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SUMMARY

AGNETIC Resonance Imaging (MRI) is a flexible medical imaging technique that fa-
M cilitates measurement of a wide range of contrasts particularly in soft tissue (e.g.
brain and heart). Conventionally, qualitative images are acquired in which certain phys-
ical tissue properties are emphasized such as the transverse and longitudinal relaxation
times. Such images are frequently referred to as "weighted", i.e. T;-weighted. Quantita-
tive MRI (@QMRI) aims at measuring the underlying tissue parameters governing the con-
trast instead of yielding mere weighted images. These quantitative parameter estima-
tions were proven to be more reproducible than conventional MR images and more sen-
sitive to certain disease processes, enabling enhanced longitudinal comparisons within
subjects as well as comparisons between subjects.

MR Fingerprinting (MRF) is an example of such a quantitative technique. MRF uses
a combination of transient state acquisitions with varying flip angle patterns, severe un-
dersampling and advanced signal models to allow for fast qMRI acquisitions and ac-
curate estimation of a wide range of parameters. While most gMRI methods assume a
single tissue type per voxel, this is almost never a valid assumption. This assumption
especially breaks down at tissue boundaries or when tissues consist of multiple, mixed
compartments, such as water contained between myelin sheets in the brain, often called
myelin water surrounded by extra-cellular water.

The goal of this thesis is to develop enhanced methodology for quantitative MRI by
extending traditional signal and image post-processing methods. Specifically, the focus
is on MR Fingerprinting in combination with multi-component estimations, in which
different compartments are included in a mixed estimation model. This is done to ob-
tain more information from the acquired data and to improve quantification, therefore
possibly obtain new clinical insights. Important steps towards clinical use are to enhance
estimation accuracy and precision compared to previous methods and reduce the scan
time.

In this thesis the Sparsity Promoting Iterative Joint NNLS (SPIJN) algorithm is pro-
posed for obtaining multi-component estimations from MRF data. This enabled sub-
voxel, fractional estimation of signal components in a region of interest, without mak-
ing a priori assumptions about tissues expected to be present. The main novelty of this
method is to combine a non-negativity with a joint-sparsity constraint that limits the
total number of tissues identified in a region of interest. As a result it became possi-
ble to obtain magnetization fraction maps of the white matter, gray matter, CSF and a
component with shorter relaxation times related to myelin water. The repeatability of
the proposed method is studied in 5 subjects that were scanned 8 times with one week
in between the scans each time. Comparison of the obtained white matter, gray matter
and CSF maps with segmentations from conventional methods shows high repeatability
of the estimated relaxation times and more fine structures in the CSF magnetization frac-
tion maps. Additionally, the proposed SPIJN algorithm was applied to data from a more

vii



viii SUMMARY

conventional gMRI sequence, i.e. a multi-echo spin-echo sequence, to obtain estima-
tions of the so-called myelin water fraction in the brain. The resulting images show sig-
nificantly improved noise robustness compared to the standard multi-component anal-
ysis method, improving the usability.

MREF scans can be acquired in a relatively short acquisition time of less than 30 sec-
onds per slice, but this will still result in 15 minutes of total scan-time when full brain
coverage is needed. A further reduction in acquisition time is desirable for clinical us-
age, in which every minute counts. Therefore, improved reconstruction methods for
MREF data are proposed, especially tailored to multi-component estimations. In in vivo
scans we showed the improved image quality enabled by the proposed methods.

In another study, We applied the SPIJN algorithm to MRF brain scans from MS pa-
tients. In the results that we obtained we observe that white matter changes are reflected
in a component with prolonged transverse relaxation times which is less pronounced in
data of healthy controls. We hypothesize that the observed component reflects an in-
crease in extra-cellular water and allows for early characterization of white matter dam-
age.

In a related project, an adaptation on the SPIJN algorithm was introduced that is
more sensitive to small local changes. The adjusted algorithm is applied to imaging data
of MS patients and it is shown that it can help to identify small cerebral lesions.

MRF sequences can be chosen rather freely, to further reduce the scan time and re-
duce the estimation error these sequences can be optimized. A method is proposed in
which parameter maps of the brain are used as reference upon which the MRF flip-angle
series is optimized, taking into account the used undersampling trajectories. As a result
undersampling errors, a major source of estimation errors, are effectively minimized.

Finally, we investigated an adjusted simulation method of MRF sequences that is
able to accurately model the effects of through-plane motion, which is a major source of
errors in MRF scans. Such a model may support the development of new retrospective
correction methods for this type of motion as it enables proper simulation of its effects.

In summary, this thesis proposes new methods for multi-component reconstruction
and analysis, sequence optimization and studying the effects of motion in MRF and fur-
ther investigates the possibilities of multi-component MRE



SAMENVATTING

AGNETIC RESONANCE IMAGING (MRI) is een flexibele medische beeldvormingstech-
M niek die het mogelijk maakt afbeeldingen te maken en metingen uit te voeren met
een breed scala aan contrasten, voornamelijk in weke weefsels (bijvoorbeeld de her-
senen of het hart). Van oudsher worden kwalitatieve beelden geacquireerd waarin be-
paalde fysische weefseleigenschappen extra naar voren komen, zoals de transversale of
longitudinale relaxatietijden. Naar zulke beelden verwijzen we doorgaans als "gewo-
gen", bijvoorbeeld T;-gewogen. Kwantitatieve MRI (QMRI) heeft als doel de onderlig-
gende weefseleigenschappen te meten in plaats van slechts gewogen afbeeldingen te
verkrijgen. Deze kwantitatieve parameterschattingen zijn meer reproduceerbaar dan
conventionele MRI scans en gevoeliger voor bepaalde ziekteprocessen, waardoor het
mogelijk wordt scans beter te vergelijken over langere tijd en tussen personen.

MR Fingerprinting (MRF) is een voorbeeld van een dergelijke kwantitatieve techniek.
MREF gebruikt een combinatie van een acquisitie waarbij het signaal langzaam veranderd
door variérende fliphoek-patronen, sterke onderbemonstering (undersampling) en ge-
avanceerde signaalmodellen om het mogelijke te maken meerdere qMRI parameters in
een korte tijd te schatten. De meeste qMRI methoden nemen aan dat er een enkel weef-
seltype per voxel (3D pixel) aanwezig is, maar dit is haast nooit het geval. Deze aanname
klopt zeker niet langs de grens van twee weefsels of wanneer weefsels bestaan uit meer-
dere, gemengde componenten, zoals het geval is in de witte stof bij het water tussen de
myelineschede in de hersenen, ook wel myelinewater genoemd, dat omringd wordt door
extra-cellulair water.

Het doel van dit proefschrift is het ontwikkelen van verbeterde methodes voor kwan-
titatieve MRI door het verbeteren van signaalverwerkings- en acquisitietechnieken. Hier-
bij ligt de nadruk op MR Fingerprinting in combinatie met meerdere componenten schat-
tingen, waarin we deze componenten meenemen in de signaalverwerking. Dit doen we
om meer informatie te verkrijgen uit het gemeten signaal wat nieuwe klinische inzichten
en betere kwantificatie kan bieden. Belangrijke stappen om klinisch gebruik mogelijk te
maken zijn het verhogen van de nauwkeurigheid en precisie en het verkorten van de
benodigde scantijd.

In dit proefschrift wordt een algoritme (SPIJN) geintroduceerd voor het verkrijgen
van schattingen van meerdere signaalcomponenten uit MRF data. Dit maakt het mo-
gelijk sub-voxel fractieschattingen van de componenten in een gebied van interesse te
verkrijgen zonder van tevoren aannames te doen over de aanwezige weefsels. De voor-
naamste noviteit in deze methode is het combineren van een niet-negativiteitsaanname
per voxel met een aanname dat slechts enkele componenten gebruikt worden, dit be-
perkt het totaal aantal weefsel in het gebied van interesse. Als gevolg hiervan wordt het
mogelijk fractieschattingen van de witte stof, grijze stof, hersenvocht en een component
met kortere relaxatietijden, gerelateerd aan myelinewater, te verkrijgen. De herhaalbaar-
heid van de voorgestelde methode bestuderen we aan de hand van 5 personen die acht-
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maal gescand zijn met steeds een week tussen de herhaalde scans. Vergelijking van de
verkregen componentmappen van witte stof, grijze stof en hersenvocht met segmen-
taties verkregen via standaard methoden laat zien dat de geschatte relaxatietijden zeer
goed reproduceren en meer fijne structuren van hersenvocht zichtbaar zijn in de fractie-
beelden. In aanvullend onderzoek is het geintroduceerde SPIJN-algoritme toegepast op
data van een meer conventionele qMRI sequentie, een multi-echo-spin-echo sequen-
tie om myelinewater fractie schattingen in de hersenen te verkrijgen. De resulterende
afbeeldingen laten een significante afname in ruis zien vergeleken met de standaard
meerdere componenten analyse, waardoor ze beter bruikbaar zijn.

MREF scans kunnen verkregen worden in een relatief korte scantijd van minder dan 30
seconden per plak, maar dit resulteert nog steeds in een scantijd van 15 minuten wan-
neer de hele hersenen gescand worden. Voor klinisch gebruik, waar elke minuut telt,
zijn kortere scantijden zeer wenselijk. Daarom worden verbeterde reconstructiemetho-
den voorgesteld, toegesneden op het afschatten van meerdere componenten. In in vivo
scans laten we zien dat dit resulteert in een verbeterde beeldkwaliteit bij korte scantij-
den.

Het SPIJN-algoritme passen we toe om meerdere componenten schattingen te krij-
gen uit MRF-hersenbeelden verkregen bij MS patiénten. In de verkregen resultaten zien
we dat witte stof veranderingen gekenmerkt worden door componenten met een langere
transversale relaxatietijd, die minder aanwezig zijn bij gezonde personen. We veronder-
stellen dat dit veroorzaakt wordt door een toename in extracellulair water en wellicht het
mogelijk maakt om witte stofschade eerder te karakteriseren.

In een gerelateerd project is een aanpassing van het SPIJN-algoritme geintroduceerd
dat gevoeliger is voor kleine lokale afwijkingen. Het algoritme is toegepast op data van
MS-patiénten en laat zien dat het kan helpen in het eerder detecteren van kleine hersen-
laesies.

Er zijn veel parameters te kiezen in een MRF-sequentie, dus om de scantijd verder te-
rug te brengen en fouten te reduceren, willen we de gebruikte sequenties optimaliseren.
Een methode wordt geintroduceerd die het mogelijk maakt de parameterwaarden zoals
we die afbeelden in de hersenen te gebruiken als referentie, waarna de MRF-sequentie
geoptimaliseerd wordt, terwijl het undersampling patroon daarin wordt meegenomen.
Als resultaat kunnen de soms grote fouten veroorzaakt door undersampling effectief ver-
minderd worden.

Tot slot bestuderen we een aangepaste simulatiemethode van MRF-acquisities die
het mogelijk maakt om accuraat de effecten van beweging loodrecht op het afgebeelde
volume mee te schatten. Deze through plane motion kan grote fouten veroorzaken in
MREF schattingen. Dit model kan mogelijk gebruikt worden in retrospectieve correctie
methoden voor deze vorm van bewegingsartifacten aangezien deze nu beter gesimu-
leerd kunnen worden.

Resumerend, introduceert dit proefschrift nieuwe reconstructie en analyse metho-
den voor meerdere componenten schattingen, sequentie optimalisatie en beweging in
MRF en gaat het verder in op de mogelijkheden van meerdere componenten schattingen
in MRE



GENERAL INTRODUCTION

ABSTRACT

In this chapter I give a general introduction into MRI and the concepts required to un-
derstand the research as performed in the rest of this thesis. Afterwards I summarize
research challenges that can be identified in the field of quantitative MRI, which are re-
flected in the research goals. I finish with an outline of the rest of the thesis.



2 1. GENERAL INTRODUCTION

fascinating property of Magnetic Resonance Imaging (MRI) is the flexibility it offers
Ain measurement approaches resulting in the possibility of many different imaging
contrasts. As such, a wide variety of information can be obtained, including proper-
ties of tissues related to spin relaxivity, diffusion and perfusion. For instance in brain
imaging, which is the main application of this thesis, a typical MRI protocol consists of
a T;-weighted scan, a T>-weighted scan, a Fluid Attenuated Inversion Recovery (FLAIR)
scan, a diffusion weighted scan (DWI), perhaps a proton density (PD) weighted scan and
somtetimes more specialized sequences such as arterial spin labeling (ASL), or suscep-
tibility weighted scans.

This example brain MRI protocol results in so-called weighted images that stress par-
ticular tissue properties (e.g. degree of T; relaxation). These images provide contrast
between the different tissues types, like white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF) as well as potential abnormalities. For instance, in Alzheimer’s dis-
ease brain atrophy has been demonstrated as an important marker of disease progres-
sion [1], which can be derived from weighted scans by determining volume estimates
of the different tissues. Another example are white matter hyper-intensities (WMHs),
that show a brighter signal on T,-weighted scans and are a sign of disease progression..
Moreover, pathologies such as WMHs often have different relaxometry properties com-
pared to physiological WM and GM, resulting in a different imaging signal. Effectively,
this enables their identification in such weighted brain images.

Unfortunately, the signal values in weighted scans only 'qualitatively’ reflect tissue
properties since they are susceptible to a range of confounding factors like field inho-
mogeneities and specific choice of sequence parameters. Therefore, the resulting pixel
values can only be compared relative to other pixels in the same image, but the exact
values do not harbor more information. As a result, the weighted images have two main
limitations: (1) possibilities are restricted to relate measurements to biophysical mod-
els and processes and (2) inter-patient analyses and longitudinal comparison of tissue
properties like water content are not directly possible.

Additionally, while its versatility makes MRI a valuable diagnostic tool, a large num-
ber of scans also results in prolonged imaging times (potentially in the range of an hour
or longer), making it also a relatively slow and therefore expensive imaging modality.

1.1. QUANTITATIVE MRI (QMRI)

LTHOUGH MRI has mainly developed as a qualitative imaging technique relying on
Aweighted images in the past 30 years, MRI can be used for quantitative imaging as
well. However, this requires combining a set of qualitative measurements with well-
chosen scan parameters and subsequent post-processing to relate signal models and
tissue properties to the measured signals. In this thesis, my main interest lies in the relax-
ometry properties of water hydrogen atoms (often referred to as protons), i.e. the T3, T»
relaxation times and tissue magnetizations M, (or equivalently magnetization fractions)
as these are the primary tissue properties underlying clinically used weighted scans.

The T; and T relaxation times are measures of the time it takes for the magneti-
zation of a perturbed ensemble of water protons to return to the original state after an
excitation radio-frequency (RF) pulse [2]. In particular, T) relaxation time refers to the
longitudinal magnetization and is mainly determined by an exchange of magnetization
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between water protons and other protons in the surrounding area. Complementary, 7>
relaxation is a process that is primarily determined by the interaction between the wa-
ter protons, leading to a variable degree of dephasing between spins and associated de-
crease in transverse magnetization, causing the transverse magnetization to disappear
over time. In addition to this, inhomogeneities in the main magnetic field and/or sus-
ceptibility effects can be an extra source of dephasing, resulting in an even shorter effec-
tive transverse relaxation time that is generally denoted as T,'. In most gMRI sequences
used in this thesis this effect is corrected for, so that the focus is on measuring the T3
value.

Compared to relaxation times, proton density or tissue magnetization is a conceptu-
ally simpler property, though difficult to measure quantitatively. It relates to the amount
of water protons affected by the MR experiment and therefore causes a linear scaling in
signal strength, resulting in no signal in regions with air and higher signal in regions rich
with water.

It has been shown that brain pathologies, such as Multiple Sclerosis (MS) lesions and
tumors, often lead to prolonged T; and 7> relaxation times compared to healthy tissue
[3]. What is more, the use of relaxometry also allows to identify different sub-types of
pathology and identify more subtle changes in the surrounding tissue, e.g. in relation to
different brain tumor types [4].

Over the last decades, much progress was made regarding the amount of informa-
tion that can be extracted from MRI scans using computational methods. Conventional
gMR], as briefly discussed in Section 1.2, focuses on determining single tissue parame-
ters through fitting to analytical models. The modern-day computing potential and ad-
vances in MR acquisition and multi-parametric modeling, however, has paved the way
to entirely new gMRI paradigms. As such, qMRI techniques can be broadly categorized
in traditional, single tissue parameter approaches, and those methods developed in the
last decade, making use of new computational possibilities and multi-parametric es-
timations, of which MR Fingerprinting (MRF) is a main component, as introduced in
Section 1.3.

1.2. CONVENTIONAL QUANTITATIVE MRI SEQUENCES

ONVENTIONAL dMRI sequences can be considered a natural extension of weighted
MR imaging to acquire a quantitative map. Often multiple weighted images are sep-
arately acquired, while one or more acquisition parameter are varied. From these image
data a single tissue parameter is estimated based on an assumed relation between the
acquired MR signal and tissue parameters. For T7-mapping the quantitative protocol is
often an inversion recovery (IR) sequence, in which the exponential T -recovery is sam-
pled by acquiring images with varying inversion times (TI). For T>-mapping, multi turbo
spin echo (MSE) or multi-echo spin-echo (MESE) sequences are chosen that sample the
exponential T>-decay of the transverse magnetization by varying the echo times (TE). In
an MSE sequence, each echo is separately acquired as a single acquisition, whereas in a
MESE sequence multiple echos are acquired in one scan. The latter approach, however,
goes at the cost of increased sensitivity to a homogeneous RF transmit field (i.e. so-called
B -inhomogeneities).
Based on the acquired images a voxel-wise fit can be performed, using an explicit
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TECHNICAL CONCEPTS: LOCALIZATION AND UNDERSAMPLING IN MRI
Magnetic field gradients An MR scanner can only measure the total transverse
magnetization of an object of interest placed in the scanner. As such, the scan-
ner cannot directly probe the signal emanating from individual locations. To en-
code spatial information extra magnetic fields are therefore superposed on the main
magnetic field (By). These so-called gradient fields change the resonance frequency
and phase-offset of the hydrogen protons as a function of spatial location [5].

Slice selection To restrict the MR imaging procedure to a 2D slice, a slice selection
gradient can be used. This changes the resonance frequency in the slice encoding (z)
direction to make only a part of the region of interest sensitive to an applied RF pulse
with a specific frequency. In effect only the magnetization in this slice is perturbed
and will be measurable.

Fourier encoding To encode spatial information within a slice, additional gradi-
ents are used. Over time, each gradient induces a phase accumulation to the com-
plex valued MR-signal. Essentially, this phase accumulation is linearly dependent
on the position since the gradients have an approximately linear profile. This holds
both in the x- and y-direction. The relation thereby imposed is mathematically
equivalent to the well known Fourier transform and therefore it is often said that
MRI measures the Fourier transform of an image, or the so-called k-space.

k-space trajectories By sampling the MRI-signal while gradients are switched on,
part of the k-space is being sampled. The possible image quality and field of view
is determined by how and which points in k-space are sampled. For a 2D acquisi-
tion, k-space can be conceived as a 2-dimensional array, with the same number of
elements as the reconstructed image. In most MRI sequences it is not desired to ac-
quire the full k-space after a single excitation pulse due to the long sampling time
that would be required. Such long sampling times can result in unwanted measure-
ment errors (e.g. blurring), as the magnetization will change during the acquisition
due to signal decay and eventually decay to zero for very long readouts. Therefore
MRI sequences often consist of repeated elements to acquire the k-space data se-
quentially. In most conventional implementations k-space is filled line by line, but
other trajectories can be more efficient e.g. sampling multiple lines per readout or
spiral trajectories through k-space.

Undersampling When only part of k-space is acquired, we call the k-space or the
data undersampled. A Fourier transform performed based on undersampled data
is equivalent to filling the non-sampled locations in k-space with zeros. Therefore
we call this a zero-filled reconstruction. If the acquisition is strongly undersampled,
there is insufficient data to accurately solve the inverse problem resulting in under-
sampling artifacts. The size, shape and severity of these artifacts highly depend on
the used k-space trajectory and severity of the undersampling.

Parallel imaging When multiple receive coils are used, each coil will have a vary-
ing reception profile field, making the recorded information per coil different. Tech-
niques such as GRAPPA [6] and SENSE [7] allow to use this information in the recon-
struction and make the inverse problem less ill-posed.
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model equation and standard fitting algorithms. In the previous two examples this would
boil down to fitting an exponential function. Beside IR and MSE/MESE, other qMRI se-
quences have been proposed, e.g. variable flip angle (VFA or DESPOT) sequences [8],
Look-Locker sequences and T»-prepared sequences. In all these sequences multiple im-
ages are acquired, and in most of them the number of images linearly increases the total
scan time. Simultaneously, the acquisition of more images can lead to an increased noise
robustness and higher risk of motion. One could argue, however, that the acquisition of
very similar images with comparable acquisition settings is not information efficient.
The long scan time has been an important argument that kept gMRI techniques from
being excluded in clinical protocols.

1.3. MAGNETIC RESONANCE FINGERPRINTING

M AGNETIC Resonance Fingerprinting (MRF) [9] was introduced in 2013 as a new
gMRI framework for multi-parameter estimation (77 and 75) based on three key
concepts:

1. A complicated signal evolution over time is induced by applying a (randomly or
well-chosen) train of RF-pulses with varying flip angles and (short) waiting times.
Typically the number of RF-pulses and corresponding k-space readouts are be-
tween 400 to 5000. Where conventional methods acquire a steady-state signal,
MRF acquires a so-called transient state signal;

2. The parameter estimation is not based on model-based fits, but on matching to
a signal dictionary precalculated using Bloch simulations, allowing for large free-
dom in the used acquisition scheme;

3. The k-space measurements or readouts after each RF-pulse are highly undersam-
pled and often involve non-Cartesian trajectories such as spirals that rotate over
time, to achieve full k-space coverage when the total data is considered.

The combination of these ideas led to a (flexible) framework which allows for effi-
cient acquisition of data that contains enough information to estimate multiple tissue
property maps in a limited amount of time. MRF implementations can vary in many
ways. A first distinguishing element is the used sequence building block. Amongst oth-
ers, this can be a balanced steady state free processing (bSSFP) sequence, which is typ-
ically sensitive to T;, T» as well as inhomogeneities in the main magnetic field (Bar ) [9],
a gradient spoiled SSFP sequence with sensitivity to T; and T, (and potentially B;") [10]
or a gradient echo sequence sensitive to T; and Tz* [11] relaxation times. In such se-
quences preparation pulses can be used, of which an inversion pulse at the start is the
main example which is employed to improve T sensitivity, but T, or Ty, preparation is
also possible [12].

A next distinguishing element between MRF sequences is the used k-space sampling
pattern. First of all, the sequence can be based on 2D or 3D acquisitions, where a 2D
acquisition acquires different slices sequentially and a 3D acquisition traverses through
a 3D k-space. In this thesis 2D acquisitions are used with spiral undersampling pat-
terns, but many other options are available, such as Cartesian patterns, radial spokes,




6 1. GENERAL INTRODUCTION

c.q. stars, or music-based patterns [13, Fig. 3]. Compared to Cartesian patterns, most
other trajectories provide less coherent undersampling artifacts and especially spirals
provide a more efficient sampling of k-space.

As these sequence elements are selected, the exact train of RF flip angle pulses and
repetition times (TR) and the length of this train have to be defined. The influence on
the estimated results will be discussed in Chapter 8.

The acquired k-space data contains information about the tissue properties, but im-
age reconstruction is needed to derive this information. Often (time-compressed) time
frame images are reconstructed first, and different reconstruction pipelines can be em-
ployed in this step [12, Table 1]. Subsequently, the images can be matched to a dictionary
with simulated MRF signals for different tissue properties. This leads to the estimation
of 71 and T» parameter maps with a single set of T7, T, values per voxel, thus assuming a
single tissue component per voxel.

1.4. MULTI-COMPONENT ESTIMATIONS

UE to the typical voxel size of Imm x Imm x 3mm MRI measurements, the assump-

tion that a voxel consists of a single tissue type and thus can be represented with
a single T;, T» combination is almost never valid. This becomes especially problematic
for estimations at tissue boundaries, as there sometimes is a smooth transition from one
tissue to another or a hard transition that does not align with voxel boundaries. Also,
such partial volume effects occur with diffusely mixed tissues and more gradual or dif-
fuse transition from one tissue to the other.

Neglecting partial volume effects will therefore be a simplification and can be a source
of error, since a single value representing the full voxel is inaccurate. Moreover, small
structures can be missed. Segmentation methods based on T;-weighted scans such as
FSL [14] and SPM [15] therefore often include a partial volume estimation.

A main clinical application of multi-component models that assume multiple tis-
sues per voxel lies in the study of the myelination of the axons in the brain. Myelin is
a lipid-rich substance surrounding axons that accelerates the communication between
nerve cells. The axons are surrounded by layers of myelin (approximately 10 nm thick),
with water in between the layers. The presence of this water in close proximity to the
myelin results in a signal that is in itself measurable with MR. Also, the myelin water is
expected to have shorter relaxation times compared to the surrounding intra- and ex-
tracellular water. However, as the signal from the myelin water is mixed with that from
surrounding tissues, multi-component methods are needed for measuring the myelin
water content [16, 17]. This complicates the estimation problem compared to a single
component estimation in which less parameters need to be estimated, i.e. a single com-
bination of T, T» and M. To overcome this difficulty either more acquired information
and therefore longer acquisitions than for a single component estimation is required or
improved estimation and reconstruction methods are needed that make it possible to
include prior information.

Myelin water fraction (MWF) imaging has until recently mainly been done with MESE
sequences to identify different T>-compartments [18]. This conventional qMRI sequence
is, however, relatively slow, hindering clinical use. Specifically, while a noise robust single
T, estimate could be obtained with mere eight echo times, a multi-component estimate
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would require a high image quality and 32 echos or more.

To obtain multi-component estimations from a MESE measurement consisting of 32
echo, conventionally, a voxel-wise method is used [19]. In this algorithm a non-negative
least squares solution is obtained that estimates the relative weight of a discretized set
of possible T; values. Typically more than 40 T values are modeled to contribute to the
measured signal, making this problem under-determined. This can partly be addressed
by regularization and thereby imposing preliminary knowledge about the expected T,
distribution, but it leaves the method noise-sensitive.

Other methods for myelin water imaging have been proposed as described in sev-
eral review papers [16, 17, 20, 21]. Examples of such methods are (1) multi-component
driven-equilibrium single-pulse observation of T} and 7> (MCDESPOT) [22], using a
variable flip angle approach both estimating 77 and 7> , and (2) multi-gradient echo
methods [16], estimating the T,' components. In all of these methods the number of
tissues has been fixed to three to allow for easier modeling, and inhomogeneities or
magnetization exchange need to be corrected for or might lead to a bias in estimated
fractions.

1.5. RESEARCH CHALLENGES

1.5.1. MULTI-COMPONENT MRF

MRF enables simultaneous encoding of spatial information and tissue properties, such
as the T; and T, parameters, in a time efficient manner. Conventionally it is asserted
that there is a single tissue type per voxel, ignoring potential multi-component signal
contributions. Ma et al. [9, 23], proposed to assume a total of three tissues in the brain,
specifically white matter, gray matter and CSF to estimate the respective magnetization
fractions for each of these tissues. They report that this results in additional findings
in epilepsy patients [23]. The corresponding relaxation times were based on literature
values [9] or k-means clustering of the single component results [23, 24]. However, this
requires a-priori assumptions on the exact tissues being present or at least the number
of components.

An alternative to these a-priori assumptions is an unconstrained multi-component
estimation. However, this problem is a strongly ill-posed, since the number of unknowns
is often larger than the number of data points. Accordingly, McGivney et al. [25] pro-
posed a Bayesian method to obtain partial volume estimates per voxel. Effectively, a
weighted ¢>-norm regularization was performed on the estimated 7;-T5 distribution.
However, this still leaves the problem highly ill-posed, resulting in T;-T> distributions
that differ strongly for neighboring voxels and are sensitive to undersampling artifacts.
To cope with this, relatively long acquisitions with longer readout durations would be
required leading to longer acquisition times, making standard MRF sequences less suit-
able for MC approximations.

1.5.2. MYELIN WATER IMAGING IN T5 RELAXOMETRY

For myelin water imaging based on MESE T>-relaxometry, the clinical applicability is
hindered by long acquisition and reconstruction times as well as noise-like effects in the
estimated MW fraction maps. Simultaneously, biased estimation was observed when
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acquisition times were shortened [21].

1.5.3. MRF SEQUENCE OPTIMIZATION

While a multi-component model allows to characterize more complicated tissue struc-
tures, single component estimations provide an easier glimpse of tissue properties and
are therefore broadly used. As described above, MRF uses a flip angle train to create a
transient state magnetization over time. The choice of flip angle train has a strong ef-
fect on the accuracy of the estimated 77, T>» maps. Previous work [26, 27] has used the
Cramér Rao lower bound to optimize MRF sequences such that the theoretically smallest
possible variance of the estimated parameters is obtained. However this work does not
include the effects of undersampling in the optimization, making it sensitive to imaging
artifacts. Other studies used more heuristic and brute force methods [28, 29] or were
limited to a selected number of tissues [30] when optimizing the MRF sequences.

1.5.4. MOTION SENSITIVITY

Although quantitative MRI holds many promises, an important challenge in any MRI
acquisition protocol is motion. While healthy subjects are generally able to lie still for a
long time, motion is more likely when patients are scanned and this is an issue affecting
the quality of a substantial portion of clinical scans, sometimes even resulting in ask-
ing the patient to return for a repeated MRI-examination. This is an important reason
to push for shorter scans times and create efficient, optimized MRF scans and effective
reconstruction methods. However, motion can not always be avoided and can cause
spatial, blurry artifacts in the reconstructed parameter maps or over- or underestima-
tion of parameters [31]. In-plane motion in MRF can often be corrected with improved
reconstruction methods since enough information to estimate the motion pattern and
the original image is contained in the k-space signal [32]. However, the effects of through
plane motion are generally more severe and less predictable since the region of interest
moves out of view so that information is lost and the spin history changes along the slice.

1.6. RESEARCH GOALS

HE overall goal of this thesis is to develop methodology for quantitative MRI address-
T ing the challenges as described in the previous section and as subsequent goal to
make steps towards clinical use of these methods where possible. Specifically, the focus
is on MR Fingerprinting and multi-component estimations, to obtain more information,
enhance estimation accuracy and precision, and reduce scan time.

The first goal is to create a method for improved multi-component estimation method
without making a priori assumptions about the exact number of tissues present and
work towards clinical use of the created method. Therefore, a first associated goal is to
study the repeatability and accuracy of the proposed method and compare to segmen-
tations as obtained with conventional methods based on qualitative images. Another
associated goal is to improve the reconstruction that is used in the MRF pipeline and
make this more suitable for the performed multi-component analysis.

We also aim to work towards clinical use of the created method. Therefore we study
the application of the proposed method on MESE data for myelin water imaging, apply
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the proposed multi-component MRF method in brain scans of Multiple Sclerosis (MS)
patients and study whether this method is sensitive to subtle white matter changes.

A next goal is to develop a flexible method to design efficient MRF sequences. Such
a sequence design method should take into account the undersampling as performed
in MRF and be designed for tissue parameter maps as realistic as possible in an in vivo
scan.

The effects of in-plane motion in MRF have been studied before and solutions from
other acquisitions (often designed for 3D readouts) can potentially be used. However,
the effects of through plane motion are more unpredictable due to the relatively long
acquisition time per slice (order of seconds) in which the magnetization and spin history
changes over time. The final goal of this thesis will therefore be a study into the effects of
through plane motion on an MRF experiment and possibilities to model these effects.

1.7. OUTLINE

N Chapter 2 we describe the multi-component estimation problem in MRF and pro-
I pose to use a new joint-sparsity constraint (the SPIJN algorithm) on the tissue compo-
nents in the optimization problem. We use this form of regularization to overcome the
ill-posedness of the multi-component estimation, by introducing the prior information
that only a small number of tissues is to be expected in the imaged region. The intro-
duced regularization term therefore reduces the number of estimated components over
the imaged region and make the multi-component minimization problem more stable.
In Chapter 3 we further validate the accuracy and reproducibility of the estimated re-
laxation times. Also the accuracy and precision of the MW, WM, GM and CSF fraction
maps obtained with the SPIJN-MRF method are studied in simulations and numerical
experiments.

In Chapter 4 we will apply the SPIJN algorithm to MESE data, performing a T>-multi-
component analysis to obtain MWF maps. The proposed SPIJN algorithm uses recon-
structed (compressed) images as input to perform the multi-component analysis, since
the inverse multi-component problem and the proposed algorithm are more sensitive
to noise and undersampling artifacts than single-component MRE We will propose two
new reconstruction algorithms in Chapter 5 that include the multi-component model
in the reconstruction to allow for further regularization of the inverse problem. One re-
construction method, k-SPIJN, is tailored to the SPIJN algorithm, the other algorithm
(Multi-component ADMM) does not include the joint-sparsity constraint and can there-
fore be used more generally. Both reconstruction methods allow for shorter acquisitions
and can result in improved image quality compared to state-of-the-art reconstruction
methods followed by a SPIJN estimation.

In Chapter 6 we apply the SPIJN algorithm on EPI-MRF data from MS patients and
healthy controls. A distinct component is identified that relates to affected white matter
tissue such as MS lesions and Dirty Appearing White Matter (DAWM). In Chapter 7 the
SPI)N algorithm will be adapted to be more sensitive to small, local changes by applying
a local joint sparsity constraint. We will show that this makes the method more sensitive
to small changes such as lesions in EPI-MRF data as studied in the previous chapter.

In Chapter 8 we propose an method to optimize the MRF flip angle pattern in or-
der to mitigate the effects of a standard, zero-filled reconstruction when a highly under-
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sampled acquisition is performed. We will do this by using a perturbation theory based
method that allows for efficient estimations of the undersampling error without time
intensive calculations of complete MRF signal dictionaries.

In Chapter 9 we study the effects of through-plane motion and include those effects
in the simulation of an MRF dictionary. We will verify these simulations and test the
effect of parameter estimation with a motion-corrected dictionary.

Finally, in Chapter 10 I will discuss the open and future challenges of multi-component
MR estimations and MRF in general.



2

FAST MULTI-COMPONENT ANALYSIS
USING A JOINT SPARSITY
CONSTRAINT FOR MR
FINGERPRINTING

Martijn A. Nagtegaal

Peter Koken
Thomas Amthor
Mariya Doneva

Magnetic Resonance in Medicine 83.2 (2020), pp. 521534. ISSN: 1522-2594.
DOI:10.1002/mrm.27947

11



12 2. MULTI-COMPONENT ANALYSIS USING A JOINT SPARSITY CONSTRAINT FOR MRF

ABSTRACT

Purpose: To develop an efficient algorithm for multi-component analysis of Magnetic
Resonance Fingerprinting (MRF) data without making a-priori assumptions about the
exact number of tissues or their relaxation properties.

Methods: Different tissues or components within a voxel are potentially separable in
MREF because of their distinct signal evolutions. The observed signal evolution in each
voxel can be described as a linear combination of the signals for each component with
a non-negative weight. An assumption that only a small number of components are
present in the measured field of view is usually imposed in the interpretation of multi-
component data. In this work, a joint sparsity constraint is introduced to utilize this
additional prior knowledge in the multi-component analysis of MRF data.

A new algorithm combining joint sparsity and non-negativity constraints is proposed
and compared to state-of-the-art multi-component MRF approaches in simulations and
brain MRF scans of 11 healthy volunteers.

Results: Simulations and in vivo measurements show reduced noise in the estimated
tissue fraction maps compared to previously proposed methods. Applying the proposed
algorithm to the brain data resulted in 4 or 5 components, which could be attributed to
different brain structures, consistent with previous multi-component MRF publications.

Conclusion: The proposed algorithm is faster than previously proposed methods for
multi-component MRF and the simulations suggest improved accuracy and precision of
the estimated weights. The results are easier to interpret compared to voxel-wise meth-
ods, which combined with the improved speed is an important step towards clinical
evaluation of multi-component MRE
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2.1. INTRODUCTION

AGNETIC resonance fingerprinting (MRF) [9] is a novel technique for simultane-
M ous mapping of multiple quantitative parameters. MRF has been mainly applied
for single-component matching of a set of system and tissue parameters, e.g. T3, T», and
B, to each voxel. The standard method matches the measured signal to a pre-calculated
dictionary with a pattern recognition algorithm based on the inner product similarity
measure. However, single-component matching only considers the average signal pro-
duced by multiple tissues in a voxel. Multiple tissues can be present in a voxel either
in the boundary region between two tissues or simply as a mixture of multiple compo-
nents because of the complex structure of tissue. In the brain, the first effect occurs in
the boundary region between white and gray matter, the second example is the case for
myelin in the white matter. This partial volume effect [33] can lead to blurring artifacts
or averaged tissue parameters in the maps obtained by single component matching.

Multi-component analysis takes into account that a voxel can consist of several tis-
sues and assumes that the measured signal is composed of a weighted sum of signals
corresponding to the individual tissues present in the voxel. Multi-component analysis
can be performed for standard relaxometry scans like multi-echo spin echo (MESE) T,
mapping by a multi-exponential fit. The standard method for multi-component analy-
sis is the T2 Non-Negative Least Squares (T2NNLS) algorithm introduced by Whittall and
MacKay [34], based on the Non-Negative Least Squares (NNLS) algorithm by Lawson and
Hanson [35]. With this algorithm a smooth 7> spectrum is obtained and the Myelin Wa-
ter Fraction (MWF) is determined by integrating over all weights in the spectrum with
T, < 40ms. Besides myelin water, another peak can be recognized which belongs to
intra-extracellular water [18].

Multi-component analysis applied to MRF has the potential to distinguish more tis-
sues than multi-exponential 7> methods because multiple tissue parameters are taken
into account. A first approach to Multi-Component MRF (MC-MRF), where each voxel
is modelled as a composition of only three possible tissues with predefined relaxation
times, was proposed in the supplemental material of the original MRF publication [9].
A dictionary containing only three 77,7, combinations was used with a least-squares
algorithm to determine the weights for the three possible components. This approach
imposes a very strong constraint, namely that the number and relaxation times of the
individual components are known. This may not always be the case and the resulting
solution is very sensitive to the choice of tissue parameters. Deshmane et al. [24] ex-
panded this approach by estimating the main tissues based on the single component
matching combined with k-means clustering, where the number of components is se-
lected on forehand. This partial volume model assumes that most voxels contain a single
component and partial volume effects are only present at the boundaries of tissues (See
Supporting Information Figure S2.1).

A first MC-MRF method using a large dictionary of 77 and 7> combinations was pro-
posed in [25], which applies a Bayesian estimation method to obtain a MC-MRF match-
ing. This method considers each voxel independently and is able to distinguish differ-
ent components within a voxel without explicitly including prior knowledge about the
number of components or their corresponding relaxation times. This approach applies
a sparsity constraint, but the coefficient weights are complex and the absolute value of
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the complex weights is returned as the final solution. Computation times of 12 seconds
per voxel were reported in this work, corresponding to several days for the processing
of a single slice. Another voxel-wise approach was recently proposed in [36], which ap-
plies both sparsity and non-negativity constraints to the component weights within an
iteratively reweighted ¢;-norm regularized least squares algorithm. Computation times
between 0.1 s and 1 s for a single voxel are reported for this algorithm when executed on
a computer cluster.

Besides the long processing times reported in these approaches, another difficulty
is the interpretation and visualization of the results. When the complete MRF measure-
ment is considered, the matched components in each voxel can correspond to different
relaxation times, and need further processing to visualize the results. This can be done
with a simple grouping based on T; or T, ranges as done for the MWF from T2NNLS
or with a more sophisticated method e.g. Bayesian grouping strategies [25]. This inter-
pretation step requires additional assumptions about the tissues present in the region of
interest (ROI), the number of components or voxels in which a pure tissue can be found.

Two works are currently published in arXiv, in which the multi-component analy-
sis includes dependencies between different voxels. The greedy-approximate projec-
tion algorithm (GAP-MRF) [37] approximates the main tissues present in the ROI and
determines MC-MRF maps based on these components. This method results in 5-6
components in the brain, assuming that most voxels contain single tissue. Relaxation-
Relaxation Correlation Spectroscopic Imaging (RR-CSI) [38] is a related approach, which
uses an inversion recovery multi-echo spin-echo (IR-MESE) acquisition sequence simul-
taneously encoding T; and 7> relaxation times. The corresponding multi-component
analysis assumes smoothness in the T, T» parameter space and spatial smoothness to
determine T;, T» distributions for all voxels. This method can be seen as an extension
on T2NNLS methods where spatial smoothness is applied [39-41] and multiple relax-
ation parameters are simultaneously encoded. Six main peaks are detected in the re-
constructed spectrum, which are interpreted as six different components. This algo-
rithm was not demonstrated on MRF-data, but is related because it performs multi-
component analysis from a sequence simultaneously encoding 77 and 7>, relaxation
times. Another work by the same authors proposes a set of greedy algorithms for non-
negativity constraining simultaneous sparse recovery [42], related to the GAP-MRF algo-
rithm [37].

In this study, we investigate different approaches for MC-MRF with the aim to ob-
tain an accurate and robust result in a shorter time than the previously proposed MC-
MREF approaches. Several different approaches were implemented and compared, in-
cluding the NNLS algorithm as used for T2NNLS, the fixed 3 component approach pre-
sented in the original MRF publication [9], the Bayesian algorithm [25] and reweighted-
Z1-norm regularized algorithm [36]. Furthermore, we propose a new algorithm that ap-
plies joint sparsity and non-negativity constraints for the component weights, which can
reduce the noise amplification in MC-MRF keeping the reconstruction time tractable.
The main premise of this approach is that only a small number of "basis" tissues is
present throughout the ROI and the tissue in each voxel is a mixture of these basis tis-
sues. The method is theoretically described and compared with the previously men-
tioned methods. The evaluation was performed in numerical simulations and in brain
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data of 11 healthy volunteers.

2.2. METHODS

2.2.1. THEORY
Voxel-wise problem setting In a multi-component signal model, the MRF signal x; of
avoxel j € {1,2,...J}, where J is the number of voxels, can be written as

XjZDCj+ej, (2.1)

where D is the MRF dictionary, c¢; the vector containing the weights for the different
components and e; the noise term. The measured MRF signal is generally complex,
however, if the phase is known, the signal can be rotated to the real axis resulting in a real
vector x; € RM of length M, where M is the number of time points of the fingerprinting
sequence or the length of the signal after SVD compression [43].

The dictionary D € RM*¥ contains the signal evolutions for N different components.
The measured signal is modeled as a non-negative linear combination of the dictionary
signals. The weights of these different components are contained in the vector ¢; € IRJEVO.
Besides the non-negativity constraint, it can be assumed that the weight vector c; is
sparse, thus the measured signal can be represented by a small number of components,
representing a small number of tissue types. The weights for each component in Eq.
(2.1) can be obtained by least squares minimization. When we include the requirement
that c is non-negative, we obtain the following NNLS problem for each voxel j:

min [x; — De;ll5. 2.2)

cjeRl)
For a dictionary with a large number of components, this problem is highly under-de-
termined and has infinitely many solutions. This formulation is very similar to a com-
pressed sensing problem. Therefore, if the solution vector is sparse, there are some the-
oretical guarantees that it can be recovered using a sparsity constraint. However, due
to the high coherence of MRF dictionaries a unique solution only exists for very sparse
solutions.

One sparsity promoting approach to solve this problem is the active set NNLS algo-
rithm as proposed by Lawson and Hanson [35, Chapter 23]. The NNLS algorithm shows
similarities to the orthogonal matching pursuit (OMP) algorithm [44] with its active set
principle and results in sparse solutions.

Another approach to restrict the solution is in the form of regularization. A typical
choice for sparsity promoting regularization is the £;-norm. The non-negativity con-
straint makes it possible to use the ¢%-non-negative regularization instead, which can
be used with computationally more efficient algorithms [45]:

min [x; — De;ll5 + A%llc; 13, 2.3)

emN
cjeR2,

where A > 0 is the regularization parameter. This problem can be recast to the equivalent
non-negative least squares problem of the form

PR A 112
min [X; — Dcjll3, (2.4)
CjEIRIZVO
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IRM+1XN RM+1

where D € andx; € are given by:

WL 2.5)

andx; = 0

_ D
D‘h )

which can still be solved using the NNLS algorithm from [35]. In this setting, an inde-
pendent (sparse) solution is obtained for each voxel.

Joint sparsity constraint The voxel-wise approach can lead to different components
for each voxel, even for a small region of interest that has uniform intensity in a contrast
weighted image. This is most likely due to noise and not due to actual large variability in
the tissue composition. The main premise in this work is that the tissue in the measured
volume is composed of a small number of "basis tissues”, or components, which are
shared for all voxels in the region of interest. In other words, we assume that there is a
small number of dictionary signals (atoms), which form a basis for the measured MRF
signal for the whole region of interest. The measured MRF signals can be represented by
alinear combination of this shared set of dictionary signals. This assumption is similar to
the fixed basis approach [9], however, we don’t assume that the number of components
and their T; and T, values are known in advance. To include this requirement in the
reconstruction, we introduce the joint sparsity constraint.
The joint forward model can be written as

X=DC+E, (2.6)

where X = [x1,...x;] € RM*/ contains the measured signals and C = [cy, ...c;] € RV*/ con-
tains the weights for all the voxels and E contains the noise terms. Each row ¢’ of the
weight matrix contains the weights of a single component i for all voxels in the region of
interest. The joint inverse problem can be written as a NNLS minimization problem:

mmJX—Da@, 2.7)

Nx
CeRZ,

where ||| denotes the Frobenius norm.

The requirement that the measured signals can be represented by a small number
of shared signals, can be summarized as the constraint that Zf.\i 1 lct|lo must be small.
This joint sparsity constraint has been considered with different names and in different
problem settings [46-50] and has only been combined with a non-negativity constraint
in a Greedy algorithm in [42].

The non-negativity and joint sparsity constraints can be combined in the minimization
problem

N .
min | 1X=DCI}+u) lle'lo |, 2.8)
i

CE[RZOX]

where p is a regularization parameter that balances sparsity and reconstruction error.
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Sparsity Promoting Iterative Joint Non-negative least squares (SPIJN) algorithm To
solve the optimization problem 2.8, we propose a new iteratively reweighted non-negative
least squares algorithm, called Sparsity Promoting Iterative Joint NNLS (SPIJN), which is
summarized in Algorithm 2.1 to which we will refer in the rest of this section. In the
spirit of reproducible research, the source code of the proposed algorithm including the
later discussed numerical phantom is available at https://github.com/MNagtegaal/
SPIJN.

The algorithm uses the NNLS algorithm to solve the joint NNLS problem, with a
reweighting in each iteration. The weights promote a jointly sparse solution, finding
a small number of atoms that serve as a common basis for all voxels. Both the measured
signals X and the dictionary D are normalized such that [|x||; = ||d|l> = 1. The normaliza-
tion of the dictionary prevents a bias caused by high signal intensity, the normalization
of the signals makes sure that all voxels have an equal influence on the joint sparsity.

The core of the algorithm is formed by lines 9-14. In each iteration, the NNLS algo-
rithm is used to solve the reweighted problem in line 13. The weights

Wis1,i — lIckll +€ Vie(l, ., N} 2.9)

are used, where € is a small parameter to improve the stability. To make the reweighting
more effective, the é% regularization from Eq. (2.5) is used in lines 11 and 12 of the algo-
rithm. The regularization parameter A is scaled with log,, J, to make the values of the
regularization parameter less sensitive to the number of voxels. The scaled regulariza-
tion parameter A determines the sparsity of the solution, similar to u in Eq.(2.8).
The algorithm is stopped after T iterations or when convergence is reached, accord-
ing to
Crr1 = CillF
ICxllF

where 6 is the convergence threshold, as calculated in line 15.

Most of the dictionary elements are not used after a small number of iterations and
remain unused for the rest of the process. These dictionary elements can therefore be
removed from the dictionary (line 7) to speed up the computations. This pruning is per-
formed in iteration p, where rows with an #; norm smaller than & - J are pruned. In the
final solution, the weights corresponding to the pruned dictionary atoms are set to 0.

0, (2.10)

2.2.2. EXPERIMENTS

Simulated data To test the proposed method, simulations were performed with a fully
sampled numerical phantom containing three different components. The relaxation
times for the simulated components were chosen according to a three tissue brain model,
where the measured MR signal is a combination of myelin water (MW), intra- and extra-
cellular water IEW) and free water (FW). The first component is in the range of MW with
relaxation times (7; =67ms and 7> =13ms) [51], the second component in the range
IEW (T =1sand T» = 100 ms) and the third component in the range of FW (77 = 2000 ms
and T, = 50ms) [52]. 10 multi-component compositions were simulated, the first com-
ponent had a weight of 10 % in each composition, the other two components vary from
0% to 90 %. For each combination, the signal evolution was calculated and Gaussian
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Algorithm 2.1 The Sparsity Promoting Iterative Joint NNLS (SPIJN) algorithm to perform
a multi-component analysis for an MRF measurement.

X =[xy,..x5] - Jrealvalued, normalized signals (size M x J)
D - areal valued, normalized dictionary (size M x N)
A - regularization parameter
T - maximum number of iterations (default 20)
INPUT: = . . . . .
p,0 - pruning takes place at this iteration, using this threshold
(defaults 2,10719)
- convergence threshold (default 1074
€ - parameter for the reweighting (default 10™%)
OUTPUT:
C - non-negative, jointly sparse solution for optimization problem 2.8.
k<1 > Counter for the number of iterations
2: C) — argminCERﬁzuxz | X - DCII% > Initial solution
3:d—1 ) > Initial convergence threshold
4 A—A-log,,J > Scale the regularization parameter with the number of voxels
5: while k< T and d > do
6:  if k=p then
7: Prune D and C according to ”05”1 <6 > Pruning of the dictionary
8 endif
9: Wi+1,i < IIC;'CIIZ +¢, Vie(l,..., N} > Calculation of the weights
10 Wy, < diag (wi’fl)
- DWj. 1 C . 2 .. . .
11: Djyq — ur | Weighting and ¢7 regularization, 1 is a vector of all ones with
length N
- X 2 o
122 X< o7 > ¢7 regularization
13: Cys) —arg ming gy | X-DcC|? > Solve step using the NNLS algorithm
14: Cri1 — Wis1Cra1 > Compensate for the weighting
15: d— W > Convergence threshold
16: k—k+1
17: end while
18: if k > p then
19:  Fill C with zeros at pruned dictionary atoms. ©> To return a matrix with weights
for all the components
20: end if
21: C—Cy > Only return the last iteration
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Figure 2.1: The two flip angle (FA) sequences used in this work. Both sequences have a repetition time of 15 ms.
Sequence 1 has a TE = 4 ms and repetition delay of 500 ms. Sequence 2 has a TE = 5 ms and repetition delay of
3s. The maximal flip angle in both sequences is 60¥.

noise was added, resulting in a total of 10 x 10 simulated voxels with a signal to noise
ratio of 50.

A gradient-spoiled MRF sequence [10] of 200 time points was used for the simula-
tions. The sequence had a flip angle variation as shown in Figure 2.1 (Sequence 1) and
a constant repetition time of TR =10 ms. A logarithmically spaced dictionary with 3240
atoms consisting of 80 7} values from 10 msto 5s and 80 T» values from 10 ms to 5s with
the restriction 7> < T} was computed with the extended phase graph algorithm (EPG)
[53].

Invivo data To demonstrate the feasibility of the proposed method in vivo, fully sam-
pled MRF brain data were acquired for 11 healthy volunteers with informed consent ob-
tained. The scans were performed with different MRF sequences on two different field
strengths in order to test the approach in different settings. The measured signals were
corrected with a phase term to obtain real-valued vectors. In a pre-processing step, the
lipid tissue and skin were removed to keep only the region containing the brain.

One volunteer scan was performed on a 1.5 T Philips Achieva scanner with Sequence
1 as given in Figure 2.1 using an 8 channel head coil and a spiral acquisition pattern,
a FOV of 240 mmx240 mm, 1 mmx 1 mm in plane resolution and 5 mm slice thickness.
Three slices were acquired with an acquisition time of 359 ms. A logarithmically spaced
dictionary was computed with T ranging from 10 ms to 4 s in 100 steps and T from 4 ms
to 2 s in 80 steps, with the restriction T, < T3, consisting of 4974 dictionary atoms.

Ten volunteers were scanned on a 3T Philips Ingenia scanner with Sequence 2 as
given in Figure 2.1 with a Cartesian sampling pattern, a FOV of 240 mmx240 mm, in
plane resolution of 1.25 mmx1.25 mm and 10 mm slice thickness. The acquisition time
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for one slice was 337 s. For the dictionary the same T; and 7, combinations were used as
in the numerical experiments and included different relative B} -inhomogeneity values,
ranging from 0.75 to 1.26 with step size 0.003, leading to a dictionary size of 845580.

Comparison to other algorithms The proposed SPIJN algorithm was compared in sim-
ulations to three voxel-wise algorithms, the NNLS algorithm [35], the MC-MRF reweigh-
ted-#;-norm regularized algorithm [36] and the MC-MRF Bayesian approach [25]. The
NNLS forms the basis of our algorithm and a comparison is included in order to estimate
the effects of the joint sparsity constraint. The 1.5 T measurement was used to compare
the SPIJN algorithm to the three voxel-wise algorithms and MC-MRF analysis using two
different subdictionaries containing only three fixed components. The first set (set A)
of components of the subdictionaries is based on literature values from a work apply-
ing this approach for MC-MREF [54] and the (T3, T») values are (127 ms, 21 ms), (1267 ms,
127 ms) and (2056 ms, 485ms). The second set B is based on components as matched
by SPIJN with (T3, T>) relaxation times (10ms, 10 ms), (781 ms, 58 ms) and (1821 ms,
842 ms). The comparison with the two different sets of fixed components was performed
to evaluate the sensitivity to the choice of the components.

The normalized root mean squared error (NRMSE) is used to evaluate the data con-
sistency between the estimated signal from the multi-component matching and the mea-
sured signal. The NRMSE is calculated as %

For the Bayesian algorithm three parameters had to be chosen, for the shape param-
eters ¢ = 2 and f = 0.1 were used. Regularization parameter p = 6 was used for the in
vivo measurement and p = 0.01 for the simulations. For the reweighted-#¢;-norm regu-
larized algorithm A = 0.01 was used for the in vivo data and A = 0.001 for the simulations.
For the SPIJN algorithm A = 3.5 was used for the 1.5 T in vivo measurements and A = 0.03
in the simulations.

All algorithms were implemented in Python. SVD compression [43] to a dimension
of 25 was used for all the measurements and simulations. The NNLS algorithm uses the
FORTRAN implementation as included in the SciPy package. For the subdictionaries the
NNLS algorithm was used to find the corresponding weights for the fixed components.

The single-voxel algorithms require grouping to relate similar components found
in different voxels to each other and to known tissue types. Components in the range
T1 =200ms and 7> < 40ms are considered to belong to the MW component, in the range
200ms < 77 < 1800ms and 30ms < T, < 200ms to the IEW and in the range 77 = 850ms
and T, = 200ms to the FW. Components outside these ranges are considered as outliers
and not grouped to any of the three water types. These ranges are based on a combina-
tion of the following; relaxation times as expected from literature [55], ranges as used for
T, relaxometry MWF mapping and the visually distinguishable clusters in the MC-MRF
decompositions from the different algorithms.

Repeatability of the SPIJN algorithm The 10 MRF measurements at 3T were used to
evaluate the repeatability of the multi-component matching from the SPIJN algorithm
on multiple healthy volunteers with the same MRF sequence. Single component match-
ing was first used to obtain the B;” map. Then for each voxel the corresponding subdic-
tionary with fixed B, was selected for the MC-MRF analysis. The SPIJN algorithm was
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then used to obtain a decomposition for each of the measurements. The regularization
parameter was selected in a way that the number of components was as small as pos-
sible but without increasing the NRMSE compared to regularized voxel-wise methods.
This resulted in A values of either 12 or 15 for these measurements. From these decom-
positions, the components corresponding to white and gray matter were selected for the
evaluation.

The relaxation times matched to the white and gray matter are determined as an indi-
cation of the repeatability of the SPIJN decomposition over multiple scans. An overview
of relaxation times from [52, 55] for white and gray matter at 3 T from different studies is
given in Table 2.1 as a reference.

Table 2.1: An overview of relaxation times (ms) from [52, 55] for white and gray matter at 3 T. The tables include
the number of studies resulting in the list of literature values used to determine the average values, standard
deviations and minimal and maximal values .

T Average (ms) Std (ms) Min (ms) Max (ms) # Studies
Gray matter 1459 192.3 968 1815 20

White matter | 974 210 728 1735 26

T, Average (ms) Std (ms) Min (ms) Max(ms) #studies
Gray matter 92.6 16.9 65 110 5

White matter | 60.8 13.1 49.5 79.6 4

2.3. RESULTS

2.3.1. COMPARISON TO OTHER ALGORITHMS

Simulateddata The results of the multi-component analysis for the simulated data are
shown in Figs. 2.2 and 2.3. Figure 2.2 shows the ground truth of the three different com-
ponents and the component weights obtained by the four different algorithms. The root
mean squared error (RMSE) is given above each of the grouped components. The results
of the NNLS and the reweighted-¢; -norm-regularized algorithm are very similar, while
the Bayesian approach results in larger errors than the other two voxel-wise methods.
The SPIJN algorithm results in a smaller error and less variance in the solution.

Figure 2.3 shows the distribution of the T} and 75 values of the matched compo-
nents for the different algorithms, the grouping boxes and the true relaxation times of
the simulated components. The matched components are spread around the true relax-
ation times and for all the algorithms the component with the shortest T} and 75 is the
most difficult to estimate. Although the T; and T, values of the shortest component are
biased, the corresponding component weights are still accurate.

The reweighted-¢;-norm regularized algorithm shows a smaller spread in the relax-
ation times of the matched components compared to the other voxel-wise methods, but
the differences with the NNLS algorithm are small. The SPIJN algorithm matches three
components with T, T, relaxation times (52.17 ms, 10 ms), (1036.78 ms, 105.91 ms) and
(1945.36 ms, 510.75ms). The computations for 100 voxels took 0.935 s for the NNLS al-
gorithm, 56.49 s for the ¢, algorithm, 82.60 s for the Bayesian method and 1.658 s for the
SPIJN algorithm. The computations were performed on a standard laptop (IntelCore
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Ground truth

T1=67 ms NNLS Reweighted £; Bayesian SPIN
T;=13ms RMSE = 2.16e-02 RMSE = 2.12e-02 RMSE = 5.66e-02 RMSE = 1.06e-02
0.2
Myelin wate!
0 ms<T; <200 ms| 0.1
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T, =100 ms RMSE = 7.98e-02 RMSE = 7.65e-02 RMSE = 1.75e-01 RMSE = 3.27e-02
1.0
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cellular watel
200 ms < T, < 1800 ms| 0.5
30 ms <T, <200 ms
0.0
T1=2000 ms
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Figure 2.2: The results of the simulations with three components comparing the four different MC-MRF algo-
rithms. Sequence 1 as shown in Figure 1 was used in the simulation. A numerical phantom containing three
different components was simulated with an SNR of 50. The numerical phantom consists of 100 pixels, the
first component is present in each pixel with ten percent and the other two components vary in the horizon-
tal direction from 0 % to 90 % in 10 steps. The first column shows the ground truth for the distribution of the
weights for the different components and the other columns show the retrieved component weights with the
different algorithms and the corresponding root mean squared error (RMSE) to the ground truth.

i5-6300U CPU @2.4 GHz 2 cores, 4 threads).

Invivodata The 1.5 T measurement was used for in vivo comparison of the SPIJN algo-
rithm to previously proposed MC-MRF methods. Figure 2.4 shows the T} and T, values
of the matched components for the different algorithms and how they are grouped to
a MW component, IEW and free water. Figure 2.5 shows the component weights for
the different methods, grouped in the same manner as for the simulated data, includ-
ing the NRMSE values. The processing time for the NNLS algorithm was 123 s, for the
reweighted-¢; -norm regularized algorithm 169 min, for the Bayesian algorithm 89 min
and for the SPIJN algorithm 171 s. The matrix size was 240 x 240, of which a ROI consist-
ing of 32 % of the voxels with signal above the noise threshold was selected, resulting in
18546 voxels.

The results of the NNLS and the reweighted-#;-norm regularized algorithm are very
similar just as for the simulations, but visibly differ from the results of the Bayesian ap-
proach. The SPIJN algorithm shows similar structures for the IEW and FW components,
but the estimated weights are less noisy compared to the voxel-wise methods. Although
the NRMSE of the NNLS, reweighted-¢;-norm regularized and SPIJN algorithm are sim-
ilar, the introduction of the joint sparsity constraint results in less noise and more clear
anatomical structures in the estimated weights.

The results of the two MC-MRF decompositions with three fixed components are
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very different, depending on the chosen combination of relaxation times. Just as the
SPIJN algorithm, they show less noise in the estimated weights compared to the voxel-
wise methods. The results of the first set are consistent with the results from [54], but the
higher NRMSE indicates a lower consistency with the measured data. The second set of
fixed components was based on the results from the SPIJN algorithm and the resulting
weights are very similar to the results from the SPIJN algorithm.

The SPIJN algorithm resulted in five components, which are shown in Figure 2.6.
These components were grouped to three components in Figure 2.5, which was neces-
sary in order to compare the results of SPIJN to the voxel-wise algorithms.

2.3.2. REPEATABILITY OF THE SPIJN MULTI-COMPONENT ANALYSIS

The ten 3T measurements are used to test the repeatability over multiple healthy vol-
unteers. The estimated T; and T» relaxation times for the components related to white
and gray matter are listed in Table 2.2. The results for the different measurements are
similar and in general within one or two steps of the dictionary resolution away from the
mean value. Except for the T5 relaxation time of the gray matter, the matched values are
consistent with literature values [52] as tabulated in Table 2.1. While a single component
is reconstructed for white matter with our decomposition, the voxels corresponding to
gray matter also had a contribution from a component with longer relaxation times.

Only four components were matched by the SPIJN algorithm in the 3 T brain mea-
surements. These estimated component weights are shown for one volunteer in Fig-
ure 2.7. Component a and b are assumed to be related to white and gray matter respec-
tively, where as the other two components can be attributed to CSE
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Figure 2.4: The distribution of the matched components for the 1.5 T in vivo measurement from the four dif-
ferent algorithms and an approach with two different subdictionaries. The blue box is the short component
(myelin water), the green box the middle component (white and gray matter) and the red box the long com-
ponent (CSF). The size of the circles corresponds to the relative abundance of the components. The subdic-
tionaries contain pre-fixed components, the first set is based on [24] , the second set on results from the SPIJN
algorithm.

2.4. DISCUSSION

ANew algorithm with joint sparsity constraint was proposed to perform a MC-MRF
analysis. The SPIJN algorithm was theoretically described and its basic feasibility
was demonstrated in simulations and in vivo brain measurements. The proposed algo-
rithm was compared to other recently proposed algorithms for MC-MRF analysis as well
as to the NNLS algorithm, and the repeatability of the results was demonstrated in 10
healthy volunteers.

A first, general observation from the performed experiments is that the NNLS and
the reweighted- ¢, -norm regularized algorithm give very similar results. Both algorithms
try to solve the same mathematical problem, but the NNLS algorithm is much faster
without the need for regularization. Secondly, the results from the Bayesian approach
were significantly different compared to the other algorithms. This can be explained by
the absence of the non-negativity constraint during the iterations of the algorithm.

To compare the voxel-wise algorithms to the SPIJN algorithm, the results were grou-
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Figure 2.5: The results of different MC-MRF algorithms for a brain MRF measurement at 1.5 T. The rows corre-
spond to the different grouped components and the columns to the different algorithms. The last two columns
contain the results using dictionaries using only 3 components. The color indicates the relative weight of the
(grouped) component in each voxel. The first row has a different color scale than the lower two rows.

ped based on Ty, T> ranges. Using larger grouping regions enables including all matched
components, generally leading to smoother fraction maps, but the grouped relaxation
times are less related. When using smaller regions, it is more likely to miss components,
leading to noisier tissue fraction maps. Thus, the visualization of voxel-wise methods
is a difficult problem and the provided visualization may not be optimal for each of the
individual algorithms, but nevertheless provides some basis of comparison between the
results of different algorithms.

The numerical simulations showed that the proposed SPIJN algorithm can separate
3 components with improved accuracy and precision compared to voxel-by-voxel MC-
MRF approaches, with a FOV of 100 voxels and 10 voxels per component weight combi-
nation. This indicates that the joint sparsity constraint can improve the stability of the
ill-posed inverse problem of MC-MREF already with a small number of voxels. Therefore,
a patch-based approach, in which the joint sparsity is applied on small local neighbour-
hoods is feasible, and could be an alternative to the global joint sparsity investigated in
this work.

The results from the in vivo data in Figure 2.5 show that the SPIJN algorithm finds
a small number of components that form a common basis for the measured MRF sig-
nal of the entire ROI, without significantly increasing the representation error compared
to voxel-by-voxel MC-MRF approaches. The relaxation times of these components are
centered withing clusters formed by the relaxation times obtained by the voxel-by-voxel
algorithms on the (7;-7>) plane. The SPIJN algorithm results in a similar noise level
in the component weights as the approach with 3 fixed, a priori chosen components,




26 2. MULTI-COMPONENT ANALYSIS USING A JOINT SPARSITY CONSTRAINT FOR MRF

T:=10.0ms 1 0.6 ms T1=0692ms 8§42 ms T,=936ms ¢ 57 ms
T,=95ms $0.7ms T,=53.6ms $4.2ms T,=62.8ms 4.9 ms

a 0.10 b 1.0 1.0
0.08 0.8 0.8
0.06 0.6 0.6
0.04 0.4 0.4
0.02 0.2 0.2
0.00 i 0.0 0.0

T1=1430ms $87ms T;=1821ms $ 110 ms
T,=383ms §$30ms T, =842 ms §$ 66 ms

d P 1.0 e 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0

Figure 2.6: The five components matched by the SPIJN algorithm for a measurement at 1.5 T. The color indi-
cates the relative weight of the component in each voxel. The relaxation times for the different components
are given. To indicate the grid spacing at a certain point the symbol { is used, indicating the average distance
to the next lower and next higher relaxation time for the matched 77, T» combination. The relaxation times of
component a are related to myelin water, the relaxation times of component b to white mater, the relaxation
times of component c to gray matter and the relaxation times of components d and e to CSE

but it additionally has the freedom to better adapt the chosen components to the data.
The components obtained by the SPIJN algorithm can be interpreted as basis tissues
that compose the tissue within each voxel and form the mixed signal measured in MRE
These components are recovered merely with the assumption of sparsity and don’t nec-
essarily need to correspond to known physical tissues. Depending on the coherence of
the dictionary and the selected regularization parameters, it is possible that multiple
components would be recovered as a single mixed component or a single component is
split into multiple in the decomposition. While the ability of the algorithm to accurately
separate multiple components was confirmed in simulations, in-vivo validation is more
difficult since the number of components is unknown.

Nevertheless, in the performed experiments, the resulting MC-MRF decompositions
showed similarities to decompositions presented in previous works [37, 38, 56] and can
be related to known anatomical structures. With the proposed algorithm, five compo-
nents were observed for the 1.5T measurement: one component that could be related
to a MW component, two components related to white matter and gray matter that were
grouped to IEW for the comparison, and two more components can be interpreted as
free water. The weight of the MW component of 5% is lower than the MWF as known
from T> relaxation measurements (typically 10%). Although the results were much nois-
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Table 2.2: The matched relaxation times for the white matter and gray matter component for measurements
at 10 volunteers at 3T.

White matter T Gray matter T
(mean 898 ms) (mean 1241 ms)
Relaxation time [ms] | 830 881 936 994 | 1056 1192 1267 1346
Grid step size [ms] 50 53 57 60 64 72 77 81
Count 1 6 2 1 2 1 4 3
White matter 7> Gray matter T
(mean 53.2 ms) (mean 58.8 ms)
Relaxation time [ms] | 50 54 58 50 54 58 63 68
Grid step size [ms] 4 4 5 4 4 5 5
Count 4 4 2 1 1 5 2 1

T1=936ms $57ms T;=1346ms §$ 81l ms

T,=58ms $5ms T,=68ms $5ms
a g™ 10 - 1.0
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0.0 0.0 Figure 2.7: The four components matched by the SPIJN
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ier, all algorithms were able to recover the MW component in the simulations, and the
NNLS and reweighted-¢; -norm regularized algorithm also resulted in a MW component
of about 5% in the in vivo data.

For the 3T measurements, using a different MRF sequence, four components were
recovered. These are similar to the last four components found in the 1.5 T experiment
and can be related to white matter, gray matter and CSE for which two components
were found. Similar to [25, 37], no short 7> component that can be attributed to MW was
recovered for these data.

These results suggest that the number of components and the corresponding weights
depend on the MRF sequence. Different sequences may have different sensitivity to
shorter > components. Differences in estimated MWF were also reported between
MESE and DESPOT measurements, supporting the possible dependence on the acqui-
sition method [57]. By showing these different results for the two similar sequences we
want to stress the influence of the sequence on the recovered components and the rele-
vance of this as a topic of future research.
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In addition, data inconsistencies due to an incomplete model used for the compu-
tation of the dictionary may bias the estimation of the component weights. B}" com-
pensation was included for the 3T data, however, further effects like diffusion or mag-
netization transfer that were not considered may introduce potential bias. It would be
interesting to investigate how more parameters can be efficiently included in the multi-
component analysis and their effect on the component estimation.

The proposed algorithm gives consistent results over repeated measurement in 10
volunteers as shown in Table 2.2. Direct comparison with literature values is difficult,
since these studies do not take in to account the multi-component effects. Furthermore
the literature values from different studies are not very consistent (see Table 2.1), proba-
bly because of differences in the parameter mapping sequences and fitting procedures,
different segmentation tools, and potentially certain natural variation between volun-
teers. However, even a rough comparison can be useful in order to better understand
the results from the multi-component analysis. Performing such a comparison, we see
that most relaxation times are in the range of literature values, only the T> of gray matter
(mean 58.8ms) is slightly shorter than the shortest value (65ms) reported in literature,
which was from an Gradient-spoiled MRF measurement [10], but within the uncertainty
range. Most parts of the gray matter are not matched as one component, but as a combi-
nation of component b and d (see Figure 2.7, where the latter has long relaxation times,
which will lead to longer relaxation times for single component matching.

As already reported in [36, 37], MC-MRF is more sensitive to noise and the signal
perturbations from undersampling can cause significant noise amplification in the es-
timated weights. One can use very long sequences with few thousand time points in
order to gain back the SNR lost by undersampling. In this work, we chose to use a rela-
tively short fully sampled MRF sequence instead, in order to ensure practical processing
times for the computationally demanding approaches [25, 36] used in the comparisons.
It is known that advanced reconstruction methods [58-61] can be applied to reconstruct
artifact free image series from the undersampled MRF data, which enables the applica-
tion of multi-component analysis on undersampled data with short MRF sequences (see
Supporting Information Figure S2.2). The optimal choice of the MRF sequence and the
reconstruction method are out of the scope of this study, but will be interesting topics
for future research.

In this study, the regularization parameter was selected such that it minimizes the
number of components without increasing the NRMSE compared to regularized voxel-
wise methods, which was used as quality measure of the fit. Alternatively, the regulariza-
tion parameter can be chosen in a way that specific number of components are recov-
ered, or estimated with methods similar to the y? misfit used for T2NNLS [34].

A requirement from the non-negativity constraint is that the signal and dictionary
are real valued. For the FISP MRF sequence with constant TE it is possible to make this
required transformation from a complex to a real signal, since the phase is constant for
all time points. When a different MRF acquisition is used, resulting in temporal phase
evolution, the phase difference between dictionary and signal may be more challenging
to determine. When this phase is determined, the real and imaginary part of the signal
can be concatenated to a real signal to perform the MC-MRF analysis.

This initial technical feasibility study was performed on healthy volunteers only. The
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ability to capture different tissues or pathology depends on the sensitivity of the used
MRF sequence for the tissue of interest. Based on the results from Badve et al. [62], we
think brain tumors would result in one or two extra components. Investigating the pro-
posed algorithm, the effects of the regularization parameter and influence of the MRF
sequence for MC-MRF in patients would be an important step towards the validation of
the approach.

2.5. CONCLUSION

HE sparsity promoting iterative joint NNLS (SPIJN) algorithm was proposed to solve

the multi-component MRF problem through the introduction of a joint sparsity con-
straint. The introduction of the joint sparsity constraint leads to a higher robustness
to noise compared to existing methods and results in a small number of components
matched throughout the ROI. This makes the results directly interpretable without fur-
ther assumptions or complex regrouping strategies. The proposed algorithm finds a
small number of components in MRF brain measurements, that can be attributed to
known anatomical structures and requires a minimum of further processing of the re-
sults. The proposed algorithm is over 10 times faster than previously proposed algo-
rithms for multi-component MR fingerprinting analysis, which facilitates the potential
application of the method in a clinical setting.
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Figure S2.1: Results from partial volume estimation based on k-means clustering as proposed by [24] applied
to the 1.5T MC-MRF measurement as used for Figure 2.4. MRF-mapped relaxation times from a single com-
ponent matching are used for a k-means clustering method to determine the k=3 main tissue components.
The NNLS algorithm is used to find a multi-component solution with the subdictionary containing these three
components. The k-means clustering method, with a fixed number of components, results in pure tissues in
most of the voxels, in contrast to the SPIJN algorithm.
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(b) Retrospectively undersampled data iteratively reconstructed [60]

Figure S2.2: The effect of undersampling on the MC-MRF decomposition using the SPIJN algorithm. Fully
sampled data from an MRF acquisition with Sequence 1 was retrospectively undersampled with an under-
sampling factor of 12. This dataset was iteratively reconstructed with matrix-completion [60]. Figure (a) shows
the results of the SPIJN algorithm for fully sampled data, Figure (b) shows the results for the iteratively re-
constructed undersampled data. The matched components are at most one grid step apart and the resulting
fraction maps are almost identical.
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ABSTRACT

MR fingerprinting (MRF) is a promising method for quantitative characterization of tis-
sues. Often, voxel-wise measurements are made, assuming a single tissue-type per voxel.
Alternatively, the Sparsity Promoting Iterative Joint Non-negative least squares Multi-
Component MRF method (SPIJN-MRF) facilitates tissue parameter estimation for iden-
tified components as well as partial volume segmentations.

The aim of this paper was to evaluate the accuracy and repeatability of the SPIJN-MRF
parameter estimations and partial volume segmentations. This was done (1) through
numerical simulations based on the BrainWeb phantoms and (2) using in vivo acquired
MRF data from 5 subjects that were scanned on the same week-day for 8 consecutive
weeks. The partial volume segmentations of the SPIJN-MRF method were compared to
those obtained by two conventional methods: SPM12 and FSL.

SPIJN-MRF showed higher accuracy in simulations in comparison to FSL- and SPM12-
based segmentations: Fuzzy Tanimoto Coefficients (FTC) comparing these segmenta-
tions and Brainweb references were higher than 0.95 for SPIJN-MREF in all the tissues
and between 0.6 and 0.7 for SPM12 and FSL in white and gray matter and between 0.5
and 0.6 in CSE For the in vivo MRF data, the estimated relaxation times were in line with
literature and minimal variation was observed. Furthermore, the coefficient of variation
(CoV) for estimated tissue volumes with SPIJN-MRF were 10.5 % for the myelin water,
6.0 % for the white matter, 5.6 % for the gray matter, 4.6 % for the CSF and 1.1 % for the
total brain volume. CoVs for CSF and total brain volume measured on the scanned data
for SPIJN-MRF were in line with those obtained with SPM12 and FSL. The CoVs for white
and gray matter volumes were distinctively higher for SPIJN-MRF than those measured
with SPM12 and FSL.

In conclusion, the use of SPIJN-MRF provides accurate and precise tissue relaxation pa-
rameter estimations taking into account intrinsic partial volume effects. It facilitates
obtaining tissue fraction maps of prevalent tissues including myelin water which can be
relevant for evaluating diseases affecting the white matter.
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3.1. INTRODUCTION

UANTITATIVE magnetic resonance imaging is getting increasingly more attention
Q since several fast, multiparametric quantitative methods have emerged, e.g. MR-
Fingerprinting (MRF) [9] and QRAPMASTER [63]. The reduced scan-time of these ac-
quisitions has facilitated their usefulness in research and clinical protocols [62, 64-66].

While these approaches can have a rich sensitivity to a wide range of tissue proper-
ties, the measurements are typically made voxel-wise, assuming a single tissue-type per
voxel. However, partial volume effects are known to hinder this so-called single compo-
nent approach [67-70]. Several methods were proposed facilitating multi-parameter es-
timates for a range of tissue components in a voxel. Examples of such multi-component
techniques for MRF are modeling the signal with 3 a priori defined tissues [9, 24], a
Bayesian approach [25], a reweighted- L, -norm regularized algorithm [36], and a region-
wise Greedy approximation method [71] . Following the principles of MRE other tech-
niques modeled bi-compartment voxels to distinguish between water and fat in cardiac
MREF [72], to separate tissue from blood in arterial-spin-labeling MRF [73] or estimated
T:-T>, spectra per voxel [74]. However these methods are limited by long computation
times, a restricted number of predefined tissues within a voxel, and assume predom-
inantly single compartment voxels or concern very different types of multi-parameter
acquisitions.

Another recently published method for coping with different tissue types within a
vozxel is the Sparsity Promoting Iterative Joint Non-negative least squares algorithm that
was applied to MRF data [75] (SPIJN-MRF). This approach asserted joint sparsity of the
number of tissue components in a region of interest, i.e. in a voxel as well as spatially. A
priori no assumptions are made about the number of tissues and relaxation times while
the method still proved faster than previously proposed techniques. As such it yields tis-
sue parameters for each identified tissue component as well as tissue volume fraction
maps. The SPIJN-MRF algorithm estimated brain tissue fraction maps from fully sam-
pled MRF data with promising accuracy and precision. These maps particularly showed
components representing myelin water, white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF) components. To be able to distinguish myelin water is specially rel-
evant in the diagnosis and evaluation of multiple sclerosis (MS), since it has been shown
that patients have reduced myelin water content [19, 76-78]. Also, imaging the increas-
ing myelin content of the developing brain has been done in several initial studies [79,
80].

Although the initial results with the SPIJN-MRF method were encouraging, an exten-
sive study into the accuracy and precision of the method has not yet been performed.
Additionally, it is unknown how the obtained brain tissue fraction maps relate to exist-
ing methods for tissue segmentations.

The aim of this work is to evaluate the accuracy and repeatability of the SPIJN-MRF
parameter estimations from highly undersampled MRF acquisitions. The accuracy of
the method will be assessed through estimation of the relaxation times and tissue frac-
tions on simulated data from the BrainWeb numerical phantom environment, including
a comparison to conventional techniques: the Functional Magnetic Resonance Imag-
ing of the Brain Software Library (FSL) and the Statistical Parametric Mapping Software
(SPM12). Furthermore, the repeatability will be assessed through the parameter esti-
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mates in eight weekly repeated scan sessions in 5 healthy volunteers. As in the simula-
tions, tissue fraction maps will be compared to the SPM12 and FSL segmentations.

3.2. METHODS

3.2.1. SIMULATIONS

Numerical simulations using the 20 BrainWeb phantoms [31] were performed to test the
accuracy and precision of the segmentations obtained with SPIJN-MRF and T; -weighted
based methods (FSL,SPM12). The BrainWeb phantoms were based on multiple high
resolution conventional weighted scans from 20 different healthy subjects. Simulations
were performed with resolution 1mm x 1mm x 5mm. 7>, values were as defined in the
BrainWeb database, but for white and gray matter 7;=930 ms and 1300 ms were used
instead of 500 ms and 830 ms as these are more realistic relaxation times for 3 T [82, 83].

The MRF data was created by simulating a gradient-spoiled MRF sequence with a
train of 1000 radiofrequency pulses as in [10]. This was done by performing extended
phase graph signal generation [53, 84] for each tissue after which a weighted combi-
nation of the signals based on the BrainWeb partial volume fractions yielded the MRF
images. Subsequently, independent random complex Gaussian noise with standard de-
viation o0 = max (| X])/100 was added to each MRF image X;, to yield the same noise level
for all voxels and time points. No undersampling was performed in these simulations, as
in [75].

The T;-weighted images were also simulated by the BrainWeb simulator, using a
spoiled FLASH sequence (TR=18 ms, TE=10 ms, FA=30 deg), after which Rician noise was
added with noise level parameter o = max (| X|)/100. The input tissue parameters and
partial volume segmentations from the BrainWeb database served as ground truth val-
ues.

3.2.2. IN VIVO DATA ACQUISITION

In vivo acquisitions were performed on a 3T GE MR750 MRI scanner (General Electric,
Milwaukee, WI, USA). A Head, Neck and Spine array coil was used from which the 12
channels dedicated to th