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Preface
Wind power is the fastest-growing energy source and the offshore wind industry is expected
to grow by over 80 GW through 2024. There is a need to reduce all associated costs to
be competitive in a market that might be fully subsidy-free soon. Adapting a predictive or
condition-based maintenance strategy can help in reducing O&M costs, as it accounts for
more than 30% of the lifetime costs in offshore turbines.

This master thesis focuses on developing a novel gearbox condition monitoring technique
using raw Supervisory Control And Data Acquisition (SCADA) data from an offshore wind
farm. The developed approach attempts to leverage the use of physics of failure technique
and artificial neural networkmodels for continuousmonitoring of gearbox condition. Utilizing
SCADA data for monitoring and fault detection can help in eliminating retrofitting additional
expensive sensors such as an online oil monitoring system, vibration monitoring systems
and so on for the same purpose.

Firstly, a physics of failure methodology is implemented to monitor turbines on a farm
level. Using Failure Mode, Effects Analysis (FMEA), the operating regimes under which gears
and bearings can potentially get damaged are ascertained. A correlation between the damage
operating conditions and the root cause of failure is analyzed using boxplots. In particular, a
correlation between operating conditions and the unexplained White Etching Cracks or axial
cracking failure that occur frequently in the high-speed shaft bearings is studied. It is ob-
served that turbines that experienced atleast one of the below damage operating conditions
compared to the rest of the fleet had a failure in high speed bearing due to axial cracking -

1. Higher number of braking events at high wind speeds and rated power.

2. Higher number of emergency brake events.

3. Idling for longer periods which results in bearings operating at boundary/mixed lubri-
cation regimes.

4. Higher number of rotor start-stop cycles.

Additionally, this methodology is also used to complement the Artificial Neural Network
model developed for anomaly detection, as it was observed that approximately 70% of failed
gearboxes were operating at higher risk of damage, while the rest might be due to a random
failure.

Finally, an Artificial Neural Network (ANN) based on a Recurrent Neural Network (RNN) is
developed for fault detection. The model is trained on data when the turbine was operating
normally, to predict gear bearing and gearbox lubrication oil temperatures. A stacked Gated
Recurrent Unit (GRU), a type of RNN model with two hidden layers resulted in predictions with
the lowest mean squared error of 0.1464∘𝐶 for gear bearing temperature model and a mean
squared error of 0.2375∘𝐶 for gearbox oil temperature along with good generalization. The
difference/residual between the measured and ANN predicted temperatures are used to flag
anomalies. The ANN-based condition monitoring method is validated through case studies
using real data from wind turbines. The results from the case studies indicate that the RNN
based fault detection method can detect a failure in the wind turbine gearbox components
as early as 3-6 months before it fails.

Keywords: Wind turbine gearbox, Physics of failure, White etching cracks, Condition mon-
itoring, Artificial Neural Network (ANN), Gated Recurrent Unit (GRU), Supervisory Control
And Data Acquisition (SCADA)
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1
Introduction

In this chapter, the background of the thesis is presented along with a small introduction on
the growth of wind energy. A short note on the failure statistics of wind turbines, maintenance
techniques along with the research scope of the thesis are discussed.

1.1. Wind Energy Outlook and Need for Condition Monitoring

Wind energy is one of the fastest-growing sources of energy. The overall capacity of installed
wind energy worldwide by the end of 2018 is 597 GW [1]. It is expected to grow by over 80
GW by the end of 2023. With the development of technology, bigger wind turbines are being
built and installed far offshore to tap more wind. With such exponential development, a
failure in one of the wind turbine component can result in higher revenue losses and it is
also impractical to have frequently scheduled maintenance as it can become tedious and
expensive. Especially for offshore turbines, operations and maintenance (O&M) accounts
for 25-30% of the lifetime costs [2]. To overcome the high costs of O&M it is necessary to
move to more intelligent and proactive monitoring of wind turbines, often termed as condition
monitoring.

A number of different expensive solutions are already available for condition monitoring of
wind turbines such as - vibration monitoring systems, real-time oil quality monitoring sys-
tems and so on. These systems are normally installed as additional systems with extra costs
and do not come retrofitted with a turbine. Hence, operators are in search of alternative
cheap solutions to monitor the condition of the wind turbine. All major wind turbine man-
ufacturers install a Supervisory Control And Data Acquisition (SCADA) system to monitor
the performance of wind turbines which records various parameters. As SCADA data is a
potentially low-cost solution for condition monitoring, this thesis discusses using these data
for monitoring and improving maintenance strategies of wind turbines.

1.2. Overview of Wind Turbine SCADA

Supervisory Control And Data Acquisition (SCADA) is a system of software and hardware
elements that allow wind farm owners to monitor wind turbine performance along with gath-
ering and storing various data parameters. Typically, all large scale utility wind turbines
come retrofitted with a SCADA system. SCADA records data usually at 10-minute resolu-
tion, though the range and type of signals recorded can vary from one type of turbine to
another. A list of typically recorded SCADA parameters is tabulated in Table 1.1.
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2 1. Introduction

Table 1.1: Basic SCADA parameters.

Environmental Electrical characteristics Part Temperatures Control Variables
Wind speed Grid power output Gear bearing Rotor speed
Wind direction Reactive power Gearbox oil Yaw angle
Ambient temperature Generator voltages Generator bearing Pitch angle
Nacelle temperature Generator phase current Hub controller Generator speed

Voltage frequency Top controller Cooling pump status
Power factor Main bearing Operational status code

Rotor inverter Number of starts / stops
Hydraulic oil

1.3. Failure Statistics

Understanding of common failures and typical downtime of a wind turbine due to the
failure of a particular component is essential for optimizing O&M strategies. Several surveys
of wind turbine failures have been conducted in the last two decades to identify failure rates
and associated downtime for different sub-assemblies.

Figure 1.1: Normalised Failure Rates and Downtimes for Geared G ≥ 1MW Turbines . Adapted from [3].

Reder et al., 2016 [3] conducted a comprehensive survey and study on onshore wind tur-
bine failure statistics. An evaluation of more than 4000 wind turbine from 14 different manu-
facturers was conducted. Most of the observed downtime and failures occurred in generators
and gearboxes, as shown in Figure 1.1. Similar trends can be observed in Figure 1.2 which
compares various studies done by different stakeholders. Therefore, gearbox and drivetrain
problems are certainly a major challenge to be addressed to further reduce downtime which
will be the focus of this thesis.

1.4. Maintenance Strategies and Signal Monitoring

The O&M costs of an offshore wind turbine account for up to 30% of the life cycle cost and
hence the cost of energy. A reduction of maintenance cost and therefore a reduction of the
cost of wind energy can be achieved by further improvements in wind turbine design leading
to improvement of its inherent reliability, but also by systematic solutions for maintenance
management.
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Figure 1.2: Overview on failure rate and mean down time per WT as published by different initiatives. Adapted from [4].

Figure 1.3: Evolution of maintenance strategies.

The basic types of maintenance strategies discussed in the asset management industry are
- (a) Reactive maintenance, (b) Preventive maintenance, (c) Condition-based maintenance /
Predictive maintenance and (d) Prescriptive maintenance, as shown in Figure 1.3. Currently,
the industry is evolving from preventive maintenance to predictive maintenance. This thesis
is focused on developing predictive maintenance algorithms.
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Reactive maintenance is also known as run-to-failure strategy. In this strategy, the com-
ponent is allowed to run until the end of its life and replacement is done once it completely
fails. This type of maintenance leads to higher downtime and higher costs of repair.

Preventive maintenance takes place before a component fails. It is a time-based approach
that is carried out at predetermined intervals to reduce failure risk or performance degrada-
tion of assets. The main aim of this strategy is to minimize unplanned downtime and reduce
repair costs.

Predictive maintenance or condition-based maintenance strategy is based on evaluating
the health or condition of the components before scheduling maintenance. The health of the
equipment is monitored by various sensors. This way an optimum between downtime costs
and repair costs can be found as shown in Figure 1.4. Examples of predictive maintenance
include oil sample analysis, acoustic emission, thermal analysis, and vibration monitoring.

Prescriptive maintenance is a step-up of predictive maintenance. Artificial Intelligence-
enabled Prescriptive Maintenance is unique in that instead of just predicting impending fail-
ure it strives to produce outcome-focused recommendations for operations and maintenance
from analytics.

Figure 1.4: Costs associated with traditional maintenance strategies [5]

An impending failure in any typical mechanical device can be tracked using various sig-
nals as shown in Figure 1.5, depending on available sensors. A vibration analysis gives the
earliest signals, however expensive vibration detection systems needs to be installed. Simi-
larly special expensive devices have to be installed for online oil quality monitoring and noise
monitoring. A typical wind turbine SCADA records various temperature signals and comes
with the wind turbine without any additional costs. The focus of this thesis, is therefore to
develop temperature based condition monitoring strategies using SCADA data where many
temperature signals are recorded.

1.5. Research Scope

The main focus of this thesis is to develop a novel technique leveraging the advantages of
both the Physics of Failure and Artificial Neural Network model-based approach for effective
condition monitoring of wind turbine gearbox. This research work also attempts to correlate
operational history of wind turbines with White Etching cracks as observed in high speed
shaft bearings of a wind turbine gearbox. The data for this research work was obtained from
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Figure 1.5: Typical development of a mechanical failure. Adopted from [5].

Prinses Amalia offshore wind farm owned by Eneco. The wind farm consists of 60 Vestas
V-80 2MW turbines.

1.6. Layout
This master thesis will follow the following outline -

Chapter 2 details about the basics of physics of failure based approach for risk-based
maintenance. Also a detailed explanation of artificial neural networks, in particular, the idea
behind of Recurrent Neural Networks (RNN) and NARX is provided. The research objectives
and methodology are presented at the end of the chapter.

Chapter 3 discusses in detail the physics of failure based approach for condition-based
monitoring. Also, a correlation between the common failure mode that occurs in high-speed
shaft bearings of a gearbox, namely White Etching Cracks and the historical damage operat-
ing conditions of the failed turbine are presented. A basic introduction of tribo-mechanical
aspects of bearings is also provided to help better understand the operations of bearings.

Chapter 4 covers the details about the proposed artificial neural network model for tem-
perature based anomaly detection of wind turbine gearbox. Details of hyperparameter tuning
of the neural network are also presented.

Chapter 5 contains 5 case studies performed to validate the proposed condition monitoring
model. Some limitations of the proposed model are also covered in the chapter.

Chapter 6 concludes this work and lists opportunities for future work that could not be
addressed in the scope of this thesis.





2
Background

In this chapter, the necessary background information required for the understanding of the
rest of the thesis report is discussed. Also, previous works done relating to condition-based
monitoring using SCADA is also presented. Finally, the research problem, objectives and the
methodology is detailed.

2.1. Prognostics Approaches

Prognostics is an engineering discipline focused on predicting the time-to-failure of a sys-
tem or component. The core of prognostics lies in estimating the Remaining Useful Life (RUL).
An accurate estimation of RUL can help in condition-based monitoring of wind turbines and
can help to avoid long downtimes. The reliability of the system also increases with more
accurate prognosis. Due to its significance, there has been a rapid rise in the research of
Prognosis and Health Management (PHM) in recent years. Prognostics approaches can be
classified into three main types - 1) physics-based prognostics, 2) data-driven prognostics
and 3) hybrid prognostics. The physics based and data driven prognostics are further ex-
plained.

Figure 2.1: Categorization and definition of prognostics methods. Adapted from [6]

2.1.1. Physics based Prognostics
A physical understanding of the system is necessary for physics based prognostics models.

To estimate the RUL in physics based prognostics (or white-box model), the field data mea-
sured is combined with a damage model based on first principles. Physical damage models
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8 2. Background

are mostly based on physics of failure (PoF) techniques. These types of models can be used
in applications which require high accuracy. An illustration of physics based prognostics is
shown in Figure 2.2.

A general outline of a physics of failure methodology can be described as follows [7], [8]:

1. System Analysis: The failure mode and effect analysis (FMEA) is carried out in this part.
Also, the component design and material specifications are included in FMEA.

2. Load Spectra: The loads acting on the component of interest should be determined
from the measured data. With the help of aeroelastic models loads in all six-degrees
on freedom can be modelled accurately. Alternatively, torque calculations can also be
used in damage models as it is a major damage driver.

3. Damage Model: Based on the failure mode occurring in the component, various damage
models can be developed. Damage models are used to evaluate the damage accumula-
tion of a component based on various loads acting on it. For a gearbox, typical damage
models include crack propagation models, L10 life models and so on.

4. RUL Estimation: Based on the damage accumulation, various methods like Weibull
reliability models can be used to estimate the remaining useful life of the component.

Figure 2.2: Illustration of physics-based prognostics. Adapted from [6]

Though physics basedmodels give accurate results, there are several challenges in applying
them in real-life situations. Firstly, failure modes vary from component to component, and
also one component can fail due to different modes. Therefore, determining and modeling
a specific failure mode can be difficult without interrupting operating machinery [9]. Most
of the times, system specifications like material composition, or design of the component is
not always available. Fault propagation also depends largely on future loading conditions.
Hence, the model might not be accurate in dynamic operating conditions due to errors and
certain assumptions made during the modeling phase.

Gray and Watson, 2010 [10] developed a physics of failure approach for the use of SCADA
performance data in combination with applied knowledge of failure physics to calculate theo-
retical damage accumulation, and hence the risk, of failure for gearboxes. A similar approach
was applied to predict electric yaw failures with some promising results [11].

Yingning Qiu et al., 2017 [12] used linear fatigue theory in combination with SCADA data
to assess bending fatigue failures in planetary gears of the turbine. Stress cycles were cal-
culated using detailed multibody system analysis, and Palmgren-Miner theory was applied
to estimate the damage during the operation of the turbine.
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Philippe Cambron et al., 2017 [13], proposed a physics based model to monitor the tem-
perature of the main bearing of the turbine. The model used is based on the law of energy
conservation. The difference between temperature measured by the SCADA and physics
based temperature model was used to detect anomalies. A failure was detected three weeks
before the current actual alarm settings used by SCADA were able to identify the issue.

Feng et al., 2013 [14], proposed a failure detection method for WT gearbox by predicting
oil temperature rise using SCADA data and basic physics laws. Wilkinson et al., 2014,[15]
compared physics based models based on temperature with signal trending techniques. It
was concluded that physics based models give more accurate failure results and with lesser
alarms.

Bretler et al., 2015 [16] proposed a physics of failure method for investigating the bending
fatigue failure of a helical gear. An additional load generator module was proposed to con-
sider external factors. The loads were calculated using finite element method, and meshing
misalignment was measured using a laser. Even though in a system-level physics based
model is proposed for failure prognosis, it still keeps the assumption that each component
works independently. Al-Tubi et al.,2015 [17] also used micro-pitting failure models and
SCADA data to predict failure in pinion gears on HSS. They concluded that torque variations
have a great effect on micro-pitting in gears.

2.1.2. Data-driven Prognostics
Data-driven (DD) prognostics does not rely on the physics of the system. It uses the in-

formation of the measured data to learn the system behavior. Therefore these models are
also known as black-box models. With respect to wind turbines, this measured data is ob-
tained from supervisory control and data acquisition (SCADA) or condition monitoring sys-
tems (CMS) like accelerometers, oil monitoring systems, etc. Data-driven approaches are well
suited for predicting the near future behavior of the system, especially towards the end of life
as they are based on trend analysis of the data[6]. Data-driven approaches can mainly be
classified into two categories- 1) Machine learning approach and 2) Statistical approach [18].
As the focus of the thesis is on using machine learning approach along with PoF models, the
basics of machine learning and neural networks is discussed later in the chapter.

There are some limitations of using a data-driven approach for prognosis. The accuracy
of the DD approach depends on both the quantity and the quality of the historical data.
Sometimes getting access to good quality data is challenging. Also, DD approaches can lead
to physically inconsistent results as there is no physics involved considered while predicting
future states [19].

2.2. Machine Learning Basics

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) based on the idea that
systems can learn from data, identify patterns and make decisions with minimal human
intervention. The crux of ML lies in probabilistic and statistical theory. The 3 fundamental
types of ML paradigms are:

Supervised Learning: In supervised learning data is in the form of input-output pairs.
Each input x is matched with a target y and the task of ML algorithm is to learn mapping from
input to output, f : X →Y. Supervised learning requires labeled data sets for effective training.
In probabilistic terms it intends to infer a conditional probability function, p(x|y) [20]. In the
last decademost of the developments in ML has been done in supervised learning. Supervised
learning uses classification and regression techniques to develop predictive models.
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Unsupervised Learning: In unsupervised learning, labelled data is absent. Given only a
list of inputs x, the algorithm tries to find a hidden or intrinsic structure in data. The most
common type of unsupervised learning is clustering. In probabilistic terms, an unsupervised
learning estimated the prior probability density function p(x) [20].

Reinforcement Learning: It is an area of machine learning where learning occurs through
a system of actions and rewards. The algorithm learns a policy of how to act and maximize
rewards in a given environment.

A supervised machine learning model based on ANN is used to achieve the objectives of the
thesis. A small introduction to ANN is given in Section 2.3.

2.3. Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine learning model inspired by the function
and structure of the biological brain. ANN helps in determining non-linear relations between
observations or input data. The building blocks of an ANN are artificial neurons, referred to
as ’nodes’.

Figure 2.3: Illustration of an artificial neuron [21].

An illustration of functioning of a neuron is shown in Figure 2.3. Typically it takes in
many inputs (𝑥ኻ, 𝑥ኼ, 𝑥ኽ, ...., 𝑥፧) which are individually weighed (𝑤ኻ, 𝑤ኼ, 𝑤ኽ, ...., 𝑤፧). These inputs
are multiplied with their individual weights and a bias is added. A non-linear function known
as activation function is then applied to the weighed sum and an output is obtained. Equation
2.1 is the mathematical representation of the functioning of an artificial neuron, where w, x,
f, b, and y represent weight vector, input vector, activation function, bias and output vector
respectively.

𝑦(𝑥) = 𝑓(
፧

∑
።዆ኻ
𝑤።𝑥። + 𝑏) (2.1)

There are various activation functions. A specific activation function can be selected based
on the task that the neural network performs. An activation function decides whether to
activate a neuron or not. A list of commonly used activation functions is shown in Figure
2.4.

An ANN is made up of several of these neurons as shown in Figure 2.5. It contains an
input layer, a hidden layer and an output layer. There can be any number of nodes in a given
layer. Also, there can be any number of hidden layers. Based on the task being performed,
the number of nodes and the layers can be optimized.
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Figure 2.4: List of activation functions [22].

Figure 2.5: Representation of an Artificial Neural Network.

ANN can be classified into two categories- 1) Feed Forward Neural Networks (FFNN) and
2) Recurrent Neural Networks (RNN). FFNNs is the simplest form neural networks devised.
Figure 2.5 represents a simple FFNN. In this type of neural network, the information always
propagates in the forward direction; it never goes backward [23]. In this thesis, a Nonlinear
AutoRegressive eXogenous (NARX) and two forms of RNN called Long Short Term Memory
(LSTM) & Gated Recurrent Unit (GRU) are individually implemented to detect anomalies in
the gearbox.
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2.3.1. Loss Function
The loss function is an important part of an ANN. It is used to measure the inconsistency

between the predicted value (�̂�) and the target value (y). The loss functions are nonnegative
values. As the value of loss function decreases, the robustness of the model increases. Usu-
ally, optimization functions like gradient descent are used to minimize the empirical risk of
the loss function. Loss function consists of an empirical risk function as well as a structural
risk function, also known as the regularization term. This is shown in Equation 2.2.

𝑎𝑟𝑔𝑚𝑖𝑛
፟

𝐿𝑜𝑠𝑠(𝑦, 𝑦)⏝⎵⎵⏟⎵⎵⏝
Empirical Error

+ 𝜆 ⋅ 𝑅(𝑓)⏝⎵⏟⎵⏝
Structural Error

(2.2)

where, 𝜆 is a trade-off hyperparameter and R(.) measures the complexity of the model.

There are various commonly used loss functions for regression problems. These include
Mean Absolute Error (MAE) (Equation 2.3), Mean Squared Error (MSE) (Equation 2.4), Mean
Absolute Percentage Error (MAPE) (Equation 2.5) and so on. Here n is the number of data
points in the variable, Y። and ̂𝑌። are the measured and the predicted values respectively.

𝑀𝐴𝐸 = 1
𝑛

፧

∑
።዆ኻ
|𝑌። − ̂𝑌።| (2.3)

𝑀𝑆𝐸 = 1
𝑛

፧

∑
።዆ኻ
(𝑌። − ̂𝑌።)ኼ (2.4)

𝑀𝐴𝑃𝐸 = 100%
𝑛

፧

∑
።዆ኻ
|𝑌። −

̂𝑌።
𝑌።

| (2.5)

2.3.2. Training Neural Networks
Backpropagation is the most commonly used training algorithm for neural networks. It is

used to calculate the gradient that is needed to update the weights to be used in the network.

Backpropagation:
The basic steps involved in backpropagation are-

1. Present a training input pattern and propagate it through the network to get an output.

2. Compare the predicted outputs to the expected outputs and calculate the error.

3. Calculate the derivatives of the error with respect to the network weights.

4. Adjust the weights to minimize the error.

5. Repeat.

The rule for updating weights on each iteration of gradient descent can be expressed
mathematically as shown in Equation 2.6. Here 𝛼 is the learning rate, 𝑤።፣ is the weight
matrix and E is the loss function that the algorithm is trying to minimize.

𝑤።፣ = 𝑤።፣ − 𝛼 ⋅
𝜕𝐸
𝜕𝑤።፣

(2.6)

If the dataset size is large, calculating the loss and gradient over the entire dataset may
be too slow and computationally infeasible. Thus in practice, a variant of gradient descent
called Stochastic Gradient Descent (SGD) is commonly used. In SGD, data is divided into
subsets called batches, and the parameters are updated after calculating the loss function
over one batch. Other popular variants are: RMSprop, AdaGrad, Adam. In some cases decay
is used to decrease the learning rate gradually as parameters approach the optimum values.
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2.4. Nonlinear Autoregressive Exogenous Input

Nonlinear AutoRegressive eXogenous Input (NARX) models are an extension of autoregres-
sive linear exogenous input models which are used for time series modeling of dynamic non-
linear systems. NARX models have been used for time series modeling [24].

NARX is a dynamic feedforward network with feedback connections enclosing several layers
of the network. NARX is particularly used in time-series analysis as it utilizes its memory
ability using it to store the past values of predicted or true time series as one of the input to
predict the next value.

As seen in Figure 2.6, there are two different architectures of NARX- 1) Series-Parallel
(also called open-loop) and 2) Parallel architecture (also called closed-loop). Mathematically,
open-loop and close-loop NARX architectures can be represented by Equations 2.7 and 2.8
respectively [25].

�̂�(𝑡 + 1) = 𝑓(𝑦(𝑡), 𝑦(𝑡 − 1), ..., 𝑦(𝑡 − 𝑛፲), 𝑥(𝑡 + 1), 𝑥(𝑡), 𝑥(𝑡 − 1), ..., 𝑥(𝑡 − 𝑛፱)) (2.7)

�̂�(𝑡 + 1) = 𝑓(�̂�(𝑡), �̂�(𝑡 − 1), ..., �̂�(𝑡 − 𝑛፲), 𝑥(𝑡 + 1), 𝑥(𝑡), 𝑥(𝑡 − 1), ..., 𝑥(𝑡 − 𝑛፱)) (2.8)

where, f(.) is the mapping function of the neural network, �̂�(𝑡 + 1) is the predicted output
by NARX at time t, �̂�(𝑡), �̂�(𝑡−1), ..., �̂�(𝑡−𝑛፲) are the previous outputs of NARX, y(t),y(t-1),...,y(t-
n፲) are true past values in the time series, x(t),x(t-1),...,x(t-n፱) are the inputs to NARX, 𝑛፱ and
𝑛፲ are the number of input and output delays respectively.

Figure 2.6: Architectures of the NARX neural network. Adapted from [25].

From the above equations and figures, it is clear that open-loop and close loop architecture
differentiate themselves from each other only in terms of the input fed into the neural net-
work. In close-loop architecture, the predicted output of the NARX neural network is used
as a feedback to the feedforward network. But in cases where the true values are available,
a open-loop or series-parallel architecture is used in which the true output is used instead
of feeding back the estimated output.

2.5. Recurrent Neural Network

In this section, the need for Recurrent Neural Networks (RNN) to model sequential data
along with the functioning and architecture of such networks is discussed.
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2.5.1. Need for RNNs for Sequential Data
Traditional neural networks and other machine learning algorithms consider each sample

in the training set to be independent of each other, that is they do not remember anything
that has happened in the past. This can be a major limitation while working with data which
is sequential in nature like time-series, video, speech, and so on. In sequential data types,
there is an interdependency between individual elements across time. Similarly, predicting
time-to-failure or detecting anomalies in a system is a time-series problem and RNNs are well
suited to model such problems.

RNNs can work well with sequential data as they have an internal memory state which helps
them to learn to selectively retain relevant information allowing them to capture dependencies
across several time steps. Therefore, an RNN utilizes both previous information that it has
learned and the current input to make future predictions.

2.5.2. RNN Theory

Figure 2.7: A Standard RNN. Adapted from [26].

RNNs are a powerful and robust type of neural networks which are suitable for processing
sequential data. The presence of a state vector (in the hidden units) is one of themain features
which distinguishes it from other types of neural network [26]. This state vector maintains the
memory in the network. As seen in Figure 2.7, s is the state vector, and RNN has a feedback
connection which connects the hidden neurons across time. At time t, the RNN receives the
following inputs - the current sequence element 𝑥፭ and hidden state from previous time step
𝑠፭ዅኻ. The state vector is updated to 𝑠፭ and the output 𝑜፭ is obtained. This ensures that the
output 𝑠፭ is dependent on all previous inputs 𝑥፭ዅ፧. U is the weight matrix between the input
and hidden layers similar to a conventional NN. W is the weight matrix for the recurrent
transition between one hidden state to the next which remains the same throughout the
network. V is the weight matrix for hidden to output transition. Mathematically, the above
simple RNN can be represented by equations 2.9 and 2.10, which refers to calculations taking
place at every time-step in the network. Here, 𝑏፬ and 𝑏፡ are the biases added. 𝜎 and f(.) are
the activation functions used in input and output layers respectively.

𝑠፭ = 𝜎(𝑈𝑥፭ +𝑊𝑠፭ዅኻ + 𝑏፬) (2.9)

𝑜፭ = 𝑓(𝑉𝑠፭ + 𝑏፡) (2.10)

2.5.3. Training RNN
Training of RNN is almost similar to training a feedforward neural network. A gradient

based algorithm called backpropagation through time is used.



2.6. Long Short Term Memory 15

BackPropagation Through Time (BPTT): BPPT is an application of the backpropagation
algorithm used for training recurrent neural networks [27]. BPPT is a gradient-based tech-
nique. Conceptually, BPPT works by unrolling the RNN in time. Each time step is treated
as an individual neural network and trained as in backpropagation. Errors are then accu-
mulated across each time-step and weights are updated. BPPT is computationally intensive
and expensive. Also, it is a well-known fact that standard RNNs like vanilla RNN cannot be
trained to learn long term dependencies [28].

There are two major problems with standard RNNs - 1) Exploding gradients and 2) Vanish-
ing gradients. During training, the updating of weights is proportional to the partial derivative
of the error function with respect to the current weight in each iteration of training. Therefore,
while training the networks with longer dependencies, there is a high risk of the gradients
becoming too large (due to large learning rates) or decay to zero. These problems are referred
to as exploding gradients and vanishing gradients respectively. In such situations, the neural
network might become unstable or training times can increase drastically.

The problems of exploding and vanishing gradients by certain methods like gradient clip-
ping, changing the architecture of the neural network, or by changing the value of gradients
[29]. Also, proper initialization of the 𝑊 matrix can help reduce the effect on vanishing gra-
dient. Using ReLU activation function instead of tanh or sigmoid is also one of the solutions.
But the most effective solution to deal with these issues are to use LSTM networks or Gated
Recurrent Unit (GRU), which are evolved types of RNNs. LSTMs, GRUs are very useful in
modeling long term dependency problems and have become one of the most widely used
types of RNN.

2.6. Long Short Term Memory

Long Short Term Memory (LSTM) is a type of unit in RNNs [30]. An RNN made up of LSTM
units are called LSTM networks. LSTM networks were explicitly designed to solve the long
term dependency problem.

Figure 2.8: A schematic diagram of the LSTM unit with forget gates. Adapted from [31].

An LSTM cell consists of three gates namely input gate, forget gate and output gate as
shown in Figure 2.8. The key to LSTMs is the cell state, the horizontal line running through
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Figure 2.9: A schematic representation of LSTM network [32].

the top of the Figure 2.9. The three gate as mentioned above protects and controls the cell
state.

Forget Gate Operation: The first step that is performed in an LSTM cell is to throw away
unnecessary information from the cell state. This function is done by the sigmoid layer in the
forget gate. It takes in previous state output ℎ፭ዅኻ and and input 𝑥፭ from current time-step.
The sigmoid functions then outputs 𝑓፭, which is a value between 0 and 1 for each number
in the cell state 𝐶፭ዅኻ. If output value is 1, the information is passed through, or else if the
output is 0 then the information is completely lost. A representation of the forget gate is
shown in Figure 2.10.

The mathematical operation performed at the forget gate is given by Equation 2.11.

𝑓፭ = 𝜎(𝑊 .[ℎ፭ዅኻ, 𝑥፭] + 𝑏፟) (2.11)

Figure 2.10: Forget gate operation.

Input/Update Gate Operation: The input/update gate is shown in Figure 2.11. In this
step, the new information to be stored in the cell state is calculated. This step is split into
two parts. In the first part, the sigmoid function also known as input gate layer, makes
a decision on the values to be updates. Later, the tanh function prepares a new vector
̃𝐶፭ which is concatenated with the output of sigmoid function to update the new state to
𝐶፭. The mathematical Equations 2.12 and 2.13 represent the calculations taking place in
input/update layers.
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𝑖፭ = 𝜎(𝑊። .[ℎ፭ዅኻ, 𝑥፭] + 𝑏።) (2.12)

̃𝐶፭ = 𝑡𝑎𝑛ℎ(𝑊፜ .[ℎ፭ዅኻ, 𝑥፭] + 𝑏፜) (2.13)

Figure 2.11: Input/Update gate operation.

In the next step, the old cell state 𝐶፭ዅኻ is updated to 𝐶፭. Here, the old state 𝐶፭ is multiplied
with 𝑓፭ and then this is added to the product of 𝑖፭ and ̃𝐶፭. The mathematical representation
of the update step is shown in the Equation 2.14.

𝐶፭ = (𝑓፭ × 𝐶፭ዅኻ) + (𝑖፭ × ̃𝐶፭) (2.14)

Figure 2.12: Cell state update.

Output Gate Operation: In this step, the final output of the LSTM cell is calculated. First,
ℎ፭ዅኻ and 𝑥፭ is run through a sigmoid function to decide the part of the cell state that will
sent to the output. The output 𝑜፭ of the sigmoid function is multiplied with tanh (to push
values between -1 and 1). The mathematical representation of the output gate is shown in
Equations 2.15 and 2.16.

𝑜፭ = 𝜎(𝑊፨[ℎ፭ዅኻ, 𝑥፭] + 𝑏፨) (2.15)

ℎ፭ = 𝑜፭ × 𝑡𝑎𝑛ℎ(𝐶፭) (2.16)
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Figure 2.13: Output gate operation.

2.7. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a type of recurrent unit similar to LSTM, with only two
gates. GRUs were proposed by Chung et al.,[33]. A GRU unit only has two gates namely
update gate z and reset gate r. GRUs got rid of the cell state and used the hidden state to
transfer information. The pictorial representation of a GRU is shown in Figure 2.14. With
only two gates, the GRUs have found to require lesser computation and power, while having
performance on par with LSTMs [33]. Just like the gates in LSTMs, the gates in the GRU are
trained to selectively filter out any irrelevant information while keeping what’s useful.

Figure 2.14: Pictorial representation of GRU.

The equations governing the gating mechanisms of GRU are 2.17 - 2.20.

𝑧፭ = 𝜎(𝑊፳ .[ℎ፭ዅኻ, 𝑥፭]) (2.17)

𝑟፭ = 𝜎(𝑊፫ .[ℎ፭ዅኻ, 𝑥፭]) (2.18)

̃ℎ፭ = 𝑡𝑎𝑛ℎ(𝑊.[𝑟፭ × ℎ፫ዅኻ, 𝑥፭]) (2.19)

ℎ፭ = (1 − 𝑧፭) × ℎ፭ዅኻ + 𝑧፭ × ̃ℎ፭ (2.20)
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2.8. Relevant works on Fault Detection using ANN

Recently, there has been a lot of research interest in using SCADA data to model ANNs for
condition monitoring of wind turbines. ANNs are quite robust and flexible in mapping non-
linear functions. The ANN method is easily scalable for application on a large set of wind
turbines. Some of the research that has been done in this field is discussed in this section.

Garcia et al., 2006 [34] used multilayer feedforward auto-regressive ANN for CM of wind
turbine drivetrain. The model was trained on normal behaviour data. The ANN model output
is compared with the measured value in real time, and a difference outside confidence bands,
defined by the normal behavior model, is termed as an anomaly. In the case study, the model
was about to predict a fault 26 hours in advance.

Zeher et al., 2009 [35] also used multilayer feedforward autoregressive ANN to model nor-
mal behaviour of the wind turbine gearbox bearings. The model was able to detect faults 6
months in advance. The anomaly detection was achieved by observing an increase in the
frequency of the errors between the predicted and measured output parameter. This method
of anomaly detection cannot be applied to a large set of turbines, and it is better to have a
threshold value so that alarms can be set off in the CMS.

Kusiak et al., 2012 [36] proposed a feedforward ANN based fault detection model to predict
generator bearing faults with different number of nodes in hidden layer. The best configura-
tion consisted of 18 neurons, logistic hidden activation and identity output activation. The
anomalies were detected based on observation of errors. This method could detect faults only
1.5 hours in advance, which does not allow for any kind of maintenance planning.

Zhang et al., 2014 [37], used ARX ANN models to predict min shaft rear bearing temper-
ature. The model inputs were output power, nacelle temperature and turbine speed which
were used as exogenous inputs. The model could predict faults three months in advance.

Bangalore et al., 2015 [38] used NARX ANN model for Normal Behaviour Modeling (NBM)
of gearbox bearing temperatures. The selection of the training data was automated by using
filtering and selection. The ANNs used power, gearbox oil temperature, nacelle temperature
and the rotational speed as inputs as well as up to two additional temperatures of the other
investigated bearings as inputs. Mahalanobis distance averaged over three days was used
for detecting anomalies. A recorded gearbox failure due to spalling in one bearing was suc-
cessfully detected one week before the vibration-based system identified the failure. Similar
approach was adapted by Bangalore et al., 2017 [39], where NARX ANN is used to model
NBM. Some additional data-preprocessing was such as cluster filter was done while prepar-
ing datasets. It was seen that better data preprocessing can build better models. A fault in
the HSS bearing was detected three months in advance.

In the field of wind energy, there is not much literature available on the use of recur-
rent neural networks for condition monitoring using SCADA, although the use of RNNs for
anomaly detection in various fields is increasing rapidly due the rise in computation power.
Malhotra et al, 2015 [40], proposed stacked LSTM networks for anomaly detection of tempo-
ral time-series data. A network is trained on non-anomalous data and used as a predictor
over many time steps. The resulting prediction errors are modeled as a multivariate Gaus-
sian distribution, which is used to assess the likelihood of anomalous behavior. Nanduri et
al., 2016 [41], used LSTMs and gated recurrent networks to detect anomalies from Flight
Data Recorder. The RNN algorithms detected 9 out the 11 anomalies in the test dataset and
performed better than feedforward networks. Jian Fu et al., 2019 [42] introduced the idea of
using deep learning algorithms for temperature based fault detection in wind turbine gear-
boxes. A combination of convolutional neural network and LSTM is proposed and validated
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against data from a real wind farm. Georg Helbing et al., 2018 [43] have also suggested
exploring more recent RNN architectures like GRU and LSTM for better anomaly detection.

2.9. Research Problem and Objectives

Utilizing SCADA data for condition monitoring of wind turbines is becoming more appeal-
ing to asset owners as they come installed along with a standard wind turbine. Installing
additional condition monitoring systems (CMS) systems to detect vibrations in the drivetrain,
real-time oil quality monitors are expensive. As condition monitoring using SCADA data is a
potentially low-cost solution requiring no additional sensors, several approaches using these
data for early failure detection have been developed in recent years.

Presently, most of the condition monitoring using SCADA is based on data-driven models.
Data-driven models, specifically artificial neural networks do a good job in mapping non-
linear functions and learning from the data. One of the limitations of the data-driven models
is that there is no physics involved in predicting the future state of the system.

Based on the literature study, two research questions are formulated :

”Is it possible to develop a robust condition monitoring technique for a wind turbine gearbox
that utilizes both physics of failure model and machine learning techniques?”

”Can a correlation be deduced between White Etching Cracks and hypothetical failure
theories using SCADA data and Physics of Failure technique?”

Based on the research problem, the research objectives of this thesis includes -

1. Using physics of failure techniques to carry out risk based assessment of wind turbine
gearboxes on a wind farm level.

• Using operational SCADA data to determine the tribo-mechanical behavior of the
gearbox bearings and correlate them to the observed failures.

• Correlating observed mode of failure- white etching cracks in high speed shaft bear-
ings of gearbox to corresponding operating conditions on a wind farm level.

2. Exploring recurrent neural networks namely Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU) for temperature based anomaly detection.

3. Investigating if utilizing both Physics of Failure and Artificial Neural Network models can
help in robust condition monitoring of gearboxes.

2.10. Proposed Condition Monitoring Methodology

The research methodology for condition monitoring of gearboxes is split into 3 main parts.
This study is based on SCADA data from an offshore wind farm off the coast of The Nether-
lands. The wind farm consists of 60 turbines of 2 MW rated power.

To improve the robustness of the condition monitoring system of gearboxes, a novel ap-
proach to combine physics of failure models with data driven models is proposed. This is
shown in Figure 2.15. In the first part, a general methodology to assess turbine failure risk
where the gearbox specifications is not available is proposed. This is shown in Figure 2.16.

White etching cracks are commonly seen in HSS bearings is a mode of failure which is not
yet understood fully, as there are multiple postulates without much field data. A methodology
to correlate the observed failures to the operational SCADA data on a wind farm level is shown
in Figure 2.17.
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Figure 2.15: Overview of proposed condition monitoring method.

Figure 2.16: A - Proposed condition monitoring technique using only SCADA data.

An artificial neural network based on recurrent neural network is used for anomaly de-
tection. The model is trained to predict the normal behaviour gear bearing temperature and
gearbox oil temperature. The neural network is trained on fault free dataset, usually data
recorded 2 years prior to failure. This is known as Normal Behaviour Modeling (NBM). The
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Figure 2.17: B - Proposed methodology to find the correlation between White Etching cracks and damage operating conditions
in the High Speed Stage of gearbox.

residual or the difference in the ANN predicted and the SCADAmeasured temperature is used
to flag anomalies if it crosses a certain pre-determined threshold. This is shown in Figure
2.18.

Figure 2.18: C - ANN based condition monitoring technique (Normal Behaviour modeling).



3
Failure Risk Assessment of Gearbox
using Physics of Failure Technique

Wind turbine gearboxes fail due to a plethora of reasons, some of which are quantifiable and
others which are still a mystery. The development of condition monitoring based on opera-
tional data is highly dependent on historical data to validate and test the proposed algorithms.
In this chapter, various bearing failure modes observed in wind turbines are discussed, along
with the basics of tribology and contact mechanics as most of the bearing failures are due
to tribo-mechanical reasons. The usage of 10-minutes averaged SCADA operational data to
quantify the gearbox damage is explored. The operational data of each individual turbine is
used in quasi-state analytical models to determine bearing loads and is used to correlate ob-
served failure to the damage-inducing operating conditions. This forms the basis of physics
of failure approach. Physics of Failure (PoF) is a technique under the practice of Design for
Reliability that leverages the knowledge and understanding of the processes and mechanisms
that induce failure to predict reliability and improve product performance.

A comprehensive literature review on the unconventional but dominant failure mode seen
in high speed shaft bearings, White Etching Cracks (WECs) is presented in the later half of
the chapter. An effort is made correlate the operational data to the proposed WEC failure
hypothesis by NREL Gearbox Reliability Collaborative (GRC) research and SKF research.

3.1. Introduction

In this study, the historic operational data of each individual turbine of an offshore wind
farm is compared with the rest of the fleet. Most approaches to condition monitoring so
far have ignored this fact and used only data from one turbine. Each turbine in a wind
farm experiences slightly different loads due to wind shear, wake, and other such dynamic
effects. Also, there might be small differences in the manufacturing and assembling of each
individual turbine. Regardless of these small differences, all the turbines in a wind farm are
subjected to the same seasonal variations and other generic weather-related conditions.

The motivation for exploring statistical-based condition monitoring of gearbox has been
derived from some promising research done by Christopher Gray and Simon Watson [10],
Jannis Tautz Weinert [44] and Gonzalez et al., [45]. Although the latter three were promising
approaches to improve condition-based maintenance strategies, there is further potential in
exploring the tribo-mechanical aspect of the operational data to further assess the risk of
failure of wind turbines in a farm, as the access to the historic data (from commencement of
wind farm) of the wind turbines is available.

23
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3.2. Gearbox Specification

The offshore wind farm of interest has 2 MW rated geared wind turbines. The gearbox
arrangement of the turbine is shown in Figure 3.1. The gearbox has 3 stages - a low speed
stage consisting of planetary gear, an intermediate stage with a pair parallel helical gear and
a high speed stage with another pair of parallel helical gear.

Figure 3.1: Wind turbine gearbox arrangement. Adapted from [46].

Based on the field failure data available, a vulnerability map of the gearbox is shown in
Figure 3.2. The most vulnerable component of the gearboxes are the high speed stage (HSS)
bearings, followed by low speed stage (LSS) bearings and gears. When a HSS bearing is
damaged, the replacement of the whole gearbox is unnecessary as replacement of just the
HSS bearings and IMS - B bearing suffices. A complete gearbox change is necessary when
there is damage in the low speed stage of the gearbox.

Figure 3.2: Wind turbine gearbox vulnerability map. Adapted from [47].

Although the components of the gearboxes are designed to last for atleast 20 years, prema-
ture failures within 5 years of service occurs in HSS bearings, while some premature failure
occurs in LSS stage within 7-10 years of operation [48]. As bearing manufacturers are not
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part of wind turbine operating staff, they most often do not have full information regarding
the complex loadings bearings have to endure, notably with unpredictable transient loadings
[49].

Hence, in the first half of the chapter, the correlation of the damage operating conditions
to the failure leading to complete gearbox overhaul., failure in the LSS and IMS gears and
bearings is explored. In the later half, only HSS bearing failures are explored.

3.3. Damage Operating Conditions for Bearing Failures

The physics of failure approach by Gray and Watson, 2010 [10] looked retrospectively at
statistical parameters such as average wind speed, hours at rated power, hours at rated
speed etc. and could prove that failing bearings had seen higher cumulative loading. In this
section, an analysis is made to see whether it is possible to monitor various kinds of failure
modes with statistical parameters.

The following critical operating conditions are used to relate the failure seen in the field
with the SCADA. Some of the parameters used are similar to the ones used by Gray et al.,
[10], along with certain additions.

• Rated power - Total number of hours where electrical power exceeded 90% of rated.

• Wind speed - Mean wind speed over the operating time of the turbine.

• Turbine standstill (0 rpm) - The number of hours that the turbine was standstill i.e rotor
at 0 rpm at wind speeds above 10 m/s.

• Rated rpm - Total number of hours where rotor speed exceeded 90% of rated.

• Bearing temperature - Total number of hours when the bearing temperature is above
70∘C.

• Rotor starts – Event count of rotor starts.

• Yaw movement – Total yaw movement in degrees.

• Emergency stops – Number of emergency stops during operational life, as recorded in
the SCADA logs.

These parameters are plotted for every turbine until their failure and compared with the
rest of the fleet with the help of boxplots. The calculation results for all 60 turbines are
compared, with all values normalised relative to the sample mean. Box plots are used to
show the distribution of results for the whole sample, with the minimum, 25th percentile,
median, 75th percentile and maximum values indicated. In this report, box plots are mainly
used to assess the turbines at higher risk of failure and the potential mode of failure due to
which it might fail. The turbines with operating conditions in the upper region of the boxplot
that is above 75th percentile is considered to be at a higher risk when compared to the rest
of the turbines in the farm. With the help of Table 3.1, the relation between observed failure
modes and corresponding operating conditions of the turbine is explored further.

MATLAB function normalize, is used to normalize the data. This function calculated the
z-score of the data with center 0 and standard deviation 1. For a random variable X, z-score
is calculated as shown in Equation 3.1. x is a data point in variable X.

z-score = x− 𝑋፦፞ፚ፧
𝑋፬፭፝

(3.1)
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Table 3.1 contains details about various bearing failuremodes as defined by ISO 15243:2017
[50] and the potential damage operating conditions as observed in wind turbines.

3.4. Case Study - Part I

In this section, 4 failure case studies with different recorded failure modes are described.
Most of the cases presented in this section are related to LSS and IMS gearbox damages
which requires complete gearbox overhaul. A thorough analysis of bearing lubrication and
contact stresses for the LSS and IMS could not be done, due to initial unavailability of the
bearing make and specifications. Also, the root cause analysis reports are unclear for the
LSS and IMS bearings and gears. For example, there is no mention if the spalling failures
originated due to surface or subsurface initiated causes.

3.4.1. Turbine 26 - Planetary stage bearing spalling
The first investigated gearbox replacement took place in April 2010, just 2 years from

commencement of operations. This is a classic case of premature gearbox failure. After a
through inspection, spalling on one of the planetary stage bearing was reported as the root
cause for failure. In the inspection reports, a lot of scuffing and standstill marks in the IMS
pinion, and spalling on the sun pinion is also reported.

Here, the reason for spalling in turbine 26 might be due to a high number of emergency
stops and higher amount of time when the turbine is in standstill position, leading to over-
loading in the bearings and gears. This can be seen in Figure 3.3. Here, the operating
conditions of turbine 26 is compared with the rest of the fleet consisting of 60 turbines.

Figure 3.3: Turbine 26 - PS bearing spalling.

3.4.2. Turbine 32 - PS planet pinion pitting
The gearbox replacement of turbine 32 took place in August 2014. The root cause analysis

reported pitting on planet pinion as primary cause of failure. Also, micropitting on almost all
the gears and indentation from debris was found in almost every bearing of the wind turbine.

In figure 3.4, it can seen that the wind turbine had been operating at high load, compared
to the rest of the fleet prior to failure. Also, the turbine has had high number of rotor starts
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and emergency stops when compared to the rest of the fleet. From the boxplot, it is easy
to assume that the cause of failure might be due to high cycle fatigue, as the turbine is
operating at higher loads for longer periods of time. The high loads only facilitate expediting
the damage, while the primary cause of failure may be due to lubrication issues. Therefore,
it is necessary to include tribological phenomenon in such boxplots for failure analysis.

Figure 3.4: Turbine 32 - PS planet pinion pitting.

3.4.3. Turbine 2 - PS gear ring fracture/cracking
Turbine 2 gearbox failure was reported in May 2015. The primary cause of failure is a

fracture/cracking in the gear ring of the planetary stage. It is also reported that this might
have happened due to debris from a needle bearing of a mechanical pump, which is not a
part of the drivetrain, but it is not ascertained. There are higher chances of a crack occurring
in gears when the number of turbine start-stop cycles are high as the lubricant thickness
might be less than optimum during the start of turbines [51].

Apart from the gear ring fracture, indentation and scuffing marks were also found in other
gears and bearings. Fretting corrosion was also reported in one of the IMS bearings. From
the boxplot as shown in Figure 3.5, it can clearly be seen that the turbine has many damage
operating conditions in the upper 75th percentile, which means it was always at a higher
risk of failure 1.

3.4.4. Turbine 53 - IMS bearing spalling
The failure in turbine 53 was reported in April 2014. The main cause for replacement of

the gearbox was spalling/flaking in the IMS bearing. From the boxplots in Figure 3.6, no
clear indication of the failed turbine being at risk prior to failure is visible. All the damage
operating conditions are below well below 75th percentile.

Flaking failures are mainly caused due to overloads or poor lubrication [52]. The number of
emergency stops is well below 25th percentile; emergency stops are one of the major causes
for overloading in bearings. This failure shows the importance of considering lubrication
effects such as lambda ratio as one of the damage operating conditions. This is further
discussed in the following section.
1Bearing temperature parameter is omitted in this case study, as it was realized that this parameter gave no correlation to any
failure. This is explained in later sections.
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Figure 3.5: Turbine 2 - PS gear ring fracture/cracking

Figure 3.6: Turbine 53 - IMS bearing spalling.

The above damage operating operating conditions approach to assess turbine failure risk
can perform better if the influence of elasto-hydrodynamic lubrication (EHL) and contact
mechanics of the bearings is included.

The EHL and contact stresses are different for each individual bearing, dependent on the
bearing load capacity, size, and loads on bearings. Apart from major gearbox overhauls,
there have been several cases of HSS bearing failures, wherein only the bearings on the HSS
and one of the IMS bearings are replaced. Therefore in this thesis, the focus is placed on
the specific failures in the HSS bearings. All the HSS bearing failures observed in the wind
farm of study is axial cracking or white etching cracks. In the following sections, the basics of
contact mechanics, contact lubrication, white etching cracks and their causes are discussed.
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3.5. HSS Bearing Configuration and Load Distribution

The high-speed shaft of the gearbox is coupled with the generator. They usually operate at
high speeds, approximately 1500-1700 rpm. The torque transfer from the IMS shaft to the
HSS shaft is done with a pair of parallel helical gear. The pinion on the HSS induces torque
onto the shaft. The HSS is supported by three anti-friction roller bearings. The rotor side
consists of a cylindrical roller bearing (CRB), while the generator side is supported by a pair
of tapered roller bearings (TRB). The TRB closer to the pinion is also known as upwind TRB,
while the other TRB away from the pinion can also be referred as downwind TRB.

The CRB can only support radial loads, while TRBs are designed to support both radial
and axial loads. But in particular, in wind turbines, the TRB closer to the pinion supports
most of the radial load apart from CRB, while the TRB away from the pinion takes the axial
loads. A pair of TRB is used to accommodate axial loads in both directions, for instance
during torque reversal events. The bearing design and properties are detailed in Appendix A.

An analytical model to assess the forces on the bearings is developed. The free-body dia-
gram of the high-speed shaft is shown in Figure 3.7. The following assumptions were made
in developing the free-body diagram:

1. The shaft is rigid and weightless.

2. The weight of the disc-brakes and pinion is negligible.

3. The CRB does not carry any bending moment or react to axial force.

4. The upwind TRB does not support any axial loads.

5. The TRBs do not carry bending moments, because their radial stiffnesses are much
greater than their tilting stiffnesses.

6. The generator coupling does not transmit moments or axial force, i.e., forces due to
torque reversals are excluded.

Most of the assumptions are valid for normal operating conditions, and was verified experi-
mentally by NREL GRC [53], [54]. The bending moment is ignored as it cannot be determined
from SCADA or design considerations, and also the bending moment imparted by generator
coupling due to misalignment can be considered negligible during normal operation.

To determine the loads acting on bearings that support the shaft, it is important to first
analyze the forces acting on the shaft due to pinion. The loads acting on the pinion can be
divided into three main components - tangential, radial and axial.

The torque in the HSS shaft can be determined with turbine power output and generator
rpm using Equation 3.2 where T is the HSS torque, 𝜔 is the generator RPM. Figure 3.8 shows
the linear relationship between power output and torque.

𝑇 = 𝑃 ⋅ 60
2 ⋅ 𝜋 ⋅ 𝜔 (3.2)

The tangential load on the shaft is only due to the torque. The tangential load on shaft
can be determined using the pitch circle diameter (PCD) of the pinion and HSS torque using
Equations 3.3 and 3.4. Here, 𝐹፦ is the tangential load on shaft and 𝛽 is the helix angle of the
pinion.

𝑃𝐶𝐷 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑒𝑡ℎ × 𝑚𝑜𝑑𝑢𝑙𝑒 (3.3)
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Figure 3.7: HSS free-body diagram.

𝐹፦ =
𝑇

0.5 ⋅ 𝑃𝐶𝐷 ⋅ 𝑐𝑜𝑠𝛽 (3.4)

The radial gear load, 𝐹፬ on the shaft is calculated using equation 3.5. Here, 𝛼፩ is the
pressure angle of the pinion.

𝐹፬ = 𝐹፦ ⋅
𝑡𝑎𝑛𝛼፩
𝑐𝑜𝑠𝛽 (3.5)

The axial load, 𝐾ፚ acting on the shaft is calculated using equation 3.6.

𝐾ፚ = 𝐹፦ ⋅ 𝑡𝑎𝑛𝛽 (3.6)
The right angle shaft/resultant load as a consequence of radial and tangential load on the

shaft is equated using equation 3.7.

𝐾፫ = √𝐹ኼ፦ + 𝐹ኼ፬ + 𝐾ኼፚ (3.7)

After calculating the loads on the shaft, the following Equations 3.8-3.13 can be used to
calculate the load sharing between the bearing supporting the high speed shaft.

Load sharing: The radial load due to resultant load 𝐾፫ is not evenly distributed between
the CRB and TRB pair. As the CRB lies closer to pinion, around 60% of the radial load acting
on the shaft is carried by them. The remaining radial load of around 40% is carried by the
upwind TRB and downwind TRB [53]. When the taper roller bearing are placed in face-face
configuration, the radial load acts in the center of the bearings as shown in Figure 3.9.

The radial load sharing between the CRB and the TRB pair is calculated using Equations
3.8 and 3.9 respectively. The value of pressure angle, 𝛼 is 10∘ and the helix angle 𝛽 is 14∘.

𝐹ፂፁ = √(𝐹ፂፁ፱ )ኼ + (𝐹ፂፁ፲ )ኼ = (𝐿ፔፖ − 𝐿ፁ𝐿ፔፖ
)𝐾፫ (3.8)

𝐹ፓፑፁ፫ = √(𝐹ፔፖ፱ )ኼ + (𝐹ፔፖ፲ )ኼ = ( 𝐿ፁ𝐿ፔፖ
)𝐾፫ (3.9)
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Figure 3.8: Plot of Power versus HSS Torque for one year of SCADA data.

Figure 3.9: TRB face-face matched pair radial load sharing [55].

When a radial load is applied to a single row tapered roller bearing, the load is transmitted
from one raceway to the other at an angle to the bearing axis and an internal axial load is
induced. This internal axial load must also be considered along with the gear mesh induced
axial force to calculate the equivalent axial force acting on the TRB. Also using TRBs in pairs,
axial loads in both the directions can be supported. For this reason, these bearings are used
in pairs (face-to-face arrangement). The face-to-face arrangement can accommodate larger
tilting moments.

In case of TRB arranged in face-to-face configuration, the axial loads on the bearings can
be calculated using equations 3.12 and 3.13. Here, 𝐹ፚ𝐴 and 𝐹ፚ𝐵 are the axial loads on upwind
and downwind TRB respectively. In Figure 3.10, A is the upwind TRB and B is the downwind
TRB. 𝑌ፀ and 𝑌ፁ are the axial load factor, which depends on bearing size, load capacity and
taper angle of rollers. The load case expressed in equation 3.10 and 3.11 has to be satisfied
before calculating the axial loads. We assume that there is no preload applied in the TRBs, as
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Figure 3.10: TRB face-face matched pair axial load sharing [55].

there is no sufficient information available. This quasi-steady analytical model was validated
experimentally and using multibody simulation software, SIMPACK by NREL GRC [54].

𝐹፫𝐴ፓፑፁ
𝑌ፀ

< 𝐹፫𝐵ፓፑፁ
𝑌ፁ

(3.10)

𝐾ፚ ≥ 0.5 × (
𝐹፫𝐴ፓፑፁ
𝑌ፀ

− 𝐹፫𝐵
ፓፑፁ

𝑌ፁ
) (3.11)

𝐹ፚ𝐴 =
0.5 ⋅ 𝐹፫𝐴ፓፑፁ

𝑌ፀ
(3.12)

𝐹ፚ𝐵 = 𝐹ፃፖ፳ = 𝐹ፚ𝐴 + 𝐾ፚ (3.13)

The histogram of torques and various loads on the roller bearings are shown in Figures
3.11-3.14. It gives a representation of the magnitude of loads acting on the bearings. As ex-
pected, most of the radial load is supported by CRB. The radial load on CRB at rated power
is around 145 [kN]. The radial and the axial loads on the TRB pair at rated power is approxi-
mately 34 [kN] and 45 [kN] respectively. The HSS load distribution on shaft and bearings for
a 750[kW] wind turbine was simulated in Transmission 3D to validate the analytical model
developed by NREL GRC [53]. The results obtained in the finite element model in Figure 3.15
also suggests that most of the radial load is supported by the CRB and upwind TRB. The
downwind TRB is loaded on almost all the rollers, which suggests that it takes almost all the
axial load when operating at rated power. Therefore, the downwind TRB experiences higher
loading when compared to upwind TRB. All the calculations are done using the operational
data from wind turbine - 48 for the year 2014.
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Figure 3.11: Histogram of HSS torque taking one year SCADA
data.

Figure 3.12: Histogram of generator speed taking one year
SCADA data.

Figure 3.13: Histogram of radial load on TRB pair taking one
year SCADA data.

Figure 3.14: Histogram of axial load on TRB pair taking one
year SCADA data.

Figure 3.15: High speed shaft and bearing roller loads at 100% power (750 KW) calculated using the Transmission3D model.
The contact areas on the rollers are highlighted. Adapted from [53].

3.6. Bearing Rating Life

The fatigue life of an individual bearing is the number of revolutions that a bearing operates
before the first signs of metal fatigue (rolling contact fatigue (RCF) or spalling). The bearing
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rating life, L10 is the measure of reliability, where 90% of the bearing population survives.
Or, conversely, 10% of bearings will have failed in the L10 number of service hours. L10 is
usually expressed in millions of cycles or number of hours.

In this section, calculation of L10 rating life, based on the latest standards, ISO 281:2007
[56] is assessed to verify whether axial cracks observed in HSS bearings took place due to
material fatigue. ISO 281:2007 does not cover the influence of wear, corrosion and electri-
cal erosion on bearing life as they do not take any surface parameters such as roughness,
hardness, tribo-chemical aspects, sliding of the contacting surfaces into consideration. The
L10 reliability is purely based on the assumption that cracks appear in the subsurface of the
material due to high cycle fatigue.

The 𝐿ኻኺ according to ISO 281:2007 is calculated using Equation 3.14 -

𝐿ኻኺ = 𝑎ኻ ⋅ 𝑎ፈፒፎ ⋅ (
𝐶
𝑃 ፲

)
፩

(3.14)

where,

• 𝑎ኻ is the life adjustment factor for reliability

• 𝑎ፈፒፎ is the life modification factor.

• C is the basic dynamic load rating.

• P፝፲ is the equivalent dynamic bearing load.

• p = 10/3 for roller bearings, 3 for ball bearings.

3.6.1. Equivalent Dynamic Bearing Load (P)
The equivalent dynamic bearing load is a hypothetical load with a constant magnitude and

direction, that acts radially on radial bearings and axially and centrically on taper bearings.
This load is considered to be equivalent to the actual loads acting on the bearings. If a radial
and axial load having a constant direction and magnitude is applied simultaneously on a
bearing, the equivalent dynamic bearing load can be defined using Equation 3.15.

𝑃 ፲ = 𝑋 ⋅ 𝐹፫ + 𝑌 ⋅ 𝐹ፚ (3.15)

Here, X and Y are the radial and axial bearing load factor for the bearing respectively. 𝐹፫
and 𝐹ፚ is the actual radial load and axial load on the bearing.

For a CRB which can support only radial loads, Equation 3.15 is reduced to P = 𝐹፫. For a
TRB pair, calculating the dynamic equivalent load is more complex. It is dependent on the
ratio of axial load to the radial load supported by the bearing pair.

If 𝐹ፚ/𝐹፫ ≤ 𝑒, then 𝑃 ፲ = 𝐹፫ + 𝑌ፀ ⋅ 𝐹ፚ. If 𝐹ፚ/𝐹፫ > 𝑒, then 𝑃 ፲ = 0.67 ⋅ 𝐹፫ + 𝑌ፁ ⋅ 𝐹ፚ. The value of e is
0.43 for the used bearing as provided by the manufacturer.

3.6.2. Life Modification Factor 𝑎ፈፒፎ
The life modification factor is a function of the following factors-

• the fatigue load limit in relation to the acting bearing equivalent load (P፮/P፝፲)

• the lubrication condition (viscosity ratio 𝜅)

• contamination level in bearing (𝜂ፂ)
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Figure 3.16: Histogram of radial load on CRB taking one year
SCADA data.

Figure 3.17: Histogram of dynamic equivalent load on TRB pair
taking one year SCADA data.

The viscosity ratio 𝜅 is defined as the ratio between the kinematic viscosity to the rated
viscosity of the lubricant used in the bearings. This ratio gives information about metal-to-
metal contact in bearings. The 𝜅 values range between 0.1 and 4, where 0.1 refers to full
metal-to-metal contact and a value of 4 refers to operation where the lubricant film around the
contacting surface is fully developed and there is no metal-metal contact leading to surface
wear.

𝜅 = 𝜈
𝜈ኻ

(3.16)

The kinematic viscosity, 𝜈, is a function of lubricant density and operating temperature.
Usually, the lubricant manufacturers provides the values for kinematic viscosity at 40∘𝐶
and 100∘𝐶. The kinematic viscosity at any given operating temperature can be calculated
from these values using the Ubbelohde-Walther equation adapted in ASTM D341-17 [57].
Equation 3.17 is used to calculate viscosity at any temperature T in Kelvins. A and B are
constants.

𝑙𝑜𝑔ኻኺ𝑙𝑜𝑔ኻኺ(𝜈 + 0.7) = 𝐴 − (𝐵 × 𝑙𝑜𝑔ኻኺ(𝑇)) (3.17)

The rated viscosity 𝜈ኻ is function of bearing speed (n) and pitch diameter (D፩፰) of the
bearing, as shown in equation 3.18 [56].

𝜈ኻ = {
45000 ⋅ 𝑛ዅኺ.ዂኽ ⋅ 𝐷ዅኺ.኿ኺ፩፰ , if 𝑛 < 1000 𝑟𝑝𝑚
4500 ⋅ 𝑛ዅኺ.኿ኺ ⋅ 𝐷ዅኺ.኿ኺ፩፰ , if 𝑛 ≥ 1000 𝑟𝑝𝑚 (3.18)

The contamination factor 𝜂ፂ describes the level of solid contamination of the lubricant.
Contamination factor influences the fatigue life of bearings. A 𝜂ፂ value of 1 means perfectly
clean conditions without any indentations and a value closer to 0 means severely contam-
inated conditions resulting in pronounced indentations. From ISO 281 recommendation
for roller bearings with diameter greater than 100 [mm] and high cleanliness conditions, a
cleanliness factor 𝜂ፂ value of 0.8 is chosen [56].

A function 𝜂ፂ(𝑃፮/𝑃) is defined to choose the 𝑎ፈፒፎ value. Figure 3.18 shows plot of the life
modification factor aፒፊፅ which is equivalent to 𝑎ፈፒፎ for radial roller bearings.

3.6.3. L10 Life based on Field Operating Conditions
In wind turbines, the operating conditions such as wind speed, temperature, speed, lubri-

cation conditions are continuously changing. An adaptation of Palmgren-Miner rule is used
to calculate L10 life when the operating conditions are transient and changing continuously.
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Figure 3.18: Life modification factor, aᑊᑂᐽ. Adapted from [58].

If N1 equals the number of revolutions required under the load condition P1, and N is the
expected number of revolutions for the completion of all variable loading cycles, then the
cycle fraction U1 = N1/N is used by the load condition P1, which has a calculated life of
𝐿ኻኺ፦።. Under variable operating conditions, bearing life can be rated using Equation 3.19.

𝐿ኻኺ = 1
∑፧።዆ኻ ፔᑚ

ፋᎳᎲᑞᑚ
(3.19)

The calculated L10 life is compared with the actual L10 life in Table 3.2. As observed most
of the HSS bearing failure is due to the downwind TRB axial cracking. Here NRS NRS refers to
downwind TRB. The bearings whose failure root cause analysis is not available is mentioned
as N.A.

As it can be inferred from the Table 3.2, the actual L10 life observed in axial cracking failure
is around 10-25% of the expected lifetime of the bearings. Similar results were observed
by Evans [59]. Therefore, it becomes necessary to look at contact stresses and lubrication
parameters to understand premature failures in bearings. With improvements in bearing
manufacturing and design, now a days bearing very rarely fail due to subsurface fatigue as
accounted by ISO 281:2007. With good lubrication and design, the bearing could outperform
the design lifetime by over three to six fold [60]. Therefore, employing Palmgren-Miner rule to
calculate the bearing damage using SCADA data might be futile, if bearing surface properties
and bearing kinematics is not considered.

3.6.4. Minimum Requisite Load
Every roller bearing should be subjected to a minimum required load to ensure uniform

rolling of the roller elements. When this minimum load is not met due to various reasons,
the roller might start skidding instead of rolling. This causes smearing in the contacting
surfaces which leads to bearing damage. The minimum requisite load is more important
in applications where the bearings are subjected to rapid accelerations or rapid starts and
stops, which can all be seen in wind turbines.
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Table 3.2: Actual vs Calculated L10 life of failed bearings.

Turbine
No. Bearing failure Cause Calculated L10

(hours)
Actual L10
(hours)

Actual L10
Calculated L10%

1 N.A N.A N.A 65160 -
2 RS inner ring Spalling - Inner ring 318940 35064 10.99
3 N.A N.A N.A 62784 -
7 NRS NRS inner ring Axial hairline crack. 299783 48744 16.26
10 NRS NRS inner ring Axial hairline crack. 291651 58680 20.12
13 N.A N.A N.A 75144 -
15 N.A N.A N.A 66792 -
18 NRS NRS inner ring Spalling - Inner ring 284974 65544 22.99
19 NRS NRS inner ring Spalling - Inner ring 325018 36792 11.32
21 N.A N.A N.A 70104 -
23 NRS NRS inner ring Axial hairline crack 357016 44520 12.47
27 NRS NRS inner ring Axial hairline crack - 46920 -
30 NRS NRS inner ring Axial hairline crack - 51648 -
36 N.A N.A N.A 66144 -
38 NRS NRS inner ring Axial hairline crack 304352 36408 11.96
39 NRS NRS inner ring Axial hairline crack 278462 59424 21.34
41 NRS NRS inner ring Axial hairline crack 303949 56808 18.70
44 NRS NRS inner ring Axial hairline crack 318732 52680 16.52
46 NRS NRS inner ring Axial hairline crack 303904 33432 11.01
50 N.A N.A 300738 75192 25.00
51 NRS NRS inner ring Spalling - Inner ring 280296 50832 18.14
55 N.A N.A N.A 69312 -
57 N.A N.A N.A 75456 -
59 NRS NRS inner ring Axial hairline crack 301872 51168 16.96

For a CRB, Equation 3.20 as provided by SKF is used to determine the minimum requisite
load, where 𝑘፫,𝑛፫ are load and speed constants depending on the bearing size. Here, n is the
bearing speed and 𝑑፦ is the mean bearing diameter. For TRBs the minimum load should be
around 2% of its dynamic load capacity.

𝐹ፂፑፁ፫፦ = 𝑘፫(6 +
4𝑛
𝑛፫
)( 𝑑፦100)

ኼ

(3.20)

3.7. Contact Mechanics

Bearing failures are dependent on contact stresses. Rolling element bearings are typi-
cal mechanical components that operate under concentrated-contact conditions. The Hertz
theory of elastic contact deformation is used to analyze the bearing contact pressure and
subsurface von mises stresses. The theory makes use of several assumptions as the exact
determination of contact stresses for complicated surfaces is a difficult process -

• The contacting surfaces are smooth and frictionless.

• The contact area is small compared to the size of the bodies.

• The bodies are isotropic and elastic.

For roller bearings, it is assumed that there is a line contact between the contacting sur-
faces as shown in Figure 3.19. Theoretically, the the contact formed is rectangular with
half-width b and length B, as shown in Figure 3.19.
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(a) Contact of two cylinders

(b) Hertz radius of contact

Figure 3.19: A pictorial representation of data removed from the training data set due to filtering.

The procedure to obtain the contact pressure and stresses is provided in this section. The
same calculation can be used for all roller bearings (for CRBs and TRBs) [61]. Assume, 𝑅ኻ and
𝑅ኼ the radii of the contacting surfaces, 𝜈፩ኻ and 𝜈፩ኼ (∼ 0.3) is the Poisson’s ratio of materials
in contact. 𝐸ኻ and 𝐸ኼ (∼ 208 GPa) are the elastic modulus of the surfaces. F is the dynamic
equivalent load acting on the surfaces. The half width b, is calculated using Equation 3.21.

𝑏 = √2 ⋅ 𝐹𝜋 ⋅ 𝐵
(1 − 𝜈፩ኻ)ኼ/𝐸ኻ + (1 − 𝜈፩ኼ)ኼ/𝐸ኼ

1/2𝑅ኻ + 1/2𝑅ኼ
(3.21)

The pressure distribution is rectangular and the maximum contact pressure can be de-
termined from Equation 3.22.

𝑃፦ፚ፱ =
2 ⋅ 𝐹
𝜋 ⋅ 𝑏 ⋅ 𝐵 (3.22)

The principal stresses on the z-axis can be determined using the following equations,
where z is the distance below the contacting surfaces -

𝜎፱ = 𝜎ኻ = −2𝜈፩𝑃፦ፚ፱ [√1 +
𝑧ኼ
𝑏ኼ − |

𝑧
𝑏 |] (3.23)

𝜎፲ = 𝜎ኼ = −𝑃፦ፚ፱
⎡
⎢
⎢
⎣

1+ ፳Ꮄ
፛Ꮄ

√1+ ፳Ꮄ
፛Ꮄ

− 2| 𝑧𝑏 |
⎤
⎥
⎥
⎦

(3.24)

𝜎፳ = 𝜎ኽ = −𝑃፦ፚ፱
√1+ ፳Ꮄ

፛Ꮄ

(3.25)

The 3 principal stresses are represented by the dotted lines below the surface in Figure
3.20. From the principal stresses, maximum von mises stress and the shear stress below
the contacting surfaces can be calculated. According to the Hertz theory, maximum von
mises stress occurs at a distance of 0.786 × 𝑏 below the contacting surfaces [61].



40 3. Failure Risk Assessment of Gearbox using Physics of Failure Technique

Von mises stress or equivalent stress is a part of equivalent stress failure theory, used to
predict yielding in a ductile material. There is some microplasticity or small plastic defor-
mations in a material whose yield strength is exceeded by the von mises stress. The von
mises stress or the equivalent stress can be calculated from the principal stresses using
Equation 3.26. Using all the above equations, it is estimated that the sudden application of
brakes/emergency braking when the turbine is rotating at rated power, can lead to von mises
stresses greater than 250-300 GPa on high speed bearings. This can lead to some plastic
deformation in bearings if they are not in the hydrodynamic lubrication regime, which is
discussed further in Section 3.8.

𝜎፯ = √
(𝜎፱ − 𝜎፲)ኼ + (𝜎፲ − 𝜎፳)ኼ + (𝜎፳ − 𝜎፱)ኼ

2 (3.26)

Figure 3.20: Normalized plot of the depth distribution of the ᎟ᑩ, ᎟ᑪ, and ᎟ᑫ main normal and of the v. Mises equivalent stress
below the center line of the Hertzian contact area [62].

The variation of maximum contact pressure with von mises stress and applied load is
shown in Figures 3.21 and 3.22.
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Figure 3.21: Plot of maximum contact pressure versus radial
load on CRB.
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Figure 3.22: Plot of maximum contact pressure versus
maximum von mises stress on CRB.

3.8. Contact Lubrication

Rolling bearing elements of wind turbines are subjected to high contact pressures and
rolling velocities as mentioned in section 3.7, which could lead to scuffing failures if the steel
surfaces were to come in full metal to metal contact. Hence, lubrication is recognized as a
key parameter to increase the efficiency and durability of bearings. In the present section,
the different lubrication regimes and tribo-chemical aspects will be briefly presented as they
greatly influence axial cracking or White Etching Cracks failure modes.

3.8.1. Elastohydrodynamic Lubrication (EHL) Theory
Elastohydrodynamic lubrication (EHL) is the most widely used and accepted model for

assessing the lubrication for friction pairs having elastic contacts like gears, bearings, and
so on. In EHL theory, the contacting surface undergo elastic deformation and lubricant
viscosity changes with contact pressure.

One of the main criterion for evaluating the lubrication regime is lubricant thickness be-
tween the two load transmitting contacting surfaces. Figure 3.24 gives the list of formulas
to determine the minimum and the central film thickness.

Figure 3.23: Pressure distribution and film-thickness variation in an EHD contact.

As it can be observed in Figure 3.23, there is a peak in the EHD pressure when the lu-
bricant film thickness is at its minimum. At the exit of the roller from the load zone, due
to sudden pressure drop and constant mass flow, a peak in EHD pressure is observed. In
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Figure 3.24: Lubricant film thicknesses for point contact and line contact. Adapted from [63].

Figure 3.24, there are few formulas which are not explicitly defined. Figure 3.24 represents
Dowson EHL lubrication theory [64]. Equations from various sources used for the missing
terms are included -

• The pressure-viscosity coefficient is a function of kinematic kinematic viscosity (𝜈) of
the lubricant. According to ISO/TR 1281-2, 2008 the pressure viscosity (𝛼) equation in
(cmኼ/s) can be determined using Equation 3.27 [65].

𝛼 = 0.1122 ⋅ ( 𝜈
10ኾ)

ኺ.ኻዀኽ

(3.27)

• Dynamic viscosity (𝜇) can be determined using kinematic viscosity (𝜈) and density (𝜌) of
the lubricant as shown in Equation 3.28.

𝜇 = 𝜌 ⋅ 𝜈 (3.28)

Apart from minimum lubricant thickness, the roughness of the contacting surfaces also
play a crucial role in predicting the lubrication regime a roller bearing is operating in. As
the operators do not the access to the roughness parameters of the bearings, an empirical
formula, equation 3.29 developed by Baalmaan [66] is used to estimate the RMS roughness
value for composite bearings based on the diameter of the bearings.

𝑅፪ = 1.2 ⋅ 10ዅ኿ ⋅ 𝐷ኺ.኿኿፩፰ (3.29)

Lubricant Lambda ratio: In the EHD traction calculations described above, it is assumed
that the contacting surfaces are smooth and a lubricant film always separates the contacting
surfaces. But in reality, there are always some asperities present on the contacting surfaces.
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Unlike smooth Hertzian contact, the contact area is now a myriad of micro-contacts of highly
irregular shapes within the macro-contact. The contact pressure at these micro-contacts can
be high enough to cause localized property changes both in contact bodies and in lubricant.
Lubricant lambda ratio, 𝜆 is generally used to establish the lubrication regime between the
contacting surfaces. It is defined as the ratio between the minimum film thickness to the
square root of the roughness RMS of the contacting surfaces, as shown in Equation 3.30.
Here 𝑅፪ኻ and 𝑅፪ኼ are the RMS roughness values of the roller and the raceway respectively.
The estimated values of RMS roughness from Equation 3.29 are 0.19 𝜇𝑚 and 0.21𝜇𝑚.

𝜆 = ℎ፦።፧
√𝑅ኼ፪ኻ + 𝑅ኼ፪ኼ

(3.30)

Figure 3.25: Typical Stribeck curve of a lubricant under constant load, temperature and slide-to-roll ratio and its correlation to
the film thickness curve under the same operating conditions. Adapted from [67].

The lubrication regime can be classified into four categories based on the lambda values
[64].

• Boundary Lubrication (𝜆 ≤1): Boundary lubrication is the most severe regime char-
acterized by high friction and wear. All the load is supported by the asperities. Full
metal-metal contact occurs in this regime. Usually, low viscosities, low velocities and/or
high contact pressures lead to boundary lubrication regime. Usually, during turbine
start-ups, due to low temperatures and speed, lubricant might operate in the boundary
regime. It can also occur during sudden turbine shut-downs and idling.

• Mixed Lubrication (1 ≤𝜆 ≤3): A transition between the elastohydrodynamic and bound-
ary regime occurs through mixed lubrication regime. In this regime, the load is sup-
ported partially by the lubricant film and partially by the asperities, leading to surface
wear and damage. The coefficient of friction is drastically reduced. The film thickness
increases with a decrease in lubricant viscosity. This regime might occur when the
turbines are idling at low speeds.

• Elastohydrodynamic Lubrication (3 ≤𝜆 ≤5): The coefficient of friction is the lowest in
this regime. This is achieved with full separation of the surfaces, combined with the low
amount of fluid subjected to shearing. There is no asperity contacts observed until a 𝜆
value of around 4, and this regime is a particular case of highly loaded non conforming
contacts where the deformation/strain of the contacting surfaces are greater than film
thickness, leading to full separation of the contacts.
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• Hydrodynamic Lubrication (𝜆 ≥5): As the lubricant viscosity increases due to higher
rolling speeds, a thick film is formed. In this regime, there is no contact between the
asperities. The coefficient of friction increases due to higher lubrication shearing only,
as the film thickness and viscosity increases.

In Figure 3.26, a plot of lambda ratio versus the generator rpm for a year of SCADA data is
shown. It can be inferred from the plot that at lower rpm, i.e., lesser than 150 rpm the value
of 𝜆 is lower than 4. The rpm value is usually low when the turbine is idling due to low wind
speeds or during shutdowns. At this stage, the turbine bearings, especially the HSS bearings
can undergo wear and damage. At higher speeds, the lubrication film is fully developed and
operated in the hydrodynamic regime. A histogram of 𝜆 is shown in Figure 3.27, to give an
estimation of the amount of time in an average year the bearing operates in the boundary or
mixed lubrication regimes.

Figure 3.26: Scatter plot of ᎘ vs Generator RPM of CRB for one year SCADA data.

3.8.2. Contact Friction

Bearing friction is not always constant. It depends on various parameters like - lubricant
thickness, bearing loads, speed. The SKF model of calculating frictional moment is used to
calculate the lubrication regime, to confirm if the lambda ratio calculated in section 3.8.1
is valid. A detailed explanation of the equations and theory to calculate frictional moment
can be found in [68]. Figure 3.28 represents the change in frictional moment as a function
of speed, for a given bearing and lubricant. Figure 3.29 shows a scatter plot of frictional
moment versus generator speed of CRB. It can be conclusively seen that at lower speeds, the
frictional moment is high which is due to high asperity contacts. Usually the coefficient of
friction during normal operation of roller bearings is around 0.0010-0.0030. At lower rpm
(less than 100 rpm) coefficient of friction in the HSS bearings can rise upto around 0.1 - 0.3.
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Figure 3.27: Histogram of ᎘ in CRB for one year of SCADA data.

Figure 3.28: Bearing frictional moment as a function of speed. Adapted from [68].
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Figure 3.29: Bearing frictional moment as a function of speed using SCADA data.

3.9. White Etching Cracks (WECs)

White Etching cracks or axial cracks are leading cause of failures in wind turbine gear-
boxes, which are prominently seen in the HSS and IMS bearings. They are non-classical
and non-conventional failures. As seen in Table 3.2, most of the reported failures in the
HSS bearings in the wind farm of reference is due to axial cracking and spalling. It reduces
the calculated L10 life of bearing by almost 70-80%. It eventually leads to irreversible brit-
tle flaking, spalling, or radial cracking of the affected bearing component. White etching
refers to the appearance of the altered steel microstructure when polishing and etching a
microsection. In Figure 3.31, a representation of the axial/white etching cracks is shown.
WECs are known to occur occasionally in industrial bearings, marine propulsion systems
but occurs more frequently in wind turbines. This suggests that the stochastic and extreme
conditions under which the wind turbines operate have a direct relation to WECs. Although
focused research by researchers, wind turbine OEM’s & bearing manufacturers is being con-
ducted for the last two decades, there is no consistent evidence or theory to explain the root
cause of WECs. Based on some of the hypothesis proposed, as mentioned in Section 3.9.1,
an attempt is made to correlate the observed field failures due to WECs to their respective
operating conditions with respect to the rest of the fleet.

3.9.1. Potential Root Causes of WEC
In this section, the potential root causes of WECs or axial cracks from various sources are

summarized -

• Purely Loads/Stress factors: Brief periods of heavy loads can cause microplasticity in
the subsurface and near subsurface regions leading to the formation of white etching
areas. In an operational wind turbine, such stresses can arise from overload events
like emergency braking, grid connection losses, which can lead to contact stresses of
above 3.5 GPa, even with good lubrication conditions [71]. Lai et al., [71] set up an
experiment to observe WECs. First, the bearing was subjected to short heavy loads
and later subjected to moderate loads of about 1.5 [GPa] at moderate-good lubrication
condition. After 1.9 ×10዁ cycles 2 of the 4 bearings had shown WECs.
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Figure 3.30: Failure appearance: a) straight cracks; b) straight cracks and small spalls; and c) spalls. [69]

Figure 3.31: (a) Raceway top view of a typical WEC-associated spall; (b) circumferential LOM with discrete WEC networks
displaying vertical links to the surface and a step-wise propagation; (c) axial LOM with WECs laying parallel to the surface in
accordance with the respective steps in (b); (d) circumferential LOM closer to the DEA region; (e) SEM analysis revealing
ultra-thin cracks, adjacent refined microstructure and darker alterations. LOM cross sections are all Nital 2% etched [70].

• Lubrication issues: According to SKF research [51], most of the axial cracks are initi-
ated on the surface or near subsurface (0-150 𝜇𝑚) and propagate through the surface
due to low lubrication conditions and is accelerated by corrosion fatigue, leading to
high contact pressures. Bearings operating at moderate loads and in the boundary or
mixed lubrication regime showed signs of axial cracking [62]. Some evidence has also
been found that any disturbance in the bearing kinematics due to high vibrations dur-
ing standstill position can lead to an acceleration in the corrosion fatigue process [69].
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Figure 3.32 shows a schematic of the axial crack initiation due to mixed lubrication
conditions.

Figure 3.32: (A) Roller-raceway contact with areas of local high traction due, for example, to local mixed friction, leading to
tensile stresses that can, b) lead to damage such as a small crack; c) surface crack or crack connected to the raceways allows

the entry of oil. Adapted from [69].

• Roller skidding/sliding: Recently, a lot of evidence has been produced to suggest that
WECs develops due to roller skidding during high speed transient events, and also
skidding because the minimum required load for rolling is not achieved [53]. During
some transient loading like gusts, brake applications, grid connection losses along with
high loads, there are torque reversals occurring where the load application changes
instantly from loaded zones to unloaded zones and occurs until it is dissipated, as
shown in Figure 3.33. This causes skidding due to a loss in the contact pressure and
low loading. A representation of the torque and speed changes in the high-speed shaft
obtained through experimentation is shown in Figure 3.34. Higher chances of skidding
can be expected in a grid loss event where the torque is reduced by almost 60%, while
the speed does not reduce much. Another important parameter to assess roller sliding
is the slide-roll ratio (SRR), which needs specialized instruments to determine, hence
ignored in this thesis.

Figure 3.33: Schematic representation of rapidly evolving torque reversals.

• Non-metallic Inclusions: Various experiments have observed formation of WECs in
bearings with certain non-metallic inclusions like MnS (Manganese Sulphide), large
carbides, voids, so on which act like stress concentration regions. Usually, the crack
propagation rate is enhanced when these inclusions are below the surface where the
maximum shear stress can occur [72],[73]. Figure 3.35 explains the importance of
sliding and inclusions for WEC formation and propagation.

• Low material strength: There are few theories which suggest that hydrogen ingression
promotes formation of subsurface cracks leading to WECs. In the presence of hydrogen
and high contact pressure, the crack propagation is rapid which results in early bearing
failure [75].
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Figure 3.34: Dynamometer test results on HSS (A) during braking events (B) during grid loss events [53]

Figure 3.35: Importance of surface traction (not to scale): (a) pure rolling: critical stress threshold exceeded relatively
deep—micro-cracking at inclusion may never reach surface and cause failure; (b) rolling and sliding: critical stress field shifted

closer to surface—micro-cracking at inclusion propagates to surface, leading to failure [74]

Figure 3.36, is a schematic representation of the conditions that lead toWECs as explained
above. The WECs driving factor may be only one of the above mentioned factors, or due to a
combination of factors. To make it more complex, many factors are correlated. This makes
it difficult to quantify the damage.

3.10. Case Study II - HSS Bearing Failure

Based on all the above discussions in the chapter, it is decided to include the following
operating conditions that could potentially induce damage on wind turbine HSS bearings -

• Low lambda - Total number of hours when the lubricant lambda value is less than 4.

• Low load - Total number of hours when load on bearing is less than the minimum
requisite.

• High speed brake application - Event count of brake application at high wind speeds
and rated power, excluding emergency braking.

Some of the damage inducing factors like hydrogen charging, electric current discharge,
non-metallic inclusions cannot be assessed using 10-minute averaged SCADA data. Also, it
is challenging to determine the exact number of grid outages from the SCADA logs, hence
number of grid loss events is not included as one of the damage operating condition in this
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Figure 3.36: White etching crack occurrence (simplified) in rolling element bearings. [69]

work. Also previously assumed conditions namely, bearing temperature and yawmovement is
excluded in further studies, as no correlation is found between gearbox and these conditions.

A comparison of the failed bearings with the rest of the fleet is done using boxplots, as their
advantages in assessing the risk of failure was shown in Section 3.4.

3.10.1. Turbine 2 - HSS CRB axial cracking
The CRB of turbine 2 failed due to axial cracking which manifested into spalling in the year

2012. Turbine 2 is compared against 60 other turbines in the wind farm using boxplots as
mentioned earlier in the chapter. Such boxplots can also help in root cause analysis of the
failure.

The red points on the boxplot in Figure 3.37 represents turbine - 2 with respect to the rest
of the fleet. As it can be seen from the below figure, the failed CRB had to endure lower load
operation which in turn leads to low lambda ratio for longer periods of time which could lead
to skidding and eventual failure. The number of rotor start - stops is also above the 75th
percentile mark.

3.10.2. Turbine 8 - No Failure
There was no damage reported in turbine 8 until 2019. A case of no failure, yet high risk

according to box plots is included in Figure 3.38. This plot shows the limitation of physics of
failure technique while using low frequency data. As we use basic statistical plots to check
whether the turbines are at a high or low risk of failure, there tends to be more than one
turbine operating at high risk. This is the case as observed with Turbine 8. Even though
the turbine is operating at low load lambda and a higher number of emergency stops as
compared to the mean to the fleet, no apparent failure occurred. Hence, it is necessary to
have additional monitoring techniques, and use physics of failure model to complement them
so as to make the condition monitoring system more robust.
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Figure 3.37: Turbine 2 - HSS bearing axial cracking

Figure 3.38: Turbine 8 - No failure

3.10.3. Turbine 14 - No Failure
Turbine 14 is a case of low risk turbine which has not had any components of the gearbox

replaced atleast until 2014. As seen in Figure 3.39, all the points in the boxplots lie below
the 75th percentile, indicating a low risk of failure.

More case studies relating to physics of failure of axial cracking is presented in Chapter 5
along with the temperature based anomaly detection by ANN model.
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Figure 3.39: Turbine 14 - No failure

3.11. Limitations

There are certain limitations of the physics of failure models.

• Low frequency data - The SCADA data is recorded at 10 minute resolution. It is very
challenging to build a high fidelity physics basedmodel using 10-minutes averaged data,
as start-stop, transient events can happen within few seconds which is not captured in
the low resolution data.

• Risk assessment - Boxplots are good at assessing risks/outliers. It is clear that there
lies more than one turbine above the 75th percentile. It is important to note here that,
all the turbines which failed were operating at high risk, while not all turbines operating at
high risk failed. Hence, this approach can be used in complement with vibration moni-
toring/ thermal monitoring systems to improve the confidence in condition monitoring
of wind turbines, as physics-based models take into account the historic operating con-
ditions which are ignored by other monitoring techniques. This method is best suited
for risk assessment of the entire fleet.

To overcome the limitations of the physics of failure models and to complement them, a
temperature based condition monitoring technique based on artificial neural networks is also
developed.



4
Temperature based Anomaly Detection

using Artificial Neural Networks
This chapter describes themethodology of using temperature signals from SCADA for anomaly
detection in wind turbine gearbox. Various issues with the ANN models are discussed and
suitable mitigation measures are presented. The RNN model architecture and hyperparam-
eter tuning are also discussed in the chapter.

4.1. Normal Behavior Modeling

The effectiveness of normal behavior models (NBM) for the purpose of anomaly detection
has been demonstrated in [36], [38], and [39]. In this thesis, a NBM based on Gated Recurrent
Unit (GRU) is proposed and compared with NARX based model as described in [39]. The
schematic representation of the method is shown in figure 4.1.

Figure 4.1: A schematic representation of an ANN based condition monitoring method. Adapted from [39]

The development of NBM can be divided into two parts. As seen in the left block of Figure
4.1, the ANN model trained using only data consisting of normal operation (fault free period)
of the wind turbine. This is a one time process. The trained model is then used to predict the
modeled parameter values, which is then compared with the actual values recorded in the
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SCADA. This is shown in the right-hand block of Figure 4.1. If the residual value, that is the
difference between the predicted and measured value crosses a predetermined threshold, an
anomaly is flagged.

The following steps are important for development of normal behavior models which are
further detailed in the ensuing sections -

1. Input and output parameter selection.

2. SCADA data preprocessing.

3. ANN configuration/Model Architecture.

4.2. Input and Output Parameter Selection

The selection of input and output parameters is critical for the performance of ANN models
for condition monitoring. A typical SCADA system records more than 100 variables and it
becomes essential to select only a few variables for modeling to avoid overfitting/underfitting.
Overfitting can lead to false alarms and inaccurate anomaly detection. Since ANNmodeling is
a data-driven approach, which lacks any physical understanding of the system, the selection
of model parameters has to be done carefully based on domain knowledge and correlation
analysis.

The selection of output parameters for condition monitoring of gearbox is straightforward,
as there are only two temperature-based parameters which enable failure detection. Potential
component failures should manifest themselves in the chosenmeasurement, to enable failure
detection-

• Gear bearing temperature.

• Gearbox oil temperature.

The selection of input parameters is more complex. Therefore, a combination of correlation
analysis between various variables and domain knowledge is used to select suitable input
parameters which help in accurate estimation of output parameters. In contrast to the target
or output parameter selection, there is usually a big number of potential input measurements
to choose from.

A correlation matrix is shown in Figure 4.2. 2 years of wind turbine SCADA data is used
to analyze the correlation between various variables. This figure shows the correlation co-
efficients along with the histogram of the respective parameters. As mentioned earlier care
must be taken while selecting model input parameters using such correlation coefficients.
Selecting all the input parameters based on statistics only, with high correlation coefficients
can lead to overfitting, and can lead to problems during the anomaly detection phase. Hence,
it is essential to consider input parameters based on domain knowledge and physical under-
standing of wind as well.

The ambient and nacelle temperature are directly related to the gear bearing temperature
and the lubrication oil temperature as all the related sensors are placed inside the nacelle.
According to the first law of thermodynamics, there exists a thermal equilibrium between the
above-mentioned temperatures under normal operating conditions[13]. Hence, nacelle and
ambient temperatures are chosen as one of the inputs to the ANN model. Apart from these,
power and rotor RPM is chosen as the other input parameters to the ANN model as their
correlation coefficient with respect to the output parameters is high. Also, power and rotor
rpm is directly proportional to the chosen output parameters. Higher output power leads to
higher bearing temperatures and vice versa.
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To test the hypothesis that additional calculated physical parameters from the recorded
parameters can lead to better performance of the ANN model as stated in [19], generator
torque is used as an additional input parameter to the ANN model. The correlation coefficient
between generator torque, gear bearing temperature and gearbox oil temperature is also high.
The temperature sensors are placed on the bearing in the high-speed shaft which is coupled
to the generator. Therefore, abnormal changes in the generator torque and the chosen output
parameters can lead to better anomaly detection.

Two sets of inputs and output parameters as tabulated in Table 4.1 similar to the one used
in [39] and Table 4.2 is compared using NARX and RNN based ANN models.

Table 4.1: Input/Output parameters for ANN [Set-1]

Output Parameters Input Parameters

Gear Bearing Temperature Power
Rotor RPM

Gearbox Oil Temperature Ambient Temperature
Nacelle Temperature

Table 4.2: Input/Output parameters for ANN [Set-2]

Output Parameters Input Parameters

Gear Bearing Temperature Power
Rotor RPM

Gearbox Oil Temperature
Ambient Temperature
Nacelle Temperature
Generator Torque

4.3. Data Preprocessing

Data preprocessing is a data mining technique used to convert raw data into clean data
that can be used for machine learning projects. The recorded raw SCADA data is not always
clean as it can have some missing values due to communication errors, can be noisy i.e.,
containing errors or outliers and so on. The SCADA data thus has to be preprocessed to
remove all the faulty data before using it.

The phrase ”garbage in, garbage out” is particularly applicable for data-driven analysis as
the performance of the machine learning model depends purely on the data used to train
it. Data preprocessing becomes more essential while developing a normal behavior model as
only data during the fault-free period of the turbine has to be filtered out for training the ANN
model which is a major challenge.

Three filters similar to the one implemented in [39] are used with minor changes. The
applied data filters are robust and have been successfully implemented before. All the filters
are applied sequentially as explained. The purpose and the algorithms for the filters are
detailed in the following sections.

1. General filter.

2. Cluster filter.

3. Missing data filter.

4. Masking/padding for RNN models.
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4.3.1. General Filter
Data vectors with missing datapoints considering both the input/output parameters are

filtered out in this step. This filter is applied to both training and application sets. In equation
4.1, 𝑥፭ is the data vector at time t where one of the datapoints is missing in dataset 𝑥፭።

𝑑𝑒𝑙𝑒𝑡𝑒 𝑥፭ 𝑖𝑓 [𝑥፭|𝑥፭። = 𝑛𝑜𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒] (4.1)

Secondly, filter out all data vectors when the wind turbine is not producing any power.
Finally, remove data vectors where one of the recorded values appears to be higher than
the threshold values. These threshold values are tabulated in Table 4.3. These threshold
values are based on manufacturers specifications. The data points removed after applying
the general filter is shown in Figure 4.3a.

Table 4.3: Boundaries for parameters of the gearbox model

Gearbox Parameters Rated Value Boundary
Power [kW] 2000 [0,2000]
Rotor RPM 18.1 [0,18.2]
Ambient Temperature [∘ C] - [-20,40]
Nacelle Temperature [∘ C] - [-20,70]
Gear Bearing Temperature [∘ C] - [-20,90]
Gearbox Oil Temperature [∘ C] - [-20,90]

4.3.2. Cluster Filter
The clustering technique for SCADA data mining was first introduced by Kusiak et al.,

[36], and was later extended by Bangalore et al.,[39]. The cluster filter is used to remove data
outliers and data corresponding to curtailment conditions from the training data set. It is
essential to remove the datavectors corresponding to curtailment, as it cannot be considered
as normal behavior nor a fault. The algorithm version presented by Bangalore et al., is used
in this thesis and is described in Algorithm 1.

Algorithm 1 Cluster filter algorithm [39]
1: Decide the maximum number of clusters, N.
2: Assign a cluster number n ∈ {1,...,N} to each input data vector D።, i ∈ {1,...,length (Dataset)} in

training dataset using k-NN clustering method.
3: Find the centroid, C፧ for each cluster.
4: Calculate the Mahalanobis distance MHD። of each data vector from its cluster center C፧.
5: Estimate the probability distribution for the Mahalanobis distances in the vector MHD.
6: Eliminate data vectors whose probability of occurrence is less than a threshold value.

The training dataset is divided into 12 clusters using k-means clustering method, unlike
using Ward’s minimum variance algorithm as used by Bangalore et al.,[39]. The number of
clusters is decided based on the operating conditions of the wind turbines and their behavior.
A probability threshold of 5% is chosen, and all the data vectors below this threshold is
eliminated. A low threshold value suffices as curtailment is not done frequently. This cluster
filter is applied only to training dataset and not to application dataset.

4.3.3. Missing Data Filter
Missing data filter is applied to both training and application datasets. The missing infor-

mation filter is used to correct the issue, which is intended to guarantee that at least 1 h of
continuous data is available for a parameter vector to be considered during the training and
application phases. Stray data vectors which are not continuous are eliminated.
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Figure 4.3: A pictorial representation of data removed from the training data set due to filtering - Power curve
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Figure 4.4: Power curve

4.3.4. Masking for RNN
RNN networks are primarily used for sequence modeling, i.e., they perform best with fixed

length inputs or in other words evenly spaced time series. For LSTM input/output param-
eters unlike NARX data vectors that do not fit into the bill of normal behavior are masked
instead of being removed. Masking is a process where all the data vectors that were supposed
to be removed using data filters above is replaced with the value ’0’. In general, with neural
networks, it’s safe to input missing values as 0, with the condition that 0 is not already a
meaningful value. The network will learn from exposure to the data that the value 0 means
missing data and will start ignoring the value during the training phase [76]. The mask layer
can be applied using the line of code of Keras as shown below.

𝑚𝑜𝑑𝑒𝑙.𝑎𝑑𝑑(𝑀𝑎𝑠𝑘𝑖𝑛𝑔(𝑚𝑎𝑠𝑘_𝑣𝑎𝑙𝑢𝑒 = 0., 𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 = (𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠))) (4.2)

For an input time series data Xፓ if x፭ is the missed element, which equals to 0, the training
process at the t-th step will be skipped, and thus, the calculated cell state of the (t−1)-th step
will be directly input into the (t+1)-th step. Figure 4.5 is a representation of the function of
a mask layer.
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Figure 4.5: A pictorial representation of masking operation in LSTM models [77]

4.4. Artificial Neural Network Model Architecture

Data preprocessing step is followed by development of ANN configuration. There is no rule
of thumb to decide the best possible configuration. All good performing ANN models are a re-
sult of trial and error. Within this thesis, model architecture was selected based on the NARX
model used by Bangalore et al., [39] and also a novel stacked RNN based model as presented
by [40]. The application of stacked RNN has not yet been tested for wind turbine condition
monitoring yet, and has a potential to outperform existing models[43]. The following sections
gives a detailed description of the specific model architecture and their performance based
on fault free data.

The metric used to analyze the performance of the neural network model is Mean Squared
Error (MSE). MSE is a common metric used to evaluate regression problems as it might
be penalizing large errors more, because if your error is large, its square is much larger.
Therefore, lower the MSE better the predictive performance of the model. The MSE of a
predictor is defined as shown in Equation 4.3. Here n is the number of data points in the
variable, Y። and ̂𝑌። are the measured and the predicted values respectively. In simple words,
MSE is the average of square of errors.

𝑀𝑆𝐸 = 1
𝑛

፧

∑
።዆ኻ
(𝑌። − ̂𝑌።)ኼ (4.3)

4.4.1. NARX model
The NARX model used in the thesis is similar to the one used by Bangalore et al., [39].

This model is used as benchmark, and the newly developed model in this thesis is compared
against NARX model. Additionally the same model is used with additional inputs as shown
in Table 4.2 to check for improvement in model performance if any.

The summary of the closed loop NARX is tabulated in Table 4.4. The model has one hidden
layer with 20 neurons all densely connected, and one neuron for the output layer. The non
linear activation function, Sigmoid is used as default. The pictorial representation of the
implemented NARX model is shown in Figure 4.6.

Figure 4.7 shows a plot of modeled versus the measured bearing temperature on the appli-
cation data. As it can be observed, the temperature predicted by the NARX model is almost
similar to the measured temperature. As the weight initialization is done randomly, the mean
squared error (MSE) of each model run will be slightly different. The average MSE of 30 mod-
els run on the same data is tabulated in Table 4.7. For reference, the MSE plot for one of the
model is shown in Figure 4.8.
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Table 4.4: Specification of NARX model.

ANN Model NARX
Layer Hidden Output
Neurons 20 2
Activation Function Sigmoid Linear

Input Parameters

1. Power
2. Rotor RPM
3. Nacelle Temperature
4. Ambient Temperature
5. Generator Torque
6. Missing Data Filter

Output Parameters 1. Bearing Temperature
2. Gearbox Oil Temperature

Figure 4.6: Implemented NARX Neural Network.
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Figure 4.7: Bearing temperature - modeled versus measured NARX.

The error histogram of one such training output of NARX model is shown in Figure 4.9.
The errors during the training phase is low, with 90% of the errors close to 0. Hence, it
was concluded, that the errors are truly random and do not show a trend or are shifted by
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Figure 4.8: Mean squared error for NBM.

a functional shortcoming of the model itself. The errors on the training, validation and test
set is almost comparable and do not show significant differences. Also, the training and
validation losses almost converge as seen in Figure 4.8. This conclusively shows that there
is no overfitting and the model has good generalization abilities.

Figure 4.9: Training error histogram for bearing temperature.
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4.4.2. Stacked RNN model
The RNN was designed using an open source framework called Keras [78]. Keras is a

neural networks Application Programming Interface (API) written in Python, it runs on top
of TensorFlow, a low level API for running machine learning projects. As RNNs require more
memory and computation resources compared to a NARX model, the neural network was run
on Google Colaboratory, which provides free Nvidia Tesla K4 GPUs for faster training of the
neural networks.

In this thesis, both LSTM and GRU networks were tested. The performance of the GRU
network was on par with the LSTM network with respect to the mean squared error as detailed
in Section 4.4.3. A representation of a stacked RNN network is shown in Figure 4.10. It can
be observed that the output of each GRU layer fed back into as input for the next timestep
prediction. A stacked RNN architecture can extract higher level temporal information as
compared to a single layer network.

Figure 4.10: Representation of stacked GRU model.

As the RNN is trained on a time series data, it is quite natural to use a stateful mode of RNN.
After dividing the training samples into batches as explained later in the section, it becomes
to pass on the information from one batch to another while training an RNN. Stateful flag
in Keras is introduced to circumvent these problems during training and make the model
remember what happened in the previous batch by passing states from the previous batch
to the next batch. If a stateless mode of RNN is used, the information from one batch is not
passed on to another, and all the states are initialized to 0 after each batch.

4.4.3. Data scaling and hyperparameter tuning for RNN
Amachine learning model is defined as a mathematical model with a number of parameters

that need to be learned from the data. Some parameters are directly learnt from the training
data such as weights in an ANN. A model hyperparameter is a configuration that is external
to the model and whose value cannot be estimated from data. Hyperparameter tuning is
the process of determining the optimum values of these hyperparameters. A RNN model has
many hyperparameters that has to be tuned manually to optimize the performance of the
model. In the rest of this section, the process of tuning the hyperparameters is explained.

Data Scaling
The input and output data to the neural network has to be scaled to have all the features

within the same range. This helps in faster training and improves the convergence of steepest
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descent algorithms, which do not possess the property of scale invariance. Without data
scaling, the weights of the network can grow very large leading to unstable networks and
increasing generalization error.

MaxAbsScaler, a variant of MinMaxScaler is used to scale the input and output vectors.
The scaled features are in the range [-1,1]. This scaler works best for cases where the distri-
bution is not Gaussian or the standard deviation is very small. MaxAbsScaler feature scaling
techniques do not affect the sparsity of the dataset, which also helps in implementing the
masking layer without any hassles. Scaling the value between [-1,1] for a LSTM/GRU layer
is also preferred as the final output of these layers are squashed between [-1,1] by the tanh
function as shown in Figure 2.9 and 2.14. In this way, the network learns and converges
faster. After training and doing predictions on the dataset, the scaling can be inversed to
obtain the actual outputs.

Equation 4.4 is used by the MaxAbsScaler, where 𝑥፬፜ፚ፥፞፝ is the scaled value of x and X is
column vector of the feature to be scaled -

𝑥፬፜ፚ፥፞፝ =
𝑥

𝑚𝑎𝑥|X| (4.4)

It is important to note here that, data scaling should always be done after splitting the
dataset into training and test sets to prevent any data leakage. Data Leakage is the creation of
unexpected additional information in the training data, allowing a model or machine learning
algorithm to make unrealistically good predictions. For example, if the dataset is split after
scaling, the training set can have a peek into the future already which leads to such incredibly
good predictions. But in the real world, the machine learning model has no access to the test
dataset.

Hidden Layers and Nodes
The two main hyperparameters that control the topology of an ANN are - the number of

hidden layers and the number of nodes in each hidden layer. There is no fixed formula or a
rule of thumb to determine the number of hidden layers and the number of nodes in these
layers. An experimentation technique or manual tuning is done to determine the number of
hidden layers. Various network (including LSTMs and GRUs) configurations with 1, 2 and
3 hidden layers with different permutation and combination of hidden nodes were tested.
A GRU network with 2 hidden layers with 10 and 5 nodes in the 1st and 2nd hidden layer
respectively, provided the minimumMSE. The prediction performance of LSTM networks was
equivalent to that of GRUs but took more computation time. Hence, for anomaly detection,
a GRU network is utilized. The MSE losses of the tested networks configurations are further
detailed in Table 4.7.

Activation Functions and Weight Initialization
The purpose of an activation function is to add non-linearity to the output of the hidden

neuron. A neural network without an activation function is essentially just a linear regression
model. The activation function does the non-linear transformation to the input making it
capable to learn and perform more complex tasks. Activation functions is perhaps the most
important hyperparameter to be tuned.

A Rectified Linear Unit (ReLU) is used for as activation function for the proposed neural
network model in this thesis. Mathematically, ReLU can be defined using Equation 4.5
and visually as shown in Figure 4.11. The performance of the network using tanh (MSE
= 0.1509∘𝐶) activation function was identical to ReLU (MSE = 0.1464∘𝐶).

𝑅(𝑧) = {0, if 𝑧 < 0.
𝑧, if 𝑧 ≥ 0. (4.5)
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Figure 4.11: Representation of ReLU activation function.

ReLU can also help solve vanishing gradient problem[23]. Another important reason to use
ReLU activation function is because it induces model sparsity (which is different compared
to data sparsity) in the hidden units of the neural network, as explored by Glorot et al., 2011
[79]. Hence, ReLU was preferred over tanh.

Glorot (or Xavier) uniform initialization [80] is used for initializing the weight matrices.

Optimizer and Learning rate
The choice of an optimizer and learning rate is paramount to ensure stable performance of

a neural network.

Optimizers help in minimizing the cost function J(𝜃). In our case, J(𝜃) is the mean squared
error metric. A variant of gradient descent, Adam (Adaptive Moment Estimation) [81] is
used as optimizer. Adam optimizer is one of the most popular gradient descent optimization
algorithms which is computationally efficient and has very little memory requirement [81].
Gradient descent is an iterative learning algorithm that uses a training dataset to update a
model.

Learning rate controls the update speed of parameters. The weights of a network are up-
dated through backpropagation as explained in section 2.5.3. The amount that the weights
are updated during training is referred to as the step size or the “learning rate.” Generally, a
large learning rate allows the model to learn faster, at the cost of arriving on a sub-optimal
final set of weights. A smaller learning rate may allow the model to learn a more optimal
or even globally optimal set of weights but may take significantly longer to train. Various
learning rates - 1E-5, 1E-4, 0.001, 0.01 and 0.1 were experimented with to determine the
right learning rate. A learning rate of 0.001 gave optimal solutions with reasonable com-
putation times as compared to other rates with similar losses. The variation of MSE with
various learning rates is shown in Figure 4.12.

Batch Size
The batch size defines the number of samples that will be propagated through the network

before the weights are updated. For example, if all the training samples are used simul-
taneously to train the network, then the batch size is equal to 1. In most deep learning
applications, the training samples are divided into smaller batches before feeding it into the
network. There are some advantages and limitation of using such mini-batches for training
deep networks. The main advantages of using mini-batches are the requirement of less mem-
ory to train the network. The network also trains faster with mini-batches. This is because
the weights are updated after each batch propagation. In Figure 4.13, the direction of the
mini-batch gradient (green color) fluctuates much more in comparison to the direction of the
full batch gradient (blue color).
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Figure 4.12: MSE vs learning rate for final GRU network.

Similar to learning rate, smaller samples in batches leads to increased computation time,
while large batches require more memory and do not always converge. Various batch sizes
- 32, 64, 128, 144, 256 and 512 were tested to tune the network. It should also be noted
that the batch size should always be a multiple of the number of training samples. Also, the
test set must be a multiple of the batch size. After many trial and errors, a batch size of 144
is found to give an optimum trade-off between computation time and network performance.
The other advantage of having a batch size of 144 is that the average temperature values
can be updated everyday to monitor differences between the average measured and average
predicted temperatures, as explained in Chapter 5. As SCADA records 10-minutes averaged
data, a total of 144 data points are obtained everyday.

Figure 4.13: Gradient descent batch size and convergence.

Regularization
Regularization techniques are mainly used to reduce the overfitting of the neural networks.

The 3 main regularization techniques generally used in machine learning projects are L1, L2
and dropout. In specific, recurrent dropout is used in this thesis. Dropout refers to randomly
dropping connections between network nodes during training. This is a specific, built-in way
to use dropout to fight overfitting in recurrent layers. A regular dropout is not applied to the
input or output layer as it worsened the performance of the model. This might be due to
the following reason - the logic of dropout is for adding noise to the neurons in order not to
be dependent on any specific neuron. By adding a regular dropout for RNN cells, there is a
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chance for forgetting something that should not be forgotten. A recurrent dropout of 0.3 and
0.1 in the first and second hidden layer respectively resulted in the lowest MSE.

Callbacks
It is necessary to train the neural networks with optimum number of epochs. One epoch

is one forward pass and one backward pass of all the training examples through the net-
work. Too many epochs can lead to model overfitting while less number of epochs can lead
to underfitting without good generalization of the model. Early stopping requires that a val-
idation dataset is evaluated during training. Early Stopping is a callback method used to
stop the training once the performance of the validation dataset stops improving or starts
deteriorating. In this thesis, early callback with a patience of 10 epochs is implemented to
make sure the neural network has good generalization. This is similar to the callback applied
in MATLAB NARX network. A modern way of avoiding overfitting, is to use a dropout layer
along with early stopping [23], which is successfully implemented in this thesis.

The values of the hyperparameter used for training and testing the SCADA data is tabulated
in Table 4.5. The GRU network architecture in which the MSE was minimal with respect to
other architectures is tabulated in Table 4.6. In case of both NARX and RNN networks,
additional input of generator torque improved the predictive performance of the algorithms.

Table 4.5: Final tuned hyperparameters for GRU network.

Hyperparameter Value(s)
No. of hidden layers 2

No. of nodes in hidden layers 1st Layer 10
2nd Layer 5

Activation Function ReLU
Optimizer Adam
Learning rate 0.001
Batch Size 144

Recurrent dropout in hidden layer 1st Layer 0.3
2nd Layer 0.1

Table 4.6: Specification of GRU network.

ANN Model Gated Recurrent Unit (GRU)
Layer 1st hidden layer 2nd hidden layer Output
Neurons 10 5 2
Activation Function ReLU ReLU Linear

Input Parameters

1. Power
2. Rotor RPM
3. Ambient Temperature
4. Nacelle Temperature
5. Generator Torque

Output Parameters 1. Bearing Temperature
2. Gearbox Oil Temperature

Figure 4.14 shows the network configuration for gear bearing temperature predictionmodel.
An identical model is also run in parallel to predict gearbox oil temperature. As seen, the
total params represents the number of weights that has to be adjusted to fit the training
data, which is 726 in this case.

Figure 4.15 shows the measured and predicted bearing temperatures for 5 days. The pre-
dictions seem to fit the measured data quite well. Additional prediction results are presented
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Figure 4.14: Network configuration and number of weight parameters to be tuned - 726.

in Appendix B. To check for overfitting, the training and test loss curves is shown in Figure
4.16. The training and the test loss curves are almost converging, confirming that the model
has not overfitted on the training data. The MSE of the proposed GRU model for gear bear-
ing temperature is 0.1464∘𝐶. The MSE of the lubrication oil temperature prediction model is
0.2375∘𝐶, a little higher than bearing temperature model. This is because the oil temperature
is highly volatile and changes more rapidly than the gear bearing temperature.

Table 4.7 presents the performance of few of the various network architectures tested. The
best prediction performancemodel had 2 hidden GRU layers with 10 and 5 nodes respectively.
Based on the prediction performance of the tested networks, GRU was chosen as apt for
anomaly detection task.

Table 4.7: MSE metric results for some of the configurations.

ANN Model Hidden Layers Neurons in hidden layers Mean Squared Error [∘𝐶]Layer - 1 Layer - 2
NARX 1 20 - 0.5494

LSTM 1
10
20
50

-
0.3792
0.2312
0.2984

LSTM 2
10
20
50

5
5
20

0.1478
0.1611
0.2981

GRU 1
10
20
50

-
0.3672
0.2452
0.2876

GRU 2
10
20
50

5
5
20

0.1464
0.1543
0.3241
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Figure 4.15: Measured and GRU predicted gear bearing temperature.

Figure 4.16: GRU network performance with learning rate 0.001 for gear bearing temperature model.



5
Case Studies

In this chapter, 5 case studies on the implementation of the proposed condition monitoring
technique are presented. Also, the limitations of temperature based anomaly detection model
are detailed.

Before delving into the case studies it is important to understand the technique used for
data post-processing to flag anomalies. It is also important to note here that only two temper-
ature sensors are available in the wind turbine gearbox under investigation, unlike modern
turbines which have multiple sensors. One of the sensors is on the tapered roller bearing of
the high-speed shaft and the other in the gearbox oil sump.

5.1. Data Post-processing

The purpose of developing normal behavior models is to be able to detect anomalies in the
components being modeled. Various methods have been suggested by different researchers
for anomaly detection using ANN models. Bangalore et al., 2017 [39] use Mahalanobis dis-
tance between the measured and predicted temperature. An anomaly is flagged if the Maha-
lanobis distance crosses a certain threshold. Zeher et al., [35] used an increase in the fre-
quency of errors between the predicted and measured parameter values to flag an anomaly.
Kusiak et al., [36] made use of an arbitrarily considered hourly averaged error residual to
flag anomalies. A similar method is used by DNV-GL Wind Gemini [82] digital twin model to
flag anomalies.

In this thesis, a similar method used by DNV-GL Wind Gemini as mentioned earlier is
used to flag anomalies. An anomaly is flagged when the daily averaged residual crosses a
threshold of 3∘𝐶. A moving window length of 144 is chosen, that is moving average over a day
as it helps make a clearer distinction between anomalies and fault-free operation. Different
window lengths of 36, 72, 144, 288 were tried. Apart from this threshold, an increasing
trend and more frequent occurrence of alarms also suggest an impending fault in the wind
turbine. Taking a moving average of residual helps in removing the effect of noise. This
threshold limit is based on the average residual observed during the normal behavior period
as explained later in the case studies. It is important to mention that the analysis presented
in this chapter is targeted to identify and predict over-temperature cases only. An anomaly
is flagged only if the average residual is above +3∘𝐶.

The predictions of neural networks on unseen data are stochastic. Neural networks use
randomness by design to ensure they effectively learn the function being approximated for
the problem. In the case of normal behavior modeling, the predictions on anomalous data are
not uniform and slightly different for each run. This is because the ANN model is not trained

69



70 5. Case Studies

on faulty data and also because the initial weight initialization is random. The randomness
is also due to optimization which is based on stochastic gradient descent. The optimizer can
sometimes get stuck at local minima. To counter these effects, the output is averaged over
the 10 best ANN models selected from a total of 20 trained models. Though this process is
tedious, it always results in better predictions for condition monitoring.

Finally, sometimes the ANN can give false positives, in other words, some false alarms
due to various reasons such as excessive noise in the test data or if the cooling fans in the
nacelle are not working properly and so on. To avoid this, the proposed physics of failure
can be used. When an anomaly is detected in the ANN-based models, the historical damage
operating conditions of the anomalous turbine can be compared against the rest of the fleet
in the same wind farm. If the turbine is found to be operating under more damage-inducing
conditions, then the flagged anomaly is most certainly a true positive.

5.2. Case studies of HSS bearing failures

In this section, the turbines in which the high speed shaft bearings failed are studied.
The input and output SCADA parameters used for anomaly detection for all case studies is
presented in Appendix B along CMS vibration analysis reports. The proposed ANN + PoF is
compared with vibration based monitoring systems. It is important to note here that there
are 4 levels of severity in vibration based monitoring system as described in Table 5.1.

Table 5.1: Vibration monitoring system alarms.

Severity Level Type Description Recommended Action
1 Danger Severe progressing alarm Immediate action
2 Alert Considerable progressing alarm 2-4 weeks
3 Alert Progressing alarm 2-4 months
4 Alert Small or none progressing alarm None
5 System Hardware system problem None

The summary of the alarm trigger and gearbox component failure dates is tabulated in
Table 5.2.

Table 5.2: Summary of all case studies with alarm trigger dates.

Turbine
No.

Failure
Date

Root Cause
of Failure

Gear
Bearing
Alarm

Gearbox
Oil

Alarm

CMS alarm
(Severity 3)
Stage - Date

CMS alarm
(Severity 2)
Stage - Date

7 5 Apr
2013

Spalling in
HSS TRB

30 Oct
2012

2 Oct
2012

High speed stage-
19 Sep 2012

High speed stage-
3 Apr 2013

23 19 Mar
2013

Axial crack
in HSS TRB

31 Oct
2012

31 Oct
2012

High speed stage-
21 Dec 2012

High speed stage-
4 Feb 2013

48 21 May
2015

Spalling on
HSS bearings
and PS bearing

21 Oct
2014

5 Nov
2014

Planetary stage -
11 Jul 2014 N.A

32 1 June
2014

Micropitting
on all gears and
indentations
on few
bearings

No alarm 14 Mar
2014

High speed stage-
13 Mar 2014 N.A
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5.2.1. Turbine - 48
The complete gearbox of Turbine-48 was replaced on 21st May 2015. According to root

cause analysis reports, there was spalling observed in all 3 bearings of high speed shaft
and some micropitting in IMS stage bearings. The ANN model is trained on data from the
year of 2012 and applied for anomaly detection during the period of 21 May 2014 to 21 May
2015. The fault free data of the calendar year 2013 is used as test data to check whether the
model gives false alarms. The output is presented for both the gear bearing and the gearbox
lubrication oil models.

The residuals of bearing and oil temperature of gearbox averaged over 10 models for the
year 2013 when the turbine was operating normally is presented in Figure 5.1 and 5.2. In
this case, it is observed that the residual temperature is always below +3∘𝐶 suggesting that
the turbine is in a healthy state.

Figure 5.1: Gear bearing residual temperature for a healthy turbine.

The residuals of bearing and oil temperature of gearbox averaged over 10 models for the
year 2014-15 when the turbine was operating abnormally is presented in Figure 5.3 and 5.4.
In this case, it can be observed that there are instances when the residual temperature is
above +3∘𝐶 suggesting that the turbine is operating in a faulty state. The first alarm in the
gear bearing and gearbox oil temperature model occurs on 21 October 2014 and 5 November
2014 respectively, roughly around 7 months before bearing replacements. According to CMS
vibration analysis reports, an alarm of severity level 3 on a fault in the planetary stage was
received on 11th July 2014. No vibration analysis report of the high speed shaft bearings
was available.

The input and the output parameters for the turbine is shown in Figure B.1 and B.2. It can
be observed that the input and output parameters for the month of September and October,
when the anomaly was detected are within the limits of the data provided to the ANN model
during the training process. Therefore, it can be inferred that the anomaly detected is due to
abnormal behaviour of the turbine gearbox.
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Figure 5.2: Gearbox oil residual temperature for a healthy turbine.

Physics of failure model output: A boxplot representing turbine 48 against the rest of
the fleet with respect to damage operating conditions as described in Section 3.10 is shown
in Figure 5.5. The red points represent the position of turbine - 48 with respect to 60 wind
turbines present in the wind farm. Turbine 48 has relatively experienced more number of
braking events at high wind speeds and rated power, and also has operated for a longer
periods of time at low load and lambda value with respect to the entire fleet. This signifies
that the failed turbine was operating at a high risk of failure before breakdown based on its
operating conditions. The input and output SCADA parameters used for anomaly detection
is presented in Appendix B.
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Figure 5.3: Gear bearing residual temperature for a faulty turbine.

Figure 5.4: Gearbox oil residual temperature for a faulty turbine.
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Figure 5.5: Turbine 48 - HSS bearing axial cracking
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5.2.2. Turbine - 23
The high-speed shaft and the bearings of the Turbine - 23 failed on 19th March 2013.

There were axial hairline cracks observed in the inner ring of the tapered roller bearings. The
ANN model was trained on data from the year of 2010 and applied for anomaly detection
from June 2012 to March 2013. The fault-free data of the calendar year 2011 was used as
test data to check whether the model gives false alarms. The output is presented for both
the gear bearing and the gearbox lubrication oil models.

Figure 5.6: Gear bearing residual temperature for a healthy turbine - Year 2011.

Figure 5.7: Gearbox oil residual temperature for a healthy turbine - Year 2011.
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The figures 5.6 and 5.7 shows the residual temperatures for periods when the turbine
was operating normally. The residual is always below +3∘𝐶. Figures 5.8 and 5.9 shows the
residuals for period before the failure. The first alarm in both the bearing and oil temperature
model occurs on 31st October 2012, about 5 months before the replacement. There is an
increase in the frequency of alarms before the eventual failure of the bearings. An alarm of
severity level 3 and severity level 2 were received on 21st December 2012 and 4th February
2013 respectively from the vibration monitoring systems. The vibration analysis of the high
speed shaft bearing is shown in Figure B.6. The trend of vibration analysis complements the
temperature based model. Hence, it is safe to say that the performance of the ANN model is
on par with the much more evolved vibration analysis techniques, in some cases even better.

Figure 5.8: Gear bearing residual temperature for a faulty turbine.

Physics of failure model output: A boxplot representing turbine 23 against the rest of
the fleet with respect to damage operating conditions as described in Section 3.10 is shown
in Figure 5.10. It is observed that Turbine - 23 has experienced more braking events at high
wind speed when compared to the average of the rest of the fleet. This signifies that the failed
turbine was operating at a high risk of failure on a wind farm level before breakdown based
on its operating conditions.
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Figure 5.9: Gearbox oil residual temperature for a faulty turbine.

Figure 5.10: Turbine 23 - HSS bearing axial cracking
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5.2.3. Turbine - 7
The high speed shaft and the bearings of Turbine - 23 failed on 5th April 2013. There was

spalling observed in the inner ring of the tapered roller bearings. The ANN model was trained
on data from the year of 2010 and applied for anomaly detection from August 2012 to April
2013. The fault free data of the calendar year 2011 - 2012 was used as test data to check
whether the model gives false alarms. The output is presented for both the gear bearing and
the gearbox lubrication oil models.

Figure 5.11: Gear bearing residual temperature for a healthy turbine.

Figure 5.12: Gearbox oil residual temperature for a healthy turbine.
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The figures 5.11 and 5.12 shows the residual temperatures for periods when the turbine
was operating normally, and as observed the residual temperatures is always below +3∘𝐶.

Figure 5.13: Gear bearing residual temperature for a faulty turbine.

Figure 5.14: Gearbox oil residual temperature for a faulty turbine.

The first alarm from the oil temperature model occurs on 2 October 2012, while bearing
temperature model detects an anomaly on 30 October 2012 as shown in Figures 5.13 and
5.14. This is followed by multiple alarms until the failure of the component. There was also
an indication of low oil level in the gearbox in the months of November 2012 to January 2013



80 5. Case Studies

given by SCADA alarms, which could be another reason for multiple alarms given by the oil
temperature model. The vibration monitoring of high-speed shaft bearing is shown in Figure
B.12. There is a rising trend in vibrations from the end of September 2012. A severity 3
alarm was received on 19th September 2012 and severity 2 alarm on 3rd April 2013.

As per inspection reports, based on vibration monitoring system alarms, there was an
inspection done on the gearbox on 10th October 2012, but nothing alarming was found.
It was recommended to keep the turbine under close observation for any further signals
from the vibration monitoring system. As there were no actions taken, the condition of the
bearings continued to deteriorate as seen in both vibration monitoring system and ANN-
based temperature models. Both oil and bearings temperature models send out multiple
alarms before the bearing failure. The ANN models could detect anomaly 6 months before
the component was replaced, almost on par with the vibration monitoring system.

Physics of failure model output: A boxplot representing turbine 7 against the rest of the
fleet with respect to damage operating conditions as described in Section 3.10 is shown in
Figure 5.15. It is observed that Turbine - 7 has experienced more braking events at high wind
speed when compared to the average of the rest of the fleet. Also it was operating at idling
speeds for longer periods as compared to the mean of the rest of the fleet. This signifies
that the failed turbine was operating at a high risk of failure on a wind farm level before
breakdown based on its operating conditions.

Figure 5.15: Turbine 7 - HSS bearing axial cracking
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5.3. Discussion

There is a recurring pattern observed in the physics of failure plots based on operational
statistics for bearings which failed due to White Etching Cracks. In all the 3 case studies
presented in Section 5.2, it is clear that all the failed bearings had experienced higher number
of braking events at rated power, or had more emergency braking events, or was operating at
low rotational speeds for longer duration when compared to the average of the fleet.

It is important to note here that, none of the White Etching cracks occurs due to high
cycle fatigue. It is also clear that the operational data of the turbines whose HSS bearings
failed due to WEC correlate to the various hypothetical failure theories as mentioned in 3.9.1,
especially braking events at rated power and operation at low lambda.

5.4. Damage Risk Assessment

The developed methodology uses the outputs of both physics of failure model and ANN
model to flag anomalies.

Table 5.3: Signals triggered after ANN based temperature model detects anomaly.

Turbine No.
ANN
Model
Alarm

0
RPM

Emergency
Braking

High Speed
Brake

Low
Load

Low
Lambda

Rotor
Starts

7 3 3 3 3 3 3 3

23 3 3 3 3 3 3 3

48 3 7 7 3 3 3 7

2 N.A 3 7 7 3 3 3

Usually an alarm from both ANN based temperature model and PoF model can indicate a
high probability of failure before 3-6 months prior to replacement of the components. It is
important to note here that, damage operating conditions such as Power, Rated rpm, Wind
Speed as defined in section 3.3 are not the root causes of failure. These parameters just
accelerate the time to failure. It could therefore be argued that keeping track of damage
operating conditions, especially high speed braking events, emergency stops, operation at low
load and lambda to assess the risk of damage in high speed shaft of a wind turbine gearbox
might be more helpful.

5.5. Case Study for non HSS bearing failures

In this section a case study to show the effectiveness of the temperature based anomaly
detection model for detecting failure in components other than high speed shaft bearing is
shown. A physics of failure model is not presented here, as only load sharing on the high
speed shaft bearings was modeled for the thesis due to time constraint.

5.5.1. Turbine - 32
The complete gearbox of turbine-32 was replaced on 1st June 2014. The root cause for

failure was reported as micropitting on all the gears and indentations due to those debris on
few bearings. The ANN model was trained on data from June 2012 to June 2013 and applied
for anomaly detection from June 2013 to May 2014. The ANN-based bearing temperature
model was not able to detect any anomaly in the system, but the oil temperature model
gave an alarm on 14th February 2014, approximately 3 months prior to failure as shown
in Figures 5.16 and 5.17 respectively. A severity 3 alarm was raised on 11th March 2014
by the CMS vibration systems and also an increasing trend is visible from November 2013
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as shown in Figure B.9. This case study provides an insight into the limits of the proposed
method. In general, it can be inferred that the CMS can detect those failure modes of the
gearbox that manifest as a change in the behavior of the gearbox bearing and lubrication oil
temperatures.

Figure 5.16: Gear bearing residual temperature for a faulty turbine.

Figure 5.17: Gearbox oil residual temperature for a faulty turbine.
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5.5.2. Turbine - 17
Turbine - 17 is an interesting case study where the real advantage of using a physics of fail-

ure model along with the ANN-based temperature model can be seen. There has never been
any major component replacement in Turbine - 17 since the commencement of its operation.
The ANN model is trained on data of the year 2010 and put for anomaly detection using data
from the year 2012. The average residual output of the bearing and oil temperature models
is shown in Figures 5.18 and 5.19 respectively. The ANN-based models give multiple alarms
between January 2012 to April 2012 and again between October 2012 to December 2012.

During the period when the residual temperature is greater than +3∘𝐶, there was multiple
low oil level alerts recorded in the SCADA logs. Due to this alert, it is highly likely to have
an increase in bearing temperature due to a lower amount to lubricant present for normal
heat conduction. The turbine was serviced once in March, but the problem was not fixed.
After the corrective maintenance intervention, the problem was not fixed as there were more
alerts in the month of April as well. This can be seen the residual temperature plots as well.
Another service was carried out in the month of May. This intervention fixed the problem to a
certain extent, and this can also be seen in the residual temperature plots as well where the
residual is always below +3∘𝐶. Low oil level alerts starts to resurface again from the end of
October 2012, and the residual temperature thus exceeds +3∘𝐶 at the same time. Meanwhile,
the physics of failure model in Figure 5.20 shows that turbine 17 is operating at low risk of
failure as all the damage operating conditions lie below the 75th percentile.

This is one of the limitations of just utilizing temperature based ANN models for monitor-
ing the condition of gearbox. As these models are just based on raw measurement of the
temperature, it is highly likely to give false alarms, as in an alarm could be triggered due to a
problem in the main oil system as observed in this case. However, from PoF model it is clear
that the gearbox was under low risk of failure. Hence, from outputs of both the ANN and PoF
model, it is can be ascertained that there was a malfunction in a different component rather
than in the gearbox.

Figure 5.18: Gear bearing residual temperature for a faulty turbine.
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Figure 5.19: Gearbox oil residual temperature for a faulty turbine.

Figure 5.20: Turbine 17 - No Failure



6
Conclusions and Future Work

In this chapter, the main contributions and findings are discussed. Later, some recom-
mendations for the future work is given. The main focus of the thesis was to investigate the
use of operational SCADA data for effective condition monitoring of wind turbine gearbox.
After literature study, two main goals were identified -

1. Investigate the correlation between operational data and observed failures on a wind
farm level.

2. Develop algorithms for automatic fault detection in gearbox based on residual temper-
atures using recurrent neural networks and physics of failure techniques.

6.1. Using PoF on a wind farm level to improve condition monitor-
ing and risk assessment

The first objective of the thesis was to devise a method of using historical operational data
to assess the risk of failure in a turbine gearbox on a wind farm level. An extension to the
Physics of Failure methodology was proposed to correlate the failures observed to the damage
operating conditions using simple statistics. Two separate studies were conducted depending
on the mode and location of failure. First a general approach to correlate failures in low
speed and intermediate stage with damage operating conditions was carried out. Second,
to correlate unexplained White Etching Cracks observed in high-speed stage bearings with
newly proposed damage operating conditions taking into account load sharing of bearings in
HSS, and lubrication parameters. The answer to the first research question as discussed in
Section 2.9.

Can a correlation be deduced betweenWhite Etching Cracks and hypothetical failure theories
using SCADA data and Physics of Failure technique?

Causes of White Etching Cracks based on SCADA Data: Based on the observations on
a wind farm level, there was a strong correlation found between White Etching crack failures
as observed on high speed shaft bearings and the following damage operating conditions1 -

• Higher number of braking events at high wind speeds and rated power.

• Higher number of emergency brake applications.

• Operating at loads and lambda below minimum requisite for longer periods.

• Higher number of rotor start-stop cycles.
1Failed turbine was compared against rest of the fleet consisting of 60 wind turbines.
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It is observed that all the HSS bearings that failed due to WEC belonged in the higher risk
region, however, not all the bearings in the high risk region failed. While statistical plots do
limit the generalizability of the observations, this approach provides new insight into WEC
failures based on field data.

Apart fromWECs, the correlation between other modes of failure (pitting, fracture) observed
in low speed & intermediate stages and damage operating conditions were also evaluated. It
was found that there was no general or consistent link between failures and high risk region.
Some identified damage operating conditions did have a moderate correlation and could help
identify gear and bearing damage in low speed and intermediate stages - longer standstill
periods which leads to micropitting, number of emergency brake events and number of rotor
start-stop cycles. None of the failures observed in the gearbox were due to high cycle fatigue.
Also, few damage operating conditions considered such as total yaw movement and variation
of mean bearing temperature have no consistent correlation to any failures observed. It is
important to note here that the study was limited to data from one wind farm. The exploration
of condition monitoring approaches with comparisons within the wind farm showed that this
approach might significantly improve the reliability of monitoring when used alongside with
ANN-based monitoring of temperatures and vibration monitoring systems. This method can
also help in root cause analysis as operational history of the failed component can be better
understood.

6.2. RNN model for temperature based anomaly detection

The second objective of this thesis work was to develop a temperature-based anomaly de-
tection model based on recurrent neural network. Firstly, the raw SCADA data was cleaned
making use of 3 filters - General filter, Cluster filter, and missing data filter. A GRU based
model with two hidden layers provided the least mean squared error loss (0.1464∘𝐶) com-
pared to other models based on LSTM and NARX. The GRU model was trained on normal
behavior data to predict gear bearing and gearbox oil temperature. An anomaly detection
method utilizing the moving average over 1 day of the residual temperature measurement was
presented. The ANN condition monitoring model was able to detect anomalies 3-6 months
before the failure depending on the severity of the damage, providing ample opportunity for
condition-based preventive maintenance planning. In one of the case study however, the
identification of the abnormality was ambiguous. A case study (Turbine-17) is shown where
the importance of utilizing both PoF and ANN based models to ascertain the condition of a
gearbox. Finally, the second research question can be answered -

Is it possible to develop a robust condition monitoring technique for a wind turbine gearbox
that utilizes both physics of failure model and machine learning techniques?

It was observed that making using of both PoF and RNN models for failure detection in
gearboxes outperforms pure data-driven solutions. The number of true positives, i.e., the
percentage of actual failures detected correctly is much higher when these two techniques
are combined.

One of the limitation of this study is lack of edge cases where both the ANN and PoF fails
to predict failures or outputs false positives.

6.3. Future Work

The future development of the concepts for condition monitoring presented in this thesis
can be divided into two areas of application: physics of failure models and the ANN based
models. A small section on future work for wind turbines operations team is also included.
A few ideas for future work in each area are presented in the following sections -
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6.3.1. Physics of failure model

The following items could be explored or implemented to improve the existing model.

• The load sharing and elastohydrodynamic lubricant parameters of the low speed and
intermediate stages can be used for more robust condition monitoring of all gearbox
components.

• Additional damage-inducing parameters like turbulence intensity and number of grid
loss events could be included in PoF models to check if they have any correlation to
gearbox failures.

• Ideally it would be preferable to count all braking events by classifying them under
different power bins, since braking at higher power induces hgher load and torque re-
versals on the gearbox.

• Sensitivity analysis: In this thesis, only a correlation between the damage operating
conditions and observed gearbox failures is presented. Carrying out a sensitivity study
of these damage operating conditions and observed failures would be more insightful
for the operators and can be used to accurately predict failures.

• Hybrid prognosis: A hybrid prognosis framework can be developed where an ANNmodel
is used for diagnosis and a physics of failure model could be used for estimating the
remaining useful life of the component under study. The remaining useful lifetime of
the gearbox components can be estimated with the availability of high-frequency SCADA
data, which can aid in the calculation of loads during non-transient events like braking,
sudden-gusts, and so on.

Figure 6.1: Framework for hybrid prognosis.

6.3.2. ANN based condition monitoring
• Bayesian hyperparameter optimization could be explored for searching more efficient
and better hyperparameters to improve the performance of the neural network.
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• Distances measures between the ANN predicted and actual temperatures, such as
Euclidean, Minkowski, Mahalanobis could be further used to improve failure detection
capabilities as discussed by Jannis Tautz-Weinert [44].

• Autoencoders: The main limitation of the present models is that different networks
have to be developed to monitor different temperatures in the turbine. Autoencoders
are a type of ANN that “attempts” to reconstruct its inputs. The reconstruction error
can be used to flag anomalies. All the temperatures signals could be monitored with
just one model.

6.3.3. Engineering recommendations

In this section, some recommendations which are valuable for wind farm owners such as
Eneco is presented. A real-time operational tool can be developed for the use of wind turbine
operators. For anomaly detection, a machine learning pipeline could be created with the
proposed model, where the real-time SCADA data is used to ascertain the condition of wind
turbines. Alongside, physics of failure models could run in the background. Most of the
operators on-field might not be able to understand the complexities of the proposed model.
Hence, it would be more useful to make attractive and simple dashboards, where the turbines
at high risk of failure could be updated regularly based on the combined outputs of ANN and
PoF based models.



Bibliography
[1] World wind energy association, wind power capacity worldwide reaches 597 gw,

50.1 gw added in 2018. [Online]. Available: https://wwindea.org/blog/2019/02/25/
wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018/

[2] C. Röckmann, S. Lagerveld, and J. Stavenuiter, Operation and Maintenance Costs of
Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea, 04 2017,
pp. 97–113.

[3] M. D. Reder, E. Gonzalez, and J. J. Melero, “Wind turbine failures-tackling current
problems in failure data analysis,” in Journal of Physics: Conference Series, vol. 753,
no. 7. IOP Publishing, 2016, p. 072027.

[4] S. Pfaffel, S. Faulstich, and K. Rohrig, “Performance and reliability of wind
turbines: A review,” Energies, vol. 10, no. 11, 2017. [Online]. Available: https:
//www.mdpi.com/1996-1073/10/11/1904

[5] P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui, T. A. Tameghe, and
G. Ekemb, “Wind turbine condition monitoring: State-of-the-art review, new trends,
and future challenges,” Energies, vol. 7, no. 4, pp. 2595–2630, 2014. [Online].
Available: https://www.mdpi.com/1996-1073/7/4/2595

[6] D. An, N. H. Kim, and J. H. Choi, “Practical options for selecting data-driven or physics-
based prognostics algorithms with reviews,” Rel. Eng. & Sys. Safety, vol. 133, pp. 223–
236, 2015.

[7] N. M. Vichare and M. G. Pecht, “Prognostics and health management of electronics,”
IEEE Transactions on Components and Packaging Technologies, vol. 29, no. 1, pp. 222–
229, 2006.

[8] E. J. Alvarez and A. P. Ribaric, “An improved-accuracy method for fatigue load analysis
of wind turbine gearbox based on scada,” Renewable Energy, vol. 115, p. 391–399, 2018.

[9] T. Wang, “Trajectory similarity based prediction for remaining useful life estimation,”
PhD Thesis, University of Cincinnati, 2010.

[10] C. S. Gray and S. J. Watson, “Physics of failure approach to wind turbine condition
based maintenance,” Wind Energy, vol. 13, no. 5, pp. 395–405, 2010. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.360

[11] S. Watson, I. Kennedy, and C. S. Gray, “The use of physics of failure modelling in wind
turbine condition monitoring,” EWEA Annual Conference, pp. 309–312, 2011.

[12] Y. Qiu, L. Chen, Y. Feng, and Y. Xu, “An approach of quantifying gear fatigue life for
wind turbine gearboxes using supervisory control and data acquisition data,” Energies,
vol. 10, no. 8, 2017. [Online]. Available: http://www.mdpi.com/1996-1073/10/8/1084

[13] P. Cambron, A. Tahan, C. Masson, and F. Pelletier, “Bearing temperature
monitoring of a wind turbine using physics-based model,” Journal of Quality in
Maintenance Engineering, vol. 23, no. 4, pp. 479–488, 2017. [Online]. Available:
https://doi.org/10.1108/JQME-06-2016-0028

[14] Y. Feng, Y. Qiu, C. J. Crabtree, H. Long, and P. J. Tavner, “Monitoring wind turbine
gearboxes,” Wind Energy, vol. 16, no. 5, pp. 728–740, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1521

89

https://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018/
https://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018/
https://www.mdpi.com/1996-1073/10/11/1904
https://www.mdpi.com/1996-1073/10/11/1904
https://www.mdpi.com/1996-1073/7/4/2595
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.360
http://www.mdpi.com/1996-1073/10/8/1084
https://doi.org/10.1108/JQME-06-2016-0028
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1521


90 Bibliography

[15] M. Wilkinson, B. Darnell, T. V. Delft, and K. Harman, “Comparison of methods for wind
turbine condition monitoring with scada data,” IET Renewable Power Generation, vol. 8,
no. 4, pp. 390–397, May 2014.

[16] D. Breteler, C. Kaidis, and R. Loendersloot, “Physics based methodology for wind turbine
failure detection , diagnostics & prognostics,” EWEA Annual Conference, 2015.

[17] I. Al-Tubi, H. Long, P. Tavner, B. Shaw, and J. Zhang, “Probabilistic analysis of gear
flank micro-pitting risk in wind turbine gearbox using supervisory control and data
acquisition data,” IET Renewable Power Generation, vol. 9, no. 6, pp. 610–617, 2015.

[18] K. Javed, “A robust & reliable Data-driven prognostics approach based on extreme
learning machine and fuzzy clustering.” Theses, Université de Franche-Comté, Apr.
2014. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01025295

[19] A. Karpatne, W. Watkins, J. S. Read, and V. Kumar, “Physics-guided neural networks
(PGNN): an application in lake temperature modeling,” CoRR, vol. abs/1710.11431,
2017. [Online]. Available: http://arxiv.org/abs/1710.11431

[20] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY, USA: Oxford
University Press, Inc., 1996.

[21] H. Pokharna. For dummies — the introduction to neural net-
works we all need ! (part 1). Accessed: 2019-
07-15. [Online]. Available: https://medium.com/technologymadeeasy/
for-dummies-the-introduction-to-neural-networks-we-all-need-c50f6012d5eb

[22] S. Sharma. Activation functions in neural networks. Ac-
cessed: 2019-07-15. [Online]. Available: https://towardsdatascience.com/
activation-functions-neural-networks-1cbd9f8d91d6

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2017.

[24] E. Cadenas, W. Rivera, R. Campos-Amezcua, and C. Heard, “Wind speed prediction
using a univariate arima model and a multivariate narx model,” Energies, vol. 9, no. 2,
2016. [Online]. Available: http://www.mdpi.com/1996-1073/9/2/109

[25] Z. Boussaada, O. Curea, A. Remaci, H. Camblong, and N. Mrabet Bellaaj, “A
nonlinear autoregressive exogenous (narx) neural network model for the prediction of
the daily direct solar radiation,” Energies, vol. 11, no. 3, 2018. [Online]. Available:
http://www.mdpi.com/1996-1073/11/3/620

[26] Y. LeCun, Y. Bengio, and G. Hinton, Deep Learning. New York, NY, USA: Nature,
2015, vol. 521. [Online]. Available: http://dx.doi.org/10.1038/nature14539

[27] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceed-
ings of the IEEE, vol. 78, no. 10, pp. 1550–1560, Oct 1990.

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166,
March 1994.

[29] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ser. ICML’13. JMLR.org, 2013,
pp. III–1310–III–1318. [Online]. Available: http://dl.acm.org/citation.cfm?id=3042817.
3043083

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available: https://doi.org/10.1162/neco.
1997.9.8.1735

https://tel.archives-ouvertes.fr/tel-01025295
http://arxiv.org/abs/1710.11431
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-c50f6012d5eb
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-c50f6012d5eb
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
http://www.mdpi.com/1996-1073/9/2/109
http://www.mdpi.com/1996-1073/11/3/620
http://dx.doi.org/10.1038/nature14539
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


Bibliography 91

[31] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A search space odyssey,” CoRR, vol. abs/1503.04069, 2015. [Online]. Available:
http://arxiv.org/abs/1503.04069

[32] C. Olah. Understanding lstm networks. Accessed: 2019-04-15. [Online]. Available:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[33] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of neural
machine translation: Encoder-decoder approaches,” CoRR, vol. abs/1409.1259, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1259

[34] M. C. Garcia, M. A. Sanz-Bobi, and J. del Pico, “Simap: Intelligent system for predictive
maintenance: Application to the health condition monitoring of a windturbine gearbox,”
Computers in Industry, vol. 57, pp. 552–568, 2006.

[35] A. Zaher, S. McArthur, D. Infield, and Y. Patel, “Online wind turbine fault detection
through automated scada data analysis,” Wind Energy, vol. 12, no. 6, pp. 574–593,
2009. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.319

[36] A. Kusiak and A. Verma, “Analyzing bearing faults in wind turbines: A data-mining
approach,” Renewable Energy, vol. 48, no. C, pp. 110–116, 2012. [Online]. Available:
https://ideas.repec.org/a/eee/renene/v48y2012icp110-116.html

[37] Z.-Y. Zhang and K.-S. Wang, “Wind turbine fault detection based on scada data
analysis using ann,” Advances in Manufacturing, vol. 2, no. 1, pp. 70–78, Mar 2014.
[Online]. Available: https://doi.org/10.1007/s40436-014-0061-6

[38] P. Bangalore and L. B. Tjernberg, “An artificial neural network approach for early fault
detection of gearbox bearings,” IEEE Transactions on Smart Grid, vol. 6, pp. 980–987,
2015.

[39] P. Bangalore, S. Letzgus, D. Karlsson, and M. Patriksson, “An artificial neural
network-based condition monitoring method for wind turbines, with application to the
monitoring of the gearbox,” Wind Energy, vol. 20, no. 8, pp. 1421–1438, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2102

[40] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory networks for
anomaly detection in time series,” in ESANN, 2015.

[41] A. Nanduri and L. Sherry, “Anomaly detection in aircraft data using recurrent neural
networks (rnn),” in 2016 Integrated Communications Navigation and Surveillance (ICNS),
April 2016, pp. 5C2–1–5C2–8.

[42] J. Fu, J. Chu, P. Guo, and C. Zhenyu, “Condition monitoring of wind turbine gearbox
bearing based on deep learning model,” IEEE Access, vol. PP, pp. 1–1, 04 2019.

[43] G. Helbing and M. Ritter, “Deep Learning for fault detection in wind turbines,”
Renewable and Sustainable Energy Reviews, vol. 98, no. C, pp. 189–198, 2018.
[Online]. Available: https://ideas.repec.org/a/eee/rensus/v98y2018icp189-198.html

[44] J. Tautz-Weinert, “Improved wind turbine monitoring using operational data,”
Ph.D. dissertation, Loughborough University, 2018. [Online]. Available: https:
//dspace.lboro.ac.uk/2134/36199

[45] E. Gonzalez, J. Tautz-Weinert, J. J. Melero, and S. J. Watson, “Statistical evaluation
of SCADA data for wind turbine condition monitoring and farm assessment,” Journal
of Physics: Conference Series, vol. 1037, p. 032038, June 2018. [Online]. Available:
https://doi.org/10.1088%2F1742-6596%2F1037%2F3%2F032038

[46] S. Shanbr, F. Elasha, M. Elforjani, and J. C. Teixeira, “Bearing fault detection within
wind turbine gearbox,” 2017 International Conference on Sensing, Diagnostics, Prognos-
tics, and Control (SDPC), pp. 565–570, 2017.

http://arxiv.org/abs/1503.04069
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1409.1259
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.319
https://ideas.repec.org/a/eee/renene/v48y2012icp110-116.html
https://doi.org/10.1007/s40436-014-0061-6
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2102
https://ideas.repec.org/a/eee/rensus/v98y2018icp189-198.html
https://dspace.lboro.ac.uk/2134/36199
https://dspace.lboro.ac.uk/2134/36199
https://doi.org/10.1088%2F1742-6596%2F1037%2F3%2F032038


92 Bibliography

[47] A. R. Nejad, Z. Gao, and T. Moan, “Fatigue reliability-based inspection and maintenance
planning of gearbox components in wind turbine drivetrains,” Energy Procedia, vol. 53,
p. 248–257, 12 2014.

[48] S. Sheng, M. McDade, and R. Errichello, “Wind turbine gearbox failure modes
- a brief (presentation),” 04 2019, accessed: 2019-04-29. [Online]. Avail-
able: https://www.researchgate.net/publication/255248159_Wind_Turbine_Gearbox_
Failure_Modes_-_A_Brief_Presentation

[49] A. Ruellan Du Crehu, “Tribological analysis of White Etching Crack (WEC) failures
in rolling element bearings,” Theses, INSA de Lyon, Dec. 2014. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01153235

[50] “ISO 15243:2017 Rolling bearings – Damage and failures – Terms, characteristics
and causes,” International Organization for Standardization, Standard, 2017. [Online].
Available: https://www.iso.org/standard/59619.html

[51] SKFWind. Bearing the burden- the leading causes of wind turbine bearing failures.
Accessed: 2019-04-30. [Online]. Available: http://windfarmmanagement.skf.com/
bearing-the-burden/

[52] “Bearing failure modes,” NSK Bearing Ltd, Report, 2017, accessed: 2019-04-
30. [Online]. Available: https://www.nskeurope.com/en/services/troubleshooting/
damage-by-type/flaking.html

[53] Y. Guo and J. Keller, “Investigation of high-speed shaft bearing loads in wind turbine
gearboxes through dynamometer testing,” Wind Energy, vol. 21, no. 2, pp. 139–150,
2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2150

[54] Y. Guo, J. Keller, L. Sethuraman, and B. McNiff, “High-speed shaft bearing loads testing
and modeling in the nrel gearbox reliability collaborative,” 03 2015.

[55] SKF, “Calculating the radial load acting on matched bearings,” accessed: 2019-04-30.
[Online]. Available: https://www.skf.com/uk/products/bearings-units-housings/
roller-bearings/tapered-roller-bearings/matched-tapered-roller-bearings/loads/
calculating-radial-load-on-matched-bearings/index.html

[56] “ISO 281:2007 Rolling bearings – Dynamic load ratings and rating life,” International
Organization for Standardization, Standard, 2007. [Online]. Available: https:
//www.iso.org/standard/38102.html

[57] “ASTM D341 - 17 Standard Practice for Viscosity-Temperature Charts for Liquid
Petroleum Products,” American Society for Testing and Materials, Standard, 2017.
[Online]. Available: https://www.astm.org/Standards/D341.htm

[58] SKF, “Life modification factor, askf,” accessed: 2019-04-30. [Online].
Available: https://www.skf.com/group/products/bearings-units-housings/
principles/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/
life-modification-factor/index.html

[59] M.-H. Evans, “An updated review: white etching cracks (wecs) and axial cracks in wind
turbine gearbox bearings,” Materials Science and Technology, vol. 32, no. 11, pp. 1133–
1169, 2016.

[60] P. Lynwander, Gear Drive Systems: Design and Application, 01 2019.

[61] J. R. Barber, Hertzian Contact. Cham: Springer International Publishing, 2018, pp.
29–41.

[62] J. Gegner, “Tribological aspects of rolling bearing failures,” in Tribology-lubricants and
lubrication. IntechOpen, 2011.

https://www.researchgate.net/publication/255248159_Wind_Turbine_Gearbox_Failure_Modes_-_A_Brief_Presentation
https://www.researchgate.net/publication/255248159_Wind_Turbine_Gearbox_Failure_Modes_-_A_Brief_Presentation
https://tel.archives-ouvertes.fr/tel-01153235
https://www.iso.org/standard/59619.html
http://windfarmmanagement.skf.com/bearing-the-burden/
http://windfarmmanagement.skf.com/bearing-the-burden/
https://www.nskeurope.com/en/services/troubleshooting/damage-by-type/flaking.html
https://www.nskeurope.com/en/services/troubleshooting/damage-by-type/flaking.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2150
https://www.skf.com/uk/products/bearings-units-housings/roller-bearings/tapered-roller-bearings/matched-tapered-roller-bearings/loads/calculating-radial-load-on-matched-bearings/index.html
https://www.skf.com/uk/products/bearings-units-housings/roller-bearings/tapered-roller-bearings/matched-tapered-roller-bearings/loads/calculating-radial-load-on-matched-bearings/index.html
https://www.skf.com/uk/products/bearings-units-housings/roller-bearings/tapered-roller-bearings/matched-tapered-roller-bearings/loads/calculating-radial-load-on-matched-bearings/index.html
https://www.iso.org/standard/38102.html
https://www.iso.org/standard/38102.html
https://www.astm.org/Standards/D341.htm
https://www.skf.com/group/products/bearings-units-housings/principles/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/life-modification-factor/index.html
https://www.skf.com/group/products/bearings-units-housings/principles/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/life-modification-factor/index.html
https://www.skf.com/group/products/bearings-units-housings/principles/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/life-modification-factor/index.html


Bibliography 93

[63] “Rolling Bearing Lubrication,” Schaeffler, FAG Kugelfischer Georg Schäfer AG, 2002,
accessed: 2019-04-30.

[64] D. Dowson, “Elastohydrodynamic and micro-elastohydrodynamic lubrication,” Wear,
vol. 190, no. 2, pp. 125 – 138, 1995.

[65] “ISO/TR 1281-2:2008 Rolling bearings – Explanatory notes on ISO 281 – Part 2:
Modified rating life calculation, based on a systems approach to fatigue stresses,
url = https://www.iso.org/standard/40622.html,” International Organization for
Standardization, Standard, 2008. [Online]. Available: https://www.iso.org/standard/
40622.html

[66] K. Baalmann, “Gleichung für die sollviskosität nach din iso 281.” Tribologie und
Schmierungstechnik., 1994.

[67] D. Gonçalves, A. Vieira, A. Carneiro, A. V. Campos, and J. H. O. Seabra, “Film
thickness and friction relationship in grease lubricated rough contacts,” Lubricants,
vol. 5, no. 3, 2017. [Online]. Available: http://www.mdpi.com/2075-4442/5/3/34

[68] SKF, “Bearing friction, power loss and starting torque,” ac-
cessed: 2019-05-03. [Online]. Available: https://www.skf.com/
group/products/bearings-units-housings/principles/bearing-selection-process/
operating-temperature-and-speed/friction-powerloss-startingtorque/index.html

[69] K. Stadler and A. Stubenrauch, “Premature bearing failures in wind gear-
boxes and white etching cracks,” SKF business and technology maga-
zine (evolution.skf.com)., 2013. [Online]. Available: http://evolution.skf.com/
premature-bearing-failures-in-wind-gearboxes-and-white-etching-cracks-wec/

[70] A. Ruellan, J. Cavoret, F. Ville, X. Kleber, and B. Liatard, “Understanding white etching
cracks in rolling element bearings: State of art and multiple driver transposition on
a twin-disc machine,” Proceedings of the Institution of Mechanical Engineers, Part J:
Journal of Engineering Tribology, vol. 231, no. 2, pp. 203–220, 2017. [Online]. Available:
https://doi.org/10.1177/1350650116648058

[71] J. Lai and K. Stadler, “Investigation on the mechanisms of white etching crack (wec) for-
mation in rolling contact fatigue and identification of a root cause for bearing premature
failure,” Wear, vol. 364-365, pp. 244–256, 10 2016.

[72] M.-H. Evans, A. Richardson, L. Wang, and R. Wood, “Serial sectioning investigation of
butterfly and white etching crack (wec) formation in wind turbine gearbox bearings,”
Wear, vol. 302, no. 1-2, pp. 1573–1582, 2013.

[73] A. M. Diederichs, S. Barteldes, A. Schwedt, J. Mayer, and W. Holweger, “Study of sub-
surface initiation mechanism for white etching crack formation,” Materials Science and
Technology, vol. 32, no. 11, pp. 1170–1178, 2016.

[74] T. Bruce, H. Long, and R. Dwyer-Joyce, “Threshold maps for inclusion-initiated micro-
cracks and white etching areas in bearing steel: the role of impact loading and surface
sliding,” Tribology Letters, vol. 66, no. 3, p. 111, 2018.

[75] S. Ooi, A. Gola, R. Vegter, P. Yan, and K. Stadler, “Evolution of white-etching cracks
and associated microstructural alterations during bearing tests,” Materials Science and
Technology, vol. 33, no. 14, pp. 1657–1666, 2017.

[76] F. Chollet, Deep Learning with Python, 1st ed. Greenwich, CT, USA: Manning Publica-
tions Co., 2017.

[77] Z. Cui, R. Ke, and Y. Wang, “Deep bidirectional and unidirectional LSTM recurrent
neural network for network-wide traffic speed prediction,” CoRR, vol. abs/1801.02143,
2018. [Online]. Available: http://arxiv.org/abs/1801.02143

https://www.iso.org/standard/40622.html
https://www.iso.org/standard/40622.html
http://www.mdpi.com/2075-4442/5/3/34
https://www.skf.com/group/products/bearings-units-housings/principles/bearing-selection-process/operating-temperature-and-speed/friction-powerloss-startingtorque/index.html
https://www.skf.com/group/products/bearings-units-housings/principles/bearing-selection-process/operating-temperature-and-speed/friction-powerloss-startingtorque/index.html
https://www.skf.com/group/products/bearings-units-housings/principles/bearing-selection-process/operating-temperature-and-speed/friction-powerloss-startingtorque/index.html
http://evolution.skf.com/premature-bearing-failures-in-wind-gearboxes-and-white-etching-cracks-wec/
http://evolution.skf.com/premature-bearing-failures-in-wind-gearboxes-and-white-etching-cracks-wec/
https://doi.org/10.1177/1350650116648058
http://arxiv.org/abs/1801.02143


94 Bibliography

[78] F. Chollet et al., “Keras,” https://keras.io, 2015.

[79] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” vol. 15,
pp. 315–323, 11–13 Apr 2011. [Online]. Available: http://proceedings.mlr.press/v15/
glorot11a.html

[80] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neu-
ral networks,” in Proceedings of the thirteenth international conference on artificial intel-
ligence and statistics, 2010, pp. 249–256.

[81] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2015.

[82] DNV-GL, “Assess and improve wind farm profitability using windgemini,” accessed:
2019-07-15. [Online]. Available: https://www.dnvgl.com/energy/events/registration/
assess-and-improve-wind-farm-profitability.html?utm_campaign=EN_ADV_
NEMEA_19Q1_WEBI_WIND_WindGEMINI_webinar_drop3_thankyou&utm_medium=
email&utm_source=Eloqua&elqTrackId=98dc7479aa1b455ab4ab3d4c31b6e2d1&elq=
800416452e4b4cf79d4b35e3c055f187&elqaid=10678&elqat=1&elqCampaignId=6342

https://keras.io
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://www.dnvgl.com/energy/events/registration/assess-and-improve-wind-farm-profitability.html?utm_campaign=EN_ADV_NEMEA_19Q1_WEBI_WIND_WindGEMINI_webinar_drop3_thankyou&utm_medium=email&utm_source=Eloqua&elqTrackId=98dc7479aa1b455ab4ab3d4c31b6e2d1&elq=800416452e4b4cf79d4b35e3c055f187&elqaid=10678&elqat=1&elqCampaignId=6342
https://www.dnvgl.com/energy/events/registration/assess-and-improve-wind-farm-profitability.html?utm_campaign=EN_ADV_NEMEA_19Q1_WEBI_WIND_WindGEMINI_webinar_drop3_thankyou&utm_medium=email&utm_source=Eloqua&elqTrackId=98dc7479aa1b455ab4ab3d4c31b6e2d1&elq=800416452e4b4cf79d4b35e3c055f187&elqaid=10678&elqat=1&elqCampaignId=6342
https://www.dnvgl.com/energy/events/registration/assess-and-improve-wind-farm-profitability.html?utm_campaign=EN_ADV_NEMEA_19Q1_WEBI_WIND_WindGEMINI_webinar_drop3_thankyou&utm_medium=email&utm_source=Eloqua&elqTrackId=98dc7479aa1b455ab4ab3d4c31b6e2d1&elq=800416452e4b4cf79d4b35e3c055f187&elqaid=10678&elqat=1&elqCampaignId=6342
https://www.dnvgl.com/energy/events/registration/assess-and-improve-wind-farm-profitability.html?utm_campaign=EN_ADV_NEMEA_19Q1_WEBI_WIND_WindGEMINI_webinar_drop3_thankyou&utm_medium=email&utm_source=Eloqua&elqTrackId=98dc7479aa1b455ab4ab3d4c31b6e2d1&elq=800416452e4b4cf79d4b35e3c055f187&elqaid=10678&elqat=1&elqCampaignId=6342
https://www.dnvgl.com/energy/events/registration/assess-and-improve-wind-farm-profitability.html?utm_campaign=EN_ADV_NEMEA_19Q1_WEBI_WIND_WindGEMINI_webinar_drop3_thankyou&utm_medium=email&utm_source=Eloqua&elqTrackId=98dc7479aa1b455ab4ab3d4c31b6e2d1&elq=800416452e4b4cf79d4b35e3c055f187&elqaid=10678&elqat=1&elqCampaignId=6342


A
Bearing Design and Lubricant Properties
The high speed shaft is supported by 3 bearings. A cylindrical roller bearing and a pair

of tapered roller bearings. The mechanical properties of the bearings are tabulated in Table
A.1. Similarly, the typical properties of the lubricant used in the gearboxes is tabulated in
Table A.2.

Table A.1: Bearing design and mechanical properties.

Bearing Cylindrical Roller
Bearing

Upwind Tapered
Roller Bearing

Downwind Tapered
Roller Bearing

Dynamic load rating [kN] 1060 455 782
Static load rating [kN] 1250 560 1140
Fatigue load limit [kN] 137 57 112
Inner diameter [mm] 130 150 150
Outer diameter [mm] 280 270 270
Width [mm] 93 49 77

Table A.2: Lubricant properties.

Lubricant Mobilgear SHC
XMP Series 320

ISO Viscosity Grade 320
Kinematic viscosity at 40∘C 335 cSt
Kinematic viscosity at 100∘C 38.3 cSt
Viscosity Index, ASTM D 2270 164
Specific Gravity @15.6∘C kg/l, ASTM D 4052 0.86
Flash Point 242 ºC
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B
Supporting Plots

B.1. Input/Output parameters for RNN models

All the input and output parameters used for anomaly detection in Chapter 5 is included in
this section. It includes all SCADA data one year prior to replacement. Also, CMS vibration
analysis report prior to component failure is also presented.

B.1.1. Turbine 48

Figure B.1: Input Parameters for Turbine 48.
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Figure B.2: Output Parameters for Turbine 48.

Figure B.3: Vibration analysis of planetary stage gearbox before replacement of Turbine 48.
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B.1.2. Turbine 23

Figure B.4: Input Parameters for Turbine 23.

Figure B.5: Output Parameters for Turbine 23.
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Figure B.6: Vibration analysis of high speed bearing before replacement - Turbine 23.

B.1.3. Turbine 32

Figure B.7: Input Parameters for Turbine 32.
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Figure B.8: Output Parameters for Turbine 32.

Figure B.9: Vibration analysis of high speed bearing before replacement - Turbine 32.
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B.1.4. Turbine 7

Figure B.10: Input Parameters for Turbine 7.

Figure B.11: Output Parameters for Turbine 7.
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Figure B.12: Vibration analysis of high speed bearing before replacement of Turbine 7.
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B.2. ANN Model Predictions

Figure B.13: Normal behaviour predictions of gear bearing temperature.

Figure B.14: Anomalous behaviour of gear bearing temperature.
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Figure B.15: Normal behaviour predictions of gearbox oil temperature.

Figure B.16: Anomalous behaviour of gearbox oil temperature.
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