn) = {U ∈ U2n |UPnU † = Pn}. (2.18)

Here U2n is the unitary group acting on a space of dimension 2n. The Pauli group on n qubits
is formed by enlarging the set of n-qubit Paulis to the same set including scalar multiples
{1,−1, i,−i} of all elements. This ensures that the new set becomes a group which we denote
as Pn

Pn = {I, X, Y, Z}⊗n ⊗ {±1,±i}. (2.19)

One reason for using the normalizer of the Pauli group is to make calculations simpler. The
approach to many problems in quantum information theory is to decompose the operations into
Pauli operators. Working with the normalizer of this group is therefore natural.

We will now present the basic protocol in detail. First, we initialize an array M of sequence
lengths m. How this choice is made will be explained in more detail in Chapter 3. Now,
for each fixed m ∈ M , we continue by constructing Km sequences of m uniformly random
Clifford elements. Throughout this report we choose Km = K ∀m where we call K the
number of seeds. The resulting sequence is then denoted as {Cij}0≤j≤m. Here the index i
runs from 1 to K. We may efficiently calculate the inverse gate Cim+1 of the entire sequence
according to the Gottesmann-Knill theorem [14]. The theorem states that any circuit composed
of only gates from the Clifford group can be efficiently simulated (i.e. in polynomial time) on
a classical computer. By appending the calculated inverse gate to the sequence we obtain the
identity operation I as the composition of the entire sequence. However, we must realize that
in reality, each Clifford operation has some error Λij associated with it. Note that the error
channel depends in general both on the sequence it occurs in as well as the position it appears
in. The resulting operation of applying the entire sequence (including the inverse gate), denoted
Sim , is given by

Sim =©m+1
j=1

(
Λij ◦ Cij

)
, (2.20)

where im = (i1, ..., im), im+1 is uniquely determined by im and ◦ denotes composition. For
fixed i, im is an m-tuple of indexes that associates a certain gate with each position in the gate
sequence of seed number i. This assumes a bijection between the index set and the Clifford
group. The final Clifford is determined by all of the preceding Clifford, hence im+1 is deter-
mined by im. The errors have the effect that the composition of the total sequence is not equal
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to the identity operation anymore. For each of the K sequences the survival probability of the
initial state is given by

(Ps)m = Tr(EψSim [ρψ]). (2.21)

Here Eψ is the POVM element that accounts for measurement errors and ρψ is the initial state.
For an ideal measurement we would simply have Eψ = |ψ〉 〈ψ|; real quantum computers suffer
from SPAM errors. We may now calculate the average sequence fidelity by averaging over all
sequences of a fixed length yielding

Fseq(m, |ψ〉) = Tr(EψSK [ρψ]), (2.22)

where we have
Sm,K =

1

K

∑
im

Sim . (2.23)

Here the sum is over all K sequences of length m. This last superoperator can be seen as the
the average sequence operation. The powerful result used in randomized benchmarking is that
we may fit the our measured average sequence fidelity to the model

Fseq(m, |ψ〉) = Aαm +B. (2.24)

Conveniently, the parameters A and B absorb all SPAM errors. The decay parameter α now
contains information about the average error occurring in the process of applying the gates.
We may restate the depolarization parameter in terms of the average error rate (or infidelity) r
using the following relation [15]

r = 1− α− 1− α
2n

=
2n − 1

2n
(1− α), (2.25)

where n is the number of qubits.

2.2.1. Intuitive understanding
We will now attempt to justify some of the steps taken to derive the randomized benchmarking
protocol. Earlier we have introduced the depolarization superoperator

Λ[ρ] = αρ+
1− α

2n
I. (2.26)

Let us now suppose that we have a sequence of m arbitrary gates where the error channel of
each gate is a depolarizing channel with parameter α. Note that we are considering arbitrary
gates, not necessarily Clifford gates. Intuitively it makes sense that a depolarizing channel as
described above should commute with any other gate. Additionally, it seems like the com-
position of two α-depolarising channels should results again in a depolarizing channel with
depolarizing parameter α′ = α2. In fact, it is trivial to show this last claim is true

Λ[Λ[ρ]] = α(αρ+
1− α

2n
I) +

1− α
2n
I = α2ρ+

1− α2

2n
I. (2.27)

Generalizing to our sequence of m gates we find that the combined error channel of the se-
quence is an αm-depolarizing channel. Assuming that we start in the ground state and that the
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applied sequence (without error channels) amounts to the identity, as is the case in our protocol,
we can then measure the state after the sequence using the standard basis. It is straightforward
to show that this directly yields the RB formula introduced in equation 2.24

Tr(ρΛm[ρ]) = αm +
1− α

2n
=

2n − 1

2n
αm +

1

2n
= Aαm +B, (2.28)

since we simply take the trace over a sum of scalar multiples of trace one matrices. What we
find is that the probability of success (fidelity), i.e. finding the ground state after applying the
sequence, decays exponentially with the sequence length m and decay parameter α.

This derivation is of course not valid for arbitrary error channels other than the depolarizing
channel. Fortunately, it turns out that there is a mathematical result that saves our approach.
When the gates composing the sequence are uniformly random samples from the Clifford group
Cn the error on each gate behaves on average as a depolarizing channel with a corresponding
depolarization parameter. This particularly useful result allows us to still use a measured decay
parameter to benchmark the average fidelity.

2.2.2. Formal explanation
In rigorous mathematical language, we are taking the average over a finite group (here the
Clifford group) of a certain quantum channel Λ. In the case of randomized benchmarking the
channel that is being averaged over is actually the average of error channels Λij , denoted by Λ̄.
The assumption here is that Λij − Λ̄ is small [15][13]. This averaging operation is called a twirl
in the literature (denotedW) and is defined by the following operation

WG(Λ̄) =
1

|G|
∑
U∈G

U † ◦ Λ̄ ◦ U . (2.29)

Here G denotes a general finite group with group order (size) |G|. We sum over all group
elements U , where U [ρ] = UρU † is its adjoint representation. In the PTM representation, the
twirl operation is given by

WG(RΛ̄) =
1

|G|
∑
U∈G

R†URΛ̄RU . (2.30)

In the case of the Clifford group the resulting channel is a depolarizing channel [16]. Fur-
thermore, it can be shown that twirling over the entire unitary group yields the same result as
twirling over the Clifford group. Note that twirling over the entire unitary group amounts to
taking a weighted integral over the entire infinite unitary group using the appropriate uniform
(Haar) measure. What may be concluded is that randomized benchmarking results in a doubly
averaged fidelity, once over the applied errors and once over all unitary operations.

2.2.3. Confidence bounds
One of the great advantages of randomized benchmarking is the ease with which the confidence
bound on the result can be extracted. Similarly to the fidelity, the confidence bound may be
found directly from the fit [15]. This means that given enough seeds and a sufficient number
of sequence lengths the obtained confidence bound may be relatively tight. This is all under
the assumption that the observed decay after performing the twirl operation does not deviate
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(significantly) from exponential decay. When such deviations are visible they must be treated
accordingly, e.g. as in done in [16]. For the randomized benchmarking approach taken here –
considering that it is mostly based on standard RB – there are no such deviations expected. We
will therefore leave a further discussion with regard to confidence bounds to the Discussions
section of this report.

2.3. Predicting multi qubit fidelity
For the case of the depolarizing channel introduced in equation 2.15 a possible Kraus decom-
position is

K0 =

√
α +

1− α
d2
I, (2.31)

Ki =

√
1− α
d2

Pi, (2.32)

where I is the d × d identity matrix and Pi are the Pauli matrices matrices on n qubits. Note
that in this case the Pauli matrices are regarded as the full set bar the identity element, making
it a set of 4n − 1 elements.

In the randomized benchmarking protocol we apply sequences of Clifford gates. In prac-
tice, these Clifford gates are decomposed into a certain set of basis operations native to the
setup, which are then applied. In our analysis we assume that each of these underlying basis
operations is composed with a depolarizing channel. What is important to note here is that
these basis operations do not necessarily act on the full space but may act only on a certain
subspace. We must therefore know how a depolarizing channel acts in a subspace. We may
construct such a channel by only considering Paulis in equation 2.32 that are non-identity in
the relevant subspace [17]

Λ[ρ] = αρ+
1− α
d2
s

(
ρ+

∑
P∈S

(PρP )

)
, (2.33)

with dS the dimension of the subspace. For a depolarizing channel in a two-qubit space acting
solely on qubit 0 we thus consider all Paulis except {II, IX, IY, IZ}. Since these depolarizing
channels commute with the basis gates we may construct the error channel associated with the
average Clifford gate – consisting of n basis operations – as

Λ̄C [ρ] = Λdep,1[ρ] ◦ ... ◦ Λdep,n[ρ], (2.34)

in which Λdep,i denotes the depolarizing channel associated with the ith composing basis oper-
ation. We now conveniently switch to the PTM representation. For a depolarising channel in a
subspace the PTM is diagonal with the diagonal elements determined as

(RΛ)ii =

{
α if ∃P ∈ S s.t. [Pi, P ] 6= 0
1 else

. (2.35)

To find the composition of the maps Λ1...Λn we multiply the corresponding PTMs

RΛC
= RΛN

...RΛ1 . (2.36)
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Here we find, unsurprisingly, that any finite composition of depolarising maps is again a depo-
larising map. In order to find the associated α parameter we compute [16]

αC =
Tr(RΛC

)− 1

d2 − 1
. (2.37)
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3 | Protocol and Results

3.1. Device
Quantum computers based on semiconductor spin qubits are promising due to their small foot-
print, the prospects for scaling, and their compatibility with semiconductor fabrication tech-
niques [18]. Here we present a brief overview of the physics behind the 6-spin-qubit device.
Using state-of-the-art semiconductor growth techniques it is possible to create Si/SiGe het-
erostructures [19]. These heterostructures are similar to the ones used for a conventional tran-
sistor. Such a heterostructure allows the formation of a two-dimensional electron gas close to
the interface, confining an electron in two dimensions. Additionally, an electrostatic potential
can be tuned in such a way that an electron is trapped in quantum dot [20]. Similar to an atom,
the trapped particle resides in a quantized state which can be controlled via external signals
[21]. For spin qubits, the information is encoded in the spin degree of freedom of the trapped
particle. However, in order to have non-degenerate spin states for all qubits an external mag-
netic field is applied and together with a micromagnet induces a Zeeman splitting that ideally
lifts all degeneracies. The result is a linear array of spin qubits which are coupled as displayed
in Figure 3.1. One of the more common types of information loss in the device is spin decoher-
ence, which can be approximately modeled as a dephasing channel. The most notable causes
of decoherence errors are the hyperfine interaction and charge noise via spin-orbit coupling. A
scanning electron microscope (SEM) image of such a heterostructure-based spin qubit device
is shown in Figure 3.2.

Figure 3.1: Connectivity map of the linear 6 spin-qubit setup. Each qubit can be coupled to
its nearest neighbour which enables performing two-qubit gates on such pairs. Single-qubit
operations can additonally performed on each individual qubit.
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Figure 3.2: SEM image of a 6 dot device from the Vandersypen lab.

When engineering a gate-based quantum computing device one of the main priorities is
realizing high single- and two-qubit gate fidelities. Extensive work has been done to charac-
terize these fidelities for this device in detail [10]. In this report we instead aim to benchmark
the multi-qubit average gate fidelity of the device. This is relevant since the ultimate goal of
increasing the number of qubits is the ability to perform more complex and with that hope-
fully more powerful operations. Certainly, the average fidelity of these operations must be high
enough for error correction to be effective. To be able to benchmark this fidelity we must first
establish the possible gates we can perform on the device. The protocol is implemented and nu-
merically verified using IBM’s Qiskit Python package [22]. Due to implementation limitations
in Qiskit, we choose not to execute the protocol in terms of gates native to the device. Instead,
we use the default set of single-qubit gates for IBM quantum devices:

U1(λ) =

(
1 0
e0 eiλ

)
, (3.1)

U2(γ, λ) =
1√
2

(
1 −eiλ
eiλ ei(γ+λ)

)
, (3.2)

U3(β, γ, λ) =
1√
2

(
cos(β/2) −eiλsin(β/2)
eiλsin(β/2) ei(γ+λ)cos(β/2)

)
, (3.3)

where U2(γ, λ) is able to perform arbitrary rotations about the X + Y axis of the Bloch sphere
and U3(β, γ, λ) can be used to perform rotations about an any axis. The U1(λ) gate acts a
single-qubit revolution around the Z axis and is usually implemented virtually using software.
Evidently, if the protocol is to be performed on the device an additional transpilation layer is
needed which translates U1, U2 and U3 gates to the native gates of the device. Implementing
such a transpilation layer is beyond the scope of this presentation. As the basic two-qubit gate
we use a controlled phase gate, or CZ gate, defined as
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CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (3.4)

The gate acts on two qubits simultaneously, one is the control qubit and the other is the target
qubit. Such a gate describes a conditional process where the phase is flipped if the control qubit
is in the |1〉 state.

3.2. Protocol
Qiskit is used to simulate randomized benchmarking experiments on the qubit setup. The aim of
the protocol is to use the mathematical approach outlined in section 2.3 to estimate the average
gate fidelity of the full 6-qubit array from the single-qubit and two-qubit fidelities. There are
few constraints the protocol must adhere to. The primary constraint is that the 6-qubit spin qubit
setup allows coupling neighboring qubits only (1). To perform operations on non-neighboring
qubits the protocol must perform SWAP operations. As the name suggests a SWAP operation
swaps the state of two (in this case neighboring) qubits. From the mathematical approach is
it apparent that we must benchmark every single qubit and each pair of qubits at least once
(2). To increase the robustness of the method we would like to use simultaneous randomized
benchmarking as much as possible (3). With this approach we expect to catch crosstalk effects.
Another advantage of using simultaneous randomized benchmarking is to reduce the number
of experiments required to predict the multi-qubit average gate fidelity. A link to the code can
be found in appendix B. We first present an overview of the entire benchmarking protocol:

Protocol overview

• Use standard randomized benchmarking to find the average fidelity of every single qubit
and pair of qubits under the constraints and objectives (1), (2) and (3).

• From these fidelities, calculate the average fidelity of the underlying basis gates (U1, U2,
U3 and CZ) according to the theory outlined in section 2.3.

• Using the same theory and the newly obtained average basis gate fidelities predict the
multi-qubit average gate fidelity.

An in-depth explanation of the protocol along with its implementation is presented in the
following sections.

3.2.1. Randomized Benchmarking in Qiskit
This section aims to clarify how randomized benchmarking can be numerically simulated in
Qiskit. Many useful implementations (classes/functions) are available natively from within
Qiskit’s open-source library. Since we want to perform multiple randomized benchmarking
experiments we first construct an Experiment class.
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Experiment Class

The Experiment class consists of all variables and methods relating to a single randomized
benchmarking experiment. In order to initialize an experiment we need the following parame-
ters

• The number of qubits nQ on which the experiment is performed.

• A dictionary rb_opts containing details about the experiment:

– An array length_vector containing the lengths of the randomized benchmark-
ing sequences to be performed. This array is called M in the Theory.

– The number of seeds nseeds referred to as K in the Theory.

– A nested list rb_pattern specifying which (simultaneous) randomized bench-
marking pattern is to be performed. The notation [[i,j],[k]] means we per-
form 2 qubits RB on the qubit pair (i, j) while simultaneously performing single
qubit RB on qubit k.

– A list of integers length_multiplier specifying by which integer the length
vector of the respective index needs to be multiplied. That is, for the pattern
[[i,j],[k]] the length multiplier [m1,m2] multiplies the length vector corre-
sponding to benchmarking pair [i,j] with m1 and that of the singlet [k] by m2.
This step is necessary to compensate for the typical better fidelities of single-qubit
operations.

• A list of basis_gates specifying which basis gates the Clifford operation will be
decomposed into. In this report the single-qubit gates used are U1,U2,U3 which are
parameterized rotations in the computational basis. The two-qubit basis gate used is the
CZ gate.

• The number of shots performed per sequence, i.e the number of measurements done to
determine the survival probability of a single RB sequence.

When the experiment is initialized a randomized benchmarking sequence is constructed
using Qiskit’s randomized_benchmarking_sequence under the constraints of the rb_opts.
This returns a list of Clifford sequences rb_circs for each sub-pattern and the appropriately
scaled version of the length_vector called xdata. In order to execute the experiment the
following methods are defined.

Methods

The execute method performs the RB experiment. First, the Qiskit transpiler is used to translate
the circuits rb_circs from Clifford gates to the specified basis gates. An example of such a
transpiled circuit is shown in Figure 3.3. These gates are passed to the native execute function
which runs the simulation using the given noise model.
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Figure 3.3: Example of a randomized benchmarking sequence on 6 qubits. The displayed
sequence is the result of a [[0,1],[2],[3,4],[5]] pattern with length multiplier
[1,3,1,3]. Each of the horizontal black lines represents a qubit register. The gates per-
formed are represented by rectangles in the case of of single qubit gates and with two connected
dots for two qubit gates. Measurements are represented by a dial icon.

The rb_fit method passes the result of the experiment to an instance of Qiskit’s RBfitter
class which performs the exponential fit for each sub-pattern. The returned fitted decay param-
eters are then stored in a dictionary according to the index of the qubit (pair) they apply to. The
result of the experiment along with the fitted curve can then be plotted using plot_fit.

One of the requirements of the novel prediction scheme is knowledge of the amount of
single- and two-qubit gates an average Clifford gate is comprised of. There are several hur-
dles to overcome when attempting to implement a method of to these numbers. Unfortunately,
when transpiling the Clifford sequences to basis gate sequences, Qiskit’s transpiler does not
keep track of the number of underlying gates used per Clifford on average. What is offered
is the ad hoc function gates_per_clifford which attempts to count the gates per Clifford of a
transpiled circuit list. However, this function has the shortcoming that it fails to distinguish be-
tween different sub-patterns of the experiment. Since we allow for SWAP operations to occur
between neighboring qubits it is unable to keep track of specific sub-experiments. To circum-
vent this problem we reasonably assume that number of single- and two-qubit gates per Clifford
does not depend on which qubit (pair) the sequence is executed on. Additionally, we assume
that the effect of SWAP operations has a negligible to non-existent effect on the average num-
ber of gates per Clifford. The approach is then to run non-simultaneous RB sequences and use
gates_per_clifford to do the counting. Preferably these sequences are long (here sequences of
length 1000 are used) such that the averaging is sufficiently accurate. We then define get_gpc2
which uses gates_per_clifford to count N_1_per_1, N_1_per_2 and N_2_per_2. These
are the number of single-qubit basis gates per single-qubit Clifford, the number of single-qubit
basis gates per two-qubit Clifford, and the number of two-qubit basis gates per two-qubit Clif-
ford, respectively.

In order to assess the validity and accuracy of prediction of the average n-qubit gate in-
fidelity that will be obtained from the protocol, we must also find the actual average n-qubit
gate infidelity. To achieve this we must perform up to 6-qubit randomized benchmarking. This
is usually infeasible because the Clifford group cannot be effectively sampled because of its
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superexponential scaling with the number of qubits. When the sampling is successful, the
overhead from transpiling the circuits is also expected to be infeasible to impossible to imple-
ment in practice. Conveniently, Qiskit has some pre-defined, pre-transpiled n qubit randomized
benchmarking sequences, at least up to and including n = 6. It is for this reason that we are
able to numerically simulate up to 6-qubit randomized benchmarking. Because a single 6-qubit
Clifford consists of many one- and two-qubit basis gates the total sequence lengths blow up
quickly. An example of the implementation of a single 6-qubit Clifford is shown in Figure 3.4.
Note that only about 1/6th of the entire circuit comprising the single Clifford is shown.
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Figure 3.4: Example of a Clifford gate on 6 qubits. Due to the large amount of single- and
two-qubit basis gates comprising a single 6-qubit Clifford only about 1/6th of the circuit is
shown. Each of the horizontal black lines represents a qubit register. The gates performed
are represented by rectangles in the case of single-qubit gates and with two connected dots for
two-qubit gates.

To obtain an estimate for the n-qubit fidelity we must measure the fidelity of all single
qubits and all pairs of qubits. A complete prediction experiment, therefore, consists of several
randomized benchmarking experiments. In the following sections we elaborate on how this
can be implemented and exactly which benchmarking patterns are executed. How the results
of these experiments are used to make the prediction is also explained.

3.2.2. Complete Benchmarking Experiment
The way a complete benchmarking experiment is handled is through the FullExperimentNQ
class. Within an instance of this class, we store all comprising Experiment instances in an
experiments list. This allows for the convenient handling of a complete experiment by exe-
cuting, fitting, and plotting all its experiments at once. This class also contains several methods
that handle the prediction, which will be dealt with in the following sections.

Random patterns

When constructing a complete experiment we must choose which underlying experiments to
perform. Our only hard constraint is that every single qubit and each pair must be benchmarked
once, which is not enough to remove all ambiguity. As the number of qubits n increases, the
number of pairs of qubits scales as n2. We must then construct patterns consisting of these pairs
and individual qubits; the singlets. These patterns can be arbitrary and do not necessarily need
to work on the full qubit space all at once. However, to catch crosstalk we impose the condition
that the pattern should strive for maximum simultaneousness. Evidently, it is not possible to
benchmark a singlet and a pair containing this singlet simultaneously. Here we propose a simple
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algorithm to construct a random benchmarking pattern. We may see all available singlets as
vertices of a graph, while the pairs are the corresponding edges. In the case that we benchmark
each pair, the aforementioned graph is complete, i.e. each vertex is connected to each other
vertex via an edge. A simple method of constructing a viable random pattern works as follows.
We start with an empty array to contain our patterns, call it A, and the complete graph G and
we make a copy of it, say G0. From the G0 we uniformly randomly choose a vertex or edge.
Whatever element of the graph is chosen, we remove it from G and G0 and store the pair or
singleton in a pattern array p0. If the element is a vertex, remove all of its edges from G0 too.
If the element is an edge; delete both its endpoints from G0, along with all edges connected to
either of the endpoints. Continue this process until G0 is empty, then append p0 to A. We now
discard G0 and initialize a new graph G1 as a copy of G. Repeat these steps until G is empty.
The result is an array A = [p0, ..., pk] for some finite k, with each pi a pattern array.

This process can alternatively be encoded in an n × n upper triangle matrix M with ones
as entries. Here M has the same role as G and we create a sequence {Mi} as before. We
now randomly pick nonzero elements of Mi and set all entries of the column and row of
the entry and its corresponding transpose entry to zero. We repeat until M is the 0-matrix.
The result of both approaches is the same. The latter approach is used and implemented as
get_random_patterns. This function also takes care of assigning a length_multiplier
to each pattern.

3.2.3. Predicting fidelity
Under our assumption that the underlying basis gates are depolarising and that we may compose
them we find (see Appendix A) in the simple 1D case that

αi,C = αN1
i , (3.5)

where αi,C is the fidelity found from single-qubit randomized benchmarking on qubit i, αi is
the average 1-qubit fidelity of qubit i and N1 is the average number of basis gates per single
qubit Clifford. This relation may be inverted to infer the single-qubit basis gate fidelities from
the measured benchmarking value

αi = α
1

N1
i,C . (3.6)

A dictionary containing the single-qubit basis gate fidelities is constructed by the get_1q_basis_alphas
method of the FullExperimentNQ class. It does so by finding the experiment which contains
the relevant single qubit benchmark and performing the calculation described by equation 3.6.
For the 2 qubit case we find a less trivial expression (see Appendix A)

αij,C =
1

5

(
αN1
i + αN1

j + 3αN1
i αN1

j

)
αN2
ij (3.7)

which for i 6= j predicts the two qubit fidelity when benchmarking the pair (i, j) given the
respective singlet and pairwise basis gate fidelities. Note that N1 and N2 are now the number
of one and two qubit basis gates per two qubit Clifford respectively. By inverting this relation
we obtain an expression for αij

αij =

(
5αij,C

αN1
i + αN1

j + 3αN1
i αN1

j

) 1
N2

. (3.8)
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This expression is useful since αij,C may be found experimentally and αk may be found from
equation 3.6 after measuring αk,C . An dictionary containing the two-qubit basis gate fidelity is
computed using the get_2q_basis_alphas method of the FullExperimentNQ class in a similar
fashion as for the single-qubit parameters.

Since almost all n ≥ 3 qubit operations are built out of single- and two-qubit operations,
applying Equation 2.37 produces an expression dependent solely on single- and two-qubit basis
gate fidelities and the average number of single- and two-qubit basis gates per n-qubit Clifford.
The latter of which are again referred to as N1 and N2 respectively. What we find is that by
only benchmarking singlets and pairs we can calculate a prediction for the result of n-qubit
randomized benchmarking, effectively predicting the multi-qubit fidelity. This functionality is
implemented as get_nq_alpha_c.

3.2.4. Confidence bound propagation
We wish to construct a confidence bound for the prediction. The way this is approached is by
using the confidence bounds of the underlying RB experiments. Since our prediction model is a
strictly increasing function of the underlying gate fidelities the calculation may be significantly
simplified. Along with each fidelity parameter α (i.e. αi or αi,j , depending on the number of
qubit being benchmarked) we also store the result α + σ and α − σ, where σ is the standard
deviation of the respective fidelity measurement. The whole prediction calculation is then
executed using not only the mean α values, but also α + σ and α − σ. The resultant values of
these latter two calculations then provide a confidence region around the predicted value.

3.3. Testing approach
We now turn our attention to establishing the performance of the protocol. To do so several
numerical experiments are performed on different noise models. Before elaborating on the
applied noise model we first provide some of the used values of relevant variables. The values
are summarized in Table 3.1.

Table 3.1: Summary of values of relevant randomized benchmarking variables used in the
one- and two-qubit numerical experiments. The usage of these variables is explain in section
3.2.1. The length vector and multiplier are chosen in such a way that the full characteristic
exponential decay due to twirling is captured given the used underlying gate fidelity.

Variable Value
nQ 3-6
basis_gates [u1, u2, u3, cz]
shots 10000
length_vector np.arange(1,401,20)
length_multiplier 3 for 1Q-RB, 1 for 2Q-RB
nseeds 30, 60, 90, 120, 150

By varying the number of qubits from 3 to 6 we attempt to gain some insight into the degree
to which the method is scalable. The chosen sequence length vector ranges from length 1
sequences to length 401 sequences in steps of 20. Together with the specified length multiplier,
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this ensures that two-qubit subpatterns use the aforementioned sequence length vector while
1 qubit subpatterns range from length 3 to length 1203 in steps of 60. The number of seeds
is initially set to 30 but is increased to 150 in steps of 30 to investigate whether the predicted
result converges to the expected result from n-qubit RB. For the case of n-qubit simulations,
we must adjust the length vector to account for the fact that the decay rate is much higher. We
must therefore collect more data points in the low sequence length range, while data points
in the high sequence length range lose value because the decay has already occurred at those
lengths.

3.3.1. Noise model implementation
For testing purposes, it is interesting to investigate the effectivity of the protocol under multi-
ple noise models. We simulate here two noise models which are each of practical interest for
different reasons. A depolarizing channel is the simplest noise model to implement and relates
directly to the randomized benchmarking protocol and the underlying mathematics of the pre-
diction scheme. For this reason, it is useful in the process of designing the protocol. Dephasing
is one of the most common types of noise encountered in actual spin qubit setups. Additionally,
while distinct, dephasing and depolarising errors are mathematically quite similar. This makes
dephasing noise ideal as a first non-depolarising testing noise model.

Depolarizing

One part of the protocol deals with inferring the 1 and 2 qubit basis gate fidelities from 1 and 2
qubit randomized benchmarking. In the case of depolarizing noise, this fidelity is synonymous
with the complement of the depolarizing probability. We should therefore be able to check
whether this is indeed what we find. Another reason that also makes intuitive sense is that local
depolarizing channels should indeed twirl to a global depolarizing channel. The depolarizing
channels are simple to implement in Qiskit using its built-in depolarizing_error func-
tion which requires a depolarizing probability p and the number of qubits on which the error
acts. For the single-qubit depolarizing probability we choose p1Q = 0.002. For the two-qubit
version we choose p2Q = 0.01

Dephasing

Dephasing noise is a common noise type encored in the studied device. The dephasing error
on single qubits is implemented as a kraus_error which given a set of Kraus matrices
simulates the noise channel defined by these matrices. The decomposition given in equation
equation 2.16 is used with p = p1Q = 0.002.

For the two-qubit case, we only consider the simple case of simultaneous dephasing of both
qubits. This error is implemented using Qiskit’s pauli_error. With probability p2Q a ZZ
is applied and with probability 1 − p2Q the identity is applied. For the two-qubit dephasing
probability we again choose p2Q = 0.01
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3.4. Numerical simulations
In this section the results of the various numerical simulations are presented according to the
applied noise model. We begin with the depolarization model and continue with the more
realistic dephasing model.

3.4.1. Depolarising noise
Table 3.2 shows the n-qubit simulated fidelity versus the predicted result from single and two-
qubit fidelities for 30 seeds. These simulations have been performed for 3, 4, 5, and 6 qubits.
Tables 3.3 and 3.4 contain the results for the 3- and 4-qubit cases, respectively, with varying
number of seeds.

An interesting observation is that the confidence bound does not appear to scale significantly
with the performed number of seeds. More interestingly, the variance among the results for
different numbers of seeds does not seem to be captured by the confidence bounds. A possible
explanation is that our choice for Clifford lengths is not sufficient to get tight bounds. To see
what the result of a simultaneous RB simulation looks like, an example of a fit [[0],[1,2]]
pattern simulation on 3 qubits has been included in Figure 3.5. The result of benchmarking
using 3-qubit Clifford gates is presented in Figure 3.6.

Table 3.2: Numerically simulated results and corresponding predictions for the average n-
qubit gate fidelity in the case of depolarizing noise. The simulation has been performed for
3−6 qubits. The confidence bound of the n-qubit result is given by the fit using the least square
error method. The confidence bound of the prediction is estimated by propagated confidence
bounds of the single- and two-qubit average gate fidelities.

number of qubits nQ-result Prediction
3 0.915±0.0019 0.915±0.0025
4 0.771±0.0045 0.755±0.0017
5 0.51258±0.00615 0.50319±0.00416
6 0.32054±0.00752 0.32067±0.00416
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Table 3.3: Numerically simulated results and corresponding predictions for the average 3-qubit
gate fidelity in the case of depolarizing noise. The number of seeds has been varied from 30
to 150 in steps of 30. The confidence bound of the 3-qubit result is given by the fit using the
least square error method. The confidence bound of the prediction is estimated by propagated
confidence bounds of the single- and two-qubit average gate fidelities.

number of seeds 3Q-result Prediction
30 0.904±0.0074 0.905±0.0078
60 0.90533±0.00033 0.90561±0.00033
90 0.90570±0.00031 0.90608±0.00019
120 0.90473±0.00028 0.90512±0.00022
150 0.90601±0.00021 0.90650±0.00018
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Figure 3.5: Exponential fit to the result of simultaneous randomized benchmarking using a
[[0],[1,2]] pattern with 30 seeds. At a fixed Clifford length, each cross represents the
result of measurement of a single RB sequences (i.e. a single seed). The length vector and
multiplier are specified in Table 3.1. The applied noise model is a depolarizing channel for 1-
and 2-qubit basis gates.

Table 3.4: Numerically simulated results and corresponding predictions for the average 4-qubit
gate fidelity in the case of depolarizing noise. The number of seeds has been varied from 30
to 120 in steps of 30. The confidence bound of the 4-qubit result is given by the fit using the
least square error method. The confidence bound of the prediction is estimated by propagated
confidence bounds of the single- and two-qubit average gate fidelities.

number of seeds 4Q-result Prediction
30 0.771±0.0045 0.755±0.0017
60 0.70897±0.00161 0.69623±0.00345
90 0.70498±0.00125 0.71028±0.00059
120 0.70973±0.00114 0.69896±0.00306

23



Table 3.5: Numerically simulated results and corresponding predictions for the average n-
qubit gate fidelity in the case of dephasing noise. The simulation has been performed for 3− 6
qubits. The confidence bound of the n-qubit result is given by the fit using the least square error
method. The confidence bound of the prediction is estimated by propagated confidence bounds
of the single- and two-qubit average gate fidelities.

number of qubits nQ-result Prediction
3 0.906±0.0011 0.908±0.0008
4 0.715±0.0041 0.713±0.0015
5 0.524±0.0057 0.528±0.0020
6 0.344±0.015 0.346±0.0020
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Figure 3.6: Exponential fit to the result of randomized benchmarking using a [[0,1,2]]
pattern with 30 seeds. At a fixed Clifford length, each cross represents the result of measurement
of a single RB sequences (i.e. a single seed). The length vector ranges from length 1 to 39 in
steps of 1. The applied noise model is a depolarizing channel for 1- and 2-qubit basis gates.

3.4.2. Dephasing noise
In Table 3.5 the n-qubit simulated fidelity versus the predicted result from single and two-qubit
fidelities is shown for 30 seeds for a dephasing noise model. These simulations have been
performed for 3, 4, 5, and 6 qubits. Tables 3.6 and 3.7 contain the results for the 3- and 4-qubit
case respectively, with varying number of seeds.

The same comments about the confidence bounds in the case of depolarizing noise apply to
the dephasing case as well. The scaling of the confidence bound with the number of seeds is
insignificant. Again, the confidence bounds of the results for different numbers of seeds do not
all overlap. In Figures 3.7 and 3.8 we have plotted two distinct cases of simultaneous two-qubit
RB, both performed as part of the same 4-qubit prediction simulation. In Figure 3.7 the pair of
qubits are nearest neighbours while in Figure 3.8 non-neighbouring qubits are chosen.
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Figure 3.7: Exponential fit to the result of simultaneous randomized benchmarking using a
[[0,1],[2,3]] pattern with 30 seeds. At a fixed Clifford length, each cross represents the
result of measurement of a single RB sequences (i.e. a single seed). The length vector and
multiplier are specified in Table 3.1. The applied noise model is a dephasing channel for 1-
and 2-qubit basis gates.

Table 3.6: Numerically simulated results and corresponding predictions for the average 3-qubit
gate fidelity in the case of dephasing noise. The number of seeds has been varied from 30 to
150 in steps of 30. The confidence bound of the n-qubit result is given by the fit using the
least square error method. The confidence bound of the prediction is estimated by propagated
confidence bounds of the single- and two-qubit average gate fidelities.

number of seeds 3Q-result Prediction
30 0.906±0.0011 0.908±0.0008
60 0.90920±0.00027 0.90911±0.00029
90 0.90843±0.00035 0.90865±0.00018
120 0.90785±0.00037 0.90863±0.00022
150 0.90793±0.00022 0.90897±0.00017
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Table 3.7: Numerically simulated results and corresponding predictions for the average 4-qubit
gate fidelity in the case of dephasing noise. The number of seeds has been varied from 30 to
120 in steps of 30. The confidence bound of the 4-qubit result is given by the fit using the
least square error method. The confidence bound of the prediction is estimated by propagated
confidence bounds of the single- and two-qubit average gate fidelities.

number of seeds 4Q-result Prediction
30 0.715±0.0041 0.713±0.0015
60 0.71173±0.00190 0.71173±0.00190
90 0.71491±0.00130 0.71708±0.00045
120 0.71089±0.00145 0.69517±0.00398
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Figure 3.8: Exponential fit to the result of simultaneous randomized benchmarking using a
[[0,4],[1,2]] pattern with 30 seeds. At a fixed Clifford length, each cross represents the
result of measurement of a single RB sequences (i.e. a single seed). The length vector and
multiplier are specified in Table 3.1. The applied noise model is a dephasing channel for 1-
and 2-qubit basis gates.

It is apparent that the spread in Figure 3.8 is much larger than that in Figure 3.7. This
reflects on individual confidence bounds of the benchmarked fidelities as shown in the figures:
the difference is around one order of magnitude. This difference in variance is caused by the
way in which Qiskit implements two-qubit RB on non-neighboring qubits. The number of
SWAP operations required to perform a certain sequence appears to depend significantly on the
exact sequence that is performed. The SWAP gates are constructed from noisy CZ gates. The
variance thus depends strongly on the number of SWAP operations.
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4 | Discussion and Further Ideas

The results following from the numerical simulations are promising at first glance. From Ta-
ble 3.2 it can be argued that the predicted results give an indication of the value of the true
(measured) fidelity. However, we must remark that, at least in the case of 30 seeds, the con-
fidence bounds do in general not overlap. The confidence bounds are of the same order of
magnitude, suggesting that under the applied parameters both benchmarking procedures theo-
retically benchmark to the same statistical level of precision. With the limited data available it
is infeasible to draw strong conclusions regarding the accuracy of the result.

Because we are considering a noise model that satisfies all assumptions made in the deriva-
tion of the prediction protocol, we expect that the result of the prediction should converge to
the result of n-qubit benchmark. From Table 3.3 it is apparent that this expected behavior is
not observed. A possible explanation for this is that Qiskit might not sample sufficiently from
the Clifford group for n ≥ 3. It is computationally demanding to construct higher dimensional,
properly sampled Clifford sequences. The solution provided by Qiskit might not be sufficiently
accurate to obtain the expected result.

An important observation from Table 3.3 is that the scaling of the confidence bounds is
certainly not linear. Even though there is limited data we may infer that the confidence bounds
shrink significantly in the step from 30 to 60 seeds. Increasing the number of seeds even
further does not appear to significantly alter the size of the confidence bounds. These claims
are corroborated by the results found for the dephasing case in Table 3.6.

It is possible to construct an upper bound on the size of the confidence bounds by the
procedure outlined in [23]. However, the confidence bounds found using our approach are
far below the theoretical upper bound. This makes sense considering that our noise model
is locally depolarizing and non-gate dependent. Additionally, the number of seeds and the
sequence lengths performed are sufficient to capture the full exponential decay. The fact that
the confidence bound is tight is therefore not surprising. What is surprising is that the variance
among the benchmarking results for different numbers of seeds is inconsistent with these thigh
confidence bounds. This last point requires further investigation.

For the case of dephasing noise, the analysis is similar to what has been outlined above.
The one exception is that in this case, the underlying noise is no longer depolarizing. Ideally,
we would like to make conclusions about the accuracy of the prediction scheme in the depo-
larizing case. We are also interested in how the accuracy compares to the depolarizing case.
However, the results for the dephasing case show the same features in terms of convergence
and confidence bounds. For this reason, it is difficult to make conclusions about the effects of a
non-depolarizing noise channel based on these results. It is expected that the protocol behaves
similarly to the depolarizing case in terms of accuracy because the two noise models are math-
ematically quite similar. However, the observed noise due to implementation problems is so
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large that it is infeasible to assess whether a discrepancy between these two cases exists.
In order to assess the effect of the applied noise model, we propose a worst-case scenario

to establish whether the prediction model breaks down for certain (non-time-dependent) error
types. Because unitary noise is highly non-commutative with the applied Cliffords we choose
some unitary noise model as a final test case. We propose the following noise model

• 1 qubit: an overrotation of φ/10 rad on each operation, where φ = 1+
√

5
2

is the golden
ratio. This is used because it the real number that is most difficult to represent as fraction.

• 2 qubits: a rotation of θ = 0.01 rad over the axis described by the generator M , i.e.
e−iθM .

M =


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 (4.1)

One problem with implementing this type of noise model is that the spread between the seeds
becomes very large. Unitary noise only affects the fidelity in second order [24]. The result is
the the decay is very hard to observe on its own as can be seen from figure 4.1.
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Figure 4.1: Exponential fit to the result of simultaneous randomized benchmarking using a
[[0,1],[2]] pattern with 30 seeds. At a fixed Clifford length, each cross represents the
result of measurement of a single RB sequences (i.e. a single seed). The applied noise model is
unitary for 1- and 2-qubit basis gates.

With the current implementation, the protocol is however not able to completely execute.
Running a high number of seeds also very computationally intensive. As a consequence of the
large spread due to the unitary gates, we expect larger confidence bounds for the predicted and
measured fidelity. With enough computational power, it may be possible to reveal whether to
protocol retains its predictive power under unitary errors.

A future study must also reveal how well the usage of random patterns captures crosstalk
effects. To do so a noise model that encapsulates these effects must be created. It would then be
interesting to see whether the prediction is reasonable and whether the predicted value depends
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on the chosen pattern. Since in a real device we do not know which crosstalk effects are most
prominent, choosing the benchmarking pattern is difficult. The protocol might therefore not be
suited for use without gaining this information from some other protocol first.

Because we perform a random pattern, the chosen pattern might be different between mul-
tiple prediction benchmarking experiments. Some patterns might require more SWAP opera-
tions, which as we have seen in in Figures 3.7 and 3.8 can have an effect on the underlying
benchmarking results. The assumption that the difference between patterns in terms of the
number of SWAP operations (and therefore the number of underlying two-qubit gates) is small,
might not be valid. A consequence is that the benchmark is potentially imprecise, in the sense
that performing the benchmarking protocol on the same device twice may yield different re-
sults due to a different pattern being performed. An improved version of the prediction protocol
might choose the benchmarking pattern more intelligently, for example under the constraint of
minimum applied SWAP operations. This requires more interference with, and a detailed un-
derstanding of, the protocols used in Qiskit and might warrant the use of a different compilation
package altogether.
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5 | Conclusions

We have proposed a protocol that predicts the multi-qubit average gate fidelity by perform-
ing simultaneous randomized benchmarking on subspaces, overcoming the scalability issues
of standard randomized benchmarking. Such a protocol fulfills the need for an efficient bench-
marking protocol for assessing the fidelity of multi-qubit devices. The protocol only requires
benchmarking of single qubits and pairs of qubits to predict the outcome of a multi-qubit ran-
domized benchmarking experiment. Under the assumption that the fidelity of the underlying
gates can be modeled by a depolarizing parameter, it is possible to calculate the average depo-
larization parameter associated with the underlying single- and two-qubit basis gates using the
result of the subsystem benchmarks. With knowledge of the number of single- and two-qubit
basis gates making up the average n-qubit Clifford it is possible to compose the underlying
maps in order to predict the result of n-qubit randomized benchmarking.

The protocol must benchmark every single qubit and each pair of qubits at least once. The
amount of possible benchmarking patterns scales quadratically with the number of qubits. We
choose a random pattern under the objective that operations are preferably performed simulta-
neously in order to catch cross-talk effects and reduce overhead.

The design, implementation, and validation through simulation of the protocol were facili-
tated by IBM’s Qiskit tool for quantum computing. The two main noise models that have been
tested are depolarizing and dephasing noise. For both types of errors, the prediction results
are close to the results obtained from performing the multi-qubit randomized benchmarking
experiment as displayed in Tables 3.2 and 3.3. A confidence bound for the prediction is pro-
vided using the variance obtained directly from the fits of the RB experiments performed in the
single- and two-qubit subspaces.

With the aim of verifying that the prediction converges to the desired result, the protocol
has been simulated using a varying number of seeds. While the confidence bound does tighten
with an increasing number of seeds, we were not able to draw the conclusion that the accuracy
of the result is completely captured by the confidence bound. The spread between the bench-
marking values resulting from experiments with different total seed numbers is larger than the
calculated error bounds. Several reasons as to why this could be the case include shortcomings
of the Qiskit tool, insufficient data points, or the nature of the prediction scheme; this requires
further investigation and perhaps compilation using a different simulation package. This unex-
pected behavior also prevents us from drawing statistically convincing conclusions about the
effectivity of the protocol under different types of noise models.

We have additionally proposed a further worst-case scenario test based on a unitary noise
model since this is theoretically the most unfavorable error type for the prediction scheme. We
are positive that once the mentioned issues are solved and statistically verified that our protocol
can be used to accurately benchmark multi-qubit devices efficiently.
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Appendix

A: Derivation of prediction formulas
For the one-dimensional case we have as the PTM representation for a depolarizing channel
with parameter the αi

RΛ =


1 0 0 0
0 α0 0 0
0 0 α0 0
0 0 0 α0

 (A1)

If we know that a single qubit Clifford consists on average of N1 single qubit basis gates we
can find the error channel corresponding to the average single qubit Clifford by composing the
underlying depolarizing channel N1 times yielding

RN1
Λ =


1 0 0 0

0 αN1
0 0 0

0 0 αN1
0 0

0 0 0 αN1
0

 . (A2)

The result of a twirl according to equation is then 2.37

Tr(RN1
Λ )− 1

4− 1
=

3αN1
0

3
= αN1

0 (A3)

as expected. For the two qubit case the approach remains the same but we now have to deal
with non-trivial subspaces. For the average depolarizing channel with parameter α0 acting on
qubit 0 we obtain

RΛ,0 = diag(1, 1, 1, 1, α0, α0, α0, α0, α0, α0, α0, α0, α0, α0, α0, α0). (A4)

Similarly, for the average depolarizing channel with parameter α1 acting on qubit 1 we obtain

RΛ,1 = diag(1, α1, α1, α1, 1, α1, α1, α1, 1, α1, α1, α1, 1, α1, α1, α1). (A5)

On the space of two qubits a depolarizing channel channel with parameter α01 is described by

RΛ,01 = diag(1, α01, α01, α01, α01, α01, α01, α01, α01, α01, α01, α01, α01, α01, α01, α01). (A6)

Composing these maps into the average Clifford yields

RΛ,C = RN1
Λ,0R

N1
Λ,1R

N2
Λ,01, (A7)
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where N1 and N2 are the average number of single- and two-qubit gates per two-qubit Clifford.
Applying equation 2.37 we find

Tr(RΛ,C)− 1

16− 1
=

3αN1
0 + 3αN1

1 + 9αN1
0 αN1

1

15
αN2

01 , (A8)

which reduces to equation 3.7 as expected.
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B: Code
The implementation of the protocol as well as the simulations is available at: https://
github.com/dveldhuiz/BEP-RB
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