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Abstract

Existing activity-based and agent-based simulations alone often failed to capture the interaction between individual activity
scheduling and detailed urban traffic dynamics. ActivitySim provides a representation of individual activity schedulings but often
lacks detailed traffic dynamics, whereas MATSim can capture detailed interactions between travellers and mobility systems but
often overlooks several decision-making factors, such as activity scheduling shift, household interactions and land-use influences.
To address these limitations, this paper presents an Activity- and Agent-based Co-simulation framework that integrates ActivitySim
and MATSim, both of which are open-source software popularly adopted in each research community. ActivitySim generates indi-
vidual activity schedules and location choices, which serve as synthetic travel demand input for MATSim. MATSim then simulates
detailed mobility interactions, with its outputs aggregated into zonal level-of-service matrices and fed back to ActivitySim for iter-
ative scheduling adjustments. The feedback loop bridges the strengths of both models and is applied to the MRDH (Rotterdam-The
Hague Metropolitan) region in the Netherlands. The initial MRDH model for the base-year reference scenario demonstrates that the
proposed co-simulation framework effectively replicates existing mobility patterns, paving the way for fine-grained intervention
evaluations like ride-hailing services in the future.
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1. Introduction

In transport planning, the high level of aggregation within conventional trip-based models limits their ability to
calculate detailed individual travel behaviours. However, this level of detail is essential for evaluating the effects of
emerging mobility services, such as studies on smart mobility solutions. Two advanced modelling approaches have
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emerged to address these limitations: activity-based modelling (AcBM) and agent-based modelling (AgBM). AcBM
simulates individual travel demand by modelling their participation in activities, considering lifestyle choices, social
interactions, and economic constraints. On the other hand, AgBM shares conceptual overlaps with AcBM but extends
the approach by simulating the interactions between agents and their interactions with the environment [1]. Several
toolkits are available for AcBM and AgBM, though many blur the lines between these categories. For instance, Ac-
tivitySim [2] is typically classified as activity-based but also includes individual interaction and competition, such as
constraints from land use patterns. Conversely, MATSim [3] is generally considered agent-based but also involves
modifications to activity schedules, such as mode shifts. However, no existing single tool is comprehensive enough
to fully capture the interaction between individual activity scheduling and detailed urban traffic dynamics. Such an
interaction is important because mobility systems are inherently interlinked with other systems. Introducing specific
interventions in the urban mobility network inevitably impacts land use patterns, individual travel patterns, location
choices and household travel interaction. To comprehensively assess the impact of interventions, it is crucial to under-
stand how these factors co-evolve with changes in transportation systems and incorporate them into existing simulation
frameworks [4, 5].

One way to address this gap is by integrating existing activity-based and agent-based toolkits. ActivitySim and
MATSim are well-suited for this purpose due to their open-source nature, widespread adoption and strong community
support. ActivitySim primarily focuses on capturing shifts in individual activity schedulings considering individual
and system characteristics. However, it lacks the ability to capture traffic dynamics as explicitly as MATSim [6].
There is potentially a huge opportunity to combine these two tools to better capture the interaction between shifts
in individual activity patterns and detailed network dynamics. While several studies have used the output of AcBM
as input for AgBM [7], this typically represents a one-way process, and the dynamic interactions between the two
systems remain largely unaddressed. A co-simulation framework linking ActivitySim and MATSim in an iterative
manner is a promising solution. To that end, this paper presents a co-simulation approach that integrates ActivitySim
and MATSim. The ActivitySim components generate agents’ synthetic travel demand, whereas MATSim simulates
detailed traffic dynamics and provides aggregated travel information back to ActivitySim in an iterative feedback loop.
We apply this framework in a case study of the MRDH (Rotterdam-The Hague Metropolitan Area) region. To the best
of our knowledge, this is the first paper to integrate two open-source AcBM and AgBM simulation software in a
co-simulation manner, and the result is the first model for the MRDH region on both activity-based and agent-based
levels.

2. Related Work

MATSim is an open-source agent-based modelling framework that simulates the mobility behaviours of large num-
bers of individual agents and their interactions within real-world traffic environments [8]. By the start of the simulation,
each agent in MATSim holds daily “plans” to be performed that differ in time, location, and purpose. MATSim sim-
ulation is based on the co-evolutionary algorithm constituting several iterations: agents perform respective activities
and compete for space-time constraints when travelling in mobility networks. At the end of each iteration, agents
apply modifications to travel plans to optimise daily travel performances for utility maximisation. Such an iterative
process is repeated until agents in MATSim reach the stochastic user equilibrium.

One challenge associated with MATSim’s implementation is that the demand data describing detailed activity
schedulings of all individuals within the study area is usually unavailable to modellers. Several recent attempts have
developed data synthesis pipelines that generate synthetic travel demand to replicate attributes and travellers’ activity
chaining. Nevertheless, most current pipelines rely on statistical matching [9, 10], which means matching agents’
attributes from the synthetic population (e.g., age, gender, income) with similar attributes in reference datasets, such
as household travel surveys. The matched agents then inherit mobility patterns directly from the reference population,
resulting in the synthetic population’s mobility patterns being primarily replicated from the reference data. Addition-
ally, since the number of respondents in the reference data is usually limited, the statistical matching process relies on
limited combinations of attributes to ensure that every individual within the synthetic population can find respective
matched samples in the reference data. Consequently, the generated synthetic travel demand mostly lacks behavioural
richness and variability compared to real-world travel behaviours.
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After MATSim scenarios are generated, they are primarily used to test various “what-if”” scenarios under differ-
ent mobility interventions. However, one primary assumption within most MATSim studies is that agents’ travel
behaviours will remain largely unchanged, except for route choice, activity departure time, and mode shifts. This
could potentially be problematic due to the complexity of urban mobility systems, where a shift in one factor can
influence many other perspectives. The potential shifts include changes in agents’ activity schedulings and sequences,
activity location choices, parking destination choices, and travel interactions between household members. There is
some research trying to take some of these factors into account in MATSim, such as the parking [11] and discre-
tionary activities choice extensions [12]. Still, incorporating these extensions into a single MATSim simulation will
require advanced MATSim knowledge and increase the already time-consuming MATSim computational time. Even
when integrated, the existing functions still cannot capture all relevant factors for a more comprehensive simulation
assessment of the proposed interventions.

AcBM is another methodology commonly used in transport planning to simulate how people decide to participate
in activities based on behavioural theory [13]. Specifically, based on empirical data and individual typologies, AcBM
adopts probabilistic approaches and behavioural categorisation to replicate how individuals with different charac-
teristics make activity decisions. Consequently, compared to statistical matching, AcBM is “emulating” the activity
schedulings from reference data rather than simply reproducing them [14]. However, one limitation of the current
AcBM is that traffic dynamics are still calculated at the zonal level, which restricts the models’ analysis capability for
research questions that require finer granularity, such as for ride-pooling and car-sharing.

Due to the complementary characteristics, some studies use the output of AcBM as the synthetic travel demand
input of AgBM. For instance, [7] integrate the output from the activity scheduling model CEMDAP as an input of
MATSim’s synthetic travel demand for Berlin, Germany. It should be noted that such an integration process is often
implemented as a one-way process in literature. Nevertheless, there is significant potential to extend this approach
by enabling a bi-directional AcBM and AgBM co-simulation framework, where two models are composed together
to run simultaneously and exchange data to capture the interaction between individual activity scheduling and de-
tailed urban traffic dynamic [15]. The AcBM offers a more realistic representation of individual travel behaviours
by incorporating multiple factors. In contrast, AgBM offers a more granular analysis of travellers’ interactions and
traffic assignments. To the best of our knowledge, [16] and [17] are the only two studies that have explored the in-
tegration of AcBM and AgBM in a co-simulation framework. However, the AcBM toolkits adopted in both studies
are not openly available, which restricts the transferability of their frameworks. A co-simulation framework using
both open-source software could significantly broaden the applicability of such a co-simulation framework for policy
analysis. MATSim (AgBM) and ActivitySim (AcBM) could potentially be adopted due to their widespread use in
respective communities. Nevertheless, an integrated framework bundling these two is not yet available to the best of
our knowledge.

3. Activity- and Agent-based Co-Simulation Framework Integrating ActivitySim and MATSim

This research aims to present an activity- and agent-based co-simulation framework facilitating a two-way inter-
action between MATSim and ActivitySim. Figure 1 illustrates the proposed framework, where blue blocks represent
real-world data, the hard orange and green represent modules within ActivitySim and MATSim, whereas the light
version of the same colours stands for the output generated by the respective software. The co-simulation process is
based on an iterative approach. Firstly, ActivitySim generates a detailed daily activity schedule for each individual
from the synthetic population based on their socio-demographical characteristics and the features and constraints of
the transportation system (such as accessibility and point-of-interest availability). Then, the generated activity-travel
patterns are individually converted into MATSim agents’ plans for the detailed agent-based mesoscopic traffic simu-
lation. MATSim output, representing detailed mobility patterns, is aggregated into zonal level-of-service matrices and
then inputted into ActivitySim to adjust agents’ daily activity participation and scheduling. This two-way interaction
continues until there are no significant changes in the zonal level-of-service matrices between the input into Activi-
tySim and the corresponding MATSim output within the same iteration. The following sections will present a detailed
demonstration of each step involved using the case study of the MRDH region in the Netherlands.
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Fig. 1. Activity- and Agent-based Simulation Framework Integrating ActivitySim and MATSim with Iterative Feedback Loops

3.1. ActivitySim Simulation & Conversion into MATSim Synthetic Travel Demand Based on Iterative Feedback Loops

To initiate the co-simulation process, an ActivitySim model must first be established. ActivitySim requires four
basic data inputs: synthetic population representing the detailed demographic profile of individuals within the study
area, land use data demonstrating the “attractiveness” of each Traffic Analysis Zone (TAZ) for different activity pur-
poses, network data containing the level-of-service matrices reflecting the generalised cost travelling between TAZs,
and parameters of utility functions estimated from survey data revealing travellers’ daily activities. Based on the input
data, the model predicts the locations for long-term activities such as work and school for the synthetic population,
along with their primary activity objectives. Subsequently, it determines the number of obligatory (work and school)
and optional (e.g., shopping, dining out) tours. Each tour will then have its start time, duration, destination, and mode
of transport determined. Following this, the model decides on various aspects of the tour, including the number of
stops, trip destination, trip duration, and travel mode. For our case study of the MRDH region, an ActivitySim model
is customised as detailed in [13], which provides a comprehensive description of the data adopted and its quality. This
model will serve as the starting point for our co-simulation framework.

The output of ActivitySim contains the socio-demographical attributes of individuals within the MRDH region,
plus their daily activity schedulings. The output data contains the primary information required for MATSim’s syn-
thetic travel demand. However, agents’ activity departure times, durations, and locations produced by ActivitySim
are represented in hourly and TAZ-level resolutions. Additional processing is required to disaggregate these temporal
(in seconds) and spatial (in coordinates) information for integration into MATSim. TAZs in the original ActivitySim
MRDH scenario are already quite refined, where the Netherlands is divided into 7011 zones, and the areas of zones
within the MRDH regions are much smaller compared to the rest of the country. Consequently, we use the data from
GeoParaat', which provides the detailed geographical locations of all Points of Interest (POI) in the Netherlands,

! https://www.geoparaat.nl/downloads/
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along with the usage (e.g. housing, school, and shops) and size (area) of each POI. Based on the destination TAZs, the
activity purpose and the sizes of the relevant POIs, one destination within the respective TAZs is chosen as the activity
location for this study. Similarly, for the temporal resolution of activities, for the first trip an individual undertakes
within a day, we assign a random minute within the hour provided, representing the end time of the first activity.
For the subsequent activities, as ActivitySim only provides the total duration of the entire tour rather than specific
activities linked by trips, we estimate the duration of each activity based on the time difference between the departure
times of consecutive activities, including the travel time in between (mainly to avoid when the travel time is significant
and influence the estimated duration of subsequent activities). The duration is further adjusted by assigning a random
minute number within the hour range of the estimated value. By iterating through all individuals’ travel schedules
generated by ActivitySim, we transform the refined data with detailed spatial and temporal information into MATSim
format of synthetic travel demand (so-called plan.xml”).

3.2. MATSim Simulation and Travel Behaviour Adaptation

With the established synthetic travel demand, the MATSim simulation for the MRDH region is set up incorporating
the local mobility network (from OpenStreetMap) and public transport schedules (from the GTFS data) [18]. As
mentioned in Section 2, MATSim is based on the co-evolutionary algorithm where a specific proportion of agents
modify their travel behaviours during each iteration. The choices contain re-routing, departure time adaption and mode
choices. One key challenge associated with the proposed co-simulation framework is ensuring that MATSim does not
override the decision that contradicts the empirical knowledge embedded in the ActivitySim simulation. Regarding
the co-simulation framework, [16] suggests only enabling route choice in the AgBM, whereas the departure time and
mode choice adaptation should only be introduced when their action scope is sufficiently confined.

For this research, route choice in MATSim is enabled as the travel time estimation of ActivitySim is based on the
aggregated TAZ level. MATSim can complement this by specifying detailed routes agents undertake during the trips.
For the activity departure time, as the temporal resolution provided by ActivitySim is on the hourly basis, MATSim can
further adjust the randomly assigned departure minute from Section 3.1 based on actual mobility patterns and mobility
conditions. To enable realistic adaptation while preserving the integrity of ActivitySim’s output, the mutation range
of MATSim departure time adaptation is confined to 30 minutes. For the mode choice, the network level-of-service
matrices from ActivitySim input already provide impedances showing travel time, distance, cost or a combination of
generalised costs for each TAZ pair. These values are similar to the disutilities that agents perceived when travelling
in MATSim. Therefore, the mode choice innovation is switched off in this research to prevent agents from making
mode choices in MATSim that violate the established decision in ActivitySim. With the proposed replanning strategy,
MATSim will be run in several iterations based on the real-world utility parameters in the MRDH region [3]. We also
deploy the alternative specific constant calibration tool in [19] to automate the model calibration process, ensuring the
alignment of mode and mode-distance share between the simulation and reality.

3.3. Interaction Between ActivitySim and MATSim

Once the simulation is calibrated, MATSim provides detailed information about all trips conducted during the
last iteration, including origins, destinations, departure times, travel times and the modes used for the trips. This
information is aggregated into level-of-service matrices of morning peak (7 to 9), evening peak (16 to 18) and the
rest of the simulated day. Since changes in agents’ travel behaviours and network conditions are expected during this
co-simulation process, an iterative process between ActivitySim and MATSim is foreseen. The stopping criteria for
the proposed co-simulation framework are defined based on changes in the level-of-service matrices [16] as:

x 100 < €

1 5 [Cia,b) = Cii(a, b)
NZ Ci-1(a,b)

Where N is the total number of the origin-destination pairs in the level-of-service matrices, C;(a, b) and C;_;(a, b)
represent the generalised travel cost between zones a and b from the consecutive iterations i-/ and i, respectively. For
this research, the convergence threshold € is set as 5%. It is worth mentioning that the convergence of the co-simulation
framework can be achieved relatively quickly for modelling the base-year reference scenario since the original level-
of-service matrices inputted into ActivitySim are derived from real-world mobility data. Nevertheless, the framework
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becomes particularly valuable when assessing the impact of mobility interventions that have not yet been implemented
in reality, as the changes in both individual activity scheduling (through AcBM) and the incurred network dynamics
(through AgBM) are not known. Compared to simulation studies using only activity-based or agent-based simulation,
such an integrated approach provides a more comprehensive assessment of mobility interventions and their effects on
transport networks.

4. Outcome and Conclusion

In this paper, we present an initial framework that integrates ActivitySim and MATSim to expand the analysis scope
by enabling interaction between individual activity scheduling and detailed urban traffic dynamics. The framework
starts with ActivitySim, which generates synthetic travel demand by considering individual characteristics, land use
patterns, and household travel interaction. MATSim then simulates detailed mobility patterns based on the generated
demand, with its output aggregated into level-of-service matrices and fed back into ActivitySim for an iterative co-
simulation process. Based on the baseline ActivitySim model generated and calibrated by [13], an initial example of
the proposed framework is conducted for the MRDH region in the Netherlands. In the Zuid-Holland region of the
calibrated model, between modes of car, bike (+ebike), public transport, and walking, the mode shares are 30.8%,
41.4%, 3.9% and 23.9%, and the mode distance shares are 40.3%, 45.7%, 6.2%, and 7.8% respectively. Figure 2
visualise the network, agents’ activities (including home, work and shopping), plus the traffic situation in the afternoon
of Rotterdam, which is one of the primary cities in the MRDH region.

(a) Car and Public Transit Network of the Calibrated (b) Home (Blue), Work (Red) and Shopping (Yellow) (c) Network Dynamics for Congested (Red) and Un-
Model in Rotterdam Activities at 4 PM congested (Green & Yellow) in Rotterdam

Fig. 2. Visualisation of the Calibrated MRDH Co-Simulation Model

Although the generated model for the MRDH is calibrated and validated against real-world mobility patterns, it
does not yet fully illustrate how the proposed co-simulation framework outperforms standalone activity-based and
agent-based models. The full potential of the co-simulation framework can only be demonstrated when the com-
bined model is used to assess the impact of mobility interventions which require fine granularity (i.e. person-centric)
analysis, such as ride-pooling, ride-hailing and Mobility-as-a-Services. The authors are currently developing relevant
research in this direction.

Another potential future research lies in improving the spatial and temporal resolution when transforming the
output of ActivitySim into MATSim’s synthetic travel demand: Since ActivitySim operates on the TAZ and hourly
levels, whereas MATSim requires detailed coordinate (spatial)- and second (temporal)-level inputs. While ensuring
the continuity of the results, for temporal resolution, our research randomly samples one minute within the hour
specified in ActivitySim for agents’ first activity. This is reasonable because MATSim introduces variability through
departure time mutations within a range of 30 minutes to maximise agents’ utility. For spatial resolution, we refined
the process by incorporating detailed Point of Interest (POI) data and assigning agents to specific POIs within the
zone based on their trip purpose and POI attractiveness. Given that the adopted TAZ for the MRDH region is already
highly granular, this approach is acceptable as long as it reflects aggregated real-world travel behaviour patterns.
However, the extent to which these methods affect the modelling result remains unclear. While ActivitySim outputs
trip distance data, one potential enhancement would involve directly using POIs from ActivitySim as trip destinations
for MATSim. To the best of our knowledge, this level of detail is not directly available in ActivitySim’s current output.
Another alternative might involve combining trip distance with additional data sources, such as aggregated transport
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OD matrices (e.g., [18]), to determine the most probable POI for agents. However, implementing this approach would
significantly increase computational complexity. Future research could explore more efficient solutions to improve the
integration of spatial and temporal disaggregation while maintaining computational feasibility.
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