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Foreword

This thesis is the result of my graduation project for the Master in Sustainable Energy
Technology, at Delft University of Technology. In partial fulfilment of this project a
nine months research internship was conducted at smart energy company Toon (for-
merly Quby) and part of the Dutch utility company Eneco Group.

This paper is an elaboration on my research about the utilisation of smart meter power
data to improve e�cient electric energy usage in households. In my eyes the applica-
tion of machine learning in the energy sector has much untapped potential to monitor
and recommend and potentially even manage energy demand in a more e�cient manner.

Several parts of the developed methodology and findings have been used for the de-
velopment of the Toon Waste Checker, a patented technology that advises customers
on their energy usage and supports them in reducing energy ine�ciency. [1] [2] As the
team has further developed the technology, the results of this study do not reflect the
technology used within the Waste Checker to date.
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Abstract

Nonintrusive Load Monitoring (NILM) can be used to disaggregate household energy
usage collected from a central meter to the level of individual appliances, but has so far
mostly been applied in controlled, small-scale settings. Further potential such as the
application for energy e�ciency classification and management have remained largely
untapped. In this research a machine learning model was developed and deployed to
determine energy consumption, usage pattern and energy e�ciency characteristics of
real-life dishwasher usage based on smart meter data. The developed NILM system
was deployed on a full year of smart meter data for nearly 130.000 households in the
Netherlands. The analysis was accompanied by a survey to gain additional information
on the households usage behaviour. The average energy consumption for all house-
holds was found to be 1.18kWh per wash, with dishwashers used 240 times per year
on average. Dependencies are shown for household size, washing temperature, machine
e�ciency label as well as time of day, week and year. It was estimated that 9 in 10
households could reduce their dishwasher energy consumption, with an average saving
potential of more than 30% per year. The developed method showed to be suitable to
gain insight into average electricity consumption and usage patterns on an appliance
level, non-intrusively and at large-scale. Additional survey data was shown to provide
comparative insight between di↵erent user groups. The developed framework can be
easily expanded for other major appliances and could be used to drive tailored con-
sumer feedback on energy e�ciency improvements within households.

Keywords: Smart Meter Load Monitoring; Load Disaggregation; Pattern Recogni-
tion; Energy Analysis; Energy E�ciency
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Summary

Decreasing household energy demand by optimising the e�ciency of its use would re-
duce energy needed. Providing insight into consumers energy usage has been shown to
support households in reducing their energy consumption. Non-Intrusive Load Monitor-
ing (NILM) could be used as scalable and continuous approach for energy assessments
disaggregating electricity data without much intervention of the user.

Most NILM research so far has focused on the detection of devices in one or only
several (controlled) households. No research to date has connected energy consump-
tion patterns and e�ciency assessments in a real world, consumer facing context and
analysed the results at large scale. Aim of this research is to develop a NILM system
based on smart meter data and to use this system to determine energy consumption,
usage pattern and e�ciency characteristics of real-life appliance usage in households on
a large scale. Due to the many analytical steps involved in setting up this system and
analysing results, it was deemed best to focus on one appliance in depth. Dishwashers
are a recognisable, widely used appliance, with relatively high energy consumption and
variability in real-life usage between households. Therefore, this study has been focused
on dishwashers as a use case.

To gain insight into the characteristics of dishwasher usage in real life an analysis was
carried out for a 3 months period for 100 households with smart plugs connected to the
dishwasher and accompanied with a survey. The smart plug data was used as reference
data to develop and validate a machine learning based NILM model, extending a NILM
appliance disaggregation methodology developed by K. Basu (2017). The model was
extended by the estimation of energy consumption per wash, weekly usage frequency
and e�ciency classification. The developed algorithms were applied on smart meter
data gathered for a full year for more than 130.000 households to investigate energy
consumption, usage pattern and e�ciency characteristics non-intrusively at large scale.
A survey was conducted under nearly 11.000 users to contextualise the results.

The application of the developed method in large-scale smart meter data results in
an average energy consumption of 1.18kWh per wash equalling an A label machine
and the dishwasher is used 240 times per year, 40 times less than assumed for the EU
e�ciency label. Dependencies were shown for household size, washing temperature,
machine e�ciency label as well as time of day, week and year.

Energy per wash and frequency of usage show a seasonal dependency with peaks in
winter and lows in summer. Energy consumption per wash changes in accordance with
outside temperature, deviating by 0.23 kWh between the maximum and the minimum
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throughout the year on average. A relation between the frequency of dishwasher usage
and the occurrence of events and holidays can be drawn. Within the weekly pattern,
dishwasher usage di↵ers per weekday with least usage on Friday. Main usage was iden-
tified to be directly after dinner time and just before people go to bed.

The energy consumption of dishwashers depends on household and machine characteris-
tics. Number of people within the household appeared to be one of the main factors for
weekly usage with 2.8 weekly washes for single households, 4.4 for two people household
and increasing by 0.6 for each additional household member. The temperature of the
chosen washing program impacts the energy consumption more than the e�ciency la-
bel. High e�ciency label and low temperature result in an average energy consumption
of 1.13 kWh (for A+++, <30�C). Low e�ciency label with high temperature (label A
and below, <75�C) result in an average energy consumption of 1.35 kWh. However, it
has to be noted that the reduced accuracy of the model further away from the average
likely causes an underestimation for these di↵erences.

The plug data was used to assess how well the developed model was able to estimate
energy consumption and usage frequency from the smart meter data. The average esti-
mation error (RMSE) was found to be 0.10kWh for energy per wash and 1.4 days/week
for the usage frequency. This translates into a normalized estimation error (NRMSE)
of 8.8% for energy per wash and 27.2% for the usage frequency. The average value can
be estimated with much higher accuracy as a result of the sample size of 100 households
for the training set, resulting in a ten-fold lower error of the estimated mean.

For the e�ciency classification a high classification accuracy (F1) of 91% for energy
per wash and 89% for weekly usage was found. The analysis of the frequency and
energy e�ciency showed that 84% of households consume more energy per wash than
needed, 62% use their machine more often than needed. It was estimated that 9 in 10
households could reduce their dishwasher energy consumption, with an average energy
saving potential of more than 30% per year or 94 kWh.

This research shows that a NILM system, based on data collected from the smart
meter, can deliver insights into the real-life usage of dishwashers without much inter-
vention of the user. Due to the large-scale applicability, aggregated results are more
generalisable than smart plug research and provide opportunity to analyse consump-
tion patterns for di↵erent user groups, beyond what has been possible with surveys.
However, additional survey information does provide the opportunity to gain deeper
insight into individual household characteristics and can aid to form a complete picture.

The findings of this research show considerable untapped potential for residential energy
saving. The developed framework could be expanded for other major appliances and
used to drive tailored feedback on energy e�ciency improvements within households.
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1.1 Problem Outline

1.1.1 Motivation

The residential sector forms a major sink of energy and source of greenhouse gas (GHG)
emissions [3][4]. The IPCC identified the residential sector as a high potential sector
for climate change mitigation measures, with a large share of cost-e↵ective opportu-
nities for GHG reduction [5]. Decreasing household energy demand by optimising the
e�ciency of use would henceforth reduce how much energy has to be generated in the
first place.

In the past decade, energy e�ciency has become one of the major priorities in EU
policies addressing issues that are related to energy [6][7][8]. Environmental awareness
and legislation, have driven technical optimisation of household appliances towards
higher energy e�ciency. While these changes have significantly reduced the energy
demand, consumer behaviour shifting toward a more environmentally conscious use of
household appliances would have high potential for further energy conservation gains [9].

Despite a growing awareness of e�ciency, research has shown that a discrepancy be-
tween potential and actual adoption of energy e�ciency measures occurs, contributing
to a so called ‘Energy E�ciency Gap’ [10]. Consumers seem to have di�culty achieving
energy saving behaviour by intention alone [11] and they are hardly aware of their real-
life energy consumption [12]. Research in behavioural science suggests, that the amount
of energy consumption is strongly related to socio-demographic variables, while attitudi-
nal variables more impact changes in energy consumption [13][14]. It therefore appears
that good understanding of consumers’ socio-demographic and behavioural variables is
vital to o↵er expedient guidance to improve their energy consumption [15].Consumer
engagement and knowledge provision have shown to be e↵ective measures to achieve
energy conserving behaviour [16] in particular when information and feedback is tai-
lored to individual consumer level [17].

Another potential component for energy e�ciency in households is automated building
control [18]. This can be used to guide consumers and policy makers in decision-making
about energy conservation measures and support the advancement of flexible grid oper-
ation [19]. The increasing share of weather dependent sustainable energy sources in the
electricity generation mix creates higher grid volatility, making grid operators increas-
ingly interested in optimising the communication of local power distribution networks
[20]. Henceforth, methods are needed to design and integrate sensors and actuator net-
works that can be maintained at large scale, enabling grid operators to access holistic
data-sets on consumption, usage patterns [21] and to integrate feedback mechanisms
that convince customers to make their houses more grid-friendly. [22]

2
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1.1.2 Knowledge gap

Research on household energy usage and e�ciency relies on both top-down and bot-
tom up approaches. Traditionally top-down studies gather data on generic level e.g.
nation wide economic analysis, using averages and assumptions for end use estimation
[23, 24, 25, 26, 27]. Bottom-up research traditionally focuses primarily on retrieving
data on detailed level from few households e.g. by testing of individual appliances under
standardised lab setting or by placing sensors in research households [28, 29, 30, 31, 32].
In many cases both approaches are accompanied by surveys [30, 24, 26] or survey results
are used as assessment basis [33].

Consumer surveys can provide insight on a broad range of usage variables, including
behavioural aspects and can be applied to large and varied groups. However, care must
be taken that the sample of respondents is representative. Answers can furthermore
depend on the way the questions are asked and respondents may possibly be biased or
unaware of their actual preferences and behaviour [34].

When testing under controlled lab settings the energy consumption for di↵erent type
of programs can be measured very accurately and in a repeatable manner. It is used
among others for the EU labelling to compare di↵erent models that come to market
under the same conditions. However, it does not test for real life usage and has to make
assumptions on factors such as average annual washes. [35]

Placing sensors in research households, can provide insight in the interplay between
multiple devices during actual usage [36]. Studies however often are constrained in sam-
ple size due to high cost and invasiveness of placing multiple sensors across the house.
Furthermore, due to the invasiveness of sensor placement and constant measurement,
the research may su↵er selection bias (people in the household are researchers) and/or
participants may (unconsciously) behave di↵erently because they are aware of being
monitored (Hawthorne e↵ect). [37]

Non-Intrusive Load Monitoring (NILM), an interdisciplinary research field between
computer science and electrical engineering, focuses on disaggregation of electricity
data to appliance or even component level, based on data from the central meter and
without much intervention of the user [38]. With the introduction of smart meters in
many households around the globe, the usage of NILM-based energy usage disaggrega-
tion has been touted as a potential holy grail to inform e�ciency behaviour by some
scholars [39]. NILM has picked up over recent years and shows promising results to
deploy in households [40], with increasingly higher accuracy, using increasingly sophis-
ticated methods [41] [42] [41].

Despite the aim of application in the form of Home Energy Management Systems

3
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(HEMS), most NILM research focuses solely on the detection of devices [43]. Research
available in the field of energy e�ciency, on the other hand, has so far been focused
on in-depth analysis of e�cient usage on small-scale, considering only one or a small
set of machine, ambient or behavioural characteristics for only one or few type(s) of
household appliance(s). [30, 31, 24].

To provide consumers, policymakers and grid operators with actionable insights for
their respective purpose, NILM-based appliance detection has to be combined with de-
tailed real-life analysis and information from the field of e�ciency research.

To date little research is available that combines these two research fields [44]. Only re-
cently publications start connecting NILM-detected appliances to e�ciency labels [45],
anomalous behaviour [46] or formulation of household e�ciency indicators and feed-
back to consumers [47]. However, no research has yet applied NILM-based household
appliance detection to analyse energy consumption, usage pattern and e�ciency char-
acteristics of household appliances in a real-life, consumer facing context at large scale.

To close this research gap a methodology needs to be developed, which allows for a
combination of these components. To investigate the potential of this linkage in more
detail, an in-depth analysis of a household appliance with a large data set is needed.
Dishwashers are a recognisable, widely used appliance, with relatively high energy con-
sumption and variability in real-life usage between households and are categorised as
high potential appliances to adapt usage and implement e�ciency measures [24]. Dish-
washers could henceforth serve as an expedient case-study appliance to show the ap-
plication of NILM in energy analysis research and utilisation of load disaggregation of
smart meter data in real life.

4
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1.2 Research Objective

1.2.1 Contribution

As described in the knowledge gap, no research has yet applied NILM-based household
appliance detection for energy and e�ciency analysis of real-life usage. Aim of this
research is to utilise a smart-meter based NILM system and to further develop this to
non-intrusively determine energy consumption, usage pattern and e�ciency character-
istics of appliance usage in households on a large scale.

In order to do this, load disaggregation research is combined with conventional energy
e�ciency research for the use-case of dishwashers. The first part of the research extends
an existing smart-meter based NILM detection system with energy and frequency of
usage estimation as well as e�ciency classification and analyses its performance against
a benchmark group of households. For the second part of the research the developed
system is then deployed to analyse a full year of real-life household load profiles at
large scale and compare energy usage, usage frequency and e�ciency for dependencies
on time, household and machine characteristics.

1.2.2 Research question

From this objective the following research question and sub-questions were derived:

How can energy consumption, usage pattern and e�ciency characteristics
of real-life dishwasher usage in households be detected and analysed with a
smart meter based NILM system?

This is answered by the following five sub-questions:

1. How is electric energy usage and e�ciency for dishwashers characterised based on
traditional analysis?

2. How can a smart meter based NILM system be developed to detect this?

3. How does the newly developed system perform in detecting these characteristics?

4. How much energy do dishwashers in households consume and how often are they
used, depending on time, household and machine characteristics?

5. How e�ciently are dishwashers used in households?
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1.3 Report Structure

The research outlined in this report deals both with the development of a model to de-
tect energy consumption, usage patterns and e�ciency of dishwashers from the smart
meter signal and the analysis of applying this methodology at large scale. The report
follows the typical literature, methodology, results, discussion and conclusion structure.
The first part for each chapter focuses on the model and the second part on its appli-
cation for the energy and e�ciency analysis.

The report starts with a literature review of load disaggregation, followed by more
detail on dishwasher energy consumption and e�ciency. The methodology section de-
scribes the developed model and how this was applied to analyse dishwasher usage in
households. The results first show the performance of the developed model and then
the analysis resulting from the deployment of the model at large scale. Finally discus-
sion and conclusion deal with the interpretation of results and the validity of the model
performance and deployment and how these can be used and developed further.

Each chapter starts with a brief introduction to what will be presented in that chapter
and how this fits within answering the main research question. At the end of each chap-
ter a preliminary conclusion is provided, summarising the most important findings from
that chapter and how this potentially already answers (part) of the research question.
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2.1 Literature introduction

The literature chapter answers the first and partially answers the second research sub-
questions by looking at what information is already available on Non-Intrusive Load
Monitoring (NILM) at one hand and on dishwashers energy consumption and e�ciency
at the other hand. While the literature focuses on what has already been developed,
the methodology section will further answer question 2 by explaining the methodology
that was added to that. To get a better understanding of how a NILM system could be
developed to detect dishwasher usage from the smart meter signal, 2.1 starts with de-
scribing household load patterns and developments and application in NILM research.
In order to better understand how to detect and analyse results for dishwashers, what
is already known about energy consumption characteristics of dishwashers is discussed
in more detail in 2.2. After it is established how NILM could be used to detect appli-
ances and how energy consumption of dishwashers is characterised and can be analysed,
2.3 progresses with how this could translate to energy e�ciency, by analysing what is
known about appliance e�ciency.

In part answers the following sub-questions:

1. How is electric energy usage and e�ciency for dishwashers characterised based on
traditional analysis?

2. How can a smart meter based NILM system be developed to detect this?

8
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2.2 Load Disaggregation

To get a better understanding of how a Non-Intrusive Load Monitoring (NILM) system
can be developed to detect dishwasher usage from the smart meter signal, it is important
to get a better understanding of household load profiles and developments in NILM
research. The section starts with explanation of the household load profile, followed
by how NILM works conceptually, comparing di↵erent approaches in NILM system
application and finally a deeper dive into the chosen NILM application.

2.2.1 Household load profiles

The load profile of a household is an aggregation of the power consumption of all active
household appliances at each point in time. While ’ECN Energietrends’ [26] looks at
the total energy consumption of the household, research such as by van Holsteijn and
Kemna [23] and ’Energie Studie Centrum’ [48] aim to describe the appliance level en-
ergy consumption and usage patterns constituting to the overall electric energy demand
of the household.

Electric energy consumption in households is comprised of the interplay of di↵erent
fixed and variable factors. While household size and energy e�ciency of electricity con-
suming appliances can be regarded as fixed factors, consideration of behaviour account
for variable factors [49]. These behavioural factors can for instance relate to demo-
graphics, presence profile in the house, time dependant shifts of appliance use and the
way consumers use and interact with the technology [50].

Generally, the power demand of a household fluctuates depending on the type and
amount of appliances used in a specific time. Intraday fluctuation shows higher energy
usage during daytime than at night. Typically an evening peak occurs due to inten-
sified lighting and cooking activities. In addition, changes between di↵erent weekdays
can be observed particularly between workdays (Monday through Friday) and weekend
days (Saturday and Sunday). Over the year seasonal di↵erences cause changes in the
energy consumption due to di↵erences in outside temperature, hours of solar light and
behaviour between seasons. Total energy use in winter is higher than in the summer
months. Autumn and Spring show comparable patterns. [51]

An often cited research from Loughborough University looked into the household en-
ergy demand patterns based on plug measurements for individual appliances over the
course of 2 years, to show how di↵erent appliances a↵ect the total energy demand of
the household over time. [52] While a unique and insightful data set for studies on
energy demand modelling, the high cost, invasiveness of placing smart plugs and static
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nature of such a study does not provide much opportunity for continuous monitoring
of developments over time and easy extension to more household groups.

2.2.2 NILM concept

In a household setting, each electric appliance consuming energy creates an electric
load profile, which depends on its energy demand in accordance to the appliance func-
tionality and use. These profiles can vary greatly according to brand and type of
program, but to a certain extent, appliances like washing machines, dishwashers, etc.
have a typical, reoccurring profile, which can be used in pattern recognition algorithms.

The focus of load disaggregation is to gain more granular insight in how the total
electric energy of a unit e.g a household is used. A potential approach to monitor
the load in a household would be to monitor every appliance that consumes electricity
individually by placing metering devices such as smart plugs at every power socket.
A smart plug measures the total power consumption on an individual power socket in
watts and sends a signal to a receiver such as a smartphone or smart thermostat. [53]

Non-Intrusive Appliance Load Monitoring (NIALM or NILM) aims to disaggregate
the total energy consumption of a building such as a household into the power signals
of individual devices. Appliances have specific power profiles, depending on the task
or subtasks they perform as part of a program (see 2.3.3). The key concept of NILM
is that appliance signals can be centrally logged by metering technology such as smart
meters and aggregated meter signal can then broken down into the individual appli-
ances. [54] [38] [55]

As opposed to sub-metering each single appliance, NILM could pose a more economic
and less intrusive approach to retrieve detailed information about the power consump-
tion of individual devices and the associated costs. [56] [40] A methodology to identify
appliance loads through measurement at main circuit level was developed at MIT in
the 1980s, as described in Hart (1992) as a combinatorial optimisation problem [57].
As the basis of breaking down the total power to component level consumption, the
power each appliance consumes needs to be identified. The superimposed power P of
N appliances in a time period T, can be expressed by:

P (t) =
NX

i=1

pi (t) + Pnoise (t) , t✏ {1, T} (2.1)

Where pi is the power usage of each detected active appliance and Pnoise is the unspec-
ified power consumption, defined as noise [58]. Estimating pi for i=1,2,. . . ,N, with only
P(t) given is the most common approach to solve the problem of power disaggregation.
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[58] [59] [60]

Figure 2.1: Example disaggregated power profile from Hart 1992 [57]

2.2.3 NILM system application

To be able to apply the NILM concept in a consumer facing environment, NILM has
to be incorporated as part of an information and communication (ICT) system. While
handling such a system puts manifold requirements on data gathering (incl. privacy
requirements due to GDPR regulation) [61]), transfer, warehousing and processing, the
focus in the following section is set on the main process steps that are part of the ana-
lytics pipeline or software, rather than the ICT hardware.

Over the years NILM systems have been developed based on varying techniques. How-
ever, they share several common principles to break down an aggregated load profile
into sub-components. As shown in 2.2 two main phases can be distinguished: model
development and the model deployment, which both include data acquisition and a load
disaggregation step, potentially followed by a final step providing consumption insights.

In order to prepare a NILM-based model, learning algorithms are often used, that
utilise training data during the development stage of the system. The training data is
processed and serve as a reference data set for the model deployment. Once the model
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is developed and ready for deployment, this data set is no longer relevant. However,
new input throughout the deployment of the model can be used to continuously update
and improve the model reference over time. [62]

Figure 2.2: NILM System application adapted from [62], [63]) and [64]

The model deployment starts with data gathering via a load monitoring system e.g. by
a smart meter [65]. The gathered data undergoes a signal processing step before the
three main steps of the NILM algorithm, the feature extraction, event detection and
signal identification are following. The feature extraction is used in order to transform
the time series of continuous load consumption data into an analysable set of features.
The calibrated model is then used to make the actual appliance identification on new,
unseen data. [64]

The output of the load disaggregation system allows for analysis of consumption in-
sights. This step utilises the outcomes of the NILM algorithm in order to derive useful
results for the user. The step, also sometimes referred to as energy management, al-
though technically not managing the appliance energy consumption pattern, provides
information to the user to manage their energy consumption. This includes factors such
as whether appliances were detected to be on or o↵ at certain moments in time, their
energy consumption, to what extent behaviour is normal or an anomaly compared to
some norm, appliance degrading over ageing or ine�cient/faulty appliance behaviour.
[62]

The described process steps can either all be done locally within a household system or
the data can be send to a service provider who processes and disaggregates the data in
a central analytics system. The resulting consumption insights can then be sent back
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to the user to provide feedback. [65]

The following sections explain the outlined steps in more detail.

2.2.4 Data acquisition

Data is obtained by a collection unit (hardware), of which its characteristics deter-
mine the granularity, performance and type of NILM algorithm that can be applied.
The disaggregation of distinctive load patterns is dependant on the following major
characteristics:

• Type of power: Power is either measured directly or via voltage and current
measurements. Measurement approaches can solely focus on true power or param-
eters arising from these signals such as real and apparent power or I-V trajectory
[66], which may then be further used as features.

• Sampling frequency: Granularity is defined based on the frequency of mon-
itoring, divided into two main ranges: High sampling rate with a frequency �
50Hz to several kHz (i.e. time  0.02s) and low sampling rate with a freq.  1Hz
(i.e. time � 1s). Signal measurement at higher frequency generally results in a
more granular pattern, which provides more opportunity to pick up on specific
relevant sub-patterns, however, often cost and intrusiveness of installation scale
with higher sampling precision [43].

As pointed out by Tina (2014) the quality of the deployed disaggregation algorithm
is highly dependant on the quality of the meter data acquisition. This includes error
threshold, accuracy for measurements of voltages and currents with high harmonic con-
tent and variable frequency as well as transmission frequency. It has been shown that
measurements at sub 1 sec intervals result in more e�ciently functioning NILM systems
than intervals of lower frequency. [65]

Dependant on the frequency of monitoring the computational e↵ort, analytical method
and applicable tools vary. High sampling rates allow for the measurement of reactive
power, active power and harmonic content and the assessment of current–voltage wave-
form. While allowing for a more versatile analysis of the measurements, the method
demands for additional hardware and high computational requirement which are im-
practicable, increase cost and require additional hardware to be installed in the house-
hold.

Smart meters have a relatively low sampling rate (e.g. seconds or even minutes) and only
provide active power measurements. However, electricity measurements from smart me-
ters are available across the world. The availability of smart meters already installed in
the household, makes this approach considerably less intrusive and by that more closely
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resembling the ideal of ”non-intrusive” load monitoring. As there is less information to
disaggregate on, this makes disaggregation more dependant on the applied algorithm
and only appliances with higher energy use can be detected with reasonable precision.
[43]

Data sets

A number of public data sets are available for NILM analysis, which could be used as
input data for model deployment. An overview is given in table 2.1. The data sets
contain energy measurements for multiple appliances monitored for a specified period
of time. Three main factors of variation have been taken into account when comparing
these data sets: Number of households in the monitoring campaign (count), measure-
ment period (time) and measurement sampling rate (frequency). Additionally it was
investigated whether dishwashers were part of the monitoring campaign, what type of
monitoring location and in what country the data was gathered.

Table 2.1: Overview of publicly available NILM Datasets

Dataset Count a Frequency Time DW b Type Country

[67] Dataport 722 1 min 3+ y yes Residential USA
[68] IDEAL 39 1 s 23 m yes Residential GBR
[52] Loughborough 22 1 min 1 y yes Residential GBR
[69] REFIT 20 8 s 2 y yes Residential GBR
[70] Tracebase 15 1 s 5,2 y yes Indiv. appl. GER
[71] GREEND 9 1 s 1 y yes Residential AUT, ITA
[72] REDD 5 15 kHz 19 d yes Residential USA
[73] UK-DALE 5 16 kHz 2 y yes Residential GBR
[74] AMPds 1 1 min 2 y yes Residential CAN
[75] iAWE 1 1 s 73 d no Residential IND
[76] BLUED 1 12 kHz 1 w no Residential USA
[77] COMBED 1 30 s 1 m no Acad. build. IND
[78] DRED 1 1 s 6 m no Residential NLD
[79] PLAID 235 appl. 30 kHz 5 s no Indiv. appl. USA
[80] WHITED 110 appl. 44 kHz 5 s no Indiv. appl. Var
[32] COOLL 42 appl. 100 kHz 6 s no Indiv. appl. FRA
a
Number of Households

b
Dishwashers

As shown in the table above, Dataport, IDEAL, Loughborough, REFIT and Tracebase
do measure for at least ten households and a time frame of one to several years. The
Dataport data set is stated to be the world’s largest data base for disaggregated house-
hold energy data [52]. Similarly, the data set from Loughborough University [52] is an
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often cited data set in research around domestic energy demand modelling, as the data
set uses actual measurements as reference to simulate the energy consumption patterns
for appliance usage and the household overall. While potentially relevant for energy
modelling [20], the relatively low interval of once per minute is lower than modern in-
stalled smart meters in many European households, which often measure at 10 seconds
intervals, making this data set less relevant for NILM algorithms.

For most other data sets, measurements are often only taken for few households and a
short period of time. As discussed earlier, high frequency measurements provide high
granularity and the opportunity to measure for other energy variables than active power
only. The often cited MIT data set REDD [72] was the first publicly available high-
frequency data set collected for NILM research. It provides the AC waveform data
(sampled at 15kHz) from which both the real and reactive power can be calculated.
However, the small sample size, short time span and needed monitoring and IT hard-
ware make it less suitable and scalable for real-world application.

The IDEAL data set [68] is the most recent published data set. Published in 2021
in Nature, the data set contains (1-second) measurements of electricity and gas usage
for 255 dwellings for nearly two years in the UK. The data set contains several com-
ponents of additional data, such as room temperature, ambient air, humidity, light,
sociodemographics, physical characteristics of the building, appliance characteristics,
knowledge, attitudes, perception and behaviors of the users. However, not all data
is gathered for each household. For only 39 of the 255 households smart plugs were
connected.

2.2.5 Load disaggregation

Signal processing

Before the NILM algorithm can be deployed, the gathered signal needs to be pre-
processed. This step commonly includes data cleaning (outlier detection, etc.) as well
as potential aggregation or reorganisation steps, depending on compatibility of the input
resolution and sampling frequency with the NILM algorithm. [64] However, applying
more sophisticated approaches to reduce noise in the aggregated power signal could
lead to improvement of the deployed NILM system. [81]

Feature extraction

The second step of the load disaggregation step is the feature extraction. Characteristic
features for appliances, or signatures/fingerprints, are mathematically described. The
pre-processed time series data is further processed to search for these signatures. The
type of signatures will depend on the type of device, sampling frequency and type of
power sampled.[64]

15



Eneco-Toon • Smart Home Energy E�ciency • 2022

Typically three types of features are distinguished: Steady state features, transient
state features and non-traditional features.

Steady state features
During the steady state operation of an appliance, steady state features can be ex-
tracted. For appliance identification, changes in e.g. voltage-current trajectory, time
and frequency, noise as well as power related features such as real power, reactive power
and root mean square (RMS) are used. [82], [83]

Transient features
If appliances are in a similar range of power, steady state features may not enable an ac-
curate distinction of these appliances [82], [83]. Transient features, which are extracted
in the transient state, require sampling frequency in kHz range are able to supply unique
appliance information that increase the accuracy of a NILM system. Features include
transient power, start-up current, transient voltage noise, transient VI trajectories and
higher-order harmonics. The NILM system (i.e. the hardware) must be able to process
these higher frequencies accordingly. [82], [84]

Non-traditional features
Non-traditional features compose those features that go beyond electrical signals iden-
tification at the energy inlet of an appliance. These can for instance be start time, time
of the day, frequency of usage. Among others, light sensing and temperature can be
used to derive more appliance characteristic information. [58], [85]

Event identification

The appliance identification is the recognition of an event pattern based on the before
extracted features that are typical for the appliance of interest. Two main approaches
of event identification are: event-based versus state (non-event) based:

Event based
Event based methods are used to detect events of the appliance moving from one steady
state into the next, e.g. switching on or o↵ certain subcomponents [86] This can typ-
ically be done by using either of three di↵erent types of detection methods: expert
heuristics, probabilistic models and matched filter. [83]

When using expert heuristic methods, thresholds are used for events that have been set
by expert knowledge (a priori) (fixed) or comparing to the power samples in the steady
state phase (adaptive). [87] While potentially simpler in application, the e↵ectiveness
of this method is limited, since the level of power consumption of an appliance may
vary due to its state or the program. Generally, these methods are not as e↵ective when
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impacted by noises in the power signal.[88]

Probabilistic methods use statistical and probabilistic features (e.g. standard devia-
tion, variance, likelihood ratio (GLR), chi-squared goodness of fit) to estimate changes
to the aggregated signal. [88], [89]

Another method are match-filter methods using likelyhood thresholds and univariate
(single) features for identifying universal patterns. [90], [91] Here again single feature
thresholds may not always be e↵ective for event detection. Multivariate event detection
as recently introduced by [89] appears to be an e↵ective event detection with minimum
false rate.

In addition hybrid event detection methods have been researched more commonly.
Amongst those are density-based spatial clustering with noise (SBSCAN), using ad-
jacent steady states for hybrid event detection [92] and event detection automatically
collecting thresholds [93]. It has been reported that hybrid event detection may be
superior to traditional event detection algorithms. [62]

State based
While many NILM approaches focus on event-based, some attempts focus on state
based. State based methods, also called non-event based appliance detection utilises a
sample from another aggregated signal to compare if the same appliance is on or o↵
during the sampled period. Therefore instead of searching for state changes, a combi-
nation of states is matched that follow each other according to some probability profile.
State-based methods are often combined with a Hidden Markov Model (HMM) [87]
[62] The strengths of the proposed method are its very short and non-intrusive training
period in simpler cases and can be an attractive option for lower sampling frequency.
[94] However, expert a priori knowledge is often needed and with more complex models
can quickly become more computationally expensive. [41]

Learning and inference

The third step of the load disaggregation can be split up into two approaches: op-
timisation and system training (or machine learning). While the initial optimisation
approach as introduced by Hart in the 1980s and 1990s at MIT (described in subsection
2.2.2) has been researched by many [95] [96] [97], it has shown to be of limited capacity
with regards to complex environments comprised of large numbers of devices. [58].
Modern day approaches therefore focus on machine learning techniques. The learning
algorithms are used to learn (”calibrate”) the model parameters which describe the ap-
pliance of interest based on the identified events during the training (”development”)
stage. [87]
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Root-mean square error (RMSE), mean average error (MAE) disaggregation percentage
(D), precision (P), recall (R), Accuracy (Acc) F-measure (F1) are common variables to
analyse NILM algorithm performance and trigger adaptation. [98].

Since NILM was introduced, research has been conducted on supervised, unsupervised
and deep learning methods. Hybrid approaches are also used that combine multiple
models to improve overall performance. [99] [100] [96] [101]

Supervised learning
In a supervised learning approach, a training set of appliances to be monitored are
pre-labelled, which ensure that the NILM system learns to recognise the pattern for
these appliances. Either event detected power signals or separately measured appliance
profiles can be used as appliance signatures.

Examples for supervised methods applied in NILM research include more basic neural
networks [102] [103] [104], support vector machine (SVM) [105] [106], Bayesian ap-
proaches [107], decision tree [108] and k-nearest neighbor (kNN) [109].

In lab settings the supervised learning methods are proven to be e↵ective for appliance
identification and energy disaggregation. However, real-life application is considerably
more challenging, since these algorithms are not able to adapt to changing environments
such as aging, performance degradation, replacement, and hence appliance signatures
need to be frequently updated.

Unsupervised learning
Unsupervised learning algorithms are able to adapt to changes in the environment. A
labelling process is not necessary, since the algorithm learns the machine signature itself
by distinguishing it from others. The user does nonetheless have to validate that the
appliance has been detected correctly by the NILM algorithm, to reinforce the learning.
The learning may require a duration of multiple days or weeks. If new appliances are
introduced, the algorithm identifies the changed signal and over time captures the new
signature. [58] [57] [110]

Widely used unsupervised algorithms in NILM are the hidden Markov model (HMM),
k-means clustering and expectation-maximization (EM). [111], [112], [113].

Deep learning
Both the supervised and unsupervised learning approaches are depending on input of
pre-defined appliance specific features for an e↵ective NILM modelling. [62] Deep learn-
ing algorithms are increasingly researched and used in NILM for appliance identification
and energy disaggregation. The algorithms are able to learn to extract features and
appliance signature from aggregated power signals, without any external input or vali-
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dation. [114]

State of the art developments in NILM application include autoencoder (AE), con-
volution neural network (CNN), and recurrent neural network (RNN) as well as hybrid
deep neural networks (DNN), that have been used as a multi-class classifier for the iden-
tification of di↵erent appliances and have equally been researched as new approaches
in the field of visual recognition [114], [115], [116], [117]

New approaches on transfer learning concepts have shown promising results in NILM
application for cross domain transfer, meaning that a model from one domain could be
applied on another domain without requiring training. D’Incecco (2019) showed that
a DNN model trained on washing machines could successfully be used to detect other
appliances (e.g. microwaves and fridges [118]. This would considerably reduce the data
collection process, computation time and allowing for connection of di↵erent available
databases as tested for REFIT, UK-DALE and REDD [118].

However, the high complexity of these models require large straining data sets and
extensive development and computing power, making deep learning potentially less ap-
plicable as initial development, but rather a next frontier of technological progress.

2.2.6 Consumption insights

Despite the theoretical aim of using NILM for home energy management, research on
NILM application focuses mainly on the detection of devices [43] and the algorithms’
e�ciency [65, 119]. Sources where NILM is used to actually generate consumer insights,
to for instance analyse energy e�ciency in real world application[44] (as described in
figure 2.2), are scarce, but are gaining a growing interest [120]. Few publications have
been found that connect the NILM-detected appliances to their e�ciency label [45],
anomalous behaviour [46], or formulation of household e�ciency indicators and feed-
back to consumers [47]. Demand side recommender systems appear as one of the first
approaches to connect NILM for energy usage pattern analysis to recommend energy-
aware products/services [121].

2.2.7 Chosen NILM application

As the previous subsection has shown, most NILM algorithms are developed with a
prepared standardised academic benchmark data set and often only focus on solving
part of the problem, such as feature extraction or a new learning method. Not much
applications have been developed that put the complete analytics pipeline (as shown
in figure 2.2) together and focus on the potential consumption insights in a real-world
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consumer facing context.

Moving to real-world application involves multiple additional steps, related to the ICT
and data processing as well as overcoming challenges related to data quality, measure-
ment frequency and controllability. Basu et al [43] developed a system taking these
steps into consideration in an end-to-end application for 4 real-world households (per
10s measurements) smart meter data for one month. Beyond the ICT system, which
is outside the scope of this research, the NILM algorithm that has been developed by
Basu et al. can be broken down into 6 stages, contributing to di↵erent building blocks
to asses the input data sets [122]. The stages follow the same basic logic as the frame-
work presented in figure 2.2 but a more detailed description is given below. The stages
are step by step summarised in figure 2.3:

1. Data base pre-processing
Lengthy time series are cut into time sliding window of 1 day with ”jump” J
(30min.). A day is defined as start time before 24:00, with an additional 4 hours
(experimentally measured maximum duration for any appliance in the used data
base) for activity of appliances started before 24:00, but crossing over into the next
day. Short very high power spikes might occur during some transition stages, but
are filtered out as noise with a median filter. Furthermore, missing data is filled
in. If the missing data occurs to be over a duration threshold, the time frame is
taken out of the dataset to not a↵ect the training set.

2. Elements generation from events detection and mapping
An on/o↵ switching event gets registered if power goes over or (positive event)
or under (negative event) a set threshold. As there are many other activities
happening within the household and even the power draw of the machine itself
is not completely constant, there are consistent minor fluctuations in the power
profile. To focus on the larger changes, a threshold is set for what is seen as
relevant event. Based on experimental tested typical fluctuations of 32W, the
threshold was was set at an absolute value of 35W. One or multiple negative
events following a positive event are matched to the respective positive event
until the next positive event occurs. The matched events are stored as an element
and a power level is assigned.

3. Clustering of elements based on their power levels
The stored elements are then clustered into groups of similar power levels. In
order to do that a X-Means [123] clustering algorithm is deployed. X-Means is
an unsupervised machine learning algorithm that follows the K-Means principle,
where data points are clustered into a number of K distinctive groups. The data
points within each group are as similar as possible and the data between groups
as distinctive as possible. In order to do that the data are clustered together
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around a common average (centroid) for each of the K groups. On beforehand
these centroids are unknown, but by initiating K random values and by reducing
the error (distance) function of data points belonging to each group, over multiple
iterations the algorithm is able to form these distinctive groups. While for the
K-Means algorithm the number of groups has to be known on beforehand, the
X-Means algorithm adds an additional step in order to find the optimal number
of groups. In this case the X-Means is used to group the elements into several
distinctive groups with similar power levels.

4. Feature generation based on power and components clustering
”Part-based” models were developed for di↵erent multi-state appliances, based
on their typical temporal distribution between elements. In order to disaggregate
the appliance of interest, their distinctive pattern of states (i.e. elements) has
to be recognised, based on defined appliance relevant features. The features are
comprised of appliance specific occurrence, duration and power levels of di↵erent
states, during a particular time period. Therefore for each time sliding window
a set of features is generated for each element within each cluster category. The
following features are generated for each element within a cluster and a time
sliding window:

(a) Mean and standard deviation of the power level of each cluster.

(b) Mean and standard deviation of the duration of each element in each cluster.

(c) For similar power levels and duration:

i. Mean and standard deviation of the On duration of an element (i.e.
duration between a positive event and the next negative event) within
each cluster in the considered time sliding window.

ii. Number of occurrences of elements within the time sliding window.

iii. Average time di↵erence between the starting time of successive gener-
ated elements in the clusters (the start time is the first occurrence of the
considered element).

Some outliers are filtered out based on set thresholds compared to the mean value.

5. Building the ”part-based” model of the classifier

(a) Training instances
Consecutive events with power variations below a certain threshold are merged
to a single event. All power readings below the set threshold are lumped
as one appliance, resulting in activity between these blocks getting paired.
When an undefined appliance goes through a complete cycle of activities
within a single time sliding window, it is labelled as ON for that specific
window.
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(b) Classification
Classification is then used to distinguish to which appliance category the
pattern of detected elements belongs. To do that the detected pattern is
compared with the specified ”part-based” appliance models using a Support
Vector Machine (SVM) algorithm with a Radial Basis Function (RBF) as
kernel. The SVM is a supervised machine learning algorithm that takes in
the features of the detected appliance and classifies which appliance model
this most resembles, based on a pre-trained parameter set. In order to find
the closest match, the SVM divides a multi-dimensional space defined by
the feature set and calibrates its parameters to draw a hyperplane (decision
boundary) that maximises the distance of the hyperplane to the closest point
in each class (support vector), while minimizing the parameters. The shape
of the hyperplane is based on the kernel function used to transform the
multidimensional data for the SVM. While a basic SVM draws linear lines
to divide the space, the RBF kernel was used in order to divide the data into
non-linear shapes. Finally, the trained SVM classifies the detected appliance
based on in which location its feature set falls within the SVM’s calibrated
feature space.

6. Testing of the built model on an unseen data base New unseen (labelled)
data is introduced to test how well the detection performs, compared with the
pre-assigned labelling.

7. Post-processing calculation (start-time, duration and energy)
Factors such as start time (time of day or compared to other appliance), total
duration or total energy level can all be used to distinguished between appliances
with comparable profiles (e.g. dishwasher and washing machine or oven, tumble
dryer and hairdryer)

Figure 2.3: NILM overall data-processing and analytic pipeline from Basu et al. (2017) [43]
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The results of the research indicate that smart meter data can be used to correctly
identify major household appliances (with 80% accuracy) using this methodology. To
compensate for the relatively small amount of subjects in the data set and to overcome
the challenge of messy real-life data, and having only a very small sample, the model
makes use of a hybrid approach. The model combines pattern recognition and machine
learning with specification of the actual patterns to disaggregate based on knowledge
about the specific profiles of the appliance(s) of interest. Additional insight on a specific
appliance type (see following section on appliance consumption 2.3) could therefore be
utilised to aid and further develop the detection algorithm.

Part of the developed detection method is to recognise di↵erent states that together
constitute the distinctive pattern of an appliance such as e.g. the washing program of a
dishwasher. These features, i.e. length (time) and height (power), provide opportunity
for further statistical analysis to gain deeper insight on separate components of the
power profile of an appliance and the potential to develop consumption insights from
the patterns that arise by comparing this for many di↵erent households.
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2.3 Appliance Energy Characteristics

To be able to detect the energy usage and interpret these results, better understanding
of the energy usage of dishwashers is needed. This section starts with elaboration
on traditional methods of analysing appliance energy usage and continues with more
specific analysis of the dishwasher functionality, resulting in a unique load pattern that
can potentially be detected by the NILM system.

2.3.1 Dishwasher energy usage

As introduced in the research gap (1.1.2), NILM research could form a modern approach
to gathering appliance level household statistics. Traditionally this data is gathered by
surveys, metering or literature analysis. In order to gain a better understanding for
factors involved in dishwasher energy usage, findings by more traditional approaches
are presented below.

An often cited research from Loughborough University looked into the household en-
ergy demand patterns based on plug measurements for individual appliances over the
course of 2 years, to show how di↵erent appliances a↵ect the total energy demand of
the household over time. [52] The study uses actual appliance measurements for most
household appliances from 22 households in the UK over a two year period as reference
to simulate the energy consumption patterns for appliance usage and the household
overall. As the study focuses more on energy demand modelling and household activ-
ity, less emphasis is placed on the energy e�ciency implications.

An important meta analysis by van Holsteijn en Kemna [23] was based on a litera-
ture research to develop a model for household energy consumption in the Netherlands
based on projections per appliance. The study looked at data from 1995 until 2005
and projected it until 2020. As data basis the study used BEK data [124], GEA ap-
pliance e�ciency research [125], ownership estimates based on panel survey research
and literature information such as the Ecodesign directives (see section 2.4.2). Usage
was described by consumption components of the respective appliance such as average
usage time and the number of cycles per year or hours per day in certain usage modes
i.e. di↵erent washing moments. Electricity consumption per unit such as kWh per cycle
or electricity usage when switched on were considered as appliance characteristics. The
results of the study show that a growth in ownership of dishwashers from 39.5% in 2000
towards 60 % in 2020 was expected to take place, with only A label machines being
purchased from 2014 onward (based on 13 year renewal age). From 2015 onward an A
label machine with 12 couverts of 1kWh consumption per wash was assumed for the
business as usual scenario and multiplied with a behavioural ine�ciency factor of 1.09
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(in accordance with Ecowet, Task 4), resulting in 1.09kWh per wash. Furthermore 220
washing cycles per year were assumed to stay constant over the full period, resulting in
240kWh per year.

Another prominent study, the Preparatory Studies for Eco-Design Requirements of
Energy-using Products (EuP) for dishwashers, found in a questionnaire of households
conducted in 10 European studies, that dishes are cleaned by dishwashers in only 30-
40% of the cases (i.e. dishwasher penetration and active usage), leaving 60-70% of the
dishes being hand washed. Dividing available European electricity data on dishwasher
consumption of 16.2 TWh (EU-15) [126] by its 160 million households equals a stated
energy consumption of roughly 240 kWh per household (with an automatic dishwasher)
and year. [24]

A detailed plug based research was carried out in 2008 [36], sampling data with plug con-
nected dataloggers from 100 french households with 10 minutes interval over one year.
During one month, participants also filled out questionnaires describing the di↵erent
washing/drying programs in use. Comparing the results with former data from 1995
and 2008 the average yearly energy consumption decreased from 273kWh to 171kWh
(-37%), the number of annual washes from 213 to 189 and hence the energy usage per
wash from 1.25kWh to 0.90kWh.

2.3.2 Dishwasher operating characteristics

To better understand the typical load pattern of a dishwasher, the dishwasher operat-
ing characteristics are described. Common household dishwashers contain one or two
internal dish racks for the storage of dishes (depending on the device size). When the
machine starts, a defined amount of inlet fresh water gets heated with a heating el-
ement and passes through to the sump pump, which is located at the bottom of the
dishwasher. From there, the water is pumped up and sprayed over the items by moving
spray arms [127].

Operating phases

Dishwashers operate at several washing programs, which di↵er in duration and temper-
ature range. A washing cycle can last from 15 minutes to 3 hours. Depending on the
selected program, the washing process includes several phases [128]:

• Pre-cleaning phase: Some programs use a pre-cleaning phase, with cold or with
slightly heated water.

• Heating phase 1: Heating up the water to cleaning temperature. The supplied
water is heated by means of a heating system (nominal power 1800-2500W) to
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the temperature corresponding to the selected program. This process can be
interrupted for a short time to equalize the temperature.

• Rinse phases: Between heating phase 1 and 2, 1+n rinsing cycles are interposed
for the cleaning process

• Heating phase 2: For the last rinsing process, the water is heated to maximum
temperature of the programme.

• Drying phase: The final heating phase is followed by the drying process, during
which the water evaporates on the dishes.

• Start delay or standby phase: In addition to the active washing cycle time
delay or standby functions may be used allowing for defining a particular start or
end time

Energy per wash

The extent to which these di↵erent phases contribute to a total wash can vary not
only for dishwashers, but other similar household appliances like washing machines. In
’Construction of a virtual washing machine’ the authors modelled the water and energy
consumption of a washing machine by regressing measurements of di↵erent features
from tests of nine di↵erent washing machines of five di↵erent manufacturers. The
authors were able to explain 92% of the variance in energy consumption per wash with
a linear equation taking into account the amount of inlet water, washing temperature
and total duration of the wash, where the amount of inlet water itself was a function
of the amount of laundry placed in the machine and the rated capacity. [129] While a
di↵erent appliance, this shows the relevance of the water heating phases in explaining
the overall energy consumption per wash and the potential of describing an appliance
profile by its features. The next subsection continues in more detail how the di↵erent
phases together constitute to a dishwasher’s load pattern.

2.3.3 Dishwasher load pattern

Information from the dishwasher’s operating characteristics translate into its power
profile or load pattern, that can potentially be detected by the NILM system. In the
dishwasher, electrical energy is required for active and passive processes described in
the previous subsection. A typical power demand profile of a dishwasher is presented
in figure 2.4:
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Figure 2.4: Example load profile of dishwasher showing two distinct heating phases [128]

The profile depicts the power demand which is automatically drawn from the power
line for a washing cycle at a standard cleaning program without using a start delay
function. The power demand in watts is plotted over 1/4 hour time steps. The area
under the demand curve sums up to a total energy consumption of 1,19 kWh. Energy is
mainly used to heat the water for the rinse cycles (two main peaks). It is also consumed
by the motor of the circulation pump and other electronic components of the machine,
such as the user interface (mainly in the middle). For the drying phase at the end,
rinsing water is heated up to be able to store enough heat in the dishes for the water
to evaporate. Additional short burst of heating can potentially be used to improve the
drying process in this final rinse (final activity at the end of the profile). In the passive
state, small amounts of energy are used to maintain safety functions. If start delay
functions are used, additional energy is consumed for the standby activity. [130]

The following graphs of detected profiles exemplify two variations within this pattern:
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Figure 2.5: Example load profiles detected for the ”Normal” standard program (upper) and
the hotter ”Pots Pans” program (bottom) of dishwasher Miele G1222 [130]

The two charts in figure 2.5 show the power profile in green on the left axis and the
energy accumulated over time in orange on the right axis. It can be seen that the ”Nor-
mal” standard program in the upper chart has di↵erent durations for the two heating
phases. The second heating phase (over 20min.) takes considerably longer than the
first (about 15min.) heating phase. The total energy usage amounts to 1.25kWh. By
comparison, the two heating phases in figure 2.4 both take about the same time (about
15min.) and the total energy usage of the wash amounts to 1.19kWh, despite the ad-
ditional energy usage in the drying phase. The hotter, more thorough ”Pots Pans”
program depicted in the chart in the bottom takes considerably longer and has three
instead of two heating phases. The three phases all take about 15 tot 20 minutes,
with the one in the middle the longest. Furthermore, changes can be noted on the
lower power level that result from pumping and rinsing in between the water heating.
Finally, some di↵erentiation can be seen between the maximum power level (although
all closely around 2000W). This program has a considerably higher energy usage of
1.75kWh. Taking these variations into account, shows there is some di↵erentiation be-
tween profiles for the same dishwasher, based on the program chosen. Di↵erentiation
between dishwasher brands and models exist as well, so the specific program cannot
be recognised from the number of heating phases. Generally a dishwasher program is
characterised by several heating phases with relatively low energy usage in between for
the pumping and rinsing. [130]

Day-Time variation
As shown by the research group at Loughborough University not only the profiles, but
also load patterns throughout the day can vary. [52] Therefore, besides load during
operation, is the chance of an appliance being in operation during di↵erent times of the
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day (as discussed in 2.2.1).

Another analysis, conducted on the demand shifting potential of appliances, using the
EuP consumer survey transferred the outcomes into an estimated average curve for start
time of dishwasher in Europe over the course of a day and the related power demand
needed for operating a dishwasher per day and household. The results as shown in the
Figure 2.6 show that the peak of washing activity lies between 7-9pm, with a smaller
peak between 6-8 am. When the chance of a dishwasher being on from the left figure is
multiplied with the average power draw from the power curve in figure 2.4 this results
in the power curve in the right figure. The power demand as shown in the right graph
reaches its maximum at around 8 pm with roughly 87 W. [24]

Figure 2.6: Start time of dishwashing in 10 European countries (probability estimate) (left).
Daily load curve of a dishwasher (averaged start time function)(right) [130]

Other appliances

For the expedient use of detection algorithms for load profiles of electrical appliances,
the distinction of di↵erent appliance’s profiles is needed. For this distinction a su�-
ciently accurate understanding of load curves is necessary [131]. Most electrical ap-
pliances can be grouped into few categories of load types. These are based on the
consumption pattern of alternating current (AC). Barker et al. (2013) divides them
into resistive (loads with heating element), inductive (loads with AC motors) or non-
linear (devices using switched-modepower supplies (SMPS); mainly electronic devices,
such as desktop computers and TVs).

Many large household appliances, consist of multiple di↵erent components, which each
make use of one of the mentioned load types by which a combination of resistive, in-
ductive or nonlinear power consumption is created (composite loads). [131]
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Zeifman et al. (2011) suggests a characterisation appliances based on their power
draw for permanent consumer devices (e.g. wired smoke detector), on-o↵ appliances
(most common household appliances such as toasters and light bulbs), finite state ma-
chines (FSM) (loads with several definite switching states, e.g. washing machines,
freezers/fridges, dishwashers dryers), continuously variable consumer devices (e.g. dim-
mer lights, television). [38]

To compare dishwasher to other similar appliances, figure 2.7 presents load profiles of
selected major household appliances with composite loads in one-second resolution. The
figure shows typical profiles for a (a) washing machine [43], (b) dryer, (c) fridge/freezer,
(e) dishwasher, (f) oven, (g) AC unit [132]. Washing machines, dryers and dishwashers
consist of a heating unit (resitive load) and AC motor for e.g. spinning clothes and
circulating water (inductive load). They often make use of repetitive cycles of these
elements. The fridge/freezer and AC units shown in Figure 2.7 (c) shows small, repeat-
ing fluctuations that reoccur for each compressor cycle.

Chart (d) and (h) show the combination of multiple of these appliances together result-
ing in a household’s total electric activity profile.

With the understanding for other load profile characteristics it becomes possible to
extract specific signals even if an overlay of signals, as can be seen in (d) between 2-3
hr occurs. Techniques to do this can vary as elaborated in more detail in chapter 2.2.
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Figure 2.7: (a) washing machine, adapted from [43];(b) dryer;(c) fridge/freezer; (e) dish-
washer; (f) oven; (g) AC unit; (d) and (h) household load profiles, adapted from
[132]
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2.4 Appliance Energy E�ciency

Now it is established how NILM could be used to detect appliances and how energy con-
sumption of dishwashers is characterised and can be analysed, this section progresses
with how this could translate to energy e�ciency. First energy e�ciency is defined,
next standard e�ciency settings for dishwashers are given, as according to European
regulation. Finally, an overview is made of research investigating what factors could
influence dishwasher energy e�ciency in real-life application.

2.4.1 Defining energy e�ciency

The EU Energy E�ciency Directive uses a very broad definition and describes energy
e�ciency as the pursuit of obtaining the maximum benefit from energy use. It is de-
fined by the ”ratio of output of performance, service, goods or energy, to the input of
energy” [133]. Due to the broad nature of the definition, assessing energy e�ciency can
range from energy intensity considerations of entire systems to e�ciency of individual
activities such as energy e�cient machine operation. Whereas energy saving is referred
to as a reduction in the input energy, without any reference to the desired output.[134]

As described in Introduction to Energy Analysis, by Blok and Nieuwlaar (2017), energy
e�ciency is the amount of energy (E) needed to produce a certain measurable output
(P). This is often listed as a percentage between 0% and 100%, and described with the
following equation for e�ciency (⌘):

⌘ =
P

E
(2.2)

For energy conversion processes this can be a relevant way to describe the useful energy
output (Eout) resulting from energy input (Ein). For end-use applications, such as
appliances, the inverse of energy e�ciency, specific energy consumption (SEC), is more
often used:

SEC =
E

P
(2.3)

SEC describes the energy needed to produce one unit of useful output. This depends
on (i) the technical e�ciency under uniform conditions and (ii) its operation, taking
factors such as ambient conditions and usage behaviour into account. Several pieces of
equipment with a similar unit of output can then be compared with each other to see
which one is more e�cient. In order to do this, the energy e�ciency index (EEI) can
be used, generally defined as the energy use per aggregate output.
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The aggregated specific energy consumption can be an ideal candidate for the reference
energy use, to calculate the EEI:

EEI =
Actual energy use

Reference energy use
⇤ 100 (2.4)

The energy index compares the actual energy consumption of the process with a defined
reference point.[135] In terms of dishwashers we could think of SEC as the energy
consumption to do a single wash (energy per wash) and define the reference energy as
the energy needed to do a an aggregate of one whole year of washing for one household,
see EU dishwasher e�ciency calculation in next subsection.

2.4.2 Standard e�ciency settings

E�ciency regulations

Industrial energy e�ciency measures are addressed by di↵erent legislative acts. House-
hold appliance energy e�ciency is currently established in two binding directives with
Commission Delegated Regulations for Dishwashers in place, where some of the above
mentioned parameters were considered:

• Ecodesign Directive 2009/125/EC addresses supply of energy e�cient products.
The performance standards set in the Ecodesign Directive concern the improve-
ment of energy e�ciency of products and market clearance from ine�cient prod-
ucts. [136]

• Commission Regulation (EU) No 1016/2010 implementing Directive 2009/125/EC
of the European Parliament and of the Council with regard to ecodesign require-
ments for household dishwashers [137]. Repealed by Commission Regulation (EU)
2019/2022 [138] (not considered in this research, see Appendix A.0.1).

• Energy Labelling Directive (2010/30/EU), repealed by Regulation (EU) 2017/1369
sets a standardised energy label to support consumers in the assessment of energy
e�cient products. The regulation required a growing amount of appliances ac-
cording to a standardised energy usage rating scheme indicated on a scale raging
from G (least e�cient) to A+++ (most e�cient) [139]

• Commission Delegated Regulation (EU) No 1059/2010 supplementing Directive
2010/30/EU of the European Parliament and of the Council with regard to energy
labelling of household dishwashers. [140] Repealed by Commission Delegated Reg-
ulation (EU) 2019/2017 (not considered in research) [141] (see Appendix A.0.1)

• Directive 2012/27/EU on energy e�ciency, amending Directives 2009/125/EC
and 2010/30/EU [142]
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Furthermore Directive (2009/72/EC) requires smart metering systems to be imple-
mented by the member states, since they may encourage consumers to more e�ciently
use their energy and may enable smart home management.[143]

E�ciency calculation

For the cleaning performance Regulation (EU) No 1016/2010 implementingthe Ecode-
sign Directive for dishwashers states an e�ciency index for the items ”su�ciently
placed” in the dishwasher body. The energy e�ciency labelling regulation of house-
hold dishwashers is determined on the basis of this Energy E�ciency Index (EEI). The
EEI is calculated for an estimated annual energy consumption as follows [137]:

EEI = (
AEc

SAEc
) ⇤ 100 (2.5)

AEc = annual energy consumption of the household dishwasher
SAEc = standard annual energy consumption of the household dishwasher

Based on the measured energy per wash under standard testing conditions (Et), the
annual energy consumption AEc is calculated as follows and expressed in kWh/year:

AEc = Et ⇤ 280 +
[P0 ⇤ 525,600�(Tt⇤280)

2
+ Pl ⇤ 545,600�(Tt⇤280)

2
]

60 ⇤ 1000 (2.6)

Et = Energy consumption for the standard cycle in kWh
Pl = Power in ‘left-on mode’ for the standard cleaning cycle
Po = Power in ‘o↵-mode’ for the standard cleaning cycle
Tt = Programme time for the standard cleaning cycle, in minutes
280 = total number of standard cleaning cycles per year

Based on the dishwasher size in ps (number of place settings), the standard annual
energy consumption SAEC is calculated in kWh/year:

1. for household dishwashers with rated capacity ps � 10 and width > 50cm:

SAEc = 7, 0 ⇤ ps+ 378 (2.7)

2. for household dishwashers with rated capacity ps < 9 and household dishwashers
with rated capacity 9  ps  11 and width  50cm

SAEc = 25, 2 ⇤ ps+ 126 (2.8)

Dishwasher energy consumption is calculated by assuming 280 rinsing cycles per year,
which accounts for 5 to 6 rinsing cycles per week. The values are based on the manufac-
turer’s standard programme for normally soiled dishes. The annual water consumption
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is determined on this basis. A benchmark for the best available technology on the
market for household dishwashers with 13 place settings was stated with an energy
consumption of 0,83 kWh/cycle, corresponding to an overall annual energy consump-
tion of 244,9 kWh/year, of which 232,4 kWh/year for 280 washing cycles and 12,5
kWh/year due to the low power modes.

For the classification of the e�ciency, a scoring system was introduced based on the
e�ciency index with D (least e�cient) to e�ciency class A+++ (most e�cient) [137].
As mentioned under E�ciency regulations (above) the labelling has slightly changed in
2019. The new system has simplified the equations to calculate the EEI on a per wash
basis, instead of the AEc above that makes assumptions on number of annual washes
and takes the standby mode into account. (Appendix A.0.1). All dishwashers investi-
gated within this research fall in a time frame making use of this previous regulation,
for which the e�ciency table is presented here below:

Energy e�ciency class Energy E�ciency Index

A+++ (most e�cient) EEI < 50
A++ 50  EEI < 56
A+ 56  EEI < 63
A 63  EEI < 71
B 71  EEI < 80
C 80  EEI < 90
D (least e�cient) EEI  90

Table 2.2: Energy e�ciency classes [137]

As can be seen the EEI changes in stepsizes of 10%. Hence a given label is 10%
more e�cient than a label for a stepsize lower. As could be seen in equation 2.7 and
2.8, the standard energy consumption and hence calculated EEI, is also dependant
on size or capacity of the dishwasher. The capacity of a dishwasher is expressed by
number of standard place settings (ps). [137], as specified in ’European norm for electric
dishwashers for household use’ (EN 50242) [144]. Place setting is a fixed number of
crockery and cutlery items in a given composition and size that is used for one menu
sequence (see table 2.3). In addition to the specified number place setting items, seven
serving and cutlery items are utilised, see table below:
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Items per couvert Additional items per wash

Dinner plate [cm] ø26 Oval plate [cm] 32/35
Soup plate [cm] ø23 Serving bowl [cm] ø16
Dessert plate [cm] ø19 Serving bowl [cm] ø13
Saucer [cm] ø14 Serving spoons (2x) [mm] 260
Cup [ml] 200 Serving fork [mm] 192
Drinking glass [ml] 250 Gravy ladle
Knife [mm] 203 Serving bowl [cm] 19
Fork [mm] 184
Soup spoon [mm] 195
Teaspoon [mm] 126
Dessert spoon [mm] 156

Table 2.3: Standard items for dishwasher capacity, based on [144]

2.4.3 Real-life ine�ciency

The implementation of Energy Labelling and Ecodesign regulation on major house-
hold appliances has been foreseen to create an energy savings potential of 13% [35].
Stamminger et al sees the directives only a↵ect the market slowly, since ownership of
a dishwasher is about 10 years on average. It is therefore crucial to assess the real-life
usage of a dishwasher and its e�ciency. In the ’Preparatory Studies for Eco-design’
real-life energy usage is estimated to be 12.2% higher than under standard test condi-
tions, even 29% when including the energy consumption used for manually pre-rinsing
the dishes. [24]. This section gives an overview of factors a↵ecting the e�ciency of a
dishwasher in real-life usage. Example studies of other household appliances are used
if relevant literature available and comparison seems applicable. The following items
have been stated to determine the consumption of water and energy according to [128]:

• Frequency of usage

• Load size used

• Selected programme and nominal temperature

• Additional rinsing

• Low power mode (start delay + standby)

• Machine e�ciency

• Ambient conditions

36



Eneco-Toon • Smart Home Energy E�ciency • 2022

Many of these determining factors for dishwasher energy use in real-life are driven by
behavioural factors (i.e. choice of program, loading, etc.) impacting the energy use of a
dishwasher [145]. Hence, the behavioural component is discussed as a final overarching
point.

Frequency of usage
With regards to the use of machine capacity the annual energy consumption (AEc)
equation (see equation 2.6) assumes 280 total number of standard cleaning cycles per
year. This is set as a ”standard” number of cleaning cycles, but no further mentioning
is made about an e�cient number of annual cleaning cycles, since this is not a machine
but household behavioural characteristic.

According to Van Holsteijn en Kemna this could potentially be an overestimation of
about 23%. [146] citing 4.1 washes per week or 214 washes per year. The EuP study
in 10 di↵erent countries in Europe showed that an average of 4,06 washing cycles/week
was declared, adding up to 203 washing cycles per year (50 weeks) [24]. The Ecodesign
directive assumed a usage of 220 times annually [137] or 4.5 times per week taking 3
holiday weeks into account or 4.2 times per week not taking holiday weeks into account.

The e�cient frequency is related to a combination between number of users, dishwasher
capacity and expected cleaning performance. [147][130].Comparable results were found
for washing machines, where it was shown that the frequency of operation largely de-
pends on the household size, as this defines the amount of wash to be treated per cycle.
[148]

A table retrieved from Van Holsteijn en Kemna summarises data from VEWIN and
TNS Nipo research on water usage in Dutch households. The studies include the dish-
washer usage by number of family members in previous editions (see figure 2.8). The
weekly usage is dependent on household size and can be seen to be 2.2, 4.2, 5.1, 6.4 and
6+ for households ranging from 1 to 5+ people respectively (in 2007) and was shown
to have increased slightly over time. The last edition of the VEWIN study (from 2016)
showed this had actually slightly decreased and stabilised at an average of 0.17 times
per day per person, compared to 0.25 in 2007, while the number of households owning
a dishwasher had further increased to 75% on average, also depending on household
size. [149].

37



Eneco-Toon • Smart Home Energy E�ciency • 2022

Figure 2.8: Dishwasher penetration and weekly usage by household size [23]
pers = persons, gem = average, pp = per person, hh = per household, pw = per
week

Load size
Analysis by Van Holsteijn en Kemna of the CECED database shows that the majority
of new dishwashers on the market in Europe in 2012 were 12 ps (46.6%), followed by
13ps (28.9%), 14ps (9.5%) and 9ps (8.2%), averaging at 12.1ps. In comparison in 2005
12ps dishwashers represented 81.8% of the market followed by 9ps (12.2%) and averag-
ing at 11.6. However, consumers often may not fully fill up there machine because they
assume it is full due to ine�cient placing or the consumer might need cleaned dishes.
It is estimated this might reduce a 12 setting machine to average 9ps in real life. [146]

A non-e�cient capacity exploitation may impact the energy consumption negatively
since machines are designed to reach their e�ciency maximum at maximum capacity.
In the study by Richter et al. for 20% of the washes, the maximum load capacity of
the baskets were not exploited.[150]. In the VEWIN study 82% of households stated to
usually fully fill their dishwasher, another 13% fill it for three quarters, 2% even less.
[149].

Programme and temperature
For the evaluation of e�ciency related characteristics for washing appliances, such as
dishwashers and washing machines, the combination of the most used washing program
and its nominal temperature are two key parameters. [147] Stamminger investigated
in a study of about 2500 households in ten European countries, that the main washing
temperature lies between 50/55�C or 60/65�C, averaging on 59, 3�C (see figure 2.9).
This was estimated to add an average of about 10% of energy, compared to standard
test settings. [24].
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Figure 2.9: Relative occurrence of dishwashing temperatures in Europe (average of 10 coun-
tries) [24]

Another consumer survey on 200 households revealed that 52% of the interviewees with
a dishwasher favoured washing temperatures of 65�C resulting in a higher energy con-
sumption per washing cycle than stated by the respective energy labels [150]. Van
Holsteijn en Kemna state there is evidence that the eco program is not the most used.
As this is the only program considered in testing, they conclude there is not enough
stimulation to improve energy e�ciency of other programs via legislation. [146]

Other studies on electrical appliances report similar findings. For refrigerators for
instance it was found that 25% of households surveyed, operate the device at lower
temperatures than recommended according to their e�ciency classes.[151] Besides as-
sumptions on performance, this might be caused because many consumers would be
unaware of the temperature connected to the program. Dishwashers and refrigerators
often do not show the temperature at the usage panel, but only contain it in the user
manual. [128]

Additional rinsing
According to dishwasher manufacturers pre-washing of dishes is not necessary and
scraping and wiping of leftovers before placing dishes in the washer is recommended
instead. Not many consumers soak dishes, but manual pre-rinsing is more common in
some researched countries: 42% in Italy and 25% in Sweden, compared to only 4% in
Germany and 8% in the United Kingdom and with varying degrees of water use, aver-
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aging at 15 liters. [150] Consumers might clean dishes on beforehand out of habit, even
though a pre-rinse cycle is usually available on the dishwasher. However, only 3.2% of
consumers are stated to always use the extra rinse cycle, while 5.2% often make use
of this functionality. Using a rinse option only uses minimal extra energy and about 5
liters of water, compared to an estimated 0.1kWh and 3 liters of water per place setting,
where about half of the dishes are estimated to be manually pre-rinsed in an average
of 31% of European households. [24].

Choosing to use an extra (cold) rinse option on the dishwasher can therefore increase
the water usage, but only minimally a↵ect the energy consumption of the wash. Man-
ually (warm) rinsing of the dishes can add additional extra water and energy usage.
Changing this consumer behaviour could therefore have considerable saving potential
for the overall dish washing process. However as this research only focuses on detection
of the energy consumption of the dishwasher itself and not the full process and since
the usage of automatic rinse options is only very minimal, this additional energy con-
sumption is not further considered within the scope of this research.

Low power mode (start delay + standby)
The use of a start and delay/standby function may result in a higher energy use, but the
additional energy usage in this ”inactive” use phase is rather small and most consumers
(45%) say to never use them. Those who use it often (27%) and those who sometimes
use it (15%) used this function at least once a week with 66% choosing a delay time of
0-3h. [130]

Ambient conditions (inlet water)
With regards to external environmental factors, research on refrigerators revealed that
ambient temperature is an important influential factor on the energy consumption [152].
With reference to dishwasher functionalities, this factor could potentially be considered
as the impact of variation in the inlet water temperature on the energy consumption
per wash. The temperature di↵erence that needs to be overcome by heating of the inlet
water to the desired temperature of the chosen washing programs is dependant on the
water inlet temperature, which again is dependant on the external environment/ambient
temperature. The water inlet temperature in Germany for instance might be consid-
erable lower on average. While no further information was available, this estimated to
be about 10�C, compared to the 15�C as used under standard testing. It is noted that
in countries with higher water inlet temperature this could also lead to lower energy
usage vice versa. [24]

Machine e�ciency and age
The comparison of household dishwashers under standard settings with a capacity of
12 to 14 plate settings shows that the annual energy consumption may vary by over
100 kWh between A+++ and older appliances [153]. The machine age has been shown
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to impact energy usage significantly [128]. As Figure 2.10 indicates the energy usage of
newer models coming to the market has reduced considerably over the years.

Figure 2.10: Energy use in kWh (left) and water usage in l (right) over year of production
for average of tested dishwashers coming to market [130]

A more detailed study was conducted on energy usage of actual aged washing machines.
Besides less well developed programs, ine�cient usage of detergent and material fatigue
were mentioned as facotrs reducing quality of the wash over time. It was shown that for
similar washing performance 20�C to 50�C higher washing temperature was needed for
15 and 30 year old machines respectively to reach the same washing quality as a new,
modern machine. [154] In addition to machine optimisation, Stamminger suggests that
over the lifetime of a dishwasher incrustations and other ageing factors like malfunctions
also reduce its e�ciency over time. The higher energy use of an older machine therefore
is a combination of both its initial energy use when coming to market and reduction
of e�ciency over time. [130]. This suggests that also dishwasher age would be relevant
to consider for energy e�ciency, while bearing in mind that di↵erent programmes use
a di↵erent amount of energy [148].

2.4.4 Impact of behaviour

Several pieces of research have shown that consumers could not only save time, but
potentially water, energy and money as well by doing the dishes with a dishwasher
instead of by hand. However, a comparison between washing by hand or with a dish-
washer depends on assumptions made about behaviour. According to [150] the main
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discrepancies between real-life consumption per wash and laboratory testing (EN50242,
2003) are caused by the following three behavioural factors:

• Dishwasher loading

• Pre-treatment of the dishes

• Program choice

The study therefore included the manual pre-rinsing as well and looked at real-life used
program choice and loading. Data was gathered based on a photo (of each dishwasher
load) and survey diary (number of items, duration of the wash etc.) that 20 households
in each of 4 di↵erent countries in Europe (Germany, Sweden, Italy, UK) kept to log
all their daily dish washing activity for two weeks. An average energy consumption of
25Wh/item (50% interval of 20-29 Wh/item) for houses with a dishwasher was found
compared to an average of 34Wh/item (20–50 Wh/item) for houses without. Despite
this potential saving of 28% energy by using a dishwasher instead of manual washing,
the researchers conclude that further energy could be saved by decreasing the washing
temperature, spending less water on manual pre-rinsing and making more e�cient use
of the capacity. In terms of loading the research showed 20% of dishwasher baskets had
more than 40% free space left. Unnecessary energy was spent on pre-rinsing (especially
in Sweden and Italy), while only scraping o↵ leftovers is recommended by dishwasher
manufacturers. Finally, it was found that more than half of the households (52%) use a
washing program above 65�C most of the time, with an average of 59�C. Hence, using
higher amounts of energy than according to the label calculations.[150]

The assessed studies in this literature research share the common conclusion that a)
a lack of consumer awareness may be a root-cause for ine�cient behaviour [151] [150]
and that b) the results should be transferred into transparent and easy information to
raise consumer awareness [145]. A study by [9] on the saving potential of behavioural
change in washing machine usage suggests that a reduction of up to 50% in energy
and water consumption are possible, when optimised consumer behaviour is reached.
The scenario analysis based on over 5000 consumer survey responses from the A.I.S.E.
study across 23 European countries, mentions a combination of more e�cient machines
on the market (10-30%), better use of capacity (about 25-50%) and lower temperature
washing programs (10-20%) as the main areas for improvement with ranges depend-
ing on regions in Europe for which these savings most apply. The previous section on
real-life ine�ciency suggests potential behavioural savings for the dishwasher might be
possible as well, but how much these savings could be is yet to be tested.
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2.5 Literature conclusion

After the literature analysis, the first sub-question can be answered. The second sub-
question can be partially answered as a better understanding of NILM usage for appli-
ance detection from the smart meter has been gained, which shows this could be further
developed to move from NILM detection to consumption insights. In the methodol-
ogy chapter the insights on dishwashers energy consumption and e�ciency will then
be combined with the NILM literature to extend knowledge into the domain of energy
system analysis, by that fully answering the second sub-question.

1. How is electric energy usage and e�ciency for dishwashers charac-
terised based on traditional analysis?

The load profile of a dishwasher follows a distinctive pattern, based on di↵erent
steps part of the washing cycle, such as water heating and rinsing. The average
energy consumption depends on factors such as chosen washing program, e�-
ciency label and size resulting in an energy consumption of about 1.1 kWh per
wash. Usage frequency depends on family size, amount of dishes used and capac-
ity utilisation of the dishwasher. The average annual number of washes in the Eco
Design regulation (No 1016/2010) is assumed to be 280. Energy consumption and
usage patterns are both analysed by traditional approaches, such as surveys and
smart plugs. Energy consumption characteristics as used in the Eco Design and
E�ciency Labelling regulation are based on findings from traditional approaches
and lab settings, but do not take into account factors a↵ecting the e�ciency in
real-life usage impacted by user behaviour.

2. How can a smart meter based NILM system be developed to detect
energy consumption, usage pattern and e�ciency characteristics for
dishwashers?

The application of NILM for disaggregtion of household appliances follows a re-
occuring framework that can be applied to automatically recognise appliance ac-
tivity within unseen load profiles. The details of the chosen approach are depen-
dant on the frequency of measurement and types of power variables measured.
Lower frequency detection (< 1/s) allows for a more scalable non-intrusive ap-
proach, but cannot be developed as precise as high-frequency applications. Smart-
meter data (commonly 10s) approaches have been focused on the detection of ma-
jor appliances in one or only several (controlled) households. The NILM model
developed by Basu et al. (2017) has successfully been implemented in an end-to-
end solution to disaggregate several major appliances (including dishwashers) for
4 households in real-life usage. Features of this scalable detection system could be
used to further develop a model for energy consumption and e�ciency analysis.
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3.1 Methodology introduction

The methodology uses findings from the first and second research sub-questions to de-
velop an approach to prepare for answering sub-questions 3, 4 and 5. First a general
overview of the used data sets and main model steps is given in 3.1. Section 3.2 goes into
more detail on how the model was developed to detect energy usage, usage frequency
and e�ciency for dishwashers from the smart-meter signal, developed and validated
with a data set of smart plug data. A more detailed description of used algorithms and
assessment methods can also be found in Appendix B. In 3.3 the statistical methods,
aggregation and segmentation methods used to analyse the output from a large scale
application of the model on one full year of data is described.

Answers the following sub-question:

2. How can a smart meter based NILM system be developed to detect energy usage
and e�ciency for dishwashers?
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3.2 Method Overview

This section gives a general overview of the methodology developed to couple a meter
based NILM appliance detection system with energy and e�ciency analysis. This sec-
tion starts with a summary of the approach, gives an overview of used data sources and
a schematic overview of the model.

3.2.1 Summary of Approach

In this subsection, a schematic overview of the modelling phases, the components and
steps is given.

As described in literature section 2.2, NILM could potentially be used as scalable and
continuous approach for energy assessments since it can be used to disaggregate electric-
ity data from the central smart meter without much intervention of the user. However,
so far NILM has mostly been applied in controlled, small-scale settings and not to study
energy consumption patterns and e�ciency of real-life appliance usage.

In this research a model was developed in Python to calculate dishwasher energy usage
and washing frequency and then classify e�cient usage based on data from the central
meter. The code is not available publicly, since the majority of code has been created
in the Eneco environment and is proprietary. The developed system was deployed on
a very large set of meter data to non-intrusively analyse energy consumption, usage
pattern and e�ciency characteristics of real-life dishwasher usage in households.

Stepwise approach

The development of this framework is based on the literature described in subsec-
tion 2.2.3, in particular the schematic overview of NILM system application 2.2. The
stepwise approach of the research (presented in figure 3.1) builds on existing load iden-
tification research and shifts the focus towards the consumption insights, including
consumption analysis and e�ciency analysis. As shown in the first two rows it can be
divided into the two phases and three components:

• Phase 1: Model Development

Component (A) Smart plug analysis
Literature section 2.3 describes the characteristics of dishwasher energy usage
and section 2.4 defines what is e�cient usage. To gain further insight into
these characteristics of dishwasher load profiles and usage patterns in real-
life, an analysis was carried out on plug data.
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Component (B) Smart meter model development
The plug data was then used as benchmark to develop and validate a meter
data based machine learning model, extending the NÌLM detection method-
ology developed by K. Basu (2017) (see literature subsection 2.2.3) with
estimation of energy consumption per wash, weekly usage frequency and
classification of relating e�ciencies.

• Phase 2: Model Deployment

Component (C) Smart meter model deployment
The developed algorithms were applied on meter data to investigate energy
consumption, usage pattern and e�ciency characteristics non-intrusively at
large scale.

For each of these research components the following three main analytic steps can be
distinguished:

• Step 1: Data preparation
Gathering and processing of di↵erent data sets.

• Step 2: Consumption insights
Model development and analysis of energy consumption and usage frequency.

• Step 3: E�ciency insights
Model development and analysis of energy e�ciency.

Figure 3.1: Stepwise Approach
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3.2.2 Data

This subsection gives an overview of the used data sets and sources as well as their
characteristics. Detailed explanation of the data sources, retrievement and processing
can be found in the subsequent sections.

Table 3.1: Overview of data sets

Data description Households Timespan Sample
interval

Development
Meter data
(learning set)

Household aggregated
load profiles

100 11/16-03/17 10 sec

Plug data Dishwasher load
profiles

100 11/16-03/17 10 sec

Plug survey Household size
Machine characteristics
Model type number
Usage behaviour

41 01/16-02/17

User manuals Washing program
characteristics

26 2000-2018

Deployment
Meter data
(deployment set)

Household aggregated
load profiles

129.137 01/18-12/18 10 sec

Meter survey Household size
Machine characteristics
Washing program

10.873

Various other Weather measurements
Public holiday dates

01/18-12/18 per day

For the two research phases, the following main data sets can be distinguished:

• Development Phase (1)
Three months of dishwasher load profile (smart plug measured) data for 100
households. Household aggregated load profile (smart meter measured) data for
the 100 households with plugs installed. A consumer survey (answered by part of
the households) and user manuals retrievable online (for part of the households
answering the survey).

• Deployment Phase (2)
A full year of household load profile data for nearly 130.000 households to deploy
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the model on and survey data for a share of these households. Various other data
sets to compare/explain patterns. A survey was conducted under a sub-sample
of nearly 11.000 households to segment the results for household and machine
characteristics. Various other data sets such as outside temperature and vacation
schedule were used to contextualise the usage patterns.

The data for this thesis has been gathered in line with the European GDPR regulation
[155]. Data was only gathered in consent with the users and has been anonymised for
the analysis.

3.2.3 Model overview

This subsection aims to describe the schematic model overview, relating the aforemen-
tioned stepwise approach and the data sources at more granular level. A more detailed
description of the model development is found in section 3.3 meter estimation model.
The plug analysis was done as a preparatory step to develop the estimation model and
hence is completely integrated within the model development section. The methodol-
ogy of deployment and analysis on large scale meter data (Phase 2 and Component C)
is described in section 3.4.

The next page contains a schematic overview (figure (3.2)) of the analytical steps in-
volved in development (left side) and deployment (right side). The colour coding of
the steps relates to the colour coding previously also shown in the stepwise approach
(figure 3.1). The squared elements in the figure represent analytical steps, the oval el-
ements indicate model outputs. Dashed rectangles are drawn around a set of elements
to indicate that the outputs/steps as a whole are prerequisite for another step or that
they are feeding together into a set of elements.

Phase 1: Model development

The first set of symbols under the model development relates to the data sources as
described in 3.2.2. As pointed out above for the model development Component (A)
plug analysis and Component (B) meter estimation model are relevant. As described
in 3.1 the first step in the modelling process for both components is the data preparation
(colored in light grey and light blue respectively).

• Step 1: Data Preparation
The data preparation is distinguished into two subsections: Data gathering and
data processing. These steps are further described for the smart meter and the
smart plug data in subsection 3.3.1. Data for the model development (table 3.1)
is gathered into a cloud storage. A NILM dissaggregation algorithm developed by
Basu et al (2017) [43] (described in section 2.2.3) is deployed on both meter and
plug data. This is needed to detect dishwashers on the meter signal. While plugs
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are appliance specific and hence already the profile is separately available, the
algorithm is also applied on the plug data to retrieve similar detection features
and compare the results. The outputs of this process step are the meter detection
features and the plug detection features. Separately energy per wash is calculated
for the plug data using area under the curve between start/stop times of individual
washes. The output is the smart plug energy usage. The results are created as
count of weekly washes for both plug and meter, features and energy per wash
are clustered per household to be used for the regression.

• Step 2: Consumption insights
Feature Analysis: The first step of the consumption estimation is the com-
parison of the features (feature analysis) retrieved from the plug and meter (see
section 3.3.2 for more details). The feature analysis is then used for three subse-
quent steps:

– Findings are used to better understand power profiles and inform improve-
ments for the dissaggregation algorithm

– Findings are used to determine the most relevant dishwasher characteristics
to focus on for the further research.

– Summary statistics are calculated for energy per wash and weekly washes

– Additional consumption analysis on the plug, in which the plug energy usage
and the appliance survey are analysed. This can be found in the Appendix
C.

Regression models: The second step of the consumption estimation is the re-
gression model. For both estimations (energy per wash and usage frequency)
multiple di↵erent regression approaches were tested. These were prepared and
compared based on meter profile data input, using plug profiles as validation.
The number of weekly washes were calculated based on detected washes on the
meter, regressed on actual number of washes according to its related plug. The
estimation of energy per wash was based on dishwasher’s load profile characteris-
tics (detection features) regressed on energy consumption according to its related
plug.

• Step 3: E�ciency classification/analysis

E�ciency threshold models: For this analysis e�ciency thresholds were de-
veloped to serve as proxy for e�cient behaviour for both energy per wash and
number of weekly washes. To establish how real-life energy usage compares to the
user manual and EU e�ciency regulation e�ciency, threshold for machine char-
acteristics were identified that were based on equation(s) in EU e�ciency label
regulation. User manuals were compared with the plug measurements and with
the EU regulation based energy e�ciency thresholds. More details see section
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3.4.3. For the usage frequency e�ciency a threshold model was developed based
on a bottom up frequency e�ciency model, see section 3.3.3.

E�ciency classification: To develop and test whether estimated energy per
wash and number of washes per week can be classified as e�cient an e�ciency clas-
sification method was developed. The classification of number of weekly washes
and energy per wash as e�cient was based on the comparison of plug measure-
ments versus meter estimations compared to the e�ciency threshold developed in
the e�ciency threshold models, see section 3.3.3.

Phase 2: Model deployment

The model deployment is depicted in the right side of figure 3.2. The data sources (see
section 3.2.2) feed into two separate steps: the model development and the deployment.
The framework follows the same main steps as in literature figure 2.2, but with the
emphasis on detailing the consumption analysis and e�ciency analysis and taking the
NILM disaggregation as a preparation step.

• Step 1: Data Preparation
To deploy the meter estimation model the developed algorithms were run over a
full year of meter data of more than a hundred thousand households, see 3.2.2. The
NILM diassaggregation algorithm developed by Basu et al (2017) [43] (described
in section 2.2.3) is deployed on the meter data. The output of this process step is
the meter detection features. The features are then aggregated and weekly washes
counted for each household.

• Step 2: Consumption analysis
To analyse dishwasher consumption patterns at large scale and relate to time,
machine characteristics and consumer behaviour the summary statistic of total
energy consumption per wash, per week and per year as well as frequency of
usage per week and per year were retrieved. To analyse the time dependency a
comparison for the frequency of usage per week of the year was made in relation
to events such as holidays, the weekly usage pattern was analysed and the energy
usage per wash was compared to the outside temperature. Energy usage and
number of washes were segmented by survey results, including stated machine
size, stated and detected number of weekly washes by family size and detected
energy usage by stated washing temperature and machine e�ciency label.

• Step 3: E�ciency analysis
To analyse scale of ine�cient dishwasher the usage e�ciency classification based
on weekly usage was compared to what to be expected based on family size.
For the e�ciency classification the estimated energy consumption was compared
to expected consumption based on washing temperature and machine e�ciency
label. Potential energy savings were estimated.
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Figure 3.2: Model overview
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3.2.4 Algorithms and validation

Besides the NILM system for which literature was presented in subsection 2.2.7, sev-
eral common algorithms/approaches were applied in di↵erent stages of the model as
presented (on the left, development side) in figure 3.2. This section gives a generic
overview of these algorithms and why these were specifically selected. Furthermore,
this section gives a brief description of how di↵erent steps in the model were validated.
The methodology section on model development (section 3.3) continuous with how
these di↵erent approaches have been applied as part of the analysis. The following
information is only meant as a quick summary/refresher for readers less familiar with
some of the terminology in subsequent chapters, Appendix B elaborates on these topics
in more detail.

Algorithms

The three main algorithm groups of relevance for this research are clustering, regression
and classification.

Clustering
Clustering is the aggregation (e.g. to a mean or mode) of multiple observations be-
longing to the same group/cluster [156]. This can be thought of as multiple washes of
the same household. A comparison of di↵erent methods for clustering was made for
the application on three problems encountered with the data handling: Identification
of the most likely estimate (MLE) for nested design of the observations, facilitation of
pair-matching and noise filtering. Further details on the three problems can be found
in appendix section B.0.1.

To solve these problems, di↵erent clustering or aggregation methods can be used. A
simple approach is to aggregate the data to a summary measure (e.g. mean or mode)
[156] (equations see appendix B.0.1). In addition to aggregating to mean and mode,
two clustering algorithms were tested. Using a clustering algorithm such as K-Means or
Gaussian Mixture Model (GMM) is an unsupervised learning method, that provides the
opportunity to recognise an on beforehand unknown number of clusters in the data,
by that accounting for a potential multi-modal character of the data. Furthermore,
it provides the opportunity to filter out some noise. [63] [157] However, using these
algorithms also adds additional complexity and computational cost. Therefore their
performance was compared to basic aggregation to a mean and mode value. As the
GMM approach in early stage of analysis showed to be superior over the K-Means ap-
proach, only GMM was considered compared to mean and mode for final analysis as
presented in this report. For more on the application of this method see subsubsection
3.3.2 and 3.3.2, for more detailed information, see appendix subsection B.0.1.
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Regression
Regression is an often-used statistic tool in empirical research to describe the relation-
ship between a dependent variable and one or multiple other variables. In its most
basic form, it is a linear function described as follows:

Yi = �0 + �1Xi + µi (3.1)

Where Yi is the dependent variable representing observation i part of N observations,
Xi is a corresponding covariate, and �0 and �1 are unknown regression coe�cients rep-
resenting the linear line’s intercept parameter and the slope coe�cients of the covariate,
respectively. In this research the regression was not used to infer the relationship be-
tween measured variable Y and corresponding measured covariates X

n, but was used
to estimate unknown values Ŷi based on a set of n measured variable(s) Xn

i . [158] [159]
For more on the application of this method see subsubsection 3.3.2 and 3.3.2, for more
detailed information, see Appendix subsection B.0.1.

Classification
Classification was used to group the consumption analysis outcomes in classes of e�-
cient and non-e�cient. Several common machine learning classifiers, including Logistic
Regression, Naive Bayes, K-Nearest Neighbour and Support Vector Machines (SVM)
[160] where considered. However, it was decided not to deploy these. Instead thresholds
were set to separate the results from the regression analysis into di↵erent classes. For
more on the application of this method see subsubsection 3.3.3, for further detail on
considerations see Appendix subsection B.0.1.

Validation

In order to develop the model, the full training set of 100 households was used and then
the trained model was deployed on the large scale unseen meter data set. However, in
order to understand how accurate di↵erent steps of the model are, the performance has
to be tested. To validate the results the trained algorithm has to be deployed on a set
of unseen (meter) data, where reference (plug) information is also available. To do this
the available data can be split up in a training set and a validation set. However, since
the available number of training households is sparse, the variability in the data can
cause a random sampling of the training data and validation data to produce di↵erent
results. Depending on the sampled training and validation set this can result in either
over- or underestimation of the performance. A common practise is to cross-validate.
The data is randomly split in a test and validation set many times and the algorithm’s
performance stored for each iteration. The comparison of the algorithms was done with
1000 iterations of a 50/50 split cross validation. [123]

In this research three types of results have to be assessed: clustering, regression and
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classification results. Since the clustering is used as a preparatory step for the regres-
sion, the outcomes of the clustering and regression analysis can be assessed together
based on the error of estimation. The classification quality can be based on the ratio
of true and false classifications.

Error of estimation
While several metrics could be used in order to do this, the Root Mean Squared Error
(RMSE) provides a common often used metric to compare di↵erent models:

RMSE =

s
1

N
⌃N

i=1
(Ȳ � Yi)2 (3.2)

However, as the RMSE gives results in absolute values for the unit of analysis (e.g.
kWh) in order to compare models across di↵erent units it helps to normalize the results
(e.g. to %). This can for instance be done by dividing them by the mean value, resulting
in a Normalized Root Mean Squared Error (NRMSE):

NRMSE =
RMSE

Ȳ
⇤ 100% (3.3)

The NRMSE (Normalized Root Mean Squared Error) served as the comparison metric.
The NRMSE output of the 1000 iterations cross-validation, were aggregated to an av-
erage with standard deviation. The best performing algorithms are selected based on
a low average NRMSE and small 95% interval. A selection of algorithms with the low-
est NRMSE were further compared based on a visual inspection of their performance
(further details see appendix B.0.2.

Accuracy of classification
Classification accuracy is relevant both for the outcomes of the NILM detection system
and for the e�ciency classification. While the detection system classifies if it found a
dishwasher at some point in time, this means that each other point in time it basically
classifies no dishwasher is active. When a washing activity is detected correctly this
is a true positive and when misdetected a false positive. When a dishwasher actually
was active, but not detected this is a missed detection or false negative, all moments
no dishwasher was active and not detected are true positives. [123]

Likewise for the e�ciency classification, when dishwasher usage is classified as inef-
ficient both on the plugs and the meter, this is a true positive. When dishwasher usage
would be classified ine�cient based on the plug data, but gets classified as e�cient
based on the meter data, this is false positive. E�cient on the plugs and the meter is a
true negative and e�cient based on the plugs but not the meter is a false negative. [123]

The accuracy of the classification depends on the balance between these outcome, ac-
cording to the following equation:
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Accuracy =
True predicted

Total predicted
=

TP + TN

TP + FP + TN + FN
(3.4)

However, a more specific way of representing the performance of the classification is
according to the following equations:

Precision =
TP

TP + FP
(3.5)

Recall =
TP

TP + FN
(3.6)

F1 = 2 ⇤ precision ⇤ recall
precision+ recall

(3.7)

The precision resembles how well the algorithm performs at not misdetecting (ratio
of false positives to true positives), while the recall resembles how well the algorithm
performs at not missing detections (ratio of false negatives to true positives). The F1
score is an accuracy measure weighted for both precision and recall. Ideally the F1
would be as close to 100% as possible, meaning both precision and recall are close to
100%, which would be perfect accuracy. However, realistically measurements diverge
from this ideal state. The classification can be optimised either for high precision or
high recall but not both at the same time. It’s a trade-o↵ between either being precise
about what is detected at the cost of missing some detections (higher precision) or en-
suring most detections are made at the cost of some being false (higher recall). [62] [123]

To test how di↵erent values of the threshold a↵ect the rate of false positives vs true
positives an ROC analysis was conducted. The threshold is varied in gradual steps and
the classifications are recalculated for each step. Based on this, a precision, recall and
F1 can be derived for each step, respectively. The ROC outcomes are then plotted on a
curve vs. a line that would represent a random guess. The larger the area between the
ROC curve and the random guess line the better the classification algorithm performs
overall. The optimal precision, recall and F1 points are on the di↵erent inflection points
along this curve. [123]

Based on these outcomes a general e�ciency threshold can be set that aligns with
the goal this classification mechanism might have in application. Which could either
be to reduce false positives or false negatives.

56



Eneco-Toon • Smart Home Energy E�ciency • 2022

3.3 Smart Meter Model Development

This section describes in more detail how a model was developed to detect energy usage,
usage frequency and e�ciency for dishwashers from the smart-meter signal, building
on an existing appliance detection system. The model uses smart meter data as input.
Smart plug data was used to calibrate and validate the model in the development
stage. As both smart plug and smart meter data are needed, first the data gathering
and processing is described for both. The appliances detection developed prior to this
research by Basu et al. (literature section 2.2.3) is referenced how this was applied in
the data processing. Next the developed model to estimate usage frequency and energy
consumption per wash are described. Finally, the approach to classify energy e�ciency
is described.

3.3.1 Data Preparation

The two main data categories to develop the Smart Meter Model are smart meter data
and smart plug data. This subsection describes the preparation of these two main data
sets.

Smart meter data

The smart meter data consists of the complete aggregated load profile of the household.
The first aim is to gather the smart meter data and disaggregate dishwasher activity
from the complete smart meter profile.

Data gathering
Dutch households with a smart thermostat from Eneco (called Toon) can receive real-
time insight in their power consumption profile. Data can be analysed for all users
that give permission for their data to be used for research and who have the necessary
software installed. Data is sampled from the smart meter’s P1 port with 10 second
intervals, but can also be gathered from analogue meters, where a laser counter gets
installed when placing the Toon.

The data set consists of continuous time series for each single household. The con-
tinuous power measurements are uploaded to a cloud database and stored in watts
with a 10 seconds interval by date and time stamp and labelled with an anonymised
household code. Figure 3.3 shows an example of such a time series of power measure-
ment for one household at the end of 2016.
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Figure 3.3: Smart meter power profile of one household in November 2016

Figure 3.4: One day smart meter power profile of Monday week 45, 2016, with patterns of:
(A) Fridge/freezer (repeated throughout the day)
(B) Washing machine
(C) Tumble dryer and washing machine
(D) Tumble dryer, washing machine and dishwasher

Data processing
The methodology of Basu et al. (2017), described in literature subsection 2.2.3, was
used to detect washes from the smart meter signal. The detections provided by the
algorithm of Basu et al. including the anonymised household code and a time stamp
were stored with the feature values related to the washing cycle of a dishwasher. These
detections provided by K.Basu were queried with SQL from the central databse and
used for further development of the Smart Meter Model in Python, as described in the
following sections.
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Smart plug data

The smart plug data consists of the load profile measurements of the specific appliance
it is connected to. In order to train the model to disaggregate dishwasher activity
from the smart meter signal and validate if detections are made correctly the smart
plug data can be used. An additional survey was conducted to gain more insight in
characteristics of the sample and type numbers of the dishwashers (see Appendix C.0.1)

Data gathering
Eneco customers can place smart plugs in the socket of a device of interest and connect
with their Toon to gain insight in the power profile of the individual appliance. As part
of a demand side management trial by Eneco, a group of 130 households were sent smart
plugs for washing machine, dryer and dishwasher. Participants were requested to install
the plugs before November 1st, 2016 and not allowed to disconnect before May 1st, 2017.

The data consists of 10 second power measurements, similar to the smart meter data.
The main di↵erence is that only one single appliance is measured. The data was la-
belled with the same anonymised household code matching as the smart meter data,
with the added label for appliance type as provided by the participants.

The number of households from which dishwasher data could be retrieved reduced
down to 100 households. Reasons ranged from non-functioning plugs, connection is-
sues, people taking plugs out (in between) prior to the requested date to participants
not being able to install plugs, for instance because their dishwasher is built-in, making
it hard to reach.

Because several users did not directly install their plugs in the first weeks and the
longer the project progressed the higher the chance that participants had taken the
plugs out to test on other devices, a selection of three months was made. Three months
was chosen as an optimal period to strike a balance between enough data points to
train the model, but short enough to be able to provide insight within a time frame of
less than a 100 days. A selection of the data for the period December 2016 until March
2017 (winter 2016/17) was chosen and prepared for analysis.

Data processing

• Detection
To prepare the smart plug data for the consumption analysis, individual washes
have to be detected in the continuous plug power profile. To detect a wash the
start and stop time of the individual wash have to be recognised.

To detect the start time the moment of first instance of power consumption has to
be recognised. The only power consumption detected by a smart plug should be
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the consumption of the appliance that it is connected to. Therefore, the energy
consumption should be zero if the appliance is not in use. However, in practice it
was observed that small malfunctions can occur. Furthermore, standby functions,
such as start delay consume several watts, when in use. Consequently the starting
moment of 30 consecutive minutes of more then 10 watts of power consumption
was taken as a start of a new consumption cycle of the appliance.

To detect the stop time, the last moment of power consumption has to be recog-
nised. Since it is not uncommon that an appliance makes short intermediate stops
within a program, a stop of more then five consecutive minutes with power con-
sumption below 10 watts was taken as the end point of a program. As it could
happen that two consecutive dish washing cycles would occur, the risk arises that
two consecutive cycles would be counted as one. However, it was assumed that it
would take at least five minutes between two consecutive cycles, as it takes several
minutes to get the cleaned dishes out and refill the dishwasher, particularly as
dishes are still hot after a washing cycle. While some situations are thinkable
where a new wash is directly started, for instance because the user does not like
the cleaning performance and/or the soap dispenser did not open up the first time
and the user might restart a new (di↵erent) washing program, these cases would
stand out as a wash with very long duration and high energy usage and could be
filtered out based on that. Figure 3.5 shows a cutout of a single dishwasher wash.

Figure 3.6 shows there can be some variation to this profile with regards to factors
such as occurrence and duration of di↵erent phases. Profile 1 shows a standard
pattern for a program with two heating/drying phases and an energy consumption
of 1.21 kWh. Dishwasher profile 2 shows a comparable pattern, but a brief pause
of the heating, resulting in a frequency count of 3 heating moments, with calcu-
lated energy consumption of 1.24 kWh only slightly higher. Dishwasher profile 3
shows a program with three heating/drying moments and an energy consumption
of 1.58 kWh. Dishwasher profile 4 shows a program with four heating/drying cy-
cles, but only an energy consumption of 1.32 kWh as the total wash and heating
cycles are considerably shorter.
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Figure 3.5: Plug extracted load profile of dishwasher showing two distinct heating phases and
rinsing activity in between

Figure 3.6: Variation in dishwasher load profiles (exemplary, other variations possible)

• Feature extraction
The same feature extraction method from the algorithm of Base et al. to de-
tect features of the dishwasher within the meter signal (see 3.3.1), was used to
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detect di↵erent components of the washing program from the plug data as well.
This provides the opportunity to analyse the washing profiles in more detail and
compare plug and meter results on a component level instead of on the full wash
only.

• Usage frequency
For usage frequency analysis the data per household was split in calendar weeks
starting Monday morning and ending Sunday night. The detected washes per
week were aggregated to weekly washes, accounting both the total number of
washes per household in a week and the average energy consumption per wash.

3.3.2 Consumption estimation

Following the detection of the dishwasher, the aim of this step is to analyse how often it
is used and how much energy it uses per wash. Di↵erent algorithms to estimate number
of washes per week and the energy per wash were tested and compared. The chosen
algorithms and tested variations are discussed below. For more detail see Appendix
B.0.1.

Energy per wash estimation

As multiple appliances are usually active at once within a real-life household, the energy
of a wash can not be measured by the area under the curve for a smart meter detection,
such as was done for the smart plug. Therefore, to approximate the energy consumption
for a wash detected on the meter, another estimation algorithm was developed. The
energy estimation method uses the features generated in the detection process by the
method of Basu et al. to estimate the energy consumption of the detected wash. In or-
der to do this, the potential features were analysed first, to determine the most suitable.

Feature analysis
The following output variables from the detection algorithm were considered potentially
relevant for estimation of the energy per wash:

• Wash duration: the length (duration) of the total wash in minutes between
detected start and stop time

• Heating duration: the length (duration) in minutes of a single detected heating
moment

• Heating power: the height (power) in Watts of a single detected heating moment

• Heating moments: The total number of detected heating moments within the
washing cycle
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• Heating energy: The di↵erent heating moments within one detected washing
cycle were aggregated and multiplied with the heating power to calculate the
heating energy of the wash in kWh.

How close the energy estimation method comes to approximating the actual energy
consumption relies on two aspects. The precision with which the individual features
are detected and how much they individually influence the total consumption. To as-
sess how di↵erent features a↵ect the energy consumption, the plug calculated energy
consumption was matched with both the plug detection and meter detection. This can
also give a first indication on how well a feature is detected on the meter. To further
assess how well the meter detects the di↵erent features, the distribution for both meter
and plug and the correlation between meter and plug are compared for each feature of
interest. See the Feature analysis in Results subsection 4.2.1

Estimation
The energy estimation aims to calculate the amount of energy consumed by a wash
based on the features detected by the meter. This is done using a similar type of fea-
ture regression approach as described for washing machines in literature section 2.3.2.
In order to train the regression model the energy of a wash according to the plug mea-
surements has to be regressed with the meter detection features. While plugs do detect
all washes, not all washes that actually happened are detected on the meter (false neg-
atives) and not all washes detected by the meter, actually happened (false positives).
Therefore the energy consumption measured with the plugs and meter detection vari-
ables cannot be pair-matched for every individual wash. When pair-matching single
washes, only the true positives would match. All false positives and false negatives
would get discarded, which would result in bias in the training data. This would show
low detection error, but would actually perform poorly on unseen data. Therefore,
instead of training on individual washes, only aggregated plug and meter values are
investigated, resulting in one single value per household.

Per household i the energy consumption per wash, calculated with area under the
curve for plug detections (Energy

i
plug) is first regressed on the meter detection feature

set (X i
n,meter) for n included features.

Energy
i
plug = �0 + �1X

i
1,meter + ...+ �nX

i
n,meter + µ

i (3.8)

The measurement error of the detection algorithm can be divided into two aspects: a
bias or structural error and a random error. In comparison to the random error, which
can be thought of as noise and works in both directions, a structural error can be caused
by the design of the detection algorithm or bias in the underlying data that was used
to develop it.

As the first goal is to recognise as many correct appliances as possible, sometimes
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it can be more beneficial to over- or underestimate certain features to decrease the risk
of misrecognition. It can also be that this over- or underestimation is unintentional
and could be improved upon. In either way, intended or unintended structural under-
or overestimation of features get accounted for by the learned � values. The random
detection error for every feature are accounted for in the total error term µ

i. The re-

gression parameters are then used to estimate dEnergy
i

meter based on new, unseen meter
detection feature sets (X i

n,meter), as shown in the following estimation equation:

d
Energy

i
meter = �0 + �1X

i
1,meter + ...+ �nX

i
n,meter + µ

i (3.9)

To develop the estimation model, a variety of combinations of approaches were tested
and compared for the di↵erent features. For more information on the di↵erent regression
and aggregation approaches, including clustering methods such as GMM, see Appendix
B.0.1. The following approaches were considered:

• Regression approach
Two approaches to the regression were tested. One is to fit the regression based
on the training data (linear regression). The other is to use a heuristic for the
parameter values instead such as the average share of heating energy compared
to the total energy (heuristic approach).

• Aggregation
The energy consumption per wash over a period of multiple weeks was expressed
by both the aggregation to the average and aggregation to the mode. In addition,
clustering based on a Gaussian Mixture Model (GMM) was applied (see appendix
subsection B.0.1). This was done both to test the ability to distinguish di↵erent
washing programs and to potentially filter out misdetections.

The performance of the best performing algorithm is presented in Results subsection
4.2.1. For more on performance comparison see Appendix B.0.2.

Usage frequency estimation

The smart meter detection algorithm, as developed by Basu et al., was shown to have
a general detection accuracy of over 80% (ratio of false positives and false negatives are
not provided). Regardless if this number could go up with more and better data and
changes to the algorithm, a share of misdetections will stay inevitable. Depending on
whether the sensitivity of the algorithm is set to penalise false positives or false nega-
tives more, this will result in over detection or under detection of the weekly washes by
the meter compared to the actual number of washes (as measured by the smart plugs).
To estimate the number of weekly washes more closely, an estimation approach was
added.
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Estimation
The usage frequency estimation was developed to calculate the actual number of weekly
washes for each week based on the occurrence of washes detected by the smart meter
detection algorithm. To teach the algorithm to estimate this, the number of weekly
washes detected on the smart meter profile were first regressed on the actual number
of washes according to its related smart plug (see B.0.1 for more on regression). The
number of weekly washes according to the plugs (Washes

i,j
plug) for household i in week j

is given by the number of washes detected on the meter for that household in that week
(Washes

i,j
meter). This is regressed for regression parameters �0 and �1 with an error µi,j.

The following equation shows the regression of detected washes on the actual number
of washes according to the plugs.

Washes
i,j
plug = �0 + �1Washes

i,j
meter + µ

i,j (3.10)

The regression parameters are then used to estimate dWashes
i,j

meter based on new, unseen
Washes

i,j
meter, as shown in the following estimation equation:

dWashes
i,j

meter = �0 + �1Washes
i,j
meter (3.11)

There are several variations of these regression-estimation steps possible. For more
information on the di↵erent regression and aggregation approaches see Appendix B.0.1.
The performance of the following variations was compared:

• Regression approach
The generic linear regression as shown above was compared with a force zero
linear regression, where the �0 is set to zero. A generic linear regression results in
the lowest total estimation error. However, with this method �0 > 0, hence zero
weekly washes falls outside the estimation domain. The force zero fit therefore
can perform better on the lower numbers of weekly washes and reduces the risk of
estimating the occurrence of washes, while the owners were actually not at home
that week.

• Aggregation
Depending on the intended message both the mode and the average weekly washes
can be relevant. Therefore the number of weekly washes over a period of multiple
weeks was expressed by both the aggregation to the average and aggregation to
the mode.

• Aggregation Order
The aggregation order can matter as both have their trade-o↵s. First aggregating
of the weekly washes and then regression, reduces the noise, but also the available
data points as each household reduces to a single, similar weighted point. Vice
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versa when first regressing and then aggregating, more information, but including
noise is maintained.

The performance of the best performing algorithm is presented in Results subsection
4.2.2. For more on performance comparison see Appendix B.0.2.

3.3.3 E�ciency classification

After the estimation of the energy per wash and the number of weekly washes, the
final step is to be able to classify if a dishwasher is used e�ciently. In order to do
so, focus points for dishwasher e�ciency first had to be identified and are described
in the following subsection. Based on that both energy per wash and weekly washes
were identified as the main overarching focus points and a model to serve as proxy for
e�ciency was developed for both, described in the subsections hereafter.

Dishwasher e�ciency

When defining clean dishes over a specified period of time as the desired output for dish-
washer usage, (in accordance with the definition of energy e�ciency in section 2.4.1)
energy e�ciency for dishwasher usage would be achieved by reducing the total energy
consumed by the dishwasher over that same period, without sacrificing the desired
output of clean dishes. The components a↵ecting real-life dishwasher e�ciency were
grouped (see figure 3.7).
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Figure 3.7: Factors influencing energy e�ciency for dishwashers. Structured through con-
sultation with a field expert [130]

As described in 2.2.1 the total energy consumption depends on the average power us-
age and chance of operation at that specific moment in time. In literature section 2.3.1
factors related to dishwasher energy consumption were discussed. Besides owning a
dishwasher (share of penetration) the two most important identified factors contribut-
ing to the total energy consumption for a defined period such as a week or year are the
energy per wash and the total number of washes over a specified time period, referred
to as usage frequency.

Then individual sub-factors (section 2.4.3) a↵ecting real-life e�ciency, where grouped
depending on how they contribute to energy per wash and/or usage frequency. The
three important sub-factors a↵ecting energy per wash are the machine characteristics,
chosen washing program and ambient conditions. The usage frequency is mainly based
on usage of the machine capacity, the household size and dishes produced by family
members. The machine capacity is the only parameter a↵ecting both. According to the
subsection on the impact of behaviour (2.4.4), usage behaviour is the most important
cause for ine�ciency. Behaviour relates to the chosen washing program, amount of
dishes produced and loading capacity utilised.
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Classification threshold
For both energy consumption usage frequency e�ciency thresholds were defined. The
outcomes of the meter estimation were then measured against the set threshold to
classify if the estimated outcome can be categorised as e�cient usage. This meter
classification is then validated with the classification according to the smart plugs (see
subsection 3.2.4 for more on classification performance analysis). The following general
thresholds were used as proxy to classify ine�cient washing behaviour:

• Energy usage per wash: A general e�ciency target of 1.05kWh per wash was set.

• Usage frequency: A general e�ciency target of 4 washes per week set.

Note: These generic thresholds are also varied based on household and machine char-
acteristic see section 3.4.3.

The following two subsections describe the developed methods to define these e�ciency
threshold for energy per wash and usage frequency.

Energy per wash e�ciency

The EU energy e�ciency label calculations, described in theory section 2.4.2, set a
framework for e�cient energy usage for a dishwasher. However, e�ciency is defined
as an index number for annual energy consumption. To calculate an e�cient energy
consumption threshold (in kWh) on a per wash basis, the equations from the EU
e�ciency label have to be slightly rewritten. For a standard wash, defined as the
Normal (50�C) program, the following equation for annual energy consumption of the
household dishwasher (AEc) was used as starting point:

AEc = Et ⇤ AAW +X (3.12)

With Et = energy consumption of a standard wash [kWh], AAW, the average annual
number of washes (280) and X some small additional standby consumption. When
assuming X = 0, the energy per wash can be rewritten to:

Et = AEc/AAW (3.13)

The Energy E�ciency Index (EEI) in the e�ciency label calculations is calculated as
the ratio between annual energy consumption of the dishwasher (AEc), compared to a
standard dishwasher (SAEc) :

EEI = AEc/SAEc ⇤ 100 (3.14)

Rewriting this to AEc gives:

AEc = EEI ⇤ SAEc ⇤ 100 (3.15)
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Substituting that into equation 3.12, we get:

Et = (EEI ⇤ SAEc/100)/AAW (3.16)

With the standard annual energy consumption of the household dishwasher (SAEc)
depending on machine size in number of place settings (ps), either:

1. for household dishwashers with rated capacity ps � 10 and width > 50cm:

SAEc = 7, 0 ⇤ ps+ 378 (3.17)

2. for household dishwashers with rated capacity ps < 9 and household dishwashers
with rated capacity 9  ps  11 and width  50cm

SAEc = 25, 2 ⇤ ps+ 126 (3.18)

This shows that (Et), the energy consumption of a standard wash, is dependent on the
dishwasher’s energy e�ciency label (EEI), the machine size (ps) and the assumption
of 280 washes per year (AAW). Hence, when rated capacity and energy e�ciency for a
machine are known, maximum energy usage of the standard (50�C) wash can be calcu-
lated and used as an individual threshold for energy e�ciency of that dishwasher.
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Figure 3.8: Energy consumption calculated for di↵erent e�ciency labels, based on EU energy
label equations [140]

The energy consumption for di↵erent e�ciency labels and machines sizes was calcu-
lated. For an overview see appendix A.0.2. In figure 3.8 the results are plotted for a
12ps normal and 9ps compact machine for di↵erent e�ciency labels. As can be seen the
energy consumption decreases with about 10% per step in label e�ciency (as earlier
discussed when presenting table ??e literature section). Furthermore, the di↵erence
between the compact (9ps) and normal (12ps) is about 25%.

In the next figure, the energy consumption for di↵erent sized dishwashers is calcu-
lated for an A+ label, shown in 3.9. For the smaller (sized width  50cm) machines
the amount of couverts (ps) shows a stronger linear increase, increasing 0.3kWh over 5
steps. The normal (width > 50cm) machines are not as much influenced by number of
couverts (ps), increasing less than 0.1kWh over the same number of steps.
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Figure 3.9: Extrapolated energy consumption for di↵erent rated capacity (ps), based EU en-
ergy label calculation [140].

To establish a standard threshold to serve as proxy for e�ciency, the following charac-
teristics were chosen based on consultation with a field expert (R.Stamminger, 2017).
Most people have normal sized dishwasher (60cm), with 12 or 13 place settings. A+
with eco program is stated as e�cient in the Netherlands by Milieucentraal. According
to the label equations this corresponds with 1.05 kWh. The latest machines on the
market were then also confirmed with an analysis of 500 available models on Dutch
consumer website Consumentenbond, see appendix A.0.3, showing the latest models
are often 12 to 14 ps and A+ or A++.

Therefore, as an initial generic threshold the value of 1.05kWh was used as proxy bound-
ary for e�cient energy consumption. The energy consumption per wash estimated by
the energy estimation model (described in subsection 3.3.2) can then be compared with
this established threshold. This can be used to classify if a household consumes more
or less energy per wash, than the e�ciency threshold. For the performance of this
e�ciency classification see Results section 4.2.3.

Usage frequency e�ciency

In the EU e�ciency regulation no statements are made concerning what constitutes
e�cient usage frequency. Only an assumed number of standard annual washing cycles
of 280 washes per year is used within the calculations (see 2.4.2). The usage frequency
e�ciency analysis aims at developing an understanding for the average and potential
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optimal usage frequency of a dishwasher, when taking consumer and machine charac-
teristics (e.g. family size, machine size) into account.

In order to do this, two di↵erent approaches were considered. The first would be
to simply calculate the average weekly washes and take this as a threshold, or slightly
more sophisticated, make user groups, based on family and/or machine size, and calcu-
late the average for each group. Values above the average are interpreted as ine�cient,
values below are interpreted as e�cient. While this could provide a social comparison
between users, it provides no further information on whether this average is actually
e�cient. Furthermore, as most households in the sample group have similar sized ma-
chines, this would be unsuitable for further empirical distinctions.

Therefore, a second approach was considered. This approach is a bottom up esti-
mation of what number of weekly washes could be seen as e�cient usage, based on
consumer and machine characteristics as well as behavioural assumptions. The bottom
up approach was based on the household size and machine size:

H: Household size (people)

ps: Rated capacity and number of place settings

In addition certain assumptions have to be made about the amount of dishes produced
per person per meal:

TS: Number of table setting items per serving cycle per person were set to 11, accord-
ing to EU standard EN 50242 (see Table 2.3 )

AS: Number of additional large serving items per six serving cycles were assumed to
be 7 according to EU standard EN 50242 (see Table 2.3 )

sf: Size factor for large servings was assumed to be 3 to account for the relative
di↵erence in size for a standard couvert item and an additional item

Instead of a step up, adding a large amount of additional items for each 6ps, the
additional number was simply divided by 6. The number of table settings per dishwasher
size would then be calculated as:

Capacity = ps ⇤ TS + AS ⇤ sf/6 ⇤ ps (3.19)

This means the rated machine capacity (ps) is based on 11 items per place setting
(ps) and a large additional setting per 6 place settings. Table 3.2 shows the calculated
number of items assumed to fit in a dishwasher of di↵erent sizes:
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Table 3.2: Table settings per dishwasher type

Place settings Items

Type of dishwasher Min Max Min Max
Table dishwasher 4 6 58 87
Dishwasher (45 cm) 8 10 116 145
Dishwasher (60 cm) 12 16 174 232

Assuming 11 items per place setting and a large additional setting per 6 place settings

To calculate how many dishes are produced within a household of size H, assumptions
have to be made about the amount of servings per person per day and week:

D: Servings per day per person were assumed to be 3.

W: Number of days per week eating at home were assumed to be 6 (sensitivity)

On first sight 3 servings per day might seem a bit high, assuming 3 main meals per day
and people potentially also not being at home the whole day, particularly not during
lunch. However, this number, instead of for instance 2, was chosen to account for other
dishes resulting from snacks, drinking and food preparation as well.

Furthermore, instead of assuming additional items (AS) for every six serving cycles,
instead it was assumed these are produced only once a day for dinner. This assump-
tion was made based on the actual items this category includes, such as dinner bowls
(see Table 2.3). This assumption also tries to cover the potentially higher amount of
dishes produced by a single person and relatively decreasing e↵ect for every additional
household member (as noted in [24]).

Finally, to account for the relative high number of daily servings six days per week
eating at home were assumed. The total number of items per week was then calcu-
lated:

Items = [(H ⇤ TS ⇤D) + (AS ⇤ sf)] ⇤W (3.20)

Table 3.3 shows the calculated number of items assumed to be produced for di↵erent
household sizes. The number of weekly washes is then total number of items that need
to be cleaned on a weekly basis divided by the machine capacity, for each household
size. This resulted in table 3.4 of supposed minimum and maximum weekly washes,
depending on family size and machine capacity:
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Table 3.3: Total amount of items with increasing number of people

Number of
people

Items per person
per serving

Total items
per day1

Total items
per week2

1 18 54 324
2 14.5 87 522
3 13.3 120 720
4 12.75 153 918
5 12.4 186 1116

1
For 3 serving cycles per person and one large additional setting

2
For 6 days servings

Hence, when the family size and machine size are known, the specific maximum e�-
ciency threshold can be calculated (see Table 3.4).

Table 3.4: Assumed frequency e�ciency per week

Number of people

1 2 3 4 5

Type of dishwasher Min Max Min Max Min Max Min Max Min Max
Table dishwasher 3.7 5.6 6.0 9.0 8.3 12.4 10.6 15.8 12.8 19.2
Dishwasher (45 cm) 2.2 2.8 3.6 4.5 5.0 6.2 6.3 7.9 7.7 9.6
Dishwasher (60 cm) 1.4 1.9 2.3 3.0 3.1 4.1 4.0 5.3 4.8 6.4

To establish a standard threshold to serve as proxy for e�eincy, the following char-
acteristics were chosen. Most people in central Europe use a normal sized dishwasher
(60cm), with 12 or 13 place settings. The average family size sampled in the plug sur-
vey was 3.3. According to the model the minimum and maximum usage frequency for
3.3 household members lies between 3.4 and 4.6 washes per week, hence averaging at 4
washes per week. Considerably below the 5.4 resulting from the 280 washes assumed in
the energy label calculation, slightly below EuP and much in line with VEWIN research
by household size in the Netherlands (subsection 2.4.3).

Therefore, as an initial generic e�ciency threshold the value of 4 washes per week was
used for further analysis. The number of weekly washes estimated by the frequency
estimation (described in subsection 3.3.2) can then be compared with this established
threshold. This can be used to classify if a household washes more or less times per
week than the e�ciency threshold. For the performance of this e�ciency classification
see Results section 4.2.3.
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3.4 Smart Meter Model Deployment

This section describes the methodology used to analyse the output from one full year of
data on which the NILM detection system was applied for nearly 130.000 households.
The section starts with a description of the data preparation and processing of the
smart meter data and an accompanying survey. The subsection on consumption anal-
ysis outlines the aggregation and segmentation methods used to describe energy usage
and usage frequency statistics, dependency on time of the day, week and year and by
categories such as household size and machine characteristics. The last subsection de-
scribes how these results were used to analyse e�cient usage of dishwashers compared
to the established e�ciency thresholds.

3.4.1 Data preparation

The next component of this research is to deploy the developed model on a large-scale
set of households, without smart plugs. In addition to the smart meter profiles a survey
was conducted with a sample of the users. This subsection describes the preparation
of these two main data sets.

Smart meter analysis data

The smart meter data consists of the complete aggregate load profile of the household.
The di↵erent steps of the model were used to prepare the data for the consumption and
e�ciency analysis of the dishwashers.

Data gathering
Gathered smart meter data for 158,037 households in the Netherlands from the begin-
ning of January until the end of December 2018 was prepared and used for analysis.
The profiles were measured either by the smart meter or analogue meter and sent to the
Toon smart thermostat, which logged the data and sent it to a cloud database. This
data was accessed using big data library PySpark within a DataBricks user interface.
Data was already pre-processed to detect dishwashers out of the smart meter signal,
by K. Basu. The queried detection data was then used to apply the developed smart
meter model on (see section 3.3).

Data processing
Not all the data for every household was gathered from the same starting date and
some smart meter devices showed data logging gaps. To represent a year round of data,
two selection steps were applied:

• Only households were selected, for which detection data was available for a thresh-
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old of at least 40 weeks in 2018. In this year public and school holidays combined
to 92 days (3.03 months, see appendix table E.1). It was therefore assumed that
most people would not be absent from the household for more than twelve weeks
per year.

• The households were filtered to at least show some activity before the end of
February and some activity after October.

After the selection the dishwasher power profiles were detected within the aggregated
household power profile, by deploying the appliance detection algorithm. The smart
meter estimation algorithm could then be applied on the detected feature values. By
applying the estimation algorithm energy consumption per wash and the usage fre-
quency could be calculated for each individual household.

The energy detection of a dishwasher cycle was restricted to a maximum energy con-
sumption per wash of 3 kWh. The average energy consumption in 1970 was just below
3 kWh and has been going down to an average of below 1kWh for the more recent
models on the market (figure 2.10). It was assumed that no machine from before 1970
was in use. Outliers above this threshold were filtered out of the dataset because they
were assumed to be misdetections. Applying these filters on the smart meter data led
to a number of 129,137 households, which is a data loss of 18%.

Smart Meter survey

To gain more insight into how di↵erent household and machine characteristics a↵ect
energy consumption, results of a survey were added.

Data gathering
Those costumers of the Toon smart meter, who gave consent for the use of their electric-
ity data in research were o↵ered to use a mobile app to track their energy consumption.
A survey was developed for the app-users to retrieve additional features on machine
characteristics and usage behaviour. These included: household size, number of weekly
washes, machine size and energy e�ciency label.

The survey option appeared, when starting up the Toon app called ”Verspillingscheck”.
Users would receive information on their energy usage and were prompted to fill out
the questionnaire to help them gain a better understanding on factors a↵ecting the en-
ergy consumption of their appliance. In total 10,873 households took part in the survey.

Data processing
The smart meter survey data was matched with the smart meter data based on the
anonymous serial numbers of the households.
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3.4.2 Consumption analysis

The large scale smart meter data was analysed to retrieve information on overall energy
consumption and usage frequency statistics. Dishwasher consumption patterns were
compared for dependency on time from events such as holidays, day and weekly patterns
and seasonality. Finally, the survey results were matched to segment the outcomes based
on machine and household categories.

Consumption overview

For the consumption overview, summary statistics for common statistical parameters
(mean, std, min, max etc.) were generated per household. A summary of the total
energy per wash, per week and per year as well as the frequency of usage per week and
per year was retrieved. The calculation of energy per wash as well as weekly washes for
each individual household was based on the detection-estimation model as described in
section 3.3.

Summary statistics
The summary statistics for energy per wash were calculated based on the average en-
ergy per wash for each household. They were calculated non-weighted meaning each
household was considered equally, regardless of number of washes.

The number of weekly washes was based on averaging the number of washes per week
for all 52 weeks for every individual household. To represent weeks in which no wash
was detected, these weeks were added as zero values. The weekly energy consumption is
calculated by summing the energy consumption of each wash in that week and, likewise
to the weekly washes, averaging these 52 weeks over the course of the year. The annual
number of washes and total energy consumption was then summed over the whole year
for each individual household and summary statistics were calculated.

Data distribution
In order to better understand how summary statistics for the di↵erent data sets com-
pare, the energy consumption and usage frequency for all nearly 130.000 households for
whom activity was detected from the smart meter, was compared with the respective
data available from the 100 households with smart plugs installed and the sub-group of
nearly 11.000 households who filled out the survey. Plug data was gathered from Nov
2016 until Feb 2017. To ensure no e↵ect of seasonality, the same months are used for
this comparison. Since smart meter data is available for the full year 2018, the months
January, February and December were taken from 2018.

Results can be seen in subsection 4.3.1.
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Consumption time dependency

While the statistics in the previous subsection look at energy consumption per wash
and number of washes per week, averaged based on a full year of data, consumption
patterns can potentially vary throughout the day, week and seasons. Since a major
change was made to the sensitivity of the detection algorithm in week 15 of gathering
the data, the time line has been adjusted to match the time period before and after
this change in week 15. For more on this change, see appendix E.1.

Seasonality on energy per wash
For the assessment of seasonal influences, the weekly aggregated average energy con-
sumption for each week was plotted. The pattern was then compared to weekly mean
outside temperature of the Netherlands measured by weather stations per day in 2018,
downloaded from KNMI (Royal Netherlands Meteorological Institute) [161]

Seasonality on washes per week
To asses the e↵ects of seasonality and e↵ects of events such as holidays throughout the
year on usage frequency, the average weekly washes were plotted as well. The pattern
was compared with data on public holidays in the Netherlands in 2018 (see appendix
table E.1) to assess the impact of these events.

Week-hour activity pattern
To analyse the chance that dishwashers are being used at di↵erent times of the day
and week, the amount of washes per week-hours was assessed. For this aggregation,
all counts for dishwasher start times at a specific hour of a week were summed. All
week-hours of a respective week were then summed for the year of available data. To
assess the relative share of the washes per week-hour, all washes found were divided by
the total number of households. The resulting data adds to 100% of all detected washes
in the year, with each hour of the week representing how many washes were started on
that particular hour throughout the year, revealing a pattern for dishwasher usage.

Results can be seen in subsection 4.3.3.

Consumption category dependency

To compare dependency on household and machine characteristics, the survey data was
matched with the smart meter data and statistics were compared for the di↵erent sub-
groups. Available factors such as machine and household characteristics were matched
with energy per wash and usage frequency, in accordance with dependencies shown in
figure 3.7 and as modelled as factors for the e�ciency thresholds in section 3.3.3.
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E↵ect of dishwasher capacity on energy and frequency
Both the energy per wash and the washing frequency were shown to relate to the ma-
chine capacity (ps). Therefore, the dishwasher size stated in the survey was combined
with the average detected energy and average weekly detected washes of the meter data.

E↵ect of family size on usage frequency
The other major factor a↵ecting usage frequency, was number of household members.
To see the e↵ect of household size, the stated number of washes and the detected washes
where combined and then grouped by the stated household size. The stated average
weekly washing frequency was compared to the detected smart meter average.

E↵ect of e�ciency label and washing temperature on energy
Finally, the e�ciency label and washing temperature are the factors mainly a↵ecting
washing temperature. Hence, the stated e�ciency label and washing temperature where
grouped and connected with average detected energy.

Results can be seen in subsection 4.3.2.

3.4.3 E�ciency analysis

After gaining understanding about factors that a↵ect the energy consumption and us-
age patterns of dishwasher usage, the final step is to determine how e�cient households
use their dishwashers. First the estimated energy consumption and number of weekly
washes are compared to the generic e�ciency thresholds. Next these findings are com-
pared by category to look at the relative e�ciency. Finally the findings are summarised
to calculate how much households could potentially reduce their annual dishwasher
energy consumption.

Generic e�ciency classification

For both energy per wash and weekly usage the estimated usage was compared to the
generic binary thresholds established to serve as proxy for e�cient usage (as described
in subsection 3.3.3). Households over this set threshold are classified as (potentially)
ine�cient. Using a binary threshold as initial indication for e�cient dishwasher us-
age provides the opportunity to assess the potential usage e�ciency without additional
information on such factors as family size, machine size and e�ciency label, poten-
tially making this applicable to all nearly 130.000 monitored households. However, the
additional survey information can be used to gain a deeper understanding about the
household and machine characteristics, in order to better understand reasons for some
identified potential ine�cient usage as well. In order to compare the results on several
household and machine characteristics in the next steps, the e�ciency classification was
only applied for the nearly 11.000 households who filled out the survey.
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The set generic threshold could be varied to optimise the amount of false positives,
false negatives or overall accuracy. Sensitivity to these adjustments was therefore com-
pared. The survey results were taken as reference measure in order to calculate how
often the model makes the same classification as how the household would be classified
based on their survey results.

Relative e�ciency classification

Classifications made for the generic threshold were then compared to a classification in
relation to the household and machine characteristics of the individual household. In
order to make these specific thresholds, the same model approach was used as described
in subsection 3.3.3) to find the generic thresholds. However, instead of using certain
average values based on the literature, for each individual user, who filled out the
survey, the information from the survey, such as e�ciency label, machine size and
number of household members was then used to calculate a threshold to serve as a more
specific proxy for e�cient usage for their situation. The results for each category were
then segmented to show how the generic and specific thresholds compare in classifying
e�cient dishwasher usage.

Potential energy savings

To summarise these findings and indicate how much energy households could potentially
save on average on their dishwasher usage, the two generic thresholds were combined
and compared to the annual energy consumption. Based on the 1.05 kWh per wash and
4 weekly washes an annual energy threshold of 218kWh was established. Households
were then segmented based on their assigned e�ciency classification from the previous
steps (ine�cient usage frequency, high energy consumption per wash) to show how
much households could potentially save on their annual energy consumption based on
the di↵erent potential improvements.
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3.5 Methodology conclusion

The methodology uses findings from the first and second research sub-questions to de-
velop an approach to prepare for answering sub-questions 3, 4 and 5. Sub-question
2 was already answered in part in the literature chapter by looking at existing litera-
ture on NILM research. This was found to mainly focus on the detection of appliance
activity, but less on real-world application steps after detection. The methodology de-
veloped in this research extends this to be able to analyse energy and e�ciency of real
life dishwasher usage, by that answering sub-question 2:

2. How can a smart meter based NILM system be developed to de-
tect energy consumption, usage pattern and e�ciency characteristics
for dishwashers?

The research consists of two phases: development and deployment. The devel-
opment consists of two components; the plug analysis was done as a preparatory
step to develop the estimation model and hence is completely integrated within
the model development section. Each of the three components then consisted of 3
main steps: Data acquisition and processing, which includes the detection, then
consumption estimation and analysis and finally the e�ciency classification and
analysis.

In order to do this, first a model was developed in Python to calculate dishwasher
energy usage and washing frequency and then classify e�cient usage based on
data from the central meter. The developed system was deployed on a very large
set of smart meter data to non-intrusively analyse energy consumption, usage
pattern and e�ciency characteristics of real-life dishwasher usage in households.

The model developed in this research extends the NILM methodology developed
by K. Basu (2017), which provided the possibility of detecting dishwasher usage
on the smart meter power signal. This research used 100 households with plugs
connected to the dishwasher and smart meter data sampled at 10 second inter-
vals to develop a more granular level of detection. Energy consumption per wash
was estimated, using linear regression on several of the detected features such
as total heating period, heating power and number of heating moments. Energy
consumption as calculated from the plug data was used to calibrate the regression
parameters of the NILM algorithm.

In order to assess the e�ciency of the dishwasher usage a binary threshold model
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was developed, serving as a proxy for e�cient energy consumption per wash in
kWh and e�cient usage frequency in number of washes per week. In order to
establish values for the energy e�ciency threshold the Eco design regulation was
used, which contains calculations for dishwashers based on e�ciency label and
size and assuming a standard washing program. For usage frequency only an
assumption of 280 washes per year is available, but no information is given on
what usage frequency could be considered as e�cient. Therefore weekly usage was
estimated with a model based on number of family members and daily usage of
dishes. Both e�ciency thresholds were calibrated to improve accuracy based on
the 100 validation households. The developed model was then deployed to analyse
energy consumption, usage pattern and e�ciency characteristics for dishwashers
for nearly 130.000 households with smart meters for the period of one full year.
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4.1 Results introduction

The results chapter consists of two main parts, analysis of the developed model and
analysis of the results from its deployment. Research question 3 is answered in the
first section. The first part of the results (4.1) shows how the newly developed system
performs in detecting energy usage, usage frequency and e�ciency for dishwashers from
the smart-meter signal. To develop the model, characteristics of dishwasher usage first
had to be analysed based on data from the plugs, hence part of research question 4
and 5 are answered in this comparison already as well. To assess the accuracy of the
model, the output based on the smart meter data is compared with the smart plug
data. More detailed analysis of the smart plug data can be found in Appendix C and a
comparison of several other tested algorithms in Appendix D. Section 4.2 displays the
results of the real-life application of the newly developed NILM-based detection system.
The results for the consumption analysis consist of energy usage and usage frequency
averages depending on time, household and machine characteristics and ends with an
e�ciency analysis, by that answering question 4 and 5. Some additional results are
given in Appendix E.

Answers the following sub-questions:

3. How does the newly developed system perform in detecting energy usage and
e�ciency?

4. How much energy do dishwashers in households consume and how often are they
used, depending on time, household and machine characteristics?

5. How e�ciently are dishwashers used in households?
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4.2 Smart Meter Model Development

This section describes how the newly developed system performs in detecting energy
usage, usage frequency and e�ciency for dishwashers from the smart meter signal. To
asses the performance of the model the output based on the smart meter data is com-
pared with the smart plug data. The summary statistics of an analysis of the smart
plug data (see appendix C for more detail) is compared with the summary statistics
for the developed smart meter model. The accuracy for di↵erent model approaches was
compared (see appendix D for more detail). The main results for the best function-
ing approaches are presented in the following subsections on energy per wash, usage
frequency and e�ciency classification.

4.2.1 Energy per wash estimation

This paragraph presents the accuracy of estimation of the energy consumption per wash
based on smart meter data. The estimation of the energy consumption per wash utilises
the detection features in a regression model to estimate the energy consumption as dis-
cussed in methodology subsection 3.3.2. First the predictive quality of selected features
is shown, followed by an overview of performance for several estimation methods.

Feature analysis

To reveal which features are most relevant for the energy estimation, the predictive
quality is assessed. The predictive quality of the di↵erent selected features depends on
how important they are for the energy consumption and how well they are detected.
The summary statistics of the considered features have been compared for both smart-
plug and smart meter detections. Table 4.1 presents the selected features summarised
for all individual investigated (5691) washes, as detected by the smart plugs. The table
shows the data from the smart plugs as this best reveals the actual value of the features,
a similar table for smart meter data can be found in appendix D.0.1.

As can be seen in table 4.1 the mean energy consumption of one total wash is 1.21
kWh. This total energy consumption can be split up into di↵erent processes. At 82%,
the largest share of the energy is used for the water heating, translating into an average
energy usage of 1 kWh. The remaining 0.21 kWh is used by other processes such as
rinsing, drying and pumping water. The average total duration of water heating is 30
min, which is spread over an average of 2.7 heating cycles, making up about one third
of the total duration of the wash.

However, as washes can get missed or misdetected by the smart meter, not every detec-
tion can be matched with its individual smart plug detection and therefore cannot be
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matched with the energy consumption as measured by the smart plug. The energy as
measured by the smart plug can therefore only be connected with the smart meter data
on a per household aggregated level. Comparing the smart plug values with the results
averaged and aggregated for 100 households (appendix D.0.1) only slight di↵erences
were noted. Most notably the energy per wash changes slightly to 1.22kWh, which we
will use as average number detected by the smart plugs in further analysis.

Table 4.1: Summary statistics of potential energy consumption parameters for all washes
detected by the smart plugs

Plug detected consumption parameters

counta mean std min median max

Energy usage of total wash [kWh] 5691 1.21 0.27 0.44 1.18 2.29
Energy usage of water heating [kWh] 5691 1.00 0.25 0.36 0.97 1.99
Share of energy for water heating 5691 82% 8% 40% 84% 99%

Duration of total wash [min] 5691 85 30 21 85 159
Duration of water heating [min] 5691 30 8 11 29 69
Heating power [kW] 5691 2.0 0.1 1.3 2.0 2.3
Number of heating moments 5691 2.7 0.8 2 2 5
a
Number of washes

To assess the relevance of these parameters with regards to energy consumption per
wash, the correlation is presented in table 4.2. Some parameters such as duration of
water heating and energy usage of water heating show high correlations, while param-
eters such as duration of total and heating power show lower correlation. The area,
expressed by the energy usage of water heating consequently shows a very high corre-
lation with energy usage. As it is responsible for an average of 82% of the energy usage
for smart plug detections and 78% as detected by the smart meter (appendix D.0.1), it
results in a 0.94 correlatation for averaged smart plug detections and 0.82 for averaged
smart meter detections.
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Table 4.2: Pearson correlation of selected parameters with energy usage in kWh per wash
for all smart plug detections and smart plug and smart meter detections averaged
per household

All plug Avg plug Avg meter

counta corr counta corr counta corr

Energy heating water 5691 0.92 100 0.94 100 0.82

Duration total wash 5691 0.32 100 0.21 100 0.22
Duration heating water 5691 0.90 100 0.90 100 0.82
Heating power 5691 -0.03 100 -0.03 100 -0.02
Heating moments 5691 0.66 100 0.61 100 0.51
a
Number of washes
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Figure 4.1: Overview of selected features (columns) detected by smart plug and smart meter
(referred to as plug and meter)
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Figure 4.1 gives a graphical representation of the assessment for the di↵erent features
(same feature below each other in each row). In the top row a regression of selected
features compared to energy for all smart plug detections are shown in a scatter plot. In
the second row the distribution of these features for all detections with smart plugs and
smart meters are shown. The third row depicts the distributions of the same features
averaged per household. In the fourth row the scatter plots for the household averaged
detections for smart plug and smart meter are plotted against each other. On the hor-
izontal axis the smart plug values and on the vertical axis the smart meter values are
given. The dark grey line shows perfect correlation, where the smart meter would detect
exactly the same as the smart plugs. The red line shows the actual relationship, were
deviation from the grey line represents the level of over- or underdetection. The fifth
row shows the scatter plot of the per household averaged smart meter detected values
versus the matching per household averaged smart plug detected energy consumption
per wash. The findings for each of the four features are described below:

Total wash duration [min] in the first column the rather broad spread of data-
points is in line with the low correlation between wash duration and energy of 0.32. In
row two and three, the distribution is overlapping considerably accurate. The di↵erence
here is that the averaged smart meter data is centering more around the mean than
the averaged smart plug data and detects far outliers less well. When considering the
respective scatter in row 4, it can be seen that the scatter for this parameter aligns well
around the smart plug-meter correlation line, though the lower smart plug detections
are slightly overestimated for instance at 40 minutes the smart meter might detect 70
minutes and at some of the longer washes the duration is underestimated on the smart
meter.

Duration of the water heating [min] in the second column can be seen to be
highly correlated with energy usage (0.92 as shown in table 4.2). The distributions
in both the second and third row show that the smart meter distribution (green) is
shifted to the left. In the respective scatter plot in row four, this is stipulated by most
detections being below the correlation line. Hence, the heating duration is often under-
estimated by the smart meter. Nevertheless, despite underestimation, the detections
do show to tightly scatter around the regression line in row five.

Heating power [kW] is presented in column three. Heating power seems to be scat-
tered quite broadly. A visual inspection of the smart plug data showed that the smart
plug detection was not performing so well on detecting the power of the water heating.
Often small signal breakages distorted how high a heating block was estimated, hence
smart plug data is not such a precise representation of reality in this case either. Nev-
ertheless, averaged smart meter detection data does fall in the right range and overlaps
actually quite close with smart plug detection.
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Number of heating moments in the far right column shows a step up pattern,
which resulted in a correlation factor of 0.66. The second, third and fourth row clearly
indicate an underdetection in the number of heating moments, which seams a reason-
able explanation for the heating duration being underdetected, as apparently every now
and then a heating moment at either the beginning or end of the wash is missed.

Heating energy [kWh] is not shown here as this was not a seperate feature of the
detection algoritm. However, it can be simply calculated by multiplying the heating
duration with power. According to table 4.1 this represents 82% of the total energy
consumption as measured by the smart plugs and according to table 4.2 has the highest
correlation with energy.

Estimation model

To further investigate the relation between energy and the most relevant detection
feature, i.e. heating energy, the two variables are plotted against each other. Figure
4.2 shows the average kWh of a wash detected by the smart plugs on the vertical axis
and the average heating energy per wash detected by the smart meter on the horizontal
axis. The diagonal black line shows the case of a perfect linear relationship between the
2 variables. Each dot represents one household, the size represents the total number of
observed washes.

Figure 4.2: Average energy usage per wash detected by smart plugs and by smart meter

As can be seen, the regression line (dark blue) through the scatter plot is horizontally

90



Eneco-Toon • Smart Home Energy E�ciency • 2022

shifted upwards by roughly 0.2 kWh, with some slight variation towards the edges (re-
gression error in shaded blue). This indicates that the heating energy is an adequate
approach to determine the average energy consumption, in particular when adding a
standard o↵set of 200Wh (about 16%) for the other energy processes. From the 95%
interval indicated by the dashed grey line a standard deviation of roughly 0.1 kWh can
be read o↵. However, it has to be noted the o↵set depends on the ratio between heating
energy and the other activities, both the o↵set value and ratio would therefore likely
change and therefore need to be updated over time for newer machines.

Estimation approaches
To further investigate what approach performs best, several di↵erent alterations were
investigated. The estimation approaches can be split in two categories, one is the heuris-
tic approach, the other is using a regression model. The heuristic method is based on
set assumptions, while the regression model aims to capture the detection bias with the
regression parameters (see 3.3.2). Based on the features that showed good correlation in
the previous subsection, several combinations were assessed. The estimation methods
where chosen on basis of simplicity and accuracy (for more detailed accuracy assess-
ment of di↵erent investigated combinations see appendix table D.3). The following
three estimation methods were selected for further comparison:

Predict 1: A heuristic approach that uses the heating energy as the first variable and
adds an average o↵set (mean energy usage of the category ’other’) at 200Wh.

Predict 2: Linear regression estimating the parameters based on heating energy + heat-
ing power + heating duration + wash duration + number of heating moments.

Predict 3: Linear regression only using number of heating moments + heating energy

To match energy (from smart detections) with features from the smart meter detections
the data has to be aggregated for each household. As aggregation method the average
and mode were calculated and tested for di↵erent estimation methods (detailed results
see appendix D.0.1). Additionally for the best performing algorithm the GMM cluster-
ing was considered and tested (detailed results see appendix D.4). The estimation of
average energy consumption per wash could be achieved with a lower estimation error
than the estimation error of the most common wash (mode) and GMM .

Summary statistics
Summary statistics for energy usage per wash for the 100 test housheholds (number
of households specified as count in table below) are shown in table 4.3. The data is
based on averages for each household. The three selected estimation models are com-
pared with the energy as retrieved from the smart smart and the direct smart meter
detections. The smart meter category represents direct calculation of energy from the
heating block only (multiplying maximum power with total heating duration), which
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can be thought of as the most straightforward energy estimation method (or Predict
0). Predict 1 follows the most straight forward heuristic approach. Predict 2 includes
all regressors while for Predict 3 several of the less relevant variables were pruned to
only contain the ones with the highest predictive quality.

Table 4.3: Summary statistics for averaged dishwasher energy usage per wash

Smart plug Smart meter Predict 1 Predict 2 Predict 3

Averaged
counta 100 100 100 100 100
meanb 1.22 1.02 1.23 1.22 1.22
std 0.20 0.17 0.17 0.18 0.18
min 0.86 0.65 0.86 0.86 0.84
median 1.18 1.01 1.23 1.21 1.21
max 1.69 1.41 1.62 1.66 1.62
a
Count is number of households

b
Average energy per wash for 100 households, averaged over

all washes in a period of 12 weeks.

The distribution of the three estimation methods is depicted by the respective proba-
bility density functions of average energy usage per wash per household in figure 4.3.

Figure 4.3: Probability density functions of average energy usage per wash per household for
smart plug, smart meter and di↵erent estimation methods

The average energy consumption (mean) of the smart-meter detection diverges 0.20
kWh from the smart-plug detection (table 4.3). In the distribution figure it can also be
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seen that the smart meter alone (green) is considerably o↵ from the smart plugs (blue).
The estimation methods (Predict 1, 2, 3) all show better overlap in distribution. Pre-
dict 3 (yellow) shows the best overlap with the smart plugs. However, a performance
di↵erence between the estimation methods can not be made on the basis of this analysis
alone.

Uncertainty analysis
To compare the performance of the di↵erent estimation methods, the accuracy of esti-
mation was calculated (for more on estimation assessment, see appendix B.0.2). Heat-
ing energy shows to be the most relevant regressor, with an NRSME (Normalized Root
Mean Square Error) of 9.1%. Number of heating moments shows to be relevant (corre-
lation of 0.66) but produces relatively poor result as single regressor with an NRMSE
of 14.4%. However, the combination of the regressors heating energy and heating mo-
ments appear to have the lowest NRSME of 8.8%. Predict 1 (9.2%) and Predict 2
(9.1%) perform slightly less accurate (more detailed results in appendix D.0.1).

Figure 4.4: Di↵erence between average energy usage per wash by smart plug and estimated
versus smart plug average

Finally, to better understand the error distribution, figure 4.4 shows the di↵erence be-
tween the average energy usage (in kWh) by smart plug measurements and what is
estimated using Predict 3. The average energy consumption by both smart and Predict
3 was estimated to be 1.22kWh (table 4.3), resulting in a mean di↵erence of 0 (hor-
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izontal grey line). It shows that 95% (dashed grey line) of the estimation errors fall
between +0.21 and -0.21 kWh. This is in line with an 8.8% NRSME on an average
energy consumption per wash of 1.22 kWh. The regression shows that more often there
is a slight over-estimation for energy consumption per wash below the mean energy con-
sumption and more often an under-estimation of energy consumption per wash above
the mean. While this is a common result of the o↵set (�0) weighing relatively higher
for the lower values and relatively lower for the higher values, it is an important factor
a↵ecting estimates further away from the mean. While this a↵ect can be shown in com-
parison to the smart plug detections in figure 4.4, for future estimates where no smart
plug data is available, the extent to which a value is over- or underestimated is unknown.

4.2.2 Usage frequency estimation

Not all washes get detected (false negatives) and some detected washes are actually
misdetections (false positive). While this varies by household, the NILM detection al-
gorithm showed an average rate of 15 false positives and 26 false negatives per 100
correct detected washes. The detection model can be balanced. Balancing it to reduce
false positives, increases the precision and hence can improve the accuracy of energy
estimation. However, the higher rated of missed washes (false negatives) results in
underestimation of the weekly number of washes. In the previous subsection the rela-
tionship between energy per was and detected features was investigated to be able to
estimate the energy per wash. A similar relationship can be analysed for weekly washes
detected on the smart meter, compared to the smart plugs.

Figure 4.5 shows the weekly smart meter detections on the horizontal axis, plotted
against the smart plug detections on the vertical axis. Every dot represents a combi-
nation of the number of smart meter detections in a week for a particular household
versus what was actually detected by the corresponding smart plug. Bigger dots imply
that the combination occurred more often. The black line shows the zero di↵erence line.
The bubbles would align closely around this line if the smart meter detects a similar
amount of weekly washes as the smart plugs. The blue line shows the regression for
the actual relationship between washes detected by the smart meter compared to the
smart plugs, including its error in shaded blue. The grey dotted line shows the 95%
interval around the regression line.

94



Eneco-Toon • Smart Home Energy E�ciency • 2022

Figure 4.5: Weekly dishwasher usage count detected by smart meter versus detected by smart
plugs

It can be seen that most bubbles are above the zero di↵erence line, indicating that the
number of weekly washes according to the smart plugs are higher than the number of
washes detected by the smart meter. The regression line does not line up with the
zero di↵erence line as it did for the energy regression. It starts at slightly over three,
where underdetection by the smart meter occurs i.e. it more often misses washes (false
negatives) and there are not so many false positives. This is because the aim is to
rather estimate on high quality detections i.e. detections where one can be very sure
that it is a dishwasher instead of creating a lot of noise by mis-detecting dishwashers
where the algorithm is less certain, hence these are dropped out.

Shown in table 4.4 the summary statistics for the 100 sample households (number of
households specified as count in table below), the number of weekly washes, averaged
per household over the period of 12 weeks. A comparison is made between summary
statistics of weekly detections for smart plugs compared with smart meter detections
and several estimation methods based on the smart meter detections:

Predict 1: Basic linear regression (as depicted in figure 4.5)

Predict 2: Linear regression forcing regression parameter �0 = 0, resulting in the re-
gression starting without additional o↵set

Predict 3: Linear regression as a hybrid of predict 1 and 2. Uses the estimation resulting
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from Predict 2. However, it uses the di↵erence between the mean value of Predict
1 and Predict 2 and adds this as an o↵set.

Table 4.4: Summary statistics for dishwasher: Averaged weekly detections by smart plug
and smart meter and estimations on usage frequency according to three di↵erent
estimation methods

Plug Meter Predict 1 Predict 2 Predict 3

Averaged
counta 100 100 100 100 100
meanb 5.2 3.9 5.2 4.7 5.2
std 2.1 1.6 1.2 2.0 2.0
min 1 1.1 3.2 1.2 1.8
median 5.6 3.8 5.2 4.6 5.2
max 11.3 9.2 9.1 11.1 11.7
a
Count is number of households

b
Weekly dishwasher detections for 100 households, averaged

over a period of 12 weeks.

According to the smart plug data, average weekly washes is 5.2. The smart meter un-
derdetects this on average with 1.3 washes, detecting an average of only 3.9 washes per
week. Predict 1 matches the same mean value, but the standard deviation and min and
max values, show it allows for considerably less variation. Predict 2 provides for more
variation, but with 4.7 results in a lower mean value. As the algorithm is forced to
keep �0 = 0 and aims to reduce the error rate from there, it can result in a discrepancy
between the estimated and actual mean value if this reduces the overall error rate. By
adding the di↵erence between this mean value and the correct mean value found with
the general regression (Predict 1) as an o↵set, both a correct mean value and wide
variation are provided.

Figure 4.6 shows the distribution of smart plug data in blue, combined with the smart
meter data (green) and the three estimation methods. As can be seen the smart meter
has the least overlap with the smart plug distribution, Predict 1 (red) has the same
mean but less variance in distribution, Predict 2 (purple) comes closer but does not
have the correct mean, predict 3 (yellow) shows most overlap with the smart plugs.
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Figure 4.6: Probability density functions of average weekly detections per household for
smart plug, smart meter and di↵erent estimation methods

Uncertainty analysis
To compare the performance of the di↵erent estimation methods, the accuracy of esti-
mation was calculated (for more on estimation assessment, see appendix D.0.2). Look-
ing at the results in D.5 it shows that all estimation methods perform better than
direct smart meter detection. With a mean NRMSE of 27.2% the average of regression
method in combination with Predict 3 appears to create the best result.

Algorithm Predict 3 was used for the di↵erence plot, to compare estimation results
with what was detected by the corresponding smart plug for a specific household in
a specific week (see figure 4.7). On the horizontal axis the average number of washes
per week, according to the smart plug. On the vertical axis the di↵erence with what
is estimated. The mean usage frequency according to both smart plugs and Predict 3
was estimated to be 5.2 washes per week (table 4.3), resulting in a mean di↵erence of
0 (horizontal grey line). It shows that 95% (dashed grey line) of the estimation errors
fall between +2.8 and -2.8 washes. This is in line with a 27.2% NRSME on a average
number of 5.2 weekly washes.
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Figure 4.7: Di↵erence between weekly usage counted by smart plug and estimated versus
smart plug average

4.2.3 E�ciency classification

The estimated energy consumption per wash and estimated weekly usage can be used
to classify if a household uses their dishwasher below the set e�ciency thresholds. In
this subsection the performance of this binary classification is assessed (for more on
classification assessment, see methodology subsection 3.2.4). The thresholds can be
varied to optimise the amount of false positives, false negatives or overall accuracy.
Both the standard and optimal results are shown for set thresholds and the diagnostic
ability visually compared.

Energy per wash e�ciency

To assess e�ciency with smart plugs, the set threshold of 1.05 kWh (see methodology
subsection 3.3.3) can be compared with the energy consumption based on the smart
plug’s power measurement. The same can be done for energy estimated based on smart
meter detections. Figure 4.8 shows smart measurements on the vertical axis, with the
dark grey line as binary threshold for e�ciency. All (22%) households below that (in
green) according to the smart plugs are using an e�cient amount of energy per wash.
All (78%) households above that threshold on average wash ine�ciently according to
the smart plugs (in red).
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Figure 4.8: Classification of e�cient and ine�cient average energy usage per dishwasher
wash for estimated versus actual smart plug detections

When applying the same threshold value to the smart meter estimated average en-
ergy per wash, several (18) households are wrongly classified. Either as (8) red crosses
depicting classified as e�cient while actually being ine�cient according to the smart
plugs (false negative). Green crosses are the (10) households that are classified as in-
e�cient based on the estimated energy per wash while according to the smart plug
data they are actually e�cient (false positives). The dots represent households that
are either (12) correctly classified as e�cient (green) true negatives or (70) ine�cient
(red) true positives. The straight grey horizontal line is constant at the set threshold.
The dotted grey line can be varied based on what shows the best classification accuracy.

Classification accuracy
Based on the above true and false positives and negatives, the precision and recall can
be calculated. For a threshold of 1.05kWh a precision of 0.88, a recall of 0.90 and a
F1 score of 0.89 were found. Table 4.5 shows the threshold in kWh per wash for the
standard threshold, maximum precision, F1 score and recall against the related preci-
sion, recall and F1 score. It can be seen that the maximum accuracy (F1 = 0.91) can
be achieved at a threshold of 1.01 kWh resulting in a precision of 0.86 and a recall of
0.97. When focusing on maximum precision a threshold of 1.19 kWh would be optimal,
resulting in a recall of 0.68 and an F1 score of 0.81. When focusing on maximum recall
a threshold of 0.84 kWh would be optimal, resulting in a precision of 0.78 and an F1
score of 0.88.
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Table 4.5: Maximum precision, recall and F1 score under di↵erent es-
timation thresholds for e�ciency classification of average
energy usage per dishwasher wash

Threshold Precision Recall F1 score

0. Standard Threshold 1.05 0.88 0.90 0.89
1. Maximum Precision 1.19 1.00 0.68 0.81
2. Maximum F1 score 1.01 0.86 0.97 0.91
3. Maximum Recall 0.84 0.78 1.00 0.88

Based on calculation of 300 confusion matrices for di↵erent thresholds for the estimated

average energy usage per wash. The threshold for smart plug values was fixed at 1.05 kWh

per wash, while the threshold for estimated average energy usage per wash was varied.

Usage frequency e�ciency

A similar plot can be made for average smart plug detections per week (on the vertical
axis) against average weekly estimated washes (horizontal). A set threshold of 4 washes
per week (see methodology subsection 3.3.3) results in 31% classified e�cient. Of those
22 households (green dots) are also correctly classified as e�cient with the algorithm
and 9 (green crosses) falsely classified as ine�cient. Of the 69% red, 7 (crosses) are
mislabelled and 62 (dots) correctly identified as ine�cient, compared to the set thresh-
old.
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Figure 4.9: Classification of e�cient and ine�cient average weekly dishwasher usage fre-
quency for estimated versus actual smart plug detections

Classification accuracy
For a threshold of 4 washes per week a precision of 0.87, a recall of 0.90 and a F1 score
of 0.89 were found. Table 4.6 shows the threshold in days per week for the standard
threshold, maximum precision, F1 score and recall against the related precision, recall
and F1 score. It can be seen that the maximum accuracy (F1 = 0.89) can be achieved
at a threshold of 3.39 days resulting in a precision of 0.83 and a recall of 0.97. When
focusing on maximum precision a threshold of 6.61 days would be optimal, resulting in
a recall of 0.3 and an F1 score of 0.81. When focusing on maximum recall a threshold
of 2.22 days would be optimal, resulting in a precision of 0.73 and an F1 score of 0.88.
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Table 4.6: Maximum precision, recall and F1 score under di↵erent es-
timation thresholds for e�ciency classification of average
weekly dishwasher usage

Threshold Precision Recall F1 score

0. Standard Threshold 4.00 0.87 0.90 0.89
1. Maximum Precision 6.61 1.00 0.30 0.46
2. Maximum F1 score 3.39 0.83 0.97 0.89
3. Maximum Recall 2.22 0.73 1.00 0.84

Based on calculation of 300 confusion matrices for di↵erent thresholds for the estimated

average detections per week. The threshold for smart plug values was fixed at 4 average

weekly usages, while the threshold for estimated average detections was varied.

Diagnostic ability

The diagnostic ability of the e�ciency classification for di↵erent threshold values can
be graphically illustrated with the receiving operating curves (ROC curve). Figure 4.10
shows the ROC for e�ciency classification for usage frequency (left) and energy per
wash (right).

The ROC curve (yellow) shows the rate of true positives against false positives. The
black dashed line depicts an algorithm that would be performing as good as random
guessing. The larger the area between the black dashed line and the ROC curve the
better the performance of the classification. The corresponding threshold values for the
points of maximum precision (1.), maximum F1 score (2.) and maximum recall (3.) are
shown in table 7 (usage frequency) and table 8 (energy consumption per wash). The
area for the usage frequency is 0.87. The area for the usage energy e�ciency is 0.91.
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Figure 4.10: Receiving Operating Curves for dishwasher e�ciency classification of weekly
usage frequency and energy usage per wash
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4.3 Smart Meter Model Deployment

This section displays the results of the application of the newly developed NILM-based
detection system on one full year of data from 130.000 households. The results for
the consumption analysis consist of an overview of energy usage and usage frequency
averages, followed by usage patterns and dependency categories such as household size
and machine characteristics. The last subsection describes how e�ciently dishwashers
are used in households.

4.3.1 Consumption overview

The summary statistics for energy consumption and usage frequency of the smart-
meter detections is presented in table 4.7. The application of the smart meter model
for 130.000 households over a full year results in an average energy consumption of
1.18 kWh/per wash and 285 kWh/per year. Regarding the frequency an average of 4.6
washes per week and 240 per year were found.

Table 4.7: Summary statistics of the energy consumption and the usage frequency detected
on the smart-meter data aggregated by di↵erent time steps

Per wash Per week Per year

Energy Washes Energy Washes Energy

count a 129137 129137 129137 129137 129137
mean 1.18 4.6 5.5 240 285
std 0.18 2.1 2.6 108 137
median 1.17 4.4 5.1 227 267
a
Number of households

Distribution comparison

As explained in methodology section 3.4.1 a sample of nearly 11.000 of the households
answered a survey. To see how this sample compares to the complete group of 130.000
households the distribution of energy per wash and weekly washes is plotted for both.
Furthermore, as this relies on model estimated values, a comparison is made with the
data from the smart plug measurements for the sample of 100 households. The results
of the comparison can be seen in figure 4.11.
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The distributions of the di↵erent user groups are shown, with ”All” representing all
nearly 130.000 households, ”Survey” those nearly 11.000 who filled out the survey and
”Plugs” the data coming from smart plugs for the 100 households used for the model
development. It can be seen that for energy per wash are comparable the di↵erent
data sets show a similar distribution, although not completely overlapping. In contrast
to the plugs (red), the detection values show very little observations below 0.9 kWh
as a result of the estimation algorithms tendency to over-estimate below the average
and under-estimate above the average. Furthermore, it can be noted that the mode
for the survey group (green) is slightly higher than for the complete group and the
plugs. On weekly washes the survey group shows very high overlap with the complete
group. Plugs on the other hand show a considerable higher mode, likely caused by the
di↵erence in family size between the Plug group (over 3.3 household members) and the
Survey group (just under 3 household members). Finally it has to be noted that the
Plug data seems to show a considerably less smooth (multimodal) curve. The probabil-
ity density curve implies that the observations are spread uniformly across a continuous
line. While for the 130.000 and also the 11.000 observations this case can be made, for
only 100 observations this is spread less evenly and hence results in a less fluent line.

Figure 4.11: Probability density of the smart-meter, survey and smart-plug detections for
the average energy consumption per wash in kWh (left) and the average weekly
detections in number of washes (right)

4.3.2 Consumption category dependency

The survey results can be used to segment the usage frequency and energy consumption
per wash for di↵erent groups. The results for the categorisation by dishwasher size,
household size and average washing temperature are presented.
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E↵ect of machine size

As both energy consumption per wash and number of washes relate to the machine
capacity, the dishwasher usage is categorised by the machine size type in table 4.8.
Comparing the average detected energy consumption of the machine size ”Regular”
and ”Table” it can be seen that both mean energy consumption are similar to the
”Notsure” category at around 1.22kWh. Only the 3% of dishwashers stated to be
”Compact” show a mean energy of 1.13 kWh. The mean value for ”Compact” is also
slightly lower with 4.6 washes per week, compared to 5.0 for ”Regular” and 4.9 for
”Table” and ”Not sure”. Both 1.22 kWh and 4.9 weekly washes are slightly above the
total for all households (4.7).

Table 4.8: Aggregation of the smart-meter estimated dishwasher activities by in survey stated
machine size type

Households Estimated energy Estimateded washes

Machine size count* share mean std mean std

Notsure 58 1% 1.23 0.17 4.9 2.1
Compact 297 3% 1.13 0.18 4.6 2.0
Regular 9578 88% 1.22 0.16 5.0 2.0
Table 940 9% 1.23 0.17 4.9 2.0

Total 10873 100% 1.22 0.16 4.9 1.9

*Number of households

E↵ect of household size

Next segmentation of washing frequency by household size is shown in table 4.9. As
people were also asked to indicate how often they think they wash, both stated and
estimated weekly washes are shown. The 1 person households wash an average of 2.8
times a week, much in line with the majority (6%) stating to wash 1-3 times and some
(2%) 4-6 times a week, resulting in a weighted average of 2.9 based on the survey
results. The next, 2-persons households, on average use their dishwasher 4.4 times (or
4.8 according to the survey), after that for every additional family member roughly 0.6
extra washes are added. This clearly shows not a linear but a reducing increase for
every additional family member. The stated washes reveal a similar pattern, although
they would indicate a slightly higher estimation of about 0.7 washes per week more
than what is estimated. In total 43% of all the households taken together stated 7+
washes per week, higher than the 32% stating to wash 4-6 and 25% stating to wash 1-3
times a week. The detected mean of usage frequency was estimated at 4.9 washes per
week, compared to 5.6 for all households according to survey results (table 4.7).
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Table 4.9: Household size versus stated washes and detected washes per week

Household size

1 2 3 4 5 Total

Households
count* 816 3713 2247 3083 1014 10873
share 8% 34% 21% 28% 9% 100%

Survey stated washes
1-3 6% 12% 4% 3% 1% 25%
4-6 2% 13% 7% 8% 2% 32%
7+ 0% 9% 9% 18% 7% 43%
mean** 2.9 4.8 5.6 6.6 7.1 5.6

Model estimated washes
1-3 6% 13% 5% 4% 1% 28%
4-6 1% 17% 11% 14% 4% 48%
7+ 0% 5% 5% 10% 4% 24%
mean 2.8 4.4 5.0 5.7 6.3 4.9

*Number of households **weighted average based on shares per frequency range, counting

1-3 as 2, 4-6 as 5 and 7+ as 8

E↵ect of label and temperature

Lastly, the energy per wash estimations are categorised by e�ciency label and washing
temperature as presented in table 4.10. The largest share of households own a machine
with A++ label. Of the total 10780 households 33% use an A++ machine, followed by
29% households in the A+ category, 25% households in the A- category and lastly 12%
households with a dishwasher labelled A+++. Independent of the given e�ciency la-
bel, most (55%) households stated to use the temperature range between 50-75 Celsius
and another 6% said to use an even hotter program most often.

When looking at the estimated average energy consumption in kWh it can be seen
that in each e�ciency category the mean energy consumption rises with lower to higher
temperatures. Overall a di↵erence of 0.14 kWh can be noted. Besides of 1 irregularity
(A+++, 30 lower) also the average energy consumption for each respective temperature
range decreases with increasing e�ciency label.
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Table 4.10: EU e�ciency label and washing temperature in degrees Celcius stated by the
survey participants versus detected average energy consumption in kWh

Households Estimated energy

E�ciency label Washing temperature count* share mean std

A- 30 lower 17 0% 1.18 0.16
30-50 804 7% 1.21 0.16
50-75 1664 15% 1.30 0.15
75 higher 205 2% 1.35 0.17

A+ 30 lower 33 0% 1.10 0.19
30-50 1159 11% 1.18 0.16
50-75 1804 17% 1.26 0.15
75 higher 172 2% 1.31 0.16

A++ 30 lower 65 1% 1.10 0.16
30-50 1505 14% 1.15 0.16
50-75 1837 17% 1.22 0.16
75 higher 171 2% 1.27 0.16

A+++ 30 lower 42 0% 1.13 0.17
30-50 597 6% 1.14 0.15
50-75 652 6% 1.20 0.16
75 higher 53 0% 1.23 0.14

Total 10780 100% 1.22 0.16

*Number of households

4.3.3 Consumption time dependency

In this section the time dependency of the energy consumption per wash and the usage
frequency over the course of a year are presented. Unlike in the previous section on the
category comparison, here data for all households is considered.

E↵ect of outside temperature

Ambient conditions were identified as one of the factors potentially a↵ecting real-life
dishwasher usage (see literature 2.4.3). When plotting the energy consumption per
wash for each week, averaged for all households, a seasonal pattern was identified. This
pattern was compared with the average outside temperature for each week.

In figure 4.12 the average energy consumption per wash in kWh on the left vertical
axis is plotted for each week in 2018. On the right vertical axis the average outside
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temperature in Celsius is given. In addition to the mean energy consumption per wash
(in black), the left graph depicts the distribution of energy in each week (light blue).
It appears to not be fully equal on both sides of the graph, skewed to the right, in
accordance with figure 4.11.

Figure 4.12: Energy consumption per wash over the year vs the respective average outside
temperature in �C with standard deviation (left) and without standard deviation
and di↵erent average energy consumption scale (right)

In the right graph in figure 4.12 the same graphical set up is displayed without the
standard deviation bands and a changed range on the left vertical axis. By this change,
the pattern of the time dependant average energy consumption fluctuation can be seen
more clearly. It can be seen that the average energy consumption is decreasing in the
summer months with a minimum of 1.05kWh in week 30, which is the end of July in
2018, when the average outside temperature was 24.4�C. The average energy consump-
tion per wash increases in the winter months with a peak of 1.28kWh in week 9, which
is the end of February / beginning of March, when the average outside temperature
was -2.7�C.

The mean energy consumption reacts in the opposite direction of changes in the mean
outside temperature with a Pearson correlation of -0.94, cross-correlation of -0.92 and
lag of 0. When regressing the average energy consumption against the outside temper-
ature, it was found that the average energy consumption at 0�C outside temperature is
1.28kWh and that the average energy consumption decreases with -9.1Wh/�C. In line
with an average annual energy consumption of 1.18kWh at an average annual outside
temperature of 11.4�C found for 2018.

E↵ect of annual events

Following the analysis of the seasonality on the average energy consumption, the us-
age frequency can be assessed respectively. In figure 4.13 the average weekly usage
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frequency (black line, left axis) is plotted for each week in 2018. On the right vertical
axis the number of detected users (in 1000 households) (blue bars) for the same period
is plotted. Getting a better understanding for these patterns can both be relevant for
energy consumption forecasting and to understand how usage frequency and thus mea-
surement compared to an e�ciency threshold can di↵er throughout the year.

As detected for the average energy consumption also the usage frequency shows a
seasonal dependency. On average, in the Winter months more washes per week are
estimated with a maximum of 5.3 in the first week of January, compared to a minimum
of 3.3 in week 31 (end of July/beginning August). This trend can be seen both for the
estimated usage frequency as well as for the detected active households.

Figure 4.13: Estimated average weekly usage frequency in washes over the year vs number
of detected users in number of 1000 households

When looking at the fluctuations more carefully the di↵ering average washes per week
per household over the year can be related to public holidays and other events. A list
of all holidays in 2018 can be found in appendix table E.1. In weeks 51 and week 0 the
e↵ect of holidays around Christmas and New Year can be seen. Around week 4 (end
of January) the Carnival weekend took place. The Spring break in end of February
created a slight decrease in the usage frequency. The dip in week 15 might be related
to Eastern the weekend before, which might be extended together with festivities like
Kings day (27th April), Liberation day (May 5) and Ascension Day (May 10) falling
into the May vacation. Note the actual May vacation is o�cially only in week 17,
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however most provinces in the Netherlands extend it by 5 days before or after. The
clearest impact can be seen during the summer break period, where many people take
summer holidays and go abroad. After the public school Autumn holidays between
week 41 and 42 (mid until end of October) an upwards trend can be detected.

Weekhourly usage pattern

In addition to the yearly time dependency also a daily time dependency of the dish-
washer activity can be recognised. On the vertical axis of figure 4.14 the share of the
dishwashers activated in % of the weekly washes is given. On the horizontal axis the
start time of a washing cycle (according to the detection algorithm) is shown. Each
bar then represents what share of all washes for all households over the full year were
started for each hour of the week.

Figure 4.14: The share of dishwashers activated in % of weekly washes plotted against the
start time of dishwashers (based on detection algorithm) in hours per week
plotted

The bar chart displays a repeating pattern of di↵erent magnitude over the course of
the week. As can be seen it repeats every day with two high peaks in the evening.
When considering the distribution between days, a downwards trend for the evening
peaks can be seen from Monday onward, with Saturday depicting the lowest peak. On
Saturday and Sunday a more even pattern throughout the day can be noticed, with
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relatively higher peaks spread over the morning hours.

Figure 4.15 shows the single day pattern in more detail, where each bar the hours
for all days of the week are averaged into a single typical day. Two main peaks can be
noticed around early evening after dinner and late night activity just before midnight.
A consistently strong dip can be seen each night, with starting times rapidly decreasing
after midnight. The increase in the morning is followed by a smaller but noticeable
peak after lunchtime. When looking at the week pattern it can be noticed this pattern
is more distinctive during the week than the weekend.

Figure 4.15: The share of dishwashers activated in % of daily washes plotted against the
start time of dishwashers (based on estimation algorithm) in hours per day
plotted

4.3.4 E�ciency analysis

The final step is to determine how e�cient households use their dishwashers. The
binary e�ciency classification (see methodology subsection 3.4.3) was applied for the
nearly 11.000 households who filled out the survey. For both energy per wash and
weekly usage, the classification based on the meter estimated values related to the set
threshold are compared to a classification based on the results from the user survey.
An estimation is made of how much households could potentially save on their annual
dishwasher energy consumption.
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Energy e�ciency

In figure 4.16 the distribution of estimated energy consumption is shown for di↵erent
e�ciency labels. For each e�ciency label the distribution by most common stated
washing temperature is shown. The average energy consumption for each e�ciency
label is plotted with the dashed black line and can clearly be seen increasing stepwise
with decrease in e�ciency label. The average energy consumption per temperature
range is plotted with a white dot, which shows an even steeper increase within each
label than the di↵erence in energy consumption between the labels. This visualises the
earlier findings from table 4.10, where the average energy consumption and number of
households for each category were shown.

Figure 4.16: Distribution box (50% interval) of estimated energy consumption per wash by
e�ciency label and washing temperature

The grey dotted line running from left to right shows the established generic threshold,
that is used as proxy for e�cient energy consumption per wash. The same threshold
of 1.05kWh was used for which the classification performance was earlier analysed in
subsection 4.2.3. It appears that the majority of the shown distributions are above this
threshold also visible through the averages per label and temperature, which are above
as well. However, placing more emphasis on the change of the distribution in relation
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to each other, only the 50% interval of the boxplots (the boxes) are shown, excluding
the full length of the the 1st and 4th quartiles (the whiskers). The majority of the 1st
quartiles among the higher e�ciency labels and lower washing temperatures do largely
or at least partially fall under the threshold. To see the full boxplots, including whiskers
see appendix figure E.2

The estimated energy for these households could then be compared to the binary energy
threshold to classify which households are ine�cient. The results from the user survey
for e�ciency label and washing temperature were used to classify which households
state to have ine�cient dishwashers or use more energy per wash than needed due to
their chosen washing program. Households that stated their dishwashers to be below
A+ and/or washing warmer than 50 degrees were classified as ine�cient. Figure 4.17
shows this comparison.

Figure 4.17: Distribution of households with e�cient and ine�cient estimated average en-
ergy per wash (left), compared to the classification based on results from user
survey (right)

The distribution of energy per wash for all households (left chart) is divided by the
set threshold into 16% e�cient (green) and 84% ine�cient (red). The two bar charts
(right figure) are the number of households classified as e�cient (green line) and those
as ine�cient (red line). These two bars match with the green and red area in the left
figure and the number of households that are below and above the threshold in the
previous figure (3.4.3). The bar charts are then segmented by the classification they
received according to the survey results. A share of 8.6% of households (green, left
bar) are classified e�cient by both the meter estimation and survey approach, while
7.4% (red, left bar) are classified as e�cient according to the meter, but not based
on the survey results. In contrast 61% of households (red, right bar) are classified
as ine�cient according to both the meter and survey, while 23% (green, right bar)
are classified ine�cient by the meter, but not from the user survey. This results in a
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precision of 0.73, recall of 0.89 and weighted accuracy (F1) of 0.80.

Usage frequency e�ciency

A similar figure can be created for the distribution of the average number of weekly
washes by household size and dishwasher type. The average number of weekly washes by
household (shown with the black dashed lines in figure 4.18) indicate a stepwise increase
with each additional household member. As discussed earlier in relation to table 4.9
there is a bigger jump from 1 to 2 people in number of weekly washes and then an
increase of about 0.6 extra washes for each additional household member. While the
type (hence size) of dishwasher could potentially influence the number of weekly washes,
the results (average shown with white dots) do not show much variation. A single outlier
seems to be the compact dishwashers used in 5+ sized households. However, as could
be seen in table 4.8 only 3% of households stated to have a compact dishwasher. Even
a smaller share applies for larger households. Making this rather an outlier due to the
low number of data points.

Figure 4.18: Distribution box (50%) of estimated number of weekly washes for di↵erent
household sizes and by dishwasher machine type
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Similar to the earlier figure a grey dotted line running from left to right shows the es-
tablished generic threshold, in this case the proxy for e�cient number of weekly washes.
The same threshold of 4 washes was used as earlier analysed in subsection 4.2.3. While
also in this figure only the boxes are shown (for plot including whiskers see appendix
figure E.3) the majority of single member households are below this threshold, while
most 4 and 5 member households are above and most 2 and 3 member households are
closely around this threshold.

In a similar way, the estimated weekly washes can be compared to this binary fre-
quency threshold of 4 washes per week. The number of weekly washes as stated in the
user survey were used to classify which households use their dishwasher more then 4
times per week. Figure 4.19 shows this comparison.

Figure 4.19: Distribution of households with e�cient and ine�cient estimated average
weekly washes (left), compared to the classification based on results from user
survey (right)

The distribution of weekly washes for all households (left chart) is divided by the
set threshold into 38% e�cient (green) and 62% ine�cient (red). The two matching
bars (right figure) are divided by a share of 32.6% of households (green, left bar)
classified e�cient by both the meter and survey, 5.5% (red, left bar) classified as e�cient
according to the meter, but not by the survey. Around 38% of households (red, right
bar) are classified as ine�cient according to both the meter and survey, while 24%
(green, right bar) are classified ine�cient by the meter, but not the user survey. This
results in a precision of 61, recall of 87 and weighted accuracy (F1) of 72.

Relative e�ciency

As seen in the previous subsection (figure 4.16 and 4.18 ), there is a variation in energy
usage and number of weekly washes between categories. E�ciency label, washing tem-
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perature and household size were shown to a↵ect this. Figure 4.20 (below) therefore
segments the findings from figure 4.17 and figure 4.19 by category.

Figure 4.20: Share of households at di↵erent type of e�ciency (generic, specific or both)
compared for machine e�ciency label, washing temperature and household size

For both e�ciency label and temperature estimated energy consumption based on detec-
tion, is compared with the energy consumption specific for that category and compared
to the generic threshold. For household size the same is done, but for the number of
washes based on family size. When the energy consumed per wash or the number of
weekly washes respectively is under both the generic threshold and the specific thresh-
old applicable for that category, then the household is ’both e�cient’. Hence, it is found
the household uses its machine e�ciently according to the binary classifier and the ac-
tual results. This (dark green) applies for only a relatively small share of households
( 5-10% depending on specific category).

When the household’s usage is both above the generic and specific threshold it is found
to be ’both ine�cient’. This (red area) applies for most households ( 70-80% depending
on category). The light green and yellow areas are where the binary classifier finds a
di↵erent outcome than a specific classification. When classified as ’threshold e�cient’
the consumption (light green) is below the set binary threshold, but the user actually
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consumes more than expected in their category. This applies especially for more e�-
cient machines and smaller households, because they are under the generic threshold,
but still within their category might not be as e�cient. Finally the ’category e�cient’
classified households consume more than the set binary threshold, but within their cat-
egory would actually be e�cient. This applies for some of the abcd labelled dishwashers
and for larger family sizes, where a less e�cient machine uses more energy than the
set energy threshold, but still could be seen as e�cient within that category and larger
households would more often use their dishwasher.

Potential energy savings

To summarise these findings and indicate how much energy households could poten-
tially save on their dishwasher, the two generic thresholds were combined and compared
to the annual energy consumption. Households are segmented based on their indication
of potential ine�ciencies, to show how much they could potentially save on their annual
energy consumption.

Based on the 1.05 kWh per wash and 4 weekly washes an annual energy threshold
of 218kWh was established. Figure 4.21 shows the distribution of annual energy con-
sumption for all households, oriented vertical, in the right chart. Similar to the average
energy per wash and weekly washes, the households are divided in those (29%) below
(green) and those (71%) above the threshold (red). With an average annual energy
consumption of 312kWh this provides 94kWh of energy saving potential on average, a
potential reduction of just over 30%.

In the left chart the households are divided into potential energy saving categories
based on their supposed ine�ciencies. The first dark green violin distribution on the
left shows the 7% of households that have e�cient labelled dishwashers, make use of
a low energy consuming washing program and wash less than 4 times a week, by that
using 141kWh on average (24.5% below the threshold). The next group (9% of house-
holds) is called ’Frequency e�cient’ as their weekly usage is below 4, but their energy
consumption per wash is above 1.05kWh. Nevertheless, with 164kWh they consume
17% below the threshold. The households (1%) that are ’Energy e�cient’ (lightest
green) wash on average below 1.05kWh, but more than 4 times a week, resulting in
an energy consumption of 204kWh. This compared to those (10%) ’Energy ine�cient’
(lightest red) who wash over 1.05kWh, but despite washing less than 4 times a week,
with 247kWh still use (9%) more than the set threshold. For those (20%) who wash
more than 4 times a week, despite e�cient energy usage per wash, results in an average
consumption of 321kWh (33% over the threshold). Those (52%) who use more energy
per wash and wash more than 4 times a week on average, use 408kWh per year, nearly
61% over the threshold.

118



Eneco-Toon • Smart Home Energy E�ciency • 2022

Figure 4.21: Distribution of annual energy consumption per household by e�ciency classi-
fication (right) and segmented by ine�ciency categories (left)
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4.4 Results conclusion

The results chapter showed the two main parts of this research, analysis of the devel-
oped model and analysis of the results from its deployment. To analyse the performance
of the model, it also had to be compared to the outcomes from analysis of the plugs, as
a benchmark. Below research question 3, 4 and 5 are answered. Research question 3 is
completely answered by the performance of the model. Research question 4 and 5 were
partially already answered with the plugs, but further extended with insights from the
large scale deployment on meter data.

3. How does the newly developed system perform in detecting these (energy
consumption, usage pattern and e�ciency) characteristics?

Energy estimation
From the comparison of the estimation methods based on smart meter data as de-
scribed in section 4.2.1 it can be concluded that the best functioning approach to
estimate the energy is the regression of the heating energy and number of heating
moments (see section 4.2.1) resulting in an error (RMSE) of 0.10kWh and relative
error (NRMSE) of 8.8%.

Frequency estimation
The comparison of the estimation methods for weekly washes (section 4.2.2) indi-
cates, that the best functioning estimation approach is a linear regression adjusted
to estimate closer to zero, showing an error (RMSE) of 1.4 washes/week and rel-
ative error (NRMSE) of 27.2%.

Energy e�ciency classification
When applying a generic energy e�ciency threshold of 1.05kWh on the energy
values that were estimated by the smart meter model, a classification accuracy of
0.89 (F1 score), a precision of 0.88 and recall of 0.90 was found.

Frequency e�ciency classification
For the generic usage frequency e�ciency threshold, set at 4 washes per week, a
precision of 0.87, a recall of 0.90 and a F1 score of 0.89 were found. In contrast
to the relative error (NRMSE) of the usage frequency estimation, the usage fre-
quency e�ciency classification shows very similar accuracy measures compared to
the energy per wash.

120



Eneco-Toon • Smart Home Energy E�ciency • 2022

4. How much energy do dishwashers in households consume and how often
are they used, depending on time, household and machine characteristics?

How much energy do dishwashers in households consume on average per wash
how frequently are they used per week and per year and what is the resulting total
energy consumption?
In the preparatory smart plug analysis it is was found that the washes of the 100
smart plug users average at 1.22kWh, ranging between 0.86kWh and 1.69kWh
with an error of the mean of 0.02kWh. As shown in table 4.1 the energy intensity
of about 80% of a wash can be attributed to the heating phases of the washing cy-
cle. On an average wash of 85 min this energy is used in the 30 minutes needed for
on average 2.7 separate heating phases. In the preparatory smart plug analysis,
an average usage frequency of 5.2 washes per week was found. The NILM system
deployed for the large smart meter group revealed an average energy consumption
of 1.18 kWh/per wash, 4.6 washes per week, resulting in 240 washes and 285kWh
per year.

How does the energy consumption of dishwashers depend on household and ma-
chine characteristics?
The majority of households in the conducted smart meter survey (88%) stated to
have a ”Regular” machine. For these households an average energy consumption
of 1.22 kWh/per wash and 5.0 washes per week were revealed. For households
which indicated to have a ”Table” machine or did not specify the machine type
similar values were found. For the (3%) households indicating to have a ”Com-
pact” dishwasher an average consumption of 1.13kWh and 4.6 washes was de-
tected.

One person households were found to wash an average of 2.8 times per week
and two people households wash 4.4 times on average. For every additional fam-
ily member the weekly washes increase roughly 0.6 on average.

With 33% the A++ was the most common e�ciency label. Most households
(55%) stated to use the temperature range between 50-75 Celsius. The tempera-
ture of the chosen washing program impacts the energy consumption more than
the e�ciency label. High e�ciency label and low temperature result in an aver-
age energy consumption of 1.13 kWh (for A+++, <30�C). Low e�ciency label
with high temperature (label A and below, <75�C) result in an average energy
consumption of 1.35 kWh.
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How does the energy consumption of dishwashers in households depend on time
of the day, week and year?
It was shown that the average energy usage varies throughout the year. The en-
ergy pattern shows a strong negative correlation (-0.94) with outside temperature.
It was found that the average energy consumption at 0�C outside temperature
is 1.28kWh and that the average energy consumption decreases with -9.1Wh/�C,
dipping during a heatwave in the Summer to 1.05kWh.

With 5.3 washes, the number of washes peaked in the first week of January and
reached a minimum in the middle of the summer holiday at 3.3. Both of these
extremes also coincided with holiday events, which is exemplary of the e↵ects
events can have on the usage pattern throughout the year.

Within the weekly pattern, dishwasher usage di↵ers per weekday with least usage
on Friday. Main usage was identified to be directly after dinner time and just be-
fore bed time, with the highest peak on Monday after dinner and a more equally
distributed use over the weekend.

5. How e�ciently are dishwashers used in households?

When using the general energy e�ciency threshold of 1.05kWh, 78% of dishwash-
ers used by smart plug users classified as ine�cient. The analysis of the large
scale smart meter data shows that 16% of the households are classified as e�cient
and 84% are classified as ine�cient.

The usage frequency threshold was set to be 4 washes per week, whereby the
frequency of dishwasher usage was classified as ine�cient for 69% of the smart
plug users. The results of the e�ciency classification for weekly number of washes
for the large scale smart meter deployment resulted in 38% of the households to
be classified as e�cient and 62% as ine�cient.

It was found that 29% of households use less energy than the set annual threshold
of 218kWh, while the other 71% used more. With an average annual energy con-
sumption of 312kWh this provides 94kWh of energy saving potential on average,
a potential reduction of just over 30%. Only 7% of all households have e�cient
labelled dishwashers, make use of a low energy consuming washing program and
wash less than 4 times a week, by that using 141kWh on average (24.5% below
the threshold). Consuming more energy per wash (10%), washing more frequently
(20%) or both (52%) results in an average of 9%, 33% and 61% overconsumption
respectively.
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5.1 Discussion introduction

The first part of the discussion (5.1) focuses on the interpretation of the model per-
formance results, pitfalls and validity of the used approach and the generalisability of
the model. The second part (5.2) discusses the application of the model in real life.
Hence, less focus is put on the applicability of the model in the first section of the
discussion and more on its validity. In the second part, the discussion focuses more on
the interpretation of results and what can be generalised from them about dishwasher
usage in real life. In contrast to the previous chapters no separate conclusion to the
discussion will be given as the next chapter (6. Conclusion) already functions as its
concluding remarks.
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5.2 Smart Meter Model Development

In this section the performance of the developed smart meter estimation model is dis-
cussed. The model was developed to detect energy usage, usage frequency and e�ciency
for dishwashers from the smart-meter signal, based on and validated with a data set
of smart plug data. As these two main data sets are underlying all results, the data
preparation is discussed first. The rest of this section is structured in line with the
subcomponents of the meter estimation model results section. For each of these sub-
sections an interpretation of the main findings is given. Because this section focuses on
the development of the model, emphasis is placed on the validity of the research and
hence less connection with existing literature can be generalised. Deployment of the
model is then discussed in the next section, where more connection can be made to
existing literature.

5.2.1 Data

The model was developed with a learning set consisting of the smart meter data from
100 households measured over three months. Data from smart plugs installed in the
same 100 households was used to calibrate the model and analyse its performance.
During the gathering and processing of the data various factors were found relating to
the validity and generalisability of the data. These will be discussed subsequently for
the smart plug (5.2.1) and the meter data training set (5.2.1).

Smart plugs

Essentially the plug data serves as a ”ground truth” for the research, being the basis
for the validation of the developed meter model. However, also this baseline data set is
a↵ected by aspects regarding its validity and generalisability. In particular the impli-
cations on the data gathering process, the choice of households and the data processing
with the Basu algorithm will be discussed in more detail.

Data gathering
When discussing the applicability and quality of the plug data it is important to con-
sider, that the data was initially gathered for a di↵erent experiment, hence the data
was not gathered within the control of this research. In the previous experiment it
was decided to sent the plugs to participants instead of install them for them in order
to reduce operational burden and invasiveness. As a downside, human error or tech-
nical fault resulted in unavailable or faulty plug signal in several cases. Consumers
not installing the plugs at all, installing the wrong appliance as well as misnaming or
switching the plugs during operation to another appliance are additional factors that
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may have occurred. Furthermore, the smart plugs provided to the consumers di↵ered
by brand, potentially impacting the functionality and resulting in variation in mea-
surement accuracy. Finally, the plug measurements were not calibrated and tested on
beforehand against user manual stated values for the energy consumption of each (or
at least several) dishwasher’s used washing programs.

Compared to a controlled environment, this field experiment data may include uncer-
tainties and variances, that could not be accounted for within the frame of this research.
To reduce this as much as possible, the data set was cleaned and filtered and outliers
were visually inspected. Overall the chosen data gathering and processing approach led
to an exclusion of 30 of the 130 households, of which data could not be well enough used
for the analysis. The relatively small number of subjects (100 households) in the sample
a↵ects the diversity of what the model has been developed on and hence its generalis-
ability, but nevertheless o↵ers a larger data set than most previous monitoring research.

From the supplementary survey, conducted along with the smart plugs (see results
shown in Appendix C.0.1 it can be concluded that the people in the field experiment
were not a representative sample of consumers. The average household size of 3.3 lies
above the Dutch average of about 2.2 people (see Table C.1). The sub-selection of
households that filled out the survey (40%), showed certain similar characteristics such
as type of machine and household size, indicating potential bias. The group seems
skewed to more e�cient and newer dishwashers with 67% of the households machine ef-
ficiency label of A+ or higher and 64% of dishwashers less than five years old, compared
to an average replacement age of about 13 years (see 2.3.1) and A+ being categorised
as e�cient by Milieucentraal (see section 3.3.3). This phenomenon might occur when
considering that costumers open and interested to partake in the experiment, might
already be interested in energy saving management and have therefore taken steps to
optimise the appliance e�ciency by themselves. Since the data set is relatively small
in statistical terms and potential bias could be identified, an important factor to take
into account is that this potential bias from the plug validation data could have been
carried over into the machine learning meter model, when deployed at large scale.

Data processing
The smart plug data was prepared with the feature extraction method of K. Basu
to be able to compare the measurements with the smart meter results. This process
introduces additional uncertainties into the the data quality, but also allowed for an
additional filtering and cleaning to the data. Generally applying this process adds its
own detection error, a↵ecting the validity of the processed data.

To be able to calculate the energy per wash, a constant time interval was needed.
The signal was received in a 10 seconds interval, however slight discrepancies occurred
in the incoming signal. Therefore the data was resampled to exact 10 seconds, meaning
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that a redistribution of power between previous and the next timestamp was made.
This resampling step slightly reduced the precision. However, considering a washing
time of at least 60 minutes, would result in at least 360 timestamps per wash, making
the loss of precision negligible.

To analyse individual washes, thresholds had to be set to be able to cut out the washes
from the continuous signal. The rules were set arbitrarily, based on visual inspection.
This could have lead to washes that were not considered or certain parts were cut o↵
and not used in the analysis. To validate the load profiles and reduce the impact of
false or varying activity, samples of power profiles were visually inspected in more detail
for each month over a 3 month period for each household.

While the smart plugs supposedly detect every wash, visual inspection showed cer-
tain edge cases where the plug data is not perfectly labelled either. An example for
these cases can be given by the case of consecutive washes where multiple washes are
recognised as one single wash. As such situations show up as outliers in terms of energy
consumption, these were visually inspected and manually relabelled. Another example
could be major signal breakage. While most smaller signal breakages were not picked
up on, visual inspection showed they often occur, although not a↵ecting the count of
number of washes and only having a very minimal e↵ect on the overall measured en-
ergy. However, in cases of larger signal breakages these do show up as outliers and were
excluded for energy calculations. A level of uncertainty remains as to whether all such
cases were found and correctly labelled. This uncertainty may cause some additional
noise in the data.

While such noise may have had only relatively small impact on the total energy per
wash and detected number of washes, the e↵ect on some features was more consider-
able. Visual inspection showed duration attributes for plug data are usually matched
with a discrepancy of no more than 5 minutes and often only a minute or less. On
the total average duration of a wash of 85 minutes, this causes a discrepancy of often
no more than 5% and the energy usage lost at the start or end of a wash is also very
minimal. On an average of 30 minutes of total heating periods, distributed over an
average 2.7 heating moments (4.1), this could lead to discrepancies of more than 20%
in some cases, although 5-10% in most appeared much more common.

The heating duration was therefore visually inspected in more detail. It was found
that larger signal breakages can cause a larger heating period to be interpreted by the
detection model as two short heating periods, but more often two separate distinct high
power periods could be interpreted by the detection algorithm as one, without noticing
a period of low power in between. Based on the visual inspection a minimum of 5
minutes was set to count a heating moment and a gap of more than 5 minutes was set
as minimum separation to divide two heating moments as separate events. While some
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noise might remain regarding the measurement of the heating duration, the correlation
of 0.90 shows the e↵ect on the estimation model would only be minimal.

For the heating power, however a bias was identified. Because no power goes above the
heating power measured by the plugs, there is no situation that causes overdetection of
the heating power. Underdetection due to signal breakage therefore pulls the average
value down. While the heating power should generally lie between 1.8 and 2.5 kW
(literature 2.3.2), it was observed that maximum power often was mistakenly detected
below that. This might give a slight misrepresentation of the average heating power,
which might be more something like 2.2kWh instead of 2.0kWh on average. Despite
this underdetection, it was shown that multiplication of heating duration with heating
power has higher predictive value than heating duration alone, pushing the correlation
from 0.90 to 0.92 (even 0.94 in case of averaging measurements per household).

Smart meter (training set)

The validity and generlisability of the meter training set was impacted by multiple
factors regarding the sampeling, storing and processing of the data. The main factor
a↵ecting the validity of the smart plug data, is the accuracy of the feature extraction
method of K. Basu. The generalisability of the data is highly dependant on the avail-
ability of smart plug data for those households, the model was developed on, creating
similar challenges to be considered. The mentioned points will be discussed in more
detail in the following:.

Data gathering
The smart meter training set was sampled for the same 100 households as the plugs
by either the Toon smart thermostat via the smart meter’s P1 port with 10 second
intervals or from analogue meters, where a laser counter got installed when placing
the Toon. This poses several potential validity problems related to the sampling and
storage of the data. The data might for instance either not been sampled exactly well
per 10 seconds interval or there might be signal breakages. Most of these problems
are relatively minor and can be overcome with some resampling of the data. However,
some households had very anomalous profiles. Analysis of the profiles of households
with very bad detection quality showed three main problems: A very active household
with many di↵erent appliances used at the same time, a very irregular profile due to
many signal breakages or a disturbed but regular, low power profile.

The first problem can make it more di�cult to detect dishwashers in the signal. How-
ever, these are perfectly normal profiles and hence were kept in. Improving on these
type of profiles is one factor to improve the accuracy scores of the overall model. An
example of such is developments to better identify the water heating phase(s) of a wash-
ing machine from those of a dishwasher (see 2.3.3).
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The second can be caused by several sorts of faulty equipment, ranging from defects to
the meter to internet connection. This problem seemed more common in households
with analog meters, but within the scope of this research was not further addressed and
households with very faulty signals were taken out of the sample.

Finally, the disturbed, but regular low power profile showed to be an e↵ect of solar
panels, installed on some households, providing much or all the power demand during
the day. When the solar system is connected with the Toon as well, this data in theory
could actually be matched to provide the full profile, however this posed too many
technical obstacles to address within the scope of this research. Households with only
small amounts of solar energy production might still draw enough load from the grid (in
the winter months) to ensure dishwashers can be detected within the profile and would
not cause outliers. Households that did show up as outliers due to installed solar panels
were filtered out, to reduce noise in the training set. Due to the rapidly growing share
of households with solar roofs and other forms of decentralised energy, it will be very
important to address this issue by connecting the smart meter data with any data from
any other energy sources in the household, such as generation from solar panels, small
wind turbines, and charging/discharging of (electric car) batteries in future research.

Arguably the main factor a↵ecting the validity of the smart meter data, is the accuracy
of the feature extraction method of K. Basu. Detections of the dishwashers from the
smart meter signal were provided by K. Basu based on the methodology as described in
literature subsection 2.2.3. This method shows several potential advantages. In com-
parison to most other research, it had already been applied on ten seconds smart-meter
data in a real-life setting. The method showed above 80% detection accuracy would be
possible. As the model was developed for only 4 households there would be potential
to further improve this with a larger data set.

As described in methodology subsection 3.3.1 the approach produces a set of features
related to a dishwasher’s power profile, resultant from its operating phases (see 2.3.2).
These features were statistically analysed to gain deeper insight in separate components
of the power profile. This was done for both the plug and meter data. The plug data
was mainly used to gain insight in the actual functioning, which was then used by K.
Basu to make improvements to the detection algorithm compared to the one published.
The produced smart meter detection features were compared to see how well each fea-
ture is detected and to what extend this could be utilised to estimate the energy usage
per wash.

The accuracy of detection of features a↵ects the accuracy (RMSE) of the energy estima-
tion (see section 5.2.3). The regression method adjusts to bias in the measurement by
how the parameters are calibrated, but cannot reduce the noise. To reduce the noise, a
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GMM was used (see appendix D.0.1). However, by improving the detection algorithm
and hence detection quality, over time the added value of GMM reduced and simply
averaging started to yield better results. The precision and recall of detection both af-
fect the accuracy (RMSE) of usage frequency estimation. (see more in subsection 5.2.3).

In comparison to other NILM approaches, models developed on smart meter data have
high applicability, because of the ubiquitous roll-out of smart meters. Systems devel-
oped on higher frequency data may be more precise but provide less opportunity to
scale non intrusively as additional measurement devices will be required.

5.2.2 Energy per wash estimation

In order to estimate the energy consumption of dishwashers in households an energy
estimation model was developed and performance indicators were analysed. An analy-
sis of features was carried out comparing the smart plug detections with smart meter
detection features as provided by K. Basu (see 2.2.3). Multiple regression approaches
were used and compared (see results 4.2.1 and for more detail appendix D.0.1) to find
the model with the lowest estimation error.

The three main findings to be discussed for the energy per wash estimation are the
initial findings for the energy per wash from the plug analysis, the features a↵ecting
the energy usage per wash and the performance of the chosen estimation approach.

Energy per wash

From the smart plug analysis it was established that washes of the 100 plug users av-
erage at 1.22kWh with an error of the mean of 0.02kWh. Stamminger (2008) noted a
typical profile with a consumption of 1.19 kWh over all European countries, based on
the EuP survey results. However, instead of measurement of real-life usage this is an
estimate based on lab consumption and was done back in the year 2008 [128]. Dupret
and Zimmerman (2017) found 0.90kWh for the 60 households with dishwashers of the
107 households they installed plugs for their research in 2015. This actually seems very
low. While care was taken to ensure the households give a good representation of French
households, no additional information is given about the dishwasher specification in the
sample and hence no 1-on-1 comparison can be made. While the considerably lower
energy consumption might be caused by French households potentially using smaller
dishwashers and/or more e�cient machines and/or washing at lower temperatures,
0.90kWh seems surprisingly low (comparable to 9 couverts, A labelled or 11 couverts
A++ labeled dishwashers using the eco program). Another potential reason explaining
the very low value, might be that the energy consumption was multiplied by the share
of households owning a dishwasher. However as the 59% ownership rate would result in
1.53kWh per wash, this might seem a bit high actually. While the penetration rate for
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all included appliances is given, no such multiplication is mentioned. A potential factor
at play might be that the French research only used a sampling rate of 10 minutes. As a
result the French research might actually have averaged out large energy peaks related
to the water heating phases, potentially resulting in considerable lower measurements.
As during this research a sampling interval of only 10 seconds was used, energy could
be measured with considerable higher precision.

Van Holsteijn and Kemna (2008) [23] in their analysis assume a similar penetration
rate of 60%, but an energy usage of 1.09kWh per wash for the period between 2015-
2020 in their business as usual case and even slightly lower in their more eco conscious
scenarios. This is based on the assumption that all dishwashers would be energy label
A and 80% would be 12 couverts (1.06kWh) and 20% would be 9 couverts (0.75kWh),
when washing with the standard eco program. They assumed a behavioural penalty
of 9% in addition. When comparing this to the label calculations (see 2.4.2) the same
80/20 split of A labelled dishwashers would result in 1.12kWh. When including the 9%
behavioural penalty this would actually result in just under 1.22kWh. Apparently Van
Holsteijn and Kemna in 2008 were too optimistic (⇠12%) on how much energy usage
per standard wash would come down, but adjusting for that, the behavioural penalty
(⇠10%) might provide a very good adjustment compared to the standard energy per
wash.

However, two additional factors have to be noted. The first regarding the actual ma-
chines part of the sample group, the second regarding the measurement period. While
not completely covering all households, the sample of (41) participants who fully com-
pleted the survey, showed that at least 67% had an A+ dishwasher or higher (and 17%
unknown). No households reported a dishwasher with less then 12 couverts, although
22% reported unknown. Assuming an A+, 13 couverts dishwasher, which seems to
better represent the survey sample, would result in a standard wash of 1.06kWh. Even
when the group of households that did not (fully) fill out the survey would have slightly
less e�cient machines, still some 10-15% di↵erence between 1.22kWh measured and the
standard wash would have to be explained. Given the young age of most dishwashers
in the sample (64% below 5 years), reduced e�ciency as a result of encrustation might
have some e↵ect for some of the older machines, but would play less of a role overall.
While behaviour and chosen washing temperature in particular might explain much of
the di↵erence, ambient conditions related to the time of year (Winter months) might be
another factor explaining some percentage points As results of large scale plug analysis
showed, the average energy per wash fluctuates throughout the year in relation to the
outside temperature.
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Features of the wash

As shown in table 4.1 the energy intensity of about 80% can be attributed to the heat-
ing phases of a washing cycle. This is in line with the findings from [130] stating that
energy is mainly used to heat the water for the rinse cycle and the drying phase (see
section 2.3.3.

Water heating being the most relevant indicator to estimate the energy per wash is
further established by a high correlation factor of 0.94 for plug detections and 0.82 for
meter detections (see table 4.2.

For the meter data processing the methodology by Basu et al. was used. The di↵erence
between the smart plug and smart meter detection indicates that some estimation qual-
ity is lost due to the detection quality of the NILM detection algorithm. Two impacting
factors for this are potential misdectections of other appliances and the precision of the
detections. The latter can either be caused by heating moments remaining undetected
or overdetecing by factoring in other appliances. The noise occurance in the Basu al-
gorithm has been investigated with the present data set 4.1. From the publication of
Basu it stems that the detection accuracy is over 80% [43].

From visual inspection it becomes clear that a bias towards underdetecting features
is present. This relatively clear bias in one direction can be adjusted for by calibrating
the regression parameters. However, when an error goes in both directions, i.e. de-
tection system is over- and underdetecting, this cannot be adjusted for and results in
estimation error.

Estimation approach

From the comparison of the estimation methods as described in section 4.2.1 it can be
concluded that the best functioning estimation approach is Predict 3; the regression
of the heating energy (created by multiplying heating duration and power, see section
4.2.1), combined with number of heating moments, and aggregated to the average.

For the interpretation of why this estimation approach has performed best, the following
categories need to be considered: feature choice, regression approach and aggregation
type.

Feature choice:
Based on the feature analysis the heating energy clearly stood out as the most im-
portant factor. The lowest estimation error was shown for the combination of heating
energy and number of heating moments. Some features were already earlier discarded,
such as average power for the washer as this was too low to be able to be detected
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in a meaningful way (too high error compared to value and only very small additional
influence). This in comparison to for instance a washing machine, where the drum spin
does considerably show up more in the energy profile (see subsection 2.3.3).

Regression approach:
The chosen regression approaches are more precise than the heuristic approach because
the parameters are calibrated to reduce the error. This does mean that a regression
approach might risk overfitting. The data has been checked by cross validation (1000
runs, 50/50 split) to ensure a robust way of error analysis, which did show that the
addition of some variables such as adding duration of the wash did not improve estima-
tion performance. Resulting in Predict 3 as the simplest, best performing estimation
method.

Aggregation type:
For Predict 1,2,3 the average did considerably better than the mode and the reason
for that is probably that the average uses all data points while the mode only uses
the most common value, so much less data points are available. A more sophisticated
way to estimate the energy consumption of the most likely washing program is to use
a clustering method such as K-Means or a Gaussian Mixture Model (GMM). As the
GMM can split the data into clusters of similar washes, it provides the opportunity to
look at the di↵erent used washing programs, including how often they are used, and
calculate a weighted average. GMM clustering was used to aggregate the washes for
each individual household to estimate both the weighted average and most common
wash. This initially provided more precise results than the common average and mode,
because it also filters out some miss-detections. However, after further improvement of
the detection algorithm by K. Basu, simply averaging started to perform better than
GMM clustering. The reason behind this can only be guessed. Probably the washes
that are thrown out as misdetections might be washing programs that are not used
that often and therefore not considered in the GMM clustering approach. With higher
noise the GMM helps to filter this out, but with less noise risks to throw away useful
information. More e↵ort could have been made to investigate and further calibrate
the GMM. However, as the average works as well or better, this is a simpler solution,
which is easier to understand, less susceptible to overfitting and less computationally
expensive. For further improvements, increasing the precision of the feature detection
therefore seems a more fruitful route.

The only way to really find how well the calibrated model is able to estimate when
actually deployed, is to test it with an unseen separate annotated (”learning”) data
set. There are some academic benchmark data sets that are often used to develop new
algorithms with the ability to compare them to each other in terms of performance (see
table 2.1). However as this research focuses not on the performance of a state of the art
NILM detection algorithm, but real-world application, a data set that better reflects
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the deployment group was more fitting. Also the used data set in this research (100
households) is larger than any of these benchmark data sets, which often only contain
several houses and use di↵erent measurement intervals. Some often cited data sets such
as Loughborough University [52] for instance might have too low measurement rate for
the application of this research, while another often cited research, the REDD database
[72] has very high frequency, but contains only 19 days for 5 households.

Ideally a reflective sample of households would have been selected from the large scale
Toon deployment data set and selected households would be fitted with smart plugs.
Indeed this was considered as a next step, but was outside of the scope of this research
to still consider.

Potentially the most fitting alternative with public data would have been the REFIT
data set, an 8 seconds measurements data set for 20 households in the UK [69] or the
more recent IDEAL data set with 39 plugged households at 1 seconds measurements in
the UK as well [68]. As these data sets are not completely comparable to the case for
the Netherlands, some adaptions would still have to be made. However, making such
comparison and adaption for di↵erent countries could be a step for further research.

When pair-matching the smart-plug and smart-meter detections misdectections and
missed detections by the meter (false positives and false negatives) would fall out.
Hence, washes cannot be connected one-on-one and an aggregation method should be
used to connect a group of washes. The data can be aggregated either per household
over the full measurement period or per week or month for all households. Since the
focus of this research is the estimation of energy consumption of individual households,
the data was aggregated per household for the full measurement period.

The three months period was chosen based on a rule of thumb to have at least 30
observations to be able to do some statistic analysis. Even a household that only
washes once every three days, hence 2-3 times a week, would wash about 30 times in
a 3 months period. Potentially a next step to further improve the accuracy could be
to test what a minimal measurement period would be and if it would be possible to
either improve accuracy with longer measurement period or aggregate data in multiple
shorter aggregation periods, such as a monthly average, to increase the number of data
points per household.

The meter detection algorithm could potentially be improved. As detecting appliances
is now no longer the end goal, but estimating their energy as accurate as possible as
well, the accuracy with which subfeatures are detected becomes more important. Cer-
tain subfeatures can potentially have such large random detection errors that including
them actually decreases the estimation accuracy and they better can be accounted for
in the �0 parameter. As certain subfeatures will correspond to larger areas under the
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power profile than others, some subfeatures will be more important drivers for accu-
rate energy estimation than others. Therefore focusing on detection these features in
particular with better precision could improve the accuracy of the energy estimation.

5.2.3 Usage frequency estimation

In order to estimate the frequency of usage of dishwashers in households a frequency
estimation model was developed and performance indicators were analysed. The num-
ber of weekly washes according to the smart plugs was compared to the number of
weekly smart meter detections as provided by K. Basu (see 2.2.3). Multiple regression
approaches were used and compared (see results 4.2.2 and for more detail appendix
D.0.2) to find the model with the lowest estimation error (NRSME). Key findings on
the number of washes per week and the chosen regression approach are discussed below.

Weekly washes

With regards to the frequency of dishwasher washing cycles per week it was found that
on average 5.2 washes per week occurred for the plug detection. The EU regulation
uses 280 washes.

According to Van Holsteijn en Kemna this could potentially be an overestimation of
about 23%, citing 4.1 washes per week or 214 washes per year. The EuP study in 10
di↵erent countries in Europe showed that an average of 4,06 washing cycles/week was
declared, adding up to 203 washing cycles per year (50 weeks) . The Ecodesign directive
assumed a usage of 220 times annually or 4.5 times per week taking 3 holiday weeks
into account or 4.2 times per week not taking holiday weeks into account.

Dupret and Zimmerman 3.63 seems low. However, a comparison is made to Remodece+
study from 2008, where an average of 4.1 was found. This either indicated a reduction
in weekly washes as Dupret and Zimmerman argue or simply a di↵erence between sam-
ple groups. Also research in France.

In that respect the relative high 5.2 washes per week found in this analysis could
be at least partially explained by family size in the sample. The average family size
of households who filled out the survey was 3.3. In the VEWIN study used by Van
Holsteijn en Kemna households of 3 people used the dishwasher on average 5.1 times
per week and households with 4 even 6.4 times per week. While the number of weekly
washes per person reduces with increasing household size, we can roughly estimate that
3.3 would average about 5.5 washes per week, so actually slightly higher than the num-
ber of washes found. However these results stem from survey research and hence are

135



Eneco-Toon • Smart Home Energy E�ciency • 2022

stated number of washes. In this research it was found households filling out the survey
slightly overestimated their number of washes. Resulting in an overestimation of about
half a wash per week. When assuming this same e↵ect applicable to the VEWIN sur-
vey the results come even closer. Finally it has to be considered the measurments took
place in the winter months. As results of large scale plug analysis showed, not only the
energy per wash, but also the average number of weekly washes fluctuates throughout
the year, being slightly higher in Winter.

Estimation approach

The comparison of the estimation methods for weekly washes (section 4.2.2) indicates,
that the best functioning estimation approach is a hybrid using � = 0 with the aver-
age of general linear regression (Predict 3), showing an NRMSE of 27.2% with a 95%
interval of ±2.8 washes.

For the interpretation of why this estimation approach has performed best, the fol-
lowing categories need to be considered: regression approach, aggregation type and
aggregation order.

Regression approach:
While the energy per wash estimation mainly focused on the usage of di↵erent features,
for usage frequency only the weekly washes were available as variable. While other
meta-features could be used such as family size, the aim was to be able to estimate this
based on the smart meter detections to be able to compare this to factors such as family
size afterwards. In order to do this di↵erent regression approaches were compared. As
general linear regression (Predict 1) intersects with the vertical axis for �0 6= 0 this
takes away the potential to predict 0 washes in a week, when nothing gets detected
and instead would still result in some value. Hence, by doing a force �0 = 0 regression
(Predict 2) a week with zero detections on the meter indeed will also result in 0 washes
in that week estimated. To adjust for the reduced accuracy of a force zero regression
compared to the general linear regression, the force zero was adjusted for the distance
to the mean according to general linear regression (Predict 3).

Aggregation type:
For the weekly washes average also did considerably better than mode. Similar as for
the energy per wash this is probably as there are less data points used to calculating
the mode than to calculate the average. In contrast to the energy per wash the GMM
was not used here. The GMM could be used to compare the relative share of clusters
of detections, hence usage of di↵erent washing programs. This function was no longer
pursued once the energy per wash could be detected with higher accuracy using the av-
erage than the GMM’s weighted average and the mode could be calculated with higher
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accuracy than the energy usage of the GMM’s most common used wash.

Aggregation order:
First regressing on all weekly number of washes and then aggregating that into one
average weekly number of washes appears to create the best result. This can be the
case because first regressing and then averaging makes use of the higher volume of data
of all detection weeks (12 weeks for each household) instead of first averaging and then
regressing, which results in regressing on only one data point per household.
Data in this case is number of washes in each week. For the meter this depends on
accuracy of the detection algorithm. Similar factors apply as discussed under energy
per wash. As the aim of the detection algorithm is to make as many correct estimations
as possible, both over and under detections are made, with an average accuracy around
0.80.

The best performing regression approach (Predict 3) combines the force zero regres-
sion, but then adjusts for the distance from the mean. By doing this zero washes would
still result in actually more than zero, namely the di↵erence that the force zero regres-
sion has towards the mean. On the total average number of washes this results in a
better overall average. However, in case an actual updated average would be given to
users for every week, this would have to be adjusted to actually force zero detections
really to be zero.

Optimising the detection algorithm to improve precision at the cost of recall, could
be beneficial to ensure better energy per wash estimation. This could potentially also
benefit improving reducing the error of weekly wash detection. However, as this would
cause a bias towards underdetecting the regression would increase the estimated num-
ber of washes even more than currently already is done. Therefore, even in case of zero
detected washes, multiple washes would get estimated. Instead therefore more empha-
sis could be placed on the recall, to ensure if there is a wash at least it is detected. This
might cause some misdetections. When the regression algorithm adjusts for overdetec-
tion, potentiall also negative amount of washes could get estimated (� < 0). Simply
setting that no negative numbers can be estimated would resolve this. Searching for
an optimal balance of over or underdetection, might reduce error for the weekly wash
estimation. As it might be more important to tell consumers over a period of time
how often they washed, rather then to try to detect washes as precise as possible, the
detection algorithm could therefore be optimized to reduce the error in weekly wash
estimation. However, testing this was not in scope of this research.

5.2.4 E�ciency classification

In order to estimate the e�ciency of dishwasher usage in households an e�ciency clas-
sification method was developed and performance indicators were analysed. Both for
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energy per wash and for usage frequency a model was developed to establish a binary
thresholds as a proxy to classify the estimation results as e�cient or ine�cient (see sec-
tion 4.2.3). The e�ciency classification of the estimated energy and weekly washes were
compared to the e�ciency classification of the plug measurements. Varying thresholds
were analysed to find the maximum classification accuracy (precision, recall and F1
score).

The interpretation of the outcomes of the e�ciency classification method can be based
on the thresholds for energy per wash and usage frequency with the maximum accu-
racy. For the energy per wash a threshold of 1.05kWh was established, leading to 78%
of plug users surpassing this threshold and thereby classifying the energy usage of their
dishwasher as ine�cient. For this threshold a classification accuracy of 0.89 (F1 score)
was found for the meter estimation.

The usage frequency threshold was set to be 4 washes per week, whereby the frequency
of dishwasher usage was classified as ine�cient for 69% of plug users. For the meter
estimation a classification accuracy of 0.89 was found, similar to the energy per wash
estimation.

The validity for the e�ciency classification depends on the estimation part and hence
on the input data and models used, as already discussed in the previous two subsec-
tions. For the e�ciency classification generalised set threshold values were used (for
assumptions see 3.3.3). Choosing a general e�ciency threshold does not take varia-
tion into account within the households, such as family size and dishwasher size for
weekly usage and machine size, e�ciency label, washing temperature but relies on the
assumptions stemming from majorities and averages. When these features would be
known, a household particular threshold can be chosen, which would allow for a more
accurate assessment. A systemic and e�cient connection could only be made, if all
consumers would register their appliances in data bases, which could be implemented
in app systems for e�ciency assessments of households.
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5.3 Smart Meter Model Deployment

In this section the deployment of the smart meter model is discussed. To be able to
investigate dishwasher usage patterns in households non-intrusively and scalable, the
development of the model was used to analyse a large set of smart meter profiles. The
developed model was discussed separately in the previous section. In this section, the
analysis of the smart meter profiles will be discussed. Starting with preparing the
large-scale data set. The rest of this section is structured according to the same four
subcomponents as the results section: consumption overview, category dependency,
time dependency and e�ciency analysis. For each of these subsections an interpretation
of the main findings is given. Validity of the methodology is discussed as well as
generalisability. Because this section shows the deployment of the model, emphasis is
placed on the interpretation of these results and what we can generalise from this about
dishwasher usage in real life.

5.3.1 Data

The developed algorithms were applied on smart meter data gathered for a full year
for nearly 130.000 households in the Netherlands to investigate energy consumption,
usage pattern and e�ciency characteristics non-intrusively at large scale. A survey was
conducted under a sub-sample of nearly 11.000 households to segment the results for
household and machine characteristics. The assessment was accompanied by yearly
temperature data and vacation days from 2018. The following paragraphs set a focus
on the data gathering and processing of the large scale meter data set as well as the
comparison to the smart plug data. The survey and other data will be addressed in
their respective subsections.

The detection system of K. Basu was deployed on the full one-year data set to re-
trieve the dishwasher detections, which were then used to estimate energy per wash
and weekly usage frequency for each household using the trained estimation models.
One major factor to be taken into account for the data processing is that the training
of the meter detections is based on the plug data. Thus, the plug data was set as the
’truth’, which the meter detection algorithm is supposed to approach as accurately as
possible. The previous section shows there are many reasons why the smart plug data
is not ”truth” either and bias might have been caused within the learning.

One of these aspects also shows when considering the seasonal variability. As the
research indicates there is seasonal variability throughout the year for both energy con-
sumption and usage frequency (see section 4.12 and 4.13). The training set was only
gathered over a 3-month period in winter. The impact of seasonal variation on the
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data could therefore not be taken into account for the training of the algorithm, which
clearly a↵ects these averages and might also as a results have impacted the model (e.g.
�0 component).

The deployment of the detection algorithm over such a large database of smart meter
profile showed to be computationally expensive. This strongly impacts the adaptability
of the detection algorithm when deployed at scale. The algorithm was adapted over
the time of the research but due to its computational expense was not re-run over the
full year. As a result the data had to be adjusted for this adaptation, introducing a
processing uncertainty into the outcomes. Ideally, the adapted algorithm should have
been re-run over the full data set. However, with the adjustments made, the impact on
the results were minimalised as much as possible.

When comparing smart plug and meter data it can be stated that smart plugs po-
tentially give more precise results but are not as scalable as smart meter measurements
due to their intrusive nature. This trade-o↵ can be seen as a centre piece for the de-
cision regarding the set-up of research in this field. While Toon users may not be a
perfect representation of the complete Dutch population, compared to the plug data,
the large-scale user group draws from a much wider household base, making results
potentially much more generalisable. However, potential bias from the plug validation
data could have been carried over into the machine learning meter model deployed at
large scale.

To assess model accuracy, di↵erent models were compared and cross-validated, however
the impact of a potential bias for the validation sample can only really be assessed by
introducing a new set of randomly selected households with previously unseen matching
plug and meter data, ideally for the period of at least one full year. This data is not
easily available. Smart meter data retrieved via other sources than Toon and compar-
ison with multiple plugged sample groups was out of scope of this research, but could
be an avenue for further development of the model.

The data set is only focused on the Netherlands and within that only represents a
subgroup of people who own a Toon device. This makes some of the results less gen-
eralisable to the Netherlands as a whole or even beyond. In particular for generating
averages, it needs to be carefully assessed, whether such big unspecific data set should
be preferred over a smaller but controlled set of households, representing an average.
However when considering usage patterns such as temperature dependency, a demo-
graphic representation may be less important, but statistical soundness of the results
is. Due to the size, the data set provides the opportunity to cut di↵erent subgroups
and still provide large enough groups to derive such patterns.
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5.3.2 Consumption overview

The developed models were used to detect dishwasher activity and estimate energy
usage and usage frequency of dishwashers for each household. Summary statistics on
average energy usage per wash, usage frequency per week, per year and the resulting
total energy consumption were retrieved. The distribution for energy per wash and
weekly usage was compared for all households, plugged households and households that
filled out the smart meter survey.

The NILM system revealed an average energy consumption of 1.18 kWh/per wash,
4.6 washes per week, resulting in 240 washes and 285kWh per year.

Comparison of the energy per wash to the literature can be found in subsection 5.2.2,
where the plug energy consumption was discussed. Compared to the plug results of
1.22 kWh per wash this value is slightly lower, but the di↵erence is negligible. For the
surveyed group of households a similar average of 1.22kWh was found. The reason for
this may be that the plug measurements were taken in winter months but the meter
measurements range over a full year (also see section 5.3.4).

The frequency of washes of the meter measurements/surveyed meter households lies
0.6/0.3 below the frequency of washes detected by the plugs. This might again be
an e↵ect of the measurement period, with more usage of the dishwasher in the winter
months (also see section 5.3.4)). Furthermore, the potential di↵erence could be caused
by slight di↵erences in average family size (3.3 for plug vs. 3.0 for surveyed meter house-
holds). Since there is no data available for all the meter households it remains unclear,
what the average household size was for all households. It can be assumed, that the
household size is somewhere in the range between 3.0 and 2.2 (Dutch national average).

When looking at the distribution of the results, the large scale meter detections showed
to have less variance than the small-scale plug results, while more variability in the much
larger group would be expected. It was shown the model generalizes towards an average
value. This would result in good estimation of the population average for an unbiased
estimator and for better estimation for values close to the average but results in less
accuracy towards the outer regions of the distribution. This is particularly useful since
the threshold for e�ciency is also close to these average values where accuracy is most
needed, and these average values are more relevant as overarching findings. However,
this does indicate that exact energy consumption and usage frequency further away
from the average becomes less certain for individual households. This could be poten-
tially improved by specifically selecting households that are more on the outer edge of
the spectrum for future data gathering and analysis. However, the regression method
will remain to have a tendency towards averaging results. Additional data such as from
surveying the user could help to provide more information to narrow down possibilities.
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5.3.3 Consumption category dependency

For the assessment of the consumption category dependency of dishwasher use, the
meter estimation summary statistics were segmented by categories retrieved from the
survey. For the following categories main findings will be discussed: machine size,
household size, e�ciency label and temperature. The machine size a↵ects both energy
and frequency therefore estimated energy per wash and weekly washes were segmented
by machine type. The household size impacts the amount of soiled dishes produced in
a household and was therefore compared against estimated frequency. Additionally, to
compare the estimations with survey results, stated frequency was compared as well.
The e�ciency label and washing temperature determine washing energy. These were
used to categorise the energy consumption per wash.

Machine size

As shown in figure 3.7 the machine size a↵ects both the energy per wash and the usage
frequency. The majority of households in the survey (88%) stated to have a ”Regular”
machine. For these households an average energy consumption of 1.22 kWh/per wash
and 5.0 washes per week was revealed. For households which indicated to have a ”Ta-
ble” machine or did not specify the machine type similar values were found. For the
(3%) households indicating to have a ”Compact” dishwasher an average consumption
of 1.13kWh and 4.6 washes was detected. The survey results consolidate the approach
chosen for the e�ciency threshold model to focus on regular machine sizes. While ”Ta-
ble” dishwasher types are the smallest machine size (around 6 place settings), both the
energy consumption and weekly usage appeared to be similar to the standard machine
size. A potential explanation could be, that the survey was not clearly enough defining
this type of dishwasher. This presumption is stemming from questions returned from
individual households on this topic, therefore no di↵erentiation can be made between
regular, compact and non specified accounting together for a total of 97%.

Household size

Referring to figure 3.7 the household size a↵ects the usage frequency. The assessment
of the meter data set showed that a di↵erentiation between family sizes and frequency
can be made.

One person households were found to wash an average of 2.8 times per week, two
people households wash 4.4 times on average. For every additional family member
number of the weekly washes increases roughly 0.6 on average. This shows that for
every additional family member only a marginal amount of extra dishes is produced,
which could be explained by a basic set of pieces needed to prepare a meal, but every
additional person at the table might only require some additional plate, cutlery and a
glass. The stated washes reveal a similar pattern, although would indicate a slightly
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higher estimation of about 0.5 washes per week more than what is estimated. Similar
results were found for the plug measurements as shown in ??. While showing a larger
interval, the review by van Holsteijn en Kemna shows a similar linear marginal increase.
The weekly usage is dependent on household size and can be seen to be 2.2, 4.2, 5.1,
6.4 and 6+ for households ranging from 1 to 5+ people respectively [149]. As it was
shown that the model generalises to an average value, is could be assumed that the
model overestimated household sizes below the average and underestimated household
sizes above the average. The average of 2.8 might therefore be an overestimation of the
2.2. On the basis of having this insight a post adjustment of the model could be done.

It also seems that the participating households did overestimate their frequency of
usage in the meter survey (4.9 calculated average by households versus 5.4 average over
data stated in the survey). This finding was manifested by similar findings of overesti-
mation in the plug survey compared to the plug measurements (see ??). This finding
might have broader implications for appliance usage survey in general. The following
factors could result in potential discrepancies:

• Detection accuracy: Potentially the higher detection error for weekly washes
(27.2%) could play more a role compared to energy than what was established.
Indeed due to the relative low number of households only a few households on ei-
ther side of the spectrum can already change the accuracy number, as discussed in
discussion subsection Y. As for energy the threshold could be adjusted to include
the error margin, which has not been done, since the recall would be reduced
accordingly.

• Survey range: In the survey people were asked to indicate their weekly usage
as a range instead of a single number. The threshold of 4 washes would either
have to align with the survey respondents who answered to use their dishwasher
1-3 times or those who answered to use their dishwasher 4-6 times a week. To
provide a more conservative estimate the 4-6 times a week was chosen. However,
in terms of classification accuracy a meter threshold of 5 washes actually would
better match this range than the set threshold of 4 washes, resulting in a precision
of 0.73, recall of 0.75 and F1 of 0.74. Single numbers or overlapping ranges could
therefore have provided more precise survey results.

• Survey error: Similar errors to the survey apply as well. Additionally, it seems
people overestimate the number of weekly washes. Potentially more considering
what they perceive as a typical week, rather than estimating an average (see
discussion subsection 5.3.3)

E�ciency label and washing temperature

Figure 3.7 shows that e�ciency label and washing temperature a↵ects the energy per
wash. With 33% the A++ was the most common e�ciency label, most (55%) house-
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holds stated to use the temperature range between 50-75 degrees Celsius. This result is
in line with findings from literature stating that the main washing temperature lies at an
average of 59, 3�C [24]. This indicates, that a large share of the households might wash
at higher temperatures than what would be seen as e�cient. Another consumer survey
on 200 households revealed that 52% of the interviewees with a dishwasher favoured
washing temperatures of 65�C resulting in a higher energy consumption per washing
cycle than stated by the respective energy labels [150]. Van Holsteijn en Kemna state
there is evidence that the eco program is not the most used. [146]

The results show clearly that there is a dependency between average energy usage as
detected by the algorithm in relation to the label and washing temperature. Estimated
energy increases with decreasing label and increasing temperature. Furthermore, the
temperature of the chosen washing program shows to impact the overall energy usage
more than the label. This could be explained by the labels being developed for the eco
program, while many households actually often use other (hotter, more energy intense)
washing programs, as suggested by Van Holsteijn en Kemna.

However, the di↵erentiation is not as pronounced as would be expected. Only a mean
of 1.10 compared to 1.35 are registered between the most and least e�cient. This could
be explained by two factors:

• Detection accuracy: One factor could be that the energy consumption was not
detected precise enough. From the energy estimation it is known that there is an
energy estimation error of 8.8% (NRSME) or about 0.1kWh. This e↵ect becomes
more pronounced further away from the mean. Hence, especially the lower and
higher values on average get estimated closer to the mean than they actually
would be when measured with a smart plug. Potential further research could
focus on di↵erent estimation model or after-processing to adjust for this.

• Survey error: Another impacting factor could be that the surveys were not filled
out correctly. Potentially the survey may not have been filled out by the household
member being most aware of the machine usage patterns (e.g. program choice).
Furthermore, knowledge about the machine type and characteristics (e.g. label)
might have not always been known correctly by the person filling out the survey.
Additionally survey questions could have been misunderstood, or answers were
not recognised or unclear.

5.3.4 Consumption time dependency

To analyse the e↵ect of time as a variable for dishwasher usage patterns, dependencies
on time of the day, week and year were investigated. Regarding the seasonality e↵ect on
the energy consumption, findings were related between the average outside temperature
and the average energy per wash aggregated for each week of the year. To gain a
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better understanding for the weekhourly usage pattern, the chance for starting a wash
throughout a day was assessed. In addition public holidays were matched with the
average weekly usage frequency to determine the e↵ects of events on the weekly washes.

Seasonality e↵ect on energy

It was shown that the average energy usage varies throughout the year. The energy
pattern shows a strong negative correlation (-0.94) with outside temperature. The aver-
age energy consumption per wash was highest at 1.28kWh in a freezing week in Winter
and dipped during a heatwave in the Summer at 1.05kWh.

For refrigerators a similar e↵ect has been found for ambient temperature[152]. While
dishwashers might seem to operate in relative constant room temperature within the
house, the most important aspect a↵ecting their energy usage is the heating of water.
The e↵ect of outside temperature on the energy per wash could therefore be explained
by a change in inlet water temperature. This might be colder in winter, hence more
heating energy is needed to reach the desired water temperature for the chosen dish-
washer program.

It has to be noted that no analysis has been done on the actual temperature of the
inlet water to match this with the dishwasher’s energy consumption. This is merely a
correlation between the average outside temperature (from the Dutch meteorological
institute, KNMI [161]) throughout the year and change in energy consumption by the
dishwasher. While no further analysis was done on factors such as geographical spread
and type of dwelling, it could be assumed that variation in inlet water temperature will
di↵er by factors related to depth of pipes in the ground, types of pipes and insulation.
Making some houses more sensitive to changes throughout the year than others.

E↵ect of events on weekly washes

With 5.3 washes, the number of washes peaked in the first week of January and reached
a minimum in the middle of the summer holiday at 3.3. Both of these extremes also co-
incided with holiday events, which is exemplary for the e↵ects events have been shown
to have on the usage pattern throughout the year.

The seasonal e↵ects could be related to people potentially making less use of the dish-
washer in the summer since due to the warmer weather and increased daylight they
are more outside and possibly the diet adapts to lighter meals. Events throughout the
year can work in either direction, depending on the behaviour of large groups of people
during these holidays and festivities. For instance Christmas caused a large spike in
dishwasher usage, while the many people going abroad results in decreased dishwasher
usage during the summer holiday. Furthermore, as the average was only calculated for
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household using their dishwasher that week (conditional vs including zero) it was shown
that in summer not only less people are at home, but those at home also make less use
of their dishwasher.

One important remark regarding the validity of this pattern, however, is that the NILM
detection algorithm was adjusted throughout the year. While multiple small adjust-
ments have been made throughout the year, in week 15 a major change was made to the
sensitivity of the detection algorithm. This was done to increase the precision against
the cost of recall. Hence less washes are misdetected, but more get missed. This re-
sulted in an average reduction of 0.74 weekly washes per week per household. As it
was too computationally expensive to rerun the full year of data with a single version
of the NILM detection algorithm, the time line has been adjusted to match the time
period before and after this change in week 15. For more on this change, see appendix
E.1. While averaging over the surrounding weeks resolved to match both timelines, it
cannot be guaranteed that some seasonality e↵ect that might seem to be the e↵ect of
behaviour patterns, actually is the e↵ect of a change in the detection algorithm. While
this does not a↵ect the relation between events from week to week, to ensure the com-
plete annual pattern reflects the annual usage pattern, either multiple years of data
or at least a rerun of the data with one and the same detection algorithm would be
needed. However as both of these would be extremely computationally expensive and
no additional year of data has been made available yet, this has not been considered
within the scope of this research.

Generally, the power demand of a household fluctuates depending on the type and
amount of appliances used in a specific time. Intraday fluctuation shows higher energy
usage during daytime than at night. Typically an evening peak occurs due to inten-
sified lighting and cooking activities. In addition, changes between di↵erent weekdays
can be observed particularly between workdays (Monday through Friday) and weekend
days (Saturday and Sunday). Over the year seasonal di↵erences cause changes in the
energy consumption due to di↵erences in outside temperature, hours of solar light and
behaviour between seasons. Total energy use in winter is higher than in the summer
months. Autumn and Spring show comparable patterns. [51]. This research gives more
detailed insight on how this actually is a↵ected for a single appliance, which could
be extended for other appliances as well, to better understand the household energy
consumption profile bottom-up and how this potentially responds on events.

Weekhourly usage pattern

While events a↵ect the washing pattern throughout the year, aspects of the daily and
weekly rhythm can also be recognised throughout a week. Dishwasher activation peaks
twice considerably in the evening, at 6/7 pm around dinner time and at 11pm before
bed time. After a period of low activity at night, in the morning there is another but
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smaller peak and a slight peak after lunchtime can be seen, where people might be
eating lunch at home.

A downward trend in activity was identified from Monday onward, with Saturday
evening depicting the lowest dishwasher usage. This can be connected to that it might
be more common to go out for dinners towards the end of the week rather than in the
beginning. Saturday and Sunday also a more even pattern throughout the day can be
noticed than during the workweek, as more people are at home. The morning peak also
starts a bit later as people might be sleeping in.

An analysis on the demand shifting potential of appliances, using the EuP consumer
survey transferred the outcomes into an estimated average curve for start time of dish-
washer in Europe over the course of a day and the related power demand needed for
operating a dishwasher per day and household (2.3.3). The results as shown in figure
2.6 show that the peak of washing activity lies between 7-9pm, with a smaller peak
between 6-8 am. This timing seems to be slightly di↵erent for the analysed households.
A possible explanation could be the average dinner time in Europe being later than in
the Netherlands. Furthermore, the higher level of granularity of the meter detections
compared to the EuP survey results, provides additional insight on smaller spikes and
dips throughout the day establishing a clear probabilistic relationship between people’s
daily rhythm and usage of the dishwasher, which could be used in future energy demand
estimation modelling.

5.3.5 E�ciency analysis

To find out how e�ciently dishwashers are used in households, the estimated energy per
wash and weekly usage for the nearly 11.000 households were compared to the estab-
lished e�ciency thresholds. Estimated usage was classified as e�cient and ine�cient
and compared to the survey answers in order to be able to understand how well the
developed NILM classification is able to detect ine�cient usage. Finally the potential
for improving energy e�ciency in households was estimated.

Energy e�ciency

E�ciency classification for energy per wash The analysis shows, that 16% of the house-
holds are classified as e�cient and 84% are classified as ine�cient with a precision of
0.73, recall of 0.89 and F1 of 0.80. This indicates, that the majority of the households
are using more energy than the set threshold. The validity of the threshold has been
discussed in discussion subsection 5.2.4. Most households using more energy per wash
than this threshold could have multiple reasons.

• Washing program: The e�ciency threshold was chosen for the energy consump-
tion of the standard eco-program. However, the survey results showed (table
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4.10), that 61% of the households stated that they use washing programs with a
range of 50-75 �C), as discussed see 5.3.3. Van Holsteijn en Kemna state there is
evidence that the eco-program is not the most used, which these findings confirm.

• Machine characteristics: The e�ciency threshold was set for an A+ machine with
12 place settings. The e�ciency label, see table A.1 indicated a 10% di↵erence
in standard energy consumption for each step in label. The survey showed, that
24% of the households have a machine with a label of A or lower (A-) (table 4.10).
According to the label directive these machines henceforth use more energy per
wash than what has been stated as e�cient in the e�ciency threshold model. The
size of the machine and therefore the place settings may also have an impact on
the energy per wash. However 88% of the households surveyed showed to have a
regular machine and only 3% stated to use a compact machine (4.8), which makes
this factor negligible.

As can be seen in figure 4.16 the average energy consumption per temperature range
and label is plotted. This shows an even steeper increase within each label as a result
of temperature than the di↵erence in energy consumption between the labels. In order
of magnitude it can therefore be concluded that the washing program is the biggest
impact factor on the e�ciency followed by the machine characteristics and the ambient
temperature. This would also be in line with information gained from literature where
the combination of the most used washing program and its nominal temperature are
said to be two key parameters [147].

When considering the potential optimisation measures for the energy e�ciency, one
could conclude that an important factor for e�ciency improvement is the use of lower
washing temperature, which is a direct impact that the consumer can have on its own
energy balance. The most di�cult factor to change appears to be the water inlet tem-
perature.

With regards to the accuracy of the e�ciency classification several factor could play
a role 5.3.3. In addition to the aforementioned factors, discrepancies between meter
findings and survey results can also be caused by other factor:

• Ambient conditions: The average annual water inlet temperature could be lower
than the temperature used for testing under the EU e�ciency regulation (15�C).
In the Netherlands for the year 2018 an annual average outside temperature of
11.4 �C was calculated. It can therefore be suspected, that the energy usage of
dishwashers in the Netherlands might be slightly higher, having to overcome a
potential lower inlet water temperature.

• Machine malfunction: Despite an e�cient washing label or washing program mal-
functions of machines e.g. due to high usage frequency and age could be reasons
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increasing the ine�ciency of a dishwasher over time by encrustation. These fac-
tors are hard to analyse and have not been included in the research, but could
potentially be analysed when detailing the load profile assessment per machine
type and assessing for abnormalities e.g. in the heating cycles.

Frequency e�ciency

The results of the e�ciency classification for weekly number of washes resulted in 38%
of the households to be classified as e�cient and 62% as ine�cient with a precision of
0.61, recall of 0.87 and F1 of 0.72.

This result indicates that only one third of the households is using their dishwasher
an e�cient number of times a week, according to the established threshold. The valid-
ity of the threshold has been discussed in discussion subsection 5.2.4. Some two third
of households using their dishwasher more often may have varying reasons.

• Amount of dishes: Can be impacted by the number of family members and amount
of dishes used per family member. While the number of family members is a given
and e�cient usage will di↵er by household size, the threshold is set for a household
size of 3 family members. Indeed the average number of family members in the
data set is just below 3. However, there are another 37% of households with more
than 3 family members. Nevertheless, as shown in table 4.8 even households of 2
family members on average use their dishwasher 4.4 times a week. Much in line
with other literature findings as discussed in the frequency of usage subsection.

• Capacity of the dishwasher: Too small dishwashers for larger families would result
in the need to do more washes. However, this seems negligible since only 3% use
compact dishwashers.

• Non-full loading. It was not possible to quantify the capacity usage, as this was
not asked in the survey and can’t be measured from the plug profile. However,
in the plug survey, where this was asked, 13% of respondents answered to fill the
dishwasher based on how much dishes are available and another 26% said to fill it
up, but not too full. Much in line with the VEWIN surveys in the Netherlands,
where some 13% of households said to fill their dishwasher usually only for three
quarters [149]. According the Richter et all about 20% of washes are not fully
loaded [150], while Van Holsteijn and Kemna estimate that ine�cient placing of
dishes reduces a common 12 ps dishwasher to only about 9 ps (a reduction of a
quarter), particularly when consumers might need clean dishes [146].

As can be seen in figure 4.18 the average number of weekly washes per household size
and machine size type is plotted. The average number of weekly washes by household
indicate a stepwise increase with each additional household member. While the type
(hence size) of dishwasher could potentially influence the number of weekly washes, the
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results do not show much variation.

Based on this, family size can at least partially explain why households might need
more than 4 washing sessions per week. However, only about a third of families are
larger than 3 family members. With even 2 person households often already using the
dishwasher more than the set threshold, literature indicates about a quarter of usage
could potentially be reduced by better loading. Finally, trying to reduce the amount of
dishes produced per family member on a daily basis could potentially close the remain-
ing 10-15%. Reuse of glasses and mugs or even the breakfast plate could potentially
contribute to reduction of the overall daily dish production when making people more
aware, without much actual loss of convenience. Similar to the energy consumption, for
the accuracy of the e�ciency classification several factors could play a role see 5.3.3.

Potential energy savings

It was found that 29% of households use less than the set annual threshold of 218kWh,
while the other 71% used more. With an average annual energy consumption of 312kWh
this provides 94kWh of energy saving potential on average, a potential reduction of just
over 30%. Only 7% of all households have e�cient labelled dishwashers, make use of
a low energy consuming washing program and wash less than 4 times a week, by that
using 141kWh on average (24.5% below the threshold). Another 10% of households
either consume more energy per wash or wash more often than the set threshold, but
are slightly underneath the annual threshold still overall. Consuming more energy per
wash (10%), washing more frequently (20%) or both (52%) results in an average of 9%,
33% and 61% overconsumption respectively.

This shows that about 7 in 10 households annually use more energy than the set thresh-
old and less than 1 in 10 households is e�cient on all factors. The average energy saving
of 30% seems very much in line with the 29.4% higher energy use under real-life condi-
tions, compared to laboratory assumptions as mentioned by Stamminger. Although it
has to be noted that a large share of that (17.2%) is attributed to the energy consump-
tion for pre-rinsing dishes by hand and energy loss due to ine�cient usage frequency is
not taken into account. [24] Indeed the number of washes seems to be a bigger driver
than the energy usage per wash. Which can be explained by the average wash using
about 1kWh of energy, while the step size between di↵erent energy labels is only about
0.1kWh. Hence increasing from 5 to 6 weekly washes equals the same e↵ect as mov-
ing from an A+ to a B labelled dishwasher. Pakula, who did a research on washing
machines, suggests total energy savings up to 50% with better use of the machine ca-
pacity and the frequent use of low wash temperatures mentioned as two focus areas for
behavioural improvement. [9] The average savings of 30% and as high as 61% for the
52% of households with both ine�cient usage frequency and energy per wash, suggests
that similar energy savings might be achievable for dishwasher usage as well.
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While the EU Eco regulation calculates dishwasher energy consumption as total energy
per cycle, based on the number of place settings [134], an attempt could be made to
translate this into consumption per item. As an overall threshold of 1.05kWh per wash
was set. As the majority of dishwashers are 12/13 place settings sized, such dishwasher
would o↵er space to about 130 pieces (based on table 2.3), this would equate to using
about 8 Wh/item. In the research of [150] dishwasher usage was compared with man-
ually washing the dishes and here an average consumption of 25Wh/item was found.
However, in that research the calculated energy usage includes energy consumption of
manually pre-rinsing dishes, loading the dishwasher below full capacity and using a
higher temperature washing programme, without specifying the share of energy loss on
each of these. Furthermore, as the research was conducted in 2011, it can be assumed
that dishwashers at the time would generally have a higher energy consumption, since
average energy consumption has decreased over time (see figure 2.10).

Pre-rinsing has not been taken into account within the scope of this study, but when
subtracting some 20% for the age of the dishwasher (in accordance with figure 2.10) and
some 20% for the pre-rinsing (in accordance with the energy consumption expressed
in the study for manual washing of the dishes) this would reduce the finding to about
15Wh/item. The average energy saving potential of 30% found in this study, would
place the actual consumption indeed very close this 15Wh/item. While this approach
is not as precise as the total energy consumption per washing cycle, loading and other
factors might vary per washing cycle and dishes are not homogeneous, but also vary in
size and shape, this does provide an indication of the average used energy and potential
average saving per item nevertheless.

Finally, it has to be noted that these potential savings are an aggregation of many
di↵erent underlying factors. As can be seen in figure 4.20, household specific factors
such as family size change the actual specific e�ciency threshold that would be appli-
cable for that household. Likewise changing a very ine�cient dishwasher may only be
attractive at the end of its lifetimes. Therefore, while changing a dishwasher in theory
is possible, a household’s dishwasher and it’s e�ciency label should rather be assumed
as a given. Particularly when considering other factors such as material consumption
and energy usage of appliance production. Adjusting for these ”fixed” variables has not
been considered within the scope of this research, but the sensitivity to these factors
could be investigated as further research.
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6.1 Conclusion introduction

The thesis report concludes with main findings on each research sub-question, before
answering the main research question. The conclusion is followed by the implications
of this research and ends with recommendations for future usage and potential further
development.

Findings are summarised for the research question and sub-questions:

How can energy consumption, usage pattern and e�ciency characteristics
of real-life dishwasher usage in households be detected and analysed with a
smart meter based NILM system?

1. How is electric energy usage and e�ciency for dishwashers characterised based on
traditional analysis?

2. How can a smart meter based NILM system be developed to detect this?

3. How does the newly developed system perform in detecting these characteristics?

4. How much energy do dishwashers in households consume and how often are they
used, depending on time, household and machine characteristics?

5. How e�ciently are dishwashers used in households?
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6.2 Main findings

In this chapter the main findings of the thesis will be summarised and final conclusions
related to the posed research questions will be drawn.

1. How is electric energy usage and e�ciency for dishwashers characterised based on
traditional analysis?

The load profile of a dishwasher follows a distinctive pattern, based on di↵erent
steps in the washing cycle, such as water heating and rinsing. The average energy
consumption depends on factors such as chosen washing program, e�ciency label
and size resulting in an energy consumption of about 1.1 kWh per wash. Usage
frequency depends on family size, amount of dishes used and capacity utilisation
of the dishwasher. The average annual number of washes in the Eco Design reg-
ulation (No 1016/2010) [137] is assumed to be 280.

Energy consumption and usage patterns are both analysed by more traditional
approaches, such as surveys and smart plugs. E�ciency characteristics as used
in the Eco Design and E�ciency Labelling regulation are based on findings from
traditional approaches, but do not take the potential of scalable and continuous
analysis into account that NILM could o↵er, potentially reducing the sensitivity
to survey bias and providing much larger research samples than would be a↵ord-
able with smart plugs.

2. How can a smart meter based NILM system be developed to detect energy con-
sumption, usage pattern and e�ciency characteristics?

The model developed in this research extends the NILM methodology developed
by K. Basu (2017), which provided the possibility of detecting dishwasher usage
on the smart meter power signal. This research used 100 households with plugs
connected to the dishwasher and smart meter data sampled at 10 seconds inter-
vals to develop a more granular level of detection. Energy consumption per wash
was estimated, using linear regression on several of the detected features such
as total heating period, heating power and number of heating moments. Energy
consumption as calculated from the plug data was used to calibrate the regression
parameters of the NILM algorithm.

The detection model can either be set to ensure high certainty of detecting the
right appliance (high precision) or ensuring that most possible dishwasher cycles
are detected, risking mislabelling of activity (high recall). The model was set to
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an optimal balance between the two, ensuring a maximum accuracy (F1) score.
Since a higher precision improves the quality of detection of energy per wash, but
results in underestimating the number of washes another linear regression model
was used to estimate the total number of washes.

In order to assess the e�ciency of the dishwasher use, a binary threshold model
was developed, serving as a proxy for e�cient energy consumption per wash in
kWh and e�cient usage frequency in number of washes per week. In order to es-
tablish values for the energy e�ciency threshold the EU Eco Design regulation was
used. These regulations contain calculations for maximum energy consumption
of dishwashers based on e�ciency label and size, assuming a standard washing
program. For usage frequency only an assumption of 280 washes per year is avail-
able, but no information is given on what usage frequency could be considered
as e�cient. Therefore weekly usage was estimated with a model based on num-
ber of family members and daily usage of dishes. Both e�ciency thresholds were
calibrated to improve accuracy based on the 100 validation households.

3. How does the newly developed system perform in detecting these (energy consump-
tion, usage pattern and e�ciency) characteristics?

The developed algorithm was tested for its accuracy to estimate per household
outcomes compared to measurement from the smart plug. The average estimation
error (RMSE) was found to be 0.10kWh for energy per wash and 1.4 days/week for
the usage frequency. This translates into a normalized estimation error (NRMSE)
of 8.8% for energy per wash and 27.2% for the usage frequency. Estimated en-
ergy consumption and frequency of usage were compared to a specified e�ciency
benchmark. This binary e�ciency classification provides accurate results for both,
and a set threshold can be optimized to either high precision or recall, depending
on requirements, leading to an energy e�ciency classification accuracy (F1 score)
of 91% and (F1 score) of 89% for classification of usage frequency e�ciency.

4. How much energy do dishwashers in households consume and how often are they
used, depending on time, household and machine characteristics?

To gain insight into the characteristics of dishwasher usage in real-life the devel-
oped algorithms were applied on smart meter data gathered for a full year for
more than 130.000 households to investigate energy consumption, usage pattern
and e�ciency characteristics at large scale.

• How much energy do dishwashers in households consume on average per
wash how frequently are they used per week and per year and what is the
resulting total energy consumption?
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In the small-scale smart plug research, an average energy consumption per
wash of 1.22kWh was found. Dishwashers in this group are used 5.2 times
per week on average. The deployment of the developed method on large-scale
smart meter data resulted in an average energy consumption of 1.18kWh per
wash, equalling an A label machine and the dishwasher is used 240 times per
year, 40 times less than assumed for the EU e�ciency label.

• How does the energy consumption of dishwashers in households depend on
time of the day, week and year?

Energy per wash and frequency of usage both show a seasonal dependency
with peaks in winter and lows in summer. Energy consumption per wash
changes in accordance with outside temperature, deviating by 0.23 kWh
between the maximum and the minimum throughout the year on average.
A relation between the frequency of dishwasher usage and the occurrence of
events and holidays can be drawn with a minimum of 3.3 during Summer
holiday and a maximum of 5.3 during Christmas time. Within the weekly
pattern, dishwasher usage di↵ers per weekday with least usage on Friday.
Main usage was identified to be directly after dinner time and just before
bed time, with the highest peak on Monday after dinner and more equally
distributed use over the weekend.

• How does the energy consumption of dishwashers depend on household and
machine characteristics?

The energy consumption of dishwashers depends on household and machine
characteristics. Number of people within the household appeared to be one
of the main factors for weekly usage with 2.8 weekly washes for single house-
holds, 4.4 for two people household and increasing by 0.6 for each additional
household member. The temperature of the chosen washing program impacts
the energy consumption more than the e�ciency label. For high e�ciency
label and low temperature resulting in average energy consumption of 1.13
kWh (for A+++, <30�C) and energy consumption for low e�ciency label
and high temperature of 1.35 kWh (for A-, <75�C).

5. How e�ciently are dishwashers used in households?

The analysis of the frequency and energy e�ciency showed that 84% of house-
holds consume more energy per wash and 62% use their machine more often than
needed. This results overall in an average improvement potential of 94 kWh (just
over 30%) that could be saved on dishwasher usage annually per household by
the 130.000 households in this research.
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How can energy consumption, usage pattern and e�ciency characteristics
of real-life dishwasher usage in households be detected and analysed with a
smart meter based NILM system?

This research shows that energy consumption assessment with NILM, based on data col-
lected from the smart meter, can deliver real-life insights into the energy consumption,
usage patterns and e�ciency characteristics of dishwashers in a continuous, scalable
manner and without much intervention of the user.

It does so by combining a NILM dectection system, with estimation of energy usage per
wash and estimation of usage frequency. These findings are compared with Eco-design
regulations and bottom-up assumptions on daily dish production. A binary classifier is
used to detect if energy usage per wash and weekly usage frequency are below or above
a chosen thresholds that serves as proxy to classify ine�ciency and potential energy
savings.

In this way this research extends NILM research and contributes to the field of en-
ergy systems analysis by providing both a methodology and more detailed information
on household energy consumption, usage patterns and e�ciency.

While this developed NILM methodology might be less accurate to measure consump-
tion on a wash-by-wash basis than using plugs, it is much more scalable, less intrusive
and can provide the user with insight over a more extended period of washes and can
trigger a dialogue with the user to gain additional information.
Compared to the use of surveys the findings are not biased by user statements and data
can be collected on a continuous basis. These overarching statistics for many households
give a good indication of average values and can potentially be grouped by household
demographic, user behaviour and machine characteristics, but care must be taken to
ensure the algorithm is trained with a randomly sampled unbiased set of households.
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6.3 Outlook

6.3.1 Implications

The conducted research has shown that tapping into large-scale smart meter data is
possible via NILM application and delivers new insights into the real-life usage of house-
hold appliances. By utilising data from the already installed smart meter, the developed
NILM system can detect dishwasher energy consumption and usage patterns from the
household load profile non-intruisively and compare this to a set threshold serving as
proxy for e�ciency.

The outcomes of this research could be used to further develop a system to inform
consumers on how to improve e�cient energy usage of their dishwasher, usage profil-
ing and benchmarking between consumer groups, energy waste check and demand side
management. Generally it needs to be considered that from the detections of appliance
usage the activity profile of a household can be inferred. While this provides multiple
opportunities, as discussed in this paper, this poses privacy concerns as well. These
need to be considered particularity in connection to commercial consumer facing prod-
ucts and regulation (General Data Protection Regulation)

As stated in the beginning of the research, long-term energy consumption assessments
are important to find ways to improve energy e�cient behaviour. Continuous perfor-
mance monitoring is key to understand the changes of energy consumption and derive
suitable measures and action. The results of the consumption overview provide a new
source of data to analyse these parameters throughout the year and can be used to
compare former and future studies for large-scale measurements over longer periods. It
therefore contributes to the field of knowledge about how energy consumption of house-
holds is broken down and at what time of the day is used. The dynamic nature of the
research furthermore provides the opportunity for the analysis of changes in consumer
behaviour and habits, e.g. trends occurring as a result of increased working from home.

In this study dishwashers have been used as a use case, but the developed method-
ology can be extended to other appliances within the household to disaggregate the
energy usage into individual appliances or appliance groups. If extended to multiple
appliances, this research can contribute further to understand how each appliance spe-
cific usage pattern contributes to the overall energy use of a household, in other words
break-down the energy bill. This can be used as a basis to deploy an energy moni-
toring and advice system for households and other buildings like o�ces and research
facilities, helping them to improve their energy e�ciency. The e�ciency feedback and
communications could potentially even be extended with use cases such as consumption
analytics and consumption forecasting
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The developed methodology can be seen as a first building block, to enable NILM
diaggregated singal assessment to become part of many more use cases for demand
side management (DMS) o↵ering the ability to consumers to better understand their
appliances and reduce ine�cient usage.

The large-scale overarching continuous energy statistics can be used by energy com-
panies and policymakers to understand usage patterns in relation to societal events,
make better informed decisions and expedient grid development and for instance to
forecast and match demand patterns with volatility caused by increased deployment
of sustainable energy technologies. Hence, be able to improve matching energy supply
with demand on the energy markets. Regulations on appliance e�ciency and ecodesign
as well as future policy incentives could be guided and evaluated by research similar to
the present, using quantitative real-life data for the most e↵ective leverage and impact
of the measures. Using this new type of analytical measures could help inform future
decisions, that previously would only rely on survey and plug results.

6.3.2 Further research

Throughout the research multiple aspects have been identified, which could be further
developed, extended or detailed. One potential entry point for future research could be
the aim of improving the model by optimising the detection model separately for detec-
tion and energy consumption parameters. Currently the detection model aims to detect
as good as possible, based on the F1 accuracy score. However, as the end product is
the energy consumption and number of washes, the NILM algorithm could be adjusted
to optimize for these instead. Potentially this could mean a seperate slightly di↵erently
calibrated version of the model would be needed for the energy per wash (where pre-
cision for the estimation features is more important) vs the number of washes (where
recall is more important). Alternatively other NILM detection algorithms or a hybrid
with other existing NILM algorithms could be used to improve the detection quality.

Furthermore, it would be beneficial if more training data would be available to fur-
ther develop and test the model. The availability of more training data could help
improve the accuracy of the detection model, particularly for yet unseen circumstances.
Extra training data could also help further validate the generalisability of the model.
In order to do this either external data sets could be used, but these risk to be too
di↵erent from the target group. Ideally therefore more households would receive plugs.
For instance as temporary service for households where the survey results and meter
estimates do not match up or for a target group specifically selected for their represen-
tative characteristics. Alternatively, due to high cost and logistic complexity of such
an endeavour, a more scalable option would be to build a feedback button as part of
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the consumer facing application. Consumers could tap the button within the applica-
tion on their smartphone every time they activate (and stop) their appliance, by that
annotating their household profile. This could be a cost e↵ective, scalable approach to
improve recognition of appliances for each individual household. The advent of internet
connected appliances (IoT) could further aid and automate these endeavours.

Another building block to create a more elaborate reference for the e�ciency classifica-
tion would be to base the classification on the survey results, allowing for a threshold
development based on e.g. household size and machine type.

In addition to the surveys conducted along with the measurements, the aspects for
the contextualisation of the energy measurements could be extended. When connect-
ing the households location data to e.g. the Dutch Central Bureau of Statistics (CBS)
data, information on rural/urban split, demographics and socio-economic factors such
as income could be assessed on neighbourhood level. These inputs could create valuable
insights into more stakeholder relevant energy information.

One aspect that has been mentioned above is the extension of the research for dif-
ferent appliances. In fact a large share of assessment has already been carried out
for washing machines using the similar methodology and a start was made for dryers
and refrigerators. However, to be able to completely describe all steps of the analytic
pipeline, only a single appliance type (dishwashers) was chosen to be analysed in detail
as a use case. With small adaptations the developed model can be further extended
to other household appliances on the energy bill. A similar framework could then be
used to analyse other major appliances and not only for electric appliances, but for gas
consumption as well.

Finally, researching the impact of feedback on the usage behaviour in further detail
is key to better tailor this feedback to the households. One possibility to optimise this
could be by building on the existing tool with which the survey results for the meter
data were retrieved and setting up trial runs with di↵erent messages and the respective
consumer responses. As this requires a more design and behavioural scientific focus,
this was not considered within the scope of this research, but the user interaction would
be of essential importance to successfully deploy the developed system within a con-
sumer facing context.
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Braun, Ina Rüdenauer, and Christoph Wendker. Synergy potential of smart
appliances. Report of the Smart-A project, pages 1949–3053, 2008.

[129] Emir Lasic, Rainer Stamminger, Christian Nitsch, and Arnd Kessler. Construc-
tion of a virtual washing machine. Tenside Surfactants Detergents, 52(3):193–200,
2015.

[130] Rainer Stamminger. Quby power analysis: Dishwashers, non-published, 2017.

172



Eneco-Toon • Smart Home Energy E�ciency • 2022

[131] Sean Barker, Sandeep Kalra, David Irwin, and Prashant Shenoy. Empirical char-
acterization and modeling of electrical loads in smart homes. In 2013 International
Green Computing Conference Proceedings, pages 1–10. Institute of Electrical and
Electronics Engineers (IEEE), 2013.

[132] Manisa Pipattanasomporn, Murat Kuzlu, Saifur Rahman, and Yonael Teklu.
Load profiles of selected major household appliances and their demand response
opportunities. Institute of Electrical and Electronics Engineers (IEEE) Transac-
tions on Smart Grid, 5(2):742–750, 2014.

[133] European Parliament and Council of the European Union. Directive (eu)
2018/2002 of the european parliament and of the council of 11 december 2018
amending directive 2012/27/eu on energy e�ciency. EU on energy e�ciency,
2018.

[134] Gregor Erbach. Briefing: Understanding energy e�ciency, 2015. European Par-
liamentary Research Service.

[135] Kornelis Blok and Evert Nieuwlaar. Introduction to Energy Analysis. Routledge,
2017.

[136] European Commission. Directive 2009/125/ec of the european parliament and of
the council of 21 october 2009 establishing a framework for the setting of ecodesign
requirements for energy-related products. O�cial Journal of the European Union,
285, 2009.

[137] European Commission. Commission regulation (eu) no 1016/2010 of 10 november
2010 implementing directive 2009/125/ec of the european parliament and of the
council with regard to ecodesign requirements for household dishwashers text with
eea relevance. O�cial Journal of the European Union, pages 31––40, 2010.

[138] The European Commission. Commission delegated regulation (eu) 2019/2022 of
1 october 2019 laying down ecodesign requirements for household dishwashers
pursuant to directive 2009/125/ec of the european parliament and of the council
amending commission regulation (ec) no 1275/2008 and repealing commission
regulation (eu) no 1016/2010. O�cial Journal of the European Union, L 315,
267:267–284, 2019.

[139] European Commission. Regulation (eu) 2017/1369 of the european parliament
and of the council of 4 july 2017 setting a framework for energy labelling and
repealing directive 2010/30/eu. O�cial Journal of the European Union, L198,
60:1–24, 2017.

[140] European Commission. Commission delegated regulation (eu) no 1059/2010 of 28
september 2010 supplementing directive 2010/30/eu of the european parliament

173



Eneco-Toon • Smart Home Energy E�ciency • 2022

and of the council with regard to energy labelling of household dishwashers text
with eea relevance. O�cial Journal of the European Union, 53:1–16, 2010.

[141] European Commission. Commission delegated regulation (eu) 2019/2017 of 11
march 2019 supplementing regulation (eu) 2017/1369 of the european parliament
and of the council with regard to energy labelling of household dishwashers and
repealing commission delegated regulation (eu) no 1059/2010. O�cial Journal of
the European Union, 62:134–154, 2019.

[142] European Commission. Directive 2012/27/eu of the european parliament and
of the council of 25 october 2012 on energy e�ciency, amending directives
2009/125/ec and 2010/30/eu and repealing directives 2004/8/ec and 2006/32.
O�cial Journal of the European Union, 315:1–56, 2012.

[143] The European Commission. Directive 2009/72/ec of the european parliament and
of the council of 13 july 2009 concerning common rules for the internal market in
electricity and repealing directive 2003/54/ec. O�cial Journal of the European
Union, 211:55–93, 2009.

[144] European Committee for Electrotechnical Standardization. Household electric
dishwashers - measurement method for performance characteristics, 2018.

[145] Rainer Stamminger. Modelling resource consumption for laundry and dish treat-
ment in individual households for various consumer segments. Energy e�ciency,
4(4):559–569, 2011.

[146] Van Holsteijn, Kemna BV, Vlaamse Instelling voor Technologisch Onderzoek,
Viegand Maagoe AS, and Energie GmbH Wuppertal Institut für Klima, Umwelt.
Cold appliances, washing machines, dishwashers, washer-dryers, lighting, set-top
boxes and pumps, 2014.

[147] Angelika Schmitz and Rainer Stamminger. Usage behaviour and related energy
consumption of european consumers for washing and drying. Energy E�ciency,
7(6):937–954, 2014.

[148] Angelika Schmitz, Farnaz Alborzi, and Rainer Stamminger. Large washing
machines are not used e�ciently in europe. Tenside Surfactants Detergents,
53(3):227–234, 2016.

[149] Henk Foekema and Lisanne van Thiel. Watergebruik thuis 2016. Amsterdam:
TNS NIPO, commissioned by VEWIN, 2016.

[150] Christian Paul Richter. Usage of dishwashers: observation of consumer habits in
the domestic environment. International journal of consumer studies, 35(2):180–
186, 2011.

174



Eneco-Toon • Smart Home Energy E�ciency • 2022

[151] Jasmin Geppert and Rainer Stamminger. Do consumers act in a sustainable
way using their refrigerator? the influence of consumer real life behaviour on the
energy consumption of cooling appliances. International Journal of Consumer
Studies, 34(2):219–227, 2010.

[152] Jasmin Geppert and Rainer Stamminger. Analysis of e↵ecting factors on domestic
refrigerators’ energy consumption in use. Energy Conversion and Management,
76:794–800, 2013.
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chines wash less e�ciently and consume more resources. Hauswirtschaft und
Wissenschaft, 3:2005, 2005.

[155] European Parliament and L119 Council of the European Union. General data
protection regulation, 2016.

[156] Erika L. Moen, Catherine J. Fricano-Kugler, Bryan W. Luikart, and A. James
O’Malley. Analyzing clustered data: Why and how to account for multiple ob-
servations nested within a study participant? PloS one, 11(1):e0146721, 2016.

[157] Wojciech Kwedlo. A new random approach for initialization of the multiple restart
em algorithm for gaussian model-based clustering. Pattern Analysis and Appli-
cations, 18(4):757–770, 2015.

[158] Matthew Stewart. The actual di↵erence between statistics and machine learning.
Towards Data Science. Retrieved from, 2019.

[159] Danilo Bzdok, Naomi Altman, and Martin Krzywinski. Points of significance:
statistics versus machine learning, 2018.

[160] Joel Grus. Data science from scratch: first principles with python. O’Reilly
Media, 2019.

[161] Koninklijk Nederlands Meteorologisch Instituut (KNMI). Daggegevens van het
weer in nederland, 2020.

[162] European Commission. In focus: The improved eu energy label – paving way for
more innovative and energy e�cient products, 2021.

[163] Consumentenbond. Vaatwassers vergelijken, 2017.

[164] J Martin Bland and Douglas G Altman. Statistical methods for assessing agree-
ment between two methods of clinical measurement. The lancet, 327(8476):307–
310, 1986.

[165] Government NL. school holidays, 2018.

175



7

Appendix

176



Appendix A

Energy e�ciency label

This section provides additional detail on relevant considerations connected to the EU
e�ciency label for dishwashers [140] and the retrieved methodology, that go beyond or
have not been covered in the main body of the thesis.

A.0.1 Recent developments EU energy e�ciency label

While the analysis in this research is based on data from 2017 and 2018 it is important
to note that in March 2019 the EU commission finalised the format and appearance
of the new Energy E�ciency Label for dishwashers. The new regulation was intro-
duced to stores by 1 March 2021, following the Commission Delegated Regulation
(EU) 2019/2017 [141] and thereby repealed Commission Delegated Regulation (EU)
No 1059/2010 [140]. While this means this regulation is not applicable for the dish-
washers analysed in this research, the framework could be extended to be applicable for
newer machines as well, potentially by asking consumers if their machine was bought
after March 2021.

In the updated regulation, labels return to the ”A-G” energy e�ciency scale for prod-
ucts (instead of labelling A+, A++, A+++). [162]. Along with launching the new
labels, the commission Regulation (EU) No 1016/2010 on ecodesign requirements for
household dishwashers [137] was repealed by Commission Regulation (EU) 2019/2022
[138]. In the frame of the update, changes were made to the energy calculations. The
Energy E�ciency Index (EEI) is no longer based on the annual energy consumption,
but now expressed as eco program energy consumption (EPEC), divided by standard
program energy consumption (SPEC), both in kWh/cycle:

EEI = (
EPEC

SPEC
) ⇤ 100 (A.1)

The EPEC calculation was simplified down to only considering the eco program en-
ergy consumption per wash instead of assuming an annual 280 washes. Complexity
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was further reduced by taking out stand-by mode energy consumption. The power
consumption in o↵ mode P0 and power consumption in standby mode Psm are now
calculated separately.

The benchmark for the best available technology on the market for household dishwash-
ers with 13 place settings was lowered to an energy consumption of 0,55 kWh/cycle.
It is to be considered that about 2-3% of the reduction is corresponding to eliminating
the low power modes from the EEI equation.

In accordance adaptions were made to the calculation of the SPEC to now calculate
the kWh/cycle instead of per year:

1. for household dishwashers with rated capacity ps � 10 and width > 50cm:

SPEC = 0.025 ⇤ ps+ 1.350 (A.2)

2. for household dishwashers with rated capacity ps  9 and width  50cm

SPEC = 0.090 ⇤ ps+ 0.450 (A.3)

The corresponding e�ciency table is presented below:

Table A.1: Energy e�ciency classes [137]

Energy e�ciency class Energy E�ciency Index

A (most e�cient) EEI < 32
B 32  EEI < 38
C 38 EEI < 44
D 44  EEI < 50
E 50  EEI < 56
F 56  EEI < 62
G (least e�cient) EEI  62

A.0.2 Energy e�ciency thresholds

As described in section 3.3.3 for both energy consumption and usage frequency, ef-
ficiency thresholds were defined. When rated capacity and energy label are known,
maximum energy usage of the standard program can be calculated with the energy e�-
ciency equations given in [140]. The two tables below give an overview on the maximum
thresholds for ”Normal” sized (width > 50cm) and ”Compact” sized (width  50cm)
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machines, for di↵erent rated capacities and energy labels (for the pre-2021 regulation
as used in the thesis).

Table A.2: E�ciency threshold of machines with width > 50cm

Label

Capacity D C B A A+ A++ A+++ A+++-10%

10 ps 1.6 1.44 1.28 1.14 1.01 0.9 0.8 0.72
11 ps 1.63 1.46 1.3 1.15 1.02 0.91 0.81 0.73
12 ps 1.65 1.49 1.32 1.17 1.04 0.92 0.83 0.74
13 ps 1.68 1.51 1.34 1.19 1.06 0.94 0.84 0.75
14 ps 1.7 1.53 1.36 1.21 1.07 0.95 0.85 0.77
15 ps 1.73 1.55 1.38 1.22 1.09 0.97 0.86 0.78

Table A.3: E�ciency threshold of machines with width  50cm

Label

Capacity D C B A A+ A++ A+++ A+++-10%

6 ps 0.99 0.89 0.79 0.7 0.62 0.55 0.5 0.45
7 ps 1.08 0.97 0.86 0.77 0.68 0.6 0.54 0.49
8 ps 1.17 1.05 0.94 0.83 0.74 0.66 0.59 0.53
9 ps 1.26 1.13 1.01 0.89 0.79 0.71 0.63 0.57
10 ps 1.35 1.22 1.08 0.96 0.85 0.76 0.68 0.61
11 ps 1.44 1.3 1.15 1.02 0.91 0.81 0.72 0.65

A.0.3 Dishwasher Energy Labels of new machines (2017)

As mentioned in section 3.3.3, the e�ciency threshold characteristics for the energy
consumption of a dishwasher were based on normal sized dishwasher (60cm), with 12
or 13 place settings and an A+ machine with eco program. To back this findings up
an analysis of 500 available models on Dutch consumer website Consumentenbond was
conducted to gain a better understanding of machines on the market.

The analysis was performed for new dishwashers available on the market in the year for
which the household plug data was analysed (2017). While this does not represent an
overview of penetration of di↵erent dishwashers in use in households in the Netherlands,
the results show the latest machine sample on the market at the time. The following
graphic shows the count of dishwashers per rated capacity(ps) and e�ciency label for
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a total of 500 dishwasher scraped from website of Dutch consumer organisation Con-
sumentenbond [163]. It appears that most new washing machines available (as tested
by Consumentenbond) are 12 to 14 ps capacity and mainly A+ and A++ e�ciency
label. This further confirms the chosen general threshold, which was based on an A+
machine with 12/13 ps, resulting in a standard e�ciency threshold of 1.05 kWh.

Figure A.1: Count of new Dutch dishwasher by place setting and energy label (500 dish-
washer scraped from Consumentenbond website [163]).
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Algorithms

As described in section 3.2.4 three main algorithm groups of relevance for this research
are clustering, regression and classification. The generic overview on these algorithm
categories is given in the respective section. The appendix includes further details on
the algortihms, encountered problems and application.

B.0.1 Main algorithms

Clustering

A comparison of di↵erent methods for clustering was made for the application on three
problems encountered with the data handling: Identification of the most likely estimate
(MLE) for nested design of the observations, facilitation of pair-matching and noise fil-
tering. Following these problems are further described:

Nested observations
When collecting data of multiple washes for the same household, multiple measure-
ments i are sampled for the same study subject j. This results in a relatively much
higher number of observations K than the number of subjects N . These observations
could be treated as individual observations, which could be described by the following
linear regression [156]:

Yij = �0 + �1Xij + µij (B.1)

However, two main issues arise causing a form of statistical dependence:

• Measurements taken from the same household are not independent

• The number of observations varies per household as the sampling period is the
same for all households, but the frequency of usage and thus number of observed
washes per time period, varies per household.
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In addition problems arise in relation to misdetections and how to threat these. This
a↵ects the pair-matching between smart plug and smart meter data and also causes
noise.
Pair-matching
Individual observations of washes are not always detected by the smart meter and some
washes detected by the smart meter are actually misdetections, therefore it is not al-
ways possible to “pair-match” every smart meter detection with a corresponding smart
plug detection. When applying an aggregation the number of observations per subject
can be reduced to one MLE (set) for the smart meter and one MLE (set) for the smart
plug, which then can be pair-matched.

Noise filtering
The detection data can be noisy (especially for smart meter detections) and it could
therefore potentially help to filter out misdetections to reduce noise in the analysis.

Clustering methods
To solve the above mentioned problems, di↵erent aggregation methods were compared.
A simple approach is to aggregate the data to a summary measure (e.g. mean or mode),
which can be described by the following equation, where the bar above the variables
(Ȳ , X̄, µ̄) represents the aggregated variables [156]:

Ȳi = �0 + �1X̄i + µ̄i (B.2)

However, aggregation to a single summary measure can not represent the potential
multi-modal character of detection data, e.g. di↵erent washing programs. Further-
more, multidimensional noise filtering cannot easily be performed by this method. A
potential way to group the data into multiple multidimensional subsets of similar data
points is with the use of a clustering algorithm like K-Means or a Gaussian Mixture
Model (GMM).

Both the K-means and GMM method divide the data set into K number of clusters,
where each cluster has its own centroid mean value. Each data point is grouped with
the cluster centroid to which they have the closest distance, after which the new mean
value is updated.

The K-means algorithm makes a hard assignment to which centroid a data point be-
longs, attributing each data point to a single centroid it is closest to. The GMM
algorithm instead assigns a Gaussian distribution in each dimension to every centroid,
with not only a mean value, but standard deviation as well. This multivariate Gaus-
sian distribution forms a point cloud to which each data point is assigned with some
probability. While the K-means might be slightly easier to interpret and can run much

182



Eneco-Toon • Smart Home Energy E�ciency • 2022

quicker, particularly with high dimensional data, clusters are spherical and in combi-
nation with hard assignment can lead to miss grouping. The GMM on the other hand,
due to its probabilistic nature, is more flexible in shape and additionally a threshold
can be set to discard every point that doesn’t belong to either cluster with a minimum
probability. The relative low dimensionality of the data, importance to group individ-
ual data points correctly and need for noise filtering made the GMM algorithm the
clustering algorithm of choice.

The algorithm can be run with multiple numbers of centroid initialisations to see which
K number of clusters performs best on the given data set, using the Akaike or Bayesian
Information Criterion (AIK or BIC) as performance measure. Furthermore, since the
centroids are assigned randomly, there is a risk the algorithm could get stuck in a local
minimum. Hence, r random initialisations can be performed. To initialise the GMM
algorithm, the K-means can be used as a quick starter. Hence, combining both to im-
prove performance. [63] [157]

Regression

In section 3.2.4, the considered regression analyisis and calculation was described:

Yi = �0 + �1Xi + µi (B.3)

Where Yi is the dependent variable representing observation i part of N observations,
Xi is a corresponding covariate, and �0 and �1 are unknown regression coe�cients rep-
resenting the linear line’s intercept parameter and the slope coe�cients of the covariate,
respectively. The covariate X

n and regression coe�cients �n can be extended for mul-
tivariate linear regression comprised of n variables. The error, µi is the distance of a
measured data point Yi compared to the expected value on the linear line Ŷi. A line
that best represents the pattern in the underlying data points has a low overall error.
The aim of this method is therefore to find the � parameters for the linear line that
minimises the root mean squared error for the measured data points:

RMSE =

s
1

N
⌃N

i=1
(Ŷ � Yi)2 (B.4)

Di↵erence between statistics and machine learning
In this research the regression was not used to infer the relationship between measured
variable Y and corresponding measured covariates X

n, but was used as supervised
learning, to estimate unknown values Ŷi based on a set of n measured variable(s) Xn

i .
Hence, for the application in machine learning the linear regression model is composed
of two steps. First the model is trained on beforehand to obtain the underlying rela-
tionship, described by the set values for the � parameters that minimises the RMSE.
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Secondly, when the � parameters are set, these can be used with the Xn
i values of new

observations to estimate the unknown Yi values of these new observations. [158] [159]

Classification

A machine learning classification algorithm generally is trained based on a data set
with observations with known classifications and a set of sub-features and learns how
to estimate the classification of unseen data, based on observed sub-features. Sev-
eral common machine learning classifiers, including Logistic Regression, Naive Bayes,
K-Nearest Neighbour and Support Vector Machines (SVM) [160] were considered. How-
ever, it was decided not to deploy these.

Classification algorithms are particularly useful when the threshold(s) for the sub-
feature (set) is/are unknown, but the class of the training observations is known. In
case of the detection data, the classification was unknown and would first have to be
labelled. To do this a pre-defined threshold had to be set for the training data, hence a
threshold would have to be available already regardless. Therefore, this same threshold
was used post regression analysis as a simple binary check, to assess if the regression
result is either higher or lower than the set threshold. While this might not pick up
on subtle di↵erences in the sub-feature set in the same way a well-trained classifier
potentially could, this approach only requires training of the regression algorithm and
no further training. Several of the classification algorithms, particularly SVMs need
much larger training sets, while the training data set in this research was confined to
the relatively small number of households. Quick analysis therefore showed much better
results for this simple ”regression + threshold” approach, than any of the classification
algorithms.

B.0.2 Validation

Error estimation

As explained in section 3.2.4 the NRMSE (Normalized Root Mean Squared Error)
served as the comparison metric for the analysis of the error estimation. A selection of
algorithms with the lowest NRMSE were further compared based on a visual inspection
of their performance. This was done with three di↵erent plots:

• Distribution plot
Used to compare the meter detections and several estimation algorithms, to see
how well the distribution of meter detections and estimations aligns with the
distribution according to the plug detections.

• Regression plot
The meter estimations are plotted against plug detections. The regression plot
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shows the many di↵erent cross-validated regression lines through these detection
points, and the average regression line. The estimation model would estimate
the points to be on this line, based on the meter input values. When all meter
detections would equal plug detections, they would align on a zero di↵erence line.
The regression line and its 95% interval are compared to the zero di↵erence line
to give a visual indication of how well the model performs and how the errors are
distributed.

• Di↵erence plot
A di↵erent way of comparing the errors is the di↵erence plot, where the esti-
mated detections minus the plug detections are plotted against the plug detec-
tions. When the mean di↵erence is zero, the average of the meter estimations
equals the average of the plug detections. The 95% interval shows the margins of
estimation error. [164]
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Appendix C

Smart plug analysis

To gain a better understanding of the user group for which the smart plug data was
collected, additional data was gathered. This appendix section describes the household
and machine characteristics and the energy consumption and usage frequency.

C.0.1 Data Overview

Plug survey and user manuals

A survey was send out to better understand household and machine characteristics of
the sample as well as how the dishwashers are used within the household. Part of the
survey was to ask for model type numbers. The model number could be used to retrieve
the dishwasher’s user manual online for further information.

Smart Plug Survey
To gather more information on household and machine characteristics of the smart plug
data set, I sent a survey to all households who had participated in the earlier demand
side management trial by Eneco. Information gathered from this survey were machine
characteristics: e�ciency label, size, age, brand and model type number. Images and
descriptions were added, to explain where the model number could be found. Further-
more, family size and usage characteristics, such as stated number of weekly washes,
number of di↵erent programs, program most used and second most used, what type of
program and how frequently it is used, were also asked.

Technical specifications such as size and e�ciency label (if not answered in the sur-
vey) and energy usage for the di↵erent programs were manually retrieved from online
user manuals. In many cases the energy consumption was provided as a range. If so,
the minimum, maximum were both noted.

Of the 100 households 69 responded of which 41 fully answered, including the model
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number. For 26 households the energy consumption for at least one program was re-
trievable. In total for 40 washing programs the energy consumption was retrieved, the
most frequent used program for 25 households and second most frequent used for 15
households. Reasons for not being able to retrieve information could stem from a wrong
type number being provided, the manual not being online available, no washing pro-
gram that matched the description was found or energy consumption was not provided
in the manual.

Appliance sample overview
An overview of the sample of plug users who filled out the survey is presented in Table
C.1. For the di↵erent categories (brand, machine size, e�ciency label, machine age and
household size) the respective count of households and relative share are given in the
left two columns. The right two columns provide additional information on the ability
to retrieve energy consumption data from the user manuals.

As can be seen in the brand section, two brands namely Siemens and Bosch where
predominantly found in the households participating in the survey. A total of 32 of the
41 households stated a standard sized dishwasher of 60cm. A place-setting of 12 to 13
couverts appears to be the most common capacity. However, for 9 households it was
not possible to retrieve this data. The most common energy label is the A++ label.
The e�ciency label of 7 dishwasher stays unknown.

Over 60% of the dishwashers analysed in the survey were less than 5 years old. Of
the 63% of dishwashers for which the energy consumption was retrievable the majority
were relatively young dishwashers. For dishwashers above 5 years the number of re-
trievable energy consumption information decreases significantly as either user manual
or energy reporting in the user manual was less often available online. If information
was not retrievable, the washing program energy consumption could not be compared.
However, other specifications stated in the survey could still be considered in further
assessment.
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Table C.1: Overview of type of dishwashers and households in survey

Total in survey Energy retrievable

count a share count b share

Brand Siemens 16 39% 9 22%
Bosch 9 22% 6 15%
Miele 3 7% 3 7%
AEG 2 5% 1 2%
Bauknecht 2 5% 2 5%
IKEA 2 5% 0 0%
Pelgrim 2 5% 2 5%
Boretti 1 2% 1 2%
Indesit 1 2% 0 0%
Ne↵ 1 2% 0 0%
Samsung 1 2% 1 2%
Whirlpool 1 2% 1 2%

Size 60 cm - 12 couverts 11 27% 10 24%
60 cm - 13 couverts 12 29% 12 29%
60 cm - 14 couverts 3 7% 3 7%
60 cm - 15 couverts 1 2% 1 2%
60 cm - unknown 5 12% 0 0%
Unknown 9 22% 0 0%

Label A+++ 4 10% 3 7%
A++ 15 37% 12 29%
A+ 8 20% 8 20%
A 7 17% 3 7%
Unknown 7 17% 0 0%

Age 0 to 2 years 13 32% 12 29%
2 to 5 years 13 32% 8 20%
5 to 10 years 7 17% 3 7%
10 to 15 years 7 17% 3 7%
15+ years 1 2% 0 0%

Household size One 1 2% 1 2%
Two 11 27% 7 17%
Three 10 24% 3 7%
Four 13 32% 10 24%
Five 6 15% 5 12%

Total 41 100% 26 63%
a
Number of households in survey with respective dishwasher

b
Number of households in survey for which respective

dishwasher manual information was found on energy consumption of the stated program
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Usage summary

From the smart plug data a number of di↵erent consumption statistics can be gener-
ated. The detected washes can be aggregated in several di↵erent ways. Either as all
washes individual, regardless of household and dishwasher they belong to. As average
per household, for the 100 households considered in the sample or based on clusters for
most likely washes per household. Table C.2 shows the summary statistics for energy
based on these 3 methods.

Table C.2: Summary statistics: Energy consumption in kWh per wash under di↵erent ag-
gregation methods for all smart plug users

Energy consumption a

count b mean std min median max

All detected washes 5691 1.211 0.27 0.44 1.18 2.29
Averaged 100 1.215 0.20 0.86 1.18 1.69
Clusters 171 1.215 0.24 0.76 1.17 1.95
a
Energy consumption in kWh per wash

b
Number of detected washes. Individual washes,

average of washes per household and clusters of comparable washes per household consecu-

tively

The mean energy consumption of all three aggregation methods is almost similar at
1.21-1.22 kWh. However, the clustering provides the opportunity to distinguish di↵er-
ent washing programs.

A consumption overview including weekly washes, number of di↵erent programs and
the usage frequency and energy consumption per program is provided in table C.3.
On average the 100 households presented in table C.3 use their dishwasher 5.2 times
per week. According to the clustering algorithm people use 1.7 programs on average, as
59 households use a second program and 13 households even use a third. The frequency
of weekly usage of di↵erent programs, the utilisation, is reported in conditional share.
Thus, the frequency of usage if used. Of all households the algorithm detects that pro-
gram used as the primary program is used 67% of the time. If more than one program
is detected by the algorithm, the conditional share of the second most frequently used
program is 41%. In addition 13 households are detected to be using a third program
with a conditional share of 28%.

The unconditional share can be calculated by multiplying the number of household
that use the respective program, with the frequency of usage, divided by all 100 house-
holds. The unconditional share for cluster program 1 hence is 67%, for program cluster
2 it is 24% and for program cluster 3 is 3.5%. This does not fully add up to a 100%
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Table C.3: Summary statistics for dishwasher: Weekly utilisation of dishwasher and energy
consumption per wash kWh for all smart plug users

Consumption overview

count a mean std min median max

Number of weekly washes 100 5.2 2.1 1.0 5.6 11.3
Number of di↵erent programs 100 1.7 0.7 1.0 2.0 3.0
Utilisation program 1 b c 100 67% 24% 33% 53% 100%
Utilisation program 2 (if used) 59 41% 8% 21% 41% 50%
Utilisation program 3 (if used) 13 28% 6% 20% 32% 33%
Energy usage program 1 d 100 1.23 0.25 0.83 1.17 1.95
Energy usage program 2 59 1.18 0.23 0.76 1.16 1.80
Energy usage program 3 13 1.30 0.21 1.05 1.29 1.73
a

Number of households
b
Program 1 refers to program cluster most often used within a household, program 2

and 3 refer to the second and third most often used program respectively. Detected program clusters are based

on GMM estimation; actual values might be slightly di↵erent.
c
The mean value shows what share of washes the

program is used, if used; if someone does not use a program 3, it is not counted, instead of counted as zero
d
Energy

consumption in kWh per wash

as no more than 3 program clusters were considered per household and some washes
(5.5%) are not categorised.

The mean energy consumption of program cluster 2 appears to require 0.05 kWh less
energy per wash than program cluster 1 and 0.12 kWh less energy per wash than pro-
gram cluster 3. These findings could lead to the assumption that the most used program
is not the most energy e�cient program, less energy intense programs are used as either
the first or second most often used program, while more energy intense programs are
used less often and fall into the program cluster 3.

C.0.2 Consumption analysis

The plug data and the information retrieved from the plug survey were compared into
how real-life usage compares to stated information.

Frequency of usage

As shown in the last section, the smart plug detection data reveals information on pro-
gram utilisation, energy consumption and frequency of washes. This data is combined
with data from the survey to compare stated versus revealed usage. To gain an un-
derstanding of the usage frequency of the dishwasher and whether this matches with
people’s perceived usage frequency, a comparison of these two was made. The number
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of weekly washes detected by the plugs was directly compared to the weekly washes
stated in the survey. The survey results for the 41 households that answered the survey
were matched with their respective smart plug data, as shown in table C.3.

Table C.4: Summary statistics for dishwasher: Weekly utilisation of dishwasher for all smart
plug users who answered consumer survey

Stated in survey Detected by plugs

count a mean std count mean std

Number of weekly washes 41 5.8 2.2 41 5.1 2.0
Number of di↵erent programs 41 1.8 0.6 41 1.7 0.6
Utilisation program 1 b 41 88% 15% 41 68% 24%
Utilisation program 2 (if used) 28 27% 16% 24 42% 7%
a
Number of households

b
Program 1 refers to program cluster most often used within a household, program 2 and

3 refer to the second and third most often used program respectively. Detected program clusters are based on GMM

estimation; actual values might be slightly di↵erent. The mean value shows what share of washes the program is

used, if used; if someone does not use a program 3, it is not counted, instead of counted as zero

Comparing the average number of weekly washes stated in the survey (5.8) with the
number detected by the smart plugs (5.1), it can be seen that these numbers diverge
by 0.7 washes per week. On average the survey participants seem to slightly overstate
their washing frequency.

The survey participants stated a utilisation of 88% on average for the primary pro-
gram, basically saying 9 in 10 washes are using the same program, while the detection
algorithm detects 68% or about 7 in 10. Not all 28 stated second programs were de-
tected by the plugs, which detected a second program for 24 of the 41 households.
Furthermore, the conditional share deviates by 15%. This seems to indicate that not
only do households overestimate how often they wash, but also how often they use the
exact same program. Apparently there might be some variation, potentially stemming
also from di↵erent users within the household.

Energy consumption per wash

The energy consumption detected by the plugs can be compared to the energy usage
according to the user manual. Table C.5 summarises the average energy consumption
split up into the primary used program cluster 1 and secondary program cluster 2. Ini-
tially these were matched on utilisation, but it was found that households not always
really use the program the most that they state they use the most. Therefore, in table
C.5 for every household the programs were not matched on utilisation, but on energy
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instead.

Table C.5: Summary statistics for dishwasher: Energy usage per wash according to user
manual matched by closest proximity with energy per wash detected by smart
plug

Program 1 Program 2

Energy consumption a count b mean std count c mean std

Smart plug detection 22 1.20 0.22 12 1.15 0.17
User manual stated average 22 1.21 0.30 12 1.09 0.19
User manual stated min 22 1.13 0.30 12 1.04 0.19
User manual stated max 22 1.29 0.35 12 1.13 0.24

The average energy usage of program 1 in table C.4 is 1.20kWh according to the plugs
and 1.21 kWh stated on average in the user manual. On average the energy usage stays
under the maximum threshold. For program 2, there is slightly more deviation. At
1.15kWh the plug detected energy consumption falls 0.06kWh above the average and
0.02kWh above the average upper limit of 1.13 kWh. Closer inspection however showed
that this is caused by one single outlier with a relatively high energy consumption. Po-
tentially the user might have given a wrong description of the program, hence resulting
in a mismatch. The plug detected energy consumption for all others programs falls
nicely within the spectrum of the user manual. Hence, for the investigated sample the
energy usage in real life as measured with the smart plugs on average does not exceed
the energy consumption according to the user manual, when considering the specific
program used. This indicates that, at least for the investigated sample, dishwashers in
real-life wash e�ciently in accordance with the stated washing program.
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Appendix D

Model results

This section in the appendix focuses on the results that stem from the detailed analysis
and testing of the di↵erent potential features and algorithm for the development of the
energy and usage frequency estimations. The most relevant results have been lined out
in the main thesis in section 4.2.

D.0.1 Energy per wash estimation

Features

This section presents the statistics for di↵erent features, where detections were first
averaged per household. Table D.1 shows this for the smart plug detected consumption
variables. Table D.2, presents the same parameter statistics, gathered by the smart
meter detection model.

As described in chapter 4.1 for the energy consumption, a larger standard deviation is
observed with all plug detections than in the case of per household averaged detections.
This is also the case for the individual variables as the more extreme observations are
averaged out.

The summary statistics for the smart meter detections do not include a row with energy
usage per wash, as this is not detected on the smart meter. The share of water heating
is shown, however, as a would be percentage, comparing the detected water heating
with the energy usage as detected by the plugs.
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Table D.1: Summary statistics of potential energy consumption variables for washes detected
by the smart plugs averaged per household

Plug detected consumption variables

Averaged count mean std min median max

Energy usage of total wash [kWh] 100 1.22 0.21 0.86 1.18 1.69
Energy usage of water heating [kWh] 100 1.01 0.20 0.65 0.97 1.54
Share of energy for water heating 100 82% 5% 66% 83% 93%

Duration of total wash [min] 100 85 23 29 85 132
Duration of water heating [min] 100 31 6 20 29 52
Heating power [kW] 100 2.0 0.1 1.6 2.0 2.2
Number of heating moments 100 2.7 0.6 2 2.5 4.1

Table D.2: Summary statistic of potential energy consumption variables for the smart meter
detection averaged for households

Meter detected consumption variables

Averaged count mean std min median max

Energy usage of water heating [kWh] 100 0.94 0.14 0.65 0.92 1.51
Share of energy for water heating 100 78% 8% 59% 78% 100%

Duration of total wash [min] 100 87 15 39 87 128
Duration of water heating [min] 100 28 4 20 28 48
Heating power [kW] 100 2.0 0.1 1.7 2.0 2.2
Number of heating moments 100 2.5 0.4 2.0 2.5 3.8
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Estimation algorithm

As described in section 4.2.1 the average and mode were calculated and tested for dif-
ferent regression approaches. The NRSME results for the di↵erent estimations models
can be seen in table D.3.

Table D.3: NRMSE [%] for di↵erent energy estimation methods for average
and mode energy consumption per dishwasher wash

Average Mode

mean std mean std

Heuristic calculation
Mean heating energy % of total energy 9.6 0.7 19 2.0
Heating energy + mean o↵set (Predict 1) 9.2 0.6 19.9 3.1
Regression model with
Number of heating moments 14.4 1.0 17.9 1.5
Total heating duration 10.1 0.7 16 1.8
Heating energy 9.4 0.6 14.4 1.4
All regressors (Predict 2) 9.1 0.7 14.9 1.7
Heating energy and moments (Predict 3) 8.8 0.7 14.4 1.5

NRMSE mean and standard deviation over 1000 iterations of 50/50 split cross validation on plug data

and given in percentage as normalised versus the mean plug detected value. In the rows di↵erent

energy estimation methods are given, in the columns the used aggregation methods Average and

Mode respectively. The numbered energy estimation methods correspond to Predict 1, 2 and 3 for

Average aggregation.

By comparison, when regressing energy with the heating energy as detected by the
plugs, this results in a NRMSE of 5.7%. Adding the number of heating moments
as additional information, results in an NRMSE of 5.4%, or RMSE = 0.066 kWh per
wash. This shows that the best performing meter estimation (Predict 3: 8.8% NRMSE)
performs nearly as well.

Clustering algorithm (GMM)

The section below describes the development and usage of the GMM clustering algo-
rithm. This algorithm was dveloped and tested and initially showed superior results.
However, as the results from the NILM detection improved over time, the noise can-
celing function of the GMM algorihm became less relevant. Over time simply using an
average value performed better. However, since the GMM algorithm does provide mul-
tiple beneifts, including recognition of multiple washing programs and how commonly
they are relatively used, considerations during the development of the GMM algorithm
are outlined below.
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As described in section 4.2.1, the performance of the di↵erent estimation methods was
assessed and the best perfoming method (Predict 3) was further analysed. A Gaussian
Mixture Model (GMM) clustering algorithm as described in section B.0.1 was used to
investigate the estimation performance of the clustering method.

The GMM clustering algorithm was based on total energy consumption per wash and
the subfeatures duration of the water heating, number of heating moments and total
duration for each individual wash.

The GMM method allows for the detection of di↵erent washing programs as used in C.
In addition it filters out the noise of misdetections, which is especially relevant for detec-
tion algorithm with a lot of noise detection. In C existing smart plug data was clustered
by the GMM method. In 4.2 smart meter estimation data is clustered by the algorithm.

The energy consumption related to a cluster is the energy of the program. The re-
sulting number of di↵erent clusters from the GMM can be interpreted as the number of
di↵erent commonly used washing programs per household. The frequency of occurrence
of each cluster can be translated into the frequency of usage of the washing program.
The plug cluster and meter cluster could be pair-matched in three di↵erent ways. The
simplest is to only select the cluster with the highest likelyhood. This would repre-
sent the most common used washing program only. Alternatively each cluster can be
matched with the cluster with the closest likelyhood or a weighted average can be taken.
Since it can happen that the meter and plug data don’t result in the same number of
clusters and clusters would have to be dropped out, only the most likely cluster and
the weighted average were tested.

Because the GMM clustering algorithm randomly initialises it can have slightly dif-
ferent outcomes every time it is applied. Because of the random initialisation a single
run outcome can not be solely relied on. To make the outcomes more stable the algo-
rithm was run 30 times. Around that number the algorithm converged to a stable mean.
A 2nd stage GMM was additionally considered where a GMM clustering algorithm was
ran over the outcomes of the 30 run GMM. This has as advantage that for every house-
hold a specific overview is created. The disadvantage is that the second stage GMM
again is subject to the e↵ect of random initialisation. Although this e↵ect should be
much lower because the variance between clusters of detections coming out of the 30
run GMM should be again lower than the di↵erentiation between meter detections.

In table D.4 the NRSME the GMM single run, 30 runs, and second stage GMM is
depicted. The outcomes of these three di↵erent GMM clustering approaches were ag-
gregated on the (weighted) average and the mode (highest confidence).
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A key feature of the GMM method is that it shows the probability, its confidence,
in the existence of a cluster. Based on the amount of total data points, in this case the
number of all washes per household that are grouped together in a cluster. A cluster
supposedly is constituting one washing program. The weighted average takes into con-
sideration the weight of each cluster i.e. how often a washing program is used. The
highest confidence only selects the cluster (washing program) with the highest proba-
bility, i.e. the washing program that is used the most.

Table D.4: NRMSE [%] of energy estimation of energy per dishwasher
wash using Predict 3 with di↵erent GMM aggregation methods

Weighted average Highest confidence

mean std mean std

GMM runs
Single run GMM 9.1 0.7 14.6 1.3
30 runs GMM 9.5 0.6 15.5 1.1
2nd stage GMM 9.6 0.7 15.3 1.1

NRMSE mean and standard deviation over 1000 iterations of 50/50 split cross validation on

plug data and given in percentage as normalised versus the mean plug detected value. For all

estimations the regression with heating energy and moments (3) is used. In the rows di↵erent

runs of the GMM algorithm are given, in the columns the two GMM aggregation methods are

given that relate to mean and mode respectively..

As can be seen in table D.4 the average error of estimation for the weighted average of all
washes is lower than the estimation error for the program with the highest confidence.
Thus, the algorithm performs better to estimate the energy consumption of all washes
together than to estimate the energy consumption of a specific washing program, even
when this is the washing program that supposedly is used the most.

Based on the quality of the smart meter estimation variables the GMM appears not
able to find a specific cluster that matches up as precisely with the energy usage of the
most frequent used program of the smart-plugs, as it is able to find the weighted average.

Due to random initialisation the single run GMM seems to perform better than the
average of multiple runs. The deviation as a result of random initialisation only de-
creased from 0.6 to 0.7% thus the random selection of the data in cross validation
causes more deviation than the random initialisation. However, the weighted average
of GMM clustering with (9.1 mean, 0.7 std) performs worse than simply taking the
average (mean 8.8, std 0.7) see table D.3.
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D.0.2 Frequency per week estimation

Estimation algorithm

In addition to the energy per wash estimation, the frequency per week estimation was
assessed in section 4.2.2. To assess the accuracy of the di↵erent estimation methods the
normalised root mean squared error (NRMSE) can be compared for several estimation
methods as presented in table D.5. The di↵erent estimation algorithms were run for a
1000 iterations of 50/50 split cross validation, resulting in a mean NRMSE.

The estimation algorithms were run for several aggregation methods. Either look-
ing at all detections separately, looking at the average weekly washes per household
over the 12 week period and the most common (mode) of weekly washes per household.
Furthermore it was tested whether it is better to first regress and then aggregate or
first aggregate and then regress.

For a suitable estimation method ideally a low estimation error and a a low stan-
dard deviation occurs. Predict 3 with average of regression showed to perform best,
with a NRMSE of 27.2% had the lowest estimation error.

Table D.5: NRMSE [%] for di↵erent combinations of weekly dishwasher detection methods

Meter Predict 1 Predict 2 Predict 3

mean std mean std mean std mean std

All detections 43.9 1.0 35.1 1.0 40.3 1.1 39.2 1.3
Average of regression 36.5 2.5 27.6 2.3 28.7 2.8 27.2 2.7
Regression on average 27.5 2.6 28.4 2.8 28.3 2.8
Mode of regression 42.3 3.3 34.1 3.2 37.8 3.2 36.9 3.1
Regression on mode 35.2 3.2 38.4 3.3 37.8 3.4

NRMSE mean and standard deviation over 1000 iterations of 50/50 split cross validation on plug data and given in

percentage as normalised versus the mean plug detected value. In the rows di↵erent aggregation methods are given,

in the columns the di↵erent estimation methods.
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Appendix E

Smart meter analysis

This section in the appendix is comprised of additional findings and backgroud analysis
that has been done to complement the smart meter methodology and results.

E.0.1 Additional Smart Meter Analysis

Figure E.1 shows two ways of calculating the weekly average. One includes all house-
holds, hence also those with no detections, thus who are assumed not to be home
that week. The second only includes the households where at least a single wash was
detected that week, to ensure only households where family members are home are
included. This was done to di↵erentiate between the e↵ect of reduction in washes due
to less washing, versus more households on holiday.

As has been pointed out in section 3.4.2 and can be seen in figure E.1 in week 15
a large change happened. This happened as a result of a change in the NILM detection
algorithm by K. Basu. A major changes was made to the sensitivity of the detection
algorithm reducing the the amount of misdetected washes, but increasing the amount
of missed washes. This resulted in an average reduction of 0.74 weekly washes per week
per household. As it was computationally to expensive to rerun the the full year of
data an adjustment has been made to align for the change. The time line therefore was
adjusted to match the time period before and after this change in week 15.
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Figure E.1: Estimated average weekly usage frequency in washes over the year including
households with zero detections or conditonal that at least one wash is detected

E.0.2 Holiday Netherlands 2018

In figure 4.13 the fluctuations in the average washes per week per household over the
year were related to public holidays and other events. The table below shows the com-
parison data for Dutch holidays in 2018, which was used in the graphic. [165]
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Table E.1: Holidays in the Netherlands in 2018 [165]

Schoolvakanties 2018 Regio Van Tot Week

Kerstvakantie 2017 Heel Nederland 23.12.2017 07.01.2018 52 t/m 1
Voorjaarsvakantie 2018 Noord en Midden 24.02.2018 04.01.1900 9
Voorjaarsvakantie 2018 Zuid 17.02.2018 25.02.2018 8
Meivakantie 2018 Heel Nederland 28.04.2018 06.01.1900 18
Zomervakantie 2018 Noord 21.07.2018 02.09.2018 30 t/m 35
Zomervakantie 2018 Midden 14.07.2018 26.08.2018 29 t/m 34
Zomervakantie 2018 Zuid 07.07.2018 19.08.2018 28 t/m 33
Bouwvak 2018 Noord 06.08.2018 24.08.2018 32 t/m 34
Bouwvak 2018 Midden 30.07.2018 17.08.2018 31 t/m 33
Bouwvak 2018 Zuid 23.07.2018 10.08.2018 30 t/m 32
Herfstvakantie 2018 Noord en Midden 20.10.2018 28.10.2018 43
Herfstvakantie 2018 Zuid 13.10.2018 21.10.2018 42
Kerstvakantie 2018 Heel Nederland 22.12.2018 06.01.2019 52 t/m 1

E.0.3 E�ciency analysis

In section 4.3.4 the distribution of estimated energy consumption per wash by e�ciency
label and washing temperature was presented, excluding the full length of the 1st and
4th quartiles (whiskers). The full boxplots including the whiskers are shown in the
following figures for the estimated energy per wash (see figure E.2) and per number of
weekly washes E.3.
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Figure E.2: Distribution (boxplot) of estimated energy consumption per wash for e�ciency
label and by washing temperature
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Figure E.3: Distribution (boxplot) of estimated number of weekly washes for di↵erent house-
hold sizes and by dishwasher machine type
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