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Abstract

The Ocean Cleanup plans to deploy a barrier array, to concentrate and capture plastic in the North Pacific
gyre by 2020. Both shape and behaviour of the barrier are quite different from the most marine structures.

To get an estimation of the behaviour and loads on the system, the system has been modelled by The
Ocean Cleanup in Orcaflex. This software uses the Morison equation. The hydrodynamic coefficients used in
this equation are obtained from experiments with cylinders far from the free surface. Using these coefficients
with the Morison equation is a generally accepted method to estimate the loads on submerged cylinders such
as piles. However, the barrier is in the free surface and free to move.

This research focuses on the determination of the hydrodynamic coefficients of an unconstrained floating
barrier. A model has been set up to evaluate the hydrodynamic coefficients of a floating barrier in regular
waves. The barrier was simulated using a numerical model as wave tank. This numerical wave tank has been
preliminarily verified with the linear wave theory, in order to optimise the mesh resolution. The numerical
model uses fluid-structure interaction to model the flow around a rigid body, the barrier. The hydrodynamic
coefficients were in post-processing determined from the response of the numerical model, with the Morison
equation, by means of a least squares method.
The barrier with 2 degrees of freedom, sway and heave, has been compared to model tests performed at
MARIN with 3 degrees of freedom, sway, heave and roll. The model with 2 degrees of freedom shows reasonable
comparison in waves. These results found in this thesis indicate that the mass coefficient, Cm of the barrier
in both the horizontal and vertical plane is close to zero. The drag coefficient, Cd in the vertical plane is close
to zero, in the horizontal plane Cd is close to 0.5, both show resemblance to results found in literature.
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1
Introduction

In this thesis project, the dynamic behaviour of a barrier in waves will be investigated. This will be done using
computational fluid dynamics.

The project was sponsored by The Ocean Cleanup, a company focused on removing plastic from the ocean.
Yearly about 8 million tons of plastic enters the ocean, which accumulates in the 5 ocean gyres. A third of the
plastic is concentrated in the Great Pacific Gyre (or garbage patch). The plastic causes harm to the economy,
for example beaches filled are with plastic, for example the environment when birds and fish eat the plastic
or the plastic serves as a carrier to invasive species, and lastly to our health. The plastic adsorbs chemicals
and is accumulated in the food chain. The Ocean Cleanup’s goal is to extract, prevent and intercept plastic
pollution. The objective of The Ocean Cleanup is to deploy a barrier array, to concentrate and capture plastic
in the North Pacific Gyre by 2020.

To get an estimation of the behaviour and the loads on the system, it has been modelled in Orcaflex by The
Ocean Cleanup. In these simulations, the flow is idealised and the influence of the system on the flow field
is neglected. This results in underestimation of the high frequency loads, and an overestimation of the low
frequency loads [42].
Another approach to get an estimation of the loads is to model the flow around a constrained barrier, which
has been done with both ANANAS and Fluent. With this approach the deformation and motion of the system
due to the wave loads are neglected. Both approaches disregard the (strong) coupling between the flow and
the structure.

Initially, this thesis aimed to model both transient flow as well as structural mechanics, providing a better
representation of the behaviour of the system. However this proved to be too complex and the aim has been
simplified. Now this thesis aims to determine the hydrodynamic coefficients for a system with 2 degrees of
freedom, sway and heave.

The hydrodynamic coefficients currently used are obtained from experiments with cylinders far from the
free surface. Using these coefficients with the Morison equation is a generally accepted method to estimate
loads on vertical cylinders such as piles. However, the barrier, is free to move and in the free surface.

The validation will be performed with flume tests carried out with MARIN in 2016.
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2
The Ocean Cleanup

2.1. The Ocean Cleanup barrier
The Ocean Cleanup aims to concentrate, catch and remove the floating plastic. This will be done by means
of an artificial coast line, the barrier. The barrier consists of a floater, the boom, and a screen, or skirt. The
boom and the skirt will concentrate and catch the plastic. A visualisation of a barrier can be found in Figure
2.1.

The Ocean Cleanup array is made of long floating barriers which capture and concentrate the plastic,
making mechanical extraction possible [41].
The objective of The Ocean Cleanup (“TOC”) is to deploy this type of array in the North Pacific gyre by 2020.
The boom will have a diameter of approximately 1.2 m, and the skirt will have a depth between 1 and 2 m.
The boom will be flexible, such that it follows the waves, see Figure 2.1a. Two mooring setup were considered.
Figure 2.1b shows the high mooring setup and Figure 2.1c shows the low mooring setup.

(a) front view of the array (b) High mooring (c) Low mooring

Figure 2.1: Schematic view of the flexible barrier concepts, as of spring 2016

An overview of the environmental conditions in the North pacific gyre is given in Table 2.1. The temperature
of the top water can be assumed to be constant over the depth due to mixing by wind and waves [34].

2.2. Model tests
To investigate the forces on a barrier, several tests have been performed at both Deltares and MARIN, as well
as the prototype being tested in the North Sea.
In June 2015, a model was tested at Deltares. The aim of the tests performed at Deltares was to determine the
behaviour of plastic in the ocean in relation to the barrier, and to measure forces on the barrier due to wave
and current action for future validation of numerical models [14], [42].
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Table 2.1: Median values in location ( 31◦N - 142 ◦W) [41]

Quantity Value Unit

wind velocity at 10 m height 6.05 m/s
current 0.13 m/s

significant wave height 2.09 m
mean wave period 8.09 s

sea surface temperature 22 ◦C
water density 1025 kg /m3

In October 2015 a flexible model was tested in MARIN in the Offshore Basin at scale 1:18 with respect
to the concept for the pacific. The tests were used to validate and calibrate 3D models for the design of the
barrier and the mooring system in the vertical plane and to provide an understanding of the response of a
system in waves and current [33]

In June 2016, a semi 2D flexible model, similar to the North Sea Prototype Desmi barrier, was tested in the
MARIN Concept Basin, at 1:5 scale.

In this thesis, the system is modelled in a flow solver, ANSYS Fluent, as a rigid body, with up to two degrees of
freedom, sway and heave.



3
Ocean Waves

3.1. Linear wave theory
An ocean wave can be modelled with linear wave theory, with the following assumptions and idealisations:

• The fluid is incompressible or the density is constant. This assumption can be made in the open ocean,
as the scales, both vertical and horizontal, over which the density varies are much larger than the wave
length.

• The fluid is assumed to be inviscid. Viscous forces are important on a small scale, but for a regular
ocean wave these internal forces can be neglected.

• The wave generation due to wind induced pressure is neglected.

• The surface tension can be neglected. This means that the waves have to be bigger than a few centimetres.
On a larger scale, the Coriolis force is neglected. As the scale of the Coriolis forces comes into play on a
scale of several kilometres, see Appendix E.3.6, this simplification is allowed.

• The bottom friction is neglected as well. This assumption can be made as the bottom friction is a local
effect. The disturbances caused by the friction do not influence the main water body.

• The flow is irrotational, this assumption follows from the assumption that the flow has no friction,
because the disturbances which would be generated at the bottom, do not travel into the main water
body. [15]

3.2. Linearised balance equations
If the assumptions are applied to the balance equations as described in Appendix E, the following equations
are obtained. The coordinate system is shown in Figure 3.1

Figure 3.1: Coordinate system

In 3.1, L, or λ represents the wave length, η the water level and d the water depth.
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3.2.1. Continuity equation
Starting with mass conservation, 3.1

∂ρ

∂t
+∇· (ρV) = 0 (3.1)

For incompressible flows this reduces to
∇· (ρV) = 0 (3.2)

If the density is assumed to be constant, the derivatives of ρ are zero, and the density can be removed from
the equation. This results in

∇·V = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0 (3.3)

In this equation V represents the velocity vector. If the flow is assumed to be irrotational, the vorticity is zero,
ξ=∇×V = 0. If φ is a scalar function, then

∇× (∇φ) = 0 (3.4)

[2],the gradient of scalar function is zero, and
V =∇φ (3.5)

Substituting Equation 3.5 into Equation 3.3, results in the Laplace equation

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0 (3.6)

3.2.2. Momentum equations
To create the momentum equation describing the ocean wave, the momentum balance along the x direction,
can b written as

ρ∂(u)

∂t
+∇· (ρuV) = ∂p

∂x
+ρ fx + (Fx )vi scous

The flow is assumed to be incompressible, ρ∂∂t = 0, and inviscid, Fx vi scous = 0,

∂(ρu)

∂t
+∇· (ρuV) = ∂p

∂x
+ρ fx (3.7)

Linearising the equations results in

δu

δt
=− 1

ρ

δp

δx
δv

δt
=− 1

ρ

δp

δy
(3.8)

δw

δt
=− 1

ρ

δp

δz
− g

3.2.3. Boundary conditions
In order to model the problem, boundary conditions have to be set. The first kinematic boundary condition
states that water cannot penetrate the bottom. In the following equation, d represents the depth,

uz = ∂φ

∂z
= 0 at z =−d (3.9)

The second kinematic boundary condition; water cannot leave the surface, thus the water velocity is equal to
the velocity of the surface

uz = ∂φ

∂z
= ∂η

∂t
at z = 0 (3.10)

At the water surface the pressure is constant, and is set to zero, resulting in the dynamic surface boundary
condition. Substituting this in Equation 3.8 and rearranging, this results in

p = 0 at z = 0 (3.11)

∂φ

∂t
+ p

ρ
+ g z = ∂φ

∂t
+ g z = 0 at z = 0 (3.12)



3.3. Harmonic wave 7

3.3. Harmonic wave
The surface elevation of a harmonic propagating wave can be described with equation 3.13, which is an
analytical solution the Laplace equation, Equation 3.6.

η(x, t ) = a sin(ωt −kx) (3.13)

a is the wave amplitude with a = H/2, where H is the wave height,ω= 2π
T , represents the wave frequency and

k = 2π
L , the wave number.

The velocity with which the wave propagates, or the wave speed, can be described as

c = d x

d t
= ω

k
= L

T
(3.14)

The velocity potential of the function is given in the following equation

φ= φ̂cos(ωt −kx) with φ̂= ωa

k

cosh[k(d + z)]

sinh(kd)
(3.15)

The particle velocity can be obtained from the velocity potential φ with Equation 3.5, recall

ux = ûx sin(ωt −kx) with ûx =ωa
cosh[k(d + z])

sinh(kd)
(3.16)

uz = ûz cos(ωt −kx) with ûz =ωa
sinh[k(d + z])

sinh(kd)
(3.17)

Substituting Equation 3.13 and 3.15 in Equation 3.10 results in the dispersion relationship, which gives the
relation between the radian frequency ω and the wave number k. From the dispersion relationship the wave
length as a function of the water depth can be determined:

ω2 = g k tanh(kd) (3.18)

As the water becomes less deep, the wave length decreases. The wave length as function of the water depth
can be determined with the dispersion relationship:

L = g T 2

2π
tanh

(2πd

L

)
(3.19)

Linear wave theory assumes that a random ocean wave consists of a summation of several independent
harmonic waves:

η(x, t ) =
N∑

i=1
ai cos(ωi t −ki x) (3.20)

The water elevation at location x, due to a series of waves can also be written as

η(t ) =
N∑

i=1
ai cos(2π fi t +αi ) (3.21)

Where fi = i
D , represents a component with frequency fi , D represents the duration and D = i

fi
= i Ti where

Ti is the wave period, [15]. With the trigonometric identities this can be rewritten to

η(t ) =
N∑

i=1

(
Ai cos(2π fi t )+Bi sin(2π fi t )

)
(3.22)

where

ai =
√

A2
i +B 2

i and αi = arctan

(
−Bi

Ai

)
(3.23)

A series of waves measured over a longer time, forms a spectrum.

E( f ) = lim
∆ f →0

1

∆ f
E {

1

2
a2

i } (3.24)

A wave can be described with the linear wave theory when the wave steepness is small and the influence of
the water depth is small. Together the wave steepness, H

g T 2 and water depth to wave length ratio, d
g T 2 , remains

within the boundaries shown in 3.2. [15] [21]
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Figure 3.2: Wave theory applicability, [15]

3.4. Loads on fixed structures
The loads on a fixed structure can be divided in static and dynamic loads [4]. Static loads on a structure are
due to gravity, hydrostatic loads and current loads. Dynamic loads are due to environmental loading such as
wind and waves. The loads on a structure can be identified by the following parameters

F

ρU 2D
=φ(

t

T
,
U T

D
,
U D

ν
,
πD

λ
,e,

U

fnD
) (3.25)

Keulegan-Carpenter number (KC )= U T

D
(3.26)

Reynolds number (Re) =ρU D

µ
= U D

ν
(3.27)

Diffraction parameter = πD

λ
(3.28)

Relative roughness (e) = Kr

D
(3.29)

Reduced velocity = U

fnD
(3.30)

frequency parameter (β) = Re

KC
= D2

Tν
(3.31)

(3.32)
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The Keulegan Carpenter number is a measure of the relative contribution of the inertia and the drag loads,
where U is the water velocity amplitude and T is the water velocity period. The Reynolds number is a measure
of the inertia to the viscous forces. The diffraction parameter, is sometimes referred to as the dimensionless
wave number K R, or K a, where R, or a, represent the radius of the structure. The diffraction parameter is

for deep water waves, equal to the squared Froude number, F r = u
g L = ω

√
R
g = p

K R. The deep water wave

number K is defined as

K =
{
ω2

g = 2π
λ

k tanhkd
(3.33)

The relative roughness, e, is a measure of the surface roughness to the diameter of the structure. The reduced
velocity is similar in form to the KC number, and represents a measure of the cross-flow vibration of the
structure in steady flow. The frequency parameter is a measure between Re and KC number helps group the
drag coefficient, Cd and mass coefficient, Cm , [37]. Figure 3.3 shows which loads dominate the structure.
Following [4], For region I, when H/D < 0.25 and πD/λ < 0.5, the drag terms are negligible, and inertia
dominates the loads. The inertia part of the Morison equation should suffice for the wave calculation. When
πD/λ> 0.5, a diffraction analysis should be included. For H/D > 2, in regions II, V, VI, the Morison equation
should be used for the force computation on a submerged structural member.

Figure 3.3: Limits of application [4], [1]

3.4.1. Equations of motion
When the system is allowed to respond to the wave excitation, the equation of motion for i = 1,2, ...6 (surge,
sway, heave, roll, pitch, yaw) can be written as:

6∑
j=1

(mi j +ai j )ξ̈i +bi j ξ̇i + ci jξi = Fi cos(ωt +βi ) (3.34)

mi j is the mass or mass moment of inertia, ai j , the added mass, bi j represents the wave-making damping,
ci j the restoring constants, Fi the wave-exciting force or moment, ω, the wave frequency and βi the phase
angle with respect to the wave motion above the centre of mass of the body.
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Equation 3.34 can be separated into the hydrodynamic forces,
∑6

j=1(mi j +ai j )ξ̈i +bi j ξ̇i and the hydrostatic

forces,
∑6

j=1 ci jξi , [26] [19] [18].

The added mass and damping can be nondimensionalised, resulting in the hydrodynamic coefficients. Using
the submerged volume, V , and the water density, ρ, the added mass coefficient, Ca , can be written as

Ca = a

ρV
= ma

ρV
(3.35)

The hydrodynamic coefficients can be determined experimentally. The damping is in phase with the velocity
and the added mass and the spring constant are in phase with the displacement and acceleration, see Equation
3.34. Using this, the coefficients can be determined by subjecting the system to a decay test or a forced
oscillation, see also A.1.1.

3.4.2. Determining hydrodynamic coefficients with potential flow
The hydrodynamic forces on a rolling ship on a free surface under the influence of incoming waves can be
determined with potential theory under the following assumptions:

• Ideal fluid (incompressible, inviscid and irrotational)

• Relative wave amplitudes are small

• Oscillations of the hull are small

The velocity potential can now be represented as:

φ(x, y, z, t ) =φ1(x, y, z)+φ2(x, y, z, t )+φ3(x, y, z, t )+φ4(x, y, z, t ) (3.36)

φ1 is the potential corresponding to stationary movement of the ship, with constant linear and angular velocities
on a still free surface,φ2 is the Froude-Kriloff potential or incoming wave potential,φ3 represents the diffraction
potential, φ4 represents the radiation potential or potential of the forced oscillations.
In the computation of the added mass of a rolling ship,φ1 is neglected, only the frequency of incoming waves
are taken into account,[23] [7] [18].

3.5. Fixed structure in waves
3.5.1. Morison Equation
The loads on a structure in waves can be estimated with an empirical equation, the Morison equation. This
relation was initially defined for a slender submerged cylinder or pile, but can be applied to other structures
when the wavelength is much larger than the size of the structure [1], [20].

λ> 5 ·D

The Morison equation for a constrained vertical submerged cylinder defines the force per length, f , as

f (t ) = π

4
ρCmD2 · u̇(t )+ 1

2
ρCd D ·u|u| (3.37)

Cm the non-dimensional mass or inertia, coefficient, which is defined as, Cm = 1+Ca [18]. u is the free stream
velocity,
Following [20], the force per unit length in the direction of the flow, on a 2D object is assumed to consist of
three parts:

f = A0ρ
d(ku)

d t
+

∮
px dS + 1

2
Cd Dρu|u| (3.38)

The first term is the added mass contribution or the diffraction force, k is a virtual mass coefficient and area
A0 = πD2/4. Next is the Froude-Kriloff force or load due to the ambient pressure along the wave direction,
py , integrated over dS, an element of the surface area. The last term describes the load due to drag. If the
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dimensions of the virtual term are compared with the load of the ambient pressure, with A = r A0, where r
represents the area ratio, the following holds ∮

py dS = ρr A0
du

d t

f = A0ρ

[
d(ku)

d t
+ r

du

d t

]
+ 1

2
Cd Dρu|u| (3.39)

as k is not dependent on time, it can be written as

d

d t
(ku) = k ′ du

d t
(3.40)

and Cm can be defined as
Cm = (k ′+ r ) (3.41)

resulting in the Morison equation:

F = Fi ner t i a +Fdr ag

f =CmρA0
du

d t
+ 1

2
Cd Dρu|u| (3.42)

Or, assuming the velocity is constant over the depth of the barrier, Equation 3.42 can be integrated of the
depth for the whole structure, resulting in, [18], [20],[24],

F (t ) = ρCmV v̇(t )+ 1

2
ρCd Au(t )|u(t )| (3.43)

3.5.2. Determining the hydrodynamic coefficients
The hydrodynamic coefficients can be determined with different methods, a two approaches will be presented
here

Fourier averaging method
The coefficients can be de determined using a Fourier series. The loads are assumed to vary harmonically,
and can be written as a Fourier series. The average hydrodynamic coefficients can be approximated relatively
well using on the first Fourier coefficients. For more information, see Appendix A.

Least Squares Method
The average hydrodynamic coefficients can also be found with the least squares method. With this method
the squared difference between the assumed solution f (xi , a1, a2, ..an) and the force is minimized,

S ≡∑
[y − f (t , a1, a2, ..an)]2 (3.44)

If applied to Equation 3.37 this would result in

f (ti ,Cm ,Cd ) = π

4
ρCmD2 · u̇(ti )+ 1

2
ρCd D ·u(ti )|u(ti )|

R2 ≡∑
[yi − f (ti ,Cm ,Cd )]2

All data points in the time series have equal influence on the Cm and Cd coefficients [48].

3.6. Moving structure in still water
The sectional force on a moving slender structure in still water is defined as

f (t ) =−ρ(Cm −1)Ar̈ (t )− 1

2
ρCd Dṙ (t )|ṙ (t )| (3.45)

(3.46)

where ṙ (t ) represents the velocity of the structure. Assuming the velocity is constant over the depth of the
barrier, Equation 3.45 can be written for the whole structure as

F (t ) =−ρ(Cm −1)V r̈ (t )− 1

2
ρCd Aṙ (t )|ṙ (t )| (3.47)

Here Cd represents the hydrodynamic damping.
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3.7. Moving structure in waves
Combining Equation 3.45 with 3.42, the sectional force on a moving slender cylinder in non-uniform flow
normal to the axis is defined as

f (t ) =−ρ(Cm −1)Ar̈ (t )+ρCm Av̇(t )+ 1

2
ρCd Dvr (t )|vr (t )| (3.48)

vr (t ) = v(t )− ṙ (t ) (3.49)

This is formulation is also known as the relative velocity formulation, [1]. Assuming the velocity is constant
over the depth of the barrier, Equation 3.48 can be written for the whole structure as:

F (t ) =−ρ(Cm −1)V r̈ (t )+ρCmV v̇(t )+ 1

2
ρCd Avr (t )|vr (t )| (3.50)

Vertical loads
The Morison equation only accounts for the loads due to wave and current on a submerged structure. To
apply the Morison equation to a structure in the free surface, the equation has to be modified. By including
the body forces, the total load in the vertical direction for a system which is free to float can be written as

Fz (t )=−ρ(Cm −1)V r̈ (t )+ρCmV v̇(t )+ 1

2
ρCd Ah vr (t )|vr (t )|

+ρ ·V (t ) ·9.81 (3.51)

V (t ), the total submerged volume, consists of a static component, V0, which for a free floating system, in still
water, should confirm to ρV0 ·9.81 = ρV ·9.81 = m ·9.81, and a dynamic component, (V (t )−V0), [6]

Horizontal loads
The water level on the left and the right side of the system can differ. This difference in submergence on the
left and the right side of the barrier, will result in a load. The difference is denoted as dh, which multiplied
with projected area of the high water level side of the barrier, Ash . If the barrier is free to move, this load
should equal to the spring force.

ρ ·9.81 ·∆h · Ash = Fs = k · (y(t )− y0 − yoffset) (3.52)

The spring force consists of the difference between the instantaneous location, the starting location and
the pretension. The total load formulation in the horizontal direction depends on whether the system
is constrained, or free to move in the sway direction.

Fy (t )=−ρ(Cm −1)V r̈ (t )+ρCmV v̇(t )+ 1

2
ρCd As vr (t )|vr (t )|

+k · (y(t )− y0 − yoffset) (3.53)

Fy (t )=−ρ(Cm −1)V r̈ (t )+ρCmV v̇(t )+ 1

2
ρCd As vr (t )|vr (t )|

+ρ ·9.81 ·∆h · As (3.54)

3.7.1. Independent flow form of the Morison equation
For the case of low frequency oscillation body in a high frequency flow, or vice versa, the relative velocity
equation might not be applicable [49], [1]. For an oscillating cylinder in waves, the following formulation was
proposed by Layla [25]:

fy=ρπ
4

D2C w
m

duw

d t
+ 1

2
ρDC w

d uw |uw |

−ρπ
4

D2C b
a

d ẏ

d t
− 1

2
ρDC b

d ẏ |ẏ | (3.55)

Here uw represents the wave velocity, and ẏ represents the body velocity.

C w
d , C w

m = f
(Uw D

ν , Uw Tw
D

)
, C b

d , C b
a = f

(Ub D
ν , Ub Tb

D

)
, [1]
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3.8. Cm and Cd
The Cm and Cd coefficients vary with KC and Re. The coefficients are also related to the surroundings of the
object. The hydrodynamic coefficients of an object placed in an infinite fluid will be different from an object
close to the free surface. The values between 2D and 3D coefficients differ as well, but only 2D coefficients
will be discussed here, [26] [19] [18].

3.8.1. In an infinite fluid
Sarpkaya, [38] performed experiments in a u-tube, a vertical water tunnel in which the flow oscillates, to
determine the mass and drag coefficients of completely submerged shapes. In Figure 3.4a, Cm is plotted
against the KC, for constant β and Re. In these experiments the Cm coefficient drops below 1, for 8 > KC < 30,
which means that Ca < 0, as Cm = Ca +1. 8 > KC < 30 is the transition region from the inertia dominated to
the drag dominated regime. A negative added mass coefficient means the fluid force has the same sign as
the acceleration of the cylinder, [36] [43], [30]. The mass and drag coefficients are equal in sway and heave
Cmy =Cmz , Cdy =Cdz , [23] [13].

(a) Mass coefficient, Cm versus KC, for a cylinder in a u-tube [38]

(b) Drag coefficient, Cd versus KC, for a cylinder in a u-tube [38]

Figure 3.4: Hydrodynamic coefficients, determined by Sarpkaya in a u-tube

3.8.2. Near a boundary
The added mass is dependent on the distance to a boundary or free surface. This is illustrated in Figure 3.5, for
H/R, at a KR= 0.25, the added mass peaks to Ca ≈ 4.6, while at KR= 0.5 it reaches a minimum, with Ca ≈−1.
The added mass in Figure 3.5 was determined with potential flow by [13], [31].

3.8.3. Surface piercing
As the body is in the free surface, the coefficients for added mass in heave and sway are no longer equivalent,
as can be seen in Figure 3.6. The peaks found in the added mass near and on a boundary disappear as the
circular cylinder is less submerged. Greenhow, [13], also determined the damping coefficients for a cylinder
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(a) Ca [13] (b) Cd [13]

Figure 3.5: Ca and Cd close to a free surface

on the surface. However, his results for a heaving cylinder do not seem to match the experiments performed
by Vugts, see Figure 3.7, note the different scales, K R and

p
K R. Vugts also tested rectangular cylinders with

different breadth to draft ratios. In heave he tested different amplitudes. In Figure 3.7d the influence of the
heave amplitude is more visible than in Figure 3.7b. Both figures show that the amplitude has influence on
the hydrodynamic coefficients, but it’s effect is small.
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(a) Ca in sway [13] (b) Ca in heave [13]

(c) Cd in sway [13] (d) Cd in heave, less than half submerged [13]

(e) Cd in heave, more than half submerged[13]

Figure 3.6: Added mass and damping coefficients versus KR, for a surface piercing cylinder, when H/r < 0 the cylinder is less than half
submerged [13]
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(a) Ca and Cd in sway for a half submerged cylinder,
versus

p
K R [45]

(b) Ca and Cd in heave for a half submerged cylinder,
for different amplitudes, versus

p
K R [45]

(c) Ca and Cd in sway for a half submerged rectangle,
for different ratios of breadth to draft, versus

p
K R [45]

(d) Ca and Cd in sway for a half submerged rectangle,
for different ratios of breadth to draft, and amplitudes, versusp

K R [45]

Figure 3.7: Added mass and damping calculations, the points represent experiments by Vugts, the line represent theoretical results [45]
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Figure 3.8: One way fluid-structure interaction

3.9. Fluid-structure interaction
Most models handle one kind of physics. A simulation on the stresses in a propeller blade could be performed
by imposing a distributed lift and drag force on a blade. The blade will deform due to the load and the pressure
distribution will change. An aerodynamic model will only incorporate the obstruction of the flow due to
the blade, but will neglect the structural deformation of the blade. Solving both the structural deformation
and the flow field can be done with two different approaches, the monolithic approach and the partitioned
approach.
In the monolithic approach, the fluid and structural system are solved simultaneously within one solver.
Because the systems are solved within a single set of equations, the system can be fully coupled.
In the partitioned approach the fluid and structural domain are solved each in their respective solver. The
setup of the system determines to what extent the problem is coupled.

3.10. One way coupled fluid-structure interaction
In one way coupled fluid-structure interaction, the output of the structural solver is fed to the fluid solver.
The fluid solver iterates until convergence criteria are met. The result is fed to the structural solver. This is
visualised in Figure 3.8.

3.11. Two way coupled fluid-structure interaction
In two way coupled interaction, the solvers individually have to reach convergence, and their shared results,
have to reach an equilibrium. Only when an equilibrium is reached, the solvers can move on to the next time
step. The amount of iterations till the shared result has converged and the convergence criteria determine
the strength of the coupling system.



18 3. Ocean Waves
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Figure 3.9: Two way fluid-structure interaction



4
Setup

4.1. Models used and tried
Initially, the objective of this thesis was to model the fully coupled fluid-structure interaction semi-2D with a
flexible body. This resulted in multiple, hard-to-pinpoint problems with instabilities, for both an elastic case
and a rigid case. The troubles could be attributed to the fluid solver, the structural solver or the coupling, or
a combination of these.
Lastly, a rigid 2D, coupled system using only a fluid solver was tried, which proved to be more successful. The
fluid solver solves the flow and the equations of motion of the rigid body, resulting in a two way coupled fluid
body interaction. This rigid 2D system will be discussed in here.

In hindsight, it would have been a better approach to set up a 2D system first. This system could have been
expanded to a rigid semi-2D system, which in turn could have been expanded to a fully coupled flexible
system.

19
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hb

Figure 4.1: Ship axis convention [29]

4.1.1. Scaling laws
Froude law was used to keep similarity in forces, see also E.16

F r = V√
g ·L

= αv

αg ·αL

As the gravity will not be scaled αg = 1 , αv =αL/αT , thus αT =p
αL

Table 4.1: Scaling laws, using Froude [18]

Symbol Scale
factor

Relationship

Length αL L f =αL ·Lm

Time αT T f =p
αL ·Tm

Velocity αV V f =p
αL ·Vm

Gravity αg g f =αg · gm

Density αρ ρ f =αρ ·ρm

Viscosity αµ µ f =αµ ·µm

Area αS A f =α2
L · Am

Volume α∇ ∇ f =α3
L ·∇m

Inertia αI I f =αρ ·α5
L · Im

Mass αM M f =αρ ·α3
L ·Mm

Force αF F f =αρ ·α3
L ·Fm

Spring
stiffness

αk k f =αρ ·α2
L ·km

4.1.2. Coordinate system
In maritime engineering a ship moves along its axis, surge, and orthogonal in plane to this axis is called sway,
see Figure 4.1. The Ocean Cleanup barrier has an unusual shape, unlike a ship, it moves orthogonal to its
axis. The Ocean Cleanup calls this direction surge. To simplify the comparison to literature, in this thesis, the
barrier moves is sway. Figure 4.1 and Figure 4.2a show the axis convention.

4.2. MARIN 2016 test
In the tests performed at MARIN, two barriers were tested, for two mooring configurations. The tested
barriers were a flexible barrier made by DESMI and a rigid barrier made by MARIN.
Only the rigid barrier will be discussed in this report, as the flexible barrier shows no similarity to either the
rigid body barrier from MARIN or the Deltares flexible barrier.

The experiment consisted of irregular wave tests, regular wave tests, current tests and tests to investigate
the plastic capture efficiency of the system. End plates were used to lessen 3D effects, still 3D effects were
observed. The plastic capture efficiency test helped visualise the different flow pattern along the width of the
barrier. This has been described in more detail in [5].
The regular waves had wave lengths (on model scale) of λ = 10.89 [m], T = 2.68 [s] to λ = 17.27 [m], T =
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3.58 [s] and wave heights H = 0.15 [m] to H = 0.36 [m]. These were all second order stokes waves.
To simplify the numerical model, a lower wave height was chosen for the simulation, such that it falls in the
airy wave regime, see Table 4.2. An overview of the original values can be found in ??. The current-only tests
were performed with velocities between v = 0.05 [m/s] and v = 0.224 [m/s].

Table 4.2: Modelled waves

Unit
Wave length, λ 14.329 17.27 20.427 [m]
Wave period, T 3.17 3.577 4.08 [s]

0.084 [m]
Wave height, H 0.1 0.1 0.1 [m]

0.12 [m]

Table 4.3: Chosen model scale and the numerical model test setup

MARIN
model, 3D

Symbol Numerical
model, 2D

Unit

Tank length 220 6 ·λ [m]
Tank width 4 − [m]
Tank depth 3.6 d 3.6
Spring stiffness 1447 ks 289.46 [N /m]
Barrier width 2.62 - [m]
Boom diameter 0.2 D 0.2 [m]
Skirt length 0.275 lsk 0.275 [m]
Skirt thickness 0.0055 ts 0.0055 [m]
Ballast diameter 0.025 Db 0.025 [m]
Moment of inertia per
meter

0.17 Ixx 0.17 [kg /m2]

Centre of gravity relative to
the bottom of the system

0.18 cgzs 0.18 [m]

Centre of gravity relative to
the bottom of the tank

cgzo 0.3446 [m]

dynamic viscosity 1.308 ·10−3 µ 1.308 ·10−3 [kg · s/m]
water density 998.2 ρ 998.2 [kg /m3]

Reynolds number Re = uDρ
µ (1.25 − 1.9) ·

104
[-]

Keuler-Carpenter number KC = uT
D (1.2−1.9) [-]

KR number K R =
k tanhkd · D

2

0.01−0.05 [-]

pretension yoffset 0.002 [m]
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(a) 3D view of the model. (b) Dimensions of the barrier in mm

Figure 4.2: Overview of the model

4.3. Numerical model
The barrier is modelled in a two dimensional numerical wave tank. The governing equations, the incompressible
inviscid Navier-Stokes equations, or Euler equations, are solved with a pressure-based solver with ANSYS
Fluent. The multiphase flow is solved by means of a Volume of Fluid method. The PISO-scheme was used for
the pressure-velocity coupling. The temporal discretisation was 1st order implicit as this proved to be more
stable than the 2nd order implicit scheme.

4.3.1. Domain
A schematic overview of the domain is given in 4.3b. The different patterns denote refinement regions. Two
setups were used. The first setup, a numerical wave tank, was used to determine the undisturbed velocity and
acceleration in the Morison equation. The second setup consisted of a numerical wave tank with a barrier, to
determine the loads on the barrier. The meshes were generated using ANSYS Meshing. The cell size can be
found in Table 4.4 and Table 4.5.

Numerical wave tank
The domain has a size of (6·λ)x(d ·1.5+H/2). The test section is at 2·λ from the inlet. Close to the free surface,
the cells are more refined. The height of the free surface region is H . Above and below the free surface are
transition regions, denoted as "transition a" and "transition w". In these regions the mesh changes from
a refined mesh, to a more coarse mesh (along the z axis). Both the free surface region and the transition
regions consist of quadrilateral cells. The regions denoted as air and water have a coarser mesh consisting of
triangles. They gradually change from broader to coarse at the edge. Grid damping is used to dampen the
reflection at the outlet. The cells stretch from fine to coarse over a distance 3 ·λ.

Numerical wave tank with barrier
The wave tank and the wave tank with barrier are as geometrically similar as possible. A schematic overview
of the setup can be found in Figure 4.3. The barrier is placed in a box and within this box the barrier is
free to move. The top of the box is placed 2 · H +2.5 ·D from the water line, the bottom is placed at 2 · H +
heigth of the barrier from the waterline. The left and the right side are at 5 ·D from the centre of the barrier.
The box is meshed with triangles and the resolution in the free surface was kept in line with the rest of the
wave tank. On the left and right of the box, there is a small transition region with a width of λ/3. Within the
transition region the mesh is spaced such that the cells close to the box are approximately square and that
the transition to the triangles is smooth. An overview of the parameters can be found in Table 4.5. The barrier
was meshed with a grid size of 5 ·10−3 [m]. This mesh size was chosen because it both conserves the shape
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Table 4.4: Overview the discretisation of the domain

region d y bias d z bias
computation zone

free surface λ/150 − H/20 −
transition w λ/150 − (3.5 ·H)/30 5
water 60 − (d −4 ·H)/6 4
transition a λ/150 − (H ·1.5)/10 7
air 60 − (0.5 ·d −1.5 ·H)/4 3

damping zone

free surface λ/150 − H/20 −
transition w 22 27 6 4
water 22 27 (d −4 ·H)/2 1.5
transition a 22 27 (H ·1.5)/10 7
air 22 27 (0.5 ·d −1.5 ·H)/2 1.5

of the barrier, the barrier is relatively round and the ballast resembles a circle and it helps enforce the free
surface mesh resolution in the box. A close up of the box can be found in Figure D.1.

Table 4.5: Overview the discretisation of the domain with barrier, the discretisation in the other regions follows Table 4.4

region d y bias d z bias
computation zone

transition box λ/3/70 4 H/20 −
box 25 − 6 −

dl unit inflation unit

barrier 5 ·10−3 [m] 5 ·10−3 [m]
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(a) Numerical wave tank

(b) Numerical wave tank with barrier

Figure 4.3: Schematic overview of the numerical wave tank
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4.4. Test setup
Two cases have been modelled. The first case is a forced oscillation in still water. The second case is the
system responding to an imposed wave. The direction of oscillation, or the degree of freedom of the system
is varied for both cases.

4.4.1. Imposed motion, still water
The forced oscillation in still water is often used to determine the hydrodynamic coefficients. Two motion
were tested, sway and heave.
In sway, a velocity bvy, is imposed on the system, with

bvy = H

2
·ω ·cos(ω · t +0.5arccos(−1)) (4.1)

In heave a velocity bvz, is imposed on the system,
with

bvz = H

2
·ω ·cos(ω · t +0.5arccos(−1)) (4.2)

The water is patched onto the domain. Every simulation is first allowed to stabilise for 20 time steps, before
the forced oscillation is started.

Table 4.6: Boundary conditions for imposed motion, still water

Location Boundary condition
Left side domain Symmetry
Right side domain Symmetry
Bottom domain Symmetry
Top domain Pressure outlet
Barrier Wall

(4.3)

4.4.2. Imposed waves
This test setup consists of a numerical wave tank for the model simulation and a numerical wave tank for the
determination of the undisturbed velocity.
The wave is generated at the inlet with the Open Channel Wave Boundary condition, which imposes the
following conditions at the inlet:

η(z, t ) =A cos(ky y +kz z −ωt +ε) (4.4)

ux (z, t )=ûx cos(ωt −kx) with ûx= g ka

ω

cosh[k(d+)]

cosh(kd)
(4.5)

uz (z, t )=ûz sin(ωt −kx) with ûz= g ka

ω

sinh[k(d + z)]

cosh(kd)
(4.6)

The domain is initialised with a flat free surface. The simulation is first allowed to stabilise for 20 time steps,
before the barrier is allowed to move.

Four cases were tested with waves imposed on the body. The first case, fixed, means the barrier has no
degrees of freedom. A barrier free in heave constrained in sway (dof-z) was tested for the second case. The
third case is a barrier constrained in heave, with a degree of freedom in sway (dof-y) kept in place by a spring
force, Fs .

Fs =−ks · (y − y0− yoffset)

Lastly, the case which resembles the behaviour of the floating object most, a barrier with 2 degrees of freedom,
dof-yz. The Morison equation is defined for f , a force per meter. To simplify the calculations, the wave
velocity in the horizontal direction is measured at the starting location of the system, halfway between the
top of the wave and the bottom of the model, [2 ·λ, d +(H/2−As )]. The wave velocity in the vertical direction
were initially measured at [2 ·λ, d − As ], [24]. The tests by Kristiansen [24] contained a rectangular cylinder
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Table 4.7: Overview of the cases with imposed waves

Freedom in
y, sway z, heave Fs

fixed - -
dof-z - 4 -
dof-y 4 - 4
dof-yz 4 4 4

in the free surface. He chose the bottom of the model as representative point. However, the barrier has a very
small surface at the bottom, to say that the loads at the bottom are representative for the whole structure is
perhaps too far fetched. Therefore [2 ·λ, d −H/2] was chosen as the representative value.

The movement of the barrier is not taken into account when determining the wave velocity. This will
induce an error, as the motion the system could have a small phase and magnitude difference. This error is
not accounted for in the determination of the hydrodynamic coefficients these differences are neglected.

Table 4.8: Boundary conditions for imposed waves

Location Boundary condition
Left side domain inlet - Open Channel Wave Boundary
Right side domain Outlet
Bottom domain Symmetry
Top domain Symmetry
Barrier Wall

Rigid body dynamics in Fluent
ANSYS Fluent has a built in solver to solve the interaction between a solid body and a fluid. This six degree of
freedom (DOF) solver calculates the hydrodynamic forces by integrating pressure over the surface in order to
estimate the motion of a rigid object.

4.5. Post-processing
The output from the simulation are the loads, location, velocity and acceleration and the submerged area of
the barrier. In order to determine the hydrodynamic coefficients, first the submerged volume and projected
area need to be determined. The procedure can be found in Appendix B. After these values have been
approximated, the hydrodynamic coefficients can be determined using the procedure described in Subsection
4.5.

Submerged volume and area
To give the reader some feeling about the magnitude and quantities of the numbers involved, Table 4.9 shows
the mean submerged area and volume of the barrier.

Table 4.9: The average submerged volume and projected area and the total volume and projected area of the barrier

Average Total Unit
Volume 0.0058 0.0334 [m3]
Area⊥z , Ah 0.154 0.2 [m2]
Area⊥y , As 0.336 0.5 [m2]

Determining the hydrodynamic coefficients
The hydrodynamic coefficients of the modified relative velocity relation, Equation 3.51, 3.53 and 3.54 will be
determined using the least squares method. As described in Section 3.7, 3.53 and 3.54 should lead to the same
value. Equation 3.53 applies to cases free in sway, Equation 3.54 to cases constrained in y .
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Fz (t )=−ρ(CM −1)V (t )r̈ (t )+ρCM V (t )v̇(t )+ 1

2
ρCD Ah(t )vr (t )|vr (t )|

+ρ ·V (t ) ·9.81

Fy (t )=−ρ(CM −1)V (t )r̈ (t )+ρCM V (t )v̇(t )+ 1

2
ρCD As (t )vr (t )|vr (t )|

+k · (y(t )− y0 − yoffset)

Fy (t )=−ρ(CM −1)V (t )r̈ (t )+ρCM V (t )v̇(t )+ 1

2
ρCD As (t )vr (t )|vr (t )|

+ρ ·9.81 ·∆h(t ) · As (t )

The window of time for which the simulation is performed is determined as follows: The barrier is at 2 ·λ
from the inlet, which means it takes 2 wave periods to arrive at the barrier. It takes roughly 3 periods to
establish a stable wave. As the simulation progresses, the mesh quality deteriorates due to the deformations
and waves reflecting from the barrier, inlet and outlet. These effects could influence the results. A window of
t = [6 ·Tp : 11 ·Tp ] was chosen for the determination of the coefficients, to keep mesh deformations and other
instabilities in check.

(a) 2 parameter fit, using V (t ) (b) 2 parameters fit, using V

Figure 4.4: Hydrodynamic coefficients for a system free in heave, calculated with instantaneous and mean volume

In the formula for the varying vertical load, Fz , the use of the instantaneous volume for the varying
buoyancy force, [6], does not seem to be the right approach in cases unconstrained in heave, namely dof-z
and dof-yz. Figure 4.4a, shows the force Fz and the least squares fit. The shape of the body acceleration,
baz, resembles the load Fz, but the approximation is dominated by the instantaneous volume. Replacing the
instantaneous volume in Equation 3.51 with the mean still water volume, V , leads to a better approximation
of the loads on the system. This is shown in Figure 4.4b.
For dof-z and dof-yz the modified relative velocity equation becomes:

Fz (t )=−ρ(CM −1)V (t )r̈ (t )+ρCM V (t )v̇(t )+ 1

2
ρCD Ah(t )vr (t )|vr (t )|

+ρ ·V ·9.81 (4.7)

The mean of the approximation shows both in Figure 4.4b and 4.4a an offset with respect to the load. Upon
inspection, it seems the geometry changed between design software, meshing software and the solver.
The difference in circumference is on the order of (2−4)·10−4m3, which on an prescribed volume of 0.0334m3

is 0.6%. This volume difference results in a mass discrepancy of 5%, which explains the 5% discrepancy in the
load.
The volume difference can be corrected for, if the system is free to move in heave. Then, difference can be
quantified with (V ·ρ ·9.81−9.81 ·mass). In Equation 3.51, V ·ρ ·9.81 is replaced with 9.81 ·ρ ·V − (V ·ρ ·9.81−
9.81 ·mass).
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Fy (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD Ah vr (t )|vr (t )|

+V ·ρ ·9.81− (V ·ρ ·9.81−9.81 ·mass) (4.8)

Lastly, the difference between the geometry in the solver and the prescribed volume can be accounted for by
adding an extra parameter to create a better fit.

An overview of the different approaches used to find the hydrodynamic coefficients is given in the following
sections.

The 2-parameter fit
Using 2 parameters, Cd and Cm , for Equation 3.51, 3.53 and 3.54 can be determined using:

R2 ≡∑
[yi − f (ti ,Cm ,Cd )]2

Fz (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD As vr (t )|vr (t )|

+ρ ·V (t ) ·9.81

Fy (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD As vr (t )|vr (t )|

+k · (y(t )− y0 − yoffset)

Fy (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD vr (t )|vr (t )|

+ρ ·9.81 ·∆h · Ash

The 2-parameter fit with volume correction
The hydrodynamic coefficients in heave, Cmz and Cdz , of the 2 parameter fit and the hydrodynamic coefficients
of the 2 parameter fit with volume correction should be the same.

R2 ≡∑
[yi − f (ti ,Cm ,Cd )]2

Fz (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD Ah vr (t )|vr (t )|

+ρ ·V (t ) ·9.81 (4.9)

Fz (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD Ah vr (t )|vr (t )| (4.10)

+V ·ρ ·9.81− (V ·ρ ·9.81−9.81 ·mass) (4.11)

Fy (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD As vr (t )|vr (t )|

+k · (y(t )− y0 − yoffset) (4.12)

Fy (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD As vr (t )|vr (t )|

+ρ ·9.81 ·∆h · Ash (4.13)

The 3-parameter fit

R2 ≡∑
[yi − f (ti ,Cm ,Cd , f3)]2 (4.14)

The 3 parameter fit is similar to the 2 parameter fit with correction, but instead of manually correcting for the
discrepancy between the geometry and simulation geometry, this difference is included in the least squares
equation as an unknown, f3. This approach should lead to similar results for the cases unconstrained in
heave and should help find the results for the other cases.
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Fz (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD Ah vr (t )|vr (t )|

+ρ ·V (t ) ·9.81+ fz3

Fy (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD As vr (t )|vr (t )|

+k · (y(t )− y0 − yoffset)+ fy3

Fy (t )=−ρ(CM −1)V r̈ (t )+ρCM V v̇(t )+ 1

2
ρCD As vr (t )|vr (t )|

+ρ ·9.81 ·∆h · Ash + fy3





5
Verification

With this study, a beginning will be made to quantify the error and uncertainty of the numerical wave tank.
First, the definition of verification will be laid out in Section 5.1. Then next a convergence of the numerical
wave tank will be presented.

5.1. Convergence and verification
Following the methodology given in [39], the simulation error δS is defined as the difference between the
truth T and the simulation result S:

δS = S −T = δSM +δSN

δSM represents the additive modelling error and δSN the numerical error. The numerical error consists of
the iteration number δI , the grid size δG , time step δT and other input parameters δp . It is assumed that the
other input parameters do not influence the error of the simulation, δP = 0. The simulation was performed
with double precision, indicating that the round-off error should be at least 15 digits, meaning it is negligible
compared to the other errors. The numerical error results in

δSN=δI +δG +δT = δI +
j=1∑

J
δ j (5.1)

The uncertainty of the simulation can be described with

U 2
SN=U 2

I +U 2
G +U 2

T (5.2)

The Euler flow was used in Fluent with default settings. A time step is considered converged when the
absolute difference between the scaled residuals is less then 0.001. Fluent reports scaled residuals, which is
defined as scaled residual = residuali ter ati on N

max(residuali ter ati on 1:5) . When the residual drops to 0.001 from the scaled residual,
the equation is assumed to be converged. The iterative error and uncertainty is assumed to be equal to the
convergence criteria, δI = 0.001, UI = 0.001.
In a convergence study for a (structured) grid with a uniform refinement ratio, the errors and uncertainties
are defined with method presented below:
φi numerical solution, where i = 1 represents the finest mesh and the highest i represents the coarsest mesh.
φexact represents the exact solution, The grid refinement ratio is defined as r = hi+1/hi where hi is the typical
cell size and the lowest number corresponds to the finest mesh.
Roache,[35] and Ster, [39], define the convergence ratio, R, for a uniform grid refinement ratio r ,

R = φ2 −φ1

φ3 −φ2
(5.3)

with the following conditions

0 <R< 1 monotonic convergence

−1 <R< 0 oscillatory convergence

R> 1 monotonic divergence

R<−1 oscillatory divergence

31
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For −1 < R < 0, the uncertainties can be determined using the oscillation maximum Su and minimum, Sl ,
with Uk = 1

2 (Su −Sl ).
For 0 < R < 1, the error uncertainty can be defined with the following process for parameter k, first the
refinement ratio rk is defined and the order of accuracy is determined.

rk=
hi+1

hi
= ( Ni

Ni+1

)(1/D) (5.4)

pk=
ln(1/R)

lnrk
(5.5)

For a structured grid, the representative parameter size, h, is used to determine the rk , for an unstructured
grid N the number of nodes is used, where D represents the dimension (for a 2D simulation, D = 2) For a
non-uniform refinement ratio, the order of accuracy is defined as:

pk=
ln(1/R)

ln(r21)
− 1

ln(rk21 )

(
ln(r pk

32 −1)− ln(r pk
21 −1)

)
(5.6)

The one-term term estimate of the error is defined as:

δ∗REk1
=φ2 −φ1

r pk
k −1

(5.7)

Two methods for the estimation of the uncorrected uncertainties will be presented here. The highest uncertainty
factor, between both method represents the uncertainty of the model.

Estimating errors and uncertainties with correction factor
According to Stern [39], correction factors provide a quantitative metric for defining the distance between the
solution and the asymptotic range. Correction factors can be used to improve the error, δ∗REk1

to δ∗k1
. The

correction factor can be determined with:

Ck=
r pk

k −1

r
pkest
k −1

(5.8)

δ∗k1
=Ckδ

∗
REk1

(5.9)

The uncertainty factor Uk can now be determined with:

[9.6(1−Ck )2 +1.1]|δREk1
| |1−Ck < 0| (5.9a)

Uk =
{

[2|1−Ck |+1]|δREk1
| |1−Ck ≥ 0| (5.9b)

Estimating errors and uncertainties with Factors of Safety (CGI)
The Convergence Grid Index, or CGI, was developed by Roache. The uncertainty Uk is defined using the error
estimate |δ∗REk1

|, multiplied by a factor of safety FS .

Uk = FS |δ∗REk1
| (5.10)

for careful grid studies, FS = 1.25 For unstructured grids, FS = 1.5, [10].

5.2. Verification of the numerical wave tank
To help select a grid, and quantify the numerical error and uncertainty of the wave tank, a mesh convergence
study has been performed.

5.2.1. Spatial convergence
A convergence study could be performed in several ways. One could keep one parameter constant, or keep a
constant ratio, for example using the C F L number or by expressing d y , d z and d t as a function of the wave
parameters. The order in which the convergence is studied could influence the result as well. Within literature
there doesn’t seem to be preference to a specific approach. ITTC, [16], states to only change one parameter,
for example∆x, while Eça, [9] changes both∆x and∆y with H . Next Maguire, [27], uses a constant CFL for the
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convergence study while Kim, [22] changes only the number of cells along the wave length, locking the other
parameters. It seems that at least 100 time steps per wave period are needed to get a good representation of
the wave [17], and roughly 20 cells per wave height; these are chosen as the base mesh parameters for the
convergence study. The number of cells per wave length varies: 150 cells per wave length was chosen for the
base mesh (medium), [47], [22], [27] [44] [17] [50] [40] [11].

Table 5.1: Parameters of the mesh refinement study

Extra
coarse

Coarse Medium Fine

λ/dy 67 100 150 225
H/dz 9 14 20 30
Tp /dt 100 100 100 100
Node count, N 5354 10949 21330 44985

The domain can be found in Figure 4.3, the test section is at 2·λ from the inlet, followed by a region ofλ before
the damping region starts. The size of the damping region was initially set to 1.5 ·λ, but this was increased to
3 ·λ to lower the height of the reflected waves and put them further away from the test section, see Table 5.2.

Table 5.2: Convergence study for medium mesh, 1/2 λ or 3λ, for wave amplitude a at location i ·λ along the domain

Length damping region airy wave a1·λ a2·λ aoutlet−λ/4

1.5 ·λ 0.05 0.0378 0.0294 0.0123
3 ·λ 0.05 0.0377 0.0294 0.0019

Table 5.3: Convergence study for d t = Tp /100

Location airy
wave,
φexact

extra
coarse,
φ4

coarse,
φ3

medium,
φ2

fine,
φ1

a1·λ [m] 0.05 0.0375 0.0377 0.0377 0.0378
a2·λ [m] 0.05 0.0291 0.0293 0.0294 0.0294
a5.75·λ [m] 0.05 0.0023 0.0020 0.0019 0.0019

The mean amplitude at 2 ·λ from the inlet, see Table 5.3, was used to to determine RG ,

RGc=φ3 −φ2

φ4 −φ3
= 0.105, RG f =

φ2 −φ1

φ3 −φ2
= 1.92

When considering the convergence ratio of the coarser meshes, RGc , the system converges monotonically.
However the convergence ratio of the finer meshes, RG f diverges. Both RGc and RG f should lead to the same
result. As RGc falls in the converging regime, and RG f in the diverging, it is assumed the solution converges in
an oscillatory manner. The grid uncertainty can now be estimated with

UG = 1

2
(SU −SL) = 1.56 ·10−4

Su represents the oscillation maximum, and SL represents the oscillation minimum.
As the difference between the medium mesh and the fine mesh is relatively small, the medium mesh was
chosen for the temporal convergence.

5.2.2. Temporal convergence
The temporal convergence ratio will be determined using the medium mesh, for 3 time step sizes. Table 5.4
shows tested time step sizes and the mean amplitude at along at the domain.
The mean amplitude improves significantly improves with a decreasing time step:

RT =φ1 −φ2

φ2 −φ3
= 0.659
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Table 5.4: Convergence study for the medium mesh

airy wave,
φexact

Tp /100,
φ3

Tp /200,
φ2

Tp /400,
φ1

a1·λ [m] 0.05 0.0377 0.0438 0.0474
a2·λ [m] 0.05 0.0294 0.0387 0.0448
a5.75·λ [m] - 0.0019 0.0028 0.0035

RT is in the monotonic convergence region The simulations were carried out with the following parameters:

rT =2

pT = ln(1/R)

lnrT
= 0.6016

δ∗RET 1
=φ2 −φ1

r pT
T −1

=−0.0118

Using the correction factor approach, the error and uncertainty can be defined with the following.

CT =
r pT

T −1

r
pTest
T −1

= 20.6016 −1

21 −1
=0.5174

δ∗T1
=Ckδ

∗
RET1

=0.0061

UT =[2|1−CT |+1]|δRET1 | =0.0232

pTest = 1, as a 1st order implicit method was used for the time stepping. Using the CGI approach results in the
following error and uncertainty, with FS = 1.5 [10]

UT = FS |δ∗REk1
| = 0.0018

5.2.3. Numerical error and uncertainty
In the previous sections the numerical errors and uncertainties of the wave height were estimated. The
iterative error and uncertainty, were unclear.

U 2
SN=U 2

I +U 2
G +U 2

T

USN=
√

0.0012 + (1.56 ·10−4)2 +0.00182 = 0.0021

The simulation error is incomplete, as the error δG is undefined. If δG is assumed to be zero, the order of δSN

can be guestimated with:

δSN=δI +δG +δT

δSN=0.001+ (−0.0118) =−0.0128



6
Results

In this chapter, the simulation results are evaluated. The hydrodynamic coefficients presented in this Chapter
are plotted for a selected range of Cm and Cd against the KC number, K R and

p
K R, so that they can be

compared to the data presented in Section 3.8. The full results can be found in Appendix C.

6.1. Results & discussion
6.1.1. 2 parameter fit
First, a global overview of the results will be given, after which the results will be discussed per motion. In
section 3.8.3, the Cm and Cd for both a circle and rectangle with levels of submergence were shown. Even
though the shapes are different, the coefficients cover a similar span. It is assumed the results from the barrier
should fall within similar limits. Figure 6.2 gives an overview of the results, with the y−axis limited to expected
values. Figure 6.3 shows the hydrodynamic coefficients of the cases with free motion in their corresponding
unconstrained direction.

Coefficients in z
Figure C.1, shows the added mass in the heave direction. Cmz has a large variation, with values ranging from
-0.1 to 27.7. The drag ranges from -5.3 to 52.6. The outliers seem to be the cases ’fixed’ and ’dof-y’. The
common factor between these cases is their constraint in the z direction. One would expect the same outliers
for the ’sway’ and ’dof-yz’ case, as these cases share a sway motion. Figure 6.2 shows the results of the different
cases, capped to ranges similar to those found by Vugts.

Cmz and Cdz for the fixed cases are high compared to Vugts, with mass coefficients and drag coefficients
ranging from -5 to 27.7. These results do not seem realistic.

Comparing the Cmz results in heave for a cylinder and a rectangle to Vugts, as shown in Figure 6.2d, shows
that the results are a order lower, as Cmz =Caz +1. Additionally the drag coefficient in heave are all negative.
This does not seem feasible.

Cmz and Cdz for sway can not be determined, as both the velocity and the acceleration of the barrier in
the z direction are zero.

The case that is free in heave, dof-z, shows much lower results, around 0.5. Cdz is small, 0.05. Both Cmz

and Cdz show good resemblance to the theoretical data from Greenhow, Figure 3.6b, for (H/R ≈−0.8)
Cmz for dof-y varies between 4.5 and 27.7, Cdz varies between 3.6 and 52.6. These values do not seem

feasible as the values of both coefficients are high.
Cmz for dof-yz spans a large band, resembling both heave and dof-z. The coefficient drops below 0 for

λshor t . Cdz is small and similar to the drag coefficients of dof-z.

Coefficients in y
The coefficients in the y direction vary between -12 and 2. The outliers are the cases constrained in y, opposite
to what was found with Cmz .
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Cmy in the fixed cases lies between -8 and -11, the drag coefficient between -1.6 to 2.0. The mass coefficients
are all outside of the expected range of Cmy = 0 to Cmy = 8.

Cmy and Cdy can not be determined in heave, as the velocity and acceleration in the y direction are zero.
Looking at Figure C.8, heave, one can see that the load is only due to the water level difference.

Cmy due to sway are all negative, between -0.9 and -2.4. Cdy varies between -0.2 and 1.9
For dof-z, Cmy ≈−11, Cdy varies between -0.8 and 1.9.
Cmy with dof-y, lies between 0.2 and 0.5, this lies in a similar regime as Figure 3.7c. Cdy lies between 0.3

and 0.8, both Vugts and Greenhow found Cdy ≈ 0, for a circle and a rectangle. However, Vugts presents in
his report also a triangle, where the drag coefficients from the experiment are an order 0.2 higher than the
predicted theoretical value (comparable to Figure 3.7c). While Cdy = 0.8 is probably too high, the values do
not seem infeasible.

Cmy dof-yz shows similar values to dof-y, but with ≈ 0.25 difference. As the barrier with dof-yz can move
both in heave and sway with the wave, its relative acceleration is small, hence its added mass could be lower
than a constrained system. Cdy in dof-yz is similar to dof-y.

6.1.2. 2 parameter fit and the 3 parameter fit
The results of the 2 parameter fit and the 2 parameter fit lead to different results for the cases free in heave.
This is due to the correction of (V ·ρ−mass) ·9.81. This correction only adjusts the offset. It does not adjust
the instantaneous volume and area. One could say that due to this, skews the results, as only a part of the
error is corrected. However, a least square fit to sinusoidal needs the be placed at the mean; otherwise the
results will be infeasible. As was found in the constrained cases for the 2 parameter fit. The results can be
found in Figure 6.1 and Appendix C.

Coefficients in z
Figure C.3, shows the added mass in the heave direction. Cmz has a some variation, with values ranging from
-1.9 to 7.8. The drag ranges from -11.1 to 13.4. The outliers seem to be the cases ’fixed’ and ’dof-y’, as was
found with the 2 parameter fit. The common factor between these cases is their constraint in the z direction.
One would expect the same outliers for the ’sway’ and ’dof-yz’ case, as these cases share a sway motion. Figure
6.1 shows the results of the different cases, capped to ranges similar to those found by Vugts.

Cmz and Cdz for the fixed cases are high compared to Vugts, with mass coefficients and drag coefficients
ranging from -11.1 to 11.6. Cmz < 0 is not feasible according to Sarpkaya, [38].

Comparing the Cmz results in heave for a cylinder and a rectangle to Vugts, as shown in Figure 6.1d, shows
that the numerical results are approximately a factor 1. lower. Additionally the drag coefficient in heave are
all negative. This does not seem feasible.

Cmz and Cdz for sway are undetermined, as the velocity and the acceleration are null.
The case that is free in heave, dof-z, finds low hydrodynamic coefficients, Cmz ≈ 0.1 and Cdz ≈ 0.1. Cdz

shows resemblance to the theoretical data from Greenhow, Figure 3.6b, (H/R ≈−0.8). Cmz resembles Caz of
Greenhow.

Cmz for dof-y varies between 0 and 7.8, Cdz varies between -4.4 to 13.4. The negative drag was not
expected. Both the drag and the mass coefficients are higher than those found in literature.

Cmz for dof-yz spans a small band, resembling dof-z. The coefficient drops below 0 for λshor t . Cdz is small
and similar to the drag coefficients of dof-z.

Coefficients in y
The coefficients in the y direction vary between -11 and 3. The outliers are the cases constrained in y, opposite
to what was found with Cmz .

Cmy in the fixed cases lies between -10.9 and -8.3, the drag coefficient varies between -1.5 and 2.0. The
mass coefficients are negative, which is infeasible according to Sarpkaya.

Cmy and Cdy can not be determined in heave, as the velocity and acceleration in the y direction are zero.
Looking at Figure C.8, heave, one can see that the load is only due to the water level difference.

Cmy due to sway are all negative, between -0.9 and -2.4. Cdy varies between -0.2 and 1.9
For dof-z, Cmy ≈−11, Cdy varies between -0.8 and 1.9.
Cmy for dof-y, lies between 0.2 and 0.5, which is a similar regime as Figure 3.7c. Cdy lies between 0.3 and

0.8, while both Vugts and Greenhow found Cdy ≈ 0 for a circular and a rectangular cross-section. However,
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Vugts also presents a triangle in his report, where the drag coefficients from the experiment are an order 0.2
higher than the predicted theoretical value (comparable to Figure 3.7c). While Cdy = 0.8 is probably too high,
the values do not seem infeasible.

Cmy dof-yz shows similar values to dof-y, but with ∼ 0.2 difference. As the barrier with dof-yz can both in
heave and sway with the wave, its relative acceleration is small, hence its added mass could be lower than a
constrained system. Cdy in dof-yz is similar to dof-y.

6.1.3. Relation motion direction & coefficients
From the results, it seems that a simulation of a motion in one direction can not be used to determine the
motion in the other directions.

For a system free to move in sway due to waves, the vertical wave component should be enough to
determine the coefficients; as it is in the constrained direction similar to the fixed case in waves.

6.1.4. Reliability
From the above can be concluded that in the imposed motion cases and the constrained case all lead unrealistic
results in certain ways. The hydrodynamic coefficients are linked and for example for heave, if Cmz looks
feasible, but Cdz has infeasible results; what does this say about the result as a whole? Figure C.8 and C.9,
fixed, shows a clear build up of the load. The varying water level difference, dh and water level V , have an
impact on the result. dof-z shows a difference, which was in Section 4.5 proven to be due to a difference in the
volume and the realised volume in the simulation. This discrepancy has an impact, and this could attribute
to the infeasibility of some results. As the volume and area corresponding to the load contain an error, so
does the result.

In Appendix C, Figure C.3 shows how trying to correct for the volume difference influences the results.
The high coefficients for Cmz and Cdz are closer to the expectation.
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(a) Cmz, 3 parameters (b) Cdz, 3 parameters

(c) Cmz, 3 parameters (d) Cdz, 3 parameters

(e) Cmy, 3 parameters (f) Cdy, 3 parameters

(g) Cmy, 3 parameters (h) Cdy, 3 parameters

Figure 6.1: Hydrodynamic coefficients with 3 parameter fit
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(a) Cmz, 2 parameters (b) Cdz, 2 parameters

(c) Cmz, 2 parameters (d) Cdz, 2 parameters

(e) Cmy, 2 parameters (f) Cdy, 2 parameters

(g) Cmy, 2 parameters (h) Cdy, 2 parameters

Figure 6.2: Hydrodynamic coefficients with 2 parameter fit
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(a) Cmz, 2 parameters (b) Cdz, 2 parameters

(c) Cmz, 2 parameters (d) Cdz, 2 parameters

(e) Cmy, 2 parameters (f) Cdy, 2 parameters

(g) Cmy, 2 parameters (h) Cdy, 2 parameters

Figure 6.3: Hydrodynamic coefficients with 2 parameter fit
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Validation

To demonstrate the accuracy of the model, the results of the numerical model were compared to model tests
carried out by MARIN.

7.1. Comparison of the data
In this section the data from the MARIN model and the numerical model will be presented. Figure 7.1 shows
the results from numerical model next to the experimental results from MARIN. The starting time of the
numerical results in the plot has been adjusted to match the starting time of the experiments, to simplify the
comparison.

7.1.1. MARIN current
In the MARIN test, the current velocity is gradually ramped up to v = 0.22 [m/s]. The model is free to move
and rotate. The barrier initially overshoots and oscillates and stabilises, see Figure 7.1a. The force data from
the MARIN test was originally positive, due to a different coordinate system. It has been converted to make
the comparison to the numerical model easier. The model is considered to have reached a stable condition
at t = 71.4 s. The statistics were carried out on a time window of t = [71.4 : 214.1].
For the numerical model, the domain was initialized with the current velocity. This means that the barrier is
subjected to an instantaneous load. The barrier overshoots and starts oscillating. This movement is considered
stabilised after 100 [s] in Figure 7.1a. The statics are determined on the time window t = [90 : 210]. The forces

Table 7.1: Comparison between MARIN and Fluent, model scale, for a current velocity of 0.22 m/s

v [m/s] F [N ] σF [N ] maxF [N ]
MARIN,
LM_RW_FM23908003003

0.22 -16.53 0.64 -18.64

Fluent, free in sway and
heave, dof-yz

0.22 -4.51 0.16 -4.84

Ratio Fluent/MARIN 0.27 0.26

determined with Fluent are a ≈ 4 times lower than those determined in MARIN.

7.1.2. MARIN waves
For the wave tests the statistics on the MARIN model were performed on a time window, t = [71.4 : 142.75]. For
the numerical model the statistic are performed over 6 wave periods on the time window t = [47.44 : 65.35] [s].

The forces determined with the numerical model for the wave tests correspond well to the experimental
results from MARIN. The mean force is 0.6 times lower in the numerical model. The maximum force is 1.8
times higher. As the numerical model is constrained in rotation, unlike the MARIN model, higher loads are
to be expected.
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(a) The barrier in current, v = 0.224 [m/s] (b) The barrier in regular waves, H = 0.12 [m]

Figure 7.1: The numerical model versus the model from MARIN

Table 7.2: Comparison between MARIN and Fluent, model scale, for a wave height of 0.075 m

H [m] effective
H [m]

F [N ] σF [N ] maxF [N ]

MARIN,
LM_RW_FM23908004002

0.15 0.146 0.30 16.2 25.7

Fluent, free in sway and
heave, dof-yz

0.15 0.13 -0.19 27.0 -45.8

Ratio Fluent/MARIN 0.6 1.8

7.2. Discussion
It would be expected that the loads from the loads from both simulations would be higher than those from
the experimental data, as the barrier is unable to rotate, unlike the experiments at MARIN. Perhaps the
differences are due to 3D effects. In the current case, vortices can build up from the end plates and the
bottom of the barrier, while in the wave case the build up gets disrupted by the oscillating velocity.



8
Discussion

In this a thesis project, a model has been set up to evaluate the hydrodynamic coefficients of a floating barrier
in regular waves. The barrier is composed of a cylindrical floater and a skirt. As such, it has an exotic shape
within the offshore world.

The barrier was simulated using a numerical model as wave tank. This numerical wave tank has been
preliminarily verified with the linear wave theory, in order to optimise the mesh resolution. The barrier with 2
degrees of freedom, sway and heave, has been compared to model tests performed at MARIN. Considering the
model at MARIN had 3 degrees of freedom and viscosity effects are neglected, the numerical model compares
fairly well to the wave model test.

The hydrodynamic coefficients were determined from the response of the numerical model. The barrier
loads and motions were in post-processing determined with the Morison equation by a least squares method.
The results for the hydrodynamic coefficients vary between the different cases. This can partially be attributed
to a difference between the expected and simulated volume. The coefficients derived from cases with a forced
motion are not a good match with the results from literature. The coefficients from free motion cases, dof-y,
dof-z and dof-yz results do show a good similarities with literature results. These results indicate that the
mass coefficient of the barrier in both y and z is close to zero. This is lower than the standard used in the
literature, where Cm ≈ 2. Using Cm ≈ 2 in the design would result in an overestimation of the loads. This
thesis shows that a Cm close to zero could seems the most robust estimation.

From the results, it can be concluded that the free surface has a big impact on the system and the determination
of the hydrodynamic coefficients. It also shows that relatively small accumulative errors can have a big impact
on the result. As differences in the results from to both the theory and the model experiment are quite big, the
setup as it was used here, would not be recommended for the determination of the hydrodynamic coefficients
and loads. Perhaps if these discrepancies could be resolved, this could be a reliable tool. The results from this
thesis do imply that the hydrodynamic coefficients are lower than the commonly used coefficients.

Improvements to the model could be made by decreasing or resolving the discrepancies between the
volume and area in the simulation and in the post-processing. This could also attribute to better results. Next
the velocity in the heave direction was taken at z = −H/2, relative to the free surface. Perhaps the model
could be improved by taking the velocity at a reference point closer to the bottom of the floater. Some of the
results of Cm show good comparison to Ca from literature. Even though the approach in this thesis has been
checked, perhaps a mistake has been made and all values found here as Cm are representing Ca . Lastly, the
hydrodynamic coefficients were determined for a small range of wave lengths and KC , it would be interesting
to investigate the hydrodynamic coefficients of higher and lower wave lengths.
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A
Hydrodynamic coefficients

A.1. Determining the added mass and drag using the Fourier series
Following Keulegan and Carpenter, [20], when the velocity is assumed to vary harmonically, u = um cos(θ),
where θ = 2πt

T , the force is periodic. The force can be assumed to depend on the following dimensions, F =
f (t ,T,um ,D,ρ,ν). In Equation A.1 the force is made nondimensional and the variables are grouped in the
Keulegan Carpenter number, the Reynolds number.

F

ρu2
mD

= f
(
θ,

umT

D
,

umD

ν

)
(A.1)

Expanding the F to a Fourier series,

F

ρu2
mD

= A1 sinθ+ A3 sin3θ+ A5 sin5θ+ ...

+B1 cosθ+B3 cos3θ+B5 cos5θ+ ... (A.2)

where An = 1

π

∫ 2π

0

F sinnθ

ρu2
mD

dθ, Bn = 1

π

∫ 2π

0

F cosnθ

ρu2
mD

dθ (A.3)

substituting the velocity into equation A.1

F

ρu2
mD

= π

4
·Cm · 2πD

Tum
sinθ− Cd

2
cosθ|cosθ| (A.4)

First the Bn coefficients will be determined, by expanding the |cosθ|cosθ term

|cosθ|cosθ =
2π∑

n=0

∫ 2π
0 |cosθ|cosθcosnθdθ∫ 2π

0 cos2 nθdθ
= a0 +a1 cosθ+a2 cos2θ+a3 cos3θ (A.5)

then an = 0 for n even,

an = (−1)
n+1

2
8

n(n2 −4)π
for n odd,

a1 = 8

3π
, a3 = 8

15π
, ...

rewrite A.5 to match A.2

a1 cosθ = |cosθ|cosθ−a3 cos3θ−a5 cos5θ− ...

cosθ = |cosθ|cosθ

a1
− a3 cos3θ

a1
− a5 cos5θ

a1
− ...

B ′
1 cosθ = B1

a1
|cosθ|cosθ− a3

a1
B1 cos3θ− a5

a1
B1 cos5θ− ... (A.6)
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50 A. Hydrodynamic coefficients

Comparing Equation A.6 in Equation A.2, coefficients can be rewritten to

B ′
1 =

B1

a1
, B ′

3 = B3 − a3

a1
B1, B ′

5 = B5 − a5

a1
B1 (A.7)

substituting Bi with B ′
i ,

F

ρu2
mD

= A1 sinθ+ A3 sin3θ+ ...

+B ′
1 cosθ+B ′

3 cos3θ+ ... (A.8)

To determine the coefficients, the terms in Equation A.8 are matched to those in the nondimensional Morison
equation A.4.

π

4
ρCm

2πD

Tum
= A1 + A3

sin3θ

sinθ
+ A5

sinθ

sinθ

Cm = 2

π2

umT

D

[
A1 + A3 + A5 +2(A3 + A5)cos2θ

+2A5 cos4θ+ ...
]

Cd

2
|cosθ|cosθ=B ′

1 −B ′
3

cos3θ

|cosθ|cosθ
− B ′

5 cos5θ

|cosθ|cosθ
+ ...

Cd=−2B ′
1 +

2

|cosθ|
[
2(B ′

3 −B ′
5)+4(B ′

5 −B ′
3)cos2θ

−4B ′
5 cos4θ+ ...

]
(A.9)

(A.10)

assuming Cm and Cd are constant, this results in

Cm= 2

π2

umT

D
A1 = 4

π

um

Dω
A1 = 2

π3

umT

D

∫ 2π

0

F sinnθ

ρu2
mD

dθ (A.11)

Cd=−2B ′
1 =−2

3π

8
B1 =−3

4

∫ 2π

0

F cosnθ

ρu2
mD

dθ (A.12)

This assumes the coefficient is constant through the wave cycle, or that the A1 and B1 are an average over the
cycle. If these does not lead to a good fit with the forces, one can look in to the remaining coefficients

∆R=A3 sin3θ+ A5 sin5θ+B ′
2 cos3θ+B ′

5 cos5θ (A.13)

A.1.1. Determining the added mass and damping by means of experiment
The hydrodynamic coefficients can be determined experimentally. In this case the system is subjected to a
decay test or a forced oscillation in still water. The damping is in phase with the velocity and the added mass
and the spring constant are in phase with the displacement and acceleration, see Equation A.14.

Decay test
In the decay test the system is excited, in still water. An example for heave, from [19],

(m +a) · z̈ +b · ż + c · z = 0 (A.14)

In Equation A.14, z can be substituted with z = ẑeλt

(m +a)ẑλ2eλt +bẑλeλt + cẑeλt = 0 (A.15)

(m +a)λ2 +bλ+ c = 0 (A.16)

λ= −b ±
√

b2 −4(m +a) · c

2(m +a)
(A.17)
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b2 = 4(m +a)c ; bcr i t = 2
√

(m +a) · c (A.18)

with 2ν= b
m+a , ω0 =

√
c

m+a , the non-dimensional damping ratio κ can be defined as

κ= b

2
p

(m +a) · c
= b

2(m +a) ·ω0
= ν

ω0
(A.19)

• b < 2
p

(m +a)c, the system is underdamped

• b = 2
p

(m +a)c, the system is critcally damped, b = 2(m +a)ω0

• b > 2
p

(m +a)c, the system is overdamped

for an overdamped system,
rewriting Equation A.17, this results in

λ1,2 =
−2ν±

√
4ν2 −4ω2

0

2
(A.20)

=−ν±
√
ν2 −ω2

0 (A.21)

=−ν± i
√
ω2

0 −ν2 =−ν± i
√
ω2

z (A.22)

thus
z = zae−νt

(
a1e iωz t +a2e−iωz t

)
(A.23)

or

z = zae−νt
(
cosωz t + ν

ωz
sinωz t

)
(A.24)

the decay after one period Tz can be defined as

νTz = κω0Tz = ln
z(t )

z(t +Tz )
(A.25)

if ν2 <<ω2
0, ν2 can be neglected and ωz ≈ω0

κ= 1

2π
ln

z(t )

z(t +Tz )
= b · ω0

2c
(A.26)

Forced oscillation test
In a forced oscillation test the system is subjected to a forced constant oscillation. With this method the
response to a given frequency can be determined. An example for heave will be given [19].

z(t ) = za sinωt (A.27)

The heave forces can be measured by a transducer

Fz (t ) = Fa sin
(
ωt +εFz )

)
(A.28)

(m +a) · z̈ +b · ż + c · z = Fa sin
(
ωt +εFz

)
(A.29)

the added mass, damping determined as

a =
c − Fa

za
cosεFz

ω2 −m, b =
Fa
za

sinεFz

ω
, (A.30)

with the forces and phase difference

Fa sinεFz =
2

N T

∫ N T

0
F (t ) ·cosωt ·d t

Fa cosεFz =
2

N T

∫ N T

0
F (t ) · sinωt ·d t

εFz = arctan
Fa sinεFz

Fa cosεFz





B
Post-processing

The solver does not return the submerged area and volume as an output. It does however return the amount
of submergence of the barrier surface. The algebra used in the post-processing can be found in Subsection
B.1. The algorithm used to determine the submerged volume and the submerged projected area in heave and
sway, can be found in subsection B.2.

B.1. Volume and area of a circle
The following provides more information on the algebra involved in the algorithm, [46]

D = R ·2

h = D/2− r

Vci r le =π ·D2/4

a = 2
√

h(D −h)

s = D/2 ·θ
s = D/2 ·arcsin(

a

D
)

θ = s/R = 2arccos(
r

D/2
) = 2arcsin(

a

2 ·D/2
)

r = D/2 ·cos(1/2 ·θ)

Vyel low = D2/4arccos
D/2−h

D/2
− (D/2−h) ·

√
2 ·D/2 ·h −h2

Figure B.1: Circle, [46]
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B.2. Volume and area of the barrier
The submerged volume and area can be determined with the algorithm shown below. The base variables
were defined in Table 4.3. Figure B.2 shows the notation and definitions.
To be able to differentiate between the water height on the left and right side of the barrier, the barrier is
sliced vertically in two equal parts. Thus f becomes fl and fr etcetera. The algorithm is then executed for
both the fl and fr . dh, the difference in water level on the left and the right side of the barrier is defined
as, dh = hl −hr . The values for the whole barrier are then found by averaging the individual components,
V = (Vl +Vr )/2.

sski r t = D/2 ·2arcsin(th/(D))

sbski r t
= Db/2 ·2arcsin(th/(Db))

hski r t = D/2−D/2 ·cos(1/2 ·2arcsin(
th

D
))

hbski r t
= Db/2−Db/2 ·cos(1/2 ·2arcsin(

th

Db
))

Vski r t = D2/4arccos
D/2−hski r t

D/2
− (D/2−hski r t ) ·

√
2 ·D/2 ·hski r t −hski r t

2

Vbski r t
= D2

b/4arccos
Db/2−hbski r t

Db/2
− (Db/2−hbski r t

) ·
√

2 ·Db/2 ·hbski r t
−hbski r t

2

Vtot al = D2/4 ·π−Vski r t + lsk · th +D2
b/4 ·π−Vbski r t

Atot al = D ·π− sski r t + lsk ·2− sbski r t
+Db ·π

ssubmer g ed = Atot al · f

sai r = Atot al · (1− f )

if sai r − (D ·π− sski r t ) > Db

h = sai r − (D ·π− sski r t )

2
Aheave = Db

Asur g e = Db + lsk −h −hbski r t

Vsubmer g ed = th · (lsk −h)+D2
b/4 ·π

else

s = (D ·π− sski r t )− sai r

θ = s + sski r t

D/2
h = D/2−D/2 ·cos(1/2 ·θ)

a = 2
√

h(D −h)

Vw = D2/4arccos
D/2−h

D/2
− (D/2−h) ·

√
2 ·D/2 ·h −h2

if (h == D)

Aheave = D

else

Aheave = a

end

Asur g e = Db + lsk +h −hski r t −hbski r t

Vsubmer g ed = th · lsk +D2
b/4 ·π+Vw −Vbski r t

−Vski r t

end
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Figure B.2: Overview of the different notations used in post processing





C
Hydrodynamic coefficients results

The results can be found in this appendix. The numerical results from the simulations were fitted to the
Morison equation to determine the hydrodynamic coefficients. An overview is given in Table C.1 to Table C.3
and Figure C.1 to C.3. Figure ?? to ?? show the result for the 2 parameter solution, and could provide more
insight on the dominating variables per case. The location parameters buz, buy, are displayed relative to
mean location over the displayed range. This was done to ensure that the all the results are easy to compare.

Table C.1: Hydrodynamic coefficients, 2 parameter fit

λ H motion KR Cmy Cdy KCy Cmz Cdz KCz Rmsey Rmsez

14.3 0.10 fixed 0.04 -10.9 -1.6 1.4 13.5 33.1 1.4 3.2 2.8
14.3 0.10 heave 0.04 - - - 1.0 -0.3 1.6 0.8 1.2
14.3 0.10 sway 0.04 -2.4 1.4 1.6 - - - 1.0 6.7
14.3 0.10 dof-z 0.04 -11.3 -0.8 1.4 0.3 0.2 1.4 1.2 2.4
14.3 0.10 dof-y 0.04 0.5 0.8 1.4 8.3 21.0 1.4 0.6 1.8
14.3 0.10 dof-yz 0.04 0.2 0.8 1.4 -0.1 0.2 1.4 0.6 2.5
17.3 0.12 fixed 0.03 -9.8 0.8 1.8 1.9 -5.3 1.8 6.1 3.8
17.3 0.12 heave 0.03 - - - 0.9 -0.3 1.9 0.5 1.2
17.3 0.12 sway 0.03 -1.4 -0.2 1.9 - - - 2.1 6.8
17.3 0.12 dof-z 0.03 -11.1 1.9 1.9 0.4 0.1 1.9 1.4 2.4
17.3 0.12 dof-y 0.03 0.3 0.4 1.9 4.5 3.6 1.9 0.1 3.5
17.3 0.12 dof-yz 0.03 0.0 0.5 1.9 0.5 0.1 1.9 0.1 2.5
17.3 0.08 fixed 0.03 -9.8 0.1 1.3 16.1 37.2 1.3 1.5 2.2
17.3 0.08 heave 0.03 - - - 0.9 -0.2 1.3 0.6 1.3
17.3 0.08 sway 0.03 -0.9 1.4 1.3 - - - 0.8 4.6
17.3 0.08 dof-z 0.03 -10.4 0.6 1.3 0.4 0.1 1.3 0.5 2.4
17.3 0.08 dof-y 0.03 0.3 0.2 1.3 13.7 32.0 1.3 0.6 2.2
17.3 0.08 dof-yz 0.03 0.1 0.1 1.3 1.0 0.0 1.3 0.6 2.5
17.3 0.10 fixed 0.03 -9.9 0.1 1.5 12.1 23.7 1.5 2.1 2.9
17.3 0.10 heave 0.03 - - - 0.8 -0.2 1.6 0.4 1.1
17.3 0.10 sway 0.03 -1.3 2.0 1.6 - - - 1.3 5.6
17.3 0.10 dof-z 0.03 -10.7 1.4 1.5 0.6 0.1 1.5 0.8 2.4
17.3 0.10 dof-y 0.03 0.3 0.6 1.5 11.1 22.8 1.5 0.6 2.6
17.3 0.10 dof-yz 0.03 0.1 0.6 1.5 0.3 0.1 1.5 0.6 2.5
20.7 0.10 fixed 0.02 -8.3 2.0 1.7 13.0 20.2 1.7 2.4 2.8
20.7 0.10 heave 0.02 - - - 0.8 -0.1 1.6 0.6 1.2
20.7 0.10 sway 0.02 -1.2 2.6 1.6 - - - 0.7 4.7
20.7 0.10 dof-z 0.02 -10.5 0.7 1.7 0.4 0.1 1.7 1.1 2.4
20.7 0.10 dof-y 0.02 0.2 0.3 1.7 27.7 52.6 1.7 0.6 5.7
20.7 0.10 dof-yz 0.02 -0.1 0.3 1.7 0.8 0.1 1.7 0.6 2.5
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Table C.2: Hydrodynamic coefficients, 2 parameter fit with correction

λ H motion KR Cmy Cdy KCy Cmz Cdz KCz Rmsey Rmsez (V ρ−m) · g
14.3 0.10 fixed 0.04 -10.9 -1.6 1.4 13.5 33.1 1.4 3.2 2.8 -
14.3 0.10 heave 0.04 - - - 1.0 -0.3 1.6 0.8 1.2 -
14.3 0.10 sway 0.04 -2.4 1.4 1.6 - - - 1.0 6.7 -
14.3 0.10 dof-z 0.04 -11.3 -0.8 1.4 0.0 0.1 1.4 1.2 0.1 2.4
14.3 0.10 dof-y 0.04 0.5 0.8 1.4 8.3 21.0 1.4 0.6 1.8 -
14.3 0.10 dof-yz 0.04 0.2 0.8 1.4 -0.2 0.1 1.4 0.6 0.0 2.5
17.3 0.12 fixed 0.03 -9.8 0.8 1.8 1.9 -5.3 1.8 6.1 3.8 -
17.3 0.12 heave 0.03 - - - 0.9 -0.3 1.9 0.5 1.2 -
17.3 0.12 sway 0.03 -1.4 -0.2 1.9 - - - 2.1 6.8 -
17.3 0.12 dof-z 0.03 -11.1 1.9 1.9 0.2 0.1 1.9 1.4 0.1 2.4
17.3 0.12 dof-y 0.03 0.3 0.4 1.9 4.5 3.6 1.9 0.1 3.5 -
17.3 0.12 dof-yz 0.03 0.0 0.5 1.9 0.1 0.0 1.9 0.1 0.1 2.5
17.3 0.08 fixed 0.03 -9.8 0.1 1.3 16.1 37.2 1.3 1.5 2.2 -
17.3 0.08 heave 0.03 - - - 0.9 -0.2 1.3 0.6 1.3 -
17.3 0.08 sway 0.03 -0.9 1.4 1.3 - - - 0.8 4.6 -
17.3 0.08 dof-z 0.03 -10.4 0.6 1.3 0.1 0.1 1.3 0.5 0.0 2.4
17.3 0.08 dof-y 0.03 0.3 0.2 1.3 13.7 32.0 1.3 0.6 2.2 -
17.3 0.08 dof-yz 0.03 0.1 0.1 1.3 0.1 0.1 1.3 0.6 0.0 2.5
17.3 0.10 fixed 0.03 -9.9 0.1 1.5 12.1 23.7 1.5 2.1 2.9 -
17.3 0.10 heave 0.03 - - - 0.8 -0.2 1.6 0.4 1.1 -
17.3 0.10 sway 0.03 -1.3 2.0 1.6 - - - 1.3 5.6 -
17.3 0.10 dof-z 0.03 -10.7 1.4 1.5 0.1 0.1 1.5 0.8 0.0 2.4
17.3 0.10 dof-y 0.03 0.3 0.6 1.5 11.1 22.8 1.5 0.6 2.6 -
17.3 0.10 dof-yz 0.03 0.1 0.6 1.5 0.1 0.0 1.5 0.6 0.0 2.5
20.7 0.10 fixed 0.02 -8.3 2.0 1.7 13.0 20.2 1.7 2.4 2.8 -
20.7 0.10 heave 0.02 - - - 0.8 -0.1 1.6 0.6 1.2 -
20.7 0.10 sway 0.02 -1.2 2.6 1.6 - - - 0.7 4.7 -
20.7 0.10 dof-z 0.02 -10.5 0.7 1.7 0.1 0.1 1.7 1.1 0.0 2.4
20.7 0.10 dof-y 0.02 0.2 0.3 1.7 27.7 52.6 1.7 0.6 5.7 -
20.7 0.10 dof-yz 0.02 -0.1 0.3 1.7 0.2 0.0 1.7 0.6 0.1 2.5
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Table C.3: Hydrodynamic coefficients, 3 parameter fit

λ H motion KR Cmy Cdy KCy Cmz Cdz KCz Rmsey Rmsez f3y f3z

14.3 0.10 fixed 0.04 -10.9 -1.5 1.4 5.6 11.6 1.4 3.2 2.1 -0.5 -2.6
14.3 0.10 heave 0.04 - - - 0.8 -0.2 1.6 0.6 0.7 - -1.0
14.3 0.10 sway 0.04 -2.4 1.4 1.6 - - - 1.0 2.9 0.2
14.3 0.10 dof-z 0.04 -11.3 -0.8 1.4 0.0 0.1 1.4 1.2 0.1 0.2 -2.4
14.3 0.10 dof-y 0.04 0.5 0.6 1.4 3.5 8.0 1.4 0.1 1.4 0.6 -1.6
14.3 0.10 dof-yz 0.04 0.2 0.7 1.4 -0.2 0.1 1.4 0.1 0.0 0.6 -2.5
17.3 0.12 fixed 0.03 -9.8 0.8 1.8 -1.9 -11.1 1.8 6.1 2.2 0.0 -3.7
17.3 0.12 heave 0.03 - - - 0.8 -0.3 1.9 0.4 1.0 - -0.6
17.3 0.12 sway 0.03 -1.5 -0.2 1.9 - - - 1.4 2.9 1.6
17.3 0.12 dof-z 0.03 -11.1 1.9 1.9 0.2 0.1 1.9 1.4 0.1 0.2 -2.4
17.3 0.12 dof-y 0.03 0.3 0.4 1.9 0.0 -4.4 1.9 0.1 2.2 0.0 -3.2
17.3 0.12 dof-yz 0.03 0.0 0.5 1.9 0.1 0.0 1.9 0.1 0.1 0.0 -2.5
17.3 0.08 fixed 0.03 -9.8 0.1 1.3 3.7 5.0 1.3 1.5 1.0 0.2 -2.9
17.3 0.08 heave 0.03 - - - 0.6 -0.1 1.3 0.4 0.4 - -1.4
17.3 0.08 sway 0.03 -0.9 1.4 1.3 - - - 0.4 1.5 0.7
17.3 0.08 dof-z 0.03 -10.5 0.6 1.3 0.1 0.1 1.3 0.5 0.0 -0.2 -2.4
17.3 0.08 dof-y 0.03 0.4 0.1 1.3 1.4 0.1 1.3 0.0 1.0 0.6 -2.9
17.3 0.08 dof-yz 0.03 0.1 0.0 1.3 0.1 0.1 1.3 0.0 0.0 0.6 -2.5
17.3 0.10 fixed 0.03 -9.9 0.1 1.5 1.9 -0.9 1.5 2.1 1.9 0.2 -2.9
17.3 0.10 heave 0.03 - - - 0.7 -0.2 1.6 0.3 0.6 - -0.9
17.3 0.10 sway 0.03 -1.3 2.0 1.6 - - - 1.2 2.2 -0.4
17.3 0.10 dof-z 0.03 -10.7 1.4 1.5 0.1 0.1 1.5 0.8 0.0 0.1 -2.4
17.3 0.10 dof-y 0.03 0.3 0.5 1.5 2.4 1.9 1.5 0.1 1.7 0.6 -2.6
17.3 0.10 dof-yz 0.03 0.1 0.5 1.5 0.1 0.0 1.5 0.1 0.0 0.6 -2.5
20.7 0.10 fixed 0.02 -8.3 2.0 1.7 3.4 1.8 1.7 2.4 1.7 0.4 -2.7
20.7 0.10 heave 0.02 - - - 0.5 -0.2 1.6 0.3 0.5 - -1.2
20.7 0.10 sway 0.02 -1.2 2.6 1.6 - - - 0.5 1.6 0.5
20.7 0.10 dof-z 0.02 -10.5 0.7 1.7 0.1 0.1 1.7 0.9 0.0 -0.6 -2.4
20.7 0.10 dof-y 0.02 0.2 0.3 1.7 7.8 13.4 1.7 0.1 3.9 0.6 -5.2
20.7 0.10 dof-yz 0.02 -0.1 0.3 1.7 0.2 0.0 1.7 0.1 0.1 0.6 -2.5
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(a) Cmz, 2 parameters (b) Cdz, 2 parameters

(c) Cmz, 2 parameters (d) Cdz, 2 parameters

(e) Cmy, 2 parameters (f) Cdy, 2 parameters

(g) Cmy, 2 parameters (h) Cdy, 2 parameters

Figure C.1: Hydrodynamic coefficients with 2 parameter fit
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(a) Cmz, 2 parameters
& correction

(b) Cdz, 2 parameters
& correction

(c) Cmz, 2 parameters
& correction

(d) Cdz, 2 parameters
& correction

Figure C.2: Hydrodynamic coefficients with 2 parameter fit with correction for z
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(a) Cmz, 3 parameters (b) Cdz, 3 parameters

(c) Cmy, 3 parameters (d) Cdy, 3 parameters

(e) Cmz, 3 parameters (f) Cdz, 3 parameters

(g) Cmy, 3 parameters (h) Cdy, 3 parameters

Figure C.3: Hydrodynamic coefficients with 3 parameter fit
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Figure C.4: Fit of the hydrodynamic coefficients in the y direction, λ= 14.329, with 3 parameters
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Figure C.5: Fit of the hydrodynamic coefficients in the z direction, λ= 14.329, with 3 parameters
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Figure C.6: Fit of the hydrodynamic coefficients in the y direction, λ= 17.27, H = 0.084, with 3 parameters
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Figure C.7: Fit of the hydrodynamic coefficients in the z direction, λ= 17.27, H = 0.084, with 3 parameters
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Figure C.8: Fit of the hydrodynamic coefficients in the y direction, λ= 17.27, H = 0.1, with 3 parameters
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Figure C.9: Fit of the hydrodynamic coefficients in the z direction, λ= 17.27, H = 0.1, with 3 parameters
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Figure C.10: Fit of the hydrodynamic coefficients in the y direction,λ= 17.27, H = 0.12, with 3 parameters
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Figure C.11: Fit of the hydrodynamic coefficients in the z direction, λ= 17.27, H = 0.12, with 3 parameters
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Figure C.12: Fit of the hydrodynamic coefficients in the y direction, λ= 20.724, with 3 parameters
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Figure C.13: Fit of the hydrodynamic coefficients in the z direction, λ= 20.724, with 3 parameters



D
Details

D.1. Mesh around the barrier
Figure D.1 shows a close up of the mesh around the barrier. The mesh resolution around the barrier was kept
in line with the mesh resolution in the free surface.

Figure D.1: Close up of the domain around the barrier
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D.2. Fluent settings
D.2.1. Stabilisation
Contrary to what might be expected, the simulation seems more unstable with low amplitude waves. Instabilities
form in the region closest to the ballast. Similar instabilities were seen in the coupled CFD-FEM simulations.
The cause of these instabilities is unknown. With the following combination of dynamic mesh settings, all
cases stabilise fairly well. Higher stabilisation factors will lead to slower convergence, lower stabilisation
factors lead to slower convergence as well.
The relaxation fo the displacements is done by Fluent with the following equation

Table D.1: Moving dynamic mesh settings in fluent

parameter value
Stabilisation, coefficient based 0.55
Motion relaxation factor 0.9

xk =ω(xcomputed ,k + (1−ω)xk−1)

here xk represents the node position at iteration k, xcomputed ,k represents the computed node position based
on the flow field and ω represents the relaxation factor [12].

D.2.2. UDF
The forced oscillation was defined with a user defined function, or UDF. An example pf a UDF for a heave
motion is given here. Please note that Fluent in 2D uses a different coordinate system from this thesis, it uses
the y positive upwards for heave, from which follows x for sway, and z out of plane. The static real variables
are replaced with appropriate values when preparing a simulation.

code D.1: UDF for an imposed heave motion

#include "udf.h"

#include "dynamesh_tools.h"

#include "math.h"

static real za = 0.05; /*heave*/

static real xa = 0.05; /*sway*/

static real omegas = 2.2; /* rad/s forcing of the system, wave freq*/

static real t0 = 0.0;

static real unk = 0.0;

static real Ux = 0.224;

DEFINE_CG_MOTION(heave,dt,vel,omega,time,dtime)

{

NV_S(vel, =, 0.0);

NV_S(omega, =, 0.0);

vel[0] = 0.0;

vel[1] = za * omegas * cos(omegas*(time-t0)+0.5*acos(-1.0)); /*velocity in

heave*/,→
omega[2] = 0.0;/* angular velocity =0.0*/

if ( ( N_ITER % 15 ) == 1 )

{

Message("\n time = %f, y_vel = %f, wavefreq= %f\n", time, vel[1], omegas); }

FILE *sp;

sp = fopen ("sdofmotion.txt", "a"); /* Open a file to add data to

the end */,→
if (CURRENT_TIME == CURRENT_TIMESTEP)

{

fprintf (sp, "\ncurrent_time, dt, cgx, cgy, theta, velx, vely,

omega, force_x, \n"); /* Format output data file */,→
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}

fprintf (sp, "%e %e ", CURRENT_TIME, CURRENT_TIMESTEP); /* Current time in */

fprintf (sp, "%e %e ", unk , unk ); /* center of gravity position */

fprintf (sp, "%e ", unk ); /* Angular position, degrees */

fprintf (sp, "%e %e ", vel[0] , vel[1] ); /* velocity at the center of gravity, m /

s */,→
fprintf (sp, "%e ", omega[2] ); /* Angular velocity, rad / s */

fprintf (sp, "%e \n ", unk );

fclose (sp); /* Close the file */

}

For the cases where the barrier is free to move, another UDF was used to specify the properties. An example
for a UDF for case dof-yz is shown here.

code D.2: UDF for a barrier free to move, dof-yz

#include "udf.h"

#include "dynamesh_tools.h"

#include "math.h"

DEFINE_SDOF_PROPERTIES(sdofs, prop, dt, time, dtime)

{

real y0,k,y,x0,x,fx,thx,rad,offset;

rad=radi;

offset=xoffset;

k = kspring; /* 0.04;*/ /*n/m*/

y0 = y0rep;

x0 = x0rep;

y = DT_CG(dt)[1];

x = DT_CG(dt)[0];

thx= sin(DT_THETA(dt)[2])*0.18;

fx=- k * (x - x0 - thx -offset);

prop[SDOF_MASS] = mass0; /* mass */

prop[SDOF_IZZ] = Izz0; /* Inertia*/

prop[SDOF_ZERO_ROT_Z] = TRUE;/* Constraining the rotation around z, pitch

*/,→
prop[SDOF_ZERO_TRANS_X] = FALSE; /* Allowing the X-translation, sway */

prop[SDOF_ZERO_TRANS_Y] = False; /* Allowing the y-translation, heave */

prop[SDOF_LOAD_F_X] = fx;

FILE *sp;

sp = fopen ("sdofmotion.txt", "a"); /* Open a file to add data to the end

*/,→
if (CURRENT_TIME == t0)

{ /* Format output data file */

fprintf (sp, "\ncurrent_time, dt, cgx, cgy, theta, velx, vely,

omega, force_x, \n");,→
}

fprintf (sp, "%e %e ", CURRENT_TIME, CURRENT_TIMESTEP); /* Current time in */

fprintf (sp, "%e %e ", DT_CG(dt)[0], DT_CG(dt)[1] ); /* center of gravity position

*/,→
fprintf (sp, "%e ", DT_THETA(dt)[2] ); /* Angular position, degrees */

fprintf (sp, "%e %e ", DT_VEL_CG(dt)[0], DT_VEL_CG(dt)[1] ); /* Speed the center of

gravity, m / s */,→
fprintf (sp, "%e ", DT_OMEGA_CG(dt)[2] ); /* Angular velocity, rad / s */

fprintf (sp, "%e \n ", fx );
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fclose (sp); /* Closing the file */

}

code D.3: UDF for a ramped velocity inlet

#include "udf.h"

#include "dynamesh_tools.h"

#include "math.h"

static real Ux = 0.224;

DEFINE_PROFILE(rampt,t,i) /*ramp the current */

{

real x[ND_ND]; /* this will hold the position vector */

face_t f;

real AAA;

real curr_ts;

curr_ts = N_TIME;

real a;

a = CURRENT_TIMESTEP;

Message("Current timestepsize: %g\n", a);

real time= RP_Get_Real("flow-time");

Message("Current time: %g\n", curr_ts);

AAA= tanh(time*2);

Message("tanh value AAA: %g\n", AAA);

Message("time time: %g\n", time);

begin_f_loop(f, t)

{F_CENTROID(x,f,t);

F_PROFILE(f,t,i) = AAA*Ux;

}

end_f_loop(f,t)

}
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D.3. MARIN model
Table D.2 shows the dimensions of the barrier and how it was scaled. The dimensions vary between the
sources, were not documented or are missing. The scale model was measured and weighed by an intern of
The Ocean Cleanup, [32]. The values measured do not correspond to the values given for full scale by [28]
and [3], differences in the order 10 to 20 % were found.
The values delivered by Marin [28] and measured by Mettler, [32], were considered most accurate. The
dimensions chosen for use in the numerical model can be found in Table 4.3.

Table D.2: Marin full scale and model scale [28], [32], [3], [8]

Marin full
scale

Unit Marin model scale Unit

Scale 1 [m] 5 [m]
Barrier width 13.1 [28] [m] 2.62 [m]
Spring stiffness per spring 4.74·103

[28]
[N /m] 189.6 [N /m]

Spring stiffness 4 springs 18.96·103 [N /m] 758.4 [N /m]
Spring stiffness of 1 meter
barrier

1447 [N /m] 289.46 [N /m]

Boom diameter 1 [m] 0.2 [m]
Skirt length 1.5 [3] [m] 0.275[8] , 0.276 [32] [m]
Skirt thickness [m] 0.0055 [32] [m]
Ballast diameter [m] 0.025 [m]
Moment of inertia, Ixx per
meter barrier

[kg /m2] 0.17 [32] [kg /m2]

Mass 1860 [28] [kg ] 5.58 [32] [kg ]





E
Balance Equations

The system is governed by the following three physical principles,

• Mass is conserved

• Force equals mass times acceleration

• Energy is conserved

E.1. Reference frame
In general, a system is approached by either applying the balance equations on a finite control volume fixed
in space with the elements moving through it, which is the Eulerian representation of the flow field, or by
solving the balance equations on a finite control volume moving with the elements, which is the Lagrangian
representation. The Eulerian and Lagrangian presentation of a flow field are visualised in Figure E.1, [2]:

(a) Euler (b) Lagrange

Figure E.1: Control volume specification [2]

E.2. Governing equations
E.2.1. Continuity Equation
The continuity equation, Equation E.1, states that the mass flow out of a control volume through the surface
S is equal to the decrease of the mass inside the control volume V. In the following equation, ρ represents the
density and the velocity vector is denoted by V :

∂

∂t

Õ
V

ρdV+
Ó
S

ρV ·dS = 0 (E.1)
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By using the divergence theorem,
Ò
S

A ·dS =Ô
V

(∇·A)dV, this can be rewritten to a partial differential equation:

∂ρ

∂t
+∇· (ρV) = 0 (E.2)

For incompressible flows this reduces to

∇· (ρV) = 0 (E.3)

E.2.2. Momentum Equation
The momentum equation states that the time rate change of momentum is equal to the force, thus

d

d t
(mV) = F (E.4)

In Equation E.5, the left hand side contains the time rate change of momentum and the right hand side
contains the surface forces, the body forces and the viscous force.

∂

∂t

Õ
V

ρVdV+
Ó
S

(ρV ·dS)V =−
Ó
S

pdS+
Õ
V

ρfdV+Fvi scous (E.5)

Using the divergence theorem, this results in

∂(ρui )

∂t
+∇· (ρui V) =− ∂p

∂xi
−ρ fi +Fi vi scous (E.6)

Equation E.6 is also denoted as the Navier-Stokes Equation. If the flow is assumed to be inviscid, the viscous
force Fvi scous = 0 drops out of the equation and results in the Euler equation.
In Equation E.6, Fx vi scous can be written as a summation of the shear stresses

Fx vi scous = ∂txx

∂x
+ ∂ty x

∂y
+ ∂tzx

∂z
(E.7)

The shear stresses are defined with the following equations, here λ=− 2
3µ ,

τy x = τx y =µ
(∂v

∂x
+ ∂u

∂y

)
τxx =λ(∇·V)+2µ

∂u

∂x

τy z = τz y =µ
(∂w

∂y
+ ∂u

∂z

)
τy y =λ(∇·V)+2µ

∂v

∂y
(E.8)

τzx = τxz =µ
(∂u

∂z
+ ∂w

∂x

)
τzz =λ(∇·V)+2µ

∂w

∂z

If starting with Equation E.6 the terms are expanded and compressibility is assumed,

u∇· (ρV)+ρ ∂u

∂t
+ (ρV) ·∇u =−∂p

∂x
−ρ fx +Fx vi scous (E.9)

The first two terms of Equation E.9 can be set to zero with the continuity equation, resulting in

ρ
∂u

∂t
+ρV ·∇u =−∂p

∂x
−ρ fx +Fx vi scous (E.10)

Thus, x component of the Navier-Stokes equation, neglecting the body forces and implementing the stresses,

ρ
∂u

∂t
+ρu

∂u

∂x
+ρv

∂u

∂y
+ρw

∂u

∂z
=−∂p

∂x
+ ∂

∂x

(
λ∇·V+2µ

∂d

∂x

)
(E.11)

+ ∂

∂y

[
µ
(∂v

∂x
+ ∂u

∂y

)]+ ∂

∂z

[
µ
(∂u

∂z
+ ∂w

∂x

)]
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E.2.3. Energy Equation
The energy equation is stated on the third physical principle, energy can not be created or destroyed, it can
only change form. The first law of thermodynamics states

de = ∂q +∂w (E.12)

In Equation E.12, de denotes the change in internal energy per unit mass, ∂q the amount of heat added to
the control volume, ∂w represents the work done on the control volume.
This could also be formulated as th rate of change of energy of the control volume is equal to the rate of heat
added to the control volume, plus the rate of work done on the control volume. In a similar fashion to the
balance and momentum equation:

∂

∂t

Õ
V

ρ(e + V 2

2
)dV+

Ó
S

ρ(e + V 2

2
)V ·dS = (E.13)

Õ
V

q̇ρdV+Q̇vi scous −
Ó
S

pV ·dS+
Õ
V

ρ(f ·V)dV+Ẇvi scous

which can be simplified to

∂

∂t

[
ρ
(
e + V 2

e

)]
+∇·

[
ρ
(
e + V 2

2
V
)]

= ρq̇ +Q̇ ′
vi scous −∇· (pV)+ρ(f ·V)+Ẇ ′

vi scous (E.14)

E.3. Dimensionless numbers
With dimensionless values parameters with different scales can be compared.

E.3.1. Reynolds number
The flow displays similar behaviour for similar ratios of inertial to viscous forces, also known as the Reynolds
number, Re.

Re = ρU L

µ
(E.15)

E.3.2. Froude number
The Froude number, F r is defined as the ratio between the inertia forces and the gravitational forces.

F r = U√
g L

(E.16)

E.3.3. Keulegan Carpenter number
The Keulegan Carpenter number is defined as the ratio between drag forces and inertia and is sometimes
called the period parameter. In this relation the velocity amplitude, Um is used.

KC = UmT

D
(E.17)

E.3.4. Strouhal number
The Strouhal number is defined as

St = D

fstU
(E.18)

Where fst represents the vortex shedding frequency.



E.3.5. Courant Friedrichs Lewy number
The Courant Friedrichs Lewy condition states that for the simulation to converge, the velocity of an element
or wave moving through a cell should be smaller than the velocity of the simulation, which is equalt to the
cell size divided by the time step.

C = u∆t

∆x
≤Cmax (E.19)

A multidimensional C F L number can be defined as

CFL = ux∆t

∆x
+ uy∆t

∆y
≤Cmax (E.20)

E.3.6. Coriolis force and the Rossby number
The Rossby numbers is a ratio of the convection to the Coriolis force, Equation E.21. When the Rossby number
is smaller than 1, the Coriolis force is dominant.

Ro = U

f L
(E.21)

In this equation f describes the Coriolis force with f = 2Ωsi nφ. Here Ω is the angular velocity of the earth,
φ the latitude, U is the velocity and L is the length of the phenomenon. For a latitude of φ = 22◦, for a wave
length of L = 101m and a this results in a Ro = 72, thus the Coriolis force has no influence.
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