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Abstract

With the increase in data-intensive research in recent years, the Ethernet circuit, which is
a high speed point-to-point connection, can be used for transmitting large amounts of data
between sites. Customers use the trunk port to connect to the operator network. It allows
multiple Ethernet circuits to share the same trunk port by using the trunk and results in
the efficient utilization of the bandwidth of the port. It distinguishes each (VLAN) service
on the basis of VLAN identifiers. When redundancy needs to be offered in the network
using two trunk ports, detecting an individual Ethernet-circuit failure over the trunk and
load balancing per-flow traffic between active trunks is not possible because the existing
technique, namely link aggregation, has limitations. Link aggregation does not support per-
VLAN failure detection and must only be setup between directly connected network elements.
Hence, it cannot be used for end-to-end failure detection when intermediate network elements
are involved.

In this thesis, alternative Layer 2 technologies are identified for detecting per-Ethernet cir-
cuit failure over trunk and per-flow traffic load balancing. Both traditional networking-based
as well as software-defined networking (SDN)-based approaches are investigated to solve the
aforementioned problems, and the findings are summarized. An SDN-based design to solve
both failure detection and load balancing problems is proposed. Furthermore, the proposed
solution is validated using proof of concept (POC) implementation. Finally, the performance
of the POC implementation is evaluated and the findings are summarized along with recom-
mendations for future work.

Our findings reveal that existing Layer 2 technologies lack support in successfully detecting
per-Ethernet circuit failure over trunk and per-flow traffic load balancing between active
trunks. However, an SDN-based approach can successfully be deployed to solve both the
problems.
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Chapter 1

Introduction

1-1 Motivation

With the advancement in cloud computing and big data processing technologies, large data-
intensive research has been conducted within the scientific community. Many scientific in-
stitutes conduct large data-intensive studies in collaboration with other institutes across the
globe. Most big data research applications require high data bandwidth, and carry data that
is often too large for conventional IP networks and could potentially disrupt other traffic.
Ethernet circuit [6] can be used to carry such high volume data. Ethernet circuit provides
a direct, high-speed Ethernet connection with bandwidth up to 100 Gb/s between two end
points by bypassing the regular internet connection [6] [7].

Trunk port [8] is used by network operators to facilitate (VLANSs) services to their network. It
is used by customers to connect to the operator network and enable private (VLANSs) services
between geographically separated locations and provide dedicated connections to data centers
and cloud providers [9]. All (VLANS) services from the customer network can be carried over
this single trunk port.

Trunk ports offer multiple benefits when used with Ethernet circuits. Port bandwidth can be
shared between circuits and can potentially results in efficient port bandwidth utilization [10].
Trunk ports eliminate the need for additional hardware installation as new Ethernet circuit
connections can use the same trunk port if port bandwidth is available [10]. To carry traffic
for multiple Ethernet circuits, trunk ports are configured on customer edge Ethernet switches
and provider edge Ethernet switches. Multiple Ethernet circuits carrying different (VLANS)
services use a common trunk to carry traffic from the trunk port of customer edge Ethernet
switch to the trunk port of provider edge Ethernet switch. Hence, this common trunk act as
a (multi-VLAN) multiservice trunk carrying traffic for multiple VLANS.

As an Ethernet circuit is a point-to-point connection between two sites, redundancy is an
important aspect, and customers use second circuit connected to a trunk port over additional
provider edge Ethernet switch to evade the disturbances due to failure. Per-flow load bal-
ancing that preserves the frame order is preferred by customers between the active circuits
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2 Introduction

because frame reordering can impact the throughput [11]. When traffic for multiple (VLANS)
services arrives at the trunk port of provider edge switch, the provider edge switch directs the
traffic for these (VLANS) services toward their destinations based on VLAN identifiers [10].
Failure detection of a single Ethernet circuit is crucial because different Ethernet circuits use
a common trunk and each Ethernet circuit can fail irrespective of the others.

IEEE 802.1ax link aggregation [12] is the de-facto standard at Layer 2 that offers per-flow
load balancing and a resilience mechanism. Link aggregation combines multiple physical
links in parallel to form a link aggregation group (LAG). LAG provides automatic failover
when one of the links in the aggregation bundle fails. LAG also load balance per-flow traffic
across all links in the LAG. However, IEEE 802.1ax does not support VLAN-tagged control
messages [12]. Hence, challenges arise in identifying an individual Ethernet circuit failure
when multiple Ethernet circuits are carried over a trunk and simultaneously load balance the
per-flow traffic over all active trunks. Therefore, alternative technologies need to be identified
or a new solution needs to be designed to identify the per-Ethernet circuit failure detection
and per-flow traffic load balancing.

In traditional networking, both the control and data planes exist directly on the network
device [13]. If the operator needs to introduce a new feature in to their network, the operator
needs to request for changes from the network equipment vendor [14]. Introduction of new
features into the Multivendor networks is even more challenging as feature support should
be requested of all the vendors and a feature cannot be introduced into the network till
support is available from all the vendors. Rather than each time requesting for changes to
network equipment vendors and being dependent on them for introduction of new features,
a technology that offers more flexibility to the operators is required for faster introduction of
features, independent of the vendor.

Software-defined networking (SDN) is an emerging technology that aims to make a network
programmable. This paradigm allows separation of the data and control planes [15]. In
SDN, the data plane resides in the switching hardware and behaves as a data-forwarding
device. The control plane resides in a centralized intelligent entity called a controller, which
controls and manages the switches through a programmable interface. OpenFlow [4] is one
of the popular SDN protocol that is widely adopted by the networking industry. It was
introduced by Stanford University in 2008 and is currently developed and maintained by the
Open Networking Foundations [16]. It is a network protocol for traffic management amongst
routers and switches. A programmable control plane allows the operators to easily introduce
new network features and customize the network behavior according to their requirement.

1-2 Problem Description

To make efficient use of the trunk port when more than one port is used for achieving redun-
dancy, two problems must be solved. The first issue to be resolved is per-Ethernet circuit
failure detection over the trunk and per-Ethernet circuit failover, and the second issue is
per-flow traffic load balancing over active trunks. In this section, we describe these problems
in detail with the help of an example.

Requirements:

Sulabh Deshmukh Master of Science Thesis
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Figure 1-1: Example of a network setup using two trunks between each site and service provider
network; V1 is a (VLAN) service between sites A and B, whereas V2 is a (VLAN) service between

sites A and C.
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Figure 1-2: Various trunk connection scenarios between one or more customer edge Ethernet
switches and one or more provider edge Ethernet switches.
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1-2 Problem Description 5

Figure 1-1 shows an example network setup to make efficient use of the trunk ports when
two trunk ports are used to provide redundancy. In Figure 1-1, V1 is a (VLAN) service
between sites A and B, whereas, V2 is a (VLAN) service between sites A and C. Two trunks
are setup between each site and the service provider network to achieve redundancy. Two
trunks between each site and service provider network are connected to one or more customer
edge Ethernet switches and one or more provider edge Ethernet switches by using trunk
ports. Various trunk connection combinations used by customers are depicted in Figure 1-2.
The availability of two trunk ports on two separate provider edge Ethernet switches provides
redundancy for the connection to the operator network. Scenarios B and C of Figure 1-2 do
not offer redundancy for the connection to the operator network in case of the failure of the
provider edge Ethernet switch.

In the network setup described in Figure 1-1, the traffic for (VLAN) service V1 is carried
between site A and site B by using two point-to-point Ethernet circuits (not shown in Figure
1-1). To provide redundancy, both Ethernet circuits should not use the same trunk to carry
traffic from each site to the service provider network. At site A, the traffic for these Ethernet
circuits is carried over Trunk 1 and Trunk 2 separately. Similarly, the traffic for (VLAN)
service V2 is carried between site A and site C by using two point-to-point Ethernet circuits.
At site A, the traffic for these Ethernet circuits is also carried over Trunk 1 and Trunk 2
separately. The traffic for both (VLANSs) services, V1 and V2, is carried using two trunks
between site A and the service provider as depicted in Figure 1-1. Because two trunks are
available between site A and the service provider network, balancing the per-flow traffic for
V1 and V2 on Trunk 1 and Trunk 2 is preferred. At site A, when the Ethernet circuit carrying
traffic for the (VLAN) service, V1 or V2, over any one of the two trunks fails, traffic for that
(VLAN) service must be forwarded using another available Ethernet circuit between sites A
and B. Assuming that the Ethernet circuit carrying traffic for V1 over Trunk 2 fails, and
the Ethernet circuit carrying traffic for V2 over Trunk 2 is still active, the traffic for V1
must be carried by other available Ethernet circuits between site A and site B over Trunk
1. The Ethernet circuit carrying traffic for V2 over Trunk 2 can still use Trunk 2. Hence,
per-Ethernet circuit failure detection over trunk and failover mechanism is required at site A.
Similarly, per-flow load balancing and per-Ethernet failure-detection functionality must also
be present at site B and site C.

Several problems occur while trying to achieve the expected aforementioned behavior. These
problems are explained below:

The Failure Detection Problem:

The failure-detection problem is explained using Figure 1-1 and Figure 1-3. If one of the
available trunks in the network setup breaks, assuming that Trunk 4 breaks, resulting in
the failure of Ethernet circuit carrying traffic for V1 over Trunk 2 of site A. However, the
Ethernet circuit carrying traffic for V2 over Trunk 2 is active and can transmit traffic between
sites A and C. Hence, a mechanism is required to detect individual Ethernet circuit failure
over Trunk 2 of site A and direct the traffic for V1 using an alternative route, which, in
this case, is through Trunk 1 of site A. The traffic for V2 can still be carried using Trunk
2 of site A. Because the provider edge Ethernet switch separates the traffic on trunk port
for each Ethernet circuit based on the VLAN identifier, Ethernet circuit failure-detection
mechanisms must support VLAN tagging. Link aggregation and control protocol (LACP)
[12] is the standard protocol defined in IEEE 802.1ax link aggregation standard to identify
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/ |

Network

~— 7 Trunk 6 ;

Trunk 3 Trunk 4
Vi X Vi

Figure 1-3: Failure of Trunk 4 between service provider network and site B

a link failure. However, LACP messages cannot be VLAN tagged, and the IEEE 802.1ax
standard allows only one LACP message per trunk [12]. Hence, LACP cannot be used for
identifying an individual Ethernet circuit failure over a trunk, when the trunk carries traffic
for multiple Ethernet circuits. In addition, link aggregation can only be used to identify the
failure of links between directly connected network elements [12]. Therefore, the failure of
Trunk 4 cannot be identified at site A by using LACP.

The Failover Problem:

Figure 1-4 illustrates a scenario to explain the failover issue. In Figure 1-4, the switch 1 of
site A and switch 1 of site B are connected to two different trunk ports of the provider edge
Ethernet switch PE1 by using a trunk. Similarly, switch 2 of site A and switch 2 of site B are
connected to two different ports of the provider edge Ethernet switch PE2 by using a trunk.

To provide redundancy in this setup, switch 1 and switch 2 of each site A and site B must have
a connection between them. Assuming that the failure of Ethernet circuit carrying traffic for
V1 is detected at switch 2 of site A, the traffic for V1 will be forwarded to switch 1 of site
A. When the failure of the Ethernet circuit carrying traffic for V1 is detected on switch 1 of
site A, the traffic for V1 is forwarded to switch 2 of site A. Because there will be more than
one path active between sites A and B to provide redundancy, a switching loop is formed
in the network, as depicted in Figure 1-4. A loop is also formed when one customer edge
Ethernet switch is used at each site A and site B, as depicted in Figure 1-5. In addition,
when one provider edge Ethernet circuit is used, as illustrated in scenarios B and C of Figure
1-2, a switching loop is created between the customer edge Ethernet switch and provider edge
Ethernet switch.

The Per-Flow Load-Balancing Problem:

Because two trunks are connected between site A and the service provider network in different

Sulabh Deshmukh Master of Science Thesis
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Figure 1-5: Formation of loop when single customer edge Ethernet switch is used.
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8 Introduction

scenarios, as depicted in Figure 1-2, different approaches are used to load balance the per-flow
traffic between these two trunks. When the single Ethernet switch is used at the customer
edge, per-flow load balancing using a Layer 2 technique should be provided by the same
switch; however, when two customer edge Ethernet switches are present as illustrated in
scenarios B and D of Figure 1-2, a network device in the customer network that distributes
the Ethernet traffic to these 2 switches should provide the per-flow load balancing by using a
Layer 2 technique.

The challenges involved in successfully addressing the per-flow load balancing requirement of
Figure 1-1 are explained below:

mj Customer Network

V2 Vi — Ethernet Switch

\%1 V2 rrwww Customer Edge
)
hlalha Ethernet Switch

Provider Edge
l:l Ethernet Switch

Trunk Port

Site A

— Trunk

Switch 1 Switch 2

Ethernet Circuit

Operator Domain

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1-6: An attempt to load balance traffic between customer network Ethernet switch and
customer edge Ethernet switches results in loop.

Figure 1-6 depicts a setup to explain the per-flow load-balancing problem when two customer
edge Ethernet switches are used. In Figure 1-6, two customer edge Ethernet switches, switch
1 and switch 2 are connected using a trunk to the provider edge Ethernet switch PE1 and
PE2, respectively. Because two trunks are used between site A and the operator domain,
switch 1 and switch 2 must be connected using a trunk to achieve failover in case of the
failure of any Ethernet circuits carrying traffic for V1 or V2.

Because two trunks are available between site A and the operator domain, per-flow load
balancing is preferred over these two trunks. The customer network Ethernet switch depicted
in Figure 1-6 must load balance the per-flow traffic, which it forwards to switch 1 and switch
2. Because multiple connections are present between the customer network Ethernet switch
and customer edge switches, a switching loop is created as depicted in Figure 1-6. Similarly,
a loop is also created when one customer edge Ethernet switch is used at each site A and
site B, as depicted in Figure 1-5. Hence, load balancing cannot be achieved in this setup. In
addition, when one provider edge Ethernet switch is used, as depicted in the scenario B of
Figure 1-2; a loop is formed, as depicted by scenario B of Figure 1-8.

For the scenario in Figure 1-6, if redundancy is not provided and no connection exists between
switch 1 and switch 2 for failover, link aggregation can be used to load balance the per-flow

Sulabh Deshmukh Master of Science Thesis
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Figure 1-7: Formation of one-sided LAG at customer network Ethernet switch for load balancing.
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Figure 1-8: Trunk connection scenario B and C of Figure 1-2. In scenario B, a loop is formed. In
scenario C, a one-sided LAG at the customer edge Ethernet switch is created for load balancing.
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10 Introduction

traffic from a customer network Ethernet switch to the customer edge switches, switch 1 and
switch 2 [12]. One-sided LAG can be created at the customer network Ethernet switch, as
depicted in Figure 1-7. However, in this scenario, if any Ethernet circuit carrying traffic for
V1 and V1 fails, assuming that the Ethernet circuit carrying traffic for V1 fails between PE2
and switch 2 of site B, the LAG created on the customer network Ethernet switch at site A
will not detect this Ethernet circuit failure and will continue to send traffic for V1 to switch
2 of site A, resulting in frame loss. Similar issues are present when scenario A or C of Figure
1-2 is used and a one-sided LAG is created at the customer edge switch. Hence, the per-flow
load balancing and redundancy cannot be achieved for the scenario depicted in Figure 1-6 by
using link aggregation.

1-3 Thesis Objectives

The objectives of this thesis are as follows:

1. To detect per-Ethernet circuit failure over a (multi-VLAN) multiservice trunk and
achieve per-Ethernet circuit failover.

2. Load balance the per-flow traffic over (multi-VLAN) multiservice trunks.
This thesis contributes to the objectives as follows:

1. Identify whether both the objectives can be achieved using existing technologies that
are alternative to link aggregation. Identify the pros and cons of using the discussed
existing alternative technologies.

2. Perform careful literature review of SDN and its current state for achieving the key
objectives. Propose an SDN-based solution and evaluate its performance. Identify if
the emerging networking paradigms, such as SDN, are better alternatives.

Thesis Scope: This thesis focuses only on standard Layer 2 technologies.

1-4 Thesis Outline

This thesis addresses the key objectives described in the previous section in a systematic
manner. This work is categorized into five main chapters:

In chapter 2, we identify existing Layer 2 technologies for failure detection and load balancing.
Moreover, we evaluate their suitability to meet our objectives and elaborate on their advan-
tages and disadvantages. In this chapter, we review the literature on relevant SDN concepts.
Furthermore, we evaluate the current state of SDN in meeting our objectives.

In chapter 3, we propose a system design based on SDN to meet our objectives.

Chapter 4 describes the design simulations and testbed configuration details.
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In chapter 5, we describe the test scenarios and the results obtained from them. Moreover,
we evaluate the performance of a newly proposed SDN-based solution for different scenarios.

Chapter 6 provides the final remarks and conclusions for the presented work and future
recommendations.
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Chapter 2

Overview of Relevant Concepts

This chapter provides an overview of the relevant concepts of this thesis. In section 2-1,
existing protocol-based design options are discussed, the potential Layer 2 technologies are
identified, and their advantages and disadvantages are discussed. In section 2-2, some relevant
SDN concepts are discussed. We also provide an overview of Layer 2 failure-detection support
in SDN and describe the load-balancing techniques used in it. At the end of this chapter,
we summarized our findings and concluded on the potential of SDN to achieve our principle
objectives.

2-1 Existing Protocol-Based Design Considerations

In this section, existing technologies for failure detection and load balancing are identified
and compared on the basis of the following criteria:

1. The possibility of usage at Layer 2.

2. The possibility to achieve both the key objectives at the same time using same technol-
ogy.

3. The possibility of combining with another technology if only one of the objectives is
satisfied.

2-1-1 Overview of Existing Layer 2 Technologies for Failure Detection

Several Layer 2 technologies are available for failure detection. Technologies for detecting
Layer 2 failure include link aggregation control protocol [12], bidirectional forwarding detec-
tion [1], and IEEE 802.1ag: connectivity fault management [17]. In this chapter, we introduce
these technologies, describe the situations in which they are useful and discuss their advan-
tages and limitations.
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Link Aggregation

Overview

IEEE Std 802.1AX [12] defines a link aggregation standard with the primary objective of
potentially higher throughput and higher availability for Layer 2 transmission mechanisms.
Link aggregation combines multiple physical links in parallel to form a link aggregation group
(LAG). LAG provides automatic failover when one of the links in the aggregation bundle
fails. For LAG to work, at least one physical link must be active. Figure 2-1 shows the LAG
formation using 3 links directly connected to 2 switches. LAG uses a single MAC address for
all the ports of the device in the LAG group to achieve Layer 2 transparency. For LAG to
work, each port member must have the same speed and duplex settings.

R N\ R

; a ;
; . ;

(1 N \/ L

Figure 2-1: LAG formation between two adjacent network elements.

There are 2 methods to configure a LAG. One method is to use static link aggregation, whereas
the other is to use dynamic link aggregation for automatic recovery in case of failover.

e Static Link Aggregation

Static link aggregation is a manual configuration of LAG between 2 elements. The
network administrator specifies the member ports on each switch that form a LAG
and also selects a hash algorithm on both switches. Simple configuration is one of the
benefits of using static link aggregation; however, it fails to detect link failure if media
converters are used. If one of the switches unbundles the physical link from the LAG
with the link remaining active, the other side will not know that the link is no longer a
part of the LAG and will continue using it to transmit traffic. These problems can be
solved using dynamic link aggregation and control protocol.

e Dynamic Link Aggregation: Link Aggregation and Control Protocol

LAG can be configured dynamically using link aggregation and control protocol (LACP).
LACP is a standard protocol for exchanging information between adjacent elements so
that these elements can agree on the identity of the LAG to which the link belongs.
LACP enables link addition and deletion from the LAG [12]. LACP can be configured

in the following 2 modes:
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1. Active Mode: In active mode, a device immediately sends LACP messages known as
LACPDUs when a port comes up.

2. Passive Mode: In passive mode, a device does not initiate negotiation by itself. It
only responds to the LACPDUs initiated by the active-mode devices.

When both devices are configured in the active mode, a LAG is formed by exchanging various
parameter details in LACPDUs. If one of the devices is set in the passive mode, LAG can
still can be established because the passive device can respond to the LACPDU received from
the active device. If both the devices are in passive mode, a LAG cannot be created, and its
configuration details cannot be negotiated. Therefore, to form a LAG using LACP, one of
the devices must be in the active mode.

In LAG, LACP messages are transmitted for each link in the LAG in 1 seconds or 10 seconds
interval patterns. If LACP messages are not received from the other side of the LAG on each
link, failover is initiated for that link. The default failover initiation time is 30 s. LACP can
be combined with fast-failover mechanisms such as bidirectional forwarding detection [18].

Moreover, we found some proprietary implementations that have a failover time ranging from
250 ms to 2 s [19].

We summarize some advantages and disadvantages of this technology, which are relevant to
this work, from the standard specification [12], as follows:

Advantages
1. Link aggregation is a dedicated Layer 2 technology that offers both failure detection
and load balancing.

2. It offers automatic failover mechanisms by removing the failed links from the LAG.
Disadvantages

1. LAG can only be setup between directly connected network elements and is not for
end-to-end failure detection when intermediate network elements are involved.

2. It must be setup on untagged interfaces.

3. All links in link aggregation must belong to the same VLAN when used as an access
link.

4. When configured for a trunk, only one LACP message per trunk is exchanged between
2 network elements. Hence, cannot be used for per-VLAN failure detection over trunk.

Conclusion

In this section, we reviewed link aggregation technology and listed some of its advantages
and disadvantages. This standard lacks the support for sending control messages for each
(VLAN) service over a trunk. No combination of configurations allows sending per-VLAN
control messages. Therefore, link aggregation fails to achieve our objective of per-Ethernet
circuit failure detection.
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BFD Protocol

Overview

Bidirectional forwarding detection (BFD) is a protocol to detect faults in the bidirectional
path between 2 adjacent forwarding engines [1]. It is simple, has low latency, is protocol-
independent, and is used with various data protocols across different OSI layers. Many of the
available liveliness detection protocols are slow protocols and require a failure detection time
in seconds range, which might not be suitable for an application that deals with data at gigabit
rate. BFD is an alternative for such applications that provides faster failure detection. It was
for example used by Van Adrichem et al. in [20] to speed up failover times in software-defined
networks. BFD is suitable for detecting failure of physical path, virtual circuits, tunnels,
multi-hop route paths, and unidirectional paths.

BFD sends control packets between 2 nodes for failure detection. These control packets are
sent as an encapsulation of other protocols at different OSI layers. Each packet contains
information, such as interval of control packet transmission and minimum interval between
BFD packets supported.

BFD messages are processed using a 3-way handshake during both session initiation and
session teardown [1]. Figure 2-2 shows BFD state machine for this 3-way handshake. This
state machine must be supported by all BFD implementations. The 3 primary states for
session establishment or tearing down are INIT, UP, and DOWN. The fourth state ADMIN

DOWN is for administrative purpose.
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Figure 2-2: BFD State Machine; Source [1].

In DOWN state, control packets are not received from the remote BFD node, and the for-
warding path is unavailable. DOWN is an indication for the application monitoring the BFD
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sessions to take further action.

The INIT state suggests readiness for communication with the remote system. When BFD
control packets signaling INIT or UP are received from the remote system, the local system
changes the session state to the UP state. When no control packets are received in the
configured detection time, the session moves back to the DOWN state.

The UP state signals the remote system that the local system can successfully receive the
control packets from it. The system remains in this state until there is a failure on the connec-
tion between local and remote systems or the session has been taken down administratively.
The system also moves in the DOWN state when it does not receive packets from the remote
end within the configurable time interval.

The ADMIN DOWN state suggests that the BFD session has been administratively changed
to DOWN. This local system state change causes a change in the remote system state to
DOWN state and remains in that state till local system is in ADMIN DOWN state.

We summarize some advantages and disadvantages of this protocol, which are relevant to this
work, as follows:

Advantages

1. BFD is a low-overhead protocol and provides rapid failure detection times in millisecond
range between directly connected networking elements.

2. Tt is transport-aware and service-agnostic [21].

3. It offers faster failure detection compared with LACP when configured over LAG [18].
Disadvantages

1. BFD protocol supports VLAN tagging and can be used over LAG along with LACP [18].
It also supports setting up micro-BFD sessions to identify per-link failures in the LAG.
However, when used over a LAG, packets should be sent untagged or with a VLAN
tag of zero [18]. Therefore, BFD configured over LAG cannot be used for per-Ethernet
circuit failure detection objective of this work.

2. Although BFD can be configured on VLAN interface per-VLAN, such setups cannot be
used in combination with Layer 2 load-balancing techniques such as LAG. At Layer 2,
load balancing is only performed on untagged ports.

3. Some leading switch vendors allow the configuration of BFD at Layer 2 on VLAN
interfaces only when Layer 3 adjacency information is available [22] [23]. Cisco imple-
mentation of BFD supports only Layer 3 clients, and VLAN interfaces are defined as
Layer 3 to enable routing between VLAN interfaces [24] [25]. BFD support on Layer 2
VLAN interface is a highly vendor-specific implementation.

Conclusion

In this section, we reviewed the BFD protocol for failure detection and discussed advantages
and disadvantages of it in relevance to the main objectives of this work. BFD fails in achieving
failure detection per-VLAN when configured over LAG. It can be setup over VLAN interfaces
for per-Ethernet circuit failure detection. However, support should be requested from the
switching vendors for appropriate forwarding mechanism between Layer 2 VLAN interfaces.
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IEEE 802.1ag: Connectivity Fault Management (CFM)

Overview

IEEE 802.1ag standard is a set of protocols for connectivity fault management (CFM). CFM is
used to discover, detect, verify, report, and recover Ethernet connectivity faults [17]. Following
are some key concepts of CFM.

e Maintenance Domain

Maintenance domain (MD) is a part of single operator/customer network and is used to
support network connectivity between the domain service access points [17]. Eight MD
levels in the range 0-7 differentiate between the domains. MD level and domain name
are used to define the hierarchical relationship between various domains. In general, the
operator has the lowest domain level, and the customer has the highest domain level.
Intermediate service providers may use an MD level in between these extreme values.
CFM message exchange is only possible within MD. Figure 2-3 shows the possible MDs.

Service Domain

Customer

Operator Domain M .
P ’ Operator Domain

A4 A 4 A 4 h 4

Customer Domain

Figure 2-3: |EEE 802.1ag: Maintenance Domain (MD); Adopted from [2].

e Maintenance Association

Maintenance association (MA) is used to monitor the connectivity provided by a par-
ticular service instance in a given MD. It is created by configuring the CFM entities
as maintenance association end points (MEPs). Figure 2-4 gives details of the various
MAs that can be created within the network.

e Maintenance Association End Point

MEPs define the boundary of an MD. They are the inward facing points at the edges of
the domain. MEPs help in detecting the connectivity failure between a pair of MEPs
within a particular MA. MEPs are identified with the assistance of MEPID. MEPs can
generate CFM PDUs and also respond to the received CFM PDUs. MEPs drop any
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Figure 2-4: |EEE 802.1ag: Maintenance Association (MA), Maintenance Association End Points
(MEPs) and Maintenance Domain Intermediate Points (MIP); Adopted from [2].

incoming CFM frame coming from the same MD level or lower. They only transmit
frames at a higher MD level.

e Maintenance Intermediate Point

Maintenance intermediate points (MIPs) are intermediate entries within the MD. They
receive CFM frames from MEPs and other MIPs. These CFM frames are then cataloged
and forwarded. All the CFM frames at lower MD levels are dropped and those at higher
levels are forwarded.

CFM consists of 3 protocols that work together to identify the network failure.

e Continuity Check Protocol

Continuity check protocol (CCP) uses a continuity check message (CCM) as a heartbeat
message to detect a failure in MA. These are periodic hello messages confined to a
domain (MD). CCM messages are processed and sent as multicast Ethernet frames by
a switch interface. These messages are sent as unidirectional messages and sender does
not expect any response for these messages. Each MEP sends a periodic CCM message
carrying information about the status of the port on which MEP is configured to other
MEPs. MEPs configure hold time, which is 3 times the CCM interval, in general. If a
CCM message is not received from the other MEP within the expiry of the hold time,
failure is assumed.
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e Link Trace

Link trace messages (LTMs) are also known as MAC traceroute. These are sent as
multicast frames to other MEPs to acquire the path information. LTMs are used for
fault discovery and path isolation. Each receiving MEP then sends back a trace route
reply directly to the originating MEP as a unicast message. LTM is similar to IP
traceroute but at Layer 2.

Loop-back

Loop-back messages are known as MAC ping messages. MEPs transmit these messages
as unicast messages for fault verification to other MEPs or MIPs in the same MA. They
are used to ping MAC addresses. This feature is similar to IP ping but at Layer 2.

From the standard specification [17], we have summarized some advantages and disadvantages
of CFM as follows:

Advantages

1. CFM is a strict Layer 2 standard that only uses Ethernet MAC addresses.

2. CFM offers end-to-end service level operation and maintenance. It has an extensive set

of mechanisms for connectivity monitoring, fault verification, and fault isolation.

. It can auto discover MEPs and monitor the connections between multiple MEPs using

a single multicast CFM message. This is not possible with other failure monitoring
techniques such as BFD and LACP. In case of BFD and LACP, failure monitoring is
limited to two directly connected network elements.

Disadvantages

1. CFM has no support for setting up multiple MEPs over a trunk port.

2. CFM has similar issues to those in BFD. It can be setup on VLAN interfaces for

each VLAN. However, switches rely on Layer 3 mechanism for routing between VLAN
interfaces [26]. CFM setup on Layer 2 VLAN interface is highly dependent on vendor
implementation. Leading switch vendors do not allow setting up CFM setup on Layer 2
VLAN interfaces [27]. Moreover, when MEPs are setup per-VLAN on VLAN interfaces,
they cannot be used with Layer 2 load balancer for the same reason explained for BFD.

3. Moreover, CFM introduces the risk of looping in multipath environment.

Conclusion

In this section, we reviewed CFM technology for failure detection and discussed advantages
and disadvantages of it in relevance to the main objectives of this work. In CFM, multiple
MEPs cannot be setup over untagged interfaces for per-Ethernet circuit failure detection.
Although CFM as a technology can be used over a VLAN interface for per-VLAN failure
detection, lack of appropriate frame forwarding mechanism between a Layer 2 VLAN inter-
faces remain a concern. Most vendor implementations use Layer 3 routing techniques to
communicate between Layer 2 VLAN interfaces.
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2-1-2 Overview of Existing Layer 2 Technology for Load Balancing

In this section, we describe the existing load-balancing techniques. Our literature review
revealed that there are not many choices available for load balancing at Layer 2. Load
balancing can be achieved by configuring LAG. This technique is explained in the following
text:

Overview

LAG allows per-flow load balancing of traffic across all links in the LAG. Because link aggre-
gation reflects a set of physical ports as a single logical port channel, a port is selected from
the set by using a distribution algorithm. The selection of the algorithm is implementation-
dependent, and the standard does not recommend a specific algorithm. When an algorithm
selects an outgoing physical port to transmit a frame, all similar frames are transmitted
through it. Hash-based port selection and dynamic port selection, where the physical port in
the LAG changes for a given set of conversations, are some algorithms used to achieve load
balancing at Layer 2. These techniques are explained in detail in [12].

Conclusion

Static LAG configuration can be used to achieve our objective of load balancing. It supports
per-flow load balancing over a trunk. LAG can be setup over multiple trunk links, and its
hashing techniques can be used to achieve per-flow load balancing.

2-1-3 Existing Protocol-based Design Summary and Conclusion

In this section, we reviewed the potential Layer 2 failure-detection protocols and standards.
Moreover, we evaluated the load-balancing technique used for Layer 2 technologies. All the
discussed Layer 2 technologies failed to fulfill the failure-detection objective of this thesis.
Although BFD and CFM offer possibilities to be used over VLAN interfaces, no leading
vendor currently offers such solutions with appropriate forwarding mechanisms between Layer
2 VLAN interfaces. Network operators cannot modify the switch behaviors and have to rely
on the solutions provided by switch vendors. The only available Layer 2 load-balancing
technique LAG, which can be used to load balance per-flow multi-service traffic over trunks,
has the potential to achieve our load-balancing objective.

Table 2-1 summarizes the traditional technologies that we studied and their suitability for
our work.

Table 2-1: Summary on Existing Layer 2 Technologies

Technologies
Main Objectives Link Aggregation with LACP | BFD | CFM | LAG
Per-Ethernet Circuit Failure Detection X v v X
Per-flow Load balancing X X X v
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2-2 Software-Defined Networking

In this section, we provide an overview of SDN and also introduce some relevant concepts.

2-2-1 Overview

Software-defined networking (SDN) is an emerging trend in the field of networking. SDN is
based on the following principles, as defined in [3]:

e Decoupling of data and control planes: According to this principle, the data and con-

trol planes should be separable. However, it was concluded that some control plane
responsibilities should remain in the data plane system. The interface between SDN
controller and the network element is defined in a manner that allows the controller
to delegate some of its responsibilities to the network element. However, the controller
should be completely aware of the networking element state. The criteria for delegation
are described in [3].

Logically Centralized Controller: The centralized controller can provide a broad per-
spective of the total network resources and result in better decision capabilities for
network deployment.

Ezxposure of abstract network resources and state to external applications: Applications
may be created at any level of abstraction or granularity. Further northbound the
application, the more abstract view of the network the application has. No clear sep-
aration exists between the control and application, because the interface that exposes
the network state and attributes northbound remains a controller interface.

Figure 2-5 shows an abstract level view of SDN architecture based on the principles outlined
in the previous paragraphs. Broadly, SDN architecture can be divided into four different
sections, namely data plane, controller plane, application plane, and management plane.
These planes are described as follows:

e Data Plane

The data plane consists of network resources for traffic handling and also supports the
resources involved in virtualization, connectivity, security, and availability. The SDN
controller controls the traffic forwarding and processing engines. The control plane
makes forwarding decisions for the data plane, and it may also configure the data plane
to respond autonomously to a certain type of traffic flow. The data plane agent entity
represented in diagram 2-5 assists in executing the SDN controller instructions in the
data plane. The RDB is a database containing all resource information of the network
element.

The interface between the data and controller plane (D-CPI) is responsible for

— Programmatic control of resource information in the master database.

— Exchange of capability information

Sulabh Deshmukh Master of Science Thesis



2-2 Software-Defined Networking

23

Application Plane
< SDN
B Application
ﬁk
> . SDN
o e Application
ﬂk
Management } ‘
Plane A \ Control Plane
Coordinator Agent ’ Agent
A A
\/ Y
Master RDB SDN Control Logic
Data Plane
< P Coordinator ’ Agent
Master RDB RaorK
Resources

Figure 2-5: SDN Architecture; Source [3].
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— Event notification

o (Controller plane

The Controller plane is also known as the control plane. However, the controller plane
may consist of more than one SDN controller. The control plane is separated from data
plane and is centrally located in the controller. The control plane is responsible for
configuring the data plane with packet forwarding rules. It is also responsible for policy
enforcement at each network element. A centralized control plane is fully aware of the
network state; therefore, the controller can provide optimized routing path compared
to traditional networking where control plane is distributed in each switch. It is easy
to alter the network behavior in real time and deploy applications in a short time
span. As shown in figure 2-5, the controller plane primarily consists of SDN control
logic. The SDN control logic has a data plane control function (DPCF) to manage the
network resources as directed by the management plane. Multiple agents at the control
plane provide the abstract level view of the network resources to a different application
through a northbound application programming interface (API). Coordinator function
of the control plane manages the coordination between various SDN controllers.

e Application Plane

In SDN, based on the business requirement and policy enforcement, external applica-
tions can specify the resources and request the required behavior from the network.
Applications may use external services and multiple SDN controllers to achieve the ob-
jective. The operator can write applications to dynamically control the service quality
of the network by obtaining the real-time information about network parameters such
as delay and throughput.

o Management Plane

Management provides an infrastructure support task that is not to be performed by
other SDN entities. The manager may install the policy enforcement software. It may
provide the Operations support system (OSS) interface to other SDN planes.

2-2-2 OpenFlow Protocol

OpenFlow [4] is one of the key drivers of SDN innovation. This protocol is used to exchange
a set of instructions between the controller and OpenFlow-compliant switches over D-CPL.
In this section, we will summarize the basic working details of OpenFlow protocol that are
relevant to this thesis.

The OpenFlow protocol defines a set of flow manipulation messages. A flow can be installed
in a proactive or reactive manner. In the proactive method, flows are configured in advance,
and there is no flow table lookup. In reactive method, unmatched packets from the flow table
lookup are forwarded to the controller by a PacketIn message where the controller calculates
the new forwarding rule based on the current state of the network and installs these rules
into the flow table by a FlowMod message. The controller instructs the switch to send the
packet out of a specified port of a switch by sending a PacketOut message.

Moreover, a hybrid approach is possible for flow instantiation, and it provides granular traffic
control for some of the customer traffic and preserves the low-latency forwarding for the other.
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The latest standard 1.5 for OpenFlow switch specification is defined in [4] and consists of the
following major modules:

o Flow Table

The flow entries installed in the OpenFlow switch are stored in flow tables. Figure 2-6
shows the fields of a flow table entry for OpenFlow version 1.5, which are explained as
follows:

‘ Match Fields ‘ Priority | Counters ‘ Instructions ‘ Timeouts | Cookie | Flags |

Figure 2-6: Flow Table Entry Fields; Source [4].

— Match Fields: To match the incoming packets with the defined matching criteria
that include a certain ingress port of the switch and various packet header fields.

— Priority: Describe the priority of the flow entry. When incoming packets are
matched to multiple flow entries, the flow entry with highest priority takes prece-
dence.

— Counters: The OpenFlow switch keeps track of the matched packet count by
using counters field.

— Instructions: It specifies the instructions to perform certain actions on the flow.
— Timeouts: It specifies the flow expire timer value within the switch.

— Cookie: This field is used by the controller to filter the flow statistics, flow mod-
ification, and flow deletion during the time when data packets are not processed
by the switch.

— Flags: Flags control the flow entry management.

o Group Table

The group table is used to further process the received packets and assign a more specific
forwarding action to each flow. It contains group entries and each entry has a set of
actions buckets associated with it.

A list of OpenFlow-supported group tables is provided as follows. Some of these groups
are mandatory for implementation, whereas the others are optional.

— Indirect: The indirect group has only one action bucket. It is similar to all group
tables except that it has a single bucket. Multiple entries and groups can point
to this group, resulting in the execution of same actions for these flow entries
and groups. This allows faster and more efficient flow convergence. The indirect
group prevents duplicating the list of common actions for various flow entries, thus
allowing to scale the SDN deployment and reduce the memory requirement. This
group is a mandatory implementation for OpenFlow-compliant switches.

— All: It executes all the buckets listed in the group. This approach is useful for
broadcast or multicast forwarding. Packets will be cloned for each bucket, the
actions from each bucket are applied to every incoming packet. If one of the
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buckets forwards the packets on the ingress port, its clone packets are dropped by
other buckets. This group is mandatory for OpenFlow-compliant switches.

— Select: The select group is used to achieve load balancing. A single bucket will
process the packets in the group, and each bucket has an assigned weight. The
bucket selection algorithm is the choice of the switch vendor. However, weighted
round-robin is the most common algorithm used by various switch providers. This
group is an optional implementation for OpenFlow-compliant switches.

— Fast-failover: This group is used to achieve failover mechanism in case of port
failure. Each action bucket is associated with a port, which is continuously checked
for its liveliness. In case of port failure, actions from the next live bucket are
executed. Buckets are evaluated in the same order in which they are defined in the

group.

o Meter Table

Meter table is used to perform various quality of service (QOS) operations using Open-
Flow switches. Various QOS operations include rate limiting, per-port queuing, and
DiffServ. Meters are attached to flow entries and can measure the rate with which the
packets are assigned to flow entries. It can control and limit this rate to achieve various
throughputs.

2-2-3 SDN Controllers and Switches

The controller is the brain of SDN networks. It acts as a network OS connecting the top
level application and devices to the network. Because of network abstraction, the controller
provides centralized control over the complete network, making it possible to apply the SDN
paradigm across heterogeneous networks, such as wireless, wired, and optical networks [28].
Various OpenFlow-based controllers are commercially available and are compatible with pro-
gramming languages such as Java and Python. Some popular controllers are POX [29], Ryu
[30], ONOS [31], Floodlight [32], and OpenDaylight [33]. All of these controllers are compli-
ant with the OpenFlow protocol standards and implement the core control plane behavior
in line with the SDN standards highlighted in the overview section. All these controllers are
enterprise-class [34] controllers, except POX.

Open vSwitch (OVS) is a production quality multilayer virtual switch [35]. It is a open source
software, and is widely used as a backend switch for OpenStack [36] networking. OVS is not a
dedicated OpenFlow switch and supports traditional management interfaces, such as LACP,
802.1ag, SPAN, RSPAN, CLI, NetFlow, and sFlow. The programmability of OVS makes it
possible for operators to perform large-scale network automation. It allows applications to
program switch behavior using the OpenFlow protocol. Moreover, it can be controlled by an
external controller or through a built-in control interface via a command line. OVS is most
widely used in virtualized platforms, such as KVM [37], Xen [38], Docker [39], and VirtualBox
[40]. Hardware-based switches, such as Pica8 [41] and NoviFlow [42], offer OVS support.

Pica8 is one of the leading vendors of SDN-based white box switches, and their network
operating system is called PicOS, which can be deployed across various switch hardware.
Figure 2-7 shows the generic building blocks of PicOS architecture.
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Figure 2-7: PicOS Generic Architecture; Source [5].
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Figure 2-7 shows that these switches can act as traditional L2/L3 switches in closed archi-
tecture format, or they can act as a dedicated OpenFlow-compliant programmable switches.
Interface with the switching hardware is provided through Pica8 driver APIs. Therefore,
switching software is closely coupled with switching chipsets, enabling easy switching of
ASIC vendors and making PicOS portable. In the hardware layer for a Pica8 white box,
these switches use ternary content-addressable memory (TCAM) for storing flow rules for
faster table lookups. Pica8 switches use Trident II switch ASIC [43].

2-2-4 Overview of Layer 2 Failure Detection Support in SDN

OpenFlow-capable switches, such as Open vSwitch and Pica8, offer various Layer 2 failure
detection mechanisms. Various resiliency measures are proposed for SDN [44]. When a port
goes down, an asynchronous Port-status OpenFlow message is sent to the controller indicating
failure on that port. The network administrators can monitor the ports using watch__port for
port down event when using fast failover group tables. Apart from detection of a connection
failure between directly connected switches, various Layer 2 failure detection mechanisms,
such as BFD and CFM, can be activated on each port. Failure detection by these methods
results in a port down event.

Our study on 802.1ag CFM protocol implementation in Open vSwitch revealed that CFM
packets can be sent with VLAN tagging [45]. Pica8 also supports the VLAN-tagged CFM
messages on the physical port [46]. OpenFlow physical ports correspond to a hardware
interface of the switch. MEPs can be configured on a designated physical port using a specified
VLAN tag. However, it does not allow configuring multiple VLANSs on the designated physical
port. PicOS current does not support multi-VLAN MEPs setup on a single port. Moreover,
Pica8 offers limited support for logical ports that support only GRE tunneling and LAG.
A logical port is a switch defined port that doesn’t correspond to the hardware interface of
the switch and is an optional requirement, and its support primarily depends on the switch
vendor.

Furthermore, we found that BFD configuration in Open vSwitch and Pica8 does not support
the option to add VLAN tag to BFD messages [45]. To send VLAN-tagged BFD messages,
they should only be sent over a tagged interface. Another failure detection technique, link
aggregation, is fully supported in both the switches, and its implementation is fully compliant
with the 802.1ax standard. However, this technology has no multi-VLAN tagging support;
therefore, it is invalid for this work in its current state.

To summarize, limited options are available to achieve the failure detection objectives. The
most promising option, link aggregation, cannot be used for this work. Both CFM and
BFD lack multi-VLAN tagging support in leading OpenFlow switch vendors. However, the
use of CFM and BFD should be possible over logical ports for per-VLAN failure detection.
The implementation of logical port feature is completely vendor-dependent; therefore, we
implement our own failure detection SDN-based application.

2-2-5 Overview of Layer 2 Load balancing in SDN

LAG is supported in SDN. However, in SDN, the users need not depend on this particular
method and can also create their own load balancing applications in the controller, possibly
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by using information from network monitoring applications, like OpenNetMon [47]. This
approach has advantages over the LAG. Operators can create their own customized load
balancing algorithms that suit their network requirements. New algorithms that remove the
limitations of the current technology can be created. It is easy to create and introduce new
design algorithms without depending on the switch vendors.

In [48], a flow-based load balancing application that eliminates the requirement of a spanning
tree protocol and resides in SDN controller was introduced. The application selects different
outgoing paths for different incoming flows based on various load-balancing algorithms. In
traditional LAG, only hash-based algorithms were supported. However, this work implements
other load-balancing techniques that might be suitable for the current network workload.
Some other supported load-balancing techniques are as follows:

o Random path selection: This algorithm assigns new flow to an outgoing interface of a
switch randomly.

e Round-Robin path selection: In this approach, new flow is assigned to the next available
outgoing interface of a switch in a round-robin fashion.

o Flow-based path selection: This algorithm considers the number of flows already mapped
to any particular outgoing interface of a switch before allocating new incoming flow.

e Application-aware path selection: This method considers the data transferred by each
application. However, for this algorithm, applications require the sharing of the data
transfer information with the controller.

In summary, SDN offers flexibility and more Layer 2 load-balancing choices for network op-
erators to traffic engineer their network than traditional technology.

2-2-6 Summary and Conclusion on SDN

In this section, we reviewed SDN and discussed some of its concepts relevant to this work. We
also provided an overview of the current state of Layer 2 failure-detection and load-balancing
techniques. Although the main objectives of this thesis cannot be achieved using the current
SDN-based implementations because of a lack of direct support for detecting per-VLAN
failures, SDN offers several advantages over traditional technology, allowing the operators to
create their own applications to overcome vendor lock-in and protocol limitations.
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Chapter 3

Proposed System Design

In this chapter, we propose a system design to meet the primary objectives of this thesis.
Section 3-1 discusses the design considerations for solving the problems. The details of the
proposed design are discussed in section 3-2.

3-1 Design Considerations

As discussed in Chapter 2, no combination of standard (IEEE) protocols can be used to
meet our objectives. Therefore, we considered an SDN-based design approach. SDN is a
relatively new technology that has not been widely deployed in production networks. Thus,
a pure SDN-based solution can cause extensive changes in the existing infrastructure and
increase the cost. Moreover, SDN has its own set of challenges, including robustness and
scalability [49]. Therefore, we considered a hybrid SDN-based design. Our design approach
ensures minimal effect and changes in the customer network. This thesis focusses on two sub-
problems, namely failure detection and failover and load balancing, the design considerations
for which are explained separately.

3-1-1 Failure Detection and Failover Considerations

Because multiple Ethernet circuits use the same trunk, per-Ethernet circuit failure detection
is required over a trunk. As summarized in section 2-1-3, at Layer 2, only BFD and CFM
allow per-VLAN failure detection. Applying these failure detection techniques on Ethernet
switches along with Layer 2 load balancing mechanism results in loops because of a multipath
environment. Loop avoidance techniques, such as spanning tree protocol (STP) [8], cannot
be used in Layer 2 networks when multiple paths need to be active.

OpenFlow-capable switches offer flexibility and allow customized flow rule installation to
avoid loops in a multipath environment. However, our study on these switches, described in
section 2-2-4, revealed their disadvantages. In OpenFlow-capable switches, failover is possible
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in 2 ways, fast and slow failover. In fast failover, failover is initiated from the switch. In
slow failover, failover is initiated from the SDN controller. Because per-VLAN fast failover
detection is not currently implemented, a failure detection application requires to be designed.
This means that the failover will be slow, managed using the SDN controller.

3-1-2 Per-flow Load Balancing Considerations

For Layer 2 Ethernet networks, the only available existing standard technology that offers load
balancing support is IEEE 802.1AX link aggregation group (LAG). However, in SDN along
with LAG support, network administrators can design their own customized load balancing
applications. An SDN-based load balancer implies that network service provider’s customers
will have to replace their existing edge equipment with OpenFlow-capable switches. Our pri-
mary objective is to minimize the effect on end customers; therefore, we decided to use the
existing LAG-based load balancing technique on the existing Ethernet-based customer edge
switch. One of the early challenges with this approach was that the feasibility of combining
this setup with OpenFlow-capable switches was not confirmed. Experiments were performed
to confirm it. More details about these experiments are given in appendix A. Experimen-
tal results showed that LAG-based load balancing setup can be successfully combined with
OpenFlow-capable switches.

3-2 Design Proposal

Figure 3-1 illustrates the proposed architecture. In our design, we ensured minimal effect on
the customers. The hybrid design approach will allow customers to continue using existing
Ethernet switches, and all the extra complexity will be managed by the network operator by
using OpenFlow switches, which provide support for trunk ports. Customers will not have to
make infrastructural changes in their network. Figure 3-1 shows an example design with two
active trunk ports over two separate provider edge switches. However, the proposed design
can scale up to multiple trunk port connections for multi-site collaboration. Operators can
also use one OpenFlow switch instead of the proposed two, as shown in figure 3-2. Choice of
number of OpenFlow switches to introduce is dependent on the network resilience requirement
of the customer.

In our design, we introduced hardware-based OpenFlow switches between the Ethernet-based
customer edge switch and provider edge Ethernet switches. These switches are placed at the
customer premises, however, they are controlled by the network operator. This OpenFlow
switch placement approach is similar to the Customer-premises equipment [50]. Hardware-
based switches were particularly selected because of the high-speed requirement of an end-to-
end Ethernet connection. The speed requirement for such Ethernet connection is within the
range of 10G to 100G. Open vSwitch has a performance bottleneck in its current state [51]
[52]; therefore, we cannot use a virtual switch for our design. A centralized controller will
control all OpenFlow-capable switches. Operators can select any enterprise-class controller.
A list of such controllers is presented in section 2-2-3.

Ethernet-based customer-edge switch enables per-flow traffic load sharing for two trunks used
between OpenFlow switches and provider edge Ethernet switches by using static LAG. One-
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Figure 3-2: Connections between customer edge Ethernet circuit and OpenFlow switch when
one OpenFlow switch is used in the proposed architecture.

sided static LAG is created at the Ethernet-based customer-edge switch for load balancing.
In a typical scenario, traffic will not flow between two OpenFlow-capable switches.

Network operators will provide failure detection and redundancy. Customers will not need to
change their network configuration for redundancy. Per-Ethernet circuit failure detection and
failover initiation will be achieved using OpenFlow-capable switches. Since current limitations
of SDN do not allow per-VLAN failure detection in the data plane, failure monitoring will be
achieved using an SDN controller. To ensure an end-to-end failure detection, we selected IEEE
802.1ag CFM protocol because of its advantages described in section 2-1-1. Designed failure
detection application in the centralized controller will monitor per-Ethernet circuit failures
using each configured MEP on the trunk ports of OpenFlow switches connecting trunks to
the provider edge switches. MEPs will be setup per-Ethernet circuit on the trunk ports. In
a case of Ethernet circuit failure, designed controller-based application will initiate a failover
for that Ethernet circuit. All the traffic over the failed Ethernet circuit will be forwarded
using other active Ethernet circuit between two sites.

The application will switch the traffic of the failed Ethernet circuit over the other active trunk.
It will continue to monitor the remaining Ethernet circuits on the existing trunk. Failure of
any trunk between a customer-edge switch and an OpenFlow switch will be detected by the
static LAG created on customer edge switch. On detection of failure, that particular trunk
will be removed from the LAG, and the traffic will not be transmitted through that trunk.
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Chapter 4

Design Simulation and Testbed Setup

In this chapter, the experimental testbed setup and designed software for our POC are dis-
cussed in detail. Section 4-1 discusses the testbed setup for load balancing. The details of
the testbed setup for failure detection and failover are discussed in section 4-2. Section 4-3
discusses the details of prototype software of proposed design.

All experiments are carried out on SURFnet physical SDN testbed, as shown in figure 4-1.

o | | i | SURFnet SDN Testbed

[ Asd001T ; - il Ledn001T
P5101-00T [C®————ess® P5101-128T
[ : |
:
©), 25,26 2
s | I
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P5101-32T g P5101-01T
I : | ]
3 8 4
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=1 P5101-96T i P5101-64T

Figure 4-1: SURFnet SDN testbed.
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4-1 Testbed Setup for Load Balancing
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Figure 4-2: Testbed setup for load balancing.

Figure 4-2 shows the testbed setup for load balancing. Because we proposed legacy switch-
based load balancing in our system design, we used the Cisco Catalyst 3560 series legacy switch
in our prototype [53]. This switch is responsible for load balancing and, it was connected to
the Pica8 P-5101[54] series SDN switch 00T of testbed 4-1 to form a hybrid network. Load
balancing for Cisco switch connected with two OpenFlow switches was not tested in this work
due to testbed configuration limitations. Two VMs, which were created using OpenStack [44],
sent traffic with VLAN identifiers 100 and 101, respectively, and connected to switch 00T.
Switch 00T sent the traffic it received from VM1 and VM2 to port 38, which was connected
over a trunk with the Cisco switch to port 25. This trunk was configured to accept the traffic
for VLAN identifiers 100 and 101 . The Cisco switch ports 26 and 27 were also connected to
ports 39 and 40, respectively, of switch 00T. These two connections were configured as trunk
for outgoing traffic from the Cisco switch. For load balancing the traffic on these two trunks,
first, a one-sided static LAG was configured on ports 26 and 27 of the Cisco switch [55]. We
configured the LAG in the on mode. In this mode, the port is compulsorily a part of the
LAG without sending LACP messages. When both the ports were successfully configured in
LAG, MAC-address-based load balancing was configured [55], as we simulated the Layer 2
load balancing. In this scenario, the load balancing hash algorithm distributed the traffic on
all the configured links in the LAG on the basis of source MAC addresses.

Following are the static OpenFlow rules installed on switch 00T to test load balancing sce-
nario:

Traffic received from VM1 and VM2 on port 31 and 32, respectively of switch 00T, is sent to
port 38.

e ovs-ofctl -oopenflow13 add-flow br0 in_ port=31 actions=output:38

e ovs-ofctl -oopenflow13 add-flow br0 in_ port=32 actions=output:38
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Traffic received on port 39 and 40 of switch 00T is sent to port 25.

e ovs-ofct]l -oopenflow13 add-flow br0 in_ port=39 actions=output:25

e ovs-ofct]l -oopenflow13 add-flow br0 in_ port=40 actions=output:25

4-2 Testbed Setup for Failure Detection and Failover

Figure 4-3 shows the testbed topology setup for failure detection and failover mechanism.
Using this topology, we demonstrated failure detection on a per-VLAN basis over a trunk in
OpenFlow-based networks. For this experiment, we used the SURFnet physical testbed, as
shown in figure 4-1, and created a topology consisting of 5 Pica8 P-5101 series switches. As
shown in figure 4-3, we used multiple VMs running Ubuntu 14.4 LTS. VM1 and VM2 send
traffic with VLAN identifiers 100 and 101, respectively. On the receiver side, traffic from
VM1 and VM2 was captured on a bare metal switch (Beryllium). The OpenFlow controller
was installed on a separate, dedicated VM. This controller had connection to all the switches
in the topology. However, in our prototype, the controller was only connected to the switches
00T and 96T. We used Ryu SDN controller for our experiments.

VM1 and VM2 were connected to ports 31 and 32, respectively of switch 00T. Beryllium was
connected to two ports, namely port 31 and port 32 of switch 96T. The traffic from VM1
and VM2 was received on dedicated interfaces by the traffic receiver beryllium to analyze the
received traffic separately. Traffic for VLAN 100 was received on port 31, whereas that for
VLAN 101 was received on port 32 of beryllium. Traffic can follow two paths in this test
setup, the primary path and the backup path. Typically, traffic follows the primary path.
The backup path is only used when failure is detected on the primary path. Traffic for VLAN
identifiers 100 and 101 from switch 00T was sent over the same path on port 25 to switch
01T. At switch 01T, the traffic for these VLANs was separated and followed the separate
paths. We configured a path between switch 00T and switch 01T as a trunk. At switch 96T,
the traffic for VLAN 100 and 101 was sent over dedicated ports to the receiver as shown in
figure 4-3.

We used our software implementation of 802.1ag connectivity fault management (CFM) for
detecting failure. Maintenance end points (MEPs) were setup on switch 00T and switch 96T
to detect end-to-end connectivity failure for individual VLANSs over a trunk between switch
00T and switch 01T. Because our setup was within the same domain, the MD level was the
same for each protocol message transmitted between MEPs. The MD level was set to 0. We
provided a unique maintenance association (MA) name for each VLAN.

MEPs generate CCMs for each VLAN on a trunk port, at regular intervals. Figure 4-4 depicts
the manner in which CCM per-VLAN can be sent and received using OpenFlow controller.
Unique MA id is used to track CCMs from all the MEPs for a particular VLAN. Figure 4-4
is a sample configuration on switch 00T. The controller creates and sends CCMs per-VLAN
with different MA id on the outgoing trunk port 25 of switch 00T. It installs a rule to receive
all the CCM replies for each VLAN back to the controller.

The following section discusses traffic processing by each switch, relevant static configuration,
and OpenFlow rules for the setup.

Master of Science Thesis Sulabh Deshmukh



38 Design Simulation and Testbed Setup

SDN Controller

(145.97.20.117) VM 2
VM 1

9

Tr e 00T — | TITII 128T
— 9
25 1 I 2
Primary Path
A" T\
VLAN 100
. VIAN
Failover Path VIAN 101 101
Y ¢ 25 2
cETE VIAN -1 01T
101 —
31 32T 7
VLAN
100
3 96T 5
343 JUER
< 7 7
32 31
P5P2 P5P1

Traffic Receiver | w = —

Bare Metal Switch
(Beryllium).

Figure 4-3: Physical testbed setup for failure detection and failover mechanism
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Controller
CCM Request for VLAN 100 CCM Reply for VLAN 100 and
and 101 101 from Remote MEPs

Sample Flow entries to receive CCM Reply
in_port=25,dl_vlan=100,d|_type=0x8902,actions=CONTROLLER - OpenFlow Switch
in_port=25,dl_vlan=101,dI_type=0x8902,actions=CONTROLLER

Figure 4-4: Example of CCM exchange per-VLAN between switch and controller

e Switch 00T: This switch received traffic from VM1 and VM2 over port 31 and 32,
respectively, and this traffic was sent to the outgoing port 25. MEP was set on this
switch and the controller sent CCM for each VLAN on port 25, which was further
connected with the same port number of switch 01T. CCM replies, which would be sent
to the controller for further processing, were received on the same port 25.

Following are the OpenFlow rules that were installed to achieve the aforementioned
functionality:

ovs-ofctl -OOpenFlow13 add-flow br0 in__port=31,priority=8888,actions=output:25
— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=32,priority=8888,actions=output:25

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=25,dl vlan=100,dl_type=0x8902,
actions=CONTROLLER

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=25,dl_vlan=101,dl_type=0x8902,
actions=CONTROLLER

To test the test case 5 described in section A-1-1, CCMs were also sent on port 1.
Design software expected that CCM replies, which would be sent to the controller for
further processing, would be received on the same ports. The connection between switch
00T and switch 32T only allowed traffic over VLAN tags 1100 and 1101 because of the
preconfigured settings on the SURFnet testbed. Thus, the VLAN tags 1101 and 1100
were removed by pop_vlan and VLAN tags of 100 and 101 were added by push_vlan
before sending the traffic to the SDN controller. The reverse procedure was followed
when CCMs were sent using designed software on port 1.

Following are the additional static OpenFlow rules that were installed for this test:

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=1,dl_ vlan=1101 actions=pop__vlan,
push_ vlan:0x8902,set_ field:101->vlan_ vid,actions=CONTROLLER
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— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=1,dl_ vlan=1100 actions=pop__vlan,
push_ vlan:0x8902,set_ field:100->vlan_ vid,actions=CONTROLLER

e Switch 01T: When frames arrived at switch 01T over the trunk port 25, traffic for
each VLAN was separated. Frames for VLAN 100 were sent to port 7 and frames
for VLAN 101 were forwarded to port 2. Moreover, designed software expected to
receive CCM replies for each VLAN on the same port, where traffic was sent for these
VLANS. Therefore, traffic received on port 2 and port 7 was forwarded to port 25. The
connection between switch 01T and switch 128T only allowed traffic over VLAN tags
2100 and 2101 because of the preconfigured settings on the SURFnet testbed. Thus, the
VLAN tag 101 was removed and either of the VLAN tags, 2100 or 2101, was added to
send the traffic further. The reverse procedure was followed when traffic was received
on port 2.

Following are the OpenFlow rules that were installed to achieve the aforementioned
functionality:

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=25,dl_ vlan=101 actions=pop_ vlan,
push_ vlan:0x8100,set_ field:2101->vlan_ vid,output:2

— ovs-ofctl -OOpenFlowl3 add-flow br0 in_ port=25,dl_ vlan=100,actions=output:7

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=2,dl_ vlan=2101 actions=pop_ vlan,
push_ vlan:0x8100,set_ field:101->vlan_ vid,output:25

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=7,actions=output:25

o Switch 128T:At this switch, the traffic for VLAN 101 was received on port 2. This
traffic was routed to port 9. In addition, we expected a CCM reply in the reverse
direction, that is, traffic on port 9 would be sent to port 2. This switch merely acted
as an intermediate switch for VLAN 101 traffic. The connection between switch 01T
and switch 128T only allowed traffic over VLAN tags 2100 and 2101 because of the
preconfigured settings on the SURFnet testbed. Thus, the VLAN tag 101 was removed
by pop__vlan and either of the VLAN tags, 2100 or 2101, was added by push_ vlan to
send the traffic on port 2 of switch 128T. These tages were removed before sending
traffic further on port 9 as these VLAN tags were not supported on other paths. The
reverse procedure was followed when traffic was received on port 9 before forwarding it
to port 2.

Following are the OpenFlow rules that were installed to achieve the aforementioned
functionality:

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=2,dl_ vlan=2101,actions=pop_ vlan,
push_ vlan:0x8100,set_ field:101->vlan_ vid,output:9

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=9,dl_ vlan=101,actions=pop_ vlan,
push__vlan:0x8100,set_ field:2101->vlan_ vid,output:2

o Switch 32T: This switch is only used when the redundant path is used. The connection
between switch 00T and switch 32T only allowed the VL AN tags 1100 and 1101 because
of intermediate traditional switches (not shown) in our testbed. Therefore, we removed
the VLAN tags 1100 and 1101 and added the tags 100 and 101 to send the traffic on
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port 3 of switch 32T. The reverse procedure was followed when frames were sent on
port 1 of switch 32T.

Following are the OpenFlow rules that were installed to achieve the aforementioned
functionality:

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=1,dl_ vlan=1101 actions=pop_ vlan,
push_ vlan:0x8100,set_ field:101->vlan_ vid,output:3

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=1,dl_ vlan=1100 actions=pop_ vlan,
push_ vlan:0x8100,set_ field:100->vlan_ vid,output:3

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=3,dl_ vlan=101 actions=pop_ vlan,
push_ vlan:0x8100,set_ field:1101->vlan_ vid,output:1

— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=3,dl_ vlan=100 actions=pop_ vlan,
push_ vlan:0x8100,set_ field:1100->vlan_ vid,output:1

e Switch 96T: We set up an MEP at switch 96T. The CCMs were sent per-VLAN. The
MEP operation and procedure was in accordance with that of switch 00T. The only
difference being that CCM for VLAN 100 were sent to port 7, whereas those for VLAN
101 were forwarded to port 9. The traffic for VLAN 100, which was received on port 7,
was further routed to port 31. Traffic for VLAN 101 was received on port 9 which was
sent to port 32. Traffic received on port 3 of the failover path was sent over to either
port 31 or 32 based on the VLAN identifiers.

Following are the OpenFlow rules that were installed to achieve the functionality men-
tioned above:

— ovs-ofctl -OOpenFlow13 add-flow br0Q in_ port=9,dl_ vlan=101,actions=output:32
— ovs-ofctl -OOpenFlowl3 add-flow br0 in_ port=7,dl_vlan=100,actions=output:31
— ovs-ofctl -OOpenFlowl3 add-flow br0 in_ port=3,dl_ vlan=100 actions=output:31
— ovs-ofctl -OOpenFlow13 add-flow br0 in_ port=3,dl_vlan=101 actions=output:32

— ovs-ofctl -OOpenFlow13 add-flow brO in_ port=7,dl_vlan=100,dl_ type=0x8902,
actions=CONTROLLER

— ovs-ofctl -OOpenFlow13 add-flow brO in_ port=9,dl_vlan=101,dl_ type=0x8902,
actions=CONTROLLER

To test the test case 5 described in section A-1-1, MEPs were also configured to send
CCMs per-VLAN on port 3 for failover path monitoring with unique maintenance as-
sociation (MA).

Following are the additional OpenFlow rules that were installed for this test:

— ovs-ofctl -OOpenFlow13 add-flow brO in_ port=3,dl_vlan=100,dl_ type=0x8902,
actions=CONTROLLER

— ovs-ofctl -OOpenFlow13 add-flow brO in_ port=3,dl_vlan=101,dl_ type=0x8902,
actions=CONTROLLER
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Failure detection and failover experiments were performed separately and in combination
with load balancing features to test the overall connectivity of the prototype. Therefore, the
testbed setup mentioned in the section 4-1 was combined with that mentioned in this section.
A list of tests performed is provided in appendix A. When both the testbed setups were
combined, changes were required only at switch 00T. Instead of sending the traffic received
from VM1 and VM2 directly on port 25, it was sent over to the Cisco switch and the incoming
traffic from the Cisco switch was sent over to port 25. In this scenario, the OpenFlow rules
installed were similar to those explained in section 4-1. In the available testbed, it was
possible to send traffic for only two VLANs. Hence, multi-VLAN failure detection was not
tested simultaneously on both primary and failover path as shown in figure 3-1. Multi-VLAN
failure detection was evaluated using either primary or failover path.

4-3 Prototype Software of Proposed Design

As discussed in chapter 3, an application needs to be designed in SDN controller for detecting
per-VLAN failure over a trunk. For prototype simulation, we designed and developed an
application in Ryu. Figure 4-5 shows an overview of the designed software components.
Implementation is categorized into 3 main components: main application, failover, and CCM.

CFM Implementation is the primary module, and only a single instance of it is active in the
whole network. All configuration details, such as switches and ports on which MEPs should be
setup and failover path details should be provided in this module. This module is responsible
for creating MEPs and initiating failovers. Failure monitoring and communication between
all configured MEPs is performed in this module.

CCM library implements IEEE 802.1ag standards for detecting per-VLAN liveliness. A stan-
dard state machine for sending and receiving CCM is implemented in this module. A failover
library is responsible for failover initiation. When a failover is triggered after the timeout of
a failure detection timer, the appropriate failover path OpenFlow rules are installed on the
switches.
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Chapter 5

Testing and Evaluation

This chapter discusses the results of the experiments conducted using the POC implementa-
tion explained in chapter 4. To evaluate the proposed design and the developed software, a
test plan was created, which is described in detail in Appendix A. The outcomes of the tests
performed are discussed in this section.

5-1 Results for Fast Failover

Although we concluded in chapter 2 that currently fast failover group tables cannot be used
with CFM failure detection mechanism to solve multi-VLAN failure detection and failover
problems, it is crucial to investigate and understand how effective the failover could be if it
was initiated from the data plane of SDN switches. This experiment provided an insight into
the current state of OpenFlow switches in achieving fast failover with CFM.

5-1-1 Experiment Procedure

This experiment can be broadly categorized into 3 major sections: traffic generation, fast
failover using CFM-based failure monitoring, and failover time calculations, which are ex-
plained as follows:

Traffic Generation:

To simulate the network traffic of our experiments, we used pktgen [56], which is a Linux-based
high-speed packet generator that operates in kernel space. Pktgen allows sending fixed-sized
packets at regular intervals. The generated packets are numbered sequentially. Pktgen allows
the configuration of various parameters, such as packet size, source and destination IP and
MAC addresses, packet interval, and the number of packets to be sent. In addition, it allows
VLAN tagging for the packets it generates.

Packets of size of 64 bytes were sent at fixed intervals of 0.05 ms. For each iteration of this
experiment, we sent nearly 1 million of these packets from sender to receiver host. A script
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was developed to generate traffic using pktgen, which is available in Appendix D. Figure 5-1
shows sample pktgen traffic captured using wireshark.

No. Time Source Destination Protocol  Length Info
10 0.000153 10.100.0.116 0.0.0.8 PKTGEN 68 Seq: 18
11 0.000205 10.100.0.116 0.0.0.8 PKTGEN 68 Seq: 11
12 0.000254 ie.1ee.e.11e 0.0.0.0 PKTGEN 68 Seq: 12
13 0.000313 10.1600.06.1186 0.0.0.0 PKTGEN 68 Seq: 13
14 ©.000353 10.100.0.110 0.0.6.0 PKTGEN 68 Seq: 14
15 0.000405 10.100.0.116 0.0.0.8 PKTGEN 68 Seq: 15
16 0.000456 ie.1ee.e.11e 0.0.0.0 PKTGEN 68 Seq: 16
17 0.0005605 10.100.0.110 0.0.0.0 PKTGEN 68 Seq: 17
18 0.0060555 10.1600.06.1186 0.0.0.0 PKTGEN 68 Seq: 18
19 0.000605 10.100.0.116 0.0.0.8 PKTGEN 68 Seq: 19
20 0.000654 ie.1ee.e.11e 0.0.0.0 PKTGEN 68 Seq: 20
21 0.000704 ie.1ee.e.11e 0.0.0.0 PKTGEN 68 Seq: 21
22 0.000753 10.1600.06.1186 0.0.0.0 PKTGEN 68 Seq: 22
23 b.0ee8e4 10.100.0.116 0.0.0.8 PKTGEN 68 Seq: 23
24 0.000855 10.100.0.116 0.0.0.8 PKTGEN 68 Seq: 24
25 0.0ee901 ie.1ee.e.11e 0.0.0.0 PKTGEN 68 Seq: 25
26 0.000954 10.1600.06.1186 0.0.0.0 PKTGEN 68 Seq: 26
27 0.001005 10.100.0.110 0.0.8.0 PKTGEN 68 Seq: 27
28 0.001054 10.100.0.116 0.0.0.8 PKTGEN 68 Seq: 28
29 0.001105 ie.1ee.e.11e 0.0.0.0 PKTGEN 68 Seq: 29
30 0.001155 10.1600.06.118 0.0.0.0 PKTGEN 68 Seq: 30

Frame 30: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on interface ©
Ethernet II, Src: fa:16:3e:51:5e:f5 (fa:16:3e:51:5e:f5), Dst: IntelCor_2e:71:08 (68:05:ca:2e:71:08)
882.1Q Virtual LAN, PRI: @, CFI: @, ID: 100
Internet Protocol Version 4, Src: 10.100.0.118, Dst: 0.0.0.8
User Datagram Protocol, Src Port: 9 (9), Dst Port: 9 (9)
Linux Kernel Packet Generator
Magic number: 9xbe9be955
Sequence number: 30
[Timestamp tvsec: 1454363146]
[Timestamp tvusec: 538914]
Timestamp: Feb 1, 2016 22:45:46.538914000 CET
» Data (6 bytes)

4 v vV VvV VYV

Figure 5-1: Wireshark capture of generated Pktgen Traffic.

Fast Failover using CFM-based Failure Monitoring:

A simple topology was designed for this experiment by using the testbed setup described in
chapter 4. The minimum recommended CCM interval in Pica8 switches is 100 ms [46]; there-
fore, CCM interval in this experiment was 100 ms. A step-by-step detail of CFM configuration
and methods of achieving fast failover is provided in Appendix B. When we attempted to set
CCM interval to the lowest possible value of 3 ms in pica8 switches, maximum failover time
within theoretical value of 10.5 ms was not observed. Maximum failover time observed was
in the similar range obtained for 100 CCM interval. For 500 samples, we observed maximum
failover time of 541.75 ms. As CFM implementation details are hidden in switch ASIC, reason
for this is unknown. Therefore CCM intervals below recommended values are not considered
for our experiments.

Failover Time Calculations:

The generated network traffic was captured at the receiver end and stored for further process-
ing. To calculate the failover time, we used packet interval, and the number of lost packets
as the key parameters. A script was designed to automatically count the number of received
packets from the captured network trace and calculate the failover time using formula 5-1.
The calculated failover time was stored in a separate file for further analysis of the obtained
results.

Failover Time = Number of Lost Packets X Packet Interval (0.05 ms) (5-1)
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This experiment was repeated several times because failure was initiated randomly. A script
was developed to fully automate the procedure mentioned in the previous 3 sections. The de-
signed script automatically generated the traffic, achieved failover, and calculated the failover
time from the network trace captured at the receiver.

5-1-2 Results
Using the developed scripts mentioned in section 5-1-1, we repeated the experiment 6000
times for 100 ms CCM interval rate. The failover time for each sample is plotted in Figure

5-2. The results show the failover time in the range 252-700 ms.

Fast Failover Time for CCM interval of 100 ms
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Figure 5-2: Fast Failover Time for single VLAN in Pica8 P 5101 series switches. CCM rate of
100 ms was configured for this setup.

The statistical parameters that were calculated using the failover time measurements are
plotted in Figure 5-3. The average failover time observed for the samples was 478 ms with a
standard deviation of 106.75 ms. The standard error for the measurements was 1.38 ms. The
results obtained are analyzed in detail in the following section.

5-1-3 Result Analysis

According to the 802.1ag standard [17], failure should be detected when no CCM message
is received from MEP within an interval of 3.5 times the transmission interval. This IEEE
standard also suggests that every time a CCM message is received from a remote MEP, the
failure detection timer must be reset. Because we used a transmission interval of 100 ms,
and failure was initiated randomly in time, theoretically, failover time was expected within
the range of 250-350 ms; however, our results had a failover range of approximately 250-700
ms. This difference in the obtained result and the theoretical value was due to Open vSwitch
implementation, which does not comply to the standard [17] for the CFM implementation. In
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Basic Statistical Calculations for Fast Failover (CCM Rate = 100ms)

Failover Time (ms)

Min Max Mean Median Std Dev Std Error

Various Statistic Parameters

Figure 5-3: Statistical parameter calculations for fast failover time measurements with CCM
Rate=100 ms.

Open vSwitch, the failure-detection timer is not reset when a CCM message is received from
a remote MEP. Connection failure status is updated at a fixed interval of 3.5 times the CCM
transmission interval. Even if a single CCM is received during this interval, failure is not
assumed. Failure is assumed only when zero CCM messages are received within a particular
failure detection interval. This is illustrated further using figure 5-4.

Figure 5-4 depicts the boundary cases of CCM arrival in a single failure-detection interval,
which, in our case, is 350 ms. Case I depicts the highest failover time. The CCM is received
just after the failure-detection interval starts, and failure is initiated just after CCM is re-
ceived. If no further CCM is received during this failure-detection interval, the total CCM
received is one. Hence, the Open vSwitch checks the next failure-detection interval. If no
CCM is received during this failure-detection interval, failure is assumed. Therefore, for case
I, the failover time is approximately 700 ms. In case II, the CCM is received just before the
first failure-detection interval ends. Failure is initiated just before the arrival of next CCM,
which is approximately just before 100 ms of next failure-detect interval. Hence, no CCM is
received in this failure-detection interval. Therefore, the failover time for case II is approxi-
mately 250 ms. All other cases of CCM arrival lie between these two boundary conditions.
Therefore, in Open vSwitch, the failover range is 250-700 ms. Similar results were obtained
with Pica8 switches because these switches were configured in Open vSwitch mode. In our
experiment, of the 6000 samples, one outlier sample was measured at 704 ms; however, we
could not reproduce the results for a failover time of greater than 700 ms.

To summarize the experiment and the obtained results, if fast failover is used with CFM
mechanism, the network operator can expect maximum failure outage of 700 ms with CCM
interval of 100 ms. Even if the support for fast failover became available on the logical ports
for per-VLAN failure detection, outage is expected in a similar range due to customized
implementation of CFM in OVS. This outage range can result in significant frame loss for the
carrier grade networks that require failover time within 50 ms.
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Figure 5-4: Boundary cases for CCM arrival and failure initiation for fast failover measurements.

5-2 Experimental Results: Controller Initiated Failover

This section discusses the details of the experimental analysis with the developed software
for failure detection and failover. Failover experiments were conducted beginning with one
VLAN traffic over a trunk. We attempted the failover time calculation for all the standardized
CCM interval rates i.e, 1 ms, 10 ms, 100 ms, 1 s, and 10s. In this section, the experimental
procedures are described and the experimental results are analyzed.

5-2-1 Experimental Procedure

Section 4-2 describes the network topology used in this experiment. This experiment can
be divided into 4 sections, namely traffic generation, failure monitoring over trunk, failure
initiation, and failover time calculation.

Traffic Generation:

The traffic generation procedure used in this experiment is the same as that followed in section
5-1-1. For this experiment, traffic was generated using VLAN identifier 100.

Failure Monitoring Over Trunk:

For failure monitoring and failure detection our designed software implementation was used
as described in Section 4-3. MEPs were set up on port 25 of switch 00T and port 7 of switch
96T. MEP operations were performed using the designed application from the SDN controller.
CCM messages were sent along with VLAN tags of 100. The application sent CCM messages
for each configured MEP independent of other at a regular interval rate. Moreover, it installed
an OpenFlow rule in pica8 switches to send all the CCM messages received from the remote
MEP back to the controller for further processing. Figure 5-5 shows a sample CCM request
from MEP.

Failure Initiation:

Failure was initiated on a primary path between the traffic sender and receiver host. To
initiate a connection failure over a primary path, the port on a receiver switch was closed.
A port can be closed using Open vSwitch supported mod-port command. This command
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No. Time Source Destination Protocol Length Info

41.994143  AsustekC_7f:74.. OAM-Multicast-DA-Cla.. CFM 89 Type Continuity Check Message (CCM)

» Frame 4: 89 bytes on wire (712 bits), 89 bytes captured (712 bits) on interface 0
v Ethernet II, Src: AsustekC 7f:74:e7 (08:60:6e:7f:74:e7), Dst: OAM-Multicast-DA-Class-1 08 (01:80:c2:00:080:30)
» Destination: OAM-Multicast-DA-Class-1_00 (01:80:c2:00:00:30)
» Source: AsustekC_7f:74:e7 (@8:60:6e:7T:74:e7)
Type: IEEE 802.1ag Connectivity Fault Management (CFM) protocol (0x8902)
¥ CFM EOAM 882.1ag/ITU Protocol, Type Continuity Check Message (CCM)
008. .... = CFM MD Level: @
...0 0O = CFM Version: ©
CFM OpCode: Continuity Check Message (CCM) (1)
» CFM CCM PDU
» CFM TLVs

Figure 5-5: Wireshark capture of CCM messages for failure monitoring over trunk.

enables or disables the interface and is equivalent to ifconfig up or ifconfig down on a Unix
system [57]. For this experiment, port 7 on switch 96T was closed.

Following is a sample command to achieve connection failure:
ovs-ofctl mod-port br0 7 down

When the port was abruptly closed, and CFM application in the controller did not receive
the CCMs within an interval 3.5 times the transmission interval, failure was assumed and the
application promptly installed the OpenFlow rules to select the failover path. Therefore, any
subsequent traffic was routed through the failover path instead of the primary path.

Failover Time Calculation:

The procedure used to calculate the failover time is the same as described in section 5-1-1.

5-2-2 Results

The failover measurements were conducted at CCM intervals of 100 ms, 1 s, and 10 s. For
CCM intervals of 1 ms and 10 ms, failover measurements could not be achieved. The reason
for this is mentioned in 5-2-3. For each CCM interval, the experiment was repeated 100 times.
The failover time results are plotted in Figure 5-6. For 100 ms and 1 s CCM interval, the
calculated failover times are plotted against left Y axis and the failover time measurements
for 10 s are plotted against right Y axis.

From 100 sample readings, the average failover time for 100 ms CCM interval was 299 ms.
For 1 s and 10 s CCM interval rate, the average failover time calculated was 2909 ms and
30362 ms. These results are analyzed in detail in the following section.
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Figure 5-6: Failover time measurement for developed CFM implementation when single VLAN
traffic is present over a trunk.

5-2-3 Experiment Analysis

In this section, we analyze the results obtained and also detail the experience with failure
monitoring by using the developed software.

When the application was configured to monitor the Ethernet circuits over a trunk at a CCM
interval of 1 ms and 10 ms, failover was initiated even when the Ethernet circuit was alive.
This was due to the increase in message processing overhead in the controller application.
Frames could not be processed in the application at intervals of 1 ms and 10 ms and the delay
in processing time was misinterpreted as Ethernet circuit failure. Therefore, failover could
not be achieved by using the developed application when no CCM is received within 3.5 times
the CCM intervals of 1 ms and 10 ms.

The application could successfully detect Ethernet circuit failure and achieve failover with
the interval rates of 100 ms, 1 s, and 10 s. Intervals of 1 and 10 s resulted in a failover time of
2.909 s and 30.362 s. These failover times are too large for carrier-grade network applications.
These long interval rates can result in significant loss of data. From the results, we observed
that some sample results exceeded the theoretical failover range. This increase in failover time
over theoretical range was due to the developed application overhead. In Ryu, Flow-mod and
Packet-out processing time is less than 0.5 ms [58]. Hence, these messages do not contribute
significantly to the increase in failover time. For a CCM interval of 100 ms, when Ethernet
failure was initiated random in time, theoretically, the failover time should have been in the
range 250-350 ms, however, we obtained some samples with a failover time of 352 ms and
350.85 ms, which exceeds the theoretical values. This experiment raises the requirement to
calculate the exact time taken by the application for failover initiation. However, a sample
size of 100 is not sufficient to get the exact failover overhead of the designed application. This
requirement will be addressed in the following experiment.
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5-3 Results for per-VLAN Failover Over Trunk

The results obtained for per-VLAN failure detection are discussed in this chapter. The
experimental procedure and the results are discussed in the following section.

5-3-1 Experiment Procedure

For this experiment, the topology described in section 4-2 was used. The experimental pro-
cedure followed for this experiment is similar to the one described in section 5-2-1. However,
the traffic for 2 VLANs was forwarded over a trunk.

Traffic Generation:

The traffic-generation procedure is similar to the one mentioned in section 5-1-1. For this
experiment, traffic was generated for VLAN IDs 100 and 101 from 2 separate hosts VM1 and
VM2.

Failure Monitoring Over Trunk:

The failure-monitoring procedure is the same as that described in section 5-2-1. However,
for this experiment, MEPs were setup for each VLAN for per-VLAN failure detection, and
CCMs were sent for each VLAN.

Failure Initiation and Failover Time Calculation:

The failover was initiated on a primary path of VLAN 100. If failure was detected, the traffic
for VLAN 100 was switched over to the failover path, whereas the traffic for VLAN 101
followed the same primary route. Traffic was captured at the receiver and failover time was
calculated using the procedure mentioned in 5-1-1.

The following rule was installed by the controller on switch 00T when failure was detected on
the primary path for VLAN 100:
priority=9999,in__port=31 actions=pop__vlan,push__vlan:0cx8100, set_ field:1100->vlan__ vid,output:1

The above OpenFlow rule sends traffic received on port 31 of switch 00T to port 1 which is
connected to the failover path. This rule takes highest precedence from the installed OpenFlow
rules when traffic is received on port 31.

5-3-2 Results

In section 5-2, we concluded that failover cannot be achieved from the controller for CCM
interval of 1 ms and 10 ms; therefore, for this experiment, CCM intervals of 100 ms was used.
The experimental procedure described in the previous section was repeated 3200 times to get
sufficient results when failure was initiated random in time. The calculated sample failover
times are plotted in Figure 5-7. Experimental results show that an average failover time of
approximately 305 ms when failover is initiated from the controller for a CCM interval of 100
ms. The maximum failover outage observed during the experiment was 368.15 ms.

The statistical parameters calculated from the failover measurements are plotted in figure
5-8. The failover time measurements have a standard deviation of 29 ms and standard error
of 0.5 ms. The obtained results are analyzed in detail in the following section.
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Figure 5-7: per-VLAN Failover Time Measurements for CCM Interval=100 ms.
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Figure 5-8: Statistical parameter calculation for per-VLAN failover time measurements with

CCM Interval=100 ms.
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5-3-3 Result Analysis

As discussed in our earlier experiments, for a CCM transmission interval of 100 ms, when
per-VLAN failure is initiated randomly at any time, theoretically, the failover time should
be within the range of 250-350 ms; however, the obtained samples had a failover time of
approximately 252-368 ms. The maximum failover overhead of 18 ms was observed. During
the experiment, 2 outlier values were observed at 384.85 ms and 379.2 ms; however, the
results were not reproducible. We suspected this to be a race condition [59] in the designed
multi-threaded software implementation due to sharing of failure monitoring event update
variables between Ccm and failover instances threads. The 2 outlier results were excluded
from the graph. The mean calculated for the sample was approximately 305 ms, which is 5 ms
more than the possible theoretical mean value. This 5 ms overhead in mean value represents
the time between failure detection by the application and failover OpenFlow rule installation.
Several studies have been conducted to benchmark the Ryu controller and OpenFlow message
processing time of the Ryu controller [58] [60] [61]. The average PacketOut time and FlowMod
processing time in Ryu were 0.2 ms and 0.4 ms, respectively. Therefore, we concluded that
the extra overhead is the processing time of the failover module in the designed application.
This module was invoked when the failure detection timer expired when no CCM was received
within an interval of 3.5 times the transmission interval time.

Our controller-based software implementation outperformed fast failover using CFM in Pica8
hardware switches due to the customized implementation of CFM in these switches. Although
standardized support is available for CFM in Pica8 hardware switches, fast failover feature
will not have significant advantage over the implemented software for a CCM interval of 100
ms because the implemented software showed a maximum overhead of approximately 18 ms
from the theoretical value. However, fast failover can be instrumental for a CCM interval of
1 ms and 10 ms because these failure detection intervals cannot be supported currently by
using a controller based software implementation.

5-4 Results for Load Balancing

In LAG-based load-balancing, the choice of load balancing algorithm is vendor-specific. Cisco
proprietary hash-based algorithms were used because we used a Cisco switch. The config-
uration of LAG is described in section 4-1, and tests were performed to ensure successful
load balancing across all the links in the LAG using the test plan defined in Appendix A-2.
Load balancing was successfully verified using the performed tests. Our objective was not to
test the performance of these well-defined algorithms but to ensure that failure detection is
possible over all the links, and traffic flows within the system in case of link failure when tra-
ditional technology-based load balancing is combined with the OpenFlow switch-based failure
detection mechanism. The test plan for connectivity test is described in Appendix A.
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Chapter 6

Conclusions and Future Work

This chapter contains the conclusions of the work presented in the thesis and recommendations
for further work. The objectives of the thesis and results are described followed by conclusions
and recommendations for future work.

6-1 Conclusion

The trunk port is used by customers to connect to the service provider network and offers
multiple benefits. Multiple Ethernet circuits can be carried over this trunk port using trunk,
which distinguishes each (VLAN) service on the basis of VLAN identifiers. When redun-
dancy needs to be offered in the network using two trunk ports over two separate provider
edge Ethernet switches, challenges arise in detecting a single Ethernet circuit failure over
trunk and balancing the per-flow traffic load over active trunks. Solving both these problems
by identifying Layer 2 technologies for detecting per-Ethernet circuit failure and load balanc-
ing were the primary objectives of the thesis. We investigated traditional networking, and
software-defined networking (SDN)-based approaches to solve these problems.

To address the challenges of detecting per-Ethernet circuit failure and traffic load balancing
at Layer 2, several existing technologies were identified and evaluated. No existing stan-
dard technology, in its current state, offered a solution to both the aforementioned problems.
At Layer 2, failure detection can be provided by LACP [12], BFD [1], and CFM [17]. We
found that none of these standard protocols supported per-VLAN failure detection on the
untagged interfaces of the switch. Although BFD and CFM can potentially be used over
VLAN interfaces to detect a per-Ethernet circuit failure over a trunk, the lack of an appropri-
ate forwarding mechanism between the VLAN interfaces at Layer 2 prevents the use of these
protocols. A Layer 2 solution should be designed by switch vendors to provide flexibility and
appropriate control for forwarding Ethernet frames between these Layer 2 VLAN interfaces
for detecting per-Ethernet circuit failure. We also found that even if such VLAN interface-
based solution becomes available for detecting failure, it cannot be used in combination with

Master of Science Thesis Sulabh Deshmukh



56 Conclusions and Future Work

the existing Layer 2 load balancing technique, namely LAG, because LAG requires to be
setup on untagged interfaces.

In this thesis, we also investigated SDN-based approach to solve the problem. We discovered
that no direct support was available to solve both the aforementioned problems in SDN.
However, SDN offers flexibility to the network operators, allows them to design their own
solutions, and eliminates vendor dependence. In this thesis, we proposed a hybrid SDN-
based system design approach to solve both the problems. The per-flow load balancing was
provided by an Ethernet-based customer edge switch using LAG, whereas OpenFlow-capable
[4] switches ensured SDN-controller initiated per-Ethernet circuit failure detection and failover
using developed software. CFM was used for detecting Ethernet circuit failure. The proposed
architecture offered an advantage over a purely SDN-based solution because it eliminated
the need for any changes in the customer network infrastructure. All the proposed design
modification will be managed by the network operator. This allows faster adaptation of the
solution and often results in cost benefits to the customers because no infrastructure changes
are required in the customer network.

We validated the proposed system design using POC implementation over the physical SDN
testbed. Experimental results revealed that the SDN-based approach could be successfully
used to solve both the previously mentioned problems. Experimental results also revealed
several challenges associated with the current state of SDN. We demonstrated that because
of the high latency requirement of the SDN controller, achieving per-Ethernet circuit failover
within the carrier grade recovery time (<50 ms) [62] is currently not possible from the SDN
controller. For the standardized CFM failure monitoring interval of 100 ms, the maximal
observed failover time for per-Ethernet circuit failure was 368 ms. We also demonstrated the
successful integration of LAG-based load balancing with the SDN-based per-Ethernet circuit
failure detection mechanism. In this work, we also investigated the Fast Failover Group Table
support in OpenFlow switches. This mechanism is used in the data plane and monitors
the outgoing port for connection failure. It supports the CFM and BFD failure monitoring
mechanism and forwards the traffic to the first active port in the group. Our experiments
revealed that when CFM failure monitoring interval of 100 ms was used with the fast failover
mechanism, the maximum failover time was 700 ms which is double that of the maximum
possible theoretical failover time of 350 ms because of switch vendor specific implementation
of CFM. Although fast failover mechanism currently does not support per-VLAN failure
detection over trunk and only supports single VLAN at the time of writing this thesis, it
allows aggressive failure monitoring intervals below 10 ms, which we could not use from the
controller-initiated failover mechanism because of its high latency requirement. With the
appropriate support for per-VLAN failure detection and standardized CFM implementation,
a fast failover approach could potentially be used to achieve failover within carrier grade limit.

SDN is still in its early stage of development. The service deployment flexibility and vendor
neutrality make SDN an attractive technology for the network operator. However, SDN
still has many challenges to overcome. The latency requirement for communication between
the data plane and control plane is still higher than 50 ms [61]. Network operators are
still dependent on switch vendors for data plane changes. To visualize the future of fully
programmable networks that transfer the control to the network operators along with control
plane programmability, research toward a fully programmable data plane is required, allowing
scalability and efficiency to support carrier grade networks. Nevertheless, this thesis was the
first attempt to achieve the primary objectives using SDN, and it demonstrated the manner in
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which network operators can leverage the SDN benefits and introduce new innovative features
without dependence on the switch vendors.

In conclusion, we investigated the existing standard Layer 2 technologies for per-Ethernet
circuit failure detection and load balancing and listed the advantages and challenges associated
with them in this thesis. We also provided a state-of-the-art literature summary of SDN
technology and the current state of Layer 2 failure detection and load balancing support
in SDN. We proposed the SDN-based design to achieve both the objectives of this work
and implemented the software for per-Ethernet circuit failure detection and failover. With
the help of the POC implementation, we validated the proposed design and evaluated its
performance. We showcased how SDN can be successfully used to solve both the objectives
of this work. We also identified several issues with the popular OpenFlow-capable switches
and summarized our findings.

6-2 Recommendations for Future Work

Because SDN is a relatively new technology, during validation of the proposed system, several
issues were observed with the current OpenFlow implementations. Given below is a list of
recommendations for future work required to implement the proposed design in the production
network on a large scale.

e Current per-Ethernet circuit failover detection software was validated in the prototype
environment. The correlation between failover overhead and the number of Ethernet
circuits monitored should be studied when a large number of Ethernet circuits need to
be monitored.

e To reduce the failover time within the carrier grade range, we recommend the per-
Ethernet circuit failover initiation from the data plane of the switch due to the high
latency requirement of the current SDN controllers. Support should be requested for
per-VLAN failure detection from the OpenFlow switch vendors.

e It was observed that the current implementation of CFM in OVS-supported Pica8
switches currently do not fully comply with the standard CFM implementation. For
failover time within the carrier grade requirement, standard CFM implementation would
be required. To implement the proposed design in production network, standard CFM
support should be requested from Pica8 switch vendor.

e The proposed system design uses existing Ethernet switch-based load balancing mecha-
nism. In the future, to leverage the complete SDN benefits, existing Ethernet switches
should be replaced with OpenFlow-capable switches and SDN controller-based load
balancing should be used. Hence, the performance and effectiveness of controller-based
load balancing techniques should be investigated
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Appendix A

Test Plan

To assess POC implementation, several tests were performed. Along with the test cases that
were intended to test the developed software, a test plan was created to assess the performance
of the proposed system as well. The test plan for the proposed system is categorized into two
main sections:

e Test plan for failure detection and failover mechanism

e Test plan for load balancing and overall system connectivity

A-1 Test Plan for Failure Detection and Failover Mechanism

The testbed used for these tests is shown in fig 4-3. When the testbed is configured as shown
in fig 4-3, perform the basic connectivity test using the ping command. The ping request from
VM1 should be successfully received at port 31 of the Beryllium switch. The ping request
from VM2 should be successfully received on port 32 of the Beryllium switch. Repeat this
test to check both primary and backup path connectivity.

Several tests are performed to assess failure detection and the failover mechanism. The
primary objective of these tests is to verify the designed software on the testbed to achieve
the first objective of this thesis.

Given below is the list of test cases designed using the behavior driven development [63]
technique. This technique allows software development based on expected system behavior.
The test cases are developed before the development of the software. The software code is
written to successfully pass these tests.

A-1-1 Test Cases
Test Case 1
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Test Plan

Test

Test

Test

Given: Configured switches and the controller in the defined topology.
When: CFM application is initiated from the controller.

Then: CCMs will be sent for each configured VLAN at regular interval of 1 ms/10
ms/100 ms.

Case 2

Given: Configured switches and the controller in the defined topology.
When: CFM application is initiated from the controller.
Then: CCMs will be sent as per 802.1ag standard CCM format.

Case 3

Given: Configured switches and the controller in the defined topology.

When: Port 7 is closed on switch 96T for VLAN 100 tagged traffic to initiate a connec-
tion failure between switch 96T and 01T.

Then: MEP on switch 00T detects the failure and traffic for VLAN 100 is transferred
to failover path on port 1.

Case 4

Given: Configured switches and the controller in the defined topology.

When: Port 9 is closed on switch 96T for VLAN 101 tagged traffic to initiate a connec-
tion failure between switch 96T and 128T.

Then: MEP on switch 00T detects the failure and traffic for VLAN 101 is transferred
to failover path on port 1.

Case 5

Given: Configured switches and the controller in the defined topology.

When: Traffic for VLAN tag 100 is sent over primary path and traffic for VLAN tag
101 is sent over failover path.

Then: When failure is initiated on any of the path, traffic from that path is switched
to the active path.

Case 6

Given: Configured switches and the controller in the defined topology.
When: Port 7 is closed on switch 96T random in time for VLAN 100 tagged traffic.
Then: Calculate failover time for VLAN 100 traffic.
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A-2 Test Plan for Load Balancing and Overall System Connectivity

This section explains the tests performed for assessing load balancing. In addition, the tests
carried out to examine the overall connectivity of the prototype design are described. The
detection of any path failure using the proposed SDN-based solution is an important aspect
of system connectivity tests.

Per-flow Load Balancing

Configure LAG on the Cisco switch of figure 4-2 such that the hashing algorithm sends the
traffic for VLAN 100 and VLAN 101 separately on port 26 and port 27, respectively. Check
the packet counters on port 39 and port 40 of the switch 00T using OVS dump-ports command
to confirm the per-flow load balancing test. The packet counters on both ports should increase
when the traffic for VLAN 100 and VLAN 101 is sent separately over port 39 and 40. Because
the per-flow load balancing hashing algorithms are well standardized, the performance test
of those algorithms is not a part of this study.

Overall System Connectivity Test

As the final part of this work, the load balancing and failure detection solution were combined
as a complete system. Experiments were performed on the combined system to ensure that
when any path in the system fails, the failure is detected and traffic flows uninterrupted. The
following tests are designed for this purpose.

e A Cisco switch is connected to a Pica8 switch 00T; therefore, perform tests to check the
connectivity between these two switches. Close port 39 on the Pica8 switch administra-
tively using the OVS mod-port command to verify that the LAG configured on Cisco
can detect the link failure and switch all traffic using the remaining links in the LAG.
Perform a similar test for port 40 of switch 00T.

e Test the system connectivity by initiating a failure on paths between intermediate
switches between traffic sender VM1 and VM2 to traffic receiver Beryllium. For these
experiments, initiate a failure on the paths between switch pairs 01T-128T, 01T-00T,
01T-96T, and 128T-96T. Perform tests to initiate failure on a single path or two paths
between any pair of these switches. When failure is initiated, traffic from VM1 and
VM2 is expected to continue flowing and to be successfully received at the Beryllium
switch.

A-3 Resources Used for Testing

Pica8 P5101 OpenFlow switches (PicOS version 2.6)

Cisco Catalyst 3560 Release 12.2(55)SE

Ryu SDN controller
e Ubuntu 14.4 LTS

e Pktgen
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Wireshark version 2.0.1

OpenStack

Python 3.4

numpy 1.8.2 (for random number generation)
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Appendix B

Procedure to Test Fast Failover in
Pica8 Switches

B-1 Procedure to Test Fast failover in Pica8 Switches

The following procedure was followed to achieve failover with the topology described in figure
B-1.

e Forwarding rules were configured for both the paths mentioned in the figure B-1. Each
switch has an appropriate rule set to forward the traffic.

e On switch 00T, traffic coming in on port 31 was forwarded for handling to group 1.

e Group 1 is a failover table that watches on port 25 and port 1. The first bucket is
always chosen from the list of buckets to forward the traffic. Hence, it is important to
specify the primary path as a first bucket.

e OpenFlow owvs-ofctl mod-port command was used to close the port 7 on switch 96T.
As group table watches for port failure event, once failure is detected next active port
bucket from the failover group table is selected.

B-2 Procedure to configure CFM in Pica8 Switches

CFM was configured on port 25 of switch 00T and port 7 of switch 96T. Other setup remains
the same as defined in the previous section.

CFM was configured as follows and the same procedure was repeated on both the switches
with different mpid for the respective ports. MEPs are uniquely identified in the domain
using mpid.
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Host

ETH2
Switch 00T 32 |31
TIIIr (X128
10 = A .

Failover Path

Primary Path
1 25
Switch32T | s = m ¥ 4544 Switch 01T
\ 3 - 17

3
10 7

%]

Switch 96T

Figure B-1: Sample Topology Used to Setup Fast Failover using CFM
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e CFM mpid was set for the connected interface

ovs-vsctl set Interface te-1/1/25 cfm_mpid=/

e Once CFM is set, and group failover table is already configured on the 00T switch, we
take down the port 7 on the switch 96T which does not have the group table configured.
When CFM detect the connection failure, the port failure event is generated on switch
00T and group table switched the traffic to the backup path from port 25 to port 1.

B-3 OpenFlow Commands Executed on Each Switch

Switch 00T:

ovsguest@Asd0O1A-P5101-00T:~$ ovs-ofctl dump-groups br@

OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

group_id=1, type=ff,bucket=watch_port:25,watch_group:0,actions=output:25,bucket=watch_port:1,watch_group:@,actions=pop_vlan,push_vlan:0x8100,set_field:110@->vlan_vid,output:1
ovsguest@AsdOO1A-P5101-00T:~$ ovs-ofctl dump-flows bre

OFPST_FLOW reply (OF1.3) (xid=ex2):

cookie=0x0, duration=80319.693s, table=0, n_packets=n/a, n_bytes=858755242, in_port=31 actions=group:1

ovsguest@Asdo01A-P5101-00T:~$

Figure B-2: OpenFlow Rules Configured on Switch 00T for Fast Failover

Switch 01T:

ovsguest@Asdof1A-P51081-81T:~5 ovs-ofctl dump-flows bra

OFPST_FLOW reply (OF1.3) (xid=8x2):

cookie=0x0, duration=102189.452s, table=8, n_packets=n/a, n_bytes=213955170, in_port=25,d1_vlan=188 actions=output:7
cookie=0x0, duration=80824.855s, table=8, n_packets=nfa, n_bytes=8, in_port=7,d1_vlan=188 actions=output:25
ovsguest@Asdof1A-P5101-81T:~5 I

Figure B-3: OpenFlow Rules Configured on Switch 01T for Fast Failover

Switch 32T:

ovsguest@ES@O1A-p5101-32T:~$ ovs-ofctl dump-flows bre

OFPST_FLOW reply (OF1.3) (xid=8x2):

cookie=0x0, duration=99260.591s, table=0, n_packets=n/a, n_bytes=0, in_port=1,dl_vlan=1101 actions=pop_vlan,push_vlan:0x8100,set_field:101->vlan_vid,output:3
cookie=0x0, duration=99212.761s, table=0, n_packets=n/a, n_bytes=642232510, in_port=1,dl_vlan=1100 actions=pop_vlan,push_vlan:0x8100,set_field:100->vlan_vid,output:3
ovsguest@EsOO01A-p5101-32T:~$ I

Figure B-4: OpenFlow Rules Configured on Switch 32T for Fast Failover

Master of Science Thesis Sulabh Deshmukh



66 Procedure to Test Fast Failover in Pica8 Switches

Switch 96T

ovsguest@GnOe1A-P5101-96T:~$ ovs-ofctl dump-flows bre

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=408582.219s, table=0, n_packets=n/a, n_bytes=2106365534, in_port=3,dl_vlan=180 actions=output:31
cookie=0x0, duration=408608.218s, table=0, n_packets=n/a, n_bytes=8, in_port=3,dl_vlan=101 actions=output:32
cookie=0x0®, duration=1044414.124s, table=0, n_packets=n/a, n_bytes=743573318, in_port=7,dl_vlan=100 actions=output:31
cookie=0x®, duration=1044394.633s, table=0, n_packets=n/a, n_bytes=7079520193, in_port=9,dl_vlan=101 actions=output:32
cookile=0x0, duration=351631.422s, table=0, n_packets=n/a, n_bytes=8, priority=0,dl_type=0x8902 actions=CONTROLLER:65535
ovsguest@GnBe1A-P5101-96T:~5 I

Figure B-5: OpenFlow Rules Configured on Switch 96T for Fast Failover
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€)> surfnet.nl

88 openstack = 7UD Sulubh +

Project - Overview

Compute o
Limit Summary
— Instances

Used 4 of 10

Network

Object Store

Identity N s
Used 0of 10

Usage Summary

Testbed

vepus RAM
Used 8 of 20 Used 16GB of 50GB

Volume Storage

Used 0Bytes of 1000GB.

Select a period of time to query its usage:

From: | 20160201

Active Instances: 4 Active RAM: 16GB This Perlod’s VCPU-Hours: 271.05 This Perlod's GB-Hours: 5420.99 This Perlod’s RAM-Hours: 555109.67

Usage

Instance Name

Displaying 4 tems
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vepus Disk
2 a0c8
2 40c8
2 4068
2 4068

Configuration

Floating IPs
Allocated 2 of 50

Time since created
2 weeks, 4 days
2 weeks, 4 days
2 weeks, 4 days

2 weeks, 4 days

Figure C-1: OpenStack summary on created VMs.
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Testbed Configuration

t@Asd001A-P5101-00T: ~
ovsguest@Asd001A-P5101-00T: ~

ovsquest@AsdOO1A-P5101-00T:~$ ovs-vsctl show
b54579e0-c139-46c1-8cC fepfs57e

Controller "tcp:145.97.20.117:6633"
is_connected: true

Por

Ty re
tag: 1
Interface "te-1/1/6"
type: "picas”
options: {is_dac="true"}
Port "te-1/1/18"
tag: 1
Interface "te-1/1/18"
type: "picas”
options: {is_dac="true"}
Port "br@"
Interface "bro"
type: internal
Port "te-1/1/25"
tag: 1
Interface "te-1/1/25"
type: "picag8"
options: {is_dac="true"}
ovsguest@Asdeaia-pr5101-00T:~S ]
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Figure C-2: Successful connection of Ryu SDN controller with Pica8 switch
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e e - - A TEs — T T ==
N openflow_v4
No. Time Source Destination Protocol | Length Info
394 9.875329 194.171.25.16 10.0.0.25 OpenFl.. 76 Type: OFPT_HELLO
396 9.876651 10.08.0.25 194.171.25.16 OpenF1. 76 Type: OFPT_HELLO
397 9.876672 10.08.0.25 194.171.25.16 OpenF1. 76 Type: OFPT_FEATURES_REQUEST
. 194.171.25.16 10.8 25 OpenFl 1080 Type: OFPT_FEATURES_REPLY
405 9.878955 10.0.0.25 194.171.25.16 OpenFl 84 Type: OFPT_MULTIPART_REQUEST, OFPMP_PORT_DESC
.0.0. : OFPT_FLOW_MOD
407 9.879290 194.171.25.16 OpenFl.. 340 Type: OFPT_MULTIPART_REPLY, OFPMP_PORT_DESC
409 9.916582 194.171.25.16 OpenFl.. 198 Type: OFPT_PACKET_IN
513 14.874759 194.171.25.16 OpenFl.. 76 Type: OFPT_ECHO_REQUEST
514 14.875316 10.0.0.25 194.171.25.16 OpenFl.. 76 Type: OFPT_ECHO_REPLY
516 14.915828 194.171.25.16 10.0.0.25 OpenFl.. 198 Type: OFPT_PACKET_IN
536 15.618710 10.0.0.25 194.171.25.16 OpenFl.. 201 Type: OFPT_PACKET OUT
537 15.618737 10.08.0.25 194.171.25.16 OpenFl.. 201 Type: OFPT_PACKET_OUT
1321 19.874302 194.171.25.16 10.0.0.25 OpenFl.. 76 Type: OFPT_ECHO_REQUEST
1323 19.874935 10.0.0.25 194.171.25.16 OpenF1. 76 Type: OFPT_ECHO_REPLY
1325 19.916265 194.171.25.16 10.6.0.25 OpenF1. 198 Type: OFPT_PACKET_IN
1779 24.873862 194.171.25.16 OpenFl 76 Type: OFPT_ECHO_REQUEST
1781 24.874293 10.0.0.25 194.171.25.16 OpenFl 76 Type: OFPT_ECHO_REPLY
1785 24.915964 194.171.25.16 10.0.0.25 OpenFl.. 198 Type: OFPT_PACKET_IN
1964 25.619972 1 25 194.171.25.16 OpenFl.. 201 Type: OFPT_PACKET_OUT
1965 25.620006 1 25 194.171.25.16 OpenFl.. 201 Type: OFPT_PACKET_OUT

» Frame 406: 156 bytes on wire (1248 bits), 156 bytes captured (1248 bits) on interface @
» Linux cooked capture

» Internet Protocol Version 4, Src: 10.0.0.25, Dst: 194.171.25.16
» Transmission Control Protocol, Src Port: 6633 (6633), Dst Port: 37781 (37781), Seq: 33, Ack: 41, Len: 88
v OpenFlow 1.3

Version: 1.3 (0x04)

Type: OFPT_FLOW_MOD (14)

Length: 88

Transaction ID: 3457490822

Cookie: 9x0080000000000000

Cookie mask: ©x00EEEE000000BE00

Table ID: @

Command: OFPFC_ADD (©)

Idle timeout: ©

Hard timeout: ©

Priority: ©

Buffer ID: OFP_NO_BUFFER (Oxffffffff)

Out port: @

Out group: @

Flags: 0x0000

Pad: 0000

b Match

» Instruction

v

Figure C-3: Example of OpenFlow messages exchanged between Ryu controller and Pica8 switch
during initial connection setup.
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Testbed Configuration

interface GigabitEthernet®/25s

switchport
switchport
switchport
switchport
switchport

trunk encapsulation dotiqg
trunk native vlan 101
trunk allowed vlan 100,181
mode trunk

nonegotiate

speed nonegotiate

interface GigabitEthernete/26

switchport
switchport
switchport
switchport
switchport

trunk encapsulation dotiqg
trunk native vlan 101
trunk allowed vlan 160,101
mode trunk

nonegotiate

speed nonegotiate
channel-group 5 mode on

interface GigabitEthernete/27

switchport
switchport
switchport
switchport
switchport

trunk encapsulation dotiqg
trunk native vlan 101
trunk allowed vlan 160,101
mode trunk

nonegotiate

speed nonegotiate
channel-group 5 mode on

Figure C-4: Link Aggregation setup on Cisco switch interfaces.

dst-mac

switch#show etherchannel load-balance
EtherChannel Load-Balancing Configuration:

EtherChannel Load-Balancing Addresses Used Per-Protocol:
Mon-IP: Destination MAC address

IPv4: Destination MAC address

IPv6: Destination MAC address

Figure C-5: Mac address-based load balancing configuration on Cisco switch
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Appendix D

Pktgen Packet Generator Script

#!/bin/bash
# EXECUTE SCRIPT AS ROOT!!!

# Set PKTgen configuration for East-Coast

# Add pktgen to kermnel
modprobe pktgen

PGDEV=/proc/net/pktgen/kpktgend_0

function pgset() {
local result

echo $1 > $PGDEV

result=‘cat $PGDEV | fgrep "Result: OK:"°‘
if [ "$result" = "" |; then

cat $PGDEV | fgrep Result:
fi

}

function pg() {
echo inject > $PGDEV
cat $PGDEV

}

# Set interfaces to thread
pgset "rem_device_all"
pgset "add_device ethl"
PGDEV=/proc/net/pktgen/ethl

# Set PKTgen for NodeOl to NodeO5 (delay in ns)
pgset "pkt_size 64"
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72 Pktgen Packet Generator Script
pgset "dst_min 10.20.30.66"
pgset "dst_max 10.20.30.66"
pgset "src_min 10.100.0.110"
pgset "src_max 10.100.0.110"
pgset "udp_src_min 10017"
pgset "udp_src_max 10017"
pgset "udp_dst_min 10017"
pgset "udp_dst_max 10017"
pgset "delay 50000"

pgset "count 1000000"

PGDEV=/proc/net/pktgen/pgctrl

pgset
echo

"start"
IIDC)I].e n
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Deshmukh

Master of Science Thesis




1]

2]

[10]

[11]

Bibliography

Bidirectional forwarding detection (bfd). [Online]. Available: https://tools.ietf.org/
html/rfc5880

Cfm  concepts. [Online].  Available: http://www.cisco.com/c/en/us/support/
docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/
117457-technote-cfm-00.html

Sdn architecture (issue 1). [Online]. Available: https://www.opennetworking.org/
images/stories/downloads/sdn-resources/technical-reports/TR_ SDN_ARCH_1.0__
06062014.pdf

Openflow switch specification version 1.5.0 ( protocol version 0x06 ). [Online].
Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow /openflow-switch-v1.5.0.noipr.pdf

Picos overview. [Online]. Available: http://www.pica8.com/wp-content/uploads/2015/
08 /pica8-whitepaper-picos-overview.pdf

Metro ethernet services - a technical overview. [Online]. Available:  https:
//www.mef.net/Assets/White Papers/Metro-Ethernet-Services.pdf

100 gb/s ethernet standard. [Online]. Available: http://www.ieee802.org/3/ba/

“Ieee standard for local and metropolitan area networks—bridges and bridged networks,”
IEEFE Std 802.1Q-2014 (Revision of IEEE Std 802.1Q)-2011), pp. 1-1832, Dec 2014.

Aarnet layer 2 point-to-point and multipoint virtual private networks. [Online].
Available: http://news.aarnet.edu.au/aarnet-4-update-rolling-out-network /

Surfnet  multiservice  point.  [Online].  Available: https://www.surf.nl/
diensten-en-producten/multi-service-port /index.html

Y. Wang, G. Lu, and X. Li, “A study of internet packet reordering,” in Information
Networking. Networking Technologies for Broadband and Mobile Networks. Springer,
2004, pp. 350-359.

Master of Science Thesis Sulabh Deshmukh


https://tools.ietf.org/html/rfc5880
https://tools.ietf.org/html/rfc5880
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
http://www.cisco.com/c/en/us/support/docs/asynchronous-transfer-mode-atm/operation-administration-maintenance-oam/117457-technote-cfm-00.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
http://www.pica8.com/wp-content/uploads/2015/08/pica8-whitepaper-picos-overview.pdf
http://www.pica8.com/wp-content/uploads/2015/08/pica8-whitepaper-picos-overview.pdf
https://www.mef.net/Assets/White_Papers/Metro-Ethernet-Services.pdf
https://www.mef.net/Assets/White_Papers/Metro-Ethernet-Services.pdf
http://www.ieee802.org/3/ba/
http://news.aarnet.edu.au/aarnet-4-update-rolling-out-network/
https://www.surf.nl/diensten-en-producten/multi-service-port/index.html
https://www.surf.nl/diensten-en-producten/multi-service-port/index.html

74 Bibliography

[12] “Ieee standard for local and metropolitan area networks — link aggregation,” IEEE Std
802.1AX-201} (Revision of IEEE Std 802.1AX-2008), pp. 1-344, Dec 2014.

[13] Traditional networking vs software-defined networking. [Online]. Available: https:
//globalconfig.net /software-defined-networking-vs-traditional /

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

[15] Sdn definition. [Online]. Available: https://www.opennetworking.org/sdn-resources/
sdn-definition

[16] Open networking foundation. [Online]. Available: https://www.opennetworking.org/
index.php

[17] “Ieee standard for local and metropolitan area networks - virtual bridged local area
networks amendment 5: Connectivity fault management,” IEEE Std 802.1ag - 2007
(Amendment to IEEE Std 802.1Q - 2005 as amended by IEEE Std 802.1ad - 2005 and
IEEE Std 802.1ak - 2007), pp. 1-260, 2007.

[18] Bidirectional forwarding detection (bfd) on link aggregation group (lag) interfaces.
[Online]. Available: https://tools.ietf.org/html/rfc7130

[19] Lacp failover time cisco propritory. [Online]. Available: http://www.cisco.com/c/en/us/
td/docs/ios/cether/configuration/guide/ce_ Inkbndl.html

[20] N. L. van Adrichem, B. J. Van Asten, and F. A. Kuipers, “Fast recovery in software-
defined networks,” in Software Defined Networks (EWSDN), 2014 Third European Work-
shop on. IEEE, 2014, pp. 61-66.

[21] Ethernet oam:  Bidirectional forwarding detection (bfd). [Online]. Available:
http://www.tecnologika.co.uk/wp-content /uploads/2000364-en.pdf

[22] Configuring bidirectional forwarding detection. [Online]. Avail-
able: http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_ x/nx-os/
interfaces/configuration/guide/if cli/if bfd.html#12420

[23] Configuring bidirectional forwarding and detection over switched virtual interface.
[Online]. Available:  http://www.cisco.com/c/en/us/td/docs/routers/7600/ios/15S/
configuration/guide/7600 15 0s_book/bfdsvi.html

[24] Cisco switches overview of layer 2. [Online]. Available: http://www.cisco.com/c/en/
us/td/docs/switches/datacenter/sw/5_x/dcnm/layer2/configuration/guide/b_ Cisco
DCNM_ Layer 2 Switching Configuration_ Guide  Release_ 5-x/Cisco. DCNM__
Layer_ 2 Switching Configuration_ Guide__ Release_ 5-x_ chapter2.html

[25] Cisco bidirectional forwarding detection (bfd) implementation. [Online]. Avail-

able: http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750x_3560x/
software/release/15-2 1 e/configuration/guide/scg3750x/swbfd.html

Sulabh Deshmukh Master of Science Thesis


https://globalconfig.net/software-defined-networking-vs-traditional/
https://globalconfig.net/software-defined-networking-vs-traditional/
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/index.php
https://www.opennetworking.org/index.php
https://tools.ietf.org/html/rfc7130
http://www.cisco.com/c/en/us/td/docs/ios/cether/configuration/guide/ce_lnkbndl.html
http://www.cisco.com/c/en/us/td/docs/ios/cether/configuration/guide/ce_lnkbndl.html
http://www.tecnologika.co.uk/wp-content/uploads/2000364-en.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-os/interfaces/configuration/guide/if_cli/if_bfd.html#12420
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/nx-os/interfaces/configuration/guide/if_cli/if_bfd.html#12420
http://www.cisco.com/c/en/us/td/docs/routers/7600/ios/15S/configuration/guide/7600_15_0s_book/bfdsvi.html
http://www.cisco.com/c/en/us/td/docs/routers/7600/ios/15S/configuration/guide/7600_15_0s_book/bfdsvi.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/dcnm/layer2/configuration/guide/b_Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x/Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x_chapter2.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/dcnm/layer2/configuration/guide/b_Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x/Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x_chapter2.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/dcnm/layer2/configuration/guide/b_Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x/Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x_chapter2.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/5_x/dcnm/layer2/configuration/guide/b_Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x/Cisco_DCNM_Layer_2_Switching_Configuration_Guide__Release_5-x_chapter2.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750x_3560x/software/release/15-2_1_e/configuration/guide/scg3750x/swbfd.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3750x_3560x/software/release/15-2_1_e/configuration/guide/scg3750x/swbfd.html

75

[26] Juniper cfm and oam  configuration on  bridge  connections.  [On-
line|. Available: http://www.juniper.net/techpubs/en_ US/junos15.1/topics/example/
layer-2-802-1ag-ethernet-oam-cfm-example-over-bridge-connections-mx-solutions.html

[27] Cisco cfm and oam configuration. [Online]. Avail-
able:  http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/46sg/
configuration/guide/Wrapper-46SG/E__ OAM.html

[28] K. Govindarajan, K. C. Meng, and H. Ong, “A literature review on software-defined
networking (sdn) research topics, challenges and solutions,” in Advanced Computing
(ICoAC), 2013 Fifth International Conference on. IEEE, 2013, pp. 293-299.

[29] Pox sdn controller. [Online]. Available: http://www.noxrepo.org/pox/about-pox/
[30] Ryu. [Online]. Available: http://http://osrg.github.io/ryu/
[31] Onos sdn controller. [Online]. Available: http://onosproject.org/

[32] Floodlight sdn controller. [Online]. Available:  http://www.projectfloodlight.org/
floodlight/

[33] Opendaylight sdn controller. [Online|. Available: https://www.opendaylight.org/

[34] Enterprise-class definition. [Online]. Available: https://www.techopedia.com/definition/
27853 /enterprise-class

[35] Open vswitch official website. [Online|. Available: http://openvswitch.org/
[36] Openstack official website. [Online|. Available: https://www.openstack.org/

[37] Linux kvm official website. [Online]. Available: http://www.linux-kvm.org/page/Main
Page

[38] Xenserver virtualization platform official website. [Online]. Available: http://xenserver.
org/

[39] Docker official website. [Online]. Available: https://www.docker.com/

[40] Virtualbox official website. [Online]. Available: https://www.virtualbox.org/
[41] Pica8 sdn switch official website. [Online]. Available: http://www.pica8.com/
[42] Noviflow sdn switch official website. [Online]. Available: www.noviflow.com

[43] Broadcom asic for pica8 switch. [Online]. Available: http://www.broadcom.nl/products/
Switching/Data-Center /BCM56850-Series

[44] B. J. van Asten, N. L. van Adrichem, and F. A. Kuipers, “Scalability and resilience of
software-defined networking: An overview,” arXiv preprint arXiv:1408.6760, 2014.

[45] Open vswitch database configuration. [Online]. Available: http://openvswitch.org/
ovs-vswitchd.conf.db.5.pdf

Master of Science Thesis Sulabh Deshmukh


http://www.juniper.net/techpubs/en_US/junos15.1/topics/example/layer-2-802-1ag-ethernet-oam-cfm-example-over-bridge-connections-mx-solutions.html
http://www.juniper.net/techpubs/en_US/junos15.1/topics/example/layer-2-802-1ag-ethernet-oam-cfm-example-over-bridge-connections-mx-solutions.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/46sg/configuration/guide/Wrapper-46SG/E_OAM.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/46sg/configuration/guide/Wrapper-46SG/E_OAM.html
http://www.noxrepo.org/pox/about-pox/
http://http://osrg.github.io/ryu/
http://onosproject.org/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://www.opendaylight.org/
https://www.techopedia.com/definition/27853/enterprise-class
https://www.techopedia.com/definition/27853/enterprise-class
http://openvswitch.org/
https://www.openstack.org/
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://xenserver.org/
http://xenserver.org/
https://www.docker.com/
https://www.virtualbox.org/
http://www.pica8.com/
www.noviflow.com
http://www.broadcom.nl/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.nl/products/Switching/Data-Center/BCM56850-Series
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf

76

Bibliography

[46]

[47]

[48]

[49]

Picos 2.6 configuration guide. [Online]. Available: http://www.pica8.com/wp-content/
uploads/2015/09 /ovs-configuration-guide-1.pdf

N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network monitoring
in openflow software-defined networks,” in Network Operations and Management Sym-
posium (NOMS), 2014 IEEE. 1EEE, 2014, pp. 1-8.

M. Bredel, Z. Bozakov, A. Barczyk, and H. Newman, “Flow-based load balancing in
multipathed layer-2 networks using openflow and multipath-tcp,” in Proceedings of the
third workshop on Hot topics in software defined networking. ACM, 2014, pp. 213-214.

S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and research challenges
of hybrid software defined networks,” ACM SIGCOMM Computer Communication Re-
view, vol. 44, no. 2, pp. 70-75, 2014.

Customer-premises equipment. [Online]. Available:  https://en.wikipedia.org/wiki/
Customer-premises__equipment

Open vswitch performance measurement. [Online]. Available: http://goo.gl/dGX92D

P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance characteristics of
virtual switching,” in Cloud Networking (CloudNet), 2014 IEEE 3rd International Con-
ference on. 1EEE, 2014, pp. 120-125.

Cisco catalyst 3560 series switches. [Online]. Available: http://www.cisco.com/c/en/us/
products/switches/catalyst-3560-series-switches/index.html

Pica8 p5101 series switches. [Online]. Available: http://www.pica8.com/documents/
pica8-datasheet-72x10gbe-p5101.pdf

Cisco catalyst 3560 etherchannels configurations. [Online]. Avail-
able: http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3560/software/
release/12-2_ 55_se/configuration/guide/3560__scg/swethchl.html#wp1275918

R. Olsson, “Pktgen the linux packet generator,” in Proceedings of the Linuz Symposium,
Ottawa, Canada, vol. 2, 2005, pp. 11-24.

Picos open vswitch command reference. [Online]. Available: http://www.pica8.com/
wp-content /uploads/2015/09/ovs-commands-reference-1.pdf

C. Metter, S. Gebert, S. Lange, T. Zinner, P. Tran-Gia, and M. Jarschel, “Investigating
the impact of network topology on the processing times of sdn controllers,” in Integrated
Network Management (IM), 2015 IFIP/IEEFE International Symposium on. 1IEEE, 2015,
pp- 1214-1219.

Race condition. [Online|. Available: https://en.wikipedia.org/wiki/Race condition

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops: An open frame-
work for openflow switch evaluation,” in Passive and Active Measurement. Springer,
2012, pp. 85-95.

Sulabh Deshmukh Master of Science Thesis


http://www.pica8.com/wp-content/uploads/2015/09/ovs-configuration-guide-1.pdf
http://www.pica8.com/wp-content/uploads/2015/09/ovs-configuration-guide-1.pdf
https://en.wikipedia.org/wiki/Customer-premises_equipment
https://en.wikipedia.org/wiki/Customer-premises_equipment
http://goo.gl/dGX92D
http://www.cisco.com/c/en/us/products/switches/catalyst-3560-series-switches/index.html
http://www.cisco.com/c/en/us/products/switches/catalyst-3560-series-switches/index.html
http://www.pica8.com/documents/pica8-datasheet-72x10gbe-p5101.pdf
http://www.pica8.com/documents/pica8-datasheet-72x10gbe-p5101.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3560/software/release/12-2_55_se/configuration/guide/3560_scg/swethchl.html#wp1275918
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3560/software/release/12-2_55_se/configuration/guide/3560_scg/swethchl.html#wp1275918
http://www.pica8.com/wp-content/uploads/2015/09/ovs-commands-reference-1.pdf
http://www.pica8.com/wp-content/uploads/2015/09/ovs-commands-reference-1.pdf
https://en.wikipedia.org/wiki/Race_condition

7

[61] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advanced study
of sdn/openflow controllers,” in Proceedings of the 9th Central & Eastern European Soft-
ware Engineering Conference in Russia. ACM, 2013, p. 1.

[62] carrier grade network recovery time. [Online]. Available: http://www.hjp.at/doc/rfc/
rfc5654.html

[63] Behavior driven development. [Online]. Available: https://en.wikipedia.org/wiki/
Behavior-driven__development

Master of Science Thesis Sulabh Deshmukh


http://www.hjp.at/doc/rfc/rfc5654.html
http://www.hjp.at/doc/rfc/rfc5654.html
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development

78 Bibliography

Sulabh Deshmukh Master of Science Thesis



	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments

	Main Matter
	Introduction
	Motivation
	Problem Description
	Thesis Objectives
	Thesis Outline

	Overview of Relevant Concepts
	Existing Protocol-Based Design Considerations
	Overview of Existing Layer 2 Technologies for Failure Detection
	Overview of Existing Layer 2 Technology for Load Balancing
	Existing Protocol-based Design Summary and Conclusion

	Software-Defined Networking
	Overview
	OpenFlow Protocol
	SDN Controllers and Switches
	Overview of Layer 2 Failure Detection Support in SDN
	Overview of Layer 2 Load balancing in SDN
	Summary and Conclusion on SDN


	Proposed System Design
	Design Considerations
	Failure Detection and Failover Considerations
	Per-flow Load Balancing Considerations

	Design Proposal

	Design Simulation and Testbed Setup
	Testbed Setup for Load Balancing
	Testbed Setup for Failure Detection and Failover
	Prototype Software of Proposed Design

	Testing and Evaluation
	Results for Fast Failover
	Experiment Procedure
	Results
	Result Analysis

	Experimental Results: Controller Initiated Failover
	Experimental Procedure
	Results
	Experiment Analysis

	Results for per-VLAN Failover Over Trunk
	Experiment Procedure
	Results
	Result Analysis

	Results for Load Balancing

	Conclusions and Future Work
	Conclusion
	Recommendations for Future Work 


	Appendices
	Test Plan
	Test Plan for Failure Detection and Failover Mechanism
	Test Cases

	Test Plan for Load Balancing and Overall System Connectivity
	Resources Used for Testing

	Procedure to Test Fast Failover in Pica8 Switches 
	Procedure to Test Fast failover in Pica8 Switches
	Procedure to configure CFM in Pica8 Switches
	OpenFlow Commands Executed on Each Switch

	Testbed Configuration 
	Pktgen Packet Generator Script 

	Back Matter

