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Abstract

Transitioning to use automated vehicles is a gradual process. Until full automation capabilities
are developed there is a need to mediate which driving entity - human or autonomous driving
system (ADS) - should be in control depending on the circumstances. This research aims at
investigating the switching between manual and automated driving in semi-autonomous vehicles
when the ADS becomes unfit to drive. To this end, a simple environment simulation was created
and an MDP model was formulated that accounts for sensor failures and leaving the operational
design domain (ODD). Deep Q-Network (DQN), a deep reinforcement learning (RL) algorithm was
trained and evaluated against a hand-curated decision-tree-based standard. The DQN-based policy
did not reach the performance of the baseline algorithm. The conclusion is drawn that using DQN
to handle this multi-objective decision problem using an intuition-based reward function cannot
learn an optimal policy.

1 Introduction
Automated driving systems have seen much attention and development in recent years. These techno-
logical advancements come with great safety potential, however in some cases the human driver needs
to take over. This is caused by the automated system not (yet) supporting all possible scenarios that
can occur on the road.

MEDIATOR [1], funded by EU Horizon 2020, aims to develop a mediating system that enables
a safe and real-time switching between the human driver and the automated system by continuously
assessing the driving fitness of both in various driving contexts. The Mediator system is generally
subdivided into five main modules, including the driver module, the automation module, the context
module, the human-machine interface (HMI) module, and the decision logic module [1, 2].

In this study, the focus is on the Decision Logic module. Its functionality is concerned with
determining the actions regarding the transfer of control to guarantee both safety and driver comfort.
During this process, the decision logic module receives inputs from the driver and automation module
and selects appropriate actions based on information about past, current and expected situations. The
selected actions are then sent to either the HMI or the automation module that is responsible for
the execution and monitoring of the actions [2]. In this project, two automation levels are used: L0
(manual mode / no automation) and L4 (high automation) in order to limit complexity.

There is existing research investigating optimal switching policies between manual and automated
driving in semi-autonomous vehicles. The decision problem can be modeled by a Markov Decision
Process (MDP) or Partially Observable MDP (POMDP) formulation under full and partial information
[3, 4]. In the latter approach, for example a deep RL algorithm, (Asynchronous Advantage Actor Critic)
A3C [5] can be used to obtain an approximate solution [3]. These studies are optimized over simulated
environments which need further fine-tuning to allow better generalization of the learned policies to
the real world [3, 4].
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Several studies have been investigating the human factor of switching between driving entities [6,
7, 8, 9]. Self-monitoring to ensure that the automated system is fit to drive also has been studied [10,
11, 12]. The Operational Design Domain (ODD) describes the specific operating domains in which the
automated driving system (ADS) is designed to function [13]. The ODD is expected to be different
for each ADS feature on a vehicle and should specify the condition in which that feature is intended
to operate. Factors that influence this are roadway types, speed range, lighting conditions, weather
conditions, and other operational constraints [13]. A key observation is that the ADS should be able
to detect when it is within or outside of its ODD [13].

There are a number of things that are missing from existing models. Firstly, one can construct a
belief about the time it takes for the driver to take over the vehicle control from the car, instead of
using a priori given value [3]. Secondly, the action space used in the model can be expanded to allow
emergency stops and switching within different automation levels. Furthermore, the representation of
the ADS being (un)fit to drive can be improved by adding support for intrinsic states, thus being able
to account for faults of the autonomous driving entity. Finally, modelling driving entity switches due
to leaving the ODD is a yet to be investigated topic.

This paper is concerned with the following research question: how to compute an optimal policy
for switching between driving entities when the automation becomes unfit to drive?

To answer the main research question, the following sub-questions are addressed:
Q1: How can the decision problem formulated as MDP and what are the state space, action space,

transition function, and reward function?
Q2: How to simulate observations defined in the MDP state space to reflect the reality of sensor

failures and entering/leaving ODD?
Q3: How do deep reinforcement learning methods compare to a hand-curated decision tree policy

in terms of safety and comfort?
In the next section, - methodology - firstly an outline is given regarding how the research questions

are addressed in the paper. The following part is concerned with the MDP formulation and the
simulation of the state space variables. Next the experiments, including the results are dissected. In
the responsible research part, the relevant ethical concerns are on the table. Finally, conclusions are
drawn together with an outlook on future work.

2 Methodology
In this section an overview is given regarding how the research questions are addressed in the paper.

Firstly, an MDP is formulated, which is known to be suited to define stochastic control problems
[14] - such as this use case. Once defined, different methods can be used to compute a policy, which in
turn enables one to select what action to execute as a function of state [14]. The suitability of using
MDPs is supported by previous papers in this area of research as well [3, 4]. A common technique for
computing policies is to use reinforcement learning.

In general, there are two possibilities to use RL. One can use it directly - e.g. Atari games - where
the agent can directly interact with its environment repeatedly without any issues. In many cases,
this is not possible because the cost is too high. For instance, throwing away thousands of self driving
cars just for training an RL agent for switching between driving entities is not feasible. In order to
compute optimal switching policies, one must first construct a simulation environment that a decision
agent can interact with. Once the simulation is made realistic enough and an agent mastered its task
in it, a future challenge will be to bridge the gap between the simulation and reality which is often a
difficult task. Optimizing driving entity switching under automation degradation is in an early stage
of research which justifies making a simplified simulation.

The first step in designing the simulation environment is to formulate the state space of the MDP
model which prescribes the observations that must be simulated. The MDP formulation provides all
the necessary parts for using RL.

2



After creating the MDP formulation and implementing the simulation, different algorithms can be
used for optimizing driving entity switching. In this study, to establish a baseline, a decision-tree based
policy is implemented. Also, different versions of DQN are used to see how deep RL performs on this
task. Using deep RL instead of traditional RL methods like Policy-iteration is motivated by having a
high dimensional action-state space.

Finally, various metrics are defined and tracked in order to assess the safety and comfort of the
obtained policies by the different methods.

3 Modeling for optimal control switching
In this section, the modeling of the decision problem is addressed step-by-step. Firstly, creating the
MDP formulation is discussed, followed by setting up the simulation environment.

3.1 Markov Decision Process
MDPs work under full information, therefore the assumption is made that observations are completely
reliable. In real life settings, this is a strong assumption, and POMDPs offer an alternative model to
account for unreliability at the cost of higher complexity.

Next, the four elements of an MDP are defined for this use case.

State space This prescribes which observations of the environment the mediator agent has access
to at each time step.

For this use case, three aspects were identified about the human driver for the observations. First,
when in L4, the system needs to know how quickly the human can take back control once alerted.
Secondly, in L0, an estimate is needed regarding how long can the person drive safely (e.g. due to
getting tired). Finally, the person needs to have authority over the decision whether the driving
control switch takes place. The assumption is made that the person does not initiate take overs, only
the mediator system does.

The following observations were designed for these purposes about the human driver:

• TTDF: time to driver fitness - number of time steps until the person can take over - used in L4

• TTDU: time to driver unfitness - number of time steps until the person can no longer drive -
used in L0

• DriverResponse: Response of the person to the suggested action by the mediator system
(accept, reject or no response)

• NDRT: Non-driving related task - when ADS is in control, TTDF is influenced by what activity
(e.g. reading, texting) the person is engaged in.

For the autonomous system, it is assumed that the system can predict the time until it enters or
leaves its ODD. Automation system failures are assumed to be unpredictable, however, are detected
at the the time step when they occur. Also, knowing the current and highest available automation
modes were identified as relevant observations.

The following were designed to represent the autonomous system in accordance with the above
defined assumptions.

• LevelMaxNow: maximum automation level available at a given time step

• AutomationMode: current automation level
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• SF4: (automation) system failure at level 4 (true or false), if it is true then the given level is
not available - models sudden, unpredictable failures that occur for the automation system due
to sensor failures, lane markings not visible, encountering a construction site that was unknown
and possibly more.

• TTA4U: time to leave ODD/ time to automation unfitness for automation level 4

• TTA4F: time to enter ODD/ time to automation fitness for automation level 4

In order to address the different risk levels of driving entities being in control of the car, given
different scenarios, the following two, discretized variables were added, each with 3 levels: low, medium
and high risk.

• HR: human risk - determines the probability of an accident at the given time step, assuming the
person is in control.

• A4R: autonomous-system risk for level 4 - determines the probability of an accident at the given
time step, assuming the ADS is in control.

To conclude about the state space, Table 1 gives an overview regarding the values and the corre-
sponding meanings of the observations.

Observation Range Values
TTDF [0, 9999] 0: human is fit, x: x time steps until human is fit
TTDU [0, 9999] 0: human is unfit, y: y time steps until human is unfit
DriverResponse [0, 2] 0: accept, 1: reject, 2: no response
NDRT [0, 2] 0: none, driver is alert, 1: obstruction, 2: immersion
LevelMaxNow [0, 1] 0: L0, 1: L4
AutomationMode [0, 1] 0: L0, 1: L4
SF4 [0, 1] 0: no L4 ADS failure, 1: L4 ADS failure occurs
TTA4F [0, 9999] 0: L4 ADS is fit, w: w time steps until L4 ADS can start driving
TTA4U [0, 9999] 0: L4 ADS is unfit, z: z time steps until L4 ADS can still drive
HR [0, 2] 0: low, 1: moderate, 2: high human risk level
A4R [0, 2] 0: low, 1: moderate, 2: high L4 ADS risk level

Table 1: Overview of observations and their values

Action space The action space is discrete. The action transition probabilities are 1, thus when the
agent picks an action, then that is carried out with full certainty.

• DN: Do Nothing - let the current entity in control keep driving

• SL0: suggest a shift to L0, includes preparing the driver for the shift

• SL4: suggest a shift to L4, includes preparing the driver for the shift

• EL0: enforce a shift to L0, give control to the human

• EL4: enforce a shift to L4, give control to the ADS at L4

• ES: Emergency stop - stop the car by the side of the road

Reward function In this section, firstly an overview is given about the desired traits that the model
should learn. Afterwards the different reward setups that were evolved are showcased.
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Learning objectives

• O1: Do emergency stops when both driving entities become unfit or a shift is not possible to a
safe level (e.g. due to not getting response from human driver in time)

• O2: Minimize accidents

• O3: Learn suggesting shifts when driving entity is reaching unfitness and then enforcing these
once approved by the driver

• O4: Avoid unnecessary actions (e.g. suggest shifts when not needed) for driving comfort

The reward function was built in multiple steps. In the beginning, rewards were kept simple;
accidents and being in higher risk were penalized while reaching the end of the sequence and driving
in low risk was rewarded. Figure 1 illustrates this.

Figure 1: Base rewards

After some initial trials, it became clear that the agent cannot learn getting approval from the
driver for shifts (O2) this way. Another issue arise from having a lot of unnecessary actions making
the ride uncomfortable (O4). The decision was made to add further rewards to help the agent correct
its behaviour. Figure 2 gives the details of the additional rewards that were added on top of the
previously illustrated ones as seen in Figure 1.

Figure 2: Additional rewards depending on observations after taking an action
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State transition function For some applications, this can be directly defined, however, in most
applications - including this use case - the state transition function is estimated by letting the agent
interact with the environment. Furthermore, due to using deep reinforcement learning, the model
learns the transition probabilities during training, thus we don’t compute this explicitly.

3.2 Environment simulation
In this section, firstly, the simulation of the MDP state space variables is described. Afterwards, more
details follow on how the different parts of the simulation fit together.

There are two main parts. Firstly, there are variables that can be computed before the episode
starts thanks to their independence from the agent’s actions. These are stored in a table and looked up
during the simulated runs. The second part consists of observations that are influenced by the agent’s
actions, these are computed on the go. Finally, there are variables in between, that are pre-computed
but in some cases need to be recomputed during the simulation.

Pre-computed observations

LevelMaxNow: In order to have situations where the agent runs out of its ODD, possibly
repeatedly, 1-5 random time steps are assigned (per episode) as switch times, where the level max is
randomly assigned to be L0 or L4. This random assignment happens at the first time step as well.
Going through the episode step by step, when a switch time is hit, the newly chosen level is assigned
repeatedly until the next switch time is reached. Then the cycle starts again. This way L4 is available
for 20-50 time step parts on average in one episode.

TTA4F: Computed based on LevelMaxNow. At each time step its value is zero if L4 is available.
If only L0 is available at that point then the number of time steps until L4 is available again is assigned.
In case L4 won’t be available anymore in the episode, then assign tt_max (set to 9999).

TTA4U: Computed based on LevelMaxNow. At each time step its value is zero if only L0 is
available. If L4 is available at that point then the number of time steps until only L0 is available again
is assigned. In case L4 will be available for every time step in the rest of the episode, then assign
tt_max (set to 9999).

SF4: First, it is determined whether this episode will have a SF4 at all (set to happen with 0.5
probability). By default, all time steps have no SF4. If a system failure is to happen, then a random
time step is chosen within the sequence where it occurs. All time steps after the first occurrence are
also set to have SF4 in the episode.

Recompute rules are needed because the assumption is made that we cannot predict SF4 in ad-
vance. If we would take into account SF4 while pre-computing LevelMaxNow, TTA4U and TTA4F
then this assumption would not hold. However, the agent relies on these observations to be correct,
therefore, once we hit a case of SF4, these need to be adjusted.

LevelMaxNow: when the first time step where SF4 occurs is reached, LevelMaxNow is set to
L0 for the rest of the sequence.

TTA4F: when the first time step where SF4 occurs is reached, TTA4F is set to tt_max (9999)
for the rest of the sequence.

TTA4U: when the first time step where SF4 occurs is reached, TTA4U is set to 0 for the rest of
the sequence.
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On-the-go observation simulations The following observations are computed at each time step:
NDRT, TTDF, TTDU, HR, A4R, AutomationMode and DriverResponse. These cannot be pre-
computed because of their dependence on the agent’s actions.

AutomationMode: for the first time step, it is randomly chosen between L0 and L4. Afterwards,
it is solely determined by the actions of the agent. Only EL0 and EL4 can alter this state.

DriverResponse: By default, it is set to ’no response’. When SL0 or SL4 action is taken,
then it is set to ’accept’, ’reject’ or ’no response’ according to the configured probabilities. For the
experiments, these probabilities were set to 0.8, 0.1 and 0.1, respectively. This models the case of a
relatively agreeable driver because it was assumed that the agent can persuade the driver to take the
suggested actions.

NDRT: When in L0, the driver cannot engage in any activities other than driving, thus set to
level 0 - none. An exception to this, is the edge case when EL0 is taken before TTDF is zero, then it
may or may not be true that NDRT is none. (The driver might be still reading for instance, or the
driver finished her NDRT earlier than expected) Either way, the risk level calculation accounts for this
based on the TTDF observation. For more details, see the TTDF simulation.

The other possibility is that we are in L4. For this simulation, it is assumed that the driver does
not change her NDRT within one L4 part of the sequence because of the short L4 lengths. Thus, an
NDRT level of 1 or 2 is assigned when switching to L4 and otherwise the previous NDRT level is kept.
See Figure 3 as well for more insight.

Figure 3: Simulating NDRT
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TTDF: In L0, ideally it is zero, however if a shift was enforced too early then TTDF might
not be zero yet. In L4, if NDRT is 0, meaning that the driver is alert, then TTDF is 0. Otherwise
depending on the NDRT level, TTDF is either 5 or 10 time steps. TTDF can be reduced only by
taking the action SL0, which prepares the driver for a shift to manual control.

TTDU: It is determined depending on the previous TTDU value and the current automation
mode. When entering L0 (by EL0 action in L4) TTDU is randomly assigned from the range of 30
to 50 time steps. Then, while in L0, TTDU is reduced by one at each time step, until hitting zero.
When in L4, TTDU is set to zero, because NDRT is always level 1 or 2 in the simulation, meaning
that TTDF is never zero, unless a shift is initiated through SL0.

(a) Simulating TTDF (b) Simulating TTDU

Figure 4: TTDF and TTDU

HR: High risk when TTDF is not zero. In L4, becomes low risk only once TTDF is zero. When
in L0, it is set to zero (low risk) as long as the human driver is still fit to drive at least 15 time steps.
Below 15 time steps, the risk level is moderate until TTDU is zero. Human risk levels are simulated
this way to reflect that letting the person to be in control before she is ready or after she became unfit,
is dangerous. The moderate risk level was created to signal reaching high risk levels.

A4R: When TTA4F is not zero, the L4 ADS is unfit, thus A4R is set to high risk. When L4 ADS
is fit for at least 15 more time steps then the risk is low, once below 15 time steps means moderate risk
level, given that TTA4F is still zero. Autonomous system risk was designed with the same objectives
in mind as HR, differing only in terms of taking the ADS into account instead of the human driver.

Accidents are a consequence of letting an unfit entity keep driving. When the human driver
becomes unfit, the HR observation reflects this by being set to high risk. Similarly, if the L4 ADS is
unfit - due to being out of ODD or having a sensor/system failure - then A4R signals to the agent that
driving in L4 has a high risk. These risk levels determine the probability of an accident happening. In
particular, the probability of accident in high risk level is 0.1 at each time step. Thus, the agent can
expect an accident by ten time steps in high risk level with overwhelming likelihood. Low risk level
was set to 0 accident probability for simplicity. Also, in moderate risk level accidents cannot occur
because this only meant to signal that a high risk level is around the corner.

Overall simulation Each episode is simulated by firstly computing the pre-determined observations
and setting all the observation values for the first time step. Afterwards, at each step, the on-the-go
observations are computed based on the action taken by the agent. Also, it is checked if any pre-
computed values need to be reevaluated. Once the environment observation values are ready, they are
available to the agent through the interface of the OpenAI Gym environment [15].
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(a) Simulating HR

(b) Simulating A4R

Figure 5: HR and A4R

4 Experiments
This section discusses the experiments that were done in order to compute and evaluate switching
policies for the automation degradation use case. First the used algorithms are described followed by
defining evaluation metrics. The section concludes by reporting the performance of the found policies
according to the evaluation metrics.

4.1 Decision-tree-based baseline policy
A baseline policy was designed in the form of a decision tree, in order to establish a base performance.
The algorithm is optimized for safety and driver comfort. For safety, the algorithm suggests and
enforces shifts only to low risk levels. When this is not possible and the current driving entity is
becoming unfit, an emergency stop is carried out. For comfort, suggestions to shift are only made
when driving entity is becoming unfit, and enforcing shifts are only done after approval from the
human driver. For more insight, see Figure 6a and 6b.

4.2 Deep Q-Network
In order to assess the performance of deep reinforcement learning for this use case, a base implemen-
tation of DQN from Stable Baselines 3 (SB3) was used [16]. DQN was chosen because it is a classic
algorithm, that has proven itself already across several tasks. Unfortunately, there are some exten-
sions to DQN which are not (yet) included in the SB3 implementation. To this end, the SB1 [17] DQN
implementation was also utilized which contains the prioritized replay and dueling extensions as well.

Hyper-parameter optimization While the simulation was being developed, experiment tracking
was setup early usingWeights & Biases (WandB) [18]. This enabled using the ’Sweeps’ hyper-parameter
optimization functionality from WandB. The Bayesian search method was chosen which relies on a
Gaussian Process to model the relationship between the parameters and the model metric, which was
set to be the (mean) episode length. Each run consisted of 1 million training episodes. See Figure 7
in the appendix for the hyper-parameter optimization results. The details of the sweep configuration
will be made available together with the source code of the project upon request.
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(a) In L0 (b) In L4

Figure 6: Baseline decision-tree-based policy

Analyzing the best episodes, the hyper-parameters were set for the experiments to be described
later on. This way, the hyper-parameters of DQN were setup to work supposedly well on the designed
observation space.

Training During training, the mean episode length and mean reward across the episodes were tracked
and plotted via WandB. These metrics helped to check if the training converged. However these
provided no information regarding the correctness of the computed policy. To this end, this process
consisted of training, running evaluation, ending with adjusting rewards and parts of the simulation,
then start again with training.

4.3 Evaluation metrics
To evaluate the policies, a number of metrics were used. In this section, the evaluation metrics are
described. The main evaluation categories are driving safety, driving comfort, decision efficiency and
decision accuracy.

Driving safety

1. Ratio of episodes ending with accident (smaller is better), computed according to Eq. (1).

Accident ratio =
number of episodes ending with accident

total number of episodes
(1)

2. Ratio of all time steps in HR level 2 - high risk - while human in control, (smaller is better),
computed according to Eq. (2).

HR level 2 ratio =
number of time steps across all episodes when HR == 2 and in L0

total number of time steps across all episodes
(2)

3. Ratio of all time steps in A4R level 2 - high risk - while ADS in control, (smaller is better),
computed analogously to Eq. (2) using A4R and L4.

4. Ratio of unsafe actions, (smaller is better), includes:
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• SL4 in L0 when A4R == 2

• EL4 in L0 when A4R == 2

• SL0 in L4 when HR == 2

• EL0 in L4 when HR == 2

Computed according to Eq. (3).

Unsafe action ratio =
number of time steps across all episodes when an unsafe action is taken

total number of actions taken across all episodes
(3)

Driving comfort

1. Ratio of unnecessary actions, includes the following scenarios:

• SL0 in L0

• SL4 in L4

• EL0 in L0

• EL4 in L4

• SL0 in L4, when A4R=0

• SL4 in L0, when HR=0

• EL0 in L4, when A4R=0

• EL4 in L0, when HR=0

• ES in L4, when A4R=0

• ES in L0, when HR=0

Computed according to Eq. (4).

Unnecessary actions ratio =

number of time steps across all episodes when an unnecessary action is taken
total number of actions taken across all episodes

(4)

2. Ratio of episodes ending with reaching end of sequence, (larger is better), computed according
to Eq. (5).

Complete episode used ratio =

number of episodes ending with reaching end of the sequence
total number of episodes

(5)

3. Ratio of approved enforced shifts to L0 (larger is better), computed according to Eq. (6).

Approved EL0 ratio =

number of EL0 actions taken with approval from driver across all time steps
total number of EL0 actions taken across all time steps

(6)

4. Ratio of approved enforced shifts to L4 (larger is better), computed analogously to Eq. (6) using
EL4.

Decision efficiency Measured by decision duration. A duration starts when entering risk level 1,
and ends when a shift is enforced or emergency stop is executed. Suggesting shifts is an intermediate
step, therefore those are not taken into account. However, in order to account for too late decisions,
ending with accidents are added to this average as well. When the end of the sequence is reached,
the duration count is reset (if it was activated) without adding the length to the recorded ones. The
mean, standard deviation (SD), median, min and max values of the decision duration are computed.
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Decision accuracy

1. Ratio of enforced shifts from L4 to L0 when A4R > 0 and HR == 0, (larger is better), computed
according to Eq. (7).

Needed EL0 action ratio =
number of needed EL0 actions across all time steps

total number of EL0 actions taken across all time steps
(7)

2. Ratio of enforced shifts from L0 to L4 when HR > 0 and A4R == 0, (larger is better), computed
analogously to Eq. (7).

3. Ratio of needed SL0 actions, SL0 is needed when in L4, A4R > 0 and either HR > 0 or driver
is not (yet) accepting the shift, computed analogously to Eq. (7).

4. Ratio of needed SL4 actions, SL4 is needed when in L0, HR > 0 and A4R == 0 and the driver
is not (yet) accepting the shift, computed analogously to Eq. (7).

5. Ratio of needed and approved enforced shifts to L0 (larger is better), computed analogously to
Eq. (7).

6. Ratio of needed and approved enforced shifts to L4 (larger is better), computed analogously to
Eq. (7).

7. Ratio of correct emergency stops, (higher is better), correct emergency stops are:

• Both human and autonomous system is unfit to drive (A4R > 1 and HR > 1)
• In L4, TTA4U < 3 (almost unfit), driver does not approve shift (no response or reject)
• In L0, TTDU < 3 (almost unfit), driver does not approve shift (no response or reject)

Computed according to Eq. (8).

Correct ES ratio =
number of time steps across all episodes when a correct ES is executed

total number of emergency stops taken across all episodes
(8)

4.4 Results
In this section, the performance of the baseline decision-tree policy is compared with that of the SB3
and SB1 implementations of the DQN algorithm. The earlier defined evaluation metrics are used for
this comparison.

To accumulate the results, each policy was used for 5000 episodes. The reward function in the SB3
experiment was slightly altered compared to the SB1 setup, which was illustrated earlier. The WandB
experiment id allows better reproducibility because it links the results to configuration files that were
saved and are made available upon request.

Driving safety In Table 2 the safety performance of the different policies are assessed. It is clear
that the DQN approach lags behind the baseline, although the SB1 version is often comparable to the
standard.

Policy (WandB id) Accident
ratio

HR level
2 ratio

A4R level
2 ratio

Unsafe
action ratio

Baseline (333-eval) 0.0128 0 0.0082 0.04632
SB3 DQN (167-train) 0.1788 0.03868 0.01535 0.1737
SB1 DQN (184-train) 0.026 0.005363 0.02005 0.09648

Table 2: Driving safety results
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Driving comfort In terms of driving comfort, looking at Table 3, the baseline performs well, while
the deep learning based approaches fail, especially in terms of getting shifts approved before enforcing
them.

Policy (WandB id) Unnecessary
actions ratio

Complete episode
used ratio

Approved
EL0 ratio

Approved
EL4 ratio

Baseline (333-eval) 0 0.1762 1 1
SB3 DQN (167-train) 0.0851 0.064 0.2231 0
SB1 DQN (184-train) 0.04752 0.0008 0.5798 0.316

Table 3: Driving comfort results

Decision efficiency For decision efficiency, as seen in Table 4, overall the SB1 DQN outperforms
the baseline and the SB3 version by making decisions quicker.

Policy (WandB id) Max Min Mean Median SD
Baseline (333-eval) 13 0 5.99 5 5.229

SB3 DQN (167-train) 99 0 7.187 3 8.773
SB1 DQN (184-train) 14 0 2.193 0 3.777

Table 4: Decision length results

Decision accuracy As seen in Table 5, the DQN based approaches couldn’t learn how to suggest
and enforce shifts appropriately. The SB1 setup makes some progress in terms of switching to L0
correctly but it is not comparable to the baseline nevertheless. Table 6 gives more insight regarding
the approval ratio of the needed shifts. It also exposes the situation regarding the correctness of doing
emergency stops. The SB3 configuration works quite well in this case but not quite comparable to the
baseline performance.

Policy (WandB id) Needed SL0
action ratio

Needed SL4
action ratio

Needed EL0
action ratio

Needed EL4
action ratio

Baseline (333-eval) 1 1 1 1
SB3 DQN (167-train 0.6287 null 0.2054 0.3262
SB1 DQN (184-train) 1 0.3112 0.5798 0.1222

Table 5: Needed shift performance

Policy (WandB id) Needed & approved
EL0 action ratio

Needed & approved
EL4 action ratio

Correct ES
ratio

Baseline (333-eval) 1 1 1
SB3 DQN (167-train) 0.1982 0 0.8067
SB1 DQN (184-train) 0.5798 0.1222 0.5688

Table 6: Emergency stop and enforced shift correctness results

Overall DQN gives worse performance than the baseline algorithm. This could be an issue due
to the reward function, even though more than 200 different training experiments were done trying
different reward setups. More details regarding this are given in the discussion section.
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5 Responsible research
In this section, the ethical aspects of the research are addressed. This includes reproducibility concerns
and the open discussion regarding whether the person or the ADS should have the final word when
shifting between automation levels.

In order to make this paper reproducible, a number of steps were taken. Firstly, WandB was used
to track all experiments, both during training and evaluation. Experiment tracking included storing all
the used hyper-parameters, environment parameters such as episode length and probability functions
for driver response and the conditional accident probability depending on the risk level. Furthermore,
when doing hyper-parameter optimization, the corresponding configuration files were also saved. All
these log data together with the source code of the project will be made available upon request.

While designing the baseline policy and the reward function it was inevitable to touch upon the
question whether the human or the autonomous system should have the last word when making shifting
or emergency stop decisions. It is relatively easy to come up with scenarios where one or the other is
more preferable.

For instance, if we leave the autonomous system in charge, consider the situation from this use case
when the ADS fails to detect that the driver is fit. Then the ADS can refuse to give back the control
to the human due to its unfit belief about the driver. This is clearly problematic.

On the other hand, if the human has to have the last word in shifting decisions, other issues arise.
When the vehicle is in L4, then the person cannot be expected to be responsive in a short interval
of time. However, detecting an autonomous system failure can happen from one second to the other.
Depending on the severity of the system issue, it might be dangerous to keep driving in L4 even for
a few more seconds. Thus, in this case, it is desirable for the system to execute an emergency stop,
without approval from the person.

For this project, the compromise was made to do emergency stops without human approval, while
shifting between L0 and L4 are oriented towards using human approvals first. This is an open dis-
cussion, it seems that some sort of hybrid approach could work. In order to see how exactly, more
research will be needed.

6 Discussion
In this section the results are discussed and the known limitations are addressed. Also, the pros and
cons of the baseline policy and using DQN are pointed out. Finally, some thoughts on the simulation
and the MDP formulation are included.

As seen in the results section, the DQN-based policies failed to learn the desired behaviour despite
hundreds of trials to setup the reward function and simulation in a more suitable way. It was observed
that the baseline accumulates more rewards compared to the DQN policies during evaluation. This
shows that the issue might not be the reward function but rather the algorithm or the training setup.
Another aspect regarding the rewards is that they grew to be quite hard to explore during training
because they depend on certain observation combinations that only occur in rare cases. On the other
hand, simple rewards aren’t sufficient for this use case due to having to optimize multiple objectives
simultaneously, namely safety and comfort. Nevertheless rewards should be kept as simple as possible
and shouldn’t need to describe the correct behaviour for each possible situation separately because
then we lose the value of using RL completely. Considering that designing the reward function based on
intuition even for this simplified model was problematic, motivates the search for alternative methods
for setting up the rewards.

One of the key aspects in using deep RL for this task lies in the robustness of the learned policy.
This was not investigated during this project but once some noise is added to the observations - as
it would happen in a real life setting - the decision-tree baseline would fail miserably because of its
hard-coded nature. On the other hand, a fine-tuned DQN based policy would be able to handle such
discrepancies in the input - at least in theory. Also, designing a decision tree for a dozen, discrete
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observation variables is doable, however, doing this for a larger state space can easily explode in
complexity.

Regarding the simulated environment and MDP formulation, there are several assumptions made.
Firstly, it is assumed that the observations are fully observable and reliable. This assumption is partly
broken when autonomous system failures occur since that triggers the re-computation of TTA4U and
TTA4F, rendering the values of those variables in the time steps before the failure inaccurate. Then,
it is assumed that such observations can be computed, which is not a straightforward task in reality.
For instance, TTDU is one of those variables which are hard to compute.

7 Conclusion and Future work
To conclude, this research introduces a basic MDP environment for optimizing driving entity switching
when the autonomous system encounters an error or runs out of its ODD. A baseline decision-tree-based
policy is designed and evaluated, showing adequate performance. Different DQN implementations are
also trained to find policies for this use case, however their performance lags behind. It appears to
be the case that using DQN to handle this multi-objective decision problem using an intuition-based
reward function cannot learn a suitable policy.

To achieve comparable results to the baseline, several aspects need more investigation: simplifying
the rewards, implement and train algorithms more suitable for multi-objective RL, such as possibly [19],
alter the simulation to have more relevant training samples (and less cases for having to do nothing)
for easier learning. There are other possibilities for extending this research as well. One direction is
looking into when the driver should approve the action of the agent and when it’s preferable to take
a decision autonomously. Another important aspect is to further investigate which observations can
be obtained in reality and make their simulation more realistic. In order to provide more reliability,
introducing constraints on the action space could be an option as well. Also, in order for the mediator
system to cooperate with the driver, AI explainability will be crucial. Finally, combining the modeling
of this use case with others such as encountering uncomfortable events will be also important.
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A Hyper-parameter optimization results

Figure 7: Weights & Biases - Sweep of 33 runs
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