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Abstract The coupling of finite element simulations to
mathematical optimization techniques has contributed sig-
nificantly to product improvements and cost reductions in
the metal forming industries. The next challenge is to bridge
the gap between deterministic optimization techniques and
the industrial need for robustness. This paper introduces a
generally applicable strategy for modeling and efficiently
solving robust optimization problems based on time con-
suming simulations. Noise variables and their effect on the
responses are taken into account explicitly. The robust
optimization strategy consists of four main stages: model-
ing, sensitivity analysis, robust optimization and sequential
robust optimization. Use is made of a metamodel-based
optimization approach to couple the computationally expen-
sive finite element simulations with the robust optimiza-
tion procedure. The initial metamodel approximation will
only serve to find a first estimate of the robust optimum.
Sequential optimization steps are subsequently applied to
efficiently increase the accuracy of the response prediction
at regions of interest containing the optimal robust design.
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The applicability of the proposed robust optimization strat-
egy is demonstrated by the sequential robust optimization
of an analytical test function and an industrial V-bending
process. For the industrial application, several production
trial runs have been performed to investigate and validate the
robustness of the production process. For both applications,
it is shown that the robust optimization strategy accounts
for the effect of different sources of uncertainty onto the
process responses in a very efficient manner. Moreover,
application of the methodology to the industrial V-bending
process results in valuable process insights and an improved
robust process design.

Keywords Metal forming processes · Finite element
method · Optimization · Uncertainty · Robustness ·
Sequential optimization

1 Introduction

Product improvements and cost reductions are vital in an
engineering environment in which the competition increases
continuously. The majority of engineering problems en-
countered in practice, are subject to multiple sources of
uncertainty. When dealing with the numerical optimization
of metal forming processes using computationally expen-
sive Finite Element (FE) simulations, the challenge is to
optimize towards robust metal forming processes. More
specifically, the goal is to improve the quality of a product
or process by limiting the deteriorating effects of uncertain
parameters to an acceptable level.

Neglecting the presence of uncertain parameters will
often lead to a deterministic optimum that lies at the bound-
ary of one or more constraints. This situation is schemati-
cally shown in Fig. 1a in which the objective function f is
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Fig. 1 a Deterministic constrained optimization; b Robustness of a
deterministic constrained optimum where noise is present

minimized subject to the constraint g ≤ 0. It is assumed
here that the design variable can be exactly controlled. Run-
ning the FE simulation for selected values of the design
variables yields one value for each of both responses f
and g.

However, in a real manufacturing environment, the metal
forming process is influenced by uncertain parameters or
noise variables showing randomness and variability. See
e.g. Belur and Grandhi (2004), Hancock et al. (1997) and
Padmanabhan et al. (2007). There are different possibili-
ties to classify uncertainties the designer has to deal with,
see e.g. Beyer and Sendhoff (2007). This paper specifically
considers non-cognitive sources of uncertainty or aleatory
uncertainty (Haldar and Mahadevan 2000; Möller and Beer
2008). These sources of uncertainty are of physical nature.
One can think of the inherent randomness in all physical
observations or statistical uncertainty due to lack of pre-
cise information about the variation. Extending this to metal
forming processes, one can think of changing operating
conditions like the scatter of external loads, changing envi-
ronmental conditions like ambient temperature or variation
of material properties.

Noise variables are stochastic variables that can often
be described using a probability distribution function. The

input variation is translated to the process response (objec-
tive and constraints) which will now also display a proba-
bility distribution instead of just a deterministic value, see
Fig. 1b. Note that half of the response distribution of g vio-
lates the constraint g ≤ 0. Since the constraint represents
a sharp border between acceptable products and waste, any
presence of variation will now lead to a product rejection
rate of approximately 50% in practice.

To avoid such waste, uncertainty has to be taken into
account explicitly in any numerical optimization strategy.
Figure 2 depicts a diagram which characterizes a manufac-
turing process such as a metal forming process. It represents
the schematic relationship between the input of the process
and the response (Yang and El-Haik 2003). The output or
response of the process depends on the design variables x
and noise variables z. The output behavior of the system
can be controlled by the design variables, e.g. process set-
tings, tooling geometry, etc. The noise variables are the
input factors the designer cannot control in an industrial
setting, although these cause response variation.

The implementation of uncertainty in a numerical opti-
mization strategy can be achieved in multiple ways. The
combination of optimization techniques, numerical simu-
lations and uncertainty is often referred to as Optimiza-
tion Under Uncertainty (OUU), see Schuëller and Jensen
(2008). Different approaches are encountered in literature
to account for uncertainty.

A first ad hoc approach is to obtain a reliable optimum by
optimizing towards a point as far away as possible from the
failure constraints. The uncertainties are not accounted for
explicitly in this approach. Instead, it is based on the idea
of maximizing the minimum distance between the optimal
point and failure constraints. This often leads to overde-
signed products and does not offer insight into the effects
of individual uncertainties and the actual margin of safety.

The prevailing models to account for uncertainty in struc-
tural engineering handle noise variables in a probabilistic
way. In the Reliability Based Design Optimization (RBDO)
approach, an optimal solution of a certain objective function
is determined while ensuring a predefined small probability
that a product or process fails. A reliability analysis is per-
formed to determine the probability of failure of a design
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with respect to the probabilistic constraints. Applications
of the RBDO approach in combination with metal forming
processes can be found in Hopperstad et al. (1999), Kleiber
et al. (2002, 2004) and Repalle and Grandhi (2005).

In the Taguchi approach, a product or process is called
robust if it is minimally sensitive to factors causing variabil-
ity (Taguchi 1987). The goal of this design philosophy is to
minimize the variance of the performance and to drive the
mean performance towards a target performance. In contrast
to the RBDO approach, reliability is not included explicitly
since constraints are not formulated in this approach. An
application of the Taguchi approach in the metal forming
industry can be found in Kini (2004). Recently, new devel-
opments of the hybridization of a genetic algorithm with the
Taguchi approach, including design space refinements, are
presented in Yildiz et al. (2007) and Yildiz (2009). In these
works, the hybrid algorithm is applied for efficiently solv-
ing a multi-objective shape design optimization problem of
a vehicle component.

In this paper, the robust optimization approach is applied
which includes both robustness and reliability of the optimal
design. In this approach, an optimal design is characterized
by immunity with respect to uncertainty and satisfaction
of the constraints. Similar to the RBDO approach, uncer-
tainty or noise variables are accounted for in a probabilistic
way. An overview on the most important developments in
the field of robust optimization can be found in Beyer and
Sendhoff (2007) and Park et al. (2006). Applications of the
robust optimization approach in the metal forming industry
can be found in Kang (2005) and Li et al. (2005).

In general, the probabilistic OUU approaches result in
a deeper understanding of the relationship between design
and noise variables with the final part quality. Ultimately,
the goal is to improve the quality of a product or process
by limiting the deteriorating effects of uncertain parameters
to an acceptable level. In many manufacturing settings—
also in the metal forming industry—this goal is achieved
by application of quality procedures like Statistical Pro-
cess Control or SPC (Montgomery 2005) and Design for
Six Sigma or DfSS (Breyfogle 2003). Similar to the prob-
abilistic OUU approaches, the aspects of robustness and
reliability are of fundamental importance in SPC and DfSS.
With much of the design process performed in a numeri-
cal environment, these aspects have to be included in the
numerical design and optimization procedure. However,
taking into account the influence of noise variables comes
at a computational cost since robust optimization is often
much more time-consuming than deterministic optimiza-
tion. This becomes especially problematic in the case of
metal forming processes where computationally expensive
FE simulations are used.

In response to this industrial need, a generally applica-
ble strategy for modeling and sequentially solving robust

optimization problems is proposed. A number of numerical
tools are combined in a framework to efficiently account
for the effect of different sources of uncertainty onto the
process responses, limiting the required number of FE sim-
ulations. First, the concept of robust optimization as applied
in this work is introduced in more detail and the relation
with SPC and DfSS is outlined in Section 2. Hereafter, the
robust optimization strategy is presented in Section 3. To
couple the time-consuming FE simulations with an opti-
mization procedure, an approximate optimization approach
is applied. The objective and constraints are described in
terms of mean values and standard deviations and solved by
a global optimization algorithm. The final part of Section 3
is devoted to an in-depth discussion of a sequential robust
optimization step used to increase the prediction accu-
racy of the objective and constraints at regions of interest
containing the optimal robust design. By means of two
studies, the applicability and efficiency of the strategy is
demonstrated. In the first study (Section 4), the robust opti-
mization strategy is applied to an analytical test function. It
is demonstrated that adding a sequential optimization step
to the robust optimization procedure can further increase
the efficiency of the strategy to accurately determine the
robust optimum. In the second study (Section 5), these
findings are replicated by application of the robust optimiza-
tion strategy to an industrial V-bending process including
experimental validation of the robustness results. Section 6
contains conclusions and provides recommendations for
future research.

2 Optimization towards robust and reliable processes

As presented in Figs. 1 and 2, the presence of noise vari-
ables as input for the process will cause variation in the
responses. Both the noise variables and the responses can be
described by a probability density function. Figure 3 shows
a normally distributed probability density function of a ref-
erence situation with mean μ f and standard deviation σ f .
Also indicated in Fig. 3 are a Lower and Upper Specification
Limit, denoted by LSL and USL respectively.

As mentioned before, process robustness and process
reliability are of fundamental importance in SPC. Refer-
ring to the Taguchi approach, a product or process is called
robust if it is minimally sensitive to factors causing vari-
ability. In other words, the robustness can be increased by
reducing the variability of the response distribution. The
effect of this aspect onto the reference situation is schemat-
ically shown in Fig. 3. However, process robustness does
formally not include the position of the response distri-
bution with respect to the LSL and USL. In other words,
purely minimizing the variability of the response can lead
to a very robust process but with a high scrap rate if the
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response distribution is located outside the specification
limits. Therefore, reliability with respect to the specification
limits has to be included in the optimization procedure.
Referring to the RBDO approach, reliability is related to the
probability that a product or process fails. The probability
of failure equals the area in the tail of the distribution that
is outside the specification limits. To achieve a certain reli-
ability level, the whole of the probability density function
of the response can be shifted until satisfaction of the prob-
abilistic constraints. The violation of the USL can in this
case be compensated by adapting the mean of the response
distribution, see Fig. 3. Another possibility is to choose the
weighted sum of both the mean μ f and standard deviation
σ f of the response distribution as the optimization objec-
tive f . In this case, both the location and the width of the
response distribution are adapted simultaneously. To obtain
a reliable process, the probability of failure of a design has
to be assessed with respect to the constraints g. To reduce
the computational burden associated with the evaluation of
the probabilistic constraints, a simplified moment matching
formulation approach is widely used in literature, see Bonte
(2007), Du and Chen (2000, 2002), Jin et al. (2003) and
Koch et al. (2004). By assuming normally distributed con-
straint responses, the uncertain constraints can be written
as a combination of the mean μg and standard deviation σg.
Together, a robust optimization based problem is formulated
in the form:

find x

min f [μ f (x), σ f (x)] (1)

s.t. LSL ≤ μg ± kσg ≤ USL

Note that using the weighted sum formulation for a con-
straint can be interpreted as a reliability constraint that
ensures a kσ -reliability with respect to a certain LSL and
USL. If g is assumed to be normally distributed, then one
can subsequently calculate the scrap rate. For example, k =
3 stands for a probability of 0.9973 meaning that 99.73%
of the response measurements are within the specification
limits which corresponds to a 3σ -reliability. By choosing
k = 6, one strives for a 6σ -reliability which is the basis of
the very successful DfSS quality procedure.

Solving the robust optimization problem defined in (1)
requires an efficient approach for determining the response
variation and optimal robust design. In this paper, approxi-
mate optimization is applied to couple the time-consuming
FE simulations with an optimization procedure. Section 3
will presents the key elements of the proposed robust opti-
mization strategy.

3 Robust optimization strategy

In this section, a robust optimization strategy is proposed
which is specifically developed for solving optimization
problems including time-consuming FE simulations. The
strategy is an extension of the deterministic Sequential Ap-
proximate Optimization (SAO) algorithm proposed in Bonte
et al. (2008). The robust optimization strategy consists of
the following main stages: modeling, sensitivity analysis,
robust optimization and robust sequential optimization.
These main stages can be further subdivided into ten steps,
see Fig. 4. This flowchart serves as a guide through the pro-
cess of mathematically modeling and sequentially solving
the robust optimization problem in a structured way.

The robust optimization strategy will be shortly ex-
plained by going through the ten steps mentioned in Fig. 4.
The key elements and numerical tools incorporated in these
steps will be demonstrated in more detail by application to
an analytical test function and industrial V-bending process
described in Sections 4 and 5 respectively.

3.1 Modeling

The first step (1) in the robust optimization strategy is to
model the optimization problem under consideration. Both
design and noise variables have to be selected and ranges
have to be quantified. For the noise variables, a normal dis-
tribution is assumed described by a mean value μz and a
corresponding variance σ 2

z . The ranges of the design vari-
ables x are bounded by Lower Bounds (lb) and Upper
Bounds (ub). If the design variables can only be controlled
to a limited degree in practice, a known or estimated error
distribution can be added to account for this uncertainty.
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Fig. 4 Flowchart of the robust optimization strategy

The robust optimization formulation used in this work is
given by:

find x

min μ f + k f σ f

s.t. LSL ≤ μg ± kgσg ≤ USL (2)

lb ≤ x ≤ ub

z ∼ N (μz, σ
2
z )

In (2), the objective function is to minimize the weighted
sum of both the mean μ f and standard deviation σ f of
the response. Similarly, the moment matching formulation
is used for describing the constraints to ensure a reliable
process with respect to the specification limits.

3.2 Sensitivity analysis

Before proceeding with the actual robust optimization pro-
cedure, a sensitivity analysis is performed in the second step
(2) of the strategy. For industrial metal forming processes,
the optimization model obtained in the first step may con-
tain many design and noise variables. As will be reasoned
in Section 3.3, a metamodel-based robust optimization
algorithm is proposed for solving (2). Metamodels suffer

from the so-called curse of dimensionality, i.e. the algo-
rithm becomes exponentially more time-consuming with an
increasing dimension of the optimization problem. Screen-
ing techniques are therefore applied to reduce the number of
variables. This results in a decrease of the size and complex-
ity of the optimization problem, significantly increasing the
efficiency of the robust optimization procedure.

The screening techniques used in this work are classi-
cal screening techniques as described in e.g. Montgomery
(2005, 2009) and Yang and El-Haik (2003). The number
of design and noise variables can be reduced based on
a fractional factorial Design Of Experiment (DOE) plan
(Montgomery 2009). The DOE is applied into a single
(i + j)-dimensional space for which i and j are the num-
ber of design and noise variables respectively. Such a DOE
provides an efficient way to obtain Pareto plots and Main
Ef fect plots, keeping in mind that we are dealing with
time-consuming metal forming simulations here. Based on
these plots, one can easily determine the most important
design and noise variables, i.e. those variables that have
the most effect on the responses (objective function and
constraints). Taking into account only the design variables
that significantly influence the response variation enables a
reduction of the number of design and noise variables in the
robust optimization problem.

3.3 Robust optimization

The next step is to solve the robust optimization prob-
lem defined in (2). Approximate optimization is an often
used and well-known approach to couple FE simulations
with an optimization procedure. An overview of metamod-
eling applications in structural optimization was already
presented in Barthelemy and Haftka (1993). For the case
of robust optimization, approximations have to be gener-
ated of the statistical measures of the objective function and
constraints in the design space.

Different metamodel-based robust optimization methods
can be distinguished, see e.g. Jin et al. (2003) and Myers
and Montgomery (2002). In this paper, the single response
surface modeling approach is applied. At the basis of this
approach is a DOE plan in the combined design–noise
variable space. When dealing with deterministic computer
experiments such as FE simulations, space-filling designs
are preferred over other DOE types to minimize the model
prediction error (Santner et al. 2003). A typical size of an
initial space-filling design for computer experiments exists
of 10 times the number of variables (Schonlau 1997). In the
third step (3) of the robust optimization strategy, a DOE is
created based on a space-filling minimax Latin Hypercube
Design (LHD). Figure 5a presents a space-filling LHD of
20 DOE points in the 2D combined design–noise variable
space.
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Fig. 5 a Space-filling minimax Latin Hypercube Design (LHD) in
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After running the FE simulations (step 4) corresponding
to the settings specified by the DOE, a single metamodel
is fitted in the combined space as shown in Fig. 5b. In
the robust optimization strategy, the computationally expen-
sive non-linear FE simulations are thus replaced by an
approximate model. Since the shape and complexity of the
response behavior in the design space is unknown before-
hand, both Response Surface Methodology (RSM) and
Kriging metamodeling techniques are used for creating a set
of approximate models (step 5). The performance of each
metamodel is subsequently estimated using ANalysis Of
VAriance (ANOVA) techniques (Myers and Montgomery
2002). Validation of the metamodels (step 6) is performed
based on leave-one-out cross-validation. Each DOE point
is selected once as the validation data, and the remaining
DOE points as the training data. The level of fit of each

metamodel is calculated and used to select the most accurate
metamodel with respect to the FE model response.

From the single metamodel of each response, two ap-
proximate models of the response mean μ̂ f and standard
deviation σ̂ f are subsequently extracted providing the sta-
tistical measures required for the robust optimization pro-
cedure. This can be done analytically in case of a RSM
metamodel, see Montgomery (2005). When Kriging is
employed instead of RSM, an analytical derivation of μ̂ f

and σ̂ f is not possible. In this case, a Monte Carlo Anal-
ysis (MCA) of 10.000 function evaluations is run multiple
times on the metamodel resulting in a model for μ̂ f and σ̂ f

as a function of the design variables. Since the MCA is per-
formed on a metamodel, it is very efficient. Both models can
now be used for robust optimization (step 7) by applying a
global optimization algorithm such as a Genetic Algorithm
(GA) to solve (2).

Initially, a small number of DOE points is chosen in the
third step of the strategy to limit the required number of
expensive function evaluations. The design engineer must
be aware of the fact that the solution of the approximated
problem is only an estimate of the true robust optimum. To
obtain an accurate and reliable solution, the optimal meta-
model prediction has to be validated (step 8). In case of a
deterministic optimum, this can be done by performing a
single FE simulation. In case the robust optimum needs to
be validated after optimization, it is necessary to locally run
multiple time-consuming FE simulations. Obviously, only
a limited number of simulations can be performed result-
ing in a coarse (and expensive) estimation of the prediction
accuracy of the metamodel (step 9). If the accuracy is not
sufficient according to the design engineer, a sequential
improvement step can be applied to update the metamodel
successively (step 10).

3.4 Robust sequential optimization

The goal of sequential optimization is to increase the accu-
racy of the response prediction at regions of interest contain-
ing the optimal design. This is achieved by adding new DOE
points to the original set. See e.g. Jakumeit et al. (2005) for
an application in metal forming processes. An update algo-
rithm is required to select the location of the next infill point.
After evaluating the new infill point by an FE simulation,
the metamodels are globally updated and validated taking
into account the additional response. A robust optimization
procedure is started and the new prediction of the robust
optimum is determined. Instead of validating this optimum
using FE simulations, a stopping criterion related to the
update algorithm is evaluated. The sequential improvement
strategy continues to add DOE points until the stopping cri-
terion is fulfilled. As a final check, the design engineer can
validate the metamodel prediction accuracy in the vicinity
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of the newly predicted robust optimum using FE simula-
tions. In Section 3.4.1, a deterministic update algorithm
will be introduced first. An extension of this algorithm to
account for the influence of noise variables is subsequently
presented in Section 3.4.2.

3.4.1 Expected improvement criterion

In Jones et al. (1998) and Schonlau (1997), a determinis-
tic update algorithm is proposed based on the principle of
Expected Improvement (EI). The proposed Efficient Global
Optimization (EGO) strategy adds additional sample points
by maximizing the EI. In general, the Improvement (I) is
defined as:

I(x) =
{

0 if y(x) > fmin

fmin − y(x) otherwise
(3)

The improvement is calculated by taking the difference
between a function value y(x) with respect to the minimum
feasible tested (or calculated) response of the true objective
function value fmin if y(x) < fmin. In case a metamodel
is used, the function value y(x) can be replaced by a mean
value prediction ŷ(x0) at an untried setting x0. Moreover, in
case of deterministic optimization, the function value ŷ(x0)

is a direct prediction of the objective function value f̂ (x0).
In addition to the mean value prediction ŷ(x0), the EI

algorithm makes use of the prediction error s(x0) provided
by the metamodel. In other words, the predictor ŷ(x0) rep-
resents a realization of a stochastic process Y in which the
randomness is governed by the uncertainty s(x0) about the
true objective function. See e.g. Sacks et al. (1989) and
Santner et al. (2003). Note that s(x0) represents a type
of uncertainty that is related to the metamodel prediction
which is different from the aleatory type of uncertainty
discussed in the introduction of this paper. The so-called
posterior distribution Y at x0 can be modeled as a normal
distribution with Y ∼ N (ŷ(x0), s2(x0)).

Replacing y(x) in (3) by the stochastic variable Y will
result in an expression of the improvement that is also a
stochastic variable. As shown in Jones et al. (1998), the
expected value of the improvement can now be expressed
in a closed form given by:

E(I )=
⎧⎨
⎩

(
fmin− ŷ

)
�

(
fmin− ŷ

s

)
+sφ

(
fmin− ŷ

s

)
if s >0

0 if s =0

(4)

with φ and � the probability density and cumulative distri-
bution function of the standard normal distribution respec-
tively. For notational simplicity, the dependence on x is
omitted here. The first term in (4) contributes to the EI if

ŷ is smaller than fmin. The second term contributes to the
EI at locations of high uncertainty about whether ŷ will be
better than fmin. The criterion is thus capable of searching
both locally (first term) and globally (second term). Maxi-
mizing the EI finally provides the coordinates of the infill
point x′.

3.4.2 Extension of the expected improvement criterion

In the case of robust sequential optimization, the goal is
to find a suitable location of the infill point which requires
the determination of an optimal setting for both the design
variables x′ and noise variables z′. Focusing on the EI algo-
rithm, two difficulties arise if noise variables are taken into
account. Firstly, the goal is to find an infill point that is most
promising with respect to the robustness criterion instead of
the metamodel itself. Secondly, the prediction uncertainty
or suitable error estimation s associated with respect to the
objective function is not accounted for.

Only a few studies have been published that consider
sequential update strategies in which noise variables are
taken into account, see Huang (2005), Lehman (2002) and
Williams et al. (2000). The robust sequential optimization
algorithm that is applied in this work is proposed in Jurecka
et al. (2007). The search for an infill point in the design–
noise space is divided into two steps. First, x′ is determined
in the design variable space after which z′ is identified in
the noise space. Determining x′ requires the evaluation of
the robust objective function f . This is done by application
of a MCA onto the metamodel. As a result, the majority
of the MCA sampling points that are incorporated in the
prediction of the robustness criterion are untested, i.e. not
evaluated using a FE simulation. An uncertainty s about the
predictor ŷ at each untested point (x, z) remains present. As
a result, two stochastic variables are obtained in the same
probability space. Each point (x, z) is now a realization of
the stochastic noise variable Z and the posterior error dis-
tribution in this point. The stochastic process Y can now be
written as (Y |Z) ∼ N (ŷ(Z), s2(Z)). To evaluate the pre-
diction uncertainty with respect to the robustness criterion,
the conditional variance formula is used:

var(Y ) = E
(

s2(Z)
)

+ σ 2
Y (5)

The presence of prediction uncertainty adds an additional
term to the prediction variance of the stochastic process Y
which equals the expected value of s2(Z) over the noise
space. This value can be determined by the same sampling
methods used to calculate the robustness criterion.

Returning back to the definition of the EI, a revision has
to be done. This is because the definition of the current best
solution of the robustness criterion can now also be seen as a
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stochastic process with (Y ∗|Z) ∼ N (ŷ∗(Z), s∗2(Z)). The
EI can now be written as:

E(I ) =
∫ b

a
(ŷ∗ − y)(pY (y) − pY ∗(y))dy (6)

with pY (y) and pY ∗(y) the probability density function
of the stochastic process Y and current best solution Y ∗
respectively. The integration bounds a and b depend on the
intersection points of pY (y) and pY ∗(y) which can be
calculated analytically.

As a first step, the current best solution is calculated
by evaluating the robustness criterion for all settings of the
design variable x = xl that are part of the set of DOE points.
The robustness criterion can now be calculated according to
its definition, e.g. f = μY + kσY , and its optimal ‘tested’
value can be determined. Subsequently, the EI can be max-
imized by evaluating (6) for a set of points x representing
the candidate infill points in the design variable space. In
exploring the noise space, the deteriorating effects of the
noise variables are of special interest. Maximizing the prod-
uct of the error prediction and the probability of occurrence
results in the optimal noise variable setting:

z′ = arg max(s2(x′, z)pZ (z)) (7)

Together, these optimal settings (x′, z′) define the infill point
at which a new FE simulation is performed. The resulting
FE response is added to the set of responses and the meta-
model is updated. The update sequence continues until a
threshold value for the EI or a maximum number of runs is
reached. In this work, the above described algorithm will
be applied adding a single new infill point per iteration.
This will result in the most efficient analysis since the meta-
model, and with that the EI, is updated each iteration of the
algorithm. However, from a practical point of view it may
be beneficial to increase the number of infill points per iter-
ation. For example, in case parallel computing facilities are
available or if different research groups work separately on
the FE-modeling and optimization side of the problem. To
do so, one can make use of the multimodal behavior of the
EI by adding infill points at multiple maxima. Evaluating
the FE-simulations in parallel and updating the metamodel
can now be performed at the cost of a single FE-simulation
and will reduce the number of required iterations between
research groups.

4 Application to an analytical test function

The robust optimization strategy presented in Section 3
allows for modeling and sequentially solving robust opti-
mization problems using time-consuming simulations. The
performance of the proposed strategy is demonstrated in

this section by the robust optimization of an analytical test
function. The Branin function is a classical deterministic
optimization test function with 3 global optima. To use the
Branin function for robust optimization purposes, one of the
two parameters is considered to be a noise variable:

y(x, z) =
(

z − 5x2

4π2
+ 5x

π
− 6

)2

+ 10

(
1 − 1

8π

)
cos(x) + 10 (8)

The design space is limited to −5 ≤ x ≤ 10. The noise
variable is assumed to follow a normal distribution accord-
ing to z ∼ N (μz, σ

2
z ) with μz = 7.5 and σz = 2.5. A

graphical representation of the Branin function is given in
Fig. 6.

As an objective of the optimization study, it is chosen to
minimize f = μy + 3σy . The reference solution is obtained
beforehand by performing MCA’s of 10.000 samples at an
equidistant grid of 100 design variable settings using the
analytical function. An impression of the reference solu-
tion is represented by the solid line in Fig. 7a. Note that
the 3 global optima of the deterministic Branin function
reduce to a single global robust optimum if one of the two
parameters is considered to be a noise variable. The global
robust optimum is visualized by the cross mark in Fig. 7a
at xref = −1.4 with an optimal objective function value of
fref = 48.6, see Table 1.

The Branin function is first evaluated based on an initial
space-filling LHD of only 10 DOE points. Using ANOVA,
an ordinary Kriging model is identified as the most accurate
fit for the Branin function. An initial objective function pre-
diction of the Kriging model is obtained in a similar manner
as the reference model. See the dotted line in Fig. 7a. The
Kriging model is subsequently used for robust optimization
by application of a GA optimization algorithm in combina-
tion with a MCA. The initial approximation of the optimal
objective function value is found to be f̂opt = μ̂y + 3σ̂y =

x

z

y(
x,

z)
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Fig. 6 Graphical representation of the Branin function
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Fig. 7 a Reference objective function, Expected Improvement (EI) and approximated objective function after 0 (initial) and 9 infill points. b
Kriging model approximation span up by 10 original DOE points (black markers) and 9 additional infill points (red markers)

74.5 at the design variable setting xopt = 0.4. See the
diamond marker in Fig. 7a and Table 1.

A significant deviation of both the optimal objective
function value and the optimal design variable setting is ob-
served by comparing the reference values fref and xref with
the initially obtained values of f̂opt and xopt. The sequen-
tial robust optimization procedure is therefore applied to
increase the accuracy of the objective function prediction.
The EI, calculated based on the initial Kriging model, is
given in Fig. 7a. Maximizing the EI results in the design
variable coordinate x

′ = 10 of the first infill point. Evalua-
tion of (7) results in the noise variable setting z

′ = 15. After
determining the response at the location (x

′
, z

′
) = (10, 15),

the metamodel is updated. As a result, also the prediction
error and the EI are revised. This procedure is repeated until
the stopping criteria (max E(I ) < �s) is met, in this case set
to �s = 0.1. In total 9 infill points are added after which the
EI drops below the threshold. The final result after 9 infill
points is depicted in Fig. 7a and b.

The focus of the update algorithm varies between a
global search, resulting in infill points at the boundaries of

Table 1 Optimal objective function values and design variable settings
for the Branin test function

fref xref

Reference solution 48.6 −1.4

DOE size f̂opt xopt

10 initial LHD points 74.5 0.4

10 initial LHD points + 9 seq. added points 46.9 −1.3

19 initial LHD points 56.6 −1.0

the design variable domain, and a local search in x . The
local search converges to the robust optimum, resulting in 3
infill points in the vicinity of xref = −1.4. Evaluating the
robust optimum using the final metamodel (build up out of
10 original DOE points and 9 additional infill points), an
optimal value of the robustness criterion of f̂opt = 46.9 is
found for xopt = −1.3. See the circular marker in Fig. 7a
and Table 1. From this, it can be concluded that the accu-
racy of the robustness criterion prediction in the vicinity
of the robust optimum has been improved significantly by
sequentially adding 9 infill points.

As a comparison, the robust optimization procedure is
repeated with an initial LHD of 19 points. The optimal
objective function prediction, based on the resulting initial
Kriging model, is determined at f̂opt = 56.6 for xopt =
−1.0. This prediction is less accurate compared to the pre-
diction based on 10 initial DOE points and 9 additional
infill points added by the EI update algorithm. Based on the
results summarized in Table 1, it is shown that the prediction
accuracy increases more rapidly by placing the infill points
at qualified locations compared to increasing the initial size
of the LHD for the Branin test function. The next step is
to verify this finding by application of the sequential robust
optimization strategy to an industrial V-bending process.

5 Application to an industrial V-bending process

The proposed sequential robust optimization strategy will
now be applied to optimize a V-bending process. The indus-
trial application is performed in cooperation with Philips
Consumer Lifestyle. An impression of the production pro-
cess and final product is shown in Fig. 8. A piece of
sheet metal is placed in between a punch (upper tool) and
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Fig. 8 Impression of the V-bending process and final product

a die (lower tool), after which the punch is lowered by
a prescribed displacement. During the bending process,
the material experiences local elastic and plastic deforma-
tion. After withdrawal of the punch, the product shows
elastic springback. The challenge of this study is to opti-
mize the process such that products are produced within
specifications in a robust way subject to variation in mate-
rial behavior. Moreover, the goal is to demonstrate the effi-
ciency and applicability of the strategy and to gain more
insight in the effect of noise variables onto the production
process.

Figure 9a shows the FE model of the part and tools. A
2D model is created assuming a plane strain condition. The
implicit code MSC Marc has been used as FE-code. Due
to symmetry of the product, only one half of the geometry
has been modeled. The sheet metal is discretized using 500
quadrilateral elements with 5 elements through the thick-
ness. Both the die and punch are modeled to be non-rigid
using quadrilateral elements. Considering deformable tools
is in this case essential for an accurate simulation. One sim-
ulation takes about 7 minutes. The complexity of the FE
model, and with that the calculation time, is intentionally
limited for the purpose of this research.

The product material is a stainless steel for which the
nominal material properties are obtained by uni-axial ten-
sile tests performed at room temperature. The material is

modeled as an elastic-plastic material. For the elastic mate-
rial behavior, a Young’s modulus (E) of 210 MPa is used.
The material hardening is isotropic and the Von Mises
yield criterion is applied. The experimentally obtained true-
stress—true-strain curve is implemented in the FE-model as
a table to describe the plastic material behavior. The mate-
rials yield stress (σy) is determined at 350 MPa. Variation
in σy is modeled by vertically shifting the true-stress—
true-strain curve. The tooling material is a tool steel for
which only the elastic material behavior is modeled using
E = 210 MPa.

5.1 Modeling and sensitivity analysis

The initial set of design and noise variables is shown in
Fig. 9b. The design variables are the angle of the die and
the punch (α), the width of the product (W ), the final dis-
tance (D) between the flange of the die and punch (if no
deformation of the tooling would occur), the dimensions
of the punch (L1) and the die (L2), the radius of the die
(R1) and punch (R2). As with the process in practice, the
material thickness (M) and yield stress (σy) are considered
uncertain.

To ensure a correct performance of the final product, con-
straints on the flange shape are prescribed. The flange shape
is defined by a transition angle (θT ) and a main angle (θM )
spanned up by the marked line segments; see Fig. 9c. The
constraint on the main angle is stricter since this angle is
most critical with respect to the performance of the final
product. In the current V-bending process, active steering
of D is required to obtain products that satisfy the require-
ments for both angles. The goal of the optimization study
is to obtain a robust and reliable process design for the
main and transition angle without the need to adjust D. The
main angle is taken into account as the objective function
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Fig. 9 a 2D FE model of the V-bending process, b definition of design and noise variables c and constraints on the flange shape of the final
product
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f while satisfying ±3σ -constraints on the transition angle.
The quantified robust optimization formulation is given by:

find x

min |(μθM − 90)| + 3σθM

s.t. 92 ≤ μθT − 3σθT

μθT + 3σθT ≤ 96

92 ≤ α ≤ 93

6 ≤ W ≤ 7.5

0.4 ≤ D ≤ 0.65 (9)

4 ≤ L1 ≤ 5

8.5 ≤ L2 ≤ 11

1 ≤ R1 ≤ 1.3

1.8 ≤ R2 ≤ 2.1

M ∼ N (0.51, 0.012)

σy ∼ N (350, 6.662)

A sensitivity analysis is first performed to reduce the size
and complexity of the optimization problem. The applied
screening techniques are discussed in Section 3.2. A resolu-
tion IV fractional factorial design of 32 experiments is used
for independently estimating the linear main effects of the 9
control and noise variables. The upper and lower bound of
the noise variables are set at μ + 3σ and μ − 3σ , respec-
tively. The resulting Pareto plots of the objective function
and constraint are presented in Figs. 10a and b respectively.
Similar to what is experienced in the production process,
the sensitivity study shows that the depth setting D has the
largest effect on both the objective function and constraint.
Moreover, the main and transition angle are highly sensitive
to the bending radius R1, bending angle α and the varia-
tion in material thickness M . The change in the dimension
of the punch L1 and variation of the yield stress σy only
affects the objective function and hardly affects the con-
straint. Design and noise variables having a higher effect on
the objective or constraint than the error effect (dotted line in
the Pareto plots) are considered significant and are included
in the optimization problem. As a result, the number of vari-
ables is reduced to 4 design variables (D, L1, R1, α) and 2
noise variables (M , σy). The omitted variables (R2, L2 and
W ) are set to their nominal process settings to minimize the
required changes in the current production process.

The significance of these variables is verified using
experimental data for the V-die bending process available
in literature. Leu and Hsieh (2008) recognize the strong
influence of increasing the coining force to reduce spring-
back after unloading. This corresponds to decreasing the
depth setting in the current work to a value for D which is
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Fig. 10 Pareto plots plots of the a objective function f and b
constraint g

smaller than the nominal material thickness. The significant
effect of D is also experimentally verified in Tekaslan et al.
(2008) and Osman et al. (2010). Moreover, experimental
results reported in Tekaslan et al. (2006, 2008) and Huang
and Leu (1998) for the main angle confirm the importance
of the bending radius R1, material thickness M , and bending
angle α. Lastly, the importance of material properties σy is
experimentally verified in Osman et al. (2010). Varying the
dimension of the punch L1 is not considered in these exper-
imental works although Fig. 10a shows that the effect on the
main angle is significant. Further experimental verification
of the numerical results will be described in Section 5.4.

5.2 Metamodel creation

The next step is the creation of metamodels to study higher-
order and interaction effects between variables and to per-
form robust optimization upon. Following the rule of thumb
mentioned in Section 3.3, a LHD of N = 10n points is
generated, where the reduced number of variables n equals
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Table 2 Number of points per dimension used to create a grid of 6000
points in the design space

Dimension α R1 L1 D M σy

Number of points per dimension 4 5 4 5 5 3

6 in this case. The resulting 60 points are distributed in
the combined 6D design–noise variable space and serve as
a basis for the initial metamodel. The FE simulations are
performed on four parallel processors reducing the total cal-
culation time to approximately two hours. Using ANOVA, a
second-order Kriging model is identified as the most accu-
rate fit for both f and g. In addition to this metamodel, four
Kriging models are constructed based on an initial LHD of
30, 100, 200 and 300 points to investigate the influence of

the initial DOE size. Moreover, a large reference data set
is constructed by performing 6000 FE simulations in the
combined 6D design space. These simulations are performed
according to a predefined grid. The points per dimension
of the grid are distributed in an equidistant manner. The
number of points per dimension is presented in Table 2. A
reference model is subsequently obtained by spline inter-
polation of the resulting response set. In the remainder of
this paper, these models are referred to as 30LHD, 60LHD,
100LHD, 200LHD, 300LHD and reference model.

The reader should be aware that for this simple case a ref-
erence model is created for validation purposes with a lot of
computational effort. However, a reference model will not
be available in realistic problems. The goal of the (sequen-
tial) robust optimization is to calculate the robust optimum
with a low number of FE simulations. With the reference
model available, the performance of the algorithm can be
checked.
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Fig. 11 Reference model impressions of the (a, b) main and (c, d) transition angle
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Impressions of the reference models are shown in Fig. 11.
Figure 11a and b show the reference model of the main
angle as a function of the distance D, and the material thick-
ness M and yield stress σy respectively. Figure 11c and d
show the reference model of the transition angle as a func-
tion of the distance D, and the material thickness M and
yield stress σy respectively. The constraints on the transi-
tion angle are visualized by the two planes. For visualization
purposes, the remaining variables are set to their nominal
process settings as shown in the second column of Table 3.

Evaluating the shape of the models in Fig. 11, an increase
of the main angle is observed for large D. As long as the
distance D is larger than the material thickness M , the mate-
rial is only bent and not yet flattened. For increasing D,
the material is less bended which results in an increase of
the main angle. Once the distance D is smaller than the
material thickness, the material is flattened subsequent to
bending. Due to flattening of the material, the main angle
will approach the nominal tooling angle of 92◦. Also note
the interaction effect between D and M in Fig. 11a and c.
The slope in the noise variable direction changes as a func-
tion of D. In between the extreme settings of D, an area
can be observed for which the slope in the noise variable
direction is small. For this specific setting, this could poten-
tially yield a process which is robust with respect to the
noise variable M . Looking at Fig. 11b and d, again an area
can be observed for which the noise variable σy has mini-
mal influence on the main and transition angle respectively.
Looking at the main effects of the plotted parameters, it can
be observed that the depth setting has the highest effect on
both angles followed by the material thickness and yield
stress. This corresponds to the results of the sensitivity study
described in Section 5.1.

Comparing the shape of the reference model with respect
to the main angle (Fig. 11a and b) and the transition angle
(Fig. 11c and d), a very similar behavior of the angle change
can be observed. Note that especially the lower constraint
on the transition angle, represented by the lower plane,
significantly decreases the feasible area also excluding the
robust area.

5.3 Robust optimization

The set of metamodels resulting from the different initial
DOE sizes are subsequently used for robust optimization,
solving (9). An initial optimization approach did not result
in a ±3σ process. This is caused by a non-robust behavior
of the transition angle in the feasible design space and vio-
lation of the main angle USL. Therefore, both the objective
and the ±3σ constraints on the transition angle are slightly

relaxed. The revised and reduced robust optimization for-
mulation now reads:

find x

min |(μθM − 90)| + 2σθM

s.t. 92 ≤ μθT − 2σθT

μθT + 2σθT ≤ 96

92 ≤ α ≤ 93

0.4 ≤ D ≤ 0.65 (10)

4 ≤ L1 ≤ 5

1 ≤ R1 ≤ 1.3

M ∼ N (0.51, 0.012)

σy ∼ N (350, 6.662)

The optimal value of the objective function obtained
from each metamodel is represented by the first marker of
each line in Fig. 12. For the 60LHD model, the optimal
response values are given in the third column of Table 3.
Moreover, the corresponding optimal process settings are
included where f is the objective and g1 and g2 are the
constraints on the transition angle. The reference model is
subsequently utilized for robust optimization using similar
techniques as applied onto the metamodels. The resulting
optimal reference process settings and response values are
presented in Fig. 12 and in the last column of Table 3. Eval-
uation of the nominal process settings (with D = 0.51 mm)
using the reference model shows a very robust but unreliable
process, see the second column of Table 3. A small standard
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Table 3 Current, optimized and reference process settings and
response values of the V-bending process

Variables Nominal RO results SRO results Reference

and responses process process

settings settings

α 92◦ 92.4◦ 92.7◦ 92.8◦

R1 1.15 mm 1.16 mm 1.14 mm 1.12 mm

L1 5 mm 4.8 mm 4.9 mm 4.9 mm

D Varied 0.54 mm 0.55 mm 0.56 mm

f 0.63◦ 1.60◦ 0.85◦ 0.87◦

g1 90.2◦ 92.0◦ 92.0◦ 92.0◦

g2 91.1◦ 93.6◦ 94.9◦ 95.6◦

The Robust Optimization (RO) results and Sequential Robust Opti-
mization (SRO) results are obtained using the metamodel initially build
up out of 60 DOE points

deviation for the transition angle response is observed but
the lower constraint is violated by far.

Figure 13 presents the optimal process results for the
main and transition angle as a function of D. The vertical
bars represent the ±2σ bounds of angle variation around
the mean value caused by the influence of the noise vari-
ables. Based on the initial 60LHD model of the main angle
presented in Fig. 13a, the optimal distance D is found to be
0.54 mm corresponding to a mean value of the main angle
of 90.9◦ and a standard deviation of 0.35◦. The resulting
objective function value deviates 0.73◦ from the optimal ref-
erence value of 0.87◦. This discrepancy is relatively large
compared to the accuracy which is required from the V-
bending process. Looking at the initial optimal values of
the objective function values for the 30LHD and 100LHD
metamodels as presented in Fig. 12, a deviation of 1.31◦
and 0.39◦ from the reference solution is observed respec-
tively. The discrepancy clearly decreases with an increasing
number of initial DOE points. Evaluation of the 200LHD
and 300LHD model shows an accurate prediction of the
initial optimal objective function value.

Once an optimum is obtained by the robust optimization
strategy, the 2σ -requirements for the moment matching con-
straints on the transition angle are satisfied per definition.
However, the constraint predictions are based on a meta-
model approximation. The reference model can be used to
validate the prediction of the optimal constraint values based
on the 60LHD model. Figure 13b depicts an additional set
of ±2σ bars at D = 0.54 representing the 60LHD and
reference model prediction. A comparison shows that the
60LHD model under predicts the standard deviation. For
the 60LHD model, an initial robust optimum is found that
satisfies the constraints whereas the reference model shows
violation of the lower constraint. In the case of deterministic
optimization, neglecting the influence of the noise variables
will result in an optimum that lies at the boundary of the
lower constraint on θT for D = 0.53 mm for the refer-
ence model. The variation in M and σy will in this case
lead to a high number of violations of the constraint in the
real V-bending process. From this, it can be concluded that
the effect of adding noise is significant if one compares the
deterministic to the robust optimal reference settings for D.

The above analysis shows that the optimal distance D,
which is actively adapted in the current process, is criti-
cal with respect to the lower constraint. A comparison of
the optimal setting based on the 60LHD model shows a
shift from the nominal process setting towards the more
robust reference setting (see Table 3). However, a small dis-
crepancy remains present mainly caused by an inaccurate
prediction of the stochastic constraint measures. Overall,
it can be stated that the prediction of the optimal process
behavior based on the 60LHD model deviates from the ref-
erence model for both the main and transition angle. This
leaves room for the sequential robust optimization step to
increase the accuracy of the standard deviation and mean
value prediction in the robust optimum for both the objec-
tive function and constraints. Before applying the sequential
robust optimization algorithm in Section 5.5, experimen-
tal validation of the numerical results is performed and
described next.
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Fig. 13 Optimal process results for the a main and b transition angle as a function of the distance D
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5.4 Experimental validation

To investigate the robustness of the nominal production pro-
cess and to validate the numerical results, three production
trial runs are performed with the nominal process settings as
specified in Table 3 with D = 0.53 mm. To reflect the whole
range of material thickness variation that can occur in prac-
tice, 3 material coils are selected with a minimum (Run 1),
nominal (Run 2) and maximum (Run 3) material thickness
within the μ±3σ range as specified by the noise variable M
in (10). This enables studying both the effect of coil-to-coil
and in-coil thickness variation on the main and transition
angle. For each trial run, 30 products are retrieved from the
production process and the main and transition angles are
measured.

The experimental results for the main and transition angle
per trial run (Run 1–3) are visualized using box plots in
Fig. 14a. The median of each set of 30 measurements is
shown as the center line in the box. The boxes to the left
and right of the median represent two quartiles containing
25% of the data points each. The horizontal line, or whisker,
extends up to the lowest and highest measured value and
covers the remaining 50% of the angle measurements. Pos-
sible outliers are measurements that fall outside the limits
of the whiskers and are depicted as asterisks. In addition
to the experimental results, a comparison is made with the
numerical robustness prediction obtained by performing a
MCA onto the reference model (Ref.) at the nominal process
settings with D = 0.53 mm. See the lower box in Fig. 14a.
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Fig. 14 Experimental results (Run 1–4) and numerical results ob-
tained from the reference model (Ref.) for the nominal process settings
with a D = 0.53 mm and b D = 0.55 mm

Evaluating the box plots in Fig. 14a, a larger effect of
coil-to-coil variation is observed for the main angle in
comparison to the transition angle. Looking at the main
angle, springback increases for decreasing material thick-
ness. Note that the springback angle is the difference
between the measured angle and the nominal tooling angle
of 92◦. This effect corresponds to experimental V-die bend-
ing results reported in Osman et al. (2010). Both the mean
value as well as the range of main angle variation is pre-
dicted accurately by the reference model. Also for the
transition angle, the prediction of the mean value is in good
agreement with the experimental results. However, the ref-
erence model shows a slight over prediction of the scatter
around the mean value. As already predicted numerically
and discussed in Section 5.3, also the experimental results
show that the process performance is critical with respect to
the lower specification limit of the transition angle.

Both the sensitivity study and the robust optimization
procedure has shown that the main and transition angle are
most significantly influenced by the depth setting D. To
validate the numerical trends, a final trial run (Run 4) is
performed whereby D is increased to 0.55 mm and the coil
with a nominal material thickness is used. The experimen-
tal and numerical (Ref.) results are presented in Fig. 14b.
For both angles, the numerical prediction of the mean value
is in good agreement with the experimental results whereas
the scatter around the mean value is over estimated. This
discrepancy is expected to decrease if the number of mea-
sured products is increased and/or different coils are used in
the production process. Note that the numerically observed
trend of an increasing mean response of the transition angle
for an increasing depth setting is confirmed by the experi-
ments. This makes the process uncritical with respect to the
lower specification limit of the transition angle.

In summary, the numerical trends obtained from the ref-
erence model are in good agreement with the experimental
results, especially for the mean value prediction. Returning
back to the initially created metamodel set, the numeri-
cal prediction of the optimal process behavior based on
the 60LHD model deviates from the reference model and
thus from the experimental results. The next step is to
decrease this discrepancy by application of the sequential
robust optimization algorithm.

5.5 Sequential robust optimization

The results of applying the sequential robust optimiza-
tion procedure to the set of metamodels are presented in
Fig. 12. A clear difference in behavior of the algorithm can
be observed for the different metamodels. For the 30LHD
metamodel, a slower initial convergence is obtained in com-
parison to the 60LHD and 100LHD model. Evaluation of
the infill point locations for the 30LHD model shows that
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the first 12 points are added globally. The limited initial
DOE size forces the algorithm to first decrease the meta-
models prediction error globally before searching locally.
Decreasing the initial DOE size below 30 results in a low
quality metamodel, unsuitable for evaluation of the EI cri-
terion. In total 49 points are added to the initial 30 DOE
points after which the EI drops below the threshold value,
arbitrarily set to �s = 0.5. However, Fig. 12 shows that an
accurate prediction of the objective function value is already
obtained after adding 20 DOE points.

For the 60LHD metamodel, the EI algorithm mainly adds
infill points clustering around the robust optimum. A fast
convergence of the objective function value prediction is
observed towards the reference solution. Note however that
the 30LHD model outperforms the 60LHD model after hav-
ing added 30 infill points. The same can be observed for the
60LHD model and the 100LHD model after adding 40 infill
points to the 60 initial DOE points. In total, an additional 42,
30, 17 and 8 infill points are added to the 60LHD, 100LHD,
200LHD and 300LHD model respectively. The latter two
models only show a minor improvement of the prediction
accuracy.

The optimal process settings of the robust optimum based
on the 60LHD model after sequential robust optimization,
are given in the fourth column of Table 3. The optimal
settings of α, R1, D and especially L1 have converged fur-
ther towards the reference solution. The optimal process
results obtained after sequential optimization of the 60LHD
model are presented in Fig. 13a and b. The discrepancy
between the sequentially updated metamodel prediction and
the reference model is decreased significantly. Especially,
the optimal values of the objective function and constraint
based on the sequentially updated 60LHD model show good
resemblance with the optimal reference values.

Overall, it can be stated that application of the sequen-
tial robust optimization strategy to the V-bending process
resulted in a significant improvement of the robustness and
reliability. The deteriorating effects of the noise variables
are minimized by changing the tooling angle and increas-
ing the process depth setting. This will make active control
of the depth setting in the current process redundant. More-
over, many of the process insights have been obtained by
visualization of the metamodels used in the robust optimiza-
tion strategy. Finally, it is demonstrated that the sequential
optimization step improves the accuracy of the response
predictions at regions of interest in a very efficient way.

6 Conclusions and future work

In this paper, a robust optimization strategy is presented that
allows for modeling and solving robust optimization prob-
lems using time-consuming numerical simulations. Uncer-

tainties such as material variation and fluctuating process
settings are taken into account explicitly. The resulting
response variation of both the objective function and con-
straints is determined and accounted for in the strategy to
optimize towards robust and reliable processes. The chal-
lenge remains to balance the number of time-consuming FE
simulations spent on the robustness evaluation and the accu-
racy of the robustness predictions themselves. A sequential
robust optimization step is applied based on an expected
improvement measure to increase the efficiency of the
strategy.

The robust optimization strategy is successfully applied
to an analytical test function and industrial V-bending pro-
cess. The potential of the strategy is demonstrated by
modeling and sequentially solving these robust optimiza-
tion problems. For the V-bending application, a significant
improvement of the robustness (> 2σ ) and reliability was
obtained by accounting for the deteriorating effects of sev-
eral noise variables. Moreover, experimental validation of
the numerical robustness results shows a good agreement
with the experimental results obtained by multiple produc-
tion trial runs. This result fosters the usage of numerical
robustness analyses and optimization in an early stage of
product and process design. Finally, it is demonstrated that
the sequential optimization step improves the accuracy of
the objective function prediction at regions of interest in an
efficient way.

When using numerical techniques to describe a phys-
ical process, the designer has to deal with sources of
uncertainty like numerical noise and approximation errors.
A fruitful area of future research is to extend the robust
optimization strategy to account for these sources of uncer-
tainty. More in general, research efforts will be focused
on efficiently including different sources of uncertainty and
process robustness during numerical optimization.
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Tekaslan O, Şeker U, Özdemir A (2006) Determining springback
amount of steel sheet metal has 0.5 mm thickness in bending dies.
Mater Des 27:251–258
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