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Abstract

Recent launches of satellite constellations in the Low Earth Orbit (LEO) region have increased the
collision probability of existing debris objects with active satellites. Monitoring the trajectories
of these debris objects is crucial for Space Situational Awareness (SSA) to prevent the creation of
more debris due to unwanted collisions. Much focus is on the LEO regime, with little awareness
of the higher Geostationary orbit (GEO) debris population. To date, the explosion of the Russian
Ekran 2 satellite in 1978 as well as the disintegration of the Titan IIIC Trans-stage in 1992, have
been recorded. These incidents have increased the number of small-sized debris objects in GEO.
More unnoticed fragmentation events have been speculated to have occurred, which pose a sig-
nificant risk of collisions and damage to all weather and communication satellites in use today.
The NASA Debris Office confirms that current ground-based radar or optical sensing methods can
only be performed for objects of size 1 m and larger, leaving a gap in the precise orbit determina-
tion of sub-meter-sized objects in GEO. Moreover, limited observations and atmospheric losses
hinder the quality of orbit determination, thus limiting present ground-based SSA techniques.
Attempting to bridge this gap in current space surveillance and tracking methods is the objec-
tive of this thesis. It evaluates the feasibility of using space-based sensing methods to enhance
SSA in the GEO regime. In this research, a satellite in a sub-GEO orbit is deployed to collect in
situ radar measurements, which are processed to determine the orbit of a single object in GEO.
Different satellite geometries (altitudes and inclinations) and measurement types such as range,
range-rate, and direction (azimuth and elevation angles) and combinations thereof have been
analysed. A simple grid search optimisation has been performed to assess the feasibility of such
a technique and propose a possible favourable observation configuration, which improves the
quality and accuracy of orbit determination. It also analyses the uncertainties in the debris state
for future epochs to assess the errors in orbit prediction. The limitations of the geometry and mea-
surement model are identified in this study and provided as recommendations and suggestions
for further research. INDIGO is hence a feasibility study or a proof-of-concept of space-based
debris state observations in GEO. It can be considered a stepping stone towards inventorying
the small-sized GEO debris population catalogue and exploring enhanced SSA techniques in the
future.
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#«𝑣 Cartesian velocity vector [m/s]
#«𝑣 0 Velocity vector at initial epoch —
𝑣𝑟 Radial velocity of debris along the LOS vector [m/s]
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—
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ject

[m]
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[m]
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—
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[m]

𝑧 Cartesian position component along the z-
axis

[m]

Greek Symbols

Symbol Definition Unit

𝛼 Right ascension [∘]
𝛽 Radar metric parameter —
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for 𝐽2,2 spherical harmonic coefficient
[∘]

Λ𝑛,𝑚 Spherical harmonics gravity field coefficient [∘]
Λ Geocentric longitude [∘]
𝜆 Wavelength [m]
𝜇𝑀𝑜𝑜𝑛 Gravitational parameter of the Moon [m3/s2]
𝜇𝑛 Mean of a Gaussian Normal distribution —
𝜇𝑆𝑢𝑛 Gravitational parameter of the Sun [m3/s2]
𝜇 Gravitational parameter of the Earth [m3/s2]
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Φ State transition matrix for OD —
#«𝜖 Residual vector for measurements —
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1
Introduction

Since the launch of the first satellite Sputnik-I, on October 4, 1957, humans have rapidly pro-
gressed into space exploration. With the increasing number of space missions and satellite
deployments, the potential for collisions and the generation of additional space debris has in-
creased to the point that it comes close to creating a cascading effect known as Kessler’s Syn-
drome. Collisions with debris objects traveling at high speeds can generate more debris, jeopar-
dising communication links and compromising the functionality of vital space infrastructure [1].

Monitoring debris trajectories is crucial for Space Situational Awareness (SSA), which is signif-
icant for managing space assets in higher orbits. At 35,786 km from the Earth’s surface lies the
Geostationary Earth orbit (GEO), a unique orbital regime. A satellite in this orbit appears station-
ary for an observer on the ground, making it attractive for communication and meteorological
satellites. Due to their high altitude and lack of significant atmospheric drag, these satellites re-
main in orbit far beyond their operational lifetime and are subjected to explosions or fragmenta-
tion over time [2]. The gradual onset of crowding in the GEO regime due to dysfunctional satellites
and their debris fragments has sparked concerns among the scientific community. The threats
of debris collisions in higher orbits call for relevant monitoring and mitigation methods, which
require precise knowledge of their behaviour and trajectories.

Ground-based observations performed by the National Aeronautics and Space Administration
(NASA) and the United States Department of Defence (DoD) can predict the trajectories of objects
as small as 5 cm in Low Earth Orbit (LEO) and as small as 1 m in GEO [3], which keeps the exis-
tence and cataloguing of smaller debris objects at higher orbits vastly unknown. These objects as
small as 1 cm can be catastrophic for active satellites currently and in the future. Moreover, these
small-sized objects are infrequently visible to the sensors due to atmospheric and illumination
conditions, which makes tracking them even more difficult.

To overcome the shortcomings of ground-based systems, this research focuses on exploring the
feasibility of using a novel space-based tracking platform or an observation satellite framework
to conduct in-situ measurements. The motivation for this new concept is that the drawbacks of
ground-based observations are discerning, which is attempted to be solved by resorting to space-
based observations. Since space-based radars have the potential to collect multiple in-situ mea-
surements [4], it is explored in this thesis to assess whether the gap in research can be fulfilled
by formulating three main research questions, mentioned as follows.
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1. Is using a space-based radar system feasible for space surveillance and tracking small ob-
jects in GEO?

2. How do the dynamic model parameters, observation types and trajectory prediction out-
come contribute to the feasibility assessment of the system?

3. How sensitive is the orbit determination accuracy of small-sized debris objects in GEO to
changes in uncertainties and satellite geometric configurations?

To answer these main questions and their sub-questions (defined later in Section 2.3), a numeri-
cal model will be developed as part of this thesis. This model will simulate the orbital dynamics
of one debris object in GEO and one (or more) observation satellite(s) in a sub-GEO orbit. The
thesis will involve studying the fundamentals of the problem, supporting the usefulness of in-
situ measurement collection techniques. The innovation point of this research is to develop and
analyse the results from an orbital simulation model to solve a two-fold objective. This consists
of first, determining trajectories of small-sized debris which are currently not observed and sec-
ond, quantifying and optimising the accuracy with which these objects are known, ideally higher
than what is achieved with ground-based sensing.

This report documents the research conducted for the thesis and comprehensively presents
them as chapters with the following structure. The relevance or justification of the research is
provided in Chapter 2, which highlights the problem of space debris and the shortcomings of the
current SSA capabilities. After identifying the research gap and formulating the sub-research
questions to the three main research questions mentioned above, Chapter 3 discusses the fun-
damental theoretical aspects whose strong understanding is required during the research. After
that, the research approach followed by applying the theory in the previous chapter is described
in Chapter 4, which is used to generate results for the study. However, before the results are
generated and reviewed, they are verified and validated in Chapter 5. The results obtained for
different case studies are presented in Chapter 6, which is followed by Chapter 7, where a feasi-
bility outcome is discussed, and the research questions are answered based on the conducted
study. The report ends with conclusions in Chapter 8, summarising the problem, methodology,
and results of this research report, along with recommendations for further study.
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2
Relevance

Before embarking upon any research project, it is essential to understand its overall purpose.
Once a big problem has been identified, a more directed and relevant segment can be chosen for
study. Following this principle, this chapter aims to familiarise the reader with the relevance of
this thesis and research area.

In Section 2.1 of this chapter, the comprehensive threat due to the rising number of space debris
is explained. The state-of-the-art techniques along with their associated challenges and limita-
tions, for monitoring and tracking debris objects in higher orbits, are discussed in Section 2.2.
The knowledge gap is identified here and is further motivated in Section 2.3, which defines the
overall goal or objective to be fulfilled and research questions that will be answered as a result at
the end of the thesis.

2.1. Space debris

October 4, 1957, marked the beginning of a new era for mankind with the launch of the first artifi-
cial satellite Sputnik-I by the Soviet Union. More than six decades of space exploration have led
to the growth of a particle environment in the Earth orbit collectively known as “space debris”,
endangering all active satellites today [1]. Debris mitigation experts have studied the classifica-
tion of orbital debris and their sources. Abandoned launch vehicles filled with residual propellant
and high-pressure fluids exposed to temperature and pressure fluctuations can suffer explosions
in orbit, thus creating debris objects. The primary debris sources are mission-related operations,
accidental collisions, and intentional creation [5]. In more collective words, space debris can be
defined as stated below.

Space debris definition

The International Academy of Astronautics (IAA) defines space or orbital debris as “any
man-made object orbiting the Earth which is non-functional with no reasonable expecta-
tion of assuming or resuming its intended function or any other function for which it is or
can be expected to be authorized, including fragments and parts thereof ” [6].

The United Nations Office for Outer Space Affairs (UNOOSA) states that currently about 33750
objects are being regularly tracked by the United States Space Surveillance Network or SSN. Ap-
proximately 640 fragments are expected to have evolved from explosions of defunct satellites,
increasing the risk of further collisions [7]. The European Space Agency (ESA) maintains and



2.1. Space debris 4

distributes several models for characterising the environment and evolution of debris objects
through their risk assessment tool known as MASTER (Meteoroid and Space debris Terrestrial
Environment Reference). This tool estimates about 365,000 objects greater than 10 cm in size,
about 1,000,000 objects between sizes 1 cm and 10 cm, and more than 130 million objects between
1 mm and 1 cm in size [8]. The evolution of the debris population in all orbital regimes as of 2020
can be visualised in Figure 2.1. The trend of the total object population in orbit (brown curve) can
be largely attributed to the fragmentation debris (pink curve). [9].

Figure 2.1: Evolution of the total number of space debris objects in LEO since 1957. This has been catalogued by the
US Combined Space Operations over the years, which shows the trend is rising. As of 2020, out of approximately 5000
satellites, only about 1800 satellites are operational in orbit [9].

Two jumps in the fragmentation debris population curve are also reflected in the total object pop-
ulation. The first spike was seen in 2007, when China destroyed its defunct weather satellite,
Fengyun-1C (FY-1C), through a ballistic missile from the Earth. This act created a cloud of debris
particles around the original satellite orbit at 863 km. The SSN has tracked about 3037 pieces
originating from this incident and predicts that more than 32000 smaller untracked pieces will
remain in orbit for as long as the year 2108 [10]. This incident produced the largest debris cloud
ever generated by a single event in orbit. In a matter of two years, on February 10, 2009, an active
American communication satellite Iridium 33 accidentally collided with a defunct Russian com-
munication satellite Cosmos 2251 at an altitude of 770 km. Approximately 2000 pieces of debris
larger than 10 cm and more than thousands of smaller pieces were produced, marking this inci-
dent in the history of accidental collisions. The SSN catalogued 528 pieces from Iridium 33 and
1347 pieces from Cosmos 2251, predicting 1000 additional smaller and untracked pieces [11].

In a theoretical study by NASA scientist Donald Kessler in 1978, it was speculated that this ex-
ponential uncontrolled rise in the number of orbiting objects in LEO would lead to a chain of
collisions creating more debris. Fragmentation from these debris objects would cause more col-
lisions making it infeasible to launch new satellites and inhibit space-based activity with active
satellites. This scenario was named the Kessler’s Syndrome and drew quite some concern in the
scientific community [9]. This scenario may render space unusable for several centuries [12]. Af-
ter contemplation, it has been deduced that the threshold for a low-intensity Kessler Syndrome
has already been crossed [13]. Any added number of space debris objects would amplify this ef-
fect, thus really making space inaccessible for further use.
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The Geostationary or Geosynchronous Equatorial Orbit (GEO) is a unique orbit with an altitude
of 35,786 km and 0∘ inclination. The specialty of this orbital regime is that a satellite launched
in this orbit remains above the same point on the Earth’s surface, making it highly popular for
communication and Earth observation satellites. At high altitudes, the effect of atmospheric drag
acting on the satellites is negligible. De-orbiting of GEO satellites after their operational lives to
make them re-enter the Earth’s atmosphere would be very propellant expensive, which is why
they should ideally be manoeuvred and placed in a graveyard orbit, about 300 km above their
nominal orbit. However, a study in 2017 concluded that only two-thirds of the satellites move to
this disposal orbit, while the remaining fail to succeed or do not even try, which only delays the
developing problem of debris in GEO rather than solving it [14].

The Inter-Agency Space Debris Coordination Committee (IADC) spotted a significant rise in the
GEO regime of the uncatalogued objects as big as 20 cm in diameter. They were a result of two
major breakup events near GEO from the Ekran 2 and Titan IIIC Transtage satellites [2]. It is ex-
pected that there is more debris of smaller sizes that are unidentified or uncatalogued, posing
a risk of collisions with the active satellites in GEO. The cumulative probability of collisions in
GEO is estimated to be close to 3.2 × 10−4, equivalent to one collision once every 3000 years. The
satellites in GEO orbit in the same direction, with the same speed and inclination, which reduces
the probability of collisions with each other [15]. However, recent studies suggest that the colli-
sion likelihood in GEO is four orders of magnitude higher than suggested before [16]. Figure 2.2
illustrates the possibility of collision with all active satellites in GEO distributed over their longi-
tude bins with different resident space objects (RSO). It can be seen that there are peaks at 75∘ E
and 105∘ W or 255∘ E, which represent the geopotential wells. These locations are more likely to
witness collisions due to the larger concentration of satellites and RSOs.

Figure 2.2: The likelihood of GEO collision as a function of longitude for active satellites in GEO for 2018. The red and
orange curves depict the likelihood of collision of the entire GEO population against an object catalogued with size 1
cm and 20 cm, respectively. The vertical lines represent the two geopotential wells [16].
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The work of Oltrogge et al. [16] estimates the average annual likelihood of collision with the GEO
active satellites against 1912 RSO objects of size larger than 20 cm to be 0.0152. Similarly, when
estimated for 33932 objects larger than 1 cm, the average annual likelihood is estimated to be
0.1929. Multiplying each likelihood by a scaling factor of 1.29 and taking its inverse yields the
average latency time between two collisions. The Joint Space Operation Centre (JSpOC) uses this
method to perform conjunction analysis assessments using models for a 5-meter miss distance.
It evaluates that a collision with the entire GEO population against a 1 cm RSO catalogue is likely
to happen once every four years. The exact likelihood changes to once every 50 years when
evaluated against a 20 cm RSO catalogue [16]. Although the risk of collision in GEO is less than
in LEO, collision avoidance manoeuvres must be conducted to safeguard active satellites in GEO.
However, this can only be done when the orbit of the debris object at that altitude is sufficiently
known. Moreover, for objects which are new and uncatalogued due to an unknown explosion, it
is essential to identify and detect them first, to be able to monitor their orbital behaviour regularly
and accurately track them to make conjunction predictions.

2.2. Space Situational Awareness: current limitations in GEO

Obtaining up-to-date information on space debris objects in GEO is essential to monitor their tra-
jectories. Space surveillance observations aim to establish and maintain a catalogue containing
the orbital and physical characteristics of existing and new objects. The knowledge and char-
acterisation of space objects and their operational environment to support safe, stable, and sus-
tainable space activities is commonly referred to as Space Situational Awareness or SSA, which
is crucial for efficient Space Traffic Management (STM) and conjunction analysis [3]. There are
typically three measurement techniques for surveillance or tracking from ground-based facili-
ties to obtain information about the orbit of an object: radar ranging or Doppler tracking, Satellite
Laser Ranging (SLR), and optical tracking . A literature study was conducted before this thesis,
which reviewed these techniques in more detail to evaluate their utility as possible options for
enhanced SSA.

Light Detection and Ranging, or LIDAR, involves sending coherent and high-intensity light pulses
into space to measure the reflection on a Charged-Coupled Device or CCD sensor. SLR is a similar
technique in which the time laser pulses take to travel from a global network of observing stations
to satellites and back is measured. Although distance accuracy in the order of millimeters could
be obtained, the object tracked would need to be equipped with passive reflectors to reflect the
light off its surface. A study in 2016 by ESA and the German Aerospace Centre (DLR) demonstrated
60% success in precise orbit determination from the ground of LEO objects by combining optical
sensors and laser-ranging observations [17]. It showed that a high-power laser is needed to avoid
diffuse scattering of light and concentrate the light beam in the desired direction. Although they
perform well for tracking due to their precise beam, their limited Field-Of-View (FOV) hinders
the possibility of space surveillance for detecting new objects with LIDAR and optical systems.
Due to the gap in surveillance and tracking of possible non-reflective debris, this technique was
decided not to be further analysed in the research.

Passive electro-optical sensors can detect space debris by recording them on images, such that
they are distinguished as moving objects relative to the stellar background. These sensors record
the reflection of sunlight from debris objects against a dark background at night. Since objects in
LEO have higher orbital velocities, they move quicker across the sky. As a result, the observation
window for LEO objects is shorter to collect useful information on them. However, passive sen-
sors are attractive for objects in GEO. This is because these objects are relatively stationary with
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the ground, which facilitates data collection throughout the night, given that clear sky conditions
are met. Moreover, the brightness or signal strength of the object is inversely proportional to the
square of the distance from the passive observing facility, which makes them interesting for GEO
object surveillance [18].

The detection ability of a sensor greatly depends on its light receiving area or aperture and the
angular velocity of the object of interest. A fast and faint object will make it difficult for the sensor
to discriminate the signal from the background sky, which can be solved by tracking the object.
However, this requires knowledge of an object’s trajectory, which is impossible for unknown or
uncatalogued objects. To fulfill this, wide-FOV optical survey sensors are operating worldwide,
which scan the area of interest for objects with unknown orbits. For instance, the Russian-based
optical sensor network ISON has 50 telescopes in 27 positions, which detect objects in the LEO
region several times a day [3].

To observe and maintain the orbits of GEO objects, wide-field optical designs are needed, which
introduce a trade-off in the FOV and the aperture size, constrained by the telescope’s mechanical
design. Objects larger than 1 meter in diameter in GEO can be surveyed by the Zimmewald small-
aperture robotic telescope known as ZimSMART, which has a 0.2 m aperture and 10∘ squared
FOV. ESA collects observations through its 1 m aperture telescope at the Optical Ground Station
in Tenerife, Canary Islands, to better understand the small-sized debris population. NASA too
collects optical data with the Michigan Orbital Debris Survey Telescope (MODEST) located at the
Cerro Tololo Inter-American Observatory (CTIO) in Chile to have a statistically complete data set
for the GEO small-sized object population [19].

Although ground-based telescopes are very common methods of SSA, they also have limitations.
A study on the performance of ground-based optical telescopes in 1994 showed the limiting size
of objects detected depending on their orbital altitudes and sensor apertures as seen in Figure 2.3.

Figure 2.3: Limiting object size for ground-based optical sensors. The size is shown as a function of the sensor aperture
and the orbital altitude. The graph assumes perfect measurement conditions such as a dark site, optimal atmosphere
and weather, and a bond albedo 0.2 [20].
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The black dashed line signifies the GEO regime objects and shows that with a telescope aperture
of 2 m, an object as small as 8 cm in diameter can be detected. However, it must be noted that the
results in this study are obtained with assumptions of conducting the observations in the dark
with optimal illumination and atmospheric conditions. When errors and background clutter are
considered, the objects are limited to 1 m in diameter [20][19].

To overcome these limitations in optical sensing methods, proposals and studies have been con-
ducted to use a space-based optical system for collecting measurements. The advantages are
that they are at a shorter distance and are no longer constrained by weather or illumination con-
ditions. The brightness of the sky is reduced, which reduces signal atmospheric attenuation. A
study by ESA proposes using a 20 cm aperture folded Schmidt telescope with a 6∘ FOV, coupled
with a four-megapixel CCD sensor camera. Simulations with ESA’s software MASTER-99 and
PROOF showed this instrument operating in a circular orbit 1000 km below the GEO ring to de-
tect 120 objects in 24 hours, facing away from the Sun [21].

As motivated previously in the literature study, optical tracking yields angles-only measurements
but not much about its distance or velocity relative to the observing system. For SSA purposes,
collecting one type of measurement information is not always enough to accurately determine
the trajectory. Since optical systems are only constrained to the directional measurement type,
there is no evaluation of the effect of different measurements or their combinations on precise
trajectory computation of small-sized objects. Moreover, prior knowledge of the object’s position
is required to precisely aim the telescope in the desired direction, which is not possible for un-
known objects. Hence, the research does not further analyze passive or optical sensing methods.

Radio Detection and Ranging or RADAR works on the principle of sending short bursts of radio
energy at the speed of light to transmit and receive an echo from a target. Radars are indepen-
dent of weather conditions and can be operated continuously, although at the cost of high power.
Compared to optical sensing methods, the strength of the radar signal decreases with the fourth
power of distance, constraining it from observing objects in GEO [22]. Currently, most surveil-
lance and tracking for space debris in LEO is through ground-based radars. Information on the
object’s trajectory can be obtained by measuring the distance, velocity, and direction of the space
object relative to the observation facility. The orbital parameters of these objects can then be es-
timated from their motion. A network of tracking sensors on the ground can track the path of a
satellite by using three widely used types of measurements, as explained below [23].

• Range: The absolute distance between an object and a tracking system is known as range.
This is computed by measuring the time delay between transmitted and reflected echoes.
The geometric range is known as the true range. In contrast, the distance which accounts
for measurement errors due to various factors such as clock errors and atmospheric losses
is known as the pseudo range.

• Range rate: The velocity of a target in the radial direction along the Line-Of-Sight (LOS) of
the object and radar is known as range rate. They are measured by differentiating succes-
sive range measurements over time or by measuring the Doppler shift of the tracking signal
frequency.

• Direction: The angular orientation of an object with respect to the radar pointing axis gives
the directional information of the object in azimuth and elevation. In the case of an inter-
ferometer, directional measurement of a target object is obtained by measuring the phase
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difference between signals arriving at two antenna elements separated by a known dis-
tance.

As studied in the literature review report, radars have different modes of operation and func-
tions. Surveillance radars operate in a beam park mode and have a large FOV. They emit radio
waves and wait for detections to arrive at the receiver, counting the objects traveling through its
beam. Once detected, the signal is processed, providing information on its distance, instanta-
neous Doppler frequency, and directional position in the sky. Tracking radars operate in a chas-
ing mode and have a much narrower FOV, suited for following an object until it disappears below
its detection threshold. Their main application is the refinement of orbital trajectories and the
physical characterisation of objects, such as their shape, size, and composition. A third mode,
known as the stare and chase mode, combines both modes and can switch between operations
[24]. The Tracking and Imaging Radar (TIRA), located in Germany, is a unique 34 m diameter
radar system that facilitates gathering information for precise orbit determination of LEO ob-
jects. Equipped with a high target resolution, it plays a big role in SSA from the ground. NASA
also regularly performs observations using the US 34 m diameter Haystack antenna, which oper-
ates in the beam park mode to detect debris in LEO [25].

Although little is known about the exact detection threshold of known radar systems, ground-
based radars can typically detect objects as small as 10 cm in diameter in the LEO regime, but not
much is known about the performance of small-sized objects in GEO [3]. With the increasing pop-
ulation of space debris objects, their regular observation becomes a necessity. Radar techniques
offer the advantage of multiple measurement types with no dependencies on weather or illumi-
nation. The major drawback of ground-based radars is the large distance between the target and
the observing ground station through which the radio wave has to travel twice. If this propa-
gation distance can be reduced by resorting to space-based radars, they could potentially be an
asset for the future of SSA. This approach is still novel, contrary to space-based optical solutions,
which have been previously studied by space agencies, partly due to their lower power and cost
requirements [26]. However, the viability in terms of the performance of an in-situ radar obser-
vation concept has not been explicitly studied for GEO by space agencies to date. This research
gap is aimed to be bridged through this thesis project.

2.3. Research objective and questions

The gap in research directly follows into a goal, which is to be fulfilled through this research. The
research objective for INDIGO is

To assess the space situational awareness capability of a space-based radar system, which sur-
veys and detects small-sized debris objects in the geostationary orbital regime.

The above goal is quite broad, and several related aspects need to be tackled systematically. Bridg-
ing the gap caused by current SSA practices from the ground is not simply overcome by moving
the platform to space. Planning, manufacturing, executing, and maintaining a space mission
requires a large amount of labour and cost. Moreover, a fair comparison with ground-based sys-
tems must be drawn before switching to a space-based radar system for SSA in practice. Several
aspects determine whether or not the idea or concept is viable for a long-term purpose, out of
which some will be assessed to answer the first research question of the thesis.
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Research question 1

Is using a space-based radar system feasible for space surveillance and tracking of small-
sized debris objects in GEO?

• What are the performance metrics that determine the system’s feasibility?
• How does the performance of the space-based system compare with conventional

ground-based SSA systems?

The thesis explores the primary feasibility by analysing how well the orbit of an object in GEO is re-
produced by the observations collected by the INDIGO system. Based on the metrics determined
from research question 1, more specific questions about the system’s modeling, measurement
collection, and orbit prediction performance can be formulated. The second research question of
this thesis is then formulated.

Research question 2

How do the dynamic model parameters, observation types, and trajectory prediction out-
come contribute to the feasibility assessment of the system?

• For which type or settings of the orbit propagation model is the system’s feasibility
assessed, given a requirement on orbit accuracy?

• Which category or combinations of collected in-situ measurements lead to the opti-
mal performance of the space-based system?

• How well is the orbit determination scheme capable of predicting the debris orbit
when the system collects no measurements?

To prove the system’s workability, several cases will be studied to analyse the system’s sensitivity
to changing geometries and configurations. The prediction performance due to these changes
will be catered to in the last research question of the thesis. A design space will be optimised for
the performance metrics defined in research questions 1 and 2 to recommend a feasible space-
based radar observation system to fulfill the overall research goal.

Research question 3

How sensitive is the orbit determination accuracy of small-sized debris objects in GEO to
changes in uncertainties and satellite geometric configuration?

• How do changes in the system noise and uncertainties affect the accuracy of the orbit
determination and prediction?

• At what optimal orbital altitude and inclination must the system be positioned to
obtain the best possible orbit determination and prediction accuracy?

• To what extent does the performance of the system improve if extra tracking satel-
lites are introduced, and what would be the optimal geometric configuration?

Space debris is a growing hindrance to the future of space exploration and earth observation mis-
sions. Due to the increasing threat to active satellites, especially in GEO, it is important to build
and maintain space object catalogues. As highlighted in this chapter, obtaining accurate and up-
to-date data on the state and characteristics of small-sized objects is crucial for STM to predict
conjunctions. Current SSA activities in GEO are limited by object size, distance, and accuracy.
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Optical telescope networks scan the GEO belt for a limited observation time every night with
clear sky conditions. Each object is analysed for a short period, not enough to accurately predict
its orbit for longer. This knowledge gap in SSA is identified in this chapter, laying the foundation
for this thesis. Three research questions originated from this goal to investigate the topic deeper,
which will be answered at the end of this study.

In the subsequent chapter, the underlying concepts for conducting the research will be discussed
comprehensively. It will lay the foundation for understanding the space-based radar system, the
orbital model parameters, and the theory of orbit determination. The research approach, set-up,
and results of the study will follow from Chapter 3 on the theoretical framework and will help the
reader better understand them.
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3
Theoretical background

This chapter is the theoretical backbone of the thesis, dedicated to laying the necessary back-
ground for the research. The relevant concepts such as the dynamics of an object in the GEO
regime, parameters of a space-based radar system, and the orbit determination process followed
to determine performance metrics for the system are defined here. Upon reading the chapter, it
is expected that the reader will be able to connect the research outlook described previously in
Chapter 2, to the methodology adopted and results obtained from it in the later chapters of this
thesis report.

The chapter is structured in the following way. Section 3.1 gives a general but short overview
of the frames of reference, relevant forces acting on an object, and the representation of its or-
bital trajectory over time. This is followed by Section 3.2, which describes the space-based radar
system. The selected radar parameters of the system are presented along with their motivation,
which is conceptualised to collect in-situ measurements for GEO debris objects. The chapter
ends with an overview of the orbit determination theory provided in Section 3.3. It describes
the estimation method and the evaluation of performance parameters, which are later studied to
assess the system’s feasibility.

3.1. Orbital dynamics

This section is dedicated to presenting a physical understanding of satellite orbit dynamics in
GEO. A numerical model will be developed in the thesis, which will simulate the motion of a
debris object and the space-based radar observation satellite. It is important to understand the
representation of their motion around the Earth influenced by acting perturbing forces. The de-
tailed explanation and choices related to the selection of reference frames, coordinate systems,
and perturbations were discussed earlier during the literature review phase of the thesis. They
will be revisited briefly in the subsequent sections.

3.1.1. Reference frames

According to Wakker [27], a reference frame consists of a set of identifiable fiducial points on the
sky along with their coordinates, which specify how the origin and orientation of a celestial body
can be incorporated to construct a system of reference. The development of a dynamic model
for the GEO environment originates from the choice of appropriate model coordinates, described
with respect to a convenient frame of reference. Frame transformations will be performed for
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ease of computation and interpretation. Three reference frames are adopted in this thesis, which
are mentioned as follows.

Earth-Centred Inertial (ECI)
As the name suggests, this frame is fixed with respect to the inertial space, with its origin at the
Earth’s centre. Representing the motion of objects in space is possible in a simple way using this
representation. The x-axis of an ECI frame is aligned in the direction of the intersection between
the equatorial plane (plane passing through the Earth’s equator) and the ecliptic plane (the orbital
plane of the Earth around the Sun), also referred to as the direction of the vernal equinox. The
vernal equinox varies for different epochs due to the precession and nutation of the Earth’s rota-
tional axis and must be selected to define the ECI frame. The most commonly used ECI frame is
the J2000 frame, which defines the x-axis to be pointed towards the vernal equinox measured on
1st January 2000 at 12:00 terrestrial time [28]. The z-axis of the frame is aligned with the Earth’s
rotational axis (in the direction of the North Pole), and the y-axis coincides with the equatorial
frame, completing the orthogonal basis.

In this thesis, the J2000 frame is adopted to represent the orbital motion of GEO objects around
the Earth in a non-rotating inertial frame. This simplifies the propagation of the equations of
motion by neglecting the effect of Earth’s rotation and makes computation straightforward.

Earth-Centred Earth-Fixed (ECEF)
This reference frame originates at the Earth’s centre but is not inertial, unlike the ECI frame. Fixed
with respect to the Earth, the rotation of the frame coincides with the Earth’s rotation. The x-axis
of this frame is aligned in the direction of the Greenwich Meridian, and the z-axis is in the direc-
tion of the Earth’s rotational axis, similar to the convention in the ECI representation. The y-axis
of the ECEF frame is defined accordingly to complete the orthogonal basis with the previously
defined x-axis and z-axis.

This is very useful in representing the position and velocity of terrestrial objects and tracking
satellites from the ground. Since the thesis is focused on space-based tracking, a simple inertial
Earth-centred system (J2000) is sufficient for the orbital model. However, the Earth’s gravita-
tional field is fixed with respect to the Earth’s centre and defined in the geocentric rotating frame
[27]. Hence, the acceleration components due to the Earth’s gravity field are computed through-
out the simulation period in the ECEF frame per epoch. They are transformed to the J2000 frame
before propagating to the next epoch.

Local-Vertical Local-Horizontal (LVLH)
Space-based measurements are taken with respect to a satellite whose orbit is simulated in the
J2000 frame, as discussed earlier. In principle, the measurements are collected with respect to
the body-fixed reference frame, which coincides with its centre of mass. In this thesis, the ob-
serving satellite is assumed to be a point mass whose rotational dynamics are not considered in
the simulation. For simplification, the body-fixed reference frame is assumed to coincide with
the local orbital frame, also known as the Local-Vertical Local-Horizontal (LVLH) frame.

In this thesis, the LVLH frame (also known as the Radial-Tangential-Normal or RTN frame) is
adopted to represent the simulation of pseudo-measurements from the space-based system to
collect observation data on the debris object. The x-axis of this frame is oriented in the radial
direction of the instantaneous position of the user satellite, while the y-axis points along the
velocity vector, which is tangential for a circular orbit. The z-axis completes the orthogonal basis,
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normal to the x-y plane, in the direction of the orbit’s angular momentum [28]. An illustration of
the J2000 and the LVLH frames adopted in the thesis is presented in Figure 3.1.

Figure 3.1: Overview of the inertial and orbital reference frames of the observation satellite and the debris object. The
J2000 frame originates at the Earth’s centre, with axes marked as #«𝑋𝐽2000, #«𝑌 𝐽2000 and #«𝑍𝐽2000. The spacecraft and the
debris are modeled as point masses, with the local orbital frame coinciding with their centres of masses. Unit vectors
represent the observation satellite LVLH frame in the radial �̂�𝑠𝑎𝑡, tangential ̂𝑇𝑠𝑎𝑡 and normal �̂�𝑠𝑎𝑡 directions.

The frame transformations performed during the simulation are discussed in Appendix A.

3.1.2. State-vector representations

A suitable coordinate system presents the origin and orientation of a reference frame. To know
the trajectory of an object in orbit, they are represented in the form of state vectors. The motion
of the object in orbit can be represented in various forms. Depending on the ease of computation
or interpretation, they may be transformed from one form to another. Two sets of coordinate
systems have been used to represent the state of an object (satellite and debris) throughout the
thesis, which is as follows.

Cartesian system
An object’s position and velocity in orbit can be expressed in three-dimensional space in Carte-
sian coordinates, with 𝑥, 𝑦, and 𝑧 describing the position and ̇𝑥, ̇𝑦 and ̇𝑧 representing the velocity.
The state vector combines the position and velocity vectors computed at a given epoch 𝑡, as de-
fined in Equation 3.1.

#«𝑋(𝑡) = [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) ̇𝑥(𝑡) ̇𝑦(𝑡) ̇𝑧(𝑡)]𝑇
(3.1)

The computation of state vectors is easy and fast for Cartesian coordinates. They are used in the
propagation and estimation of orbits in this thesis.

Kepler orbital elements
Defining the state of an object in Cartesian coordinates is often difficult to interpret since the
position and velocity elements precisely vary over time. This is where representing the state in
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terms of Kepler orbital elements is advantageous. It helps easily understand the orbit’s geometry
and position of an object in orbit at any given epoch. The state vector containing the Kepler
orbital elements is given in Equation 3.2.

#«𝑋𝐾𝑒𝑝𝑙𝑒𝑟(𝑡) = [𝑎 𝑒 𝑖 Ω 𝜔 𝜃(𝑡)]𝑇
(3.2)

In the above equation, 𝑎 is the semi-major axis, 𝑒 is the eccentricity, 𝑖 is the inclination, 𝜔 is the
argument of the pericentre, Ω is the right ascension of the ascending node (RAAN), and 𝜃 is the
time-dependent true anomaly. An illustration of some of the orbital elements can be seen in Fig-
ure 3.2.

Figure 3.2: The orbital elements of a satellite in spherical coordinates as illustrated in Wakker [27].

The six Kepler orbital parameters mentioned in Equation 3.2 are provided in the model as inputs
to specify the initial position at the first simulation epoch. The transformation algorithm between
Cartesian and Keplerian representations of the state vector is presented in Appendix A.

3.1.3. Modeling of forces in GEO

According to Newton’s law of universal gravitation, an object’s motion around the Earth can be
expressed as an ordinary differential equation. The point-mass gravity acceleration of the Earth
is the most dominant acceleration acting on the object and is expressed by Equation 3.3 [27].

̈#«𝑟 = − 𝜇
𝑟3

#«𝑟 (3.3)

where 𝜇 is the gravitational parameter of the Earth, which has a value of 398600.4418 km3/s2, ⃗𝑟
is the object’s position vector, defined as the Cartesian position components of the state vector
defined earlier in Equation 3.1. The result of Equation 3.3 is a Kepler orbit.
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In reality, the orbit of an object is not purely Keplerian. Perturbations are acting on it, which
causes a change in the dynamics of the orbital behaviour. Perturbations may be of large magni-
tude or may also seem to be small. However, the small effects may keep aggregating over a long
period to the point when they are no longer insignificant. The thesis focuses on the GEO orbital
regime, which makes it important to understand the different perturbing forces acting on the ob-
ject to simulate a model close to reality. Hence, this section will describe the theory behind the
different orbital perturbations used in the model for the reader to understand the physics of the
problem.

3.1.3.1 Spherical harmonics
The point-mass expression in Equation 3.3 originates from the assumption that the Earth is spher-
ically symmetric in shape and radially symmetric in density. This results in a non-uniform gravi-
tational field of the Earth. In other words, the latitudinal and longitudinal variations in the shape
and mass distribution of the Earth contribute to the gravitational field deviating from that of a
perfect sphere. The gravitational potential #«𝑈 𝐸𝐵 is defined in terms of spherical harmonics, as
described in Equation 3.4. Here, the potential is assumed to be static, independent of the effect
of solid Earth and ocean tides [27].

𝑈𝐸𝐵( #«𝑟 𝐸𝐵) = − 𝜇
𝑟𝐸𝐵

[1 +
∞

∑
𝑛=2

𝑛
∑
𝑚=0

( 𝑅𝐸
𝑟𝐸𝐵

)
𝑛

𝑃𝑛,𝑚 (sin 𝜙)(𝐶𝑛,𝑚 cos 𝑚Λ + 𝑆𝑛,𝑚 sin 𝑚Λ)] (3.4)

Here #«𝑟 𝐸𝐵 is the position vector of a general orbiting body B w.r.t. the Earth, 𝑅𝐸 is the mean ra-
dius of the Earth at the equator, 𝜙 is the geocentric latitude and Λ is the geographic longitude.
𝑃𝑛,𝑚(sin 𝜙) is known as the associated Legendre polynomial of degree 𝑛 and order 𝑚, with argu-
mentation of sin 𝜙. The two scaling terms 𝐶𝑛,𝑚 and 𝑆𝑛,𝑚 depict the constant model scaling pa-
rameters, where each combination of 𝑛 and 𝑚 represents a distinct gravity field variation. They
are generally expressed as spherical gravity field coefficients in terms of 𝐽𝑛,𝑚 and Λ𝑛,𝑚 as shown
in Equation 3.5.

𝐽𝑛,𝑚 = √𝐶2𝑛,𝑚 + 𝑆2𝑛,𝑚

Λ𝑛,𝑚 = 1
𝑚 atan2 1 (𝑆𝑛,𝑚, 𝐶𝑛,𝑚)

(3.5)

Spherical harmonics can be categorised into three types, depending on the type of mass density
deviations. When the deviations are only in the north-south direction i.e. in the latitude bands,
they are known as zonal harmonics (𝑚 = 0). On the other hand, when they are in the east-west di-
rection i.e. in the longitudinal bands, they are known as sectorial harmonics (𝑚 = 𝑛). When they
are both in north-south and east-west directions, they are known as tesseral harmonics (𝑚 ≠ 𝑛).

In the current available detailed model, these spherical harmonic coefficients can be evaluated
for orders and degrees as high as 2150. For most applications in astrodynamics, a truncated ver-
sion of the spherical harmonics model is used, considering only a limited number of terms that
have a significant contribution to the acceleration [27]. For the thesis, the two most relevant
spherical harmonic coefficients 𝐽2 and 𝐽2,2 are considered for analysis and application in the
model. The coefficient values for these two spherical harmonics have been extracted from the
GRACE GGM02C Earth gravity field model and are presented in Table 3.1 [29].

1As atan returns an angle lying between -𝜋/2 and 𝜋/2, atan2 is used in this study when calculating an angle that
can lie between -𝜋 and 𝜋.
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Table 3.1: Overview of the two spherical harmonic coefficients used in this thesis.

Degree 𝑛 Order 𝑚 𝐽𝑛,𝑚 Λ𝑛,𝑚[∘]
2 0 1082.6357 × 10−6 0
2 2 1.8155628 × 10−6 −14.9287

In the rest of Section 3.1.3.1, the two spherical harmonic coefficients 𝐽2 and 𝐽2,2 considered in this
study are explained and motivated for their inclusion in the model.

Term 𝐽2
The value of the 𝐽2 coefficient is 1082.6357 × 10−6 as seen in Table 3.1. It is the largest among
all other coefficients [30]. When the gravitational potential function described by Equation 3.4 is
expanded till degree and order 2, the gravitational potential as a result of only the 𝐽2 coefficient
is obtained. This is given by Equation 3.6.

#«𝑈 𝐽2
(𝑟, 𝜙) = 1

2𝜇𝐽2
𝑅2

𝐸
𝑟3 (3 sin 𝜙2 − 1) (3.6)

When the gradient of this potential function is calculated, the perturbing acceleration due to the
𝐽2 zonal harmonic coefficient can be expressed in Cartesian coordinates as given by Equation 3.7
[27].

𝑓𝑥 = −3
2𝜇𝐽2𝑥𝑅2

𝐸
𝑟5 (1 − 5𝑧2

𝑟2 )

𝑓𝑦 = −3
2𝜇𝐽2𝑦𝑅2

𝐸
𝑟5 (1 − 5𝑧2

𝑟2 )

𝑓𝑧 = −3
2𝜇𝐽2𝑧𝑅2

𝐸
𝑟5 (3 − 5𝑧2

𝑟2 )

(3.7)

The effect of the 𝐽2 spherical harmonics can be interpreted by computing these accelerations for
a point on the Earth’s surface. In a physical sense, the 𝐽2 effect originates from the Earth’s rotation,
which causes the oblateness of the gravity field [31]. This effect is also commonly known as polar
flattening and can be visualised in two dimensions (in the equatorial plane) as seen in Figure 3.3,
as well as in three dimensions as seen in Figure 3.4.

The magnitude of 𝐽2 acceleration is plotted on the Earth’s surface and visualised in the figures
above. The magnitude of the acceleration is in the order of 10−5 km/s2, symmetrically distributed
across the latitude belts. The Earth’s oblateness is also visualised with slightly higher accelera-
tion values at the poles compared to the equator.

Term 𝐽2,2
Deviations due to the shape and distribution of mass density in the east-west direction cancel out
for satellites with an orbital period greater than a sidereal day. The effects of sectorial harmonics
are thus ignored since their contribution is negligible. However, an object in geostationary orbit
stays at the same point over the Earth’s equator, with an orbital period of exactly one sidereal day.
This causes the orbit to be perturbed relatively strongly by accelerations due to 𝐽𝑛,𝑚 harmonic
coefficients with 𝑛 = 𝑚. Although 𝐽2,2 has a small value of 1.8155628 × 10−6, it is dominant over
the rest of the sectorial harmonics terms and is the only 𝐽𝑛,𝑚 term considered in this thesis.
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Figure 3.3: The magnitude of the 𝐽2 acceleration visu-
alised in two-dimensional space in the equatorial plane.
The acceleration pattern can be seen as circular rings,
whose magnitude in km/s2 decreases with increasing dis-
tance from the Earth’s surface.

Figure 3.4: The magnitude of the 𝐽2 acceleration visu-
alised in three-dimensional space on the surface of the
Earth. The acceleration pattern can be seen varying as lat-
itude bands, whose magnitude in km/s2 increases when
moving towards either pole away from the equator.

When the gradient of the potential function is calculated, including terms with order and degree
2, the perturbing acceleration due to the 𝐽2,2 zonal harmonic coefficient is expressed in Cartesian
coordinates as given by Equation 3.8.

𝑓𝑥 = 𝑘𝐽2,2
[𝑥 (5𝑧2

𝑟4 − 3
𝑟2 ) cos (2 atan2 2(𝑦, 𝑥) − Λ2,2) + 𝑦

√𝑥2 + 𝑦2 (1 − 𝑧2

𝑟2 ) 2 sin (2 atan2(𝑦, 𝑥) − Λ2,2)]

𝑓𝑦 = 𝑘𝐽2,2
[𝑦 (5𝑧2

𝑟4 − 3
𝑟2 ) cos (2 atan2(𝑦, 𝑥) − Λ2,2) − 𝑥

√𝑥2 + 𝑦2 (1 − 𝑧2

𝑟2 ) 2 sin (2 atan2(𝑦, 𝑥) − Λ2,2)]

𝑓𝑧 =
5𝑘𝐽2,2

𝑟2 [𝑧 (𝑧2

𝑟2 − 1) cos (2 atan2(𝑦, 𝑥) − Λ2,2)]
(3.8)

where 𝑘𝐽2,2
is a constant defined as follows :

𝑘𝐽2,2
= 3𝜇𝐽2,2

𝑅2
𝐸

𝑟3

Similar to what was done for 𝐽2, the effect of spherical harmonics due to 𝐽2,2 can also be visualised.
The 𝐽2,2 term contributes to the equatorial stretching or squeezing of the Earth’s gravitational
field, which subjects an object in GEO to significant east-west perturbations [31]. This effect can
be visualised in two dimensions in Figure 3.5, and in three dimensions in Figure 3.6.

The magnitude of the 𝐽2,2 acceleration is also plotted on the Earth’s surface and visualised in the
figures above. The magnitude of the acceleration is in the order of 10−7 km/s2, symmetrically
distributed across the longitude belts, in contrast to 𝐽2 earlier. Compared to a uniform distribu-
tion for the 𝐽2 effect, the 𝐽2,2 term shows longitudinal variations with four points with a higher
acceleration magnitude.
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Figure 3.5: The magnitude of the 𝐽2,2 acceleration in
km/s2 is visualised in two-dimensional space in the equa-
torial plane. The acceleration pattern can be seen as four
peaks, showing longitudinal variations.

Figure 3.6: The magnitude of the 𝐽2,2 acceleration visu-
alised in three-dimensional space on the surface of the
Earth. It can be seen that the magnitude of the accelera-
tion km/s2 is rather smaller at the poles and more at the
four longitude positions.

3.1.3.2 Lunar third-body perturbation
Apart from the Earth’s point mass and spherical harmonics gravity, third bodies in the environ-
ment affect the orbits of satellites. Third-body perturbations on an Earth-orbiting satellite due to
the Moon can be expressed by Equation 3.9.

⃗𝑓𝑀𝑜𝑜𝑛 = 𝜇𝑀𝑜𝑜𝑛 [ ⃗𝑟𝑀𝑜𝑜𝑛 − ⃗𝑟
|| ⃗𝑟𝑀𝑜𝑜𝑛 − ⃗𝑟||3 − ⃗𝑟𝑀𝑜𝑜𝑛

|| ⃗𝑟𝑀𝑜𝑜𝑛||3 ] (3.9)

As seen in the equation, the perturbation depends on the gravitational parameter of the Moon
𝜇𝑀𝑜𝑜𝑛 which has a value of 4902.8001 km3/s2 and three position vectors. Here, ⃗𝑟 represents the
position vector of the satellite w.r.t. the Earth, ⃗𝑟𝑀𝑜𝑜𝑛 represents the position of the Moon, relative
to the Earth while ⃗𝑟𝑀𝑜𝑜𝑛 − ⃗𝑟 denotes the position of the Moon w.r.t. the satellite. An illustration
denoting the vectors can be seen in Figure 3.7.

Figure 3.7: Position vectors for visualisation of a satellite’s perturbation due to the Moon as a third body.
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The geocentric position of the Moon w.r.t. the Earth or ⃗𝑟𝑀𝑜𝑜𝑛 is epoch-dependent since the posi-
tions of the Moon and the Earth keep changing. The ephemerides of the Moon can be downloaded
from the Horizons website provided by the Jet Propulsion Laboratory (JPL) given an epoch [32].
However, for the sake of versatility, the position vector of the Moon at a given epoch is analyti-
cally computed by the algorithm specified in Curtis [30].

3.1.3.3 Solar third-body perturbation
The Sun’s influence on Earth-orbiting satellites’ orbits is also significant. Similar to what was
done for the Moon, third-body perturbations on an Earth-orbiting satellite due to the Sun can be
expressed by Equation 3.10.

⃗𝑓𝑆𝑢𝑛 = 𝜇𝑆𝑢𝑛 [ ⃗𝑟𝑆𝑢𝑛 − ⃗𝑟
|| ⃗𝑟𝑆𝑢𝑛 − ⃗𝑟||3 − ⃗𝑟𝑆𝑢𝑛

|| ⃗𝑟𝑆𝑢𝑛||3 ] (3.10)

As seen in the equation, the perturbation depends on the gravitational parameter of the Sun 𝜇𝑆𝑢𝑛
which is equal to 1.327 × 1011 km3/s2 and three position vectors. Here, ⃗𝑟 represents the position
vector of the satellite w.r.t. the Earth, ⃗𝑟𝑆𝑢𝑛 represents the position of the Sun, relative to the Earth
while ⃗𝑟𝑆𝑢𝑛 − ⃗𝑟 denotes the position of the Sun w.r.t. the satellite. An illustration denoting the
vectors can be seen in Figure 3.8.

Figure 3.8: Position vectors for visualisation of a satellite’s perturbation due to the Sun as a third body.

Similar to the lunar position, the geocentric position of the Sun w.r.t. the Earth or ⃗𝑟𝑆𝑢𝑛 is epoch-
dependent. The ephemerides of the Sun can also be downloaded from the Horizons website pro-
vided by JPL given an epoch [32]. However, like the Moon ephemerides, the position vector of the
Sun at a given epoch is analytically computed by the algorithm specified in Curtis [30].

3.1.3.4 Aerodynamic drag
The Earth’s atmosphere affects a satellite’s trajectory by exerting a drag force. This perturbing
force is dependent on several factors such as the drag coefficient of the object 𝐶𝐷, the atmo-
spheric density 𝜌𝑎𝑡𝑚 which is altitude dependent, the area-to-mass ratio of the object (𝐴/𝑚) and
the velocity of the satellite relative to the rotating Earth atmosphere #«𝑣 . The acceleration due to
atmospheric drag can be computed from Equation 3.11 [27].

#«𝑓 𝑑𝑟𝑎𝑔 = −1
2𝐶𝐷𝜌𝑎𝑡𝑚 ( 𝐴

𝑚) | #«𝑣 | #«𝑣 (3.11)

The GEO regime is the orbital domain of interest for this thesis, which is at a high altitude of
35,786 km with a very low atmospheric density. As a consequence, the effect of aerodynamic
drag is considered negligible in the simulation, which also simplifies the model to a great extent.
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3.1.3.5 Solar radiation pressure
Apart from acting as a third body in an Earth-satellite environment, the Sun’s radiation exerts
a force on the satellite by emitting photons, which are absorbed and reflected by the spacecraft.
This force exerted by the exchange of momenta between sunlight and the satellite surface is
known as solar radiation pressure or SRP. There are many complex radiation pressure models de-
pending on the shape of the satellite. A simple cannonball model has been assumed here, which
assumes the body to be a homogeneous ball capable of fully reflecting or absorbing solar radia-
tion. The overall force is opposite to the Sun vector and is calculated as given in Equation 3.12
[27].

⃗𝑓𝑆𝑅𝑃 = −𝐶𝑟 (𝑆𝑟
𝑐 ) ( 𝐴

𝑚) ⃗𝑟𝑆𝑢𝑛 − ⃗𝑟
|| ⃗𝑟𝑆𝑢𝑛 − ⃗𝑟||3 (3.12)

The magnitude and direction of SRP will depend on the satellite reflectivity properties and its ori-
entation w.r.t. the Sun-satellite line. In the above equation, 𝐶𝑟 is the radiation pressure coefficient,
(𝐴/𝑚) is the reference area-to-mass ratio, ( ⃗𝑟𝑆𝑢𝑛 − ⃗𝑟) is the vector pointing from the spacecraft to
the Sun, 𝑐 is the speed of light in vacuum equal to 3 × 108 m/s, and 𝑆𝑟 is the total amount of solar
energy flux on Earth equal to 1365 W/m2 [33]. In this thesis, the objects modeled have been as-
sumed to be perfectly reflecting, which translates to a solar radiation coefficient value of 2. The
solar radiation pressure is an important perturbation for large area-to-mass objects in higher or-
bits.

3.1.3.6 Summary of perturbations
To conduct a feasibility study, it is important to have a high-fidelity model yet simple to interpret.
Due to this, the most relevant perturbations acting in the GEO regime were discussed and will
be implemented in the model. The behaviour of perturbations discussed earlier as a function of
orbital radius can be visualised in Figure 3.9 [27].

Figure 3.9: Variation of orbital perturbations on a satellite as a function of orbital radius, as adapted from Wakker [27].
The black dashed lines show the radius of the Earth and the GEO altitudes.
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At the GEO altitude regime, the point-mass gravity acceleration shown in blue is the dominant
acceleration throughout, with an order of magnitude close to 0.2 m/s2. The green stars show the
least affecting perturbation due to the 𝐽2,2 sectorial harmonics term. The straight red line, inde-
pendent of orbital altitude, denotes the SRP. The exact magnitude depends on the satellite’s sur-
face properties and orientation with the Sun. The three perturbations at similar magnitudes are
the 𝐽2 zonal harmonics term and the third-body perturbations due to the Sun and Moon, which
lie in the order of magnitude of about 10−5 m/s2.

The orbital dynamics of the problem was described in this section. The dominant accelerations
discussed, such as the 𝐽2 and 𝐽2,2 terms, lunar and solar third-body perturbations, and SRP will
be included in the orbital simulation model. This leads to the next aspect of the research i.e. the
space-based observation system on which the feasibility study is based, discussed in Section 3.2.

3.2. Radar system theory

This section provides an overview of the theoretical aspects of a general radar and its various
functionalities and parameters. Since this thesis is focused on the feasibility evaluation of a
space-based radar, first, the motivation to choose a space-based radar is revisited by listing some
of its major advantages and limitations in Section 3.2.1. Thereafter, the radar system parameters
are made familiar to the reader by introducing the Radar link budget equation in Section 3.2.2,
which is followed by explaining the different modes in which a radar can operate in Section 3.2.3.
The rationale behind selecting radar waveforms and configurations is presented simply for the
reader in Section 3.2.4. The section ends with Section 3.2.5, which explains how the measurement
quality collected by the radar system can be quantified.

3.2.1. Motivation for space-based radar

A brief introduction to RAdio Detection And Ranging (RADAR) was provided in Section 2.2, which
defines the underlying working principle of a radar to detect and locate objects based on the
echoes they reflect. Apart from enhancing the perception of an environment, the greatest ap-
plication of radar lies in remote sensing due to its capability to scan large angular regions in a
short amount of time. Moreover, the radar signals penetrate the atmosphere in any weather con-
ditions to effectively provide better detection and measurements [34]. Due to limitations such
as atmospheric losses, signal attenuation, and noise in the collected measurements, this thesis
explores and reviews the performance of INDIGO, a conceptual space-based radar system. The
advantages of using such a system motivate exploring it in the thesis. They are provided below.

• A better detection performance for the radar is expected due to the reduced distance be-
tween the target and the observer. Moreover, the reflected signal is expected to contain
fewer sources of errors, facilitating better detection.

• As discussed earlier in Chapter 2, small-sized debris is critical for the safe operations of
active satellites in GEO. An overview of different sources and their sizes can be seen in Fig-
ure 3.10 [35].
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Figure 3.10: Size range of different debris particles. Objects in the range of 10 cm (for LEO) and 1 m (for GEO) are
tracked from the ground. Impacts from mm-sized debris are possible to shield against. Sizes between 1 and 10
cm are crucial since they can neither be shielded against nor tracked from the ground [35].

The target of the thesis will be objects in the size range of 1 cm to 10 cm, which are either
not shieldable or trackable. In the GEO regime, the study will focus on the debris caused by
fragmentation from explosions of inactive satellites. The general expectation is that in-situ
detection, surveillance, and tracking of such small-sized debris will be easier.

• Due to an observation platform close to the target object, debris is expected to be observed
longer than ground observation time, allowing more frequent measurement opportunities.

Now that the motivation behind selecting a space-based radar has been presented, the details of
the design and performance of a radar system can be understood in more detail.

3.2.2. Radar link budget

In general, a typical radar consists of a transmitter that sends out a radio signal i.e. a burst of en-
ergy, an antenna that receives the reflected signal, a receiver that amplifies the received signal,
and a signal processor which distinguishes echoes from background noise or clutter, therefore,
de-noising the signal. The act of radar designing depends on design and performance domains.
The variables which affect the performance of a system are known as design parameters, while
those which contribute to the evaluation of how well the radar functions are known as perfor-
mance parameters [36].

The selection of a radar system to achieve a specific task or function starts with an optimal bal-
ance between the system design and performance parameters. This is done through a general
Radar range equation or Radar Link Budget analysis which encapsulates target properties, radar
characteristics, and distance between the target and observer for a given transmitting medium.
This is presented in Equation 3.13 [37], followed by a brief explanation of the equation parameters.

𝑆𝑁𝑅 = 𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎𝐿
(4𝜋)3𝑅4𝑘𝑇𝑠𝐵 (3.13)

The Signal-to-Noise Ratio or SNR provided by any radar is its key performance measure. It is the
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standard measure of a radar’s ability to detect a target at a given range and is usually measured
in decibel units. It is inversely proportional to the fourth power of the target range 𝑅.

The peak power at which the radar transmits a signal is given by 𝑃𝑡. The TIRA space observation
radar in Germany operates at a peak power of 2 MW [34]. The higher the peak power, the better
the SNR achieved. Having said so, limited power is available for space-based radars, which needs
to be selected appropriately.

The radar cross-section or RCS of the target is given by 𝜎 in the radar range equation and is the
measure of energy that is intercepted and scattered off the target back to the radar. The RCS is
not simply related to the physical area of the target but mainly depends on the frequency and
polarisation of the radio wave. The RCS of a target is determined by solving Maxwell’s equations,
which makes values for complex geometries very difficult to estimate [38]. For a simple spheri-
cal target, the RCS normalised with the surface area of a sphere of radius 𝑟 is seen to vary as a
function of the inverse of the radar wavelength 𝜆 in Figure 3.11.

Figure 3.11: Normalised RCS as a function of object radius and wavelength. Three scattering regimes: Rayleigh, Mie,
and optical are highlighted in green, red, and blue, respectively. This affects the computation of RCS of a simple
conducting sphere. This plot is adapted from Li et. al [39].

The three scattering regimes, Rayleigh, Mie, and optical, are visible in the above plot. The spheri-
cal object’s size is very small in the Rayleigh region (shown in green) compared to the wavelength
(𝑟 << 𝜆), which causes the RCS to vary inversely with 𝜆4. In the optical region (shown in blue),
the sphere’s dimensions are larger than the wavelength (𝑟 >> 𝜆), which leads to a constant RCS
value of 4𝜋𝑟2 (surface area of a sphere). In this research, a cross sectional scattering is considered
instead of surface scattering, leading to an assumed RCS value of 𝜋𝑟2. The Mie or resonance re-
gion (shown in red) is the intermediate region between the Rayleigh and the optical region, which
shows RCS value oscillations depending on the frequency selected. It can reach a maximum of
4 times the constant optical RCS value and a minimum of 0.26 the same optical RCS value [39].

A suitable wavelength 𝜆 is chosen for object detection depending on the target RCS. This is de-
signed or selected based on radar carrier frequency 𝑓𝑐 at which the signals are transmitted and
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received. Radio-frequency bands vary in a wide range depending on system application and the
requirements of the operation. The dependency of the carrier frequency with wavelength is given
by the simple expression in Equation 3.14.

𝜆 = 𝑐
𝑓𝑐

(3.14)

where 𝑐 is the speed of light in vacuum equal to a value of 3×108 m/s. The carrier-wave frequency
should be high if the object’s RCS is modeled in the optical regime. This also ensures that to target
objects of sizes between 1 and 10 cm, the wave’s frequency should be between 30 GHz and 3 GHz,
respectively. Choosing a higher frequency value ensures a reduction in overall system mass and
size but increases the overall system power requirement. An optimal choice for the frequency
band is needed, such that the target size objects can be detected with low power consumption.

The wavelength selection affects the antenna beamwidth 𝜃𝐵𝑊 of a radar which is defined at the
level of half the power of the beam peak (a 3-dB beamwidth). Although it is not directly present
in Equation 4.3, it is an important design parameter affecting the radiated power of the signal. A
typical radar beam is shown in Figure 3.12 illustrating its beamwidth. Most of the power is rep-
resented by its beamwidth generated by the main lobe, followed by small minor lobes showing a
fluctuation in signal behaviour [40].

Figure 3.12: Geometry of a radar antenna beam (shown with a beamwidth 𝜃). The main lobe and side lobes originating
from the beam are depicted [40]

A standard metric for measuring the power of the signal’s peak is the Half Power Beam Width
(HPBW), whose power is given by the figure points 𝑃1 and 𝑃2. Here, 𝜃 corresponds to 𝜃𝐵𝑊 , whose
signal strength decreases on moving towards the beam’s centre of origin. The beamwidth repre-
sents the direction and distance of the signal strength, which gets narrower with high frequen-
cies and wider with low frequencies. In general, the HPBW (in radians) for a lobe with diameter
𝐷𝑙𝑜𝑏𝑒 and signal wavelength 𝜆 can be expressed by Equation 3.15.

𝐻𝑃𝐵𝑊 = 70𝜆
𝐷𝑙𝑜𝑏𝑒

(3.15)

For surveillance radars, the beamwidth is large to detect targets at an angular offset with the axis
of the beam, while tracking them requires a higher gain with a more focused beam. For a multi-
function radar capable of both surveillance and tracking, the carrier frequency is adjusted based
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on the functionality of the radar. For surveillance, more power is needed for better detection, but
the pulses can be emitted with a lower carrier frequency. When the object is detected, the radar
moves to a low power mode but emits waves at a higher frequency to accurately follow the ob-
ject from an estimate based on prior measurements [41]. Subsequent discussion on the changing
beamwidth of the selected radar configuration for this thesis is provided in Section 4.1.1.

𝐺𝑡 and 𝐺𝑟 are the gains for the transmitting and receiving antenna respectively, which is defined
as the radiation intensity of the antenna in a given direction over that of an isotropic antenna
which uniformly radiates in all directions [36]. If the transmitting and receiving antennae are the
same (as in the case of pulsed Doppler radars), the gain value is taken as 𝐺. To ensure maximal
signal return, the receiving antenna must have a high gain, which can be calculated by Equa-
tion 3.16.

𝐺 = 4𝜋𝜂𝐴𝑒
𝜆2 (3.16)

Here, 𝜂 refers to the antenna efficiency typically with values between 0.6 to 0.7 for ground-based
systems [37]. 𝐴𝑒 denotes the effective radiative area of the antenna, which depends on the shape,
size, and type of antenna used.

Among the remaining parameters in Equation 3.13, 𝑅 is the target range i.e. the distance to a tar-
get from the observing system, which highly influences the SNR achieved and forming the mea-
surement acquisition strategy for INDIGO of this study (more will be discussed in Section 4.1.2).
Many sources of noise in a radar system affect its performance and accuracy. Some sources are
solar, galactic, atmospheric, and human-made instrument noise, which gives rise to total system
losses or 𝐿 [36]. Free-space losses mainly dominate this term. 𝑇𝑠 is the total system noise tem-
perature, typically equal to 290 K for ground-based systems. 𝐵 is the signal noise bandwidth of
the receiver and 𝑘 is the Boltzmann constant with a value of 1.38 × 10−23 J deg−1K−1.

Knowledge of each link budget parameter is crucial for selecting the configuration and param-
eters for the space-based radar, which will be done in Section 4.1. However, a radar’s different
modes and functions can serve multiple purposes. They will be discussed in Section 3.2.3.

3.2.3. Radar functions

This section will briefly mention two main radar working modes. A radar can either operate in
search mode or in track mode. It can also function in a Track-While-Scan (TWS) mode, having
the possibility of switching between search and track modes.

While a surveillance radar is dedicated to detecting objects in its field of view, a tracking radar
focuses on continuous measurements of the coordinates of a moving target to determine its path
and predict its trajectory. Tracking can be done with range, range rate, and angular information
collected by a surveillance radar. The angle at which the target is aligned w.r.t. the beam axis is
an important property for tracking radars since they try to keep the beam pointed in the direc-
tion of the target, thereby maximising the SNR. A surveillance radar can receive signals from any
direction if it is above its detection threshold.

Here, the space-based radar is expected to detect and collect measurements on small-sized de-
bris objects, which are unknown due to limitations by ground-based sensors. It must be capable
of scanning a wide area to detect new objects and derive information about their range, range
rate, and angles. A TWS radar is suited to collect the in-situ measurements, which are processed
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to generate an orbit estimation. With multiple measurement opportunities, the orbit prediction
behaviour is expected to improve, which can be used for precise object tracking.

3.2.4. Selection of waveform and configuration

Several factors significantly affect the overall radar design. The waveform type must be chosen
depending on the operating environment and intended use. There are broadly two types of wave-
forms that are presently used in most radars. This classifies radars into two types depending on
the type of waveform used: Continuous Wave (CW) radars and pulsed Doppler radars.

Continuous Wave (CW) radars constantly emit in the radio-frequency spectrum, with a low power
requirement. Their waveform is visualised with an example of a CW waveform shown in Fig-
ure 3.13. They are limited in their transmission power, which allows continuous operation. They
are good for short-range targets since they are simple to design and implement with lower power
and cost requirements, such as in a police speed measurement radar. Moreover, they are widely
used in measuring target Doppler shift, which is used to estimate radial velocity by applying fre-
quency modulation to the signal, which is then known as an FMCW waveform [38]. However,
since the antenna must operate continuously, two separate antennae are required to transmit
and accept the radar signals to avoid interference of signals. This limits their sensitivity and
range, making them not an attractive choice for the study. Moreover, placing multiple antennae
on a satellite is an extra challenge, which does not theoretically outperform the challenges a CW
radar faces. Hence, CW radar waveforms are not considered in this thesis.

Figure 3.13: Visualisation of a CW radar waveform. The
waves are emitted continuously and can operate at a
lower power. The emission does not stop, and the radar
detects a target by measuring the shift in the frequency
spectrum. The waveform here is repeated every 2 sec-
onds for a total duration of 30 seconds.

Figure 3.14: Visualisation of a pulsed waveform. The
waves are emitted as high bursts of energy, after which
the radar waits for a reflection. This waveform has a pulse
duration of 1 second and a pulse repetition time of 7 sec-
onds, out of which 6 seconds is reserved for listening for
the echo that it transmitted previously.

A pulsed Doppler radar wave is based on the simple fundamental of sending a high burst of en-
ergy with a pulse duration 𝜏 and waiting to receive its echo. The silence between pulses prevents
signal interference while preserving the radar’s operational power. A single antenna transmits
and receives signals with the same gains. It measures the range to a target object using Equa-
tion 3.17.
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𝑅 = 𝑐Δ𝑇
2 (3.17)

where Δ𝑇 is the time trip time of the radar signal to and from the target, which then travels at
the speed of light in vacuum 𝑐 to a target at range 𝑅. It can also measure the target radial ve-
locity along the Line-of-sight (LOS) vector 𝑣𝑟 by measuring the Doppler shift in the transmitted
and received frequencies. An increase in frequency is seen when the target comes closer to the
radar, while a drop is seen as it moves away. A pulsed Doppler radar can measure the Doppler
frequency 𝑓𝑑 using Equation 3.18.

𝑓𝑑 = 2𝑣𝑟
𝜆 (3.18)

Pulsed Doppler radars come with functionalities such as pulse compression, which can vary the
frequency during the pulse emission to allow the receiver to amplify the magnitude of the pulse,
thus resulting in a higher SNR. All these characteristics are suited for the research conditions,
making pulsed Doppler radars an attractive choice for selection.

Depending on the number of transmitters and receivers, there are different configurations of
radars. In a broader sense, if one antenna transmits and receives the signal, the radar is called
monostatic. On the other hand, if there are two antennae for transmitting and receiving signals
separated by a certain distance, the radar is called bistatic. Since pulsed Doppler radars are the
better waveform choice, choosing a monostatic radar configuration is sufficient for the thesis.

Apart from the waveform selection, the characteristics of a radar antenna influence the radar’s
ability to detect targets and precisely determine their position and other characteristics. Anten-
nae can be a dish or a planar array depending on the functionalities needed. For tracking, narrow
‘pencil’ beams are preferred since they can concentrate the signal within the beam and receive
a higher gain from the target, thus accurately knowing its trajectory before losing contact with
it. However, a phased array radar with a planar surface is preferred if a broad area has to be
surveyed. It can either have multiple pencil beams (originating from its multiple antenna ele-
ments) or a large ‘fan-shaped’ beam, which can be electronically steered in a desired direction, to
measure the range, range rate and DOA (direction of arrival) of an object [41]. Phased-array radar
configurations also have the advantage of efficiently switching from surveillance to a tracking
mode by changing its dwell time and carrier frequency or adjusting the signal phase at the re-
ceiver [38]. This makes a phased array antenna with a pulsed waveform an appropriate choice
for INDIGO, based on which parameters must be selected.

The general properties of a radar system are crucial for the operation and performance of any
radar system and must be fully addressed while trading off between different possible configura-
tions. This will be addressed in Section 4.1.

3.2.5. Measurement accuracy

The accuracy with which a radar can collect measurements depends on several factors. Accu-
racy refers to how close a measurement is to its true value [37]. Two of the most important con-
tributors to the error sources of radar measurements are mentioned as follows:

• A threshold SNR-dependent measurement error, having a fixed standard deviation, is de-
rived from the internal noise of the radar.
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• Errors and uncertainties due to system radar calibration and measurement process lead to
a constant bias in the measurements collected.

Accuracy is calculated as the root-mean-square (RMS) value of the difference between an esti-
mated quantity and its true value. The standard deviations for range, range-rate, and angular
observations can be derived using the Cramer-Rao Lower bound [42]. The standard deviation of
range measurements 𝜎𝜌 can be calculated by Equation 3.19, and that of the range-rate measure-
ments can be calculated by Equation 3.20.

𝜎𝜌 = 𝑐
2√ 3

𝜋2𝐵2(2𝑆𝑁𝑅) (3.19)

𝜎 ̇𝜌 = 𝜆
2 √ 3

𝜋2𝜏2(2𝑆𝑁𝑅) (3.20)

The parameters in the above equations were previously introduced in Section 3.2.2. The Cramer-
Rao lower bound for angular measurement accuracy is given by Equation 3.21. The identical
standard deviation error value is taken for azimuth and elevation measurements.

𝜎𝑎𝑧 = 𝜎𝑒𝑙 = 𝜃𝐵𝑊
𝑘𝑀√2(𝑆𝑁𝑅)

(3.21)

Here, 𝑘𝑀 is the monopulse pattern difference slope usually equal to 1.6. These equations will be
useful to determine the standard deviations of the Gaussian white noise, which will be added to
each of the true measurements in Section 4.2.2.2.

Having covered the two important aspects of the theoretical framework of the research, this sec-
tion will describe the theory of the final pillar of this study: orbit determination of the debris
object, based on the results of which the feasibility of the concept will be provided.

3.3. Orbit Determination theory

Determining the orbits of debris objects is a fundamental aspect of STM. The equations of mo-
tion are integrated w.r.t. time, which determines the debris’s state at a given time during the
simulation. However, the initial position and velocity of the debris are not known exactly, which
introduces errors in the predicted motion.

In the work of Pocha [43], orbit determination has been defined as the process wherein the track-
ing observations are used to determine an object’s orbital characteristics and its position and
velocity in space. Tapley et. al [44] define orbit determination (OD) as follows:

Orbit determination

Orbit determination or state estimation is referred to as “the process of determining the
best estimate of the state of an object (e.g. a satellite or debris) from collected observations,
which are influenced by random and systematic errors” [44].

It was seen earlier in the literature study of this thesis that orbit determination could be per-
formed using batch or sequential estimation techniques. The common batch estimation tech-
nique for orbit determination is the Weighted Batch Least Squares (WLS) method, while the
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Kalman Filter (KF) is the sequential estimator for orbits. WLS is used for post-processing mea-
surement data in a batch, while KF has more applications in real-time applications [42]. This
thesis will focus on estimating the orbit of the debris object using a batch WLS method since con-
tinuous real-time updates are not required to prove the feasibility of a concept at this stage.

This section has two parts. The first part (Section 3.3.1) explains the basics and concept of the
method of least squares used in orbit determination of satellites, which will also be used to deter-
mine the debris object’s state. The second part (Section 3.3.2) explains the differential equation
used to propagate a special set of equations known as the variational equations, which use ob-
servations and the force model behaviour to estimate the orbit.

3.3.1. Fundamentals of Least squares (LSQ)

The LSQ is essentially a simple optimisation formulation, which fits collected measurements to
a mathematical model and minimizes the sum of the squares of the difference between the mod-
eled observations and actual measurements (known as residuals) [45].

The vector containing the set of parameters to be estimated by the least squares technique is
denoted by #«𝑥 , which has the object’s initial position #«𝑟 0 and velocity vector #«𝑣 0 and certain force
parameters #«𝑝 such as solar radiation pressure coefficient and drag coefficient, which influence
the dynamical and observation model. The general formulation is given by Equation 3.22.

#«𝑥 = ⎡⎢
⎣

#«𝑟 0
#«𝑣 0
#«𝑝

⎤⎥
⎦

(3.22)

In this thesis, no additional force parameters are estimated, which leaves the observed parameter
set to contain only the state vector of the debris. Assuming there to be 𝑛𝑚𝑒𝑎𝑠 number of measure-
ments, the vector of the measured observations #«𝑧 can be given by Equation 3.23.

#«𝑧 =
⎡
⎢⎢
⎣

𝑧1
𝑧2
⋮

𝑧𝑛𝑚𝑒𝑎𝑠

⎤
⎥⎥
⎦

(3.23)

The estimation vector 𝑥 with dimension 6 × 1, is integrated w.r.t. time, with an initial guess value
of #«𝑥(𝑡0) = #«𝑥 0, and can be expressed in the following form as seen in Equation 3.24 [45].

𝑑 #«𝑥
𝑑𝑡 = #«𝑓 (𝑡, #«𝑥) (3.24)

where
#«𝑓 represents the ordinary differential equation function described by Equation 3.3 for the

idealised case with no perturbations, and by Equation 4.9 for a fully perturbed model. The obser-
vations are described by the observation equation described by Equation 3.25.

#«𝑧 = #«ℎ( #«𝑥 0) + #«𝜖 (3.25)

where
#«ℎ represents the model value of the observations as a function of the state #«𝑥 0 at the ref-

erence epoch 𝑡0, and #«𝜖 is the residual vector containing the difference between computed and
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observed observations (residuals). The cost function 𝐽 can thus be formulated as the minimising
function for the LSQ problem. The expression is stated in Equation 3.26.

𝐽( #«𝑥 0) = #«𝜖 𝑇 #«𝜖 = ( #«𝑧 − #«ℎ( #«𝑥 0))𝑇 ( #«𝑧 − #«ℎ( #«𝑥 0)) (3.26)

However, a key challenge lies in the fact that the observation function
#«ℎ is highly non-linear. It

is attributed to how they are modeled (seen in Section 4.1.2). Hence, a linearisation must be per-
formed before solving the least-squares problem. The solution obtained from the linearisation is
an approximate solution to the non-linear problem. When Equation 3.25 is linearised around a
reference state

#     «

𝑥𝑟𝑒𝑓 , which is obtained after iterations from a starting initial approximate guess
of #      «𝑥𝑎𝑝𝑟, the residual vector can now be expressed as given in Equation 3.27. An illustration from
Montenbruck et. al [45] is provided in Figure 3.15, which shows the correction of the reference
trajectory parameters to find the best fit for the observations.

Figure 3.15: Schematic of the Least Squares method for orbit determination, from Montenbruck et. al [45]. A reference
trajectory

#       «

𝑥𝑟𝑒𝑓
0 is assumed as a starting point, which is corrected with each iteration to obtain an LSQ estimate Δ

#      «

𝑥𝑙𝑠𝑞
0 ,

which is added to the reference guess, to obtain the initial state of the LSQ orbit
#      «

𝑥𝑙𝑠𝑞
0 , which fits through the measure-

ments (shown as dots).

#«𝜖 = #«𝑧 − ℎ⃗( #«𝑥 0)) ≈ #«𝑧 − #«ℎ(
#     «

𝑥𝑟𝑒𝑓
0 ) − 𝜕 #«ℎ

𝜕 #«𝑥 0
( #«𝑥 0 −

#     «

𝑥𝑟𝑒𝑓
0 ) = Δ #«𝑧 − HΔ #«𝑥 0 (3.27)

where Δ𝑧 is the difference between the actual observations and the observations predicted by the
dynamic model. Δ #«𝑥 0 represents the difference between the guessed value #«𝑥 0 and the reference
state

#     «

𝑥𝑟𝑒𝑓 . H is the Jacobian matrix, whose computation will be described in Section 3.3.2.

The cost function of the linearised LSQ problem is now re-formulated, which is given by Equa-
tion 3.28

𝐽(Δ #«𝑥 0) = (Δ #«𝑧 − HΔ #«𝑥 0)𝑇 (Δ #«𝑧 − HΔ #«𝑥 0) (3.28)

The least squares solution is estimated by solving the condition for a minimum 𝜕𝐽/𝜕Δ #«𝑥 0 = 0.
The general least squares solution, which assumes all measurements to be weighted the same,
is given by Equation 3.29.

Δ
#    «

𝑥𝑙𝑠𝑞
0 = (H𝑇 H)−1(H𝑇 Δ #«𝑧 ) (3.29)
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The matrix H𝑇 H represents the normal equations matrix. Since the solution obtained from the
linearisation process differs from the exact solution from the non-linear equation, the solution
is made closer to the actual value by iterating through the process till the relative change in the
cost function between the current and the previous iteration is below a threshold 𝜖𝑐𝑜𝑛𝑣 [44].

However, when the different types and quality of measurements are used to estimate an orbit,
the assumption of them being equally important is not credible. Some measurements may not
be accurate enough and may lead to poorer estimation if given equal importance to an accurate
type of measurement. Since different observations have different levels of accuracy, a weight-
ing factor is assigned to each of the observations, which gives an idea about the ‘importance’ of
including a measurement in the estimation process.

The general practice is to assign weights to each observation with the inverse of its statistical
measurement error. It was seen earlier that the accuracy of each type of measurement is com-
puted from the Cramer-Rao lower bound, as discussed in Section 3.2.5. The observations with
higher errors in acquisition are given a lower weight or importance to obtain a fair estimate. The
weighting matrix for 𝑚′ measurements is given by Equation 3.30.

W = ⎡⎢
⎣

𝜎−2
1 … 0
0 ⋱ 0
0 0 𝜎−2

𝑚′

⎤⎥
⎦

(3.30)

The solution to the weighted least squares problem (WLS) can be expressed by Equation 3.31 [45].

Δ
#    «

𝑥𝑙𝑠𝑞
0 = (H𝑇 WH)−1(H𝑇 WΔ #«𝑧 ) (3.31)

3.3.2. Variational Equations

As mentioned above, the relation between the observables and the parameters to estimate re-
quires linearisation to make the expressions simplified for ease of computation. A large number
of partial derivatives are taken in the process, which generally are of four types [45]. For this
study, only two of them will be considered, which are stated below.

• State transition matrix
The changes in the initial values of the state vector #«𝑥(𝑡0) can result in the change of the
state vector at a later epoch t, which can be quantified by the State Transition Matrix (STM)
as described by Equation 3.32.

𝜙(𝑡, 𝑡0) = ( 𝜕 #«𝑦 (𝑡)
𝜕 #«𝑦 (𝑡0))

6×6
(3.32)

• Partial derivative matrix of measurements w.r.t. state vector
Assuming the state vector at epoch t to be #«𝑦 (𝑡) = [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡) 𝑣𝑥(𝑡) 𝑣𝑦(𝑡) 𝑣𝑧(𝑡)], and
the measurement vector #«𝑧 (𝑡) = [𝜌(𝑡) ̇𝜌(𝑡) 𝜃𝑎𝑧(𝑡) 𝜃𝑒𝑙(𝑡)], the partial derivative matrix of
the measurements w.r.t. the state vector at an epoch 𝑡 is given by Equation 3.33.

𝜕 #«𝑧 (𝑡)
𝜕 #«𝑦 (𝑡) =

⎡
⎢⎢⎢⎢
⎣

𝜕𝜌(𝑡)
𝜕𝑥(𝑡)

𝜕𝜌(𝑡)
𝜕𝑦(𝑡)

𝜕𝜌(𝑡)
𝜕𝑧(𝑡)

𝜕𝜌(𝑡)
𝜕𝑣𝑥(𝑡)

𝜕𝜌(𝑡)
𝜕𝑣𝑦(𝑡)

𝜕𝜌(𝑡)
𝜕𝑣𝑧(𝑡)

𝜕 ̇𝜌(𝑡)
𝜕𝑥(𝑡)

𝜕 ̇𝜌(𝑡)
𝜕𝑦(𝑡)

𝜕 ̇𝜌(𝑡)
𝜕𝑧(𝑡)

𝜕 ̇𝜌(𝑡)
𝜕𝑣𝑥(𝑡)

𝜕 ̇𝜌(𝑡)
𝜕𝑣𝑦(𝑡)

𝜕 ̇𝜌(𝑡)
𝜕𝑣𝑧(𝑡)

𝜕𝜃𝑎𝑧(𝑡)
𝜕𝑥(𝑡)

𝜕𝜃𝑎𝑧(𝑡)
𝜕𝑦(𝑡)

𝜕𝜃𝑎𝑧(𝑡)
𝜕𝑧(𝑡)

𝜕𝜃𝑎𝑧(𝑡)
𝜕𝑣𝑥(𝑡)

𝜕𝜃𝑎𝑧(𝑡)
𝜕𝑣𝑦(𝑡)

𝜕𝜃𝑎𝑧(𝑡)
𝜕𝑣𝑧(𝑡)

𝜕𝜃𝑒𝑙(𝑡)
𝜕𝑥(𝑡)

𝜕𝜃𝑒𝑙(𝑡)
𝜕𝑦(𝑡)

𝜕𝜃𝑒𝑙(𝑡)
𝜕𝑧(𝑡)

𝜕𝜃𝑒𝑙(𝑡)
𝜕𝑣𝑥(𝑡)

𝜕𝜃𝑒𝑙(𝑡)
𝜕𝑣𝑦(𝑡)

𝜕𝜃𝑒𝑙(𝑡)
𝜕𝑣𝑧(𝑡)

⎤
⎥⎥⎥⎥
⎦4×6

(3.33)
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When the system dynamics are included along with the kinematics (only measurements), the
set of differential equations needs to be solved in the computation of the STM, which needs to
be propagated over the epochs. This consists of the STM and the sensitivity matrix (the par-
tial derivative of the state vector w.r.t. estimated model parameters). Since this study does not
investigate the estimation of model parameters, the variational equations will only involve the
propagation of the STM.

Assuming that the state vector #«𝑦 (𝑡) = [ #«𝑟 (𝑡) #«𝑣 (𝑡)]𝑇
, to obey the first-order differential equation

given by Equation 3.34.

𝑑
𝑑𝑡

#«𝑦 (𝑡) = #«𝑓 (𝑡, #«𝑦 ) = [ #«𝑣 (𝑡) #«𝑎 (𝑡, #«𝑟 , #«𝑣 )]𝑇
(3.34)

Then the derivative of this differential equation at epoch 𝑡 w.r.t. the initial state at epoch 𝑡0 is
given by Equation 3.35.

𝜕
𝜕 #«𝑦 (𝑡0)

𝑑 #«𝑦 (𝑡)
𝑑𝑡 = 𝜕 #«𝑓 (𝑡, #«𝑦 (𝑡))

𝜕 #«𝑦 (𝑡) ( 𝜕 #«𝑦 (𝑡)
𝜕 #«𝑦 (𝑡0)) (3.35)

As seen earlier, the STM is defined by Equation 3.32. Therefore, the variational equation for the
problem is given by Equation 3.36.

𝑑𝜙(𝑡, 𝑡0)
𝑑𝑡 = A(𝑡) = [ 03×3 13×3

𝜕 #«𝑎 ( #«𝑟 , #«𝑣 ,𝑡)
𝜕 #«𝑟 (𝑡)

𝜕 #«𝑎 ( #«𝑟 , #«𝑣 ,𝑡)
𝜕 #«𝑣 (𝑡)

]
6×6

𝜙(𝑡, 𝑡0) (3.36)

where the initial starting value of the state transition matrix is assumed to be an identity matrix
of dimensions 6 × 6. Considering the magnitude of the position vector to be | #«𝑟 | = √𝑥2 + 𝑦2 + 𝑧2,
the partial derivative of the acceleration w.r.t. the position #«𝑟 is given by Equation 3.37.

𝜕 #«𝑎
𝜕 #«𝑟 = 𝜇

| #«𝑟 |5
⎡⎢
⎣

3𝑥2 − | #«𝑟 |2 3𝑥𝑦 3𝑥𝑧
3𝑥𝑦 3𝑦2 − | #«𝑟 |2 3𝑦𝑧
3𝑥𝑧 3𝑦𝑧 3𝑧2 − | #«𝑟 |2

⎤⎥
⎦

(3.37)

All these equations will be applied in an algorithm described in Section 4.2.3, demonstrating the
methodology for precise orbit determination using the measurements collected by the space-
based radar system.

This chapter laid the foundation for the theoretical knowledge learned and applied during the
thesis. The next chapter on research methodology will explain how this knowledge is applied in
practice to obtain results on this study.
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4
Methodology

The objective of this chapter is to present the research methodology used in this thesis. It fol-
lows the theoretical basis described earlier in Chapter 3 and explains the approach to developing
a simulation model. The key points in this chapter are important to understand the application
of the literature in a practical framework.

The research approach or steps are presented in the following way. Developing from the theory
of radar systems in Section 3.2, a link budget analysis is performed in Section 4.1. It defines the
parameters and configurations of the space-based radar system and explains its measurement
collection algorithm. This is followed by Section 4.2, which describes the setup, tools, and proce-
dure followed to develop a numerical model which performs orbit propagation, data collection,
and orbit estimation of a debris object through the space-based radar satellite. The chapter ends
with Section 4.3, which presents the plan for analysing and interpreting results from the orbit de-
termination method and defines metrics and cases that will be eventually studied to comment
on INDIGO’s feasibility.

4.1. INDIGO system design

The fundamentals of a radar system in Section 3.2 provided an overview to familiarise the reader
with its working principle, link budget parameters, measurement types and different configura-
tions. Selecting these characteristics is crucial to demonstrate that it is feasible to utilise such
a radar with similar or better configurations in the long run. Moreover, the parameters must be
defined prior to developing the simulation software, which will propagate the orbits of the debris
object and observation satellite, to collect synthetic instantaneous measurements.

This section will revisit the theoretical aspects and address the design and performance con-
straints in Section 4.1.1, retrospecting the expected outcome of the conceptual system (previously
described in Section 3.2.1). This will establish the design and working of a conceptual space-
based radar system named INDIGO, which is a key element in the feasibility research. The strat-
egy for collecting measurements and the method used to model the data collection function of
INDIGO will be discussed in Section 4.1.2, which will be followed by Section 4.1.3 which will sum-
marise the configuration and parameters for the selected radar system.



4.1. INDIGO system design 35

4.1.1. Parameters and Link Budget Analysis

Among the different metrics of a radar, the probability of detection of a target is the most cru-
cial. The link budget equation described earlier in Equation 3.13 defines the SNR of a radar to be
a crucial parameter to evaluate the feasibility. For radar to detect small-sized objects at a large
distance, it must be sensitive to detections with a certain signal return value. This value is the sig-
nal detection threshold below which any signal obtained by the radar is automatically rejected,
assuming it to be unwanted background noise or clutter. To obtain this value, it is important
to set some statistical parameters. One such parameter is characterised by the probability with
which the radar is expected to detect targets (probability of detection 𝑃𝑑). The other describes
the probability of the radar claiming to detect an object when in reality it is just amplified clut-
ter (probability of false alarms 𝑃𝑓𝑎). Assuming the target signal to be a Case II Swerling model,
which fluctuates from pulse to pulse, the detection SNR threshold or SNRref can be determined
from Equation 4.1 [34].

𝑆𝑁𝑅𝑟𝑒𝑓 = log (𝑛𝑓𝑎)
𝑛2/3

𝑖 𝑛𝑐 log ( 1
𝑃𝑑

)𝛽 (4.1)

where 𝑛𝑐 represents the number of coherent pulses, 𝑛𝑖 refers to the number of incoherent pulses,
𝛽 is a radar metric parameter and the false alarm number 𝑛𝑓𝑎 are defined by Equation 4.2.

𝑛𝑓𝑎 = ln 0.5
ln (1 − 𝑃𝑓𝑎)

𝛽 = 1
6 + 𝑒−𝑛𝑖/3

(4.2)

For 10 coherent and 1 non-coherent pulses, it is assumed that the radar shall detect targets with
a probability of 0.9 and is allowed to have a false alarm probability of 10−7. These numbers are
close to other radar integrity metrics in the work of Mahafza [37], which are substituted in Equa-
tions 4.1 and 4.2 to calculate a threshold SNRref of 10.182 dB. This value is rounded off as 10 dB for
the rest of the study.

A reasonable approximation is made by assuming the peak power of the space-based radar to be
not more than 1 kW or 1000 W. It is assumed that the radar’s range resolution is 150 m. It means
the system can distinguish between two objects only if they are at least 150 m apart. Following
the radar range resolution formula Δ𝑅 = 𝑐/2𝐵, the noise bandwidth of the receiver can be esti-
mated. Using a 10 m Δ𝑅 value, the noise equivalent bandwidth for the system 𝐵 is estimated to
be 15 MHz.

As discussed in Section 3.2.2, to detect and track objects as small as 1 to 10 cm, the frequency of
the radar must be in the range of 3 to 30 GHz. Selecting a higher frequency opens up the possi-
bility of detecting even smaller objects but is power-expensive. Hence, owing to the power con-
straint set to 1 kW, a reasonable assumption of the radar carrier frequency 𝑓𝑐 is made to be 18 GHz.

Similarly, the radar’s velocity resolution requirement can be approximately 0.4 m/s. This is a sim-
ilar requirement set in the work of Mahafza [37], a measure of distinction between two objects if
they have the same range and angular resolutions. The target wavelength 𝜆 is set to 10 cm, and
following the expression for velocity accuracy, the duration of the pulse 𝜏 emitted by the radar
can be computed by Δ𝑉 = 𝜆/(2𝜏). The pulse duration is computed as 20 × 10−3 s using the speci-
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fied velocity accuracy value.

Since the system noise temperature 𝑇𝑠 of space-based radars is unknown, it is assumed to be
inherently equal to the ground-based sensor value of 290 K. The overall system losses 𝐿 highly
depend on free space losses due to transmission, which diminish with the square of the signal
propagation distance. The value of the total system losses has been assumed to be 2 dB . A noise
figure 𝑁𝑓 value is assumed to be equal to 3 dB. Both these parameters are assumed equal to the
parameters studied in the work of Maori et.al [4].

A pulsed Doppler radar will be used for the study, assuming that a matched filter will maximise
the SNR from a signal return [38]. Although the exact matched filter modeling is out of the scope
of this current study, it is estimated that the radar can have a pulse compression (PC) typically
equal to the product of noise bandwidth 𝐵 and pulse duration 𝜏 . A maximum PC factor of 20,000
can be applied to the assumed values. However, assuming the worst-case scenario of the radar
having to emit every 1 ms instead of 20 ms, the PC ratio of 1000 has been chosen. This safety
factor keeps the worst-case SNR above the reference threshold value.

The shape and area of the antenna are still unknown but are significant for estimating the possi-
ble two-way antenna gain. Since a pulsed radar is used, the transmitting and receiving antennae
are the same, which assumes identical gains 𝐺 for both. Studying the works of Maori et.al [4],
Livingstone [46], and Hacker [34], two antenna configurations (A and B) have been chosen for the
radar.

Configuration A is a 2D planar rectangular antenna radar of size 50 cm in length and 40 cm in
width, capable of electronic steering with a high scan rate. At the same time, configuration B is
a parabolic dish antenna of diameter 40 cm (same as the width of the rectangular antenna). The
advantage of the parabolic dish is that it is simple for production and integration but has to be
mechanically controlled. The parameters discussed earlier are assumed for both radar antenna
configurations except the gain, which is used in a Link Budget equation to calculate the SNR for
a reference range. Both configuration gains are calculated using Equation 3.16, where the area
computation differs due to different geometries. The link budget for the SNR is calculated using
Equation 4.3 [38], with a detailed analysis given in Table 4.1.

𝑆𝑁𝑅[𝑑𝐵] = 𝑃𝑡[𝑑𝐵] + 2𝐺[𝑑𝐵] + 𝑃𝐶[𝑑𝐵] − 4𝑅[𝑑𝐵] − 𝑘𝑇𝑠𝐵[𝑑𝑏𝑊] − 𝑁𝑓 [𝑑𝐵] − 32.97
+ 2𝜆[𝑑𝐵] + 𝜎[𝑑𝐵𝑠𝑚] − 𝐿[𝑑𝐵] + 𝑛𝑒𝑙[𝑑𝐵] (4.3)

A reference range value 𝑅 of 1000 km for both configurations is assumed. Here 𝑛𝑒𝑙 is the number of
individual array elements integrated into both configurations. An assumed value of 10 elements
is chosen for the link budget analysis, which can be changed depending on the SNR achieved [38].

Analysing the SNR received for both configurations in Table 4.1, it is seen that configuration
A with the planar array performs better in terms of detection than configuration B with the
parabolic antenna. The parameters of radar configuration A are used in a MATLAB radar tool-
box following the documentation in [47]. The plot of SNR achieved w.r.t. the range is shown in
Figure 4.1.

The trend in Figure 4.1 shows the SNR (blue curve) to vary with 𝑅4 based on the values given in
Table 4.2 for ranges starting from 100 to 2000 km. It can be seen that the SNR starts at a very high
value and gradually decreases as the range increases. The blue horizontal dashed line refers to
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Table 4.1: Link budget analysis in terms of achieved SNR for Configuration A (planar rectangular antenna) and Config-
uration B (a parabolic dish antenna).

Parameter Configuration A Configuration B

Peak transmitter power (𝑃𝑇 ) [dBW] 30 30
Antenna gain (𝐺)2 [dB] 76.032 71.996
(4𝜋)3 [dB] 32.97 32.97
Range 𝑅4 [dBm4] 138.155 138.155
Radar wavelength (𝜆)2 [dBsm] -81.886 -81.886
Receiver noise figure 𝑁𝑓 [dB] 3 3
Pulse compression ratio 𝑃𝐶 [dB] 30 30
Receiver antenna area 𝐴𝑒 [dB] 3 3
Target RCS 𝜎 [dBsm] -21.049 -21.049
Losses 𝐿 [dB] 2 2
Thermal noise power 𝑘𝑇𝑠𝐵 [dBW] -132.216 -132.216
Number of array elements 𝑛𝑒𝑙 [dB] 23.025 23.025

Achieved SNR [dB] 12.211 8.177

Figure 4.1: Link budget analysis for the same set of Configuration A parameters in the MATLAB Radar Toolbox.

the reference threshold SNRref value of 10 dB, below which the radar is insensitive due to the
growing large distance, rejecting any signal as unwanted noise. The maximum range limit for
the set of radar parameters is 1400 km, which shows an exact 10 dB value for the given set of pa-
rameters. The red-shaded box enclosed by these lines is the region at short distances between 0
and 1400 km, where no surveillance is possible because the radar incoming signals are below the
minimum detectable threshold. Beyond 1400 km, even for the given power of 1 kW, the signals are
too weak to reach the threshold level, and the radar does not listen to any more incoming echoes.
The green section above the blue curve is the region where surveillance is possible due to SNR
values higher than SNRref, where the radar shows good detection and surveillance behaviour.
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As discussed in Chapter 3, Phased-array radars offer the advantage of agile electronic steering,
wide-area surveillance, and the capacity to switch efficiently between different modes of search-
ing and tracking objects. Moreover, the gain is increased because of multiple elements, which
can electronically point their beam in any direction using the phase difference of the reflected
signals at the faces of the array element. Due to these phase differences, an interference pattern
is formed, creating a beam direction. This effect can be visualised in the schematic shown in
Figure 4.2 [48].

Figure 4.2: The effect of interference between received signals on a linear phased array system with 8 elements sepa-
rated by a distance of 𝑑 = 𝜆/2. The beam is steered in a particular direction depending on the phase difference of the
received signals. The beam pattern originates from the sum of the signals from individual antenna elements each
adapted with a designated phase and gain controller [48].

On a deeper level, the interference creates a lobe that points toward the target and sweeps the
surveillance area. The higher the peak of the lobe, the higher the radar signal gain. However,
apart from the main lobe, due to the spacing of the antenna elements, there is the creation of
side lobes which also pick up signals from objects in other directions, therefore producing ambi-
guity in the direction of arrival estimation.

The gain of a phased array radar is the sum of the individual gains of its array elements. More-
over, this gain results in the directivity of the array, which is affected by the positioning of the
antenna elements. This is known as the array factor of a phased-array radar. By appropriately
defining the array factor, the gain value can be amplified while also narrowing the beamwidth.
This creates more sidelobes in the process, but the effect is diminished. The result of adding more
antenna elements to the phased array radar is visualised in Figure 4.3 using MATLAB’s phased
array toolbox, with documentation found in [49].
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Figure 4.3: The decreasing beamwidth and increasing main lobe gain by adding more array elements to the phased
array is visualised with MATLAB’s phased array toolbox. For 𝑛𝑒𝑙 = 20 elements, sidelobes are created, but each one
has a directivity and gain. This is used to amplify the overall gain and steer the beam toward the target.

Three cases for the different number of elements: 𝑛𝑒𝑙 = 5 (yellow), 𝑛𝑒𝑙 = 10 (red), and 𝑛𝑒𝑙 = 20
(blue) are analysed Figure 4.3, which shows the beam to get ’pointier’ with the increase in the
number of elements. As a result, the main lobe gain increases, and the beamwidth decreases,
allowing for precise tracking functionality of the radar. Although the side lobes for 20 elements
are higher than for 5 elements, they each have gains, which cumulatively resolve the directional
ambiguity by electronically steering towards a target. With only five antenna elements, this was
difficult, resulting in one main lobe and round continuous edges instead of side lobes.

Earlier in Chapter 3, it was stated that the effect of changing carrier frequency or wavelength
would be analysed in this chapter, which would show the different modes of working of the radar
in a scan and a track mode for the chosen configuration. This has been illustrated by the radar
beamwidth polar plots in Figure 4.4 and Figure 4.5. The same MATLAB Radar toolbox used earlier
generates these plots.

The first case shown by Figure 4.4 is for a lower frequency value of 9 GHz (i.e. half that of the
so far assumed maximum operating frequency of 18 GHz). The 3-dB HPBW has been marked by
the points 𝐶1 and 𝐶2. The main lobe shows an azimuth beamwidth of 22.68 ∘ from the beam axis
on either side. Four side lobes are seen along with the main lobe, which has reduced gain. This
configuration is effective for the searching mode, which has a larger FOV for object detection.
When the frequency is doubled to 18 GHz, the azimuth beamwidth decreases to 11.3 ∘, increasing
the number of side lobes to 8. The antenna gain pattern has increased directivity i.e. it can focus
the energy on the object it wants to follow or track. INDIGO simultaneously performs search and
track, switching conveniently between high and low-frequency modes. A similar effect of chang-
ing frequencies is expected for the elevation beamwidth too. The combined effect from azimuth
and elevation beamwidths can be visualised in three dimensions but is not demonstrated as a



4.1. INDIGO system design 40

Figure 4.4: Illustration of azimuth beamwidth for a
phased array with frequency 9 GHz, used in search mode.
Increasing carrier frequency switches it to a track mode.

Figure 4.5: Illustration of azimuth beamwidth for a phased
array with frequency 18 GHz, used in track mode. Decreas-
ing carrier frequency switches it to a search mode.

part of this study.

Now, with the parameters defined, the measurement acquisition technique will be elaborated in
the following subsection.

4.1.2. Measurement acquisition strategy

The objective of collecting measurements is to get as many detections as possible with the best
possible quality. The simulation duration, the SNR at each pulse, is calculated at every integration
time step 𝑡𝑖𝑛𝑡 and is coherently integrated by multiplying the individual SNR by the number of
coherent pulses generated during the integration time 𝑛𝑐. For the sake of simplicity, coherent
integration has been assumed instead of a non-coherent integration, which can be referred to in
[38] for more explanation. The equation for coherent integration used in this study to integrate
𝑛𝑐 number of pulses is presented in Equation 4.4.

𝑆𝑁𝑅𝑖𝑛𝑡 = 𝑛𝑐 ⋅ 𝑆𝑁𝑅 (4.4)

In this study, it is assumed that for a fixed integration time of 25 seconds, the radar generates 10
pulses each of length 20 ms, which results in a pulse generation time of 0.2 s. To cover a maxi-
mum distance of 1400 km, the wave takes 9.33 ms to travel to and back from the object. Due to
their orbital velocities, the debris object moves around 28.7 m forward in orbit, while the satellite
(1000 km lower) moves faster to about 29.04 m simultaneously. Due to their small relative posi-
tion error, light-time effects have been neglected in the measurement module, which assumes
the satellite is at the same position at reception as during the transmission.

Given the states of the debris object and the user satellite, the instantaneous true range can be
computed at every time step of the simulation, propagated with a step size. The range computa-
tion is presented in Equation 4.5.

𝜌 = √(𝑥𝐷 − 𝑥𝑆)2 + (𝑦𝐷 − 𝑦𝑆)2 + (𝑧𝐷 − 𝑧𝑆)2 (4.5)

where the position coordinates of the observing satellite are given by (𝑥𝑆, 𝑦𝑆, 𝑧𝑆) and that of the
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debris by (𝑥𝐷, 𝑦𝐷, 𝑧𝐷). This is the range that is inputted in Equation 4.3 to compute the SNR in dB.
If the value of SNR is above 10 dB, it is assumed that the radar successfully detects the object and
can collect corresponding measurements. The different types of measurements collected then
are the range (given by Equation 4.5), the range rate or the measure of the radial velocity of the
debris along the line-of-sight vector, and angular measurements, which give the directional in-
formation in the x-y plane (azimuth) and the x-z or y-z plane (elevation). The range rate, azimuth,
and elevation equations are presented in Equations 4.6, 4.7 and 4.8 respectively.

̇𝜌 = 1
𝜌 [( ̇𝑥𝐷 − ̇𝑥𝑆)(𝑥𝐷 − 𝑥𝑆) + ( ̇𝑦𝐷 − ̇𝑦𝑆)(𝑦𝐷 − 𝑦𝑆) + ( ̇𝑧𝐷 − ̇𝑧𝑆)(𝑧𝐷 − 𝑧𝑆)] (4.6)

𝜃𝑎𝑧 = 𝑎𝑡𝑎𝑛2(𝑦𝐷 − 𝑦𝑆, 𝑥𝐷 − 𝑥𝑆) (4.7)

𝜃𝑒𝑙 = arcsin (𝑧𝐷 − 𝑧𝑆
𝜌 ) (4.8)

where the Cartesian velocity coordinates of the observing satellite are given by ( ̇𝑥𝑆 , ̇𝑦𝑆 , ̇𝑧𝑆) and
that of the debris by ( ̇𝑥𝐷, ̇𝑦𝐷, ̇𝑧𝐷).

In reality, the measurement data collected by an instrument has a large amount of random fluctu-
ations, uncertainties, and error sources. To simulate the conditions of real measurements, Gaus-
sian white noise (GWN) is added to a data set. It is one of the most commonly added types of
noise in most stochastic engineering processes, which helps to make the data more realistic.
The errors collected during measurements and inaccuracies during the data collection are con-
veniently represented by adding this. A Gaussian curve represents a normal distribution with a
zero mean (𝜇𝑛 = 0) and a standard deviation 𝜎𝑑𝑒𝑣, represented by 𝑁(𝜇𝑛, 𝜎𝑑𝑒𝑣). GWN was chosen
for several reasons [50].

• According to the Central Limit Theorem, the sum of a large number of independent random
variables tends to follow a Gaussian or normal distribution, regardless of their underlying
distribution [50]. Since collected measurements would be sampled, which is expected to
follow a Gaussian distribution by virtue of this theorem, the noise modeling choice was
also made for GWN.

• It is unbiased or symmetric about its mean, which makes it suitable for situations where
noise is assumed unbiased. Moreover, in case of systematic errors or biases, adding random
GWN can sometimes help in providing an unbiased data representation.

• It is mathematically simple to use and understand and has a wide application in real-life
signal processing techniques.

However, there can be cases where systematic errors are present, which adds ’bias’ to the data
set. To account for this phenomenon, a constant value of bias with the same standard deviation
as the GWN will be added to the data set to facilitate the orbit fitting process under more realistic
conditions.

The intermediate results of measurement acquisition and noise addition will be shown in the
coming section of the chapter, which will be integrated with the working of the orbit propagation
module.
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4.1.3. Selected configuration

After carefully studying the radar parameters and the expected conditions, the values for the
INDIGO parameters are now fixed for the remainder of the study. It is considered that for these
parameters, INDIGO can collect measurements, which will be used to estimate and predict the
orbit of debris. The orbit quality will be assessed for several test cases using sensitivity analysis
to demonstrate its feasibility. The final parameter values are stated in Table 4.2.

Table 4.2: Parameters of INDIGO pulsed Doppler radar parameters used in the thesis.

Parameter Symbol Value

Peak transmitter power 𝑃𝑡 1000 W
Antenna area 𝐴𝑒 0.2 m2

Transmitting antenna gain 𝐺𝑡 38.016 dB
Receiving antenna gain 𝐺𝑟 38.016 dB
Antenna efficiency 𝜂 70 %
Pulse duration 𝜏 20 × 10−3 s
Noise bandwidth 𝐵 15 MHz
Wavelength 𝜆 16.67 mm
Losses 𝐿 -2 dB
Noise figure 𝑁𝑓 3 dB
System noise temperature 𝑇𝑠 290 K
Pulse compression ratio 𝑃𝐶 1000
Number of elements in array 𝑛𝑒𝑙 20
Number of coherently integrated pulses 𝑛𝑖𝑛𝑡 10
Integration time 𝑡𝑖𝑛𝑡 25 s

4.2. Simulation setup

The software developed and the framework adopted is the main focus of this section. It has
three sub-parts, which explain the methodology corresponding to the three pillars in the theo-
retical background in Chapter 3. The methodology followed for the orbit propagation module
is described in Section 4.2.1 along with intermediate results obtained. This is succeeded by Sec-
tion 4.2.2 showing the collection of synthetic measurements and making them realistic by adding
noise and bias. The section ends with an+ explanation of the precise orbit determination process
in Section 4.2.3, which explains the application of Weighted Least Squares to this research and
provides a first look at the POD results.

4.2.1. Propagating orbital model

The first step in the study is to generate a reference ephemeris for the objects of study. For the
proof-of-concept, only one debris object of diameter 10 cm is assumed to be in the GEO belt, which
is modeled using the theoretical knowledge gathered in Section 3.1. An observation satellite with
the radar instrument is simulated in a sub-GEO orbit, which collects artificial measurements
based on the true generated ephemeris, of the simulation of both objects.
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4.2.1.1 Problem initialisation and assumptions
Before starting the simulation, the first assumption is that both the debris and the satellite are as-
sumed to be point masses and are simulated in the J2000 reference frame. No aspect of rotational
dynamics and hence satellite attitude control is considered in this thesis to simplify the problem.
Secondly, no other perturbations are considered apart from those mentioned in Section 3.1.3. The
updated equation of motion accounts for the perturbations in the GEO regime. It represents the
orbital dynamics of the debris object and the observation satellite used in the simulation model.
The equation is given in Equation 4.9.

̈#«𝑟 = − 𝜇
𝑟3

#«𝑟 + #«𝑓 𝐽2
+ #«𝑓 𝐽2,2

+ #«𝑓 𝑀𝑜𝑜𝑛 + #«𝑓 𝑆𝑢𝑛 + #«𝑓 𝑆𝑅𝑃 (4.9)

Thirdly, the body properties in terms of reflection of the solar radiation are assumed equal for
both objects, although they have their area-to-mas ratios. The debris object is modeled as a 10
cm spherical aluminium object with a density of 2.7 g/cm3, with a mass of 1.413 kg and an area
of 7.85 × 10−3 m2. The satellite is assumed to have a mass of 500 kg, with a reference area of solar
panels equal to 5 m2. Lastly, an integration step size equal to 25 seconds has been chosen for the
RK4 integrator to start with for consistency with the radar integration time step. More studies
on choosing an optimal time step will be explained further in the report in Chapter 7.

The initial starting point of the simulation for both objects is presented in the form of Kepler or-
bital elements. They are then transformed to Cartesian coordinates using the transformations
listed in Appendix A. The initial starting parameters are defined in Table 4.3, which are used to
simulate the orbits of the debris object and the observation satellite in the GEO environment un-
der the effect of perturbations. The simulation is initially executed for a small period of 5 days in
the J2000 frame, which assumes the initial epoch to be on 1st January 2000, at 12:00:00 (12 hours
since midnight).

Table 4.3: The initial conditions inputted to the Rk4 integrator to simulate the orbits of the debris object and satellite
in the GEO regime under the effect of perturbations for 5 days since 1st January 2000, 12:00:00 UTC.

Initial conditions Parameter Satellite Debris

Semi-major axis 𝑎 [km] 41164 42164
Eccentricity 𝑒 [-] 0.0 0.0
Inclination 𝑖 [∘] 0.0 0.0
Argument of perigee 𝜔 [∘] 0.0 0.0
Right Ascension of ascending node (RAAN) Ω [∘] 0.0 0.0
True anomaly 𝜃 [∘] 0.0 9.5
SRP coefficient 𝐶𝑟 [-] 2.0 2.0
Mass m [kg] 500 1.413
Reference surface area A [m2] 5 7.85 × 10−3

Initial epoch 𝑡𝑠𝑡𝑎𝑟𝑡 [JD] 2451545.0 2451545.0
Ending epoch 𝑡𝑒𝑛𝑑 [JD] 2451550.0 2451550.0
Integration step-size 𝑑𝑡 [s] 25 25

The measurement acquisition is also performed in the initial part of the model, which checks
if the received SNR (computed by using Equation 4.3, depending on the range at that instant) is
higher than the threshold value of 10 dB. In case of a positive outcome, it is stored in a list be-
fore propagating to the next epoch (which anyways, happens for a no-measurement case). The
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flowchart that explains the orbit propagation methodology and measurement acquisition is pre-
sented in Figure 4.6.

Figure 4.6: The methodology of orbit propagation and measurement acquisition is explained in the form of a flowchart,
which is implemented in the developed Python software.

It should be noted that all orbital simulations and estimations for the developed model are done
in Python using standard libraries like NumPy, and SciPy for computations. For visualisation of
the obtained results, the libraries Matplotlib and Seaborn have been used.

4.2.1.2 Integrator selection
The integrator chosen for the simulation is the Runge-Kutta 4 (RK4) fixed-step integrator. It is
one of the most commonly used integrators, which solves an initialised value problem. Given a
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step size ℎ = 𝑡𝑖+1 − 𝑡𝑖, where 𝑡𝑖 represents epoch i and 𝑡𝑖+1 represents the subsequent epoch. The
integration scheme for RK4 is described by Equation 4.10.

#«𝑦 𝑖+1 = #«𝑦 𝑖 + 1
6 [ #«𝐾1 + 2 #«𝐾2 + 2 #«𝐾3 + #«𝐾4] ℎ (4.10)

where #«𝑦 𝑖 is the evaluation of a function f at epoch 𝑡𝑖, and #«𝑦 𝑖+1 is the evaluation after one in-
tegration time step at 𝑡𝑖+1. The individual vectors #«𝐾1, #«𝐾2, #«𝐾3 and #«𝐾4 are evaluated as seen in
Equation 4.11.

#«𝐾1 = f(𝑡𝑖, #«𝑦 𝑖)
#«𝐾2 = f (𝑡𝑖 + ℎ

2 , #«𝑦 𝑖 + ℎ
2

#«𝐾1)
#«𝐾3 = f (𝑡𝑖 + ℎ

2 , #«𝑦 𝑖 + ℎ
2

#«𝐾2)
#«𝐾4 = f (𝑡𝑖 + ℎ, #«𝑦 𝑖 + ℎ #«𝐾3)

(4.11)

As discussed in the literature study, this method is chosen due to the combination of simplicity
and accuracy. It is a stable method compared to the Euler method which is not very suited for
orbit integration. The Runge-Kutta 4 method has a local truncation error of order O(h5), making
it a fourth-order method. It should be noted that although other integration methods, such as
a variable step-size RK4 integrator is possible for implementation, the accuracy in orbit compu-
tation using a fixed-step RK4 integrator suffices. Easy to implement in standard programming
languages like Python or MATLAB, it has the advantage of producing accurate results. In sum-
mary, the RK4 fixed-step integrator exhibits good characteristics in terms of accuracy, stability,
speed, and storage requirements [43]. 3

4.2.1.3 Reference ephemeris generation
The initial conditions stated in Table 4.3 are used to begin the simulation as per the algorithm
shown in Figure 4.6. The ephemerides of the objects are generated every 25 seconds for a total
duration of 5 sidereal days, for two orbital models. The first case or model is without the influence
of any orbital perturbations, corresponding with Equation 3.3, while the second case or model in-
corporates all the perturbations (which will also act on reality) while performing the integration,
as per Equation 4.9. The three-dimensional trajectories of both cases are visualised, where Fig-
ure 4.7 shows the Kepler orbit case (no perturbations) and Figure 4.8 shows the trajectory when
all perturbations are acting on the orbit.

Figure 4.7 shows a perfect GEO for both objects. Since the debris and satellite are 1000 km apart,
the small distance difference is not easily plotted on the 3D plot scale. The satellite trajectory
is seen by the green curve, while the black curve depicts the orbit of the debris object. Without
perturbations, the Kepler orbits remain constant throughout the simulation as expected.

The more interesting case is for Figure 4.8, where the perturbation effects are visually also spot-
ted by the deviating orbits of the satellite and debris object. The initial conditions are marked
as dots to show that the two models have the same conditions. For deeper interpretation of the
change over time, the Cartesian state vectors are transformed to Kepler elements and plotted for
the satellite in Figure 4.9 and for the debris object in Figure 4.10.
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Figure 4.7: Visualisation of the orbits of the debris object
and the observation satellite in a Kepler state (i.e. with
no orbital perturbations except Earth’s point-mass grav-
ity). The simulation is done for 5 days since JD epoch
2451545.0

Figure 4.8: Visualisation of the orbits of the debris object
and the observation satellite, with all orbital perturbations
active. The simulation is done for 5 days since JD epoch
2451545.0

Figure 4.9: Temporal behaviour of the observation satellite’s Kepler elements for 5 days.

Both plots show the individual Kepler elements, representing the orbit’s shape, size, and orienta-
tion. The first element, or the semi-major axis, shows the orbit’s size going through periodic vari-
ations but maintains a constant behaviour overall. This is as expected since the semi-major axis
is a measure of the total orbital energy given by −𝜇/2𝑎, and is expected to be constant throughout
time when the orbit is under the influence of Earth’s point-mass gravity. Since other perturba-
tions are acting on the satellite and debris, it can be seen that the amplitude of oscillations in 𝑎
increases over time. The difference in the magnitude of the semi-major axis is also spotted in
both plots. The initial circular orbit shown by Figure 4.7, is now eccentric due to the perturbations
also seen in the eccentricity plot, which shows the eccentricity of both objects to be slowly rising,
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Figure 4.10: Temporal behaviour of the debris object’s Kepler elements for 5 days.

still maintaining a periodic trend. The inclination is also seen to increase in the 3-dimensional
trajectories, which is reflected by the secular trend of the inclination, causing an increase in
the z-axis in the order of 10 km. The argument of perigee also shows gradual oscillations with
5 peaks corresponding to the 5 simulation days. The RAAN (Ω) shows a sharp rise on the first
day of propagation, after which it shows a gradual secular trend. The true anomaly also shows
periodic variations for 5 days, which shows the angular position of the object in orbit during the
propagation time. It can be seen that the behaviour of the true anomaly is related to the behaviour
of argument of perigee.

The credibility of these results will be discussed in Chapter 5, where the individual effects of the
perturbations will be compared with the output of another verified numerical model.

4.2.2. Generation of observations

To this point in the methodology, the reference or true orbits of both objects have been simulated
with an appropriate force model, to replicate the effects of reality. Referring back to Figure 4.6, the
measurement acquisition strategy (explained in Section 4.1.2), which depends on instantaneous
SNR is now executed. In other words, the execution of the blue shaded box in the algorithm is
now demonstrated as follows, which collects the artificial measurements.

4.2.2.1 Ideal pseudo-measurements
The instantaneous SNR is computed for every time step of the propagation, to check if the radar
gets a signal return from the debris object in its vicinity. An illustration of the behaviour of SNR
received by INDIGO is presented in Figure 4.11.

It can be seen that the SNR reaches a value above 10, for only a short duration of time, which
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Figure 4.11: The instantaneous SNR from the reflection of radar waves off the debris object, collected by the observation
satellite over the period of 5 sidereal days. It can be seen that compared to the total simulation time, only a small part
of it is above the 10 dB threshold limit.

is not properly visible in this plot. The region where measurements are collected can be better
visualised by looking at Figure 4.12.

Figure 4.12: Visualising the region of measurement collection throughout the simulation time. The small red region
marked in the range plot is highlighted to show the range measurement plot.

The measurements are collected w.r.t. the satellite, which requires a transformation of frame
from J2000 to the local LVLH or RTN frame (discussed earlier in Section 3.1.1), The exact transfor-
mation process is shown in Appendix A.

Figure 4.12 shows the range measurements collected by INDIGO for 5 days using Equation 4.5.
The measurement period is almost 5 hours, for which the object remains in view of the obser-
vation satellite. The rest of the blue curve corresponds to the range measurements that are not
recorded, since they are outside the threshold SNR limit. The peak in the SNR curve in Figure 4.11
is now explained by the red curve that highlights the range measurements.
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Not only is the range collected during this time, but the range-rate, azimuth, and elevation mea-
surements are collected too. They are done so for only the five hours of measurements, which
are shown by Figures 4.13, 4.14 and 4.15 representing the true range-rate, azimuth and elevation
measurements, respectively.

Figure 4.13: True instantaneous range-rate measurements collected by INDIGO during the 5 hours of contact with
the debris object, shown by the blue curve.

Figure 4.14: True instantaneous azimuth measure-
ments collected by INDIGO during the 5 hours of con-
tact with the debris object, shown by the blue curve.

Figure 4.15: True instantaneous elevation measure-
ments collected by INDIGO during the 5 hours of con-
tact with the debris object, shown by the blue curve.

However, these measurements are the ‘ideal’ measurements, which is not what is collected in
reality. As mentioned earlier, a Gaussian white noise with a certain standard deviation will be
added, along with a constant bias representing systematic errors. Addition of their effects is
described in Section 4.2.2.2.

4.2.2.2 Simulating reality: addition of radar noise and bias
The algorithm of the addition of noise depends on the specific measurement which will be used to
determine the orbit of the debris object. This means that different magnitudes and types of noise
and bias will be added to the measurements, depending on the combinations of measurement
types selected for post-processing. The algorithm for adding noise is depicted by Figure 4.16,
which individually traverses all possibilities of measurement types that will be used for orbit de-
termination and adds Gaussian noise and bias to it.

The amount of noise added to the measurements comes from the Cramer-Rao lower bound rule,
discussed earlier in Section 3.2.5. Post the selection of radar parameters, the value of the stan-
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Figure 4.16: The methodology of the addition of noise and biases to the different measurements which is implemented
in the developed Python software.
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dard deviation of the added GWN per measurement can be computed for each of the measure-
ment types using Equations 3.19, 3.20 and 3.21 for range, range-rate and angular measurements
respectively. The value of the bias has been assumed to be of the same order of magnitude, of
the noise standard deviation, respectively for all measurements. The noise and bias standard
deviation values used in the study are presented in Table 4.4.

Table 4.4: Computed standard deviation values for radar measurements using the Cramer-Rao lower bound rule and
value of estimated biases for individual measurements.

Noise Type Range [m] Range rate [cm/s] Azimuth [∘] Elevation [∘]

Gaussian noise 𝜎𝑠𝑡𝑑 18.49 5.136 0.24 0.24
Systematic bias 𝜎𝑏𝑖𝑎𝑠 20 50 0.1 0.1

This is implemented in the developed model, but the effect of the addition of noise is not eas-
ily visible to check its correctness. Hence, for ease of verification, higher values of standard
deviation for noise and bias (values present individually in the captions) are added to the true
measurements, just for the purpose of visualisation of its effects. In each of the cases, the true
measurements, measurements with only noise and measurements with both bias and noise are
overlapped for visualisation. They are each shown by the red, blue and green lines in Figure 4.17
for range, Figure 4.18 for range rate, Figure 4.19 for azimuth and Figure 4.20 for elevation, respec-
tively. It should be noted that the real standard deviation values added in the model are presented
in Table 4.4, which is not what these graphs show.

Figure 4.17: Visualising the three cases: no noise range measurements, addition of range noise with standard devia-
tion 100 km, and then addition of range bias of 1000 km to the range measurements.

In each plot, the red line depicting true measurements is shown to fit through the mean of the
blue points which show the addition of radar Gaussian noise. The green lines are shifted to the
top of the blue curve due to the individual positive bias values added to the noisy measurements,
which show the mean to be shifted by the amount of bias added.

These noisy measurements are used for the orbit determination process, whose methodology is
described in Section 4.2.3.
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Figure 4.18: Visualising the three cases: no noise range-rate measurements, addition of range-rate noise of standard
deviation 0.005 km/s, and then addition of range-rate bias of standard deviation 0.005 km/s to the range-rate mea-
surements.

Figure 4.19: Visualising the three cases: no noise azimuth measurements, addition of azimuth noise of standard de-
viation 10 ∘, and then addition of azimuth bias of standard deviation 10 ∘ to the azimuth measurements (green curve).

Figure 4.20: Visualising the three cases: no noise elevation measurements (red curve), addition of elevation noise of
standard deviation 0.1 ∘ (blue curve), and then addition of elevation bias of standard deviation 0.1 ∘ to the elevation
measurements (green curve).

4.2.3. Precise orbit determination (POD) process

The theory of orbit determination was explained in Section 3.3, where the basic equations that
estimate the state vector of an object are explained. The same theoretical fundamentals will be
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applied to estimate the orbit of the debris object, which will be explained in this section of the
simulation framework setup.

After the measurements are collected, they are grouped in batches. For ease of computation,
they have been collected in range, range rate, azimuth and elevation in this order and stored per
measurement epoch. The initial state of the debris object is what is to be estimated, for which
a reference trajectory is selected. The starting guess of the initial state of this trajectory is se-
lected whose parameters are provided in Table 4.6. Beginning the OD from the true initial state
with ideal measurements is expected to yield the exact solution, which does not demonstrate the
functionality of the OD process. Hence, the true values of the initial debris state are also listed
in Table 4.6 to show the offset in the chosen values. The theoretical aspect is converted into an
algorithm that is implemented in the developed software. This is presented in Figure 4.21.

Table 4.5: Actual initial state value for the debris before the WLS process #«𝑥0
𝑎𝑐𝑡.

𝑥𝑎𝑐𝑡
0 [km] 𝑦𝑎𝑐𝑡

0 [km] 𝑧𝑎𝑐𝑡
0 [km] 𝑣𝑥

𝑎𝑐𝑡
0 [km/s] 𝑣𝑦

𝑎𝑐𝑡
0 [km/s] 𝑣𝑧

𝑎𝑐𝑡
0 [km/s]

41585.746 6959.067 0.000 -0.507 3.032 0.000

Table 4.6: Chosen initial state value for the debris before the WLS process #«𝑥0
𝑎𝑝𝑟.

𝑥𝑎𝑝𝑟
0 [km] 𝑦𝑎𝑝𝑟

0 [km] 𝑧𝑎𝑝𝑟
0 [km] 𝑣𝑥

𝑎𝑝𝑟
0 [km/s] 𝑣𝑦

𝑎𝑝𝑟
0 [km/s] 𝑣𝑧

𝑎𝑝𝑟
0 [km/s]

41582.786 6957.524 -0.946 -0.546 3.011 1.019e-04

Starting with this guess, the least squares parameters are initialized. The derivatives of each of
the measurements with respect to the state vectors are estimated, forming the elements of the
matrix H𝑘, whose elements are listed in Equation 4.12. The rows correspond to the measurements
collected and the columns to the state vectors.

H𝑘 =
⎡
⎢
⎢
⎢
⎣

Δ𝑥
𝜌

Δ𝑦
𝜌

Δ𝑧
𝜌 0 0 0

Δ𝑣𝑥
𝜌 − ̇𝜌Δ𝑥

𝜌2
Δ𝑣𝑦

𝜌 − ̇𝜌Δ𝑦
𝜌2

Δ𝑣𝑧
𝜌 − ̇𝜌Δ𝑧

𝜌2
Δ𝑥
𝜌

Δ𝑦
𝜌

Δ𝑧
𝜌

−Δ𝑦
Δ𝑥2+Δ𝑦2

−Δ𝑥
Δ𝑥2+Δ𝑦2 0 0 0 0

−Δ𝑥Δ𝑧
𝜌2√Δ𝑥2+Δ𝑦2

−Δ𝑦Δ𝑧
𝜌2√Δ𝑥2+Δ𝑦2

−Δ𝑧√Δ𝑥2+Δ𝑦2

𝜌3 0 0 0

⎤
⎥
⎥
⎥
⎦

(4.12)

where Δ𝑥, Δ𝑦 and Δ𝑧 represent the difference between Cartesian position coordinates of the de-
bris (starting with the guessed #«𝑥 𝑎𝑝𝑟

0 at a general epoch number 𝑘, and the position vector compo-
nents of the satellite at the same epoch, previously generated during the orbit propagation phase.
Similarly, Δ𝑣𝑥, Δ𝑣𝑦 and Δ𝑣𝑧 hold for the velocity differences between debris and the satellite at
the specified epoch. 𝜌 represents the range, ̇𝜌 the range-rate. Everything is expressed in Carte-
sian coordinates which makes it easy to implement.

The state vector is propagated with the same acceleration settings used during orbit propagation
to obtain the reference states. The variational equations (comprising the STM only) are propa-
gated with an RK4 integrator with the same step size of 25 seconds using Equation 3.36. A rea-
sonable assumption of not including the perturbations while propagating the variational equa-
tions has been made in the process, compared to the propagation of the state vector which has
all perturbations included. This has been done for mathematical simplicity, which only affects
the convergence time (expected to take one or two iterations more), without affecting the overall
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Figure 4.21: The methodology of initial state estimation using the Least squares (LSQ) method, which is also imple-
mented in Python. It should be noted that in the software, the individual values of N𝑘 and b𝑘 computed in the process
are appended to as big matrices N𝑠𝑢𝑚 and b𝑠𝑢𝑚.

OD behaviour [45].

N𝑠𝑢𝑚 and b𝑠𝑢𝑚 are computed at every epoch, for which there is a measurement residual com-
puted. For epochs with no observations, no measurements are computed with the chosen debris
guess and the epoch is simply propagated to the next. N𝑠𝑢𝑚 and b𝑠𝑢𝑚 remain unaltered. The
matrices for an epoch number 𝑘 are defined in Equation 4.13.
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N𝑘 = H𝑇
𝑘 𝑊H𝑘

b𝑘 = H𝑇
𝑘 𝑊Δ #«𝑧 𝑘

(4.13)

where W is the weighting matrix with the definition in the form of Equation 3.30. For the four
types of measurements, the weighting matrix is defined as Equation 4.14. It assumes that the
measurements are uncorrelated.

W =
⎡
⎢
⎢
⎢
⎣

1
𝜎2𝜌

0 0 0
0 1

𝜎2
̇𝜌

0 0
0 0 1

𝜎2
𝜃𝑎𝑧

0
0 0 0 1

𝜎2
𝜃𝑒𝑙

⎤
⎥
⎥
⎥
⎦

(4.14)

During the propagation, N𝑠𝑢𝑚 and b𝑠𝑢𝑚 are calculated by appending the individual matrices one
after the other. For instance, if there are three measurement epochs, an initial N𝑠𝑢𝑚 matrix with
dimensions 6 × 6 becomes 18 × 6, and an initial b𝑠𝑢𝑚 vector of dimensions 6 × 1 becomes 18 × 1.
The solution of the least squares solution is a 6 × 1 vector containing the state vectors.

The WLS is an iterative process that updates the initial state of the debris, with which the observa-
tions are computed. Till the residuals are minimised, the process goes on. However, a stopping
condition needs to be imposed for the iteration to stop at a point where the square root of the
mean of the errors is minimum. This is known as the RMS error or RMSE, an important metric
determining the performance of the LSQ process. For a case where the observations are weighted,
the weighted RMSE of the residuals is calculated by Equation 4.15.

𝑅𝑀𝑆𝐸 = √∑𝑛𝑐𝑜𝑚𝑏
𝑖=1

#«𝜖 𝑇 W #«𝜖
𝑛𝑚𝑒𝑎𝑠

(4.15)

where #«𝜖 can be computed from Equation 3.27, 𝑛𝑚𝑒𝑎𝑠 is the total number of observations made,
and 𝑛𝑐𝑜𝑚𝑏 is the number of epochs, for which the measurements have been collected.

In this study, a convergence criterion has been imposed, which checks the relative difference
between the RMSE of the current iteration 𝑅𝑀𝑆𝐸𝑗 and the previous iteration 𝑅𝑀𝑆𝐸𝑗−1, for j iter-
ations of updated guesses for debris state vector in the WLS process. The procedure is considered
converged if their relative difference is below a certain threshold 𝜖𝑐𝑜𝑛𝑣. The RMSE condition for
convergence (i.e. stopping the iterative process) is given in Equation 4.16. The tolerance value
has been set to 10−6 for expecting a good convergence behaviour i.e. a small final value of the
RMSE.

∣𝑅𝑀𝑆𝐸𝑗 − 𝑅𝑀𝑆𝐸𝑗−1
𝑅𝑀𝑆𝐸𝑗−1

∣ < 10−6 (4.16)

When this is followed for the measurements collected in Section 4.2.2, the orbit determination
procedure is performed using all types of measurements, for utilising the maximum information
available, to fit an orbit through the measurements used.

The estimated measurements through observed values during the propagation 5 days are shown
in Figure 4.22 for range, Figure 4.23 for range rate, Figure 4.24 for azimuth and Figure 4.25 for
elevation.
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Figure 4.22: Estimated range observations, which fit
through observed range measurements collected over 5
days since JD epoch 2451545.0

Figure 4.23: Estimated range-rate observations, which
fit through observed range-rate measurements collected
over 5 days since JD epoch 2451545.0

Figure 4.24: Estimated azimuth observations, which fit
through observed elevation measurements collected over
5 days since JD epoch 2451545.0

Figure 4.25: Estimated elevation observations, which fit
through observed elevation measurements collected over
5 days since JD epoch 2451545.0

The blue dots show the observed values corresponding to the observations with the noise and
bias added per the values given in Table 4.4. The red line shows the estimated measurements
from the linearised model, which fits through the observed values nicely, after an iterative pro-
cess of minimising the residuals between them. This red line also extends for the period even
after 5 hours of measurements, to anticipate the trend of these observations for longer periods.
This divides the propagation time into two regions: the estimation phase (corresponding to when
there are measurements available) and the prediction phase (which commences after estimation
phase, with no more new measurements).

This marks the end of the simulation setup discussion, which was focused on explanation of how
the model was developed, showing its intermediate outcomes on the way. The following section
will focus on explaining the procedure/methodology that is followed to investigate the results
obtained to evaluate their significance.
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4.3. Framework for analysis of results

The simulation framework was described in Section 4.2, which demonstrated the setup of the or-
bit propagation, measurement collection and estimation algorithm using weighted least squares.
Once the model is setup, there is a wide variety of performance and statistical analyses that can
be conducted to evaluate the performance of the orbit determination achieved by the chosen
space-based radar for different conditions.

Dedicated to explaining the methodology for addressing method of analysis of the results, this
section first explains the metrics which determine the performance of the orbit determination
process in Section 4.3.1. It then defines the different cases that will be studied in Section 4.3.2.
The section ends with Section 4.3.3, which presents a strategy to optimise the OD performance,
by combining the POD metrics and sensitivity cases in one, which will be used to evaluate the
feasibility of the study later.

4.3.1. POD performance metrics

As seen in Section 4.2.3, orbit determination is an iterative process which aims to estimate the
trajectory of an object by minimising the observation residuals. The computed observations orig-
inate from an initial debris state guess, which is improved by minimising the RMSE. To know how
well the OD process performs, the thesis will introduce performance metrics to analyse this be-
haviour for different cases. The metrics that are of interest in this study are explained as follows.

Convergence
The first metric is related to the RMSE of the convergence. It is a measure of how well the residu-
als are minimised and the LSQ algorithm converges. The lower the value of RMSE, the better. This
behaviour depends on the number of measurements available primarily, which makes it crucial
to study different cases, to see for which RMSE is better, and to identify the better-performing
cases. Hence, the final RMSE value after convergence will be analysed for the different cases
studied as part of this thesis.

Initial position and velocity estimation accuracy
Since the initial state is not known, it is important to see the deviation of the estimated initial
state from the real one. The accuracy of the initial state can be calculated from the covariance
matrix P0, which gives a measure of how much deviation in position and velocity can be expected
for the initial state calculated, based on the number, geometry and time distribution of measure-
ments [44]. This study considers the noise-only covariance matrix, the inverse of the normal
equations matrix (6 × 6 in dimensions). The expression for the covariance matrix is given by
Equation 4.17.

P0 = (H𝑇 WH)−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎2
𝑥 𝜎𝑥𝜎𝑦𝜌𝑥𝑦 𝜎𝑥𝜎𝑧𝜌𝑥𝑧 𝜎𝑥𝜎𝑣𝑥

𝜌𝑥𝑣𝑥
𝜎𝑥𝜎𝑣𝑦

𝜌𝑥𝑣𝑦
𝜎𝑥𝜎𝑣𝑧

𝜌𝑥𝑣𝑧
𝜎𝑥𝜎𝑦𝜌𝑥𝑦 𝜎2
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𝜌𝑦𝑣𝑥
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𝜎𝑣𝑧
𝜎𝑧𝜌𝑧𝑣𝑧
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⎤
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⎥
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⎥
⎦

(4.17)
The elements of the diagonal matrix give an estimate of the initial state vector accuracy, which is
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also known as the formal uncertainty. The total position and velocity uncertainties are expressed
by Equation 4.18, assuming the errors in x,y and z are not correlated.

𝜎𝑝𝑜𝑠 = √𝜎2𝑥 + 𝜎2𝑦 + 𝜎2𝑧

𝜎𝑣𝑒𝑙 = √𝜎2𝑣𝑥
+ 𝜎2𝑣𝑦

+ 𝜎2𝑣𝑧

(4.18)

The off-diagonal terms are the covariances between all possible pairs of variables. For example,
the correlation coefficient of x and y positions is given by Equation 4.19, which holds for the rest
of the variables in the covariance matrix.

𝜌𝑥𝑦 = 𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

(4.19)

Evolution of errors in position and velocity over time
The last metric is straightforward. After orbit determination i.e. fitting an orbit by starting with
a reasonable guess of the initial state, the states are propagated further from the final state vec-
tor solution for future epochs. This is where prediction commences. The computed trajectory
is then compared to the reference trajectory generated using the methodology presented earlier
in Section 4.2.1.3. This gives the behaviour of the errors in the Cartesian coordinates for position
and velocity and shows their overall trend for long periods of time when there is no measurement
available. This is also categorised as error analysis or prediction performance analysis.

These explained performance metrics will be applied to several study cases for this thesis, to
determine the quality of orbit determination using in-situ measurements, hence determining
the feasibility of the concept.

4.3.2. Parametric study cases

Determining the feasibility of a design concept does not stop at one parametric study. Design pa-
rameters sensitive to the simulation model need to be studied before evaluating a ‘working’ out-
come. Many sets of parameters and their combinations can be considered for this process, which
studies the quality of OD by evaluating the performance metrics listed earlier in Section 4.3.1. Five
analysis parameters listed below will be varied to study the effect on OD performance compared
to a nominal case.

• Case 1: Noise parameters
Each measurement comes with some noise and bias, which is determined by the Cramer-
Rao lower bound explained in Section 3.2. Cases with and without noise and bias will be
studied to test the effect of adding noise and bias to the accuracy with which the orbit is
determined.

• Case 2: Integration time of the radar or orbit integration step-size
The radar is designed assuming it collects measurements every 25 seconds. This is equal
to the nominal time step of propagation. The frequency of measurements collected is less
due to lesser detection instances in the model. Having an integration time step of 1 second
will give more measurements, which could improve the overall OD quality. However, de-
creasing the step-size is expected to increase the computation time. Thus, it is important
to study this parameter to ensure good OD quality but not at the expense of very high com-
puting time.



4.3. Framework for analysis of results 59

• Case 3: Satellite orbit geometry
The altitude (Case 3a) and inclination (Case 3b) of the satellite orbit are expected to play a
big role in the collection of measurements and the quality of the orbit determination. Hence,
the altitude and inclination of the observing satellite will be varied to sense the change in
the number of measurements and errors over time.

• Case 4: Measurement types
Typically, ground-based telescopes derive data on GEO objects using only angular measure-
ments. Using only one type of measurement will perform the OD with a certain accuracy,
which is expected to be different when other (combinations of) measurements are used.
This difference will be quantified and studied to identify the best and worst measurements
collected by the space-based radar.

• Case 5: Number of satellites
One satellite will cover a particular section of the debris GEO orbit while gathering measure-
ments. This may not be enough to predict the trajectory with a small measurement time
for longer periods. Employing multiple satellites in different geometries for gathering mea-
surements is expected to perform better in a constellation. In principle, there can be many
satellites covering the entire GEO ring but that requires extra resources for operation and
maintenance (not absolutely feasible for a real mission). Hence, keeping a realistic perspec-
tive, a maximum of three satellites in the observation network will be first-hand studied in
this thesis.

These parameters will be varied and analysed in detail in Chapter 6. It will be then possible to
obtain insights on their individual performances on the overall OD quality.

4.3.3. Approach for optimisation

As discussed earlier in Section 4.3.1 and Section 4.3.2, there can be endless cases originating from
permutations and combinations of performance metrics and analysis parameters. For a prelim-
inary feasibility study, it is important to be realistic and restrict our analysis to limited cases. A
finite short range of values for each of the parameters will be studied, to narrow the search for
an optimal configuration. Optimisation is the numerical method by which the best possible solu-
tion to a problem is obtained [51]. Although there are numerous optimisation algorithms widely
used in astrodynamics, a simple Grid Search method will suffice for this study, which will search
through a design space, with the selected parameters, and present the range of optimal solutions.
Since advanced and rigorous optimisation is not the main focus of this thesis, only a simple anal-
ysis of the problem by varying a few key parameters will be performed in Chapter 7, which will
also provide some inference on the research questions.

Having explained the methodology adopted in this thesis, the results can now be analysed to
understand the behaviour of various parameters. However, before that can be done, it must be
ensured that the software is credible enough to trust its outcome, which also aligns with the un-
derlying physics of the problem. Hence, a small section on verification and validation is provided
in Chapter 5 before encountering the results.
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5
Verification and Validation

The framework for simulation of the numerical model was presented in Chapter 4, which de-
scribed the model of the physical problem. The model is expected to generate results which will
be used to assess the system’s feasibility. However, before one can do that, it is crucial to check
the correctness of the model and interpret if the results obtained are reliable. This leads to the
verification and validation aspect of any scientific or engineering endeavor such that the accu-
racy, reliability, and credibility of models, simulations, or experiments are ensured.

This chapter covers both these aspects by first exploring the verification process and assessing
the correctness of the orbital model in Section 5.1. Thereafter, the working of the space-based
radar model is tested for a different radar parameter set defined in Maori et. al [4]. The chapter
ends with reflecting on the model’s validity using Two-Line-Element (TLE) data of a debris object
in the GEO regime to see how well the numerical model corresponds to real measurement data,
particularly the trajectory solutions.

5.1. Verification with TUDATPy

Verification implies confirming a model implementation to check if it accurately represents the
intended theoretical concepts or physical model [52]. Verification can be performed by either
comparing the results obtained from a numerical model to analytical model outcomes, or com-
paring the results with that of another verified numerical model. This thesis verifies the devel-
oped model by comparing the obtained orbital simulation results to those of verified software.
The verification software chosen for this purpose is TUDAT, which is TU Delft’s Astrodynamics
Toolbox. It contains several useful libraries for orbital propagation, written in C++ and Python.
Detailed Application Programming Interface (API) documentation on TUDAT can be found in [53].
The Python version of this software is chosen for verification, whose testing results are discussed
in this section.

All the individual perturbing forces applied to the orbital dynamics problem are analysed. The
variations in the orbits of the debris object and the user satellite are analysed in the form of Ke-
pler elements, which are generated for a set of given initial conditions. The same conditions are
used to visualise the behaviour of the objects when computed with the TUDATPy software. The
ephemerides are then compared to verify the working of the developed numerical orbit propaga-
tion model.
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Since the debris object and the user satellite are assumed to be in the GEO regime with the same
dynamics model, only the results of the debris object are presented in this report for conciseness.
The initial conditions of the debris orbit provided are defined in Table 5.1

Table 5.1: The initial propagation conditions provided for the simulation of the debris object in both the developed
numerical model and TUDATPy.

Initial epoch [JD] Final epoch [JD] dt [s] 𝑎 [km] 𝑒 [−]; 𝑖 [∘]; Ω [∘] 𝜔 [∘] 𝜃 [∘]
2451545.0 2451555.0 25.0 42164 0.0 0.0 0.0 0.0 9.5

5.1.1. 𝐽2

The spherical harmonics coefficients were discussed in Section 3.1.3.1, which showed that the 𝐽2
term was the most dominant term. To better understand its behaviour on the orbits, the Kepler el-
ements have been extracted to show their variation with the 𝐽2 harmonics coefficient. The debris
orbit was simulated using the initial conditions stated in Table 5.1, with only the 𝐽2 perturbation
acting throughout the simulation. The effect on the six Kepler elements for 10 days is seen in the
propagation model output for this case in Figure 5.1.

Figure 5.1: The individual effect of 𝐽2 on the debris object for 10 days, using the developed numerical propagation
model.

This simulation is repeated with the same initial conditions in TUDATPy, to analyse the differ-
ences in the magnitude and behaviour of the Kepler elements. The simulation output from TU-
DATPy is presented in Figure 5.2.



5.1. Verification with TUDATPy 62

Figure 5.2: Visualising the individual effect of 𝐽2 on the debris object for 10 days, using the available numerical prop-
agation TUDAT model.

It can be seen that the two plots are the same in magnitude and behaviour. From a physical point
of view, the inclination of an object in a geostationary orbit above the equator is not affected. The
same effect can be interpreted for both Figure 5.1 and Figure 5.2 which show the inclination 𝑖 to
be at a constant value of 0 ∘. At the start of the simulation, the ascending node is assumed to be
at a 90 ∘ with the vernal equinox or the x-axis of the J2000 frame. The argument of perigee is
the angle between the ascending node and the perigee (the point where the orbit is closest to the
Earth). Since the orbit was initially circular, the perigee and the ascending node were assumed
to coincide. With changing eccentricity, under the effect of 𝐽2, the perigee moves by 𝜋 [rad] in
one rotation around the Earth, which explains why the value of 𝜔 is between 𝜋/2 [rad] and 3𝜋/2
[rad]. The rest of the elements show consistent behaviour throughout the propagation period.
This verifies the implementation of 𝐽2 perturbation in the orbital model.

5.1.2. 𝐽2,2

Similar to the 𝐽2 perturbation, the effect of 𝐽2,2 was considered in the orbit propagation model
due to its long-term effects on an object in GEO. The debris orbit was simulated using the initial
conditions stated in Table 5.1, this time with just the 𝐽2,2 perturbation acting throughout the sim-
ulation. The effect on the six Kepler elements for 10 days is seen in the propagation model output
for this case in Figure 5.3.
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TUDATPy is efficiently equipped with calculating the cumulative perturbation effects of spherical
harmonics to a certain degree and order. It starts by assuming the point mass gravity (which is
assumed to be degree 0 and order 0). In this case, when the order and degree of 2 each were pro-
vided, the effect of 𝐽2 was also considered in the simulation, thus overshadowing the individual
effect of 𝐽2,2. Moreover, the simulation also considered additional terms such as 𝐽2,1, which were
not included in the developed model. This posed a challenge for comparing Kepler elements for
this particular perturbation with TUDATPy.

For studying the individual effect of 𝐽2,2 on the orbital elements of the debris, the open-source
Python Library Poliastro is used instead of TUDATPy. It is an interactive astrodynamics and or-
bital mechanics Python library provided by the Massachusetts Institute of Technology. It is easy
and efficient to use and comes with concise API documentation [54]. Modifying gravity coeffi-
cients in function database in TUDATPy would require extensive modification in the original C++
code, which can be done much simpler in Poliastro since it is fully based on Python. Hence, the
debris orbit was re-simulated in Poliastro only using the 𝐽2,2 perturbation. The effects on the Ke-
pler elements can be seen in Figure 5.4.

Figure 5.3: The individual effect of 𝐽2,2 on the debris object for 10 days, using the developed numerical propagation
model.

The two plots again correspond with each other. It can be seen that the semi-major axis, eccen-
tricity, argument of perigee and true anomaly show periodic variations, which show consistent
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trends. Interestingly, the semi-major axis shows twice the number of oscillations for the simula-
tion time compared to only 𝐽2 perturbations. As per the work of Martin et. al [55], this behaviour
is anticipated since the 𝐽2,2 perturbation induces an oscillation with higher magnitude in the
semi-major axis component. Due to the higher-order spherical harmonics of 𝐽2,2 (𝑚 = 2), there
are 20 oscillations for 10 simulation days. The RAAN and the inclination are unaffected, similar
to the 𝐽2 effect. The true anomaly is consistent and shows ten peaks resembling the ten orbital
revolutions around the Earth, with longitudinal drifts in the orbit for each of the revolutions. The
change in eccentricity is in the order of 10−7, which is smaller than the order of magnitude of
eccentricity change for 𝐽2 alone.

Since the output of the numerical model matches in magnitude and behaviour with that of the
Poliastro module, the implementation of the 𝐽2,2 perturbation in the orbital model is considered
to be verified.

Figure 5.4: Visualising the individual effect of the 𝐽2,2 on debris object for 10 days, using the available numerical
propagation Poliastro model.

5.1.3. Third-body Moon perturbation

The effect of adding third-body perturbations due to the Moon to the debris dynamics is visual-
ized next. The Kepler elements for 10 days under the influence of lunar and Earth point mass
gravity are visualised in Figure 5.5. The same simulation conditions are applied to TUDATPy to
test the working of the developed numerical model, whose outputs are shown in Figure 5.6.

The major difference between the two software is how the position vector of the Moon w.r.t. the
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Figure 5.5: The individual effect of lunar third-body perturbations on the debris object for 10 days, using the developed
numerical propagation model.

Earth is extracted. In TUDATPy, the ephemerides can be loaded directly from NASA Spice files,
from which the data can be used for any epoch. For our own model, the position vectors are cal-
culated analytically from the algorithm specified in Curtis [30], making the software adapt to any
epoch specified without downloading the data frequently.

The results are highly dependent on the position of the Moon at that epoch. The initial epoch
Cartesian positions of the Moon w.r.t. the Earth are provided in Table 5.2. This covers the values
for our own model and also for TUDATPy, so see how close the values are.

Table 5.2: Comparison between developed software and TUDATPy on the position coordinates of the Moon w.r.t the
Earth for the initial epoch.

Software Initial epoch [JD] Final epoch [JD] 𝑥0 [km] 𝑦0 [km] 𝑧0 [km]

Own model 2451545.0 2451555.0 291619.330 265518.870 75219.976
TUDATPy 2451545.0 2451555.0 291608.4 266716.8 76102.5

The position error of the Moon ephemeris at the first epoch generated by both models is 0.37%.
Due to the small magnitude of relative errors, the working of the analytical method for Moon
third-body perturbations is verified.

The changes in position are very small between the starting and ending epochs, which keeps the
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Figure 5.6: The individual effect of lunar third-body perturbations on the debris object for 10 days, using the available
numerical propagation TUDAT model.

semi-major axis constant (hence preserving the total orbital energy). The eccentricity rises and
falls for each day, showing a periodic variation with a slightly increasing trend for the time prop-
agated. The inclination and RAAN show a secular trend which increases for the time propagated.

Since the behaviour, magnitude, and trend of the developed model and TUDATPy are the same,
implementing third-body Moon perturbations is verified.

5.1.4. Third-body Sun perturbation

The effect of adding third-body perturbations to the debris dynamics due to the Sun is also vi-
sualised. The Kepler elements for 10 days under the influence of the Sun and Earth point mass
gravity is visualised in Figure 5.7. The same simulation conditions are applied to TUDATPy to
test the working of the developed numerical model, whose outputs are shown in Figure 5.8.

Similarly to what was analysed for the Moon, the third-body accelerations are highly dependent
on the position of the Sun at the epoch of computation. The initial Cartesian positions of the Sun
w.r.t. the Earth at the starting epoch of propagation are provided in Table 5.3. This covers the
values for our own model and also for TUDATPy, to see how close the values are.

The relative position error at the first epoch computed by both models is about 1.59%. Similar to
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Figure 5.7: The individual effect of solar third-body perturbations on the debris object for 10 days, using the developed
numerical propagation model.

Table 5.3: Comparison between developed software and TUDATPy on the position coordinates of the Sun w.r.t. the
Earth for the initial epoch of propagation.

Software Initial epoch [JD] Final epoch [JD] 𝑥0 [km] 𝑦0 [km] 𝑧0[km]

Own model 2451545.0 2451555.0 24183536.7 -133127600.4 -57717879.1
TUDATPy 2451545.0 2451555.0 26499033.6 -132757417.4 -57556718.5

the Moon, the error in ephemeris computation of the Sun is very small, which verifies the work-
ing of the analytical method extracting third-body positions in a geocentric reference frame.

The changes in position are very small between the starting and ending epochs, which keeps the
semi-major axis constant (hence preserving the total orbital energy). The eccentricity for the so-
lar perturbation remains constant compared to the lunar perturbation since the relative position
change of the Sun is even smaller than that of the Moon owing to a faster revolution of the Moon
around the Earth than the revolution of Earth around the Sun. The inclination shows a secular
trend which increases the time propagated. The RAAN becomes constant after a decrease in the
initial propagation stages. The argument of perigee and true anomaly, respectively, show peri-
odic variations which are constant in trend for 10 days.

Since the behaviour, magnitude, and trend of the developed model and TUDATPy are the same,
implementing third-body Sun perturbations is verified.
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Figure 5.8: The individual effect of solar third-body perturbations on the debris object for 10 days, using the available
numerical propagation TUDAT model.

5.1.5. SRP perturbation

The final perturbation implemented in the model is the solar radiation pressure, verified in this
section. It is unique from the rest of the perturbations since it does not depend on the orbital alti-
tude around the Earth but rather depends on the surface properties of the object on which it acts
and on its relative Sun position vector. The direct incoming solar radiation contributes to this
force, and the albedo solar radiation from the Earth also acts on the debris. However, the solar
radiation force model developed in this study does not include albedo solar radiation. Objects
with a higher area-to-mass ratio are subjected to higher SRP perturbations. Moreover, it also de-
pends on whether the surface is absorptive or reflective. A reflecting body would be subjected to
a higher SRP.

In this case, a spherical aluminum debris object was taken, which is assumed to be completely
reflective. As mentioned earlier in Chapter 4, the area-to-mass ratio for the debris is 5.556 × 10−6

m2/kg. The position of the Sun computed for the case of third-body Sun perturbations is re-used
to compute the accelerations for SRP alone. The variations in Kepler elements for the developed
code are visible in Figure 5.9, while the same for TUDATPy is visible in Figure 5.10.

The semi-major axis and the argument of perigee show the same constant periodic trends for
both models. The eccentricity shows a different trend compared to what was seen for the solar



5.1. Verification with TUDATPy 69

Figure 5.9: The individual effect of solar radiation pressure on the debris object for 10 days, using the developed nu-
merical propagation model.

third-body perturbations. This shows the cumulative effect of SRP for higher orbits, where the
satellite faces a continuous outward force in the direction away from the Sun, which increases
its eccentricity in small amounts. However, the effects are smaller due to the small 𝐴/𝑚 value,
which otherwise would have been higher. The inclination is more or less maintained at a con-
stant value. The remaining orbital elements show a constant periodic variation over 10 days.

Since the behaviour, magnitude, and trend of the developed model and TUDATPy are the same,
implementing solar radiation pressure perturbations is also verified.

5.1.6. Other orbital regimes

The overall effect of perturbations is also tested outside the GEO regime, for different altitudes.
This is done to verify the overall behaviour and magnitudes of the perturbations similar to the
work of Wakker [27], which was seen earlier in Figure 3.9. The model was run for those altitude
regimes to check the magnitudes of each acceleration. The comparison results can be seen in
Figure 5.11.

The points shown as stars refer to the values from Wakker [27], while the lines in the same color
correspond to the acceleration computed by our numerical model. The point-mass gravity, 𝐽2,
and 𝐽2,2 accelerations show a perfect overlap. The third bodies Moon and Sun, also show a de-
cent fit. They are not perfectly aligned since the epochs at which Wakker calculated the Sun and
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Figure 5.10: The individual effect of solar radiation pressure on the debris object for 10 days, using the available nu-
merical propagation TUDAT model.

Moon geocentric positions were not explicitly mentioned. The same was analysed for solar radi-
ation pressure, where the surface properties were taken for the satellite Echo I (A/m = 12 m2/kg,
𝐶𝑅 = 1.9) for September 1960. The variation of acceleration for SRP is at a constant value of 10−4

m/s2, which is slightly shifted to the right, owing to the lack of knowledge of the exact orbital
simulation period. However, the approximated position computation for September 1960 shows
a decent fit through the endpoints and is considered valid enough for this study.

With this analysis, the orbit propagation model implemented in the developed model is verified
completely using TUDATPy and literature, resulting in a high-confidence model. Accurate mod-
eling of the perturbations in the orbital model of the debris object and the satellite is essential for
simulating the pseudo-measurements since they highly depend on the state vectors of the bod-
ies. Moreover, the propagation results need to be accurate in the case of state estimation, which
is then used to predict the evolution of the orbital errors over time.
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Figure 5.11: Overview of the magnitudes of acting perturbations in the developed model for all orbital altitudes. This is
simulated to show the comparison with the acceleration magnitudes specified in Figure 3.9, which was adapted from
Wakker [27].

5.2. Radar design verification

The instrument parameters with which the pseudo-measurements are collected also need to be
tested such that the measurements can be considered reliable and can be reproduced in the fu-
ture. For this purpose, the work of Maori et. al [4] has been used as a valid reference, a preliminary
investigation of space-based radars to detect milli-meter-sized debris objects by ESA performed
in 2017. Although this paper studies the performance of a continuous-wave radar in particular,
it also analyses the performance of a pulsed Doppler radar at a small distance of less than 1 km,
which is used as a reference for comparison with the INDIGO radar selected in this study.

In the research by ESA, the measurements were simulated with their verified PROOF tool, which
stands for Program for Radar and Optical Observations Forecasting. It was used to simulate the
performance of a radar with the parameters specified in Table 5.4. Further, to validate the space
debris model and the outputs from the PROOF tool, they were compared to measurements col-
lected by a separately developed radar simulator, which showed similar detection and sensitivity
results [4].

As seen in Table 5.4, the radar’s wavelength is 8 mm, comparable to the target size (millimeter
level). The spherical metal object is subjected to Mie and Rayleigh scattering, whose RCS varia-
tion was studied by ESA as seen in Figure 5.12 [4]. In the developed model for radar, the different
scattering regimes (as visualised earlier in Figure 3.11) are considered for the same mm-sized ob-
ject. The same plot was recreated with a color map to show the RCS variations. It can be seen in
Figure 5.13.

Figure 5.13 is a close recreation of Figure 5.12 with similar magnitudes and behaviour showing
the different scattering regimes. When the radar wavelength is much larger than the object di-
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Table 5.4: Parameters of the coherent pulse radar parameters simulated with ESA’s PROOF tool in the work of Maori
et. al [4].

Parameter Symbol Value

Peak transmitter power 𝑃𝑡 50 W
Antenna diameter 𝐷𝑎𝑛𝑡 80 cm
Transmitting antenna gain 𝐺𝑡 38.39 dB
Receiving antenna gain 𝐺𝑟 38.39 dB
Antenna efficiency 𝜂 70 %
Pulse duration 𝜏 66 × 10−9 s
Noise bandwidth 𝐵 15 MHz
Wavelength 𝜆 8 mm
Losses 𝐿 -2 dB
Noise figure 𝑁𝑓 3 dB
System noise temperature 𝑇𝑠 297K

Figure 5.12: Original plot from Maori et. al [4], showing the
variation of RCS as a function of object diameter and radar
wavelength.

Figure 5.13: Recreated plot for RCS variation, using the
same pulsed radar parameters used in Table 5.4 [4].

ameter, the behaviour of the RCS is seen to be varying with 𝜆−4 in the lower right region of the
plots. The Mie region is the upper right region, where contour lines oscillate between -40 dB and
-60 dB. The left corner corresponds to the optical region with an almost constant value of almost
-45 dB.

After the RCS values have been verified, the SNR of the pulse Doppler radar is studied. The SNR
is the main performance parameter on which the measurement acquisition for INDIGO is based.
Hence, it is crucial to verify the SNR to consider the collected measurements credible for orbit de-
termination. The available SNR of the debris using the radar parameters in Table 5.4 is simulated
using the developed software in an attempt to recreate the original plot shown in Figure 5.14 [4].
The resulting recreation is visualised in Figure 5.15.

The recreated plot is very close to the original plot in values and matching in behaviour. There
are slight differences in the resolution and SNR values for the radar wavelength. This is due to
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Figure 5.14: Original plot from Maori et. al [4], showing
the SNR as a function of object diameter and radar wave-
length at an object distance of 500 m.

Figure 5.15: Recreated plot for SNR variation at a distance
of 500 m, using the same pulsed radar parameters used in
Table 5.4 [4].

the inclusion of a matched filter in the work of Maori et. al [4], which improves the SNR and ac-
counts for Doppler variation and Fast Fourier Transform (FFT) losses. The model developed in the
thesis is a simplified version, which does not include the filtering facilities used in the ESA study.

Despite its simplicity, the developed radar measurement model is capable of reproducing similar
results as [4]. This verifies the correctness of the radar module’s measurement modeling, thus
validating its measurement acquisition methodology in the process. The pseudo-measurements
can hence be considered a simple and good approximation of complex radar physics.

5.3. Validation with TLE orbital data

While the essence of verification is to test the working or mathematics behind a model, valida-
tion is performed to determine if the simulation results accurately represent the actual physical
problem as a confrontation with reality [52]. The predictions by a model are compared to either
experimental data or observed behaviour in practice. Since there has not been a physical mis-
sion that collects in-situ radar measurement data for debris, it is not possible to directly validate
from real-life measurement data.

However, the working and accuracy of the orbit propagation model can be tested to see how the
simplified developed model compares to a well-known high-fidelity propagator such as the gen-
eral Simplified General Perturbation (SGP4) propagator used by NASA and NORAD to propagate
the orbits using Two-Line-Element (TLE) data sets tracked by ground-based sensors; a clear link
to “physical truth”.

Since the debris object in this study is in the GEO regime, the TLE of real GEO debris is used for a
validation study. One of the fragments of the Ekran 2 satellite which the US SSN tracks, is used.
The data for this object with a NORAD catalogue number 12996 is downloaded from the NORAD
satellite catalogue [56] from 9th January 2023 to 9th July 2023. An example of the TLE data of
this object on the latter date is given below.
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1 EKRAN 2 DEB
2 1 12996U 77092J 23190.49945449 -.00000272 00000+0 00000+0 0 9995
3 2 12996 7.0509 288.9576 0019691 231.3997 48.0273 1.00031440 73754

The Kepler elements are extracted following the instructions on the NORAD documentation web-
site [57]. They are set as initial conditions for simulation in the orbit propagation model developed
in this research for 10 days. The actual TLE state vectors and the propagated orbit are overlapped
and plotted in Figure 5.16.

Figure 5.16: The TLE orbital data for the Ekran 2 debris (NORAD ID: 12996 [56]) overlapping with the orbital propagation
model developed in this thesis. The plot validates the working of the orbital model.

The simulation was started, and the INDIGO system was made to collect measurements for the ob-
ject. In 10 days, using the original INDIGO radar parameters, only three TLE measurements were
seen to coincide with the simulated INDIGO pseudo-measurements. With only three measure-
ments, the orbit determination process developed in the research diverges and does not yield
credible results. Hence, instead of the measurements collected by the INDIGO system, the or-
bit is estimated and predicted for 10 days. The results showing the behaviour of the x, y, and
z-coordinates in position are seen in Figures 5.17, 5.19 and 5.21. Similarly, the behaviour of the x,
y, and z coordinates in velocity are seen in Figures 5.18, 5.20 and 5.22.

The state vectors estimated and predicted for the same period, using the developed model are
presented for each state vector in the above figures. The yellow curves show the state vector
elements for each Cartesian position and velocity vector component. The estimation and the
prediction zone are separated by the dashed line marked as the ‘prediction start’ in each figure.
The red dots represent the collected TLE data Cartesian state vector components, which are seen
to fit well through the yellow curve. The initial state and last measurement points are marked by
the dark and light blue dots respectively, in the estimation phase of the simulation. This is also
where the black dots are seen, which correspond to the in-situ measurements collected when the
debris is within the detection threshold of INDIGO. This exercise establishes that the orbit prop-
agation, measurement model, and orbit estimation and prediction modules for the developed
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software are credible and are capable of representing a real-life situation.

Figure 5.17: The behaviour of position in the x-coordinate
of the orbit obtained for an Ekran 2 debris object (NORAD
ID: 12996) between 9th January 2023 to 20th January 2023.

Figure 5.18: The behaviour of velocity in the x-coordinate
of the orbit obtained for an Ekran 2 debris object (NORAD
ID: 12996) between 9th January 2023 to 20th January 2023.

Figure 5.19: The behaviour of position in the y-coordinate
of the orbit obtained for an Ekran 2 debris object (NORAD
ID: 12996) between 9th January 2023 to 20th January 2023.

Figure 5.20: The behaviour of velocity in the y-coordinate
of the orbit obtained for an Ekran 2 debris object (NORAD
ID: 12996) between 9th January 2023 to 20th January 2023.

Figure 5.21: The behaviour of position in the z-coordinate
of the orbit obtained for an Ekran 2 debris object (NORAD
ID: 12996) between 9th January 2023 to 20th January 2023.

Figure 5.22: The behaviour of velocity in the z-coordinate
of the orbit obtained for an Ekran 2 debris object (NORAD
ID: 12996) between 9th January 2023 to 9th January 2023.

Having completed the verification of the software and validation with a real debris object, the
results can be considered to be out of a ”black box”, which will be applied for different cases
and parameters. These results are discussed in the following chapter, which contains the results
obtained from this study, and provides an interpretation of the same.
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6
Results and Discussion

The developed software was tested in Chapter 5, where the orbit propagation results were verified
with the TUDATPy software and the orbit determination was verified from state estimation of an
actual GEO debris object using its TLE data. Hence, after establishing the credibility of the results
and software, a more detailed analysis can now be performed, which can be interpreted to draw
conclusions on the research questions.

This chapter studies the study cases mentioned earlier in Section 4.3.2. First, the results of the
nominal case are presented in Section 6.1 where the effect of the addition of noise and bias is
interpreted. The effect of changing the integration step-size is studied in Section 6.2, followed
by the orbital geometry analysis. Different altitudes and inclinations for the observation satellite
geometry are studied in Sections 6.3 and 6.4 respectively. The effect of using different measure-
ment types is discussed Section 6.5 followed by studying the effect of adding more satellites to
the observation network in Section 6.6. The chapter ends with a sensitivity analysis in Section 6.7
for assessing the influence of uncertainties in the model.

6.1. Case 1: Nominal case

The nominal case refers to the first chosen case, which uses the initial propagation conditions of
the orbit as stated in Table 4.3 to collect in-situ radar measurements using the radar parameters
as stated in Table 4.2. The measurements are post-processed by the addition of noise and bias,
after which the orbit determination is carried out using the initial debris state guess as provided
in Table 4.6.

This section is dedicated to get a primary understanding of interpretation of the OD performance
metrics for three different cases, defined below. It must be noted that the nominal case considers
the orbital dynamics model and estimation model to include all orbital perturbations.

• All ideal measurements:
This reference measurement case is generated simply by following the measurement ac-
quisition strategy stated earlier in Section 4.1.2. This consists of fitting the orbit using all
measurements: range, range-rate, azimuth and elevation. It is free of any error sources
and depends on the relative positions and velocities of the modeled debris object and the
observation satellite at an altitude of 1000 km below the GEO ring. Both objects have an in-
clination of 0∘.
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• Addition of Gaussian noise only:
Gradually, Gaussian noise will be added to all radar measurements, worsening the OD perfor-
mance. The standard deviation values for each measurement are obtained from Table 4.4.

• Addition of both noise and bias:
Finally, bias values stated in Table 4.4 are added to the radar measurements to account
for systematic errors. This is expected to simulate reality, worsening the OD performance
compared to the no-noise or noise-only case.

6.1.1. Ideal measurements case

The measurement residuals computed are first analysed for all noise-free cases. Figure 6.1 shows
the true range residuals, Figure 6.2 shows the true range-rate residuals, Figure 6.3 shows the true
azimuth residuals and Figure 6.4 shows the true elevation residuals.

Figure 6.1: Residuals in range measurements for the nom-
inal case of a single satellite (Δh = 1000 km, Δi = 0∘, all
measurements) for a case with no noise added to the mea-
surements.

Figure 6.2: Residuals in range-rate measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with no noise added to the
measurements.

Figure 6.3: Residuals in azimuth measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with no noise added to the
measurements.

Figure 6.4: Residuals in elevation measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with no noise added to the
measurements.

It can be seen that all the values are very small (in the order of 10−10 km for the range, 10−14 km/s
for the range rate, 10−9∘ for azimuth, and 10−7∘ for elevation). The right-hand side of the plot shows
the distribution of the residuals. The purple line marks the mean of the distribution, while the
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dashed lines indicate the 1𝜎 upper and lower bounds from the mean. The residual curves show
an overall smooth behaviour, which implies that measurements with no noise are supposed to
fit perfectly through the observed measurements. This is visualised in Figure 6.5.

Figure 6.5: Three-dimensional orbit fitting visualisation of the debris, when only all ideal measurements are used. A
perfect fit can be seen as expected.

6.1.2. Addition of Gaussian noise only

Now, the true measurements are perturbed by accounting for the noise present in measurements
due to the properties of the radar. To reiterate, the standard deviation values taken are 18.49 m
for range, 5.136 cm/s for the range rate and 0.24∘ for both angles.

Figure 6.6 shows the noise only range residuals, Figure 6.7 shows the noise only range-rate resid-
uals, Figure 6.8 shows the noise only azimuth residuals and Figure 6.9 shows the noise only ele-
vation residuals.

It can be seen in comparison to the previous case, that the oscillations in residuals have increased.
The distribution of the measurements now demonstrates the effect of input Gaussian noise dis-
tribution, which is also conserved in the output of the measurement residuals. The mean value
of the range, range rate and azimuth coincide with the peak of the distribution. For elevation, the
residuals are not centred around the mean but still show a Gaussian distribution, as expected.

The residual values with noise only are no longer small. The range residuals show a 1𝜎 value of
near 0.02 km or 20 m, which corresponds to the input noise value of 18.49 m added earlier. For
range rate, the 1𝜎 value is about 5 × 10−5 km/s, which corresponds with the standard deviation
noise of 5.136 km/s added to the range-rate measurements. The azimuth residuals too are cen-
tred around 0∘ showing a 1𝜎 value of about 0.286∘. The elevation residuals are not centred around
0∘, which does not make it a perfect Gaussian distribution. Hence, the 1𝜎 value is not represen-
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Figure 6.6: Residuals in range measurements for the nom-
inal case of a single satellite (Δh = 1000 km, Δi = 0∘, all
measurements) for a case with only noise of standard de-
viation 18.49 m added to the true measurements.

Figure 6.7: Residuals in range-rate measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with only noise of standard
deviation 5.136 cm/s added to the true measurements.

Figure 6.8: Residuals in azimuth measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with only noise of standard
deviation 0.24∘ added to the true measurements.

Figure 6.9: Residuals in elevation measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with only noise of standard
deviation 0.24∘ added to the true measurements.

tative of the amount of standard deviation provided initially. This is an interesting case, which
hints at poorly collected elevation measurements due to the debris object’s planar orbits and the
satellite. This can also be spotted in the 3D orbit visualisation where there is a deviation in the in-
clination of the estimated orbit (shown in blue) from the actual orbit (shown in red) in Figure 6.10.

The effect of addition of only Gaussian noise can be seen in Figure 6.10, where there is a slight de-
viation especially in the inclination estimated. The red scatter represents the actual orbit, while
the blue curve represents the fitted orbit. The measurement points collected are marked by black
dots. The starting and converging points during the WLS process is visualised by the green and
the red arrowheads, marking the start and end of estimation.

6.1.3. Addition of noise and bias

After analysing the effect of noise, the systematic errors are also accounted for in the measure-
ments, by adding individual biases to the noise-only measurements. To re-iterate, a bias value of
20 m is added for the range, 50 cm/s for the range rate, and 0.1 ∘ for both azimuth and elevation
angles.

Figure 6.11 shows the range residuals, Figure 6.12 shows the range-rate residuals, Figure 6.13
shows the azimuth residuals and Figure 6.14 shows the elevation residuals.
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Figure 6.10: Three-dimensional orbit fitting visualisation of the debris, when only noise is added to all ideal measure-
ments. The orbit now deviates (relatively 7.4 times higher RMS error than the case without noise and bias) from a
perfect fit compared to what was seen in Figure 6.5.

Figure 6.11: Residuals in range measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with both noise of standard
deviation 18.49 m and bias 20 m of added to the true mea-
surements.

Figure 6.12: Residuals in range-rate measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with both noise of standard
deviation 5.136 cm/s and bias 50 cm/s of added to the true
measurements.

The effect of addition of bias to the noisy data can be observed by the change in residual distri-
bution, which has its peak shifted by the amount of standard deviation added as bias. This is
visible more or less for all measurements, with no significant change in the deviation values as
observed in Section 6.1.2, apart from a slight shift of the mean value denoted by the purple line.
The 3D visualisation for the orbit fitting is visualised again this time for both noisy and biased
data. The results are seen in Figure 6.15.
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Figure 6.13: Residuals in azimuth measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with both noise of standard
deviation 0.24∘ and bias 0.1∘ of added to the true measure-
ments.

Figure 6.14: Residuals in elevation measurements for the
nominal case of a single satellite (Δh = 1000 km, Δi = 0∘,
all measurements) for a case with both noise of standard
deviation 0.24∘ and bias 0.1∘ of added to the true measure-
ments.

Figure 6.15: Three-dimensional orbit fitting visualisation of the debris, when both noise and bias is added to all ideal
measurements. The orbit deviates more (relatively 9 times higher RMS error than the case without noise and bias)
than what was seen in Figure 6.5 or Figure 6.10.

6.1.4. Overall nominal case analysis

Now that the individual sub-cases of the nominal have been analysed, an overall conclusion can
be drawn. The convergence behaviour of the three sub-cases can be understood from the RMSE
values over the iterations. This is visualised in Figure 6.16.

It can be seen that the blue line has an RMSE of almost 10−7, which is a very small value, repre-
senting very good convergence behaviour. The RMSE of the noise-only case is expected to be
about 1, while for the noise and bias case, it is expected to be higher. This exhibits that conver-
gence behaviour is worse for an only noise case, compared to a no-noise case and is worsened
with addition of a constant bias to the data set.
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Figure 6.16: The RMSE convergence pattern for the three sub-cases of the Nominal case. The blue line represents the
case with no noise, followed by the orange line representing only the noise-only case. The green line considers the
noise and bias both incorporated into the measurements.

Then, the accuracy with which the initial position and velocity of the debris is derived can be
computed from the noise-only covariance matrix. The formal uncertainty in position and veloc-
ity and the RMSE error for three cases are presented in Table 6.1.

Table 6.1: Formal uncertainties in position and velocity for a nominal case: with no error sources, only Gaussian noise,
and both noise and bias.

Nominal case Position accuracy [m] Velocity accuracy [m/s] RMSE

No noise 2.83 × 10−6 4.97 × 10−9 1.05 × 10−7

Only noise 1885.4 0.8034 1.905
Both noise and bias 3536.4 1.814 5.894

The accuracy is very small for the no-noise case, which increases with the addition of Gaussian
noise in the order of 103 km for position and 10−1 m/s for velocity. As bias is introduced, the ac-
curacy worsens (i.e. its magnitude increases). The accuracy highly depends on the number of
measurements provided, which were only 689 for the nominal case for 5 hours.

Lastly, the evolution of errors can be studied. The behaviour of the errors in Cartesian position
and velocity components can be visualised from Figure 6.17.

Here too, the same behaviour is reflected, where the errors in 𝑥, 𝑦, 𝑣𝑥 and 𝑣𝑦 are seen to get worse
for the case with both noise and bias (shown by the green line), which extends to maximum er-
rors of 100 km in position and 0.008 km/s in velocity for these coordinates. It must be noted that
the position and velocity in the 𝑧-coordinate do not exhibit the same behaviour, which is not un-
expected, given the lack of information acquired in the z-plane.

The nominal case aimed to provide the reader with an understanding of the interpretation of
relevant POD performance metrics. A more straightforward approach will be followed for the
remaining cases to present the results concisely for the test cases listed.
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Figure 6.17: The growth of errors between actual and estimated state vectors over time for the three sub-cases of the
nominal case. Like the RMSE plot, the blue line represents case with no noise, followed by the orange line representing
only noise case. The green line considers the noise and bias both incorporated into the measurements.

6.2. Case 2: Different integration step sizes

The performance of the orbit determination process will also depend on how frequently the mea-
surements are calculated. Choosing a larger step size will lead to less data, so a less accurate
position and velocity determination. However, a smaller step size will result in a longer compu-
tation time. Moreover, the step size choice determines the numerical integration errors. Hence,
an analysis has been carried out with Δ h = 1000 km, and Δ i = 0∘, which analyses the effect of step
size on OD performance. Based on this, the behaviour of changing step sizes on the OD quality
can be inferred.

For model tuning, six step sizes have been chosen. They are equal to 1, 5, 10, 25, 50, and 100 s. The
convergence behavior based on RMSE and the formal uncertainty in position and velocity for the
initial state is studied. This is presented in Table 6.2.

Table 6.2: Formal uncertainties in position and velocity and RMSE for a case studying different step sizes for integrat-
ing the orbit for the nominal case. (Δ h = 1000 km, Δ i = 0 ∘)

Step size [s] Position accuracy [m] Velocity accuracy [m/s] RMSE Computational time [s]

1 186.00 0.0107 1.646 938
5 448.13 0.0142 1.305 34
10 564.80 0.0186 1.192 26
25 1413.63 0.0450 1.788 5
50 2995.14 0.1303 2.732 3
100 26564.77 2.7919 93.225 7

It can be seen from Table 6.2 that increasing the step size from 1 to 100 seconds, decreases the
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Figure 6.18: The evolution of errors in the Cartesian coordinates due to different step sizes chosen.

position and velocity accuracy. Since the radar integration time and the orbit integration step
size are the same, increasing the step size means that there are fewer measurements per time
step. As a result, the RMSE value can be seen to increase as we go down the table. The step
sizes of dt = 5 s, dt = 10 s and dt = 25 s, are of interest since they exhibit comparable position and
velocity accuracies with good convergence. Looking at the computation time, it is better to se-
lect the step size of 25 seconds for the remainder of the study cases. Later in Chapter 7, a final
answer on the step-size selection will be concluded, to answer one of the sub-research questions.

Finally, the errors in Cartesian coordinates are visualised in Figure 6.18. It is seen from the figure
that the step size of 100 s has the largest error. Although the remaining step-size cases are not
explicitly visible in this figure, the values in Table 6.2, support the expected outcome of improved
accuracy and smaller errors.

6.3. Case 3a: Different satellite altitudes

The accuracy in position was found to be at the km level for the nominal case, which comes from
the lack of sufficient measurements at 1000 km altitude difference, and the lack of information
in the z-component of the state vector. Since a radar gets a higher SNR when closer to the target,
this section evaluates the OD performance for three altitude cases. Additionally, the inclination
of the satellite orbit was increased to 2.5∘ to obtain more information on debris in the z-direction.
Three cases for different altitudes (250, 500 and 1000 km difference) at a fixed inclination have
been studied in this research to evaluate the performance of state estimation when the satellite
moves closer to the debris.

6.3.1. Altitude difference 250 km

The measurement residuals for range, range rate, azimuth and elevation are shown in Figures 6.19,
6.20, 6.21 and 6.22, respectively. The measurement model includes the effect of Gaussian noise
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and bias for each of the measurement types (similar as Section 6.1.3).

Figure 6.19: Residuals in range measurements for the
change in altitude study case of a single satellite (Δh =
250 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 18.49 m and bias 20 m of added
to the true measurements.

Figure 6.20: Residuals in range-rate measurements for
the change in altitude study case of a single satellite (Δh
= 250 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 5.136 km/s and bias 50 cm/s of
added to the true measurements.

Figure 6.21: Residuals in azimuth measurements for the
change in altitude study case of a single satellite (Δh =
250 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

Figure 6.22: Residuals in elevation measurements for the
change in altitude study case of a single satellite (Δh =
250 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

The measurement residuals in all measurement types show a normal distribution, with the mean
at the value of the bias provided to each measurement. The high density of the residuals arises
from the fact that in this geometrical configuration, the radar can collect 3971 measurements
in total, which cover close to 11% of the GEO debris ring since the difference in orbital velocity
between the debris and the satellite is much less.

6.3.2. Altitude difference 500 km

The measurement residuals at an altitude difference of 500 km for range, range rate, azimuth and
elevation are shown in Figures 6.23, 6.24, 6.25 and 6.26, respectively. The measurement model in-
cludes the effect of Gaussian noise and bias for each measurement type (similar to Section 6.1.3).

It is seen that the measurement residuals worsen as compared to the previous case of 250 km
altitude difference. This is expected since the radar can collect 1873 measurements in this con-
figuration. Although the density of the measurement residuals is less than that of Δh = 250 km,
they still follow a normal distribution.
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Figure 6.23: Residuals in range measurements for the
change in altitude study case of a single satellite (Δh =
500 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 18.49 m and bias 20 m of added
to the true measurements.

Figure 6.24: Residuals in range-rate measurements for
the change in altitude study case of a single satellite (Δh
= 500 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 5.136 km/s and bias 50 cm/s of
added to the true measurements.

Figure 6.25: Residuals in azimuth measurements for the
change in altitude study case of a single satellite (Δh =
500 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

Figure 6.26: Residuals in elevation measurements for the
change in altitude study case of a single satellite (Δh =
500 km, Δ i = 2.5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

6.3.3. Altitude difference 1000 km

Finally, the measurement residuals at an altitude difference of 1000 km for range, range rate,
azimuth and elevation are shown in Figures 6.27, 6.28, 6.29 and 6.30, respectively. The measure-
ment model includes the effect of Gaussian noise and bias for each measurement type.

The quality of measurement residuals is the worst compared to the previous cases of Δh = 250
km and Δh = 500 km. This is again expected since the radar can collect only 688 measurements
in this configuration (similar to what was seen in the nominal case study at 0∘ too).
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Figure 6.27: Residuals in range measurements for the
change in altitude study case of a single satellite (Δh =
1000 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 18.49 m and bias 20 m of added
to the true measurements.

Figure 6.28: Residuals in range-rate measurements for
the change in altitude study case of a single satellite (Δh =
1000 km,Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 5.136 km/s and bias 50 cm/s
of added to the true measurements.

Figure 6.29: Residuals in azimuth measurements for the
change in altitude study case of a single satellite (Δh =
1000 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

Figure 6.30: Residuals in elevation measurements for the
change in altitude study case of a single satellite (Δh =
1000 km, Δi = 2.5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

6.3.4. Overall altitude analysis

The convergence behaviour of all three cases can be visualised in Figure 6.31.

Figure 6.31: The RMSE convergence pattern for the three sub-cases of the altitude study case. The blue line represents
the Δh = 250 km case, followed by the orange line representing Δh = 500 km. The green line considers the Δh = 1000
km, all at an inclination of Δi = 2.5∘

It is seen that the blue line depicting Δh = 250 km starts with the highest RMSE initial value (due
to more measurements to iterate through) and ends up at a value that is close to 5. This is again
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expected since the noise includes the addition of bias to the measurements along with the noise.
The orange line depicting Δh = 500 km and the green line depicting Δh = 1000 km follow next,
which all converge at nearly similar values, but does take more iterations for convergence where
there is more data.

The errors in the Cartesian coordinates can be found by taking the difference between the actual
orbit and the estimated orbits using the above cases. The propagation of errors can then be vi-
sualised for a period of 10 days, to see how the prediction behaviour is by virtue of the collected
measurements. The errors due to different altitude cases are shown in Figure 6.32.

For Δh = 1000 km (shown by the green curves), the errors are highest with a magnitude of about
2 km in position and 0.3 m/s in velocity (norm of the individual Cartesian coordinates). For Δh =
500 km (shown by the orange curves) and the Δh = 250 km (shown by the blue curves), the errors
are not distinctively visible in Figure 6.32. This requires a study into the accuracy of the initial
state and RMSE value at convergence.

Table 6.3: Formal uncertainties in position and velocity for a case studying different altitudes of the satellite orbit for
Δi = 2.5∘.

Δh [km] Position accuracy [m] Velocity accuracy [m/s] RMSE No.of obs.

250 5.131 4.97 × 10−9 5.131 3971
500 19.06 0.0388 5.227 1873
1000 273.98 0.0789 6.013 688

Corresponding to the behaviour in prediction errors, the initial position and velocity accuracy val-
ues in Table 6.3 decrease as the values of Δh increases from 250 to 1000 km. The values of RMSE
for the three cases are also summarised and are seen to concur with what was seen in Figure 6.31.

From the different altitude case studies, it is inferred that moving closer to the debris object gives
the radar more opportunity to collect more measurements, thereby improving its quality. How-
ever, it also takes a longer time for convergence due to more measurements present, whose resid-
ual minimisation takes longer. Moreover, the revisit time is a big problem since for decreasing
altitude, the synodic period increases. For Δh = 1000 km, the synodic period is 27 days, while for
Δh = 500 km it is 55 days. For Δh = 250 km, the synodic period is 113 days, which is a long time
the satellite has to wait to be able to get a signal from the same debris object, which is not always
suitable for the given simulation conditions. Hence, these aspects also need to be considered
before choosing a suitable altitude regime for measurements.

6.4. Case 3b: Different satellite inclinations

The study into the effect of different inclinations is done to overcome the disadvantage of not
obtaining much information on the z-component of the debris state vector, which remains ill-
determined and difficult to predict due to the lack of proper measurements. To study this, specif-
ically for this section, only the elevation measurements have been shown instead of all measure-
ment residuals, since it is interesting to see what happens to them specifically for varying orbital
inclinations. From the analysis of altitudes in Section 6.3, a Δh value of 500 km has been chosen
for this study, where four values of satellite orbit inclination have been considered.
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Figure 6.32: The error and prediction pattern for the three sub-cases of the altitude study case. The blue line represents
the Δh = 250 km case, followed by the orange line representing Δh = 500 km. The green line considers the Δh = 1000
km, all at an inclination of Δi = 2.5∘
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6.4.1. Inclination difference 0.1∘

Directly taking an inclination of 0∘ leads to a poor estimation of the elevation measurements,
which was seen in the nominal case and also in the altitude study case (for which it was rather
done for Δi = 2.5∘). By changing the relative inclination, the possibility of collecting information
on the object’s elevation is studied here.

Figure 6.33 shows the residuals of the elevation measurements for a relative inclination of 0.1∘,
while Figure 6.34 shows the estimated and observed elevation measurements for the same case.

Figure 6.33: Residuals in elevation measurements for the
change in inclination study case of a single satellite (Δh =
500 km, Δ𝑖 = 0.1∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

Figure 6.34: Comparison of observed and estimated ele-
vation measurements for Residuals in elevation measure-
ments for the change in inclination study case of a single
satellite (Δℎ = 500 km, Δ𝑖 = 0.1∘, all measurements) for
a case with both noise of standard deviation 0.24∘ and bias
0.1∘ of added to the true measurements.

The distribution of elevation residuals is still a Gaussian distribution shifted up by the specified
bias value of 0.1∘ or 0.0018 rad, well preserving its input noise characteristics. This configuration
shows the collection of 988 measurements in 5 hours, shown by the blue dots in Figure 6.34, which
shows the red line showing the elevation estimated by the WLS model to fit through the measure-
ments. This configuration performs worse than the 0∘ inclination case with 1873 measurements,
showing that a higher relative inclination value could be required.

6.4.2. Inclination difference 1∘

Increasing the relative inclination to 1∘ produces a new set of elevation measurements and resid-
ual behaviour. Figure 6.35 shows the residuals of the elevation measurements for a relative in-
clination of 1∘, while Figure 6.34 shows the estimated and observed elevation measurements for
the same case.

For this configuration, the mean of the distribution lies around -0.015 [rad] or 1.317∘, which is close
to the elevation residual values seen in the nominal case described in Section 6.1. The distribu-
tion on the right shows more samples within the 1𝜎 region, which is significantly more than in
the previous case or the nominal elevation case. The measurements collected are more evenly
spaced out in Figure 6.36, which spans 10 times the range of elevation values listed in Figure 6.34.
The number of measurements collected is 825, less than in the previous case. However, since the
samples are more concentrated toward the mean, it is expected to yield better state estimation
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Figure 6.35: Residuals in elevation measurements for the
change in inclination study case of a single satellite (Δh
= 500 km, Δ𝑖 = 1∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

Figure 6.36: Comparison of observed and estimated ele-
vation measurements for Residuals in elevation measure-
ments for the change in inclination study case of a single
satellite (Δh = 500 km, Δ𝑖 = 1∘, all measurements) for a
case with both noise of standard deviation 0.24∘ and bias
0.1∘ of added to the true measurements.

accuracy.

6.4.3. Inclination difference 2.5∘

The inclination of the satellite orbit is increased to 2.5∘ to see if more elevation measurement
residual samples can be extracted. Figure 6.37 shows the residuals of the elevation measure-
ments for a relative inclination of 2.5∘, while Figure 6.38 shows the estimated and observed ele-
vation measurements for the same case.

Figure 6.37: Residuals in elevation measurements for the
change in inclination study case of a single satellite (Δh =
500 km, Δ𝑖 = 2.5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

Figure 6.38: Comparison of observed and estimated ele-
vation measurements for Residuals in elevation measure-
ments for the change in inclination study case of a single
satellite (Δh = 500 km, Δ𝑖 = 2.5∘, all measurements) for a
case with both noise of standard deviation 0.24∘ and bias
0.1∘ of added to the true measurements.

The density of the oscillations is seen to decrease, leading to the acquisition of only 391 mea-
surements. This is expected to cause a drop in accuracy and increase prediction errors. The
scattered measurements are also not concentrated at the mean but are spread out following a
normal distribution with gradually decreasing samples at the edges.
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6.4.4. Inclination difference 5∘

When the inclination of the satellite is further increased, the behaviour of the elevation residuals
and fitting worsens. Figure 6.39 shows the residuals of the elevation measurements for a relative
inclination of 5∘, while Figure 6.40 shows the estimated and observed elevation measurements
for the same case.

Figure 6.39: Residuals in elevation measurements for the
change in inclination study case of a single satellite (Δh
= 500 km, Δi = 5∘, all measurements) for a case with both
noise of standard deviation 0.24∘ and bias 0.1∘ of added to
the true measurements.

Figure 6.40: Comparison of observed and estimated ele-
vation measurements for Residuals in elevation measure-
ments for the change in inclination study case of a single
satellite (Δh = 500 km, Δ𝑖 = 5∘, all measurements) for a
case with both noise of standard deviation 0.24∘ and bias
0.1∘ of added to the true measurements.

It can be seen that increasing the satellite inclination gives the radar the liberty to scan in the
z-plane, giving more elevation samples towards the end of the distribution. There is no distinct
peak or mean visible for this configuration. The density of the distribution is also low compared
to the previous inclination cases, which is seen by the fact that the satellite moves away from
the debris faster therefore only collecting 194 measurements in 5 hours.

6.4.5. Overall inclination analysis

Compared to the altitude case study, the inclination case study shows that there were less mea-
surements collected. This is because the satellite and the debris move apart due to the relative
inclination change, contrary to a co-planar case, where the satellite simply follows the debris in a
similar higher orbit, till it loses contact with it. Increasing the inclination gives directional infor-
mation better than the nominal case but does not perform well in detection since it depends on
the range solely (which increases). Therefore, a suitable inclination must be chosen such that it
gives enough information on the elevation of the debris, and still collects ample measurements
for accurately estimating the orbit and predicting its future trajectory.

The convergence behaviour of the different cases is seen in Figure 6.41. The blue line for 0.1∘

converges extremely steeply, which is expected to be the least accurate. The 5∘ case (red line)
converges at a slightly higher value compared to the 2.5∘ case (green line), which was also ex-
pected from their residual distribution patterns. The orange line is the case for 1∘, which shows
the longest convergence duration in 30 iterations since it traverses through 825 measurements.

The behaviour of errors in the Cartesian coordinates in position and velocity are seen in Fig-
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Figure 6.41: The RMSE convergence pattern for the four sub-cases of the inclination study case at an altitude difference
of 500 km. The blue line represents the Δi = 0.1∘ case, followed by the orange line representing Δ𝑖 = 1∘. The green line
considers the Δ𝑖 = 2.5∘, and the red line considers the Δ𝑖 = 5∘.

ure 6.42. The highest errors are seen for the 5∘ case, where the total position error grows to 400
km, and the total velocity error grows as large as 20 m/s in 10 days. Although it is difficult to
describe the behaviour of the rest of the cases by this plot, it is seen that there is still not much
information gathered for the z-coordinate position or velocity by the 1∘ case. The errors in the
z-coordinate are minimum for Δ𝑖 = 2.5∘, which makes it an interesting choice.

The covariance matrix for this configuration also yields the position and velocity accuracy as
given by Table 6.4.

Table 6.4: Formal uncertainties in position and velocity for a case studying different inclinations of the satellite orbit.

Δi[∘] Position accuracy [m] Velocity accuracy [m/s] RMSE No. of obs.

0.1 3746.709 0.129 5.160 988
1 793.66 0.043 5.973 825

2.5 1104.73 0.218 5.319 391
5 1899.6 0.749 5.941 194

Although 0.1∘ has the highest number of measurements, leading to the lowest RMSE value, its
formal errors are worse than those with higher inclination. The accuracy decreases to 793.66 m
for the position with 1∘, which again rises to 1104.73 m for 2.5∘. Although the number of measure-
ments for Δi = 5∘ is less than that of Δi = 2.5∘, the order of magnitude of position and velocity
accuracies is the same for both cases. This implies that an optimal solution for the relative incli-
nation would be lying somewhere between 1∘ and 5∘.

6.5. Case 4: Different measurement types

All the measurements do not perform equally in the OD process, which is why the Weighted Least
Squares method is used to assign weights to the measurements. The more accurate measure-
ment is given a higher weight for better state estimation. The performance of the previous cases
depended largely on the number of measurements collected, assuming that they were all the
same type. However, it is also important to study the effect of individual types of measurements,
assuming the same number of measurement opportunities, to analyze the observation quality.
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Figure 6.42: The error and prediction pattern for the three sub-cases of the inclination study case. The blue line
represents the Δ𝑖 = 0.1∘ case, followed by the orange line representing Δ𝑖 = 1∘. The green line considers the Δ𝑖 =
2.5∘, and the red line considers the Δ𝑖 = 5∘. The altitude difference at which the measurements have been collected
is 500 km for this case.
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In this case, first, an overall analysis of all measurement types is made in terms of convergence
and formal uncertainty in position and velocity. This is done to eliminate the poor-performing
combinations and reflect upon the better-performing cases to study the prediction error evolu-
tion over time.

6.5.1. Overall quality for all measurement types

First, the trends in RMSE of all the measurements used in this study is visualised to understand
convergence behaviour. This is shown in Figure 6.43.

Figure 6.43: The RMSE convergence pattern for the seven combinations of measurement types, at an altitude differ-
ence of 1000 km and 0∘ inclination. The legend explains the measurement type, where, R represents the case with
only range measurements, RR represents the case with only range-rate measurements, Az + El represents the case
with only angular measurements, R + RR represents the case with both range and range-rate measurements, R + Az
+ El represents the case with range and angular measurements, RR + Az + El represents the case with range-rate and
angular measurements, R + RR + Az + El represents the case with all types of measurements.

It can be seen that the case with range rate and angular measurements combined shows the
worst convergence at a high value between 103 and 104. The combination of angular measure-
ments of azimuth and elevation exhibits the second-worst behaviour. This is expected since
there were multiple instances in the previous case studies where the elevation was established
as the poorly defined component. In the third position comes range rate only, which shows a
very quick convergence even with strict convergence criteria. The range and range rate com-
bined converge at more or less the same value of RMSE as the case with all measurement types.
The best-performing measurement types in terms of RMSE are the range only (shown in blue)
and the range combined with angular data (shown in purple).

To understand their behaviour better, the formal uncertainties are listed in Table 6.5, with the
corresponding RMSE value at the end of convergence. They are arranged in their order of con-
vergence, from best to worst.

It can be readily identified that the individual and combinations of range-rate and angular mea-
surements perform the worst for the nominal case. The top-two candidates are the range alone
and the range combined with angular measurements, which show comparable accuracies.



6.5. Case 4: Different measurement types 96

Table 6.5: Formal uncertainties in position and velocity for a case studying different measurement types and combi-
nations used by the radar satellite in a nominal orbit.

Measurement type Position accuracy [m] Velocity accuracy [m/s] RMSE

Range 50.08 0.0136 0.9947
Range + angular 53.33 0.0143 1.084
All 266.11 0.0667 5.123
Range + range-rate 380.19 0.0967 7.150
Range-rate 12.32 × 105 61.524 807.622
Angular 1.16 × 1057 2.15 × 1052 266
Range-rate + angular 62.87 × 106 5.39 × 106 3874.49

6.5.2. Selective prediction performance for measurement types

It was seen in Table 6.5, that the top three measurement type performers were the range only,
the range added with angular data and all measurement combinations. To introduce versatility
in the type of measurements, the range-only measurement results are not shown for analysis
here. The two interesting hybrid cases of combined range and angular data and the case with all
measurements are shown in Figure 6.44, where the absolute errors in Cartesian position and ve-
locity are shown. The convergence behaviour for the two selected measurement types is shown
as well. This is done for the nominal case but with higher inclination (Δh = 1000 km and Δi = 2.5∘)
to get better information in the z-plane.

It can be seen that the RMSE value when using all measurement types is the lowest. Moreover,
the blue curve shows slightly more errors in all the coordinates. Although range measurement
alone has exceptional accuracy, the effect of the combination of measurements is the advantage
of space-based radar. This property will be further used to reduce prediction errors.

It must be noted that the radar will collect all types of measurements to evaluate its feasibility.
This means that the performance in prediction errors or convergence can be better than what
will be obtained with all measurements. However, the choice of measurements included for WLS
is an act of post-processing and does not influence the radar parameters anymore. For the rest
of the analysis, all the measurements will be considered, whose performance will be studied.
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Figure 6.44: The absolute errors in Cartesian position and velocity components over time. The blue curve represents
the range and angular measurements combined, while the orange curve also includes the range-rate measurements.
The dotted line denotes the start of prediction, where the errors grow linearly with time for the x- and y-components
and stay constant for the z-component.
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6.6. Case 5: Different satellites and configurations

As seen earlier, measurements at 1000 km of relative altitude only allow 5 hours of continuous
surveillance. However, for long-term feasibility, the entire debris orbit must be covered for obtain-
ing measurements for any arc of the orbit. This is possible when multiple observation platforms
are employed in orbit to survey an object. This is expected to improve the accuracy and reduce
errors since combined measurements will be used to estimate the state.

In this study, a maximum of three satellites has been considered in the constellation for sim-
plicity and cost constraints. The relative phasing of the satellite plays an important role in the
measurement acquisition: where they could be in series one after the other or far apart on oppo-
site sides of the orbit. Section 6.6.1 will describe the two-satellite framework results, while the
Section 6.6.2 will describe the three-satellite configuration.

6.6.1. Two-satellite framework

Two configurations were studied for a twin-satellite framework.

• Twin-Series configuration:
Here the satellites are assumed to be in a nominal orbit with Δh = 1000 km and Δi = 2.5∘.
They are at a true anomaly of 0∘ and 5∘, respectively. This is a case where Satellite 2 imme-
diately follows behind Satellite 1, taking re-observations of the debris for a longer arc.

• Twin-Apart configuration:
Here the satellites are assumed to be in a nominal orbit with Δh = 1000 km and relative
inclination with the debris orbit of Δi = 2.5∘ and Δi = 177.5∘. They are at a true anomaly of 0∘

and 180∘, respectively. In this case, Satellite 1 covers one section of the orbit, while Satellite
2 sweeps through the other half.

Visualization of the orbits of the satellites can be seen in Figure 6.45.

Figure 6.45: For visualisation purposes, the second satellite’s inclination has been equal to 5 ∘, while the first stays at
0 ∘ inclination. The satellites are at an altitude difference of Δℎ = 1000 km.

The behaviour of the individual SNR from each of the satellites can be visualised in Figure 6.46
for the twin-series configuration and in Figure 6.47 for the twin-apart configuration. In a similar
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fashion, the range measurements collected by the two satellites are shown by the orange and
blue lines in Figure 6.48 for twin-apart and Figure 6.49 for the twin-apart configuration.

Figure 6.46: SNR collected by two satellites in the Twin-
Series configuration for 10 days.

Figure 6.47: SNR collected by two satellites in the Twin-
Apart configuration for 10 days.

Figure 6.48: Range measurements collected by two satel-
lites in the Twin-Series configuration for 10 days.

Figure 6.49: Range measurements collected by two satel-
lites in the Twin-Apart configuration for 10 days.

The position and velocity accuracy along with the RMSE for both these configurations is studied
in Table 6.6. The number of measurements collected by each of the satellites in both the config-
urations is seen in Table 6.7.

Table 6.6: Formal uncertainties in position, velocity and RMSE for a case studying a twin-observation system.

Two-satellite configuration Position accuracy [m] Velocity accuracy [m/s] RMSE

Twin-series 127.96 0.006595 13.30
Twin-apart 18.71 0.03575 5.28

Table 6.7: Number of measurements collected by satellites in the twin-satellite observation system.

Two-satellite configuration Satelite No. No. of measurements

Twin-series 1 689
2 687

Twin-apart 1 689
2 689
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It is also seen that the overall accuracy of two satellites in a twin-series configuration is worse
than for a twin-apart configuration. The number of measurements seems almost comparable
for both cases, but it must be noted that for the twin series configuration, the satellites collect
measurements that overlap with each other in a short period of time. Hence, the RMSE is higher
for the series configuration (which has to process more data together), while it is lower for the
twin-apart configuration due to measurements being collected in a different location in the orbit.

When orbit determination is carried out using two satellites, the behavior of the Cartesian com-
ponent errors can be visualised as seen in Figure 6.50. The maximum error magnitude is about
10 km in position and 75 cm/s in velocity for the configuration in series. For the triangulated
configuration, it is even less. This is because of more orbit coverage, which takes measurements
at different points in the orbit, than repeating the same arc.

Since the analysis can be extended to a maximum of three satellites, it is interesting to see the
effect of one more satellite in the system on the initial position, velocity accuracy, and prediction
errors. Moreover, it is expected that more measurements will be collected with one more satellite.
This is explored in the next section.

6.6.2. Three-satellite framework

Similarly, the twin-satellite configuration has two configurations for three satellites. They are as
follows :

• Tri-Series configuration:
Here the satellites are assumed to be in a nominal orbit with Δh = 1000 km and Δi = 2.5∘.
They are at a true anomaly of 0∘, 5∘ and 355∘, respectively. This is a case where Satellite 2
immediately follows behind Satellite 1, taking re-observations of the debris for a longer arc.

• Triangulated configuration:
Here the satellites are assumed to be in orbits with common Δh = 1000 km and Δi = 2.5∘.
They are at a true anomaly of 0∘, 120∘ and 240∘, respectively. In this case, Satellite 1 covers
one section of the orbit while Satellite 2 sweeps through the other half.

The trajectory in general can be visualized by Figure 6.51. The SNR plots for the two configura-
tions for three satellites can be seen in Figure 6.52 for the series configuration and Figure 6.53
for the triangulated configuration. Similarly, for the range using three satellites, the series range
can be seen in Figure 6.54, while the triangulated range can be seen in Figure 6.55.

The position and velocity accuracy along with the RMSE for both these configurations is studied
in Table 6.8. The number of measurements collected by each satellite in both configurations is
seen in Table 6.9.

Table 6.8: Formal uncertainties in position, velocity and RMSE for a case studying a three satellite observation system.

Three satellite configuration Position accuracy [m] Velocity accuracy [m/s] RMSE

Tri-series 296.061 0.010 37.393
Triangulated 266.116 0.097 5.123
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Figure 6.50: The errors in Cartesian coordinates are presented in blue curves for two satellites in series, while the
orange curve examines the two satellites at opposite poles of the orbit (𝜃1 = 0∘ and 𝜃2 = 180∘)

.
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Figure 6.51: For visualisation purposes, the second satellite’s inclination has been equal to 5 ∘, while the first stays at
0 ∘ inclination. The third satellite is at 175 ∘ inclination

Figure 6.52: SNR collected by three satellites in the Tri-
series configuration for 10 days.

Figure 6.53: SNR collected by three satellites in the Trian-
gulated configuration for 10 days.

Figure 6.54: Range measurements collected by three
satellites in the Tri-series configuration for 10 days.

Figure 6.55: Range measurements collected by three satel-
lites in the Triangulated configuration for 10 days.

Similar to what was seen in the 2-satellite case, the accuracy with 3 satellites can be studied for
different configurations from the above tables. The tri-series and triangulated show comparable
position accuracies, with an RMSE of almost 7.3 times larger for the series configuration. This
arises similarly because many measurements are processed simultaneously for a series, in com-
parison to the triangulated configuration, where measurements from different locations in the
orbit are collected.
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Table 6.9: Number of measurements collected by satellites in three satellite observation system.

Three satellite configuration Satelite No. No. of measurements

Tri-series 1 689
2 687
3 687

Triangulated 1 689
2 688
3 688

The results of errors in the Cartesian coordinates of the three-satellite configuration are provided
in Figure 6.56. The series configuration reaches a maximum position error of 6 km. and a maxi-
mum velocity error of 20 cm/s. This is much lower than what was obtained from a single satellite
or two satellites.

It can be seen that the triangulated 3-satellite configuration performs very well in terms of lower
prediction errors. A long-term feasibility outcome will be discussed in Chapter 7, where the pre-
diction performance will be analysed for a longer simulation time with multiple measurement
occurrences.

After going through the different parametric study cases, a sensitivity analysis for model param-
eters can be performed.

6.7. Sensitivity Analysis

A sensitivity analysis has been carried out to check the robustness of the solution to uncertain-
ties in modeling. Of the different model parameters, some of the most sensitive ones are dis-
cussed, which are expected to have the greatest influence on the results. As discussed earlier,
the nominal solution is generated using the high-fidelity model presented in Section 4.2, which
will be tested for different model parameters to see its sensitivity to changes in those parameters.

In this section, the uncertainty in the initial guess of the debris state is shortly discussed in Sec-
tion 6.7.1. Then, the effect of changing the standard deviation of Gaussian noise and bias in the
range measurements is briefly discussed in Section 6.7.2. The properties of the debris are studied
next. The effect of changing the debris mass, size and SRP coefficient are concisely analysed in
Sections 6.7.3, 6.7.4 and 6.7.5 respectively.

6.7.1. Uncertainty in initial guess of debris state for WLS

The initial state of the debris is chosen and used for computing the measurements with that
guess, which is the starter to minimize the residuals. The better the guess, the faster the conver-
gence is expected. The software selects the initial state within a defining range of values within
which the software assumes a certain value and begins the OD process. To assess the change in
performance of the solution depending on the initial state, 20 random Monte Carlo samples are
extracted within the same range. The confidence ellipse around the initial state is presented in
Figure 6.57. This gives a measure of uncertainty in the model due to the initial state guess.
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Figure 6.56: The errors in Cartesian coordinates are presented in blue curves for three satellites in series, while the
orange curve examines the three satellites are equally distributed along the orbit (𝜃1 = 0∘ and 𝜃2 = 120∘ and 𝜃3 = 240∘)
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Figure 6.57: Confidence ellipse shown for estimating initial state in X and Y for 20 random Monte Carlo samples drawn.

Table 6.10: Monte Carlo initial state samples and RMSE corresponding to the samples.

Sample No. x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s] RMSE

1 -25481.001 -33593.530 0.307 2.450 -1.859 2.60E-05 5.723
2 -25478.779 -33593.503 0.012 2.450 -1.858 8.47E-05 5.723
3 -25485.694 -33593.237 0.468 2.449 -1.859 9.61E-05 5.723
4 -25485.529 -33593.049 -0.417 2.450 -1.857 2.96E-05 4.24E+11
5 -25482.204 -33593.917 -0.334 2.450 -1.858 5.07E-06 2.74E+12
6 -25480.387 -33593.662 0.043 2.450 -1.857 -6.99E-05 5.723
7 -25480.756 -33593.460 0.345 2.450 -1.859 1.17E-05 5.723
8 -25484.763 -33593.057 0.085 2.449 -1.858 2.19E-05 6.927
9 -25479.166 -33593.570 0.145 2.450 -1.858 -7.35E-05 6.927
10 -25478.120 -33593.900 -0.253 2.450 -1.859 -1.36E-06 5.723
11 -25485.119 -33593.584 -0.219 2.449 -1.858 -4.98E-05 1.47E+11
12 -25484.548 -33593.293 0.354 2.449 -1.859 -1.33E-05 5.723
13 -25480.461 -33593.724 -0.096 2.449 -1.858 2.43E-06 2.32E+11
14 -25477.409 -33593.668 -0.112 2.450 -1.858 3.76E-05 5.723
15 -25477.744 -33593.518 -0.423 2.450 -1.859 1.26E-05 6.927
16 -25476.614 -33593.274 -0.139 2.449 -1.859 2.09E-05 5.723
17 -25480.574 -33593.475 -0.093 2.451 -1.858 -8.46E-05 5.723
18 -25477.994 -33593.162 -0.360 2.449 -1.859 -9.23E-05 3.38E+14
19 -25476.531 -33593.913 -0.236 2.449 -1.857 7.27E-05 5.723
20 -25482.790 -33593.914 0.234 2.449 -1.858 8.62E-05 5.723

As seen in Figure 6.57, the center is marked by a red dot, which corresponds to the mean of the X
and Y values. The green point refers to the point where the first measurement is collected. The
black dots refer to the Monte Carlo samples, which are seen to lie within the 2𝜎 contour of the
ellipse.
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When plotted for different points in the orbit, the ellipse’s size and orientation change from what
was shown before. In Figure 6.58, the red dot in the center corresponds to the epoch at the last
measurement. The small blue ellipse with 20 such blue dots refers to the point in orbit right after
the convergence. The green ellipse corresponds to the point of 500 epochs before the start of the
last measurement. Finally, the cyan ellipse reflects the ending epoch ellipse. It can be seen that
the size of the ellipse increases from the orbit determination phase to the orbit prediction phase,
therefore portraying the increase in uncertainty.

Figure 6.58: Confidence ellipse shown for estimating initial state in X and Y for 20 random Monte Carlo samples drawn
at four points in the orbit.

The uncertainty can be visualised by analysing the growth of the confidence interval for the en-
tire orbit simulation. The behaviour in x-coordinate can be visualised by Figures 6.59 and 6.60
for position and velocity. The same is visualised by Figures 6.61 and 6.62 for the position and ve-
locity in the y-coordinate. Similarly, the position and velocity behavior in the z-coordinate can
be represented by Figures 6.63 and 6.64. In each, the 1𝜎 region is shaded as red, followed by the
2𝜎 and 3𝜎 regions shaded as blue and green respectively.

Figure 6.59: Behaviour of the position in x-coordinate over
time, during orbit determination and prediction over 10
days, using 20 Monte Carlo samples.

Figure 6.60: Behaviour of the velocity in x-coordinate over
time, during orbit determination and prediction over 10
days, using 20 Monte Carlo samples.

The general trend is that as time of propagation increases, the uncertainty keeps increasing for
the x and y Cartesian states, while it largely remains constant for z (which is ill-defined anyways).
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Figure 6.61: Behaviour of the position in y-coordinate over
time, during orbit determination and prediction over 10
days, using 20 Monte Carlo samples.

Figure 6.62: Behaviour of the velocity in y-coordinate over
time, during orbit determination and prediction over 10
days, using 20 Monte Carlo samples.

Figure 6.63: Behaviour of the position in z-coordinate over
time, during orbit determination and prediction over 10
days, using 20 Monte Carlo samples.

Figure 6.64: Behaviour of the velocity in z-coordinate over
time, during orbit determination and prediction over 10
days, using 20 Monte Carlo samples.

6.7.2. Different noise and bias

The magnitude of the Gaussian noise was determined by the Cramer-Rao Lower bound rule while
defining the radar parameters, and the bias was assumed to be of the same order of magnitude
as that of the noise. In this subsection, the effect of changing the noise in radar measurements
is studied.

First, the bias values are changed. The amount of bias that is added to each of the individual
measurement types along with their RMSE and formal uncertainties is given in Table 6.11.
The accuracies seem to get worse with higher bias and so does the RMSE. The errors in Cartesian
coordinates due to changing bias is visualised in Figure 6.65 only for the range measurements.
Here as well, it concurs with the behaviour in accuracy, where an increase in the magnitude of
bias increases the errors over time.

Thereafter, keeping the biases constant, the values of standard deviation for Gaussian noise in
all measurement types are presented in Table 6.12.
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Table 6.11: Effect of variation of bias in measurements on orbit determination results.

Measurement type Bias added Position accuracy [m] Velocity Accuracy [m/s] RMSE

R 0.1 m 25.343 0.009 5.354
1 m 25.449 0.008 5.485

10 m 52.225 0.012 11.843
100 m 10586.071 0.327 77.784

RR 0.0001 m/s 10.353 0.033 2.527
0.001 m/s 44.986 0.205 10.192
0.01 m/s 552.446 0.228 100.586

Az + El 0.0001 rad 22.511 0.082 5.424
0.001 rad 22.479 0.082 5.418
0.01 rad 24.032 0.087 5.793
0.1 rad 74.761 0.272 18.071

Figure 6.65: Behaviour of error vs. epochs when bias added to the range measurements is varied.

Table 6.12: Effect of variation of standard deviation in measurements on orbit determination results.

Measurement type STDDEV added Position accuracy [m] Velocity Accuracy [m/s] RMSE

R 0.1 m 0.025 9.00E-06 0.986
1 m 0.256 9.00E-05 0.986

10 m 2.556 9.00E-04 0.987
100 m 22.473 0.009 1.104

RR 0.0001 m/s 0.395 0.083 0.985
0.001 m/s 1.221 0.061 0.991
0.01 m/s 6.18E+10 4.15E+06 1.38E+08

Az + El 0.0001 rad 73.383 0.485 19.819
0.001 rad 13.643 0.069 3.385
0.01 rad 4.171 0.021 1.033
0.1 rad 5.38E+07 3.42E+05 5.48E+07
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Here, the same behaviour as bias can be noticed. The position and velocity accuracies worsen
with the addition of more noise than what the radar can handle. Also, the RMSE values increase
with increasing amount of bias for all the measurements. The behaviour in prediction errors can
be visualised in Figure 6.66.

Figure 6.66: Behaviour of error vs. epochs when standard deviation added to the range measurements is varied.

The errors grow linearly over time for increasing values of noise standard deviation. This concurs
with our expectations.

6.7.3. Different debris masses

The mass of the debris was earlier assumed to be 1.413 kg assuming it to be an aluminium sphere
with a 10 cm diameter. However, this is an uncertainty that we deal with in the model, since
the mass is not entirely known. The effect of changes in debris mass is studied by keeping the
diameter constant at 10 cm and varying the mass of the debris object for four values given in
Table 6.13.

Table 6.13: Effect of variation of debris masses on orbit determination results. The diameter has been assumed to be
constant at 10 cm, meaning that the material can be different.

Debris mass [kg] Position accuracy [m] Velocity Accuracy [m/s] RMSE

0.1 4.934 0.016 1.352
1 5.117 0.015 1.408
3 4.987 0.015 1.374
10 5.112 0.015 1.406

The changes in position and velocity accuracy do not change much with changing masses. The
same behaviour is seen for the RMSE, which oscillates around an average value of 1.4. So far not
a lot has been inferred on the effect of varying debris mass, for which the prediction errors are
also analysed in Figure 6.67.
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Figure 6.67: Behaviour of error vs. epochs when debris mass is varied for a 10 cm object.

It is hence seen that the errors are very close to each other for the four cases of varying masses
with constant RCS. It is hence concluded that the position and velocity errors and accuracies do
not significantly vary with the mass.

6.7.4. Different debris sizes

Similar to the debris mass, the size of the debris was assumed to be 10 cm for the simulation. In
reality, a wide range of small-sized debris in a debris cloud could be the target for INDIGO. Hence,
it is important to study the effect of changing debris diameter (still assuming it to be circular in
shape).

Four debris diameter sizes of 2 cm, 5 cm, 10 cm, and 20 cm have been studied. The values of
position and velocity accuracies and the RMSE have been provided in Table 6.14.

Table 6.14: Effect of variation of debris sizes on orbit determination results. The mass of the debris has been considered
to be 1.413 kg, similar to the original simulation conditions.

Debris diameter [cm] Position accuracy [m] Velocity Accuracy [m/s] RMSE No. of obs.

2 5747.452 0.361 9.382 531
5 10.365 0.031 0.995 1222
10 7.875 0.025 2.009 1873
20 3.148 0.043 1.589 2746

It is seen that for the debris of size 2 cm, the accuracy is the worst. However, this is mainly at-
tributed to the lack of measurements for smaller sizes since the radar is sensitive to the SNR
which depends directly on the target RCS. A smaller object reduces higher power for detection,
which is not sufficient with the assumed power of 1 kW.
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The evolution of errors over time is also analogously studied for the case with varying debris
sizes. It is presented by Figure 6.68.

Figure 6.68: Behaviour of error vs. epochs when debris size is varied with a mass of 1.413 kg.

The blue curve depicts the 2 cm size debris object’s error. The rest of the sizes are quite close
to each other in the error plots, due to comparable position and velocity accuracies resulting as
a result of their individual number of observations. It can be hence concluded that the position
and velocity errors and accuracies vary with changes in debris diameter, which is a sensitive
parameter of this study.

6.7.5. Different SRP coefficients

The surface property of the debris is another uncertainty in the model. The debris object in the
simulation is assumed to be entirely reflective (𝐶𝑟 = 2). However, there can be different sources
and types of debris, which have different surface properties and hence variable SRP coefficients.
Hence, this subsection studies the effect of varying SRP coefficients between 0.5 and 2 (ranging
from fully absorbing to fully reflective debris surfaces).

The position and velocity accuracies along with the RMSE values for the different 𝐶𝑟 values are
presented in Table 6.15.

Table 6.15: Effect of variation of SRP coefficient on orbit determination results. The debris mass considered is 1.413 kg
and the debris diameter is considered to be 10 cm.

𝐶𝑟 [-] Position accuracy [m] Velocity Accuracy [m/s] RMSE

0.5 4.528 0.014 1.157
1 4.527 0.013 1.155

1.5 4.528 0.014 1.157
2 4.528 0.014 1.157
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The values in position and velocity accuracy are on average equal to 4.5 m and 0.0135 m/s for the
different SRP coefficients. It means that regardless of the surface properties, the orbital formal
errors and RMSE remain greatly unaffected.

The errors in Cartesian position and velocity evolving over time can be visualised in Figure 6.69.
It can be seen that the error plots overlap with each other even for errors in the z-direction. This
implies that the 𝐶𝑟 has very little impact on the overall orbital accuracy and prediction errors in
the debris orbit.

Figure 6.69: Behaviour of error vs. epochs when SRP coefficient is varied.

Now that the different cases have been studied, along with performing a sensitivity analysis for
model parameters and initial debris guess, the next chapter will assess the feasibility of the solu-
tion and present optimal choices for the parameters studied. Research questions will be revisited
and answered using the work done in the research, which was summarised in this chapter.
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7
Application of the study

Dedicated to reflecting on the results obtained throughout the study, this chapter aims to fulfill
the overall research goal defined in Chapter 2. After determining the performance metrics for OD
and analysing the trends of changing some critical parameters, a design space must be scanned
to get the optimal values, which can suggest a feasible or non-feasible outcome for the study.

The feasibility will be evaluated on the orbit determination accuracy performance, which will be
compared to the accuracy of TLE data for trackable GEO objects. As per the work of Früh et al.
[58], the position accuracy of the TLE for a GEO object is claimed to be 25 km in the radial direc-
tion and 10 km in the along-track direction. Not much information about velocity accuracy is
available in the literature, which gives priority to position accuracy for computation of accuracy.
The accuracy for the most feasible configuration will be compared to this value from the ground
to answer the question of space-based radar feasibility in terms of performance.

7.1. Revisit time

It was seen earlier in Section 6.3, that an altitude difference of 250 km was the best in terms of
lower positions and velocity errors. However, it has a longer latency time due to a higher synodic
period, before a revisit can occur. Hence, to study revisits, the observation satellite is modeled at
an altitude difference of 500 km. This is propagated using the initial conditions as discussed in
Table 4.6. The propagation is done for close to 4 months to evaluate its long-term feasibility. The
collected measurements are shown by Figure 7.1 for range, Figure 7.2 for range rate, Figure 7.3 for
azimuth and Figure 7.4 for elevation.

Three revisits are seen, occurring after intervals of close to 58 days. This is shown by the blue
crosses denoting observations. The red curves show the estimated measurements from the mea-
surements collected. This corresponds to the synodic period of the satellite and debris for that
altitude difference.

It is important to know how much error is present for the period before a measurement is col-
lected to demonstrate the impact of space-based measurements. By a rule of thumb, it can be
considered a good observation system if the errors in each coordinate are not extremely large
before the next measurement opportunity.
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Figure 7.1: The revisiting contact seen after almost 58 days for Δ h = 500 km, which corresponds with the synodic
period as predicted before. There are 3 revisit instances for almost 4 months.

Figure 7.2: The range-rate measurements can be seen to fit through the estimated observables, showing the three
instances of revisit

The behaviour of the errors in Cartesian position and velocity coordinates is seen in Figure 7.5.

The trend can be seen in this plot, where the errors keep increasing due to prediction with the
measurement data set till a new measurement is obtained. The maximum position error in x, y
and z coordinates is almost 20 km. The error grows linearly over time for the x and y coordinates,
while for z it is still ill-determined and maintains a constant behaviour of oscillations. The mag-
nitude of errors in the z position and velocity decreases with the next observation opportunity,
while the pattern is repeated for the x and y coordinate errors. The error is reduced with a revisit
immediately since the satellite now has new information about the debris’ state, which can be
used in another OD process to update the position and velocity of the debris.
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Figure 7.3: The revisiting contact seen after almost 58 days for Δ h = 500 km, which corresponds with the synodic
period as predicted before. There are 3 revisit instances for almost 4 months.

Figure 7.4: The revisiting contact seen after almost 58 days for Δ h = 500 km, which corresponds with the synodic
period as predicted before. There are 3 revisit instances for almost 4 months.

By this exercise, it can be inferred that one satellite at a relative altitude difference of 500 km and
relative inclination difference of 2.5∘ can have three revisits in four months, leading to maximum
position errors in the magnitude of 20 km and maximum velocity errors in the magnitude of 40
𝜇s.
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Figure 7.5: The behaviour of the prediction errors when the satellites at Δ h = 500 km and Δ i = 2.5 ∘ revisit the debris at
GEO. The true values grow to about 20 km in 𝑥, 𝑦 and 𝑧, then decrease again since there are new sets of measurements
to fit. The error in position is in the order of 75 m and for velocity is in the order of 40 cm/s
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7.2. Optimisation of design space and parameters

It was seen that the parameters Δh and Δi have a significant role on the quality of measurements
and hence the accuracy of orbit determination. It was also seen that a three-satellite configura-
tion performed better in terms of predicted errors in position and velocity over time. Having iden-
tified the crucial parameters which affect OD quality, a simple grid is created, varying through
different altitude and inclination values of three satellites in a triangulated configuration.

An infinite number of cases could be possible but would not be performed here. This study only
considers a limited grid, keeping the first satellite at a constant Δh value of 500 km and Δi value
of 0∘. The remaining two satellites are varied in those values, resulting in 25 grid points to be
studied. The cases are presented in Table 7.1.

Table 7.1: The grid points for different combinations of Δh and Δi for three satellites, that are studied to optimise the
overall OD quality.

Δh [km] Δi [∘]
Case Satellite 1 Satellite 2 Satellite 3 Satellite 1 Satellite 2 Satellite 3

1 500 500 500 0 1 179
2 500 600 400 0 1 179
3 500 700 300 0 1 179
4 500 800 200 0 1 179
5 500 900 100 0 1 179
6 500 500 500 0 2 178
7 500 600 400 0 2 178
8 500 700 300 0 2 178
9 500 800 200 0 2 178
10 500 900 100 0 2 178
11 500 500 500 0 3 177
12 500 600 400 0 3 177
13 500 700 300 0 3 177
14 500 800 200 0 3 177
15 500 900 100 0 3 177
16 500 500 500 0 4 176
17 500 600 400 0 4 176
18 500 700 300 0 4 176
19 500 800 200 0 4 176
20 500 900 100 0 4 176
21 500 500 500 0 5 175
22 500 600 400 0 5 175
23 500 700 300 0 5 175
24 500 800 200 0 5 175
25 500 900 100 0 5 175

For the cases mentioned in the above table, the OD exercise is performed for a duration of 1.5
months. Taking a longer simulation time would introduce revisits and make the process more
complicated, over which a simplistic analysis was preferred. The performance metrics evaluated
in this case are the average position and velocity errors in the prediction phase, the initial posi-
tion and velocity accuracy or formal uncertainty, and the number of measurements collected in
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that configuration. The overall results are presented in a bar plot with the cases on the x-axis and
a log scale on the y-axis in Figure 7.6. The initial position accuracy is labeled in blue, followed
by the initial velocity accuracy in orange. The number of measurements are labeled in green,
followed by the average errors in position and velocity predictions labeled in red and purple re-
spectively.

Figure 7.6: OD performance results obtained for the 25 cases listed in Table 7.1, by means of a simple Grid search.

At a single glance, it is difficult to draw conclusions on the optimal satellite configuration geome-
try. The error and accuracy must be minimal and the number of measurements maximum for an
optimal OD quality. To analyse them closely, Figure 7.6 has been divided into five regions, which
signify the changing inclinations. Inside each of these regions, the altitude difference is then
varied. Each of the regions is considered individually, to highlight the most interesting case to
analyse further.

Region I: The first five cases from the grid space are considered for analysis here. The metrics in
Region I are plotted in a polar plot, also known as a ‘radar’ plot. This is seen in Figure 7.7.

Figure 7.7: Radar plot on a log scale for Region I, demonstrating the OD quality metrics. The inclination values are Δ𝑖1
= 0∘, Δ𝑖2 = 1∘ and Δ𝑖3 = 179∘. The logarithmic range of the polar plot is from 10−4 to 104.
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The first vertex denoting the number of measurements is seen to be of the same order of magni-
tude for all the cases, due to their relative inclinations being equal. The red curve denoting Case
2 shows the highest position and velocity errors and the worst accuracy. The blue (Case 1), purple
(Case 4) and yellow (Case 5) curves behave very closely, out of which Case 4 is relatively better.
The green curve depicting Case 3 for relative inclinations Δ𝑖1 = 0∘, Δ𝑖2 = 1∘ and Δ𝑖3 = 179∘ and
relative altitudes Δℎ1 = 500 km, Δℎ2 = 700 km and Δℎ3 = 300 km have comparable accuracies
with the rest of the cases. However, it performs the best in terms of least average position and
velocity errors, making it the top choice from Region I. Hence, Case 3 will be carried forward to
the second round of grid search.

Region II: Similarly, the next five cases from the grid space (Cases 6 - 10) are considered for anal-
ysis here. The metrics in Region II are plotted in a similar radar plot. This is seen in Figure 7.8.

Figure 7.8: Radar plot on a log scale for Region II, demonstrating the OD quality metrics. The inclination values are
Δ𝑖1 = 0∘, Δ𝑖2 = 2∘ and Δ𝑖3 = 178∘. The logarithmic range of the polar plot is from 10−4 to 104.

The first vertex again denotes the number of measurements for all the cases, which are almost
the same for all cases in this region due to their equal relative inclinations. The blue curve denot-
ing Case 6 shows the highest position and velocity errors and the worst accuracy. The red (Case
7), green (Case 8) and purple (Case 9) curves behave very closely, out of which Case 8 is relatively
better by showing lower average velocity errors. The yellow curve depicting Case 10 for relative
inclinations Δ𝑖1 = 0∘, Δ𝑖2 = 2∘ and Δ𝑖3 = 178∘ and relative altitudes Δℎ1 = 500 km, Δℎ2 = 900 km
and Δℎ3 = 100 km have comparable accuracies with the rest of the cases. However, it performs
the best in terms of least average velocity error and highest position accuracy making it the top
choice from Region II. Hence, Case 10 will be carried forward to the second round of grid search.

Region III: Similarly, the subsequent five cases from the big grid space (Cases 11 - 15) are consid-
ered for analysis here. The metrics in Region III are plotted in a similar radar plot. This is seen in
Figure 7.9.
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Figure 7.9: Radar plot on a log scale for Region III, demonstrating the OD quality metrics. The inclination values are
Δ𝑖1 = 0∘, Δ𝑖2 = 3∘ and Δ𝑖3 = 177∘. The logarithmic range of the polar plot is from 10−4 to 104

In this plot, no good or bad case is easily visible. The first vertex again denotes the number of
measurements for all the cases, which are almost the same for all cases in this region due to
their equal relative inclinations. All the cases have comparable position errors, with the yellow
curve (Case 15) having the highest value and the blue curve (Case 11) having the least value. The
purple curve (Case 14) has a worse velocity accuracy but a lower overall error in velocity. The red
(case 12) and green (Case 13) curves perform almost similarly except for the position accuracy,
where Case 13 performs worse. Overall, the blue curve or Case 11 for relative inclinations Δ𝑖1 =
0∘, Δ𝑖2 = 3∘ and Δ𝑖3 = 177∘ and relative altitudes Δℎ1 = 500 km, Δℎ2 = 500 km and Δℎ3 = 500 km
performs the best in all the metrics, making it the top choice from Region III. Hence, Case 11 will
be carried forward to the second round of grid search.

Region IV: Similarly, the subsequent five cases from the big grid space (Cases 16 - 20) are consid-
ered for analysis here. The metrics in Region IV are plotted in a similar radar plot. This is seen
in Figure 7.10.

Figure 7.10: Radar plot on a log scale for Region IV, demonstrating the OD quality metrics. The inclination values are
Δ𝑖1 = 0∘, Δ𝑖2 = 4∘ and Δ𝑖3 = 176∘. The logarithmic range of the polar plot is from 10−4 to 104.
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Similar to Region III, also in Region 4 no good or bad case is easily visible. The first vertex again
denotes the number of measurements for all the cases, which are almost the same for all cases in
this region due to their equal relative inclinations. All the cases have comparable position errors,
with the purple curve (Case 19) having the highest value and the blue curve (Case 16) having the
least value. Case 19 has a worse velocity accuracy, but the green curve (Case 18) has the highest
average velocity error. The red (Case 17) and yellow (Case 20) curves perform almost similarly
except for the average velocity error, where Case 20 performs worse. Overall, the blue curve or
Case 16 for relative inclinations Δ𝑖1 = 0∘, Δ𝑖2 = 4∘ and Δ𝑖3 = 176∘ and relative altitudes Δℎ1 = 500
km, Δℎ2 = 500 km and Δℎ3 = 500 km performs the best in all the metrics, making it the top choice
from Region III. Hence, Case 16 will be carried forward to the second round of grid search.

Region V: Finally, the last five cases from the big grid space (Cases 21-25) are considered for anal-
ysis here. The metrics in Region V are plotted in a similar radar plot. This is seen in Figure 7.11

Figure 7.11: Radar plot on a log scale for Region V, demonstrating the OD quality metrics. The inclination values are
Δ𝑖1 = 0∘, Δ𝑖2 = 5∘ and Δ𝑖3 = 175∘. The logarithmic range of the polar plot is from 10−4 to 104.

The first vertex again denotes the number of measurements for all the cases, which are almost
the same for all cases in this region due to their equal relative inclinations. The green curve (Case
23) shows the highest average position and velocity errors, followed by the purple curve (Case 24)
which shows the worst accuracy in position and velocity. The red (Case 22), yellow (Case 25), and
blue (Case 21) curves behave together, where Case 25 behaves worse than Case 22 in velocity ac-
curacy and position accuracy. The blue curve depicting Case 21 for relative inclinations Δ𝑖1 = 0∘,
Δ𝑖2 = 5∘ and Δ𝑖3 = 175∘ and relative altitudes Δℎ1 = 500 km, Δℎ2 = 500 km and Δℎ3 = 500 km is the
most interesting case. It performs the best in terms of least average position and velocity errors
as well as the highest position and velocity accuracies making it the top choice from Region V.
Hence, Case 21 will be carried forward to the second round of grid search.

Overall Grid Search

After selecting each case from each region of the Grid space, Figure 7.6 now looks like Figure 7.12.
The selected cases are highlighted whereas the remaining are kept blurred.

As discussed earlier, the best-performing cases are Case 3 from Region I, Case 10 from Region II,
Case 11 from Region III, Case 16 from Region IV and Case 21 from Region V. The purpose of per-
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Figure 7.12: Overall bar plots in the total grid of 25 configurations, from which the best of each section is selected to
create a smaller grid of 5 configurations.

forming the first-level grid search is to narrow down the optimum range of parameters for which
an optimal quality orbit determination can be performed by INDIGO. When the five selected pa-
rameters are individually tested against the same performance metrics, Figure 7.13

Figure 7.13: Radar plot on a log scale for the best-performing cases from each section for demonstrating the OD quality
metrics. The best case is Case 16 for which the inclination difference values are Δ𝑖1 = 0∘, Δ𝑖2 = 4∘ and Δ𝑖3 = 176∘, and
the altitude difference values are Δℎ1 = 500 km, Δℎ2 = 500 km and Δℎ3 = 500 km. The logarithmic range of the polar
plot is from 10−4 to 104.

Looking at the radar plot, it can be seen that all candidates perform almost equally in terms of
the number of measurements, position and velocity accuracy. The decisive factors are hence the
average errors in position and velocity. The blue curve (Case 3) performs the worst in velocity
errors, but the red curve (Case 10) performs the worst in position errors. The yellow curve (Case
21) performs the best in terms of velocity errors, but not the best for position errors, whereas the
purple curve (Case 16) performs the best. The green curve (Case 11) does not perform the best or
worst in any of the criteria. Apart from the best position error performance, Case 16 has fewer
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velocity errors, while Case 21 performs worse in velocity accuracy than Case 11. This implies that
Case 16 is the most optimal configuration determined from this particular Grid Search, which is
recommended for further analysis for feasibility.
After researching on the aspects of orbit propagation, radar functionalities, and effects of chang-
ing model parameters on orbit determination quality, it is time to re-iterate the research goal and
revisit the research questions.

7.3. Research Questions revisited

This section will discuss the three research questions defined at the end of Chapter 2. We will
start with the first research question of the study.

Research question 1

Is using a space-based radar system feasible for space surveillance and tracking of small-
sized debris objects in GEO?

• What are the performance metrics that determine the system’s feasibility?
• How does the performance of the space-based system compare with conventional

ground-based SSA systems?

Answer:

A space-based radar named INDIGO was explored for its design and detection performance to
observe small-sized objects in GEO in the range of 1 to 10 cm. It was seen that the range at which
the satellite must be placed in orbit is derived from the different object sizes targeted. From Fig-
ure 7.14, it can be seen that at 1000 km, it is possible to detect a spherical object of diameter 5.2
cm. For a 1 cm-sized object, though, for the reference SNR value selected for INDIGO, the target
must be between 250 km to 500 km away for proper detection.

Figure 7.14: SNR varies with the fourth power of the range to the target, which is different for different objects. The
labeled colors show the threshold value of SNR for different object sizes.

Similarly, as seen in Figure 7.15, a 1 mm object is not detected at 1000 km but is rather detected
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only for distances less than 200 km, which was not a part of the study. A 10 cm object (as what
was studied) can easily be detected by INDIGO even at a maximum distance of 1400 km.

Figure 7.15: SNR varies with the RCS of an object, which is shown for different ranges.

The main aspect of Question 1, of the feasibility of INDIGO to detect small-sized objects can now
be answered. For the given ranges of target sizes, the radar performance showed that it was fea-
sible for detecting and surveillance of small objects.

Sub-question 1 :

The metrics that were used to define INDIGO’s feasibility were its orbit determination quality and
its performance in detecting and tracking small-sized objects. They are mentioned below:

• Its measurement quality is given by the weighted sum of squares of the residuals (RMSE).
The smaller the RMSE, the better the measurements are for orbit fitting.

• Measurement quantity: the higher the number of measurements recorded, the better the
orbit fitting performance is.

• The absolute error behavior of the system’s orbit determination performance. This shows
the trend of the errors w.r.t time, which gives an idea about its uncertainty in orbit prediction.

• The accuracy with which the initial state of the debris object is estimated. This is also
known as the formal position and velocity uncertainties.

• Revisit time and geometry: The configuration of the satellite’s orbit affects the number of
measurements and hence the system performance.

Sub-question 2 :

The accuracy of TLE data for GEO was found to be almost 27 km in position [58]. So far, all the
values found for the accuracy in position for any of the configurations or cases were better than
this value. In fact, for the most optimal configuration, the position accuracy of 19 m was obtained,
which is considerably smaller than 27 km. Since other metrics for ground-based systems could
not be found in previous studies, only the position accuracy has been used for a fair comparison.
Based on that assumption, compared to conventional ground-based systems, INDIGO achieves a
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higher position accuracy value, thus proving that it is feasible in terms of performance.

The second research question can now be tackled.

Research question 2

How do the dynamic model parameters, observation types, and trajectory prediction out-
come contribute to the feasibility assessment of the system?

• For which type or settings of the orbit propagation model is the system’s feasibility
assessed, given a requirement on orbit accuracy?

• Which category or combinations of collected in-situ measurements lead to the opti-
mal performance of the space-based system?

• How well is the orbit determination scheme capable of predicting the debris orbit
when the system collects no measurements?

Answer:

The dynamic model parameters and observation types that were studied are useful in answering
this question.

Sub-question 1:

The orbital model considered the perturbations of 𝐽2, 𝐽2,2 spherical harmonics, perturbations
from the third body Sun and Moon, and solar radiation pressure. An analysis on step size tuning
was performed in Chapter 6, where there was a trade-off that needed to be made between posi-
tion accuracy obtained and computation time. A simple analysis is shown in Figure 7.16, which
shows dt = 50 s to be the balance between position accuracy and computation time. However,
the errors in position and velocity are higher, for which it is not selected. Rather, the originally
chosen time step dt of 25 seconds is established as the optimal choice for step-size selection.

Figure 7.16: Choice of step-size depending on position accuracy and time of computation.

Hence, the step size for integration of orbital propagation and estimation is tuned to 25 seconds,
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which is also equal to INDIGO’s integration time.

Sub-question 2:

Range measurements performed the best in terms of initial state accuracy and convergence for
cases with zero inclination between the orbits of the debris and the satellite. When a slight in-
crease in inclination was observed, the combination of range, range-rate, and angular measure-
ments was seen to perform optimally. This gives the freedom to use more types of measurements
and acts as an advantage over typical optical systems, which take angular data for GEO objects.
More variety of measurements makes the system capable of significantly improving the accu-
racy in position and velocity.

Sub-question 3:

As seen in the revisit time errors in Figure 7.5, the maximum position error using all measure-
ments was 75 m, and the maximum velocity error was 40 cm/s. After this, there was a new mea-
surement opportunity, which reduced the errors again.

Now the final research question can be explored.

Research question 3

How sensitive is the orbit determination accuracy of small-sized debris objects in GEO to
changes in uncertainties and satellite geometric configuration?

• How do changes in the system noise and uncertainties affect the accuracy of the orbit
determination and prediction?

• At what optimal orbital altitude and inclination must the system be positioned to
obtain the best possible orbit determination and prediction accuracy?

• To what extent does the performance of the system improve if extra tracking satel-
lites are introduced, and what would be the optimal geometric configuration?

Answer:

A sensitivity analysis was performed, which identified the most crucial parameters for the opti-
misation problem. For instance, looking at Figure 7.17, it can be seen that debris of size 10 cm can
be detected with a position accuracy of 10 m and a velocity accuracy of 0.1 m/s.
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Figure 7.17: Variation of debris size with the orbit determination black-box outputs, which are uncertainty in position
and velocity.

Sub-question 1:

Adding noise and bias to the true measurements is to make them close to reality. The magni-
tude of the standard deviation of the noises added to the measurements was determined by the
Cramer-Rao lower limit, which depends on the radar parameters. The bias values were chosen
randomly in the same order of magnitude, which were used for generating the orbit determina-
tion results.

However, the exact magnitudes are still uncertainties in the model, for which the effect of chang-
ing the standard deviation values was studied in Section 6.7.2. By increasing the magnitude of
bias and noise standard deviations, the orbit’s accuracy in position and velocity worsened, along
with growing errors in position and velocity.

Sub-question 2 and 3:

A grid search exercise was performed in Section 7.2, which went through 25 grid points and di-
vided the space into five regions based on their combinations of Δh and Δi. Each best-performing
case was selected from the five regions to perform another grid search optimisation and declare
the most optimal configuration for those sets of grid points.

The most optimal configuration was Case 16, with three satellites in a triangulated configuration.
The individual Δh and Δi parameters per satellite were Δℎ1 = 500 km and Δ𝑖1 = 0∘ for Satellite 1,
Δℎ2 = 500 km and Δ𝑖2 = 4∘ for Satellite 2 and Δℎ3 = 500 km and Δ𝑖3 = 176∘ for Satellite 3.

After discussing the various elements from each chapter in the report, it is time for an overall
conclusion, which summarises all key aspects for the reader. This is presented in Chapter 8.
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8
Conclusions and Recommendations

The earlier chapters extensively explored the required knowledge, methodology and results to
achieve an answer to the research goal defined in Chapter 2. This chapter serves as a culmination
of this research, presented in Section 8.1, which is aimed to summarise the key findings from the
theory and numerical simulation results. Alongside, the areas requiring further investigation
and work are highlighted in Section 8.2, which is aimed to highlight the limitations of the current
study and make recommendations for further work.

8.1. Conclusions

Space debris poses significant challenges to current and future space missions, as even the tini-
est fragments can pose serious threats to operational satellites and spacecraft. This study aimed
to assess the space situational awareness capability of a space-based radar system, which sur-
veys and detects small-sized debris objects in the geostationary orbital regime, to overcome the
limitations posed by ground-based sensing systems. Three research questions were defined at
the start of the study in Chapter 2, answered in this thesis report in Chapter 7.

The thesis methodology was based on numerically simulating the orbit of an observation satellite
in a sub-GEO regime, such that it can observe a small-sized debris object in the GEO ring using a
radar instrument. The INDIGO radar is selected as a pulsed waveform phased array radar with a
planar surface. It has 20 antenna elements, with an individual power of 50 W, leading to a total
power of 1 kW. Its operating frequency is 18 GHz, and it can target objects within 1 to 10 cm. It has
a pulse compression ratio factor of 1000, which amplifies signals it receives, to receive a thresh-
old Signal-to-Noise Ratio (SNR) value of 10 dB. The design process was explained in Chapter 4 of
the report, which bases Chapter 3 as the theoretical framework for the methods used. The orbit
propagation model is developed in Python, using standard NumPy and SciPy tools, which incor-
porate the relevant orbital accelerations of the GEO regime: 𝐽2 spherical harmonics, 𝐽2,2 spherical
harmonics, third-body perturbations due to Sun and Moon and Solar radiation pressure. A fixed-
step Runge-Kutta 4 integrator propagates the state of the debris object and the satellite every
25 seconds. The radar collects instantaneous measurements and adds Gaussian noise and bias
to its measurements: range, range rate, azimuth, and elevation. It then uses the Weighted Least
Squares method to estimate the debris’s initial state by fitting the orbit through the observed mea-
surements.

The methodology is validated using external software (TUDATPy and Poliastro) in Chapter 5. The
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research results are explained in Chapter 6. Several test cases are analysed in that chapter by
studying the effect on orbit determination quality due to varying integration step sizes, noise
parameters, altitude difference, inclination difference, types of measurements, and the number
of satellites in the constellation. Further, a sensitivity study was conducted to study the effect
of uncertainties in the model and its results. In Chapter 7, the simulation was carried out for
four months to demonstrate successful re-capturing of measurements upon revisit. This was
followed by a simple optimisation process where a grid search was performed on 25 cases on a
three-satellite triangulated configuration. The parameters varied were the satellite’s relative alti-
tude and inclinations, after which a second round of optimisation established the best perform-
ing or most optimal configuration. It was seen that Case 16, was the most optimal configuration
compared to the remaining 24 grid points in that optimisation space. The individual Δh and Δi
parameters per satellite were Δℎ1 = 500 km and Δ𝑖1 = 0∘ for Satellite 1, Δℎ2 = 500 km and Δ𝑖2 =
4∘ for Satellite 2 and Δℎ3 = 500 km and Δ𝑖3 = 176∘ for Satellite 3. This configuration was seen to
have an accuracy of 19 m in position and 40 𝜇s in velocity, and is capable of sweeping the entire
GEO orbit, therefore inventorying and updating the RSO catalogue.

Compared to the accuracy of TLE (27 km position error) obtained from ground-based systems,
INDIGO performs better in orbit determination and prediction than most optical ground-based
telescopes, which only use angular data to track small-sized GEO objects. This declares it as a
feasible conceptual system, which can be taken to the next level of research before manifest-
ing it in reality. Some recommendations were provided at the end of the study, which a future
researcher could utilise to broaden this proof-of-concept study and contribute to the field of ad-
vanced space situational awareness.

8.2. Recommendations

This research was the first approach to the proof-of-concept study, which took a preliminary step
towards obtaining the feasibility outcome. Certain aspects of the study were not addressed due
to lack of time and resources, which I would like to mention as recommendations for future study,
which can take this research to the next level.

The variational equations only incorporated the state transition matrix and did not account for
the uncertainties of the model force parameters. Hence, including a sensitivity matrix would
yield more accurate results. The effects of light-time and relativity have been ignored in this
study, along with clock errors. Although their effects might seem small, they do influence the
trajectory determination and initial state estimation by a few meters in position. This is a hin-
drance for POD, especially where the desired accuracy in position is less than a meter [44], and
hence should be considered in the orbit estimation model. The radar module simply acts as a
black-box but does not implement the phased array beam steering concept for more angular in-
formation. Moreover, there could be a study for a powerful radar that could function at lower
altitudes to sweep the entire GEO ring quicker. A smaller sub-level study could be done to inves-
tigate a better radar configuration, which can perform better than INDIGO and also do so for low
power and cost. This study was a proof-of-concept that assumed just one debris object. In real-
ity, there will be debris clouds with different angular velocities and orbital properties. To see if
the satellite configuration can sweep information on the entire debris ring is an interesting next-
level task that could be done. Implementing the radar to cubesats or nanosatellites, such that
there can be many such objects flying around in a formation flying, regularly tracking the object
is one more exciting case that can be studied. In this case, however, for real-time applications, a
Kalman Filter estimation method would be preferred to WLS method used here.



References 130

References

[1] Sophie Kaineg. “The Growing Problem of Space Debris”. In: Hastings Environmental Law
Journal 26 (2020), pp. 277–288.

[2] Nicholas L Johnson. “Evidence for historical satellite fragmentations in and near the geosyn-
chronous regime”. In: Space Debris. Vol. 473. 2001, pp. 355–359.

[3] B. Lal et al. “Position Paper: Space Traffic Management”. In: Global trends in Space Situa-
tional Awareness (SSA) and Space Traffic Management (STM). IDA Science and Technology
Policy Institute. 2018, pp. 1–153.

[4] Delphine Cerutti-Maori et al. “Preliminary concept of a space-based radar for detecting mm-
size space debris”. In: Proc. 7th European Conf. on Space Debris. Vol. 7. 2017.

[5] Loretta Hall. “The history of space debris”. In: Space Traffic Management Conference 19
(2014), pp. 2–14.

[6] W. Flury and JM. Contant. “The updated IAA position paper on orbital debris”. In: Space De-
bris. Vol. 473. 2001, pp. 841–849.

[7] UNOOSA. 2023. URL: https://www.unoosa.org/oosa/osoindex/search-ng.jspx?lf_id=.
(accessed: 30.07.2023).

[8] Space Debris User Portal. 2023. URL: https://sdup.esoc.esa.int/discosweb/statistics/.
(accessed: 01.07.2023).

[9] D. J. Kessler et al. “The Kessler syndrome: implications to future space operations”. In: Ad-
vances in the Astronautical Sciences 137.8 (2010).

[10] Brian Weeden. “2007 Chinese Anti-Satellite Test Fact Sheet”. In: Secure World Foundation,
Updated November 23 (2010), pp. 1–3.

[11] Brian Weeden. “Iridium-Cosmos collision fact sheet”. In: Secure World Foundation (2010),
pp. 1–3.

[12] Joseph S. Imburgia. “Space debris and its threat to national security: a proposal for a binding
international agreement to clean up the junk”. In: Vanderbilt Law Review 44 (2011), pp. 589–
641.

[13] Bohumil Doboš and Jakub Pražák. “Master spoiler: a strategic value of Kessler Syndrome”.
In: Defence Studies 22.1 (2022), pp. 123–137.

[14] Stefan Frey, Stun Lemmens, et al. “Status of the space environment: current level of adher-
ence to the space debris mitigation policy”. In: Journal of the British Interplanetary Society
70.2-4 (2017), pp. 118–124.

[15] P. Wegener et al. “Population evolution in the GEO vicinity”. In: Advances in Space Research
34.5 (2004), pp. 1171–1176.

[16] D.L. Oltrogge et al. “A comprehensive assessment of collision likelihood in Geosynchronous
Earth Orbit”. In: Acta Astronautica 147 (2018), pp. 316–345.

[17] S. Riepl et al. “First results from an ESA study on accurate orbit determination with laser
tracking of uncooperative targets”. In: Proceedings of the 7th European Conference on Space
Debris, Darmstadt, Germany. 2017, pp. 18–23.

https://www.unoosa.org/oosa/osoindex/search-ng.jspx?lf_id=
https://sdup.esoc.esa.int/discosweb/statistics/


References 131

[18] Z. Li, Y. Wang, and W. Zheng. “Space-based optical observations on space debris via multi-
point of view”. In: International Journal of Aerospace Engineering 2020 (2020). DOI: https:
//doi.org/10.1155/2020/8328405.

[19] A Manis et al. “The Updated GEO Population for ORDEM 3.1”. In: International Orbital Debris
Conference (IOC). JSC-E-DAA-TN73673. 2019.

[20] Thomas Schildknecht. “Optical astrometry of fast moving objects using CCD detectors.” In:
Geod.-Geophys. Arb. Schweiz 49 (1994).

[21] T. Flohrer et al. “Feasibility of performing space surveillance tasks with a proposed space-
based optical architecture”. In: Advances in Space Research 47.6 (2011), pp. 1029–1042.

[22] H. Krag et al. “Preliminary concept of a space-based radar for detecting mm-size space de-
bris”. In: Proceedings. 7th European Conference on Space Debris, Darmstadt, Germany. 2017.

[23] E. Schrama. “AE4872 Satellite Orbit Determination : Tracking, refraction and relativity”. In:
TU Delft lecture Notes (2021).

[24] The United Nations Office for Outer Space Affairs. “Space Debris Mitigation Guidelines of
the Committee on the peaceful uses of outer space”. In: Space Debris Mitigation Guidelines.
The United Nations. 2010.

[25] James Murray and Timothy Kennedy. “Haystack Ultra-Wideband Satellite Imaging Radar
Measurements of the Orbital Debris Environment: 2020”. In: National Aeronautics and Space
Administration (2020). URL: https://ntrs.nasa.gov/citations/20220006634.

[26] R. Lupo et al. “Lighthouse: A spacebased mission concept for the surveillance of geosyn-
chronous space debris from low earth orbit”. In: Advances in Space Research 62.12 (2018),
pp. 3305–3317.

[27] Karel F. Wakker. “Fundamentals of Astrodynamics: Course AE4874”. In: Delft University of
Technology Online Repository (2015). URL: http://resolver.tudelft.nl/uuid:3fc91471-
8e47-4215-af43-718740e6694e.

[28] David A Vallado. Fundamentals of astrodynamics and applications. Vol. 12. Springer Sci-
ence & Business Media, 2001.

[29] Byron Tapley et al. “GGM02–An improved Earth gravity field model from GRACE”. In: Journal
of Geodesy 79 (2005), pp. 467–478.

[30] Howard Curtis. Orbital Mechanics for Engineering Students: Revised Reprint. Butterworth-
Heinemann, 2005.

[31] D. Dirkx and K. Cowan. “AE4868 Numerical Astrodynamics - Acceleration Models - Spherical
Harmonic Gravity”. In: TU Delft lecture notes (2022). URL: https://brightspace.tudelft.nl/
d2l/le/content/398043/viewContent/2254243/View.

[32] Horizons NASA. 2023. URL: https://ssd.jpl.nasa.gov/horizons/app.html#/. (accessed:
14.05.2023).

[33] D. Dirkx and K. Cowan. “AE4868 Numerical Astrodynamics - Acceleration Models - Non-
Gravitational accelerations”. In: TU Delft lecture notes (2022). URL: https://brightspace.
tudelft.nl/d2l/le/content/398043/viewContent/2254242/View.

[34] Troy L. Hacker. “Performance analysis of a space-based GMTI radar system using separated
spacecraft interferometry”. PhD thesis. Massachusetts Institute of Technology, 2000.

[35] Heiner Klinkrad. Space debris: models and risk analysis. Springer Science & Business Media,
2006.

https://doi.org/https://doi.org/10.1155/2020/8328405
https://doi.org/https://doi.org/10.1155/2020/8328405
https://ntrs.nasa.gov/citations/20220006634
http://resolver.tudelft.nl/uuid:3fc91471-8e47-4215-af43-718740e6694e
http://resolver.tudelft.nl/uuid:3fc91471-8e47-4215-af43-718740e6694e
https://brightspace.tudelft.nl/d2l/le/content/398043/viewContent/2254243/View
https://brightspace.tudelft.nl/d2l/le/content/398043/viewContent/2254243/View
https://ssd.jpl.nasa.gov/horizons/app.html#/
https://brightspace.tudelft.nl/d2l/le/content/398043/viewContent/2254242/View
https://brightspace.tudelft.nl/d2l/le/content/398043/viewContent/2254242/View


References 132

[36] Robert M O’Donnell. “Introduction to radar systems”. In: Massachusetts Institute of Technol-
ogy: MIT OpenCourseWare, Primavera (2007).

[37] Bassem R Mahafza. Introduction to radar analysis. CRC press, 2017.

[38] G. Richard Curry. Radar system performance modeling. Artech House Radar Library, 2004.

[39] Hsueh-Jyh Li, Yean-Woei Kiang, and W.K. Chen. “Radar and inverse scattering”. In: The Elec-
trical Engineering Handbook (2005), pp. 671–690.

[40] Understanding Radar Antenna Beams, Half Power Beam Width (HPBW) and First Null Beam
Wdth (FNBW). 2023. URL: https://www.skyradar.com/blog/understanding-half-power-
beam-width-hpbw-and-first-null-beam-width-fnbw. (accessed: 14.08.2023).

[41] Simon Kingsley and Shaun Quegan. Understanding radar systems. Vol. 2. SciTech Publish-
ing, 1999.

[42] Marc Fernandez Uson. “GeoSAR mission: Orbit determination methods and techniques”. In:
Universitat Politècnica de Catalunya. 2016. URL: http://hdl.handle.net/2117/87556.

[43] Jehangir J. Pocha. An Introduction to Mission Design for Geostationary Satellites. Vol. 1. D.
Reidel Publishing Company, 2012.

[44] Byron Tapley, Bob Schutz, and George H. Born. Statistical orbit determination. Elsevier, 2004.

[45] Oliver Montenbruck, Eberhard Gill, and F.H. Lutze. “Satellite orbits: models, methods, and
applications”. In: Appl. Mech. Rev. 55.2 (2002), B27–B28.

[46] C.E. Livingstone. Radar systems for monitoring objects in geosynchronous orbit. Defence
Research and Development Canada, 2013. URL: https://publications.gc.ca/site/eng/9.
821063/publication.html.

[47] Radar link budget analysis. 2023. URL: https://nl.mathworks.com/help/radar/ug/radar-
link-budget-analysis.html. (accessed: 18.07.2023).

[48] 4G | ShareTechnote — sharetechnote.com. https://www.sharetechnote.com/html/Handboo
k_LTE_BeamForming.html. [Accessed 14-08-2023].

[49] Documentation for Phased Array Toolbox. 2023. URL: https://nl.mathworks.com/help/
pdf_doc/phased/index.html. (accessed: 18.07.2023).

[50] Frederik Michel Dekking et al. A Modern Introduction to Probability and Statistics: Under-
standing why and how. Vol. 488. Springer, 2005.

[51] Mostafa Akbari et al. “Artificial neural network and optimization”. In: Advances in friction-
stir welding and processing 2 (2014), pp. 543–599.

[52] Wouter van der Wal. “Introduction to VV and software verification”. In: TU Delft lecture notes:
Simulation, Verification and Validation (2020). URL: https://brightspace.tudelft.nl/d2l/
le/content/293150/viewContent/1908860/View.

[53] TUDAT API Documentation. 2023. URL: https://py.api.tudat.space/en/latest/. (ac-
cessed: 18.04.2023).

[54] Poliastro API reference. 2023. URL: https://docs.poliastro.space/en/stable/api.html.
(accessed: 18.04.2023).

[55] Clare Martin, Hugh Lewis, and Roger Walker. “Studying the MEO & GEO space debris environ-
ments with the Integrated Debris Evolution Suite (IDES) model”. In: Space Debris. Vol. 473.
2001, pp. 351–354.

[56] Celestrak. 2023. URL: https://celestrak.org/satcat/search.php. (accessed: 29.06.2023).

https://www.skyradar.com/blog/understanding-half-power-beam-width-hpbw-and-first-null-beam-width-fnbw
https://www.skyradar.com/blog/understanding-half-power-beam-width-hpbw-and-first-null-beam-width-fnbw
http://hdl.handle.net/2117/87556
https://publications.gc.ca/site/eng/9.821063/publication.html
https://publications.gc.ca/site/eng/9.821063/publication.html
https://nl.mathworks.com/help/radar/ug/radar-link-budget-analysis.html
https://nl.mathworks.com/help/radar/ug/radar-link-budget-analysis.html
https://www.sharetechnote.com/html/Handbook_LTE_BeamForming.html
https://www.sharetechnote.com/html/Handbook_LTE_BeamForming.html
https://nl.mathworks.com/help/pdf_doc/phased/index.html
https://nl.mathworks.com/help/pdf_doc/phased/index.html
https://brightspace.tudelft.nl/d2l/le/content/293150/viewContent/1908860/View
https://brightspace.tudelft.nl/d2l/le/content/293150/viewContent/1908860/View
https://py.api.tudat.space/en/latest/
https://docs.poliastro.space/en/stable/api.html
https://celestrak.org/satcat/search.php


References 133

[57] Celestrak documentation. 2023. URL: https://celestrak.org/NORAD/documentation/tle-
fmt.php. (accessed: 18.07.2023).

[58] Carolin Früh and Thomas Schildknecht. “Accuracy of two-line-element data for geostation-
ary and high-eccentricity orbits”. In: Journal of Guidance, Control, and Dynamics 35.5 (2012),
pp. 1483–1491. URL: https://publik.tuwien.ac.at/files/PubDat_228872.pdf.

[59] T.I. Fossen. “Lecture Notes TTK 4190 Guidance, Navigation and Control of Vehicles.” In: Nor-
wegian University of Science and Technology (2023).

https://celestrak.org/NORAD/documentation/tle-fmt.php
https://celestrak.org/NORAD/documentation/tle-fmt.php
https://publik.tuwien.ac.at/files/PubDat_228872.pdf


134

A
Frame transformations

Several frame transformations and relevant computations are provided in this appendix as a
supplement to the theory provided in Chapter 3 and the methodology adopted in Chapter 4. This
appendix is divided into three sections. Appendix A.1 lists the transformations between the ref-
erence frames used throughout the orbital simulation, followed by Appendix A.2 which lists the
coordinate system transformations.

A.1. Reference frame transformations

The three reference frames used in this thesis were provided in Section 3.1.1. They included the
inertial Earth-Centred Inertial (ECI) frame, the non-inertial rotating Earth-Centred Earth-Fixed
(ECEF) frame and the Local-Vertical Local-Horizontal (LVLH) frame. The transformation algo-
rithm followed in our developed model will be described here.

A.1.1. ECI to ECEF:

The relationship between the ECI and ECEF frames is that their Cartesian axes coincide at the
starting epoch. Thereafter, the ECEF frame rotates about the common z-axis, with a fixed rate of
𝜔𝑖𝑒 with a value of 7.2 × 10−5 rad/s. This can be seen in Figure A.1.

Upon neglecting the effects of precession and nutation, an ECI Cartesian set of 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 axes
can be transformed into an ECEF Cartesian set of 𝑥𝑒, 𝑦𝑒 and 𝑧𝑒 axes. The rotation angle about the
z-axis is given by Equation A.1.

𝜃𝑖𝑒 = 𝜔𝑖𝑒(𝑡 − 𝑡0)
= 𝜔𝑖𝑒𝑡 + 𝜃𝐺𝑀𝑆𝑇

(A.1)

where 𝜃𝐺𝑀𝑆𝑇 refers to the mean equinox of the J2000 frame. The transformation for the position
coordinates from ECI to ECEF can be seen in Equation A.2.

⎡⎢
⎣

𝑥𝑒
𝑦𝑒
𝑧𝑒

⎤⎥
⎦

= ⎡⎢
⎣

cos 𝜃𝑖𝑒 − sin 𝜃𝑖𝑒 0
sin 𝜃𝑖𝑒 cos 𝜃𝑖𝑒 0

0 0 1
⎤⎥
⎦

⎡⎢
⎣

𝑥𝑖
𝑦𝑖
𝑧𝑖

⎤⎥
⎦

(A.2)

Upon taking one more derivative w.r.t. time, the transformation of the velocity Cartesian coordi-
nates can also be computed using the Chain Rule of differentiation. It is given by Equation A.3.
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Figure A.1: Schematic for ECI and ECEF reference frames [59].

⎡⎢
⎣

̇𝑥𝑒
̇𝑦𝑒
̇𝑧𝑒

⎤⎥
⎦

= ⎡⎢
⎣

cos 𝜃𝑖𝑒 − sin 𝜃𝑖𝑒 0
sin 𝜃𝑖𝑒 cos 𝜃𝑖𝑒 0

0 0 1
⎤⎥
⎦

⎡⎢
⎣

̇𝑥𝑖
̇𝑦𝑖
̇𝑧𝑖

⎤⎥
⎦

+ ⎡⎢
⎣

𝜃𝑖𝑒 −𝜃𝑖𝑒 0
𝜃𝑖𝑒 𝜃𝑖𝑒 0
0 0 0

⎤⎥
⎦

⎡⎢
⎣

𝑥𝑖
𝑦𝑖
𝑧𝑖

⎤⎥
⎦

(A.3)

A.1.2. ECEF to ECI:

Similarly, to go back to the inertial ECI frame, the inverse of the earlier transformation matrices
can be used. Since the rotation matrix about z-axis is orthonormal and skew-symmetric, the
inverse of the matrix is equal to its transpose. The conversion in position vector from ECEF to
ECI is given by Equation A.4.

⎡⎢
⎣

𝑥𝑖
𝑦𝑖
𝑧𝑖

⎤⎥
⎦

= ⎡⎢
⎣

cos 𝜃𝑖𝑒 sin 𝜃𝑖𝑒 0
− sin 𝜃𝑖𝑒 cos 𝜃𝑖𝑒 0

0 0 1
⎤⎥
⎦

⎡⎢
⎣

𝑥𝑒
𝑦𝑒
𝑧𝑒

⎤⎥
⎦

(A.4)

Similarly, the transformation in velocity coordinates from ECEF to ECI can be provided by Equa-
tion A.5.

⎡⎢
⎣

̇𝑥𝑖
̇𝑦𝑖
̇𝑧𝑖

⎤⎥
⎦

= ⎡⎢
⎣

cos 𝜃𝑖𝑒 sin 𝜃𝑖𝑒 0
− sin 𝜃𝑖𝑒 cos 𝜃𝑖𝑒 0

0 0 1
⎤⎥
⎦

⎡⎢
⎣

̇𝑥𝑒
̇𝑦𝑒
̇𝑧𝑒

⎤⎥
⎦

− ⎡⎢
⎣

𝜃𝑖𝑒 −𝜃𝑖𝑒 0
𝜃𝑖𝑒 𝜃𝑖𝑒 0
0 0 0

⎤⎥
⎦

⎡⎢
⎣

𝑥𝑒
𝑦𝑒
𝑧𝑒

⎤⎥
⎦

(A.5)

A.1.3. ECI to LVLH:

For the purpose of collecting measurements, a frame transformation is made from the inertial
ECI frame to the satellite’s center. Since the body frame coincides with the local orbital frame, a
transformation from the ECI frame to the Local-Vertical Local-Horizontal frame is made.
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There are three components of the LVLH frame. The x-axis is in the radial direction, followed by
the y-axis, which is in the tangential direction of the orbit. The z-axis is normal to the orbit in
the direction of angular momentum. This frame is also sometimes known as the RTN frame. The
individual unit vectors in the radial, tangential, and normal directions are given by Equation A.6.

#«𝑒 𝑅 =
#«𝑟

|| #«𝑟 ||
#«𝑒 𝑁 =

#«𝑟 × #«𝑣
|| #«𝑟 × #«𝑣 ||

#«𝑒 𝑇 = #«𝑒 𝑅 × #«𝑒 𝑁

(A.6)

where #«𝑟 is the position vector and #«𝑣 is the velocity vector in the ECI frame.

Depending on their relative positions and velocities, these unit vectors are then transformed from
the ECI to the LVLH frame. Assuming that point A refers to the satellite and point B refers to the
debris, the relative position vector #«𝑟 𝐿𝑉 𝐿𝐻 of the debris as seen in the satellite LVLH frame can be
given by Equation A.7.

#«𝑟 𝐵𝐴 = # «𝑟𝐵 − # «𝑟𝐴

#«𝑟 𝐿𝑉 𝐿𝐻 = #«𝑟 𝐵𝐴
⎡⎢
⎣

#«𝑒 𝑅
#«𝑒 𝑇
#«𝑒 𝑁

⎤⎥
⎦

(A.7)

where #«𝑟 𝐵 is the position vector of the debris and #«𝑟 𝐴 is the position vector of the satellite in the
ECI frame w.r.t. the Earth’s centre.

Similarly, the relative velocity vector #«𝑣 𝐿𝑉 𝐿𝐻 of the debris in the satellite LVLH frame can be given
by Equation A.8.

#«𝑣 𝐵𝐴 = # «𝑣𝐵 − # «𝑣𝐴 − (
#«𝑟 × #«𝑣
|| #«𝑟 𝐴||2 × #«𝑟 𝐵𝐴)

#«𝑣 𝐿𝑉 𝐿𝐻 = #«𝑣 𝐵𝐴
⎡⎢
⎣

#«𝑒 𝑅
#«𝑒 𝑇
#«𝑒 𝑁

⎤⎥
⎦

(A.8)

where #«𝑣 𝐵 is the velocity vector of the debris and #«𝑣 𝐴 is the satellite’s velocity vector in the ECI
frame w.r.t. the Earth’s centre.

A.1.4. LVLH to ECI:

Starting from the satellite’s LVLH frame, it is possible to switch the state of the debris back to the
ECI frame. The inverse of the unit vector matrix was earlier given in Equation A.6. The debris
position and velocity vector in the ECI frame can be calculated from Equation A.9.
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#«𝑟 𝐵 = #«𝑟 𝐴 + #«𝑟 𝐿𝑉 𝐿𝐻
⎡⎢
⎣

#«𝑒 𝑅
#«𝑒 𝑇
#«𝑒 𝑁

⎤⎥
⎦

−1

#«𝑣 𝐵 = #«𝑣 𝐴 + ⎛⎜⎜
⎝

#«𝑟 𝐿𝑉 𝐿𝐻 × #«𝑣 𝐿𝑉 𝐿𝐻
|| #«𝑟 𝐴||2 × #«𝑟 𝐿𝑉 𝐿𝐻

⎡⎢
⎣

#«𝑒 𝑅
#«𝑒 𝑇
#«𝑒 𝑁

⎤⎥
⎦

−1
⎞⎟⎟
⎠

+ #«𝑣 𝐿𝑉 𝐿𝐻
⎡⎢
⎣

#«𝑒 𝑅
#«𝑒 𝑇
#«𝑒 𝑁

⎤⎥
⎦

−1 (A.9)

A.2. Coordinate frame transformations

This thesis uses the three coordinate systems: Cartesian, spherical, and Kepler orbital. The trans-
formations are given as follows:

A.2.1. Cartesian to Spherical:

The spherical coordinate system can be seen by Figure A.2.

Figure A.2: Coordinate transformation visualised in Cartesian and spherical coordinates.

The spherical coordinate system can be described by the radius 𝑟, the geocentric latitude 𝛿 w.r.t
the x-y plane and the longitude 𝛼. This is seen by Equation A.10.

𝑟 = √𝑥2 + 𝑦2 + 𝑧2

𝛼 = atan2(𝑦, 𝑥)

𝛿 = tan−1 ( 𝑧
√𝑥2 + 𝑦2 )

(A.10)
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A.2.2. Spherical to Cartesian:

Similarly, from the spherical coordinate system, the Cartesian coordinates can be derived from
Equation A.11.

𝑥 = 𝑟 cos 𝛿 cos 𝛼
𝑦 = 𝑟 cos 𝛿 sin 𝛼
𝑧 = 𝑟 sin 𝛿

(A.11)

A.2.3. Cartesian to Kepler elements:

The position and velocity vectors in Cartesian coordinates are given by #«𝑟 and #«𝑣 . The orbital
momentum vector

#«ℎ is given by Equation A.12.

#«ℎ = #«𝑟 × #«𝑣 (A.12)

The orbital eccentricity vector is then derived from the orbital angular momentum vector and is
given by Equation A.13.

#«𝑒 =
#«𝑣 × #«ℎ

𝜇 −
#«𝑟

|| #«𝑟 || (A.13)

Thereafter, the vector �̂� in m2/s, which represents the pointing direction towards the ascending
node, is given by Equation A.14.

�̂� = ⎡⎢
⎣

0
0
1
⎤⎥
⎦

× #«ℎ = ⎡⎢
⎣

−ℎ𝑦
ℎ𝑥
0

⎤⎥
⎦

(A.14)

The orbital inclination can be calculated as given by Equation A.15.

𝑖 = arccos ℎ𝑧
|| #«ℎ||

(A.15)

The orbital semi-major axis 𝑎 and the eccentricity 𝑒 are computed from Equation A.16.

𝑎 = 1
2

|| #«𝑟 || − || #«𝑣 ||2
𝜇

𝑒 = || #«𝑒 ||
(A.16)

The longitude of the ascending node Ω can be given by Equation A.17.

Ω = {arccos 𝑛𝑥
||�̂�|| 𝑛𝑦 ≥ 0

2𝜋 − arccos 𝑛𝑥
||�̂�|| 𝑛𝑦 < 0 (A.17)

The argument of periapsis can be found by Equation A.18.

𝜔 = {arccos �̂�⋅ #«𝑒
||�̂�⋅ #«𝑒 || 𝑒𝑧 ≥ 0

2𝜋 − arccos �̂�⋅ #«𝑒
||�̂�⋅ #«𝑒 || 𝑒𝑧 < 0 (A.18)

The true anomaly can be calculated by Equation A.19.
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𝜃 = {arccos #«𝑒 ⋅ #«𝑟
|| #«𝑒 ⋅ #«𝑟 ||

#«𝑟 ⋅ #«𝑣 ≥ 0
2𝜋 − arccos #«𝑒 ⋅ #«𝑟

|| #«𝑒 ⋅ #«𝑟 ||
#«𝑟 ⋅ #«𝑣 < 0 (A.19)

A.2.4. Kepler orbital elements to Cartesian elements:

First, the eccentric anomaly 𝐸 has to be calculated first, which is related to the true anomaly 𝜃 by
Equation A.20.

𝑡𝑎𝑛 (𝜃
2) = √1 + 𝑒

1 − 𝑒𝑡𝑎𝑛 (𝐸
2 ) (A.20)

This is then used to obtain the body’s distance 𝑟𝑝𝑜𝑠 to the Earth at instant 𝑡. For this, the semi-
major axis 𝑎 and the eccentricity 𝑒 are needed. The relation is given by Equation A.21.

𝑟𝑝𝑜𝑠(𝑡) = 𝑎(1 − 𝑒 cos 𝐸(𝑡)) (A.21)

The position and velocity vectors in the orbital frame are given by r and r�r. They are defined by
Equation A.22 and Equation A.23 respectively.

r(𝑡) = ⎡⎢
⎣

𝑟𝑥(𝑡)
𝑟𝑦(𝑡)
𝑟𝑧(𝑡)

⎤⎥
⎦

= 𝑟𝑝𝑜𝑠(𝑡) ⎛⎜
⎝

cos 𝜃(𝑡)
sin 𝜃(𝑡)

0
⎞⎟
⎠

(A.22)

̇r(𝑡) = ⎡⎢
⎣

̇𝑟𝑥(𝑡)
̇𝑟𝑦(𝑡)
̇𝑟𝑧(𝑡)

⎤⎥
⎦

=
√𝜇𝑎

𝑟𝑝𝑜𝑠(𝑡)
⎡⎢
⎣

− sin 𝐸√
1 − 𝑒2 cos 𝐸

0
⎤⎥
⎦

(A.23)

After this, the orbital frame has to be transformed into the inertial frame at the centre of the Earth.
This is done with transformation sequences with rotation matrixes.

R(𝑡) = 𝑅𝑧(−Ω)𝑅𝑥(−𝑖)𝑅𝑧(−𝜔)r(𝑡)

= ⎡⎢
⎣

𝑟𝑥(𝑡)(cos 𝜔 cos Ω − sin 𝜔 cos 𝑖 sin Ω) − 𝑟𝑦(𝑡)(sin 𝜔 cos Ω + cos 𝜔 cos 𝑖 sin Ω)
𝑟𝑥(𝑡)(cos 𝜔 sin Ω + sin 𝜔 cos 𝑖 cos Ω) + 𝑟𝑦(𝑡)(cos 𝜔 cos 𝑖 cos Ω − sin 𝜔 sin Ω)

𝑟𝑥(𝑡)(sin 𝜔 sin 𝑖) + 𝑟𝑦(𝑡)(cos 𝜔 sin 𝑖)
⎤⎥
⎦

Ṙ(𝑡) = 𝑅𝑧(−Ω)𝑅𝑥(−𝑖)𝑅𝑧(−𝜔) ̇r(𝑡)

= ⎡⎢
⎣

̇𝑟𝑥(𝑡)(cos 𝜔 cos Ω − sin 𝜔 cos 𝑖 sin Ω) − ̇𝑟𝑦(𝑡)(sin 𝜔 cos Ω + cos 𝜔 cos 𝑖 sin Ω)
̇𝑟𝑥(𝑡)(cos 𝜔 sin Ω + sin 𝜔 cos 𝑖 cos Ω) + ̇𝑟𝑦(𝑡)(cos 𝜔 cos 𝑖 cos Ω − sin 𝜔 sin Ω)

̇𝑟𝑥(𝑡)(sin 𝜔 sin 𝑖) + ̇𝑟𝑦(𝑡)(cos 𝜔 sin 𝑖)
⎤⎥
⎦

.

(A.24)

Hence, Kepler elements can be used to obtain the Cartesian position and velocity vectors in the
ECI frame.
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