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Abstract
Quasi-flat-bands emerging in buckled monolayer graphene superlattices have been recently shown
to realize correlated states analogous to those observed in twisted graphene multilayers. Here, we
demonstrate the emergence of valley topology driven by competing electronic correlations in
buckled graphene superlattices. We show, both by means of atomistic models and a low-energy
description, that the existence of long-range electronic correlations leads to a competition between
antiferromagnetic and charge density wave instabilities, that can be controlled by means of
screening engineering. Interestingly, we find that the emergent charge density wave has a
topologically non-trivial electronic structure, leading to a coexistent quantum valley Hall
insulating state. In a similar fashion, the antiferromagnetic phase realizes a spin-polarized
quantum valley-Hall insulating state. Our results put forward buckled graphene superlattices as a
new platform to realize interaction-induced topological matter.

1. Introduction

Mesoscopic systems provide a highly powerful plat-
form to design quantum matter [1–9], with the
paradigmatic example of artificial topological super-
conductivity [10–19]. Moire two-dimensional mater-
ials have risen as a tunable platform to engineer states
of matter [2], ultimately allowing to explore a variety
of controllable correlated states [20–23]. This emer-
gence of tunable correlations stems from the quench
of kinetic energy in emergent quasi-flat-bands, con-
trollable by twist engineering [24–26]. A variety of
twisted van der Waals materials have been demon-
strated in this direction, including bilayers, trilayers
and tetralayers [27–32].

Beyond the wide family of twisted moire mul-
tilayer heterostructures [2], monolayer graphene has
also been experimentally shown to realize moire-
induced correlation physics in the single layer limit
[33]. The field of straintronics, i.e. the control
of electronic properties of materials with strain
[34], has shown different methods to create two-
dimensional periodically-strained superlattices with

quasi-flat-bands, from substrate engineering [35]
to inducing buckling transitions during fabrication
[33]. From a low-energy perspective, inhomogeneous
strain fields act as valley-dependent pseudo-magnetic
fields, leading to the emergence of pseudo-Landau
levels [36–39].

There are several ways to create inhomogen-
eous strain fields in graphene with wrinkles, ripples,
foldings, and bucklings [40–42]. In this work, we
focus in the latter, motivated by a recent experi-
ment [33]. We highlight that this buckling have large
periodicity, in contrast to the atomic-scale buck-
ling known to occur in pristine two-dimensional
materials such as silicene, germanene, and stanene
[43–49]. From a critical value of in-plane strain,
the elastic energy is spontaneously reduced with
out-of-plane distortions [50–52], as depicted in
figure 1(a). The electronic structure reconstruction
due to the strain field leads to the formation of
nearly flat bands [33, 53]. Moreover, the bandwidth
suppression enhances the interaction effects and
leads to electrically-controllable correlated phases
[33, 54].
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Figure 1. (a) Scheme of the buckled graphene superlattice
studied. The B-field is the same as in equation (6). (b) Local
density of states from full-lattice calculations. It is possible
to note the emerging honeycomb structure.
Valley-projected band structures from a full-lattice
simulation of a buckled graphene superlattice (c) in the
absence of strain and (d) in the buckled state. The
horizontal axis show the high-symmetry points in the
mini-Brilouin zone defined by the superlattice. The dashed
grey regions indicate the active bands for which we derive
the effective model.

Here we show that buckled graphene super-
lattices yield correlation-induced topological states,
stemming from the combination of pseudo-Landau
levels and non-local electronic interactions [33, 54].
In particular, we show that the low energy states
generated by the buckling (figure 1(b)) shows an
emergent low-energy honeycomb structure. Also,
similarly to free-standing graphene, the bandstruc-
ture (figure 1(d)) has Dirac cones at the corners of the
mini-Brillouin zone [54]. We derive the low-energy
model describing the bands closer to the Fermi energy
(section 2), to explore the impact of electron–electron
interactions, and show the existence of charge density
wave and antiferromagnetic ground states (section 3).
Interestingly, these phases driven by electronic inter-
actions show finite valley Chern numbers, and asso-
ciated topological surface states. We finally demon-
strate the robustness of our model by comparing it
with full atomistic selfconsistent calculations, show-
ing analogous phenomenology as the one predicted
by the effective model. Our results demonstrate that
buckled graphene monolayer can sustain a rich fam-
ily of correlated topological states, realizing analogous
physics to twisted graphene multilayers in the single
monolayer limit.

2. The system

We first review the effective model for the buckled
graphene superlattice, depicted in figure 1(a). [33, 54]
We take the graphene tight-binding Hamiltonian:

H=−t
∑
⟨i,j⟩

∑
s

ψ†
isψjs, (1)

where t is the nearest-neighbor hopping constant, i
and j denote different sites, s denotes spin, ⟨i, j⟩ indic-
ates the summation over nearest-neighbors, ψis is the
annihilation and ψ†

is is the creation operator in posi-
tion i with spin s.

Under in-plane strain, the system undergoes a
buckling transition, modifying the hopping energies
with the additional term [54]:

δtn =−
√
3evFLM
4 π

sin(bn · r), (2)

where LM is the superlattice size, and vF is the Fermi
velocity of pristine graphene. The three vectors:

b1 =
2π

LM

(
− 1√

3
,1,0

)
, (3)

b2 =
2π

LM

(
2√
3
,0,0

)
, (4)

b3 =
2π

LM

(
− 1√

3
,−1,0

)
, (5)

point along the same direction of each hopping
vector.

In the k · p approximation, the Hamiltonian with
hoppings given by equation (2) corresponds to a
pseudo-magnetic field with the form [33]:

B(r) = Beff

3∑
n=1

cos(bn · r), (6)

where Beff is estimated from the Landau level spa-
cing from the experiment [33]. Under zero strain, the
electronic structure is folded in the mini-Brillouin
zone defined by the bn vectors (see figure 1(c)). As
the strain takes a finite value, avoided crossings are
formed, creating mini-bands (see 1(d)) which we
interpret as pseudo-Landau bands [33, 54]. Hence,
quasiparticles feel a bandwidth quench.

We perform the valley projection in full-lattice
calculations (figures 1(d) and 6) computing the
expectation value of the modified Haldane coupling,
⟨V⟩= ⟨Ψ|V|Ψ⟩, with [55–57]:

V=
i

3
√
3

∑
⟨⟨i,j⟩⟩

ηij(σz)ijψ
†
i ψj, (7)

where ηij =±1 for clockwise/anticlockwise hopping,
⟨⟨i, j⟩⟩ denotes a sum over second-neighbors, and σz
acts on sublattice degrees of freedom.

From the local density of states plot in figure 2(b),
obtained with full-lattice tight-binding calculations
[54], it is possible to infer that the system has an
emerging honeycomb superlattice. The Wannier sites
are localized at the minima and maxima of B(r)
since the characteristic length

√
ℏ/eB(r) is smaller

2
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Figure 2. (a) Schematic representation of the effective
model in equation (8). (b) Valley-projected bandstructure
of the effective model described by the Hamiltonian (8)
withm=M= t.

near the extrema. The two extrema (minimum and
maximum) correspond to the two sublattices of this
effective honeycomb structure. To reduce the com-
putational cost of our numerical calculations, we
now focus on the low-energy model of these Wan-
nier states. We focus on the active bands closer to
the Fermi energy, highlighted in figure 2(b). Namely,
we derive an effective model for the bands within
the [−0.025t, 0.025t] energy window in figure 1(d).
This approach is analogous to low-energy models of
twisted-bilayer graphene.

From both the space-dependent hopping
constants (equation (2)) and density of states
(figure 1(b)), we conclude that the system is invari-
ant under C3-rotations. Moreover, the bandstructure
in figure 1(d) suggest that valley number is a con-
served quantity. Finally, in the absence of electronic
interactions, the system has time-reversal symmetry.
With the current constraints, we find that the fam-
ily of honeycomb Hamiltonians restricted to these
symmetries is [58]:

H= −µ
∑
i

∑
s,τ

c†isτ cisτ +m
∑
i

∑
s,τ

(σz)iic
†
isτ cisτ

− t̃
∑
s,τ

∑
⟨i,j⟩

c†isτ cjsτ + iλ
∑
s,τ

∑
⟨⟨i,j⟩⟩

(τz)κκηijc
†
isτ cjsτ (8)

where c†isτ are creation and cisτ annihilation operat-
ors at the site i, sublattice σ, valley τ , and spin s. The
Pauli matrices σi and τ i act on sublattice and val-
ley degrees of freedom. The onsite energy and the
nearest-neighbor hopping constants are denoted by
µ̃ and t̃ to distinguish to the atomistic model. There
is also an onsite energy imbalance between both sub-
lattices m, and a valley-dependent second-neighbors
hopping λ. An scheme of this model is shown in
figure 2(a). Note that, since the Brillouin zone of
this system corresponds to the mini-Brillouin zone
from the atomisticmodel, there is an extramini-valley
degree of freedom corresponding to the two nonequi-
valent points κ and κ ′ in effective model Brillouin
zone.

It is visible that the Hamiltonian of equation
(8) is equivalent to the Kane–Mele (KM) model: it
consists on the tight-binding model of a honeycomb

structure with a sublattice imbalance and a second-
neighbors hopping that depends on the valley isospin.
Themapping between bothmodels is made by identi-
fying the valley isospin in the buckled superlattice
to spin in KM model (spinKM → valleybuckled), as
well as identifying the mini-valleys κ and κ ′ in the
buckled system to the valleys K and K ′ in KM model
(valleyKM → mini-valleybuckled) [59, 60]. As shown
in figure 2(b), the energy dispersion is similar to the
bandstructure of the full system (figure 1(d)) when
m= 3

√
3 λ =: M. Therefore, the non-interacting

strained system (without symmetry breakings) is
enforced to haveM=m= t̃ due to its gapless nature.
Note that arbitrarily small variations of m/M open a
gap in the effective model. If δ(m/M)> 0, the sys-
tem becomes a trivial insulator. On the other hand,
δ(m/M)< 0 opens a topological gap and the system
becomes a quantum valley Hall insulator (QVHI), in
analogy to the spin Hall insulator phase in the KM
model.

Since the topographic shape of the buckling has
the same functional form of B(r), out-of-plane dis-
placement fields lead to a modulation of onsite ener-
gies as [54]:

µ(r) = µ0

3∑
n=1

cos(bn · r), (9)

where µ0 =D δh/4.5 is proportional to the displace-
ment field D and the buckling amplitude δh= 0.4nm
(the factor 4.5 comes from the amplitude of the sum-
mation in equation (9)). Thus, near the maxima of
B(r), µ(r)≈ 3 µ0, and µ(r)≈ 3 µ0/2 near the min-
ima of B(r). From the effective model perspective, the
onsite energy modulation is:

Helec = 3 µelec

∑
i∈A

∑
s.τ

c†isτ cisτ −
3 µelec

2

∑
i∈B

∑
s,τ

c†isτ cisτ ,

(10)

where µelec ∝ µ0. The sum over i is performed on
different sublattices in equation (10), since the cor-
responding Wannier sites are located at the max-
ima and minima of µ(r). This extra term modifies
the Hamiltonian asm→m+ 3 µelec/2, and µ̃→ µ̃−
3 µelec/2. Therefore, out-of-plane displacement fields
might be used as a knob to control the ratiom/M, ulti-
mately working as an electric control of the system’s
topology, as shown in figure 3(a).

3. Interaction-driven quantum valley Hall
effect

The reduced bandwidth reduction due to the pseudo-
magnetic field has been shown to lead to a correl-
ated phase [33, 54]. Yet, due to the degeneracy of
the low energy states, different groundstates may be
realized in the system, depending on the range and
strength of interactions [61–63]. The computational

3
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Figure 3. Valley Chern number dependence on
(a) sublattice imbalancem and antiferromagnetic massmAF

for the effective model, taking constant λ. Panel (b) shows
the valley Chern number obtained after including
interactions in the interacting model, as a function of the
Hubbard constant Ũ and nearest-neighbors interactions Ṽ.
Solid lines indicate a topological phase transition and
dashed lines indicatem=M, which formAF corresponds to
the non-interacting strained system.

cost of full-lattice calculations makes an extensive
investigation of possible groundstates impractical.
Hence, the reduced computational costwith an effect-
ive model allows us to explore the phase diagram as a
function of electronic interactions.

To investigate the phase diagram of buckled
graphene, we now include electronic interactions in
the low energy model:

Hint = Ũ
∑
α,β
α ̸=β

∑
i

niαniβ + Ṽ
∑
⟨i,j⟩

∑
α,β

niαnjβ , (11)

where Ũ is the onsite Hubbard interaction, Ṽ is
the nearest-neighbor interaction, niα := c†iαciα is the
number operator at theWannier site i. The subindices
α andβ are a short-handnotation to include both val-
ley and spin degrees of freedom.

We solve this Hamiltonian by means of a mean-
field approximation. Namely, we make

Hint ≈HMF =
∑
i,j,α,β

χijαβc
†
iαcjβ , (12)

and find χijαβ self-consistently. First, it is import-
ant to note that the interaction strengths Ũ and Ṽ
depend on the screening created by the substrate
of the buckled structure [64], and as such can be
controlled by screening engineering [64–67]. In the
following, we will explore the potential symmetry
broken states as a function of the two interaction
strengths, keeping in mind that such values would be
controlled by substrate engineering. As we change the
ratio of the local and non-local interaction, we see
that there are two different groundstates, shown in
the phase diagram of figure c. A charge density wave,
illustrated in figure b, develops and persists until the
Hubbard constant reaches a critical value at which
an antiferromagnetic ordering, depicted in figure a,

Figure 4. Illustration of (a) antiferromagnetic and
(b) charge density wave groundstates. (c) Phase diagram as
a function of the coupling constants Ũ and Ṽ. The
groundstate is a charge density wave (CDW) unless Ũ is
sufficiently high. For Ũ higher than a critical value, an
antiferromagnetic (AF) order develops. (d) System gap as a
function of the electron–electron couplings. It is visible that
the gap closes outside the region in which the broken
symmetry changes.

occurs. For Ṽ= 0, this critical value is Ũc ∼ 2t, as
expected for honeycomb systems [68].

From amean-field perspective, the charge density
wave groundstate leads to a change in the sublattice
imbalance. In other words, it leads to a trans-
formation m→m+mCDW. The effects of an anti-
ferromagnetic lead to the additional term in the
Hamiltonian 8:

HAF =mAFκ0 ⊗ τ0 ⊗σz ⊗ sz, (13)

where sz acts on the spin space, andmAF is the mean-
field antiferromagneticmass. Note that one can inter-
pret the antiferromagnetic term as a spin-dependent
sublattice imbalance.

As discussed in section 2, small variations on the
ratio m/M lead to a gap opening. That makes one
wonder if there are topological phase transitions as
we change the electron–electron coupling constants.
Hence, we compute, for different values ofm andmAF,
the valley Chern number [69, 70]:

CV = CK −CK ′

=

ˆ 0

−∞
dω

ˆ
BZ

d2 k

(2π)2
ϵαβ
2

GV(∂kαG
−1
V )(∂kβGV).

(14)

Here, ϵαβ denotes the Levi-Civita tensor,

GV = [ω−H(k)+ i0+]−1PV (15)

the Green’s function associated with the Bloch
HamiltonianH(k), andPV = τz is the valley operator.

We see in figure 4(a) that there are two topo-
logically nontrivial phases: one of them is a QVHI

4
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Figure 5. Sublattice-projected bandstructure for selected Ũ
and Ṽ showing all four distinct phases: (a) charge density
wave, (b) antiferromagnet, (c) quantum valley Hall
insulator, and (d) spin-polarized quantum valley Hall
insulator.

for both spin channels (valley Chern number 4), the
other is the one that we predict to exist in a single spin
channel (valley Chern number 2). The formation of
both phases is rather intuitive to understand. While
the QVHI takes place when δ(m/M)< 0, the sQVHI
phase exist for both positive and negative values of
mAF. The reason is that while one spin channel suf-
fers a shiftm→m+mAF, the other is shifted asm→
m−mAF. Thus, one spin channel becomes topolo-
gical and the other becomes a trivial insulator. This is
visible in figure 5: in the QVHI phase (figure 5(c)), all
four bands show a band inversion; and in the sQVHI
phase (figure 5(d)), only two out of the four bands
show a band inversion. The band inversion occurs in
the spin channels for which the sublattice imbalance
decreases.

Now we note that, even though there are only two
regions in the order parameter map of figure 4(c),
there are several gap closings in figure 4(d). Review-
ing the phase diagram by also checking the val-
ley Chern number, it is visible that varying Ũ and
Ṽ yields four distinct phases: trivial charge dens-
ity wave and antiferromagnet, as well as topolo-
gical charge density wave (QVHI) and topological
antiferromagnet (sQVHI). We also show selected
sublattice-projected band diagrams in figures 5(a)–
(d). While the charge density wave (figure 5(a))
and antiferromagnetic (figure 5(b)) bulk bands
have well-defined sublattice numbers, the QVHI
(figure 5(c)) and the sQVHI (figure 5(d)) show a band
inversion.

To compare with the effective model calcula-
tions, we perform self-consistentHubbardmean-field
calculations in a superlattice following our previous

Figure 6. Results of full-lattice calculations with modulated
hoppings in equation (2) solved self-consistently with an
additional Hubbard constant U= 0.3t. Valley Chern
number in a (a) infinite system and (b) in a nanoribbon.
(c) Magnetization along the z-direction. A periodically
modulated ferrimagnetic order is formed. From a
superlattice perspective, it corresponds to a
antiferromagnetic honeycomb structure. (d) y-position
projection of a nanoribbon bandstructure. We see that each
edge has two counter-propagating edge states with opposite
valley-polarization.

work [54]. To reduce the computational cost, we
rescaled the system as a→βa and t→ t/β so the
Fermi velocity keeps constant. [71] We choose, as
an example, the Hubbard constant to be U = 0.3t,
resulting in a correlation gap in the bandstructure
(see figure 6(a)). The gap is a result of a magnetic
phase in the form of a superlattice-modulated ferri-
magnetic order (see figure 6(c)). Integrating themag-
netization in the vicinity to a minimum of B(r) the
magnetization is finite and positive, while it is neg-
ative in the neighborhood of pseudo-magnetic field
maxima. In this situation, the system has a valley
Chern number 2, in accordance with our effective
model calculations with an antiferromagnetic order-
ing. We found that this system is in the sQVHI phase,
with valley Chern number 2, compatible with the
magnetically ordered groundstate observed [54]. The
existence of topological edge states is visible in the
bandstructure of a nanoribbon, shown in figure 6(b).
As expected, we observe two counter-propagating
(helical-like) edge states with opposite valley num-
bers at both boundaries, similarly to the KM model
[59, 60]. Finally, we note that the local charge accu-
mulation with the periodic potential might also
change the values of Ũ and Ṽ. Furthermore, the
increase of out-of-plane fields closes the antiferro-
magnetic gap [54]. Thus, electrostatic control is not
only a knob to control topology, but also electronic
correlations.

5
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4. Conclusions

To summarize, we have shown that buckled graphene
superlattices show spontaneous symmetry breaking
driven by electronic interactions, leading to a topolo-
gical gap opening. First, by combining atomistic low
energy models with a symmetry analysis, we derived
an effective model for the lowest bands of buckled
graphene superlattices. We then included electronic
interactions in a non-local form in the low-energy
model, showing the emergence of competing ground
states. Namely, an antiferromagnetic and a charge
density wave. Remarkably, the spontaneous break-
ing of symmetries was shown to lead to a topolo-
gical gap opening for a wide range of the non-local
interactions. The charge density wave phase hosts a
quantum valley Hall insulator, while the antiferro-
magnetic phase has a spin-polarized quantum val-
ley Hall insulator region in the parameter space. Our
results put forward buckled graphene superlattices as
a platform to study interaction-induced valley topo-
logy, and highlight that single layermoire systems can
potentially host analogous correlated states to those of
complex twisted graphene multilayers.

Data availability statement
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erating all of the data is available on Zenodo [72].
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doi.org/10.5281/zenodo.4685 132.
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