
Route optimization in
dynamic currents

Navigation system for the North Sea and Wadden Sea

J.P. van Halem
Delft University of Technology

September 25, 2019



2

The Zen of Python
"Beautiful is better than ugly.

Explicit is better than implicit.
Simple is better than complex.

Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.
Readability counts.

Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.

There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.
Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea – let’s do more of those! "

Peters (2014)
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Abstract

This thesis introduces a new algorithm for optimising shipping routes within a dredging project. Highly dy-
namic and time-dependent hydrodynamic features influence shipping routes. Due to the complex inter-
actions between the horizontal tide, vertical tide, stratifying forces, wind-driven forces, and limited water-
depth, shipping routes were previously only optimised for large scale routes (order of 1000 km). This study
presents an algorithm that can optimise shipping routes that are influenced by these small scales (order of 10
km) hydrodynamic features. This algorithm uses graph theory to solve for the time-dependent fastest path
between start and destination. Graph theory searches for the optimal path through a set of nodes that are
connected with edges. This study uses the time-dependent shortest path algorithm which accounts for the
FIFO-criteria (Waiting criteria) and can solve the non-convex nature of the problem.

The input of this algorithm is a hydrodynamic model. These models are Computational Fluid Dynamic (CFD)
models that calculate currents and water levels in a specific domain. The domain is discretised into cells and
nodes to calculate these hydrodynamic features. This study uses the nodes of this hydrodynamic model as
the vertices of the graph. However, for some cases, the hydrodynamic model has too many nodes for the
shortest path algorithm. This study presents a method for reducing the number of nodes without reducing
the spatial resolution. The nodes are reduced based on a combination of the vorticity and the magnitude of
the flow.

This algorithm is implemented in a python software package named Hydrodynamic Algorithm for Logistic
enhancement Module (HALEM). HALEM can determine the optimal shipping route for a given hydrodynamic
model. Defining different cost functions results in different optimisation purposes. This thesis presents cost
functions for the fastest route, shortest route, cheapest route and least polluting route. This software is then
implemented in the OpenCLSim software so that this combination of software can optimise routes of en-
tire projects. A case study simulates a beach-nourishment at Schouwen Westkop Noord to demonstrate the
practical use of HALEM and OpenCLSim. For this project, 425,500 m3 sand should be dredged offshore and
pumped onto the beach. Due to the narrow gullies and tidal changes in hydrodynamic features, the routes
were hard to predict. The simulation with HALEM and OpenCLSIM shows an increase in the production with
21 % compared to the simulation with just OpenCLSim.
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1 | Introduction

Currently, the soaring fuel prices, environmental regulations, increasing computational power, and the drive
to optimise projects leads to many researches that aim to optimise project logistics. These projects can vary
from container transfer hub design to minimising the pollution of transatlantic shipping, or tracking the spill
of dredging projects. For these projects, complexity can increase rapidly. What all these complex projects
have in common is that they create a demand for optimisation tools that can handle the complex behaviour
of the projects. A recent innovation is to simulate these complex projects with a digital twin. The digital twin
first performs the project in a digital environment before the project is executed in real life (Boschert and
Rosen, 2016). When the digital twin first preforms the project in a digital environment, the digital twin finds
the opportunities and disadvantages of the working method more easily (Ensing and Knijff, 2019, Glaessgen
and Stargel, 2012, Tuegel et al., 2011). Den Uijl (2017) present a new manner of finding the optimal working
method. OpenCLSim contains the results of this study in the form of a python tool. OpenCLSim uses digital
twins as an optimisation tool for complex logistic processes. Optimisation studies and further research in the
behaviour of complex logistics projects can use OpenCLSim as a basis. For example, van der Bilt (2019) op-
timises dredging projects with OpenCLSim for emissions of vessels. Showing that dredging projects can use
OpenCLSim as well. This tool produces more reliable estimations for projects and helps to find an optimum
work method. The OpenCLSim tool improves the current estimation method by accounting for each event in
a logistic process. This new method results in a more accurate estimation for logistic processes, and gives an
excellent platform for optimsing these logistic processes. One of the optimisations that is possible with this
model is shipping route optimisation. Shipping routes of dredging vessel are sensitive for route optimisation
since they are influenced by dynamic currents and water depth.

Globally, shipping route optimisation is of significant importance for earning money, saving fuel and reduc-
ing emissions. Many research efforts have aimed to optimise shipping routes for both commercial purposes
(Kobayashi et al., 2011, Mamanduru et al., 2016, Montes, 2005) and recreational purposes (Corno et al., 2016).
Competitive races such as the Volvo Ocean Race and the American cup lead to the development of models
that use the influence of winds, waves, and currents to gain an advantage over their competitors. For the
Volvo-Ocean race, the AkzoNobel team used the output of a wind, current and wave model to optimise their
routes (Deltares, 2017). In part thanks to this route optimisation the AkzoNobel team broke a ten-year record
in the ninth stage, from the American city of Newport to Cardiff, the capital of Wales (Blake, 2018). This com-
petitive drive for innovation is also present in commercial processes. For example, in Park and Kim (2015)
the transatlantic routes were optimised for fuel consumption. Optimising these shipping routes leads to a
decrease in costs, less pollution and an opportunity for companies to earn money.

The literature describes three methods for optimising the shipping routes. (1) the hill-climbing algorithm,
(2) the annealing method, and (3) graph theory. These three methods have different assumptions and differ-
ent uses. The first is the hill-climbing algorithm. The hill-climbing algorithm is a simple but very effective
optimisation technique in numerical analysis. This algorithm belongs to the family of local search and is an
iterative algorithm that begins with a random solution, and pursuits to improve the route from that initial
solution. This technique is applied to many different problems and is also suitable for route optimisation.
For route optimisation, the algorithm takes an initial route and a cost function as a function of position (x,y)
as input. The algorithm then searches if there are cheaper neighbours than the current nodes. If there are
cheaper neighbours than the current nodes, the route is updated. Iteratively, this results in an optimal path.
The second methods is the Late Acceptance Hill Climbing (LAHC) which was first introduced by Burke and
Bykov (2012) who implements this method. An advantage of this solution is that the continuous solution
space does not need to be discretised into nodes. This feature is an advantage since it takes small scale prop-
erties (such as narrow gullies, or small islands) into account in the solution. A disadvantage of this method
is that the hill-climbing algorithm finds optimal solutions for convex problems, which means that the algo-
rithm considers only a solution when the solution does not have local minimums. When the solution has
local minimums, the algorithm can get stuck in such a local minimum. Another disadvantage is that the an-
swer depends on an initial solution and iterates based on this initial solution. This feature means that the
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2 1. Introduction

method is a problem specific algorithm. This research aims to keep the method as generic as possible; the
problem-specific property of these algorithms is, therefore, a substantial disadvantage.

A variation of the hill-climbing algorithm is the annealing method. The annealing method describes the op-
timal route between two points in a continuous space as a ’N-1’th order polynomial that can be characterised
by N parameters. Finding the optimal value for these parameters resolves in the optimal route. Kobayashi
et al. (2011), Kosmas and Vlachos (2012) show examples of the implementations of the annealing method for
route optimisations. The annealing method is very similar to the hill-climbing algorithm. The main differ-
ence between the hill-climbing algorithm and the annealing algorithm is that the annealing assumes that the
optimal route is an N-th order curve while for the hill-climbing algorithm the route can be anything. This
similarity results in the same advantages for the annealing method as for the hill-climbing algorithm.

The last optimisation method is graph theory. Graph theory uses graphs that contains edges and vertices
(nodes). The edges connect all the vertices. By doing so, the optimal route is a collection of these edges. Cal-
culating the optimal route through nodes is a well-known problem in mathematics called the shortest path
problem (or single-pair shortest path problem); this problem is a subsection of graph theory. This method
has the advantage that it can solve non-convex problems, which means that the algorithm can not get stuck
in a local minimum. Another advantage of graph theory is that the algorithm is not problem-specific (it does
not need an initial route). For the hill-climbing algorithm and the annealing methods an initial route must
be given. The fact that the shortest path algorithms are problem independent is a significant advantage since
it makes the method a more general application. A disadvantage of graph theory is that it discretises the con-
tinuous solution space into nodes which results in a loss of spatial resolution. Another disadvantage of the
graph theory is that the computational time can increase rapidly for ample solution space. The last disad-
vantage of graph theory compared to hill-climbing and the annealing method is the directional resolution.
By discretising the continuous solution space into nodes and edges the possible directions of the route are
limited. This disadvantages can result in a stair-like pattern in the solution.

The main objective of this research is captured in the main question. This main question is elaborated in four
research questions. These follow in the next sections. The main question is:

How can the optimal shipping route be determined for given currents in the North Sea and Wadden sea?

1.1. Developing a new model to optimise shipping routes
This study aims to find an algorithm that can work together with OpenCLSim to optimise the shipping parts
of complex logistics projects. Developing a route optimisation tool and implement it in OpenCLSim expands
the work of Den Uijl (2017), van der Bilt (2019), Van Koningsveld et al. (2019). This study investigates the in-
fluence of flow velocity and water depth on the shipping routes. Due to the impacts of these hydrodynamic
features, the optimal shipping route changes with time and the optimal route is no longer the trivial route.
This problem gives rise to a need for a tool that can predict the optimal shipping route for a given hydrody-
namic model. The optimisation of the shipping routes is limited to the sailing within the dredging projects.
This limitation means that the length of the route is typically less than 50 km. This study does not cover
the optimisations of large scale routes. Other studies have already optimised these large scale route optimi-
sations. Software packages are already available for these optimisations. This is, however, not available for
shorter routes. For these short routes, the small scale details of the hydrodynamic features become essential.
This problem gives rise to challenges in the optimisation process, such as computational power constraints
and time-dependent solutions.

In this study graph theory is used to find the optimal route through a continuous solution space. The main
reason for choosing this is that it cannot get stuck in local minima. Techniques such as the hill-climbing al-
gorithm or the annealing method are known to depend on the initial conditions. For a different initial route,
the algorithm can return a completely different solution. The algorithm returns a local minimum instead of
a global minimum. This difference between the local minima and the global minima is crucial for highly dy-
namic problems such as flooding and drying of banks, or finding the route around islands. Another reason for
choosing graph theory is that it does not need an initial solution. This property makes the resulting method
more generally applicable. One of the reasons why graph theory would not be a good fit is because of the
discretisation of the continuous solution space into nodes. Discretising the continuous solution space into
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nodes could neglect small scale properties (such as narrow gullies, or small islands). This problem is a real
disadvantage of the model that Chapter 6 discusses. However, the model uses a hydrodynamic model which
discretises the solution space into nodes and edges. When using the nodes of this hydrodynamic model, none
of the information from the hydrodynamic model is lost. A significant advantage of this is that it creates no
fake resolution by interpolating. For all the reasons explained above the shortest path algorithm is chosen
over the annealing algorithms or the hill-climbing algorithms.

Graph theory discretises the continuous solution space in a graph. This graph contains nodes (vertices) and
edges (arcs). With a cost function, the weight of each of the edges is determent. The shortest path is in graph
theory defined as the collection of edges, that lead from start to destination, with the lowest sum of weights
of the edges. Graph theory uses, for example, Dijkstra’s shortest path algorithm to find the shortest path
through the graph. If there are n times more vertices, the Dijkstra algorithm will get n2 times slower (Orlin
et al., 2010). The result of this is that computational power constraints limit the route optimisation. The first
challenge of this research is to overcome these limitations. This research presents a new method for reducing
the number of nodes of the graph without decreasing the spatial resolution of the graph. The first research
question captures the research for reducing the number of nodes without reducing the spatial resolution.
Research question 1 is:

What is the best graph strategy given the computational power constraints?

The second challenge of this research is the time-dependent nature of the optimal shipping route. This re-
search aims to find the optimal shipping route for given currents. These currents are not constant in time. If
a shipping route takes three hours, the currents can completely change their direction and magnitude in this
time frame. These temporal changing currents need to be taken into account to create a correct prediction
for the shipping routes. A significant issue that is induced by time-dependent route optimisation is waiting.
When the hydrodynamic conditions change over time, it can be better to wait until the unfavourable condi-
tions are passed and then to sail. This research presents an algorithm that can take these time-dependent
currents and FIFO problem into account when solving for the shortest path. When currents change with
time and waiting for tides is sometimes better than directly sailing, the optimal sailing velocity should not
be constant. When the sailing velocity of the vessel cannot be constant, the definition of a cost function be-
comes non-trivial. By changing the cost function, the optimisation goal changes as well. This study presents
a method for making calculations with dynamic vessel speed and presents four cost functions for the fastest
route, shortest route, cheapest route, and least polluting route. The second research question captures the
research for this time-dependent algorithm. Research question 2 is:

What is the best method for time-dependent route optimisations?

1.2. Cooperation between OpenCLSim and HALEM
The goal of this research is to optimise the shipping routes of complex logistics projects in OpenCLSim. The
previous section introduces route optimisation. To make sure this research can be reproduced and used by
third parties, this study uses the OpenEarth philosophy, after Van Koningsveld et al. (2010). This philosophy
is used by many other scientists to ensure that their research is reproducible (Shen, 2014, Wilkinson et al.,
2016). The ability to reproduce is done by developing a modular python tool. This tool should be able to
optimise the route for a given start location, stop location, departure time, and hydrodynamic model. This
python tool will be packaged and published. The third research question captures the study in publishing
this package and making it modular. Research question 3 is:

How can the route planner be implemented in a modular package so that it can be used in different cases?

The python package needs to be implemented in OpenCLSim to optimise the shipping routes of complex
logistics projects in OpenCLSim. This study presents a mix-in for the python package in OpenCLSim. The
optimal route that is returned by the python package is dependent on the properties of the vessel. The most
important parameters of which the python package depends are sailing velocity and draft. However, these
parameters are not constant in a project. The difference in the sailing velocity of an empty ship and a fully
loaded ship can vary with 2 knots. The difference in draft between a fully loaded ship and an empty ship
can be up to 4 meters. The load factor of the ship can determine the draft and sailing velocity of the vessel

(r = Wshi p−Wempt y

W f ul l−Wempt y
, in which W is the weight of the vessel, the subscripts ship, empty, and full mean respectively
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weight of the vessel, weight of the vessel when empty and weight of the vessel when full). This property means
that the optimal route is dependent on the load factor of the vessel. In this study, a method to predict the op-
timal load factor per dredging cycle is presented. This method predicts the optimal load factor of the vessel
in OpenCLSim combined with the python package. OpenCLSim and the python package optimises a project
for the route and load factor. For this study, a reliable hydrodynamic model is of vital importance. There-
fore, this study compares different hydrodynamic models, and accesses the influence of the hydrodynamic
model. Research question 4 describes the research for the load factor optimisation and the optimisation of a
complete project. Research question 4 is:

How can dredging projects be optimised for the given route optimisation package and OpenCLSim?

1.3. Scope of the research
Some assumptions are made in this study to model the chaotic nature of reality. This section describes the
main assumptions for this study. The first and foremost assumption is that inertial forces on the ship and
inertial effects of the ship can be neglected. Inertial models are very accurate; however, they are also very
computationally intensive. Since the inertial effects are only significant in the start and end phase of the
route, the benefits of inertial models are minimal. In section 2.4, the model that is used to predict the ship
movement is explained in more detail.

The second assumption is that currents only influence the ship movement. In reality, the ship movement is
also influenced by wind and wave forcing. However, this study neglects these forces because it reduces the
required memory for the calculations significantly. Including the wind and wave forcing should be a rela-
tively simple step, it would, however, require a lot more memory (both RAM and storage memory). The third
assumption in this study is that the hydrodynamic model is correct. In reality, the hydrodynamic models are
not perfect (see chapter 6), and this can influence the outcome of the model. This assumption has particular
substantial implications for the bathymetry. The bathymetry in tidal inlets in highly dynamic, which makes
it hard to capture. This study assumes that the bathymetry is accurate.

The last influential assumption is that the route is a freely routable route. This assumption means that the
route is allowed to deviate from a particular path. An example of a not free-routable route is sailing through
a channel or being obliged to navigate through buoys. For these examples, the route optimisation tool is not
valid and not useful.

1.4. Report overview
This report consists of 7 chapters. The next chapter describes the current literature and background of the
problem. This chapter contains all the information for the development of the model. The third chapter
presents the model. This chapter presents the methods for the model development and model application.
The fourth chapter presents the model validation that of HALEM. This chapter shows both the methods and
results of the model development. The fifth chapter presents the result that follows from the HALEM pack-
ages and the model applications. The sixth chapter discusses the results and shows the place of this study
compared to the literature. The final chapter concludes this report. This section gives the conclusions and
recommendations.
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A view of the existing literature is needed to answer the main and research question. This chapter explains
the existing literature in five sections. The first section gives a broad overview of the dredging process. In the
second section, a general overview of the currents in the North,- and Wadden sea is given. A numerical model
is used to obtain data about these current. The third chapter describes the available models. The third section
continues with how these currents influence the movement of the vessel. In this section, the model that is
used to explain the ship movement is elaborated. This chapter finishes with the different route optimisation
methods that are available. The last section elaborates on the method that is used in this study, which is graph
theory. Each section can be read on its own; however, together, all the sections give a complete view of the
existing literature on this subject.

2.1. Dredging processes
In this study route optimisation is applied for dredging projects. Dredging works are often schematised if four
parts. These four parts are: 1. Dredging (or loading), 2. Sailing filled, 3. Placement (or unloading), 4. Sailing
empty. fig. 2.1 shows these steps in a visual manner. In general, these four steps are repeated until the desired
amount of material is moved.

This study tries to optimise dredging projects by optimising the shipping parts. This shipping parts are ex-
ecuted in step two and four of the dredging cycle. Optimising the shipping parts of dredging projects in-
fluences the loading and unloading parts of the dredging cycle as well. Loading a Trailing Suction Hopper
Dredger (TSHD) is in general a non-linear process. This means that the hopper fills faster when it is empty
than when it is almost full. filling the hopper for 100 % takes in general infinite time. Therefore, hoppers are

in general not filled for 100 %. The filling of a hopper is indicated with the load factor (r = W −Wempt y

W f ul l−Wempt y
, where

r is the load factor and W is the weight of the vessel). Depending on the sailing time, loading curve, unloading
cure, material properties and other parameters this load factor can be optimised. This means that when the
sailing times are optimised the optimal load factor changes.

Figure 2.1: Schematisation of a dredging cycle

5
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2.2. Currents in the North,- and Wadden sea
To asses, the influence of the currents on the optimal shipping route, knowledge about these currents is
needed. This section presents a general overview of the currents in the North,- and the Wadden Sea. The
currents that influence the shipping routes are large scale currents that often have a clear pattern. In this
study, the currents are separated into three classes. The distinction between these classes is made based on
the nature of the forcing of these currents. This results in the following classifications — first the tidal cur-
rents, second the wind-driven currents and lastly the density-driven currents. The last part of this chapter
covers the three-dimensional nature of the currents. Here the distribution of the flow velocities over depth is
elaborated. By distinguishing currents into three classes, a clear overview of the currents is provided, which
provides a better understanding of the influence of the currents on the shipping route.

2.2.1. Tidal currents
The first class of currents are the currents that are driven by the tides. These tides are a well-known phe-
nomenon that occurs on a very regular basis. The tides are so regular because the gravitational dance between
celestial bodies drive them. The tides are generated by the forces of the moon and the sun. The difference in
inertial forces of the orbital path and the gravitational forces of the celestial bodies results in a force exerted
on the water called differential pull. This differential-pull result in a deformation of the water masses on the
earth surface. The earth rotates underneath this deformation resulting in a tidal wave from the earth’s refer-
ence frame.

The tidal signal that can be measured on earth can be decomposed in several components. According to
the Fourier series, any periodic function can be decomposed into a summation of sinusoidal functions (see
equation 2.1). When this is done for the tidal signal, the different components are called tidal constituents
and are indicated with a letter and a number (for example M1, S2, 2MK5). The semi-diurnal components are
indicated with a 2. The diurnal components are indicated with a 1. The long period components do not have
a number. Each tidal constituent has its physical meaning. For example, the M stands for the moon, S for
sun, and so on. This results in, for example, the M2 tide, which is semi-diurnal tidal constituent forced by
the moon. The Fourier analysis of the tide results into several tidal constituents (n until N in equation 2.1)
each with its own unique amplitude (an in equation 2.1) and phase(αn in equation 2.1). An example of a tidal
signal and the tidal constituents that follow from the tidal analysis is shown in appendix B. The most impor-
tant tidal constituents and their physical meaning are explained below. Equation 2.1 shows the mathematical
function for the tide. In this equation η(t ) is the measured water level, a0 is the mean water level, an is the
amplitude of the tidal component, ωn is the angular velocity of the tide, and αn is the phase difference of the
tidal constituent.

η(t ) = a0 +
N∑

n=1
ancos(ωn t −αn) (2.1)

An essential tidal constituent is a tidal wave that results from the forcing of the moon. This tidal constituent
is called M2 tide. The higher harmonics of this wave are called M4, M6, et cetera. The forcing of the moon
is, for an equilibrium tide, responsible for 69% of the tidal mechanism (Bosboom and Stive, 2009). This tidal
constituent has a period of 12.42 hours. The forcing of the sun causes, for an equilibrium tide, the rest of the
tidal mechanism. This tidal constituent is called S2 tide. The higher harmonics of this wave are called S4, S6,
et cetera. This tidal constituent has a tidal period of 12.00 hours. The small difference between the M2 and
the S2 tide result in a beating of the signal. This is known as the spring and neap tide variation.

Another tidal mechanism is the daily inequality (lunar-solar declination). This tidal constituent is called the
K1 tide. In contrast with the M2 and the S2 tide, this component is not the result of a force. The sun and the
moon rotate in (approximately) the same plane. However, the axis of the earth’s rotation is not perpendicular
to this plane. The angle of this difference is called the earth’s declination. This angle reaches its minimum of
-23.5 degrees on December 22 (Northern winter solstice), and its maximum of 23.5 degrees on June 21 (North-
ern summer solstice). When the earth rotates underneath the deformation of water with this declination, this
results in a daily inequality. This tidal component has a period of 23.93 hours. Other diurnal components are
O1 tide, which is the principal lunar tide, the P1 tide, which is the principal solar tide, and the Q1 tide, which is
lunar elliptical tide. Other long period components are the Fortnightly components (Mf), the Monthly com-
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Figure 2.2: Overview of the North Sea amphidromic tidal system for the M2 tide. After Kvale (2006). Lines of equal tidal range are shown
as “co-range lines”. The co-tidal lines indicate the time when high water arrives. Note the counterclockwise rotation of the tidal wave
around each amphidromic point.

ponents (Nm), and the semiannual components (Ssa).

When there would be no landmasses, this would result in the equilibrium tide. Due to landmasses, this equi-
librium tide is transformed into a tidal system with amphidromic points. The part of the system for the North
sea is displayed in figure 2.2. The propagation of the tide can be explained as an oscillating wave around an
amphidromic point. The propagation velocity and tidal deformation can be explained with a Kelvin wave
(Bosboom and Stive, 2009). Figure 2.2 shows a schematisation of this kelvin wave, and it’s amphidromic
points, of the North Sea. In this figure, the co-tidal lines indicate the time when high water arrives. Lines of
the equal tidal range are shown as "co-range lines" (Kvale, 2006).

2.2.2. Wind driven currents
Winds and storms cause storm setups and wind-induced currents. For large storms, these currents cannot be
neglected. Although these currents are highly irregular and seem on a small scale completely irregular, some
large scale patterns and forces can be distinguished. The large scale patterns have a large influence on the
wind climate of the North,- and the Wadden Sea. In this section, these large scale patterns are explained, and
the influence on the North,- and Wadden sea climate is explained.

The primary source of earth’s heat is electromagnetic radiation from the sun. This radiation is most energetic
at the equator and weakest at the poles. This results in a warm region at the equator and a cold region at the
poles. Due to the rising of warm air, this creates a convection cell from the equator to the poles. If the earth
were not rotating this single convection cell from the equator to the pole would be stable. However, due to
the rotation of the earth, a Coriolis force exerted on the air, and the convection cell breaks up in three con-
vection cells. Figure 2.3 shows a schematic representation of pressure belts and prevailing wind systems at
the earth’s surface. These three convection cells cause the trade winds, the westerlies and the polar easterlies.
These three different winds have different characteristics. The polar easterlies are moderate and blow most
of the year only over land or ice. The westerlies are strong and variable winds. The trade winds are much



8 2. Literature Study

Figure 2.3: Global winds in January and July indicating the main wind systems (Anthhoni, 2000).

more moderate but persistent throughout the year. These global wind patterns describe the wind climate for
a given part of the world. Just as for the tides, these winds would be stable if there were no landmasses. How-
ever, the landmasses cause instability in these convection cells. Since the land has much higher conductivity
landmasses heat much faster in the summer than the oceans. Topographical features such as mountains play
a significant role as well. This causes a different wind global wind pattern in the summer than in the winter
(see figure 2.3).

In figure 2.3, the westerlies and the trade winds can be observed. The figure shows that especially the Asian
landmass causes a considerable disruption in the pressure belts. It can also be noted that some tropical
areas are dominated by trade winds (blowing in the same direction throughout the year), whereas seasonally
reversing monsoons dominate other regions of the tropics and subtropics. For the North,- and Wadden sea,
the influence of the westerlies is rather significant. However, the impact of the European landmass cooling
down in the winter is visible, resulting in a landward wind. This describes the wind climate on the Dutch
Continental shelf pretty good. In the summer, winds are more constant, and in the winter, large storms can
cause large setups along the coastline.

2.2.3. Density driven currents
Due to differences in salinity or temperature of the water, a difference in density of the water can occur. A
front is a boundary between two or more water masses. When there is a transition from one water mass
to another, a front can arise. When the density of a water mass varies internally, stratification can occur.
Stratification can result in internal waves or a shutdown of turbulence. The stratification and fronts induce
currents, due to the 3D nature of these currents they cannot be predicted by 2DH modelling. Therefore the
density-driven currents can be hard to predict and difficult to understand. These density-driven currents are
explained in three categories: estuarine fronts, thermohaline fronts, and tidal fronts.

A good example of the importance of density-driven currents is described in Claessens (2016). Van Oord was
building wind park Gemini, for workability conditions, currents were an important factor in the cost estima-
tion of the wind park. The 2DH storm surge models predicted currents of only 0.7 ms−1, however currents up
to 1.2 ms−1 were measured. In Claessens (2016), it is hypothesised that this difference in flow-velocity is due
to density-driven currents. Understanding these currents is, therefore, of vital importance to use flow models.

The outflow of fresh river water into the salt ocean creates a region of tidal straining, stratification, and river
plumes, these regions are generally called ROFIs (Region Of Freshwater Influence). Due to Coriolis these river
plumes are deflected to the right (on the northern hemisphere) and create a coastal river. Figure 2.4 shows



2.2. Currents in the North,- and Wadden sea 9

Figure 2.4: Schematization of a estuarine fronts (left) according to Yanagi (1987). Example of estuarine front (right) according to De Boer
(2008). The example shows the river plume that is cause by the Rhine ROFI

Figure 2.5: Schematization of a thermohaline front (left) according to Yanagi (1987). A example of a thermohaline front (right) according
to University of Reading (2019). The example shows coastal upwelling due to temperature differences.

Figure 2.6: Schematization of a tidal front (left) according to Yanagi (1987). A example of a tidal front (right) according to Claessens
(2016). The example shows the predicted position of frontal boundaries at spring tide (red) and neap tide (yellow). Based upon the
Simpson-Hunter criteria for tidal fronts only taking into account tidal mixing and solar heating.

the schematisation of an estuarine front and an example. In De Boer (2008), the interaction between tides
and stratification in the Rhine Region of Freshwater Influence is discussed.

When there is simultaneous heating and cooling of a water mass thermohaline circulation can occur. The
warm water rise to the surface and the cold water sinks to the bottom resulting in a convection cell. The
ocean conveyor belt and coastal upwelling are well-known examples of thermohaline circulation. Figure 2.5
shows a Schematization of a thermohaline front and an example.

The last forms of density-driven currents are tidal fronts. A tidal front is a unique structure in coastal waters
where tidal mixing is dominant during the summer. The tidal front is the boundary where the mixing force of
the tide is no longer large enough to create a well-mixed density distribution, and the depth profile becomes
stratified. These tidal fronts are highly dynamic throughout the year and through the spring and neap tide
cycle. In figure 2.6 the schematisation of a tidal front and the tidal fronts in the North,- and Wadden sea are
shown.

These three types of fronts together form the basis of the classification of water masses in the North,- and the
Wadden Sea. In figure 2.7 these water masses according to De Boer (2008) are displayed. In this figure, the
Rhine (A4), and Themes (A2) ROFI are visible. Note that due to the current through the Channel the Themes
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Figure 2.7: Classification of the different North Sea water masses. After De Boer (2008). The water types are A1 (Scottisch coastal wa-
ter), A2 (English coastal water), A3 (Channel water), A4 (continental coastal water), A5 and A6 are transitional areas between A4 and B
(Northern North Sea water), D is transitional water to C (Skagerrak and the Norwegian Rinne).

ROFI is deflected to the left instead of to the right. In the figure, the influence of the current through the
channel is also visible. In the figure, the tidal fronts (A6 and A5) are indicated, and the stratified areas (B and
D) are also visible.

2.2.4. Depth profiles of the currents
The combination of tidal currents, wind-driven currents, and density-driven currents result in a complex dis-
tribution of the total currents over the depth. However, most of the available hydrodynamics models are 2DH
models. This is due to computation power restrictions and the applicability of 2D hydrostatic models for
storm surge forecasting. These 2DH models are effective for predicting the water level, but the accuracy of
flow velocity is barely investigated. This section describes the different velocity distributions over depth, and
which is the most accurate for the North,- and Wadden sea.

For flow in a river, the depth profile of the currents can mathematically be determent. This results in a log-
arithmic profile over depth (Uijttewaal, 2018). This is the most widespread assumption for the profile of the
currents over depth. Since the current profile of open water cannot mathematically be determined, a log-
arithmic profile is often assumed. The logarithmic profile is chosen out of a lack of alternatives. However,
this is far beyond the assumptions that lead to the logarithmic profile (De Boer, 2008, Haren, 1990, Maas and
van Haren, 1987) investigated the velocity profiles in the North Sea. From this research, it is found that the
velocity profile is not linear in the North Sea (see Figure 2.8 ). It is found that the velocity vectors are ellipses,
and rotate during the tidal cycle. In this article, it is found that the lower part of the profile forms a boundary
layer and the upper part of the profile is linear. This research shows that the logarithmic profile should not be
used at sea and that there is no suitable method for transforming the depth-averaged currents into surface
currents.
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Figure 2.8: "Observations (denoted by dots) of amplitudes W± and phase angles θ±. of the M2 frequency rotary current components as
a function of normalized depth. Solid curves are best fit theoretical curves. Error bars are indicated at the top." (Maas and van Haren,
1987)

2.3. Hydrodynamic models
The objective of this study is to investigate the influence of the hydrodynamic conditions, described in Sec-
tion 2.2, on the shipping route. To do so, data of the hydrodynamic conditions are needed; this data is gained
from a model. The combination of the tidal, wind, and density-driven currents described in chapter 2.2 are
so complex that they cannot (yet) be solved analytically. Therefore this study uses numerical solutions. These
hydrodynamic models are a complicated subject in itself. In this study, the hydrodynamic models are only
used as input of the route planning toolbox. This study does not go into detail about the specific properties
and discretisations used to create the hydrodynamic models. However, some knowledge of the critical prop-
erties is needed to be able to use the hydrodynamic models for route optimisation. This section discusses the
basic knowledge about hydrodynamic models required for the route planning toolbox.

For this study, shipping routes are limited to shipping routes on the North,- and the Wadden Sea. Therefore,
the hydrodynamic models are limited to the North,- and the Wadden Sea. To make accurate computations
for the North,- and Wadden sea, the DCSM (Dutch Continental Shelf Model) domain is used. Figure 2.9 shows
the domain of the DCSM model.

2.3.1. Model properties
For different purposes, different models were developed. These models have many different properties. In
this section, the most important properties are explained. There are many different properties, such as nu-
merical schemes, stability criteria, boundary conditions, et cetera, that are not covered in this report.
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Figure 2.9: Model domain of DCSMV6-ZUNOV4-KF: The dotted white line indicates the border coupling between the DCSMV6 and
ZUNOV4 models. The red dots with a white border are the locations of 32 water level measurement stations used for data assimilation
(Sumihar, 2012).

In numerical models, a distinction is made between 2DH models and 3D models. The 3D models are detailed
and accurate but computationally intensive, and the 2D models are faster but cannot model the density-
driven currents and assume a logarithmic profile of the velocity over depth. For a long time, only the 2D
models were used since 3D models were not yet feasible. However, nowadays the computational power has
increased significantly, and 3D models are starting to take their place.

In numerical models, the continuous solution space can be discretised with a grid. For this grid, different
choices can be made. In this report, three different types of grids are mentioned. The three different meshes
are visualised in figure 2.10. For Cartesian grids, the resolution is constant in space. For curvilinear and
irregular grids the resolution is not constant in space. The first and the most simple one and is a Cartesian
grid. Each point on a Cartesian grid can be specified with an (m, n) coordinate and the neighbours follow
directly from each point. The second grid is curvilinear. This is a more complicated variation of a Cartesian
grid. Here the grid lines are curved, but each point can still be described with an (m, n) coordinate and the
neighbours follow directly from the grid. The third grid type is irregular grids. Here the grid points do not have
a specific order and cannot be determined from an (m, n) coordinate. The neighbours do not follow directly
from the grid point but are defined in a separate list. When the grid points are connected with all triangles,
this grid is called a Triangular Irregular Network (TIN). When the grid points are connected with triangles,
squares, pentagons or hexagons, it is called a Flexible Mesh (FM). The right plot of Figure 2.10 shows an FM
grid.

2.3.2. Models used in this study
The Netherlands is a country that is driven by the opportunities and threats of the ocean. This raises a need
for information about the behaviour of the ocean that has resulted in sophisticated hydrodynamic models
in many varieties. Since the output of these models is needed for many different purposes, a few of these
models are publicly available. Rijkswaterstaat publishes these models on http://noos.matroos.rws.nl/.
This report refers to these models as operational models.

http://noos.matroos.rws.nl/
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Figure 2.10: Three different types of grid discretisations. The grid on the left is a Cartesian grid, The grid in the center is a curvilinear grid
and the grid on the right is a irregular grid (TIN).

The first model is the DCSMv6-ZUNOv4 kf model. This model is a domain decomposition model which are
coupled through a horizontal domain decomposition. The ZUNOV4 model is a 2DH model which covers
the whole southern North Sea including a part of the English Channel and has a finer resolution than the
DCSMV6 model. The boundary conditions of the more detailed ZUNOV4 model are taken from, the larger
continental shelf model DCSMV6. Figure 2.9 shows the domains for both models. The boundary between the
DCSMv6 model and the zunov4 model is indicated with a white dotted line. The successor of the DCSMv6-
ZUNOv4 kf model is the DCSM-FM models. These models are currently in development. When these models
are finished, they will replace the DCSMv6-ZUNOv4 kf model.

In this study, four different numerical models were available. These four models are summed up below. The
DCSMv6-ZUNOv4 is the current operational model and is publicly available at http://noos.matroos.rws.
nl/. The FM models are currently in development by Deltares and will be the successor of the zuno model.
All these models model the tidal and wind-driven currents.

• DCSMv6-ZUNOv4 (With Kalman-Filter)

• DCSM-FM 0.5 nm (nautical mile)

• DCSM-FM 100 m

• 3D DCSM-FM 0.5 nm

The first important distinction between the models is that the DCSMv6-ZUNOv4, DCSM-FM 0.5 nm, and the
DCSM-FM 100 m models are 2DH models. These models can, therefore, not model density-driven currents
(Zijl et al., 2015). The 3D DCSM-FM 0.5 nm model is, however, a fully 3D model and can model the density-
driven flows (Zijl et al., 2018). The second important distinction is grid discretisation. The DCSMv6-ZUNOv4
uses a combination of a Cartesian grid and a curvilinear grid. The DCSM-FM 0.5 nm, DCSM-FM 100 m, and
the 3D DCSM-FM 0.5 nm model use an FM grid. The third distinction is resolution. Since all of the models
use either a curvilinear grid or an FM grid the grid size is nowhere constant. However, the grid size of the
DCSM-FM 0.5 nm and the 3D DCSM-FM 0.5 nm model are identical and approximately 0.5 nm in Dutch
coastal waters. The resolution of the DCSM-FM 100 m model is much finer and around 100 meters in Dutch
coastal waters. Finally, the DCSMv6-ZUNOv4 model has the most course grid.

A critical remark can be placed with the DCSMv6-ZUNOv4 model. This model was initially developed for
predicting water levels. When the model was developed, there was no accurate bathymetry available. This
was compensated at some points with discrete jumps (Zijl et al., 2013). These sudden jumps can influence
the modelled currents.

http://noos.matroos.rws.nl/
http://noos.matroos.rws.nl/
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2.4. Ship movement study
A method is needed to predict ship movements to determine the optimal shipping route. This section presents
the different methods to predict ship movements under the influence of forcing of currents, wind or waves.

2.4.1. Inertial models
The most accurate method for predicting ship movements is an inertial model. This is Newton’s second law
implemented on the ship. The result is a system of differential equations. Yasukawa and Yoshimura (2015)
introduced a standardised method for applying these equations. The resulting equations are:

(m +mx )u̇t − (m +my )vt R −xG mR2 = XH +XR +XP

(m +my )v̇t + (m +mx )ut R +xG mṘ = YH +YR

(IzG +x2
G m + Jz )Ṙ +xG m( ˙vm +ut R) = NH +NR

(2.2)

In this equation the variables of interest are vm ,u,R which are respectively lateral velocity and mid-ship,
Surge velocity and yaw rate.xG is the distance between the turning point of the ship and the centre of gravity.
m,mx and my are the mass of the ship and the added mass in x and y direction. IzG is the moment of inertia
of ship around the centre of gravity and Jz is the added moment of inertia. The forces on the ship are denoted
in the right-hand side of the equations. The subscripts are respectively Hull forces, rudder forces and pro-
peller forces. The hull force vector accounts for the wind, wave and current forces. The propeller force vector
accounts for the amount of propulsion power In the rudder force vector, the rudder angle δ can be accounted
for.

These standardised equations are called the Manoeuvring Modelling Group (MMG) equations. These equa-
tions are highly useful for determining the capabilities of the ship. Chen et al. (2015), Fitriadhy et al. (2012)
use these equations to determine the minimum turning circle of a specific ship.

2.4.2. Vector addition models
These MMG equations are very accurate for predicting the limits of the ship but are also computationally
intensive. In a steady-state condition, this system of differential equations results in a simple vector addition
model. For this vector addition method, the velocity vector due to forcing (u f , v f ) and the velocity vector
of the ship compared to the water (us , vs ) are added to each other. In figure 2.11 the assumed parameters
are displayed. For this calculation, the current location, goal destination, forcing velocity vector, and the
length of the ship’s velocity vector are known. The parameters of interest are the total velocity vector (ut , vt )

Figure 2.11: The parameters for the addition of the flow vector (orange) and the vessel vector (green). This gives the total velocity (Blue).
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given that the direction of the total velocity vector is towards the goal. A new coordinate system is defined
to calculate the total velocity vector. This system has its origin at the centre of the ship. The surge vector
(s) along directed in the course of the ship, and the lateral vector (n) is directed perpendicular to the course
of the ship (see figure 2.11). α is the angle between the course of the ship and the flow vector. This lateral
component(n f ) and surge component (s f ) of the forcing vector can be calculated as follows:

n f =−ns =
√

u2
f + v2

f sinα

s f =
√

u2
f + v2

f cosα
(2.3)

Now the surge component of the total velocity vector (st = s f +
√

v2
max −n2

s ) can be calculated given the lateral
component of the ship (ns =−n f ) and the length of the ship’s velocity vector (V , reduced for squat). Now that
the surge component of the total velocity is known a simple transformation can calculate the total velocity
vector in the original coordinate system. The drift angle(β) is the angle between the ship’s velocity vector
(with respect to the water) and the course and is not equal to zero when currents are present.



ut =
(

s f +
√

V 2 −n2
s

)
cosα

vt =
(

s f +
√

V 2 −n2
s

)
sinα

β= tanh
vt − v f

ut −u f

(2.4)

This method determines the total velocity of the ship for a given velocity of the ship and the velocity vector
of the forcing. This velocity vector due to forcing is the substitution of three vectors. First, the velocity vector
due to currents, second the velocity vector due to the wind, and third the velocity vector due to waves. These
individual vectors can be calculated for the steady-state variation of the MMG equations. This results in a
forcing vector due to the current that is equal to the currents itself. In this study, just the forcing due to the
currents is used. However, the model can relatively only be updated by including a wind and wave vector.

2.4.3. Squat

When modelling ship movements, the squat is an important effect. The squat effect takes place when a ship
travels through a confined space (such as a channel). Due to the decrease of the cross-sectional flow area that
is caused by the presence of the ship, the flow velocity increases at the location of the ship. Bernoulli’s law
says that when the flow velocity increases the pressure decreases. This decrease in pressure causes a further
sinkage of the ship called squat. This squat effect causes a bow wave in front of the ship witch increases the
Resistance of the ship significantly. With empirical formulas, the sailing velocity in confined water can be
calculated based on the dimensions of the channel and the sailing velocity in deep water. These equations
can then be simplified to unconfined shallow water waterways (such as the Wadden Sea).

Many equations can predict squat effects. In this study, the equations that are used within van Oord are used
as well. Equation 2.5 shows the equations for squat for confined spaces (van Oord, personal communica-
tion, 2019). In equation 2.5, the parameters are defined as: Froude number: F r , deep water sailing velocity:
Vmax , gravitational constant:, g , water depth: h, total weight of the ship: Wshi p , Length over the waterline of
the ship: L, Width over the waterline of the ship:, B , draft of the ship:, T , density of water: ρw , width of the
channel: b, under keel clearance: ukc, Hydraulic radius: RH , block coefficient: Cb , blockage coefficient: S,
critical sailing velocity, Vcr i t i cal , maximal permissible squad max_squat , velocity at which squat is equal to
max_squat : Vmax_squat , and V the maximal sailing velocity for the given waterway.
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F r = vmax√
g h

Cb = Wshi p

LBTρw

S = BT

b +2h +2T +B

RH = bh −BT

b +2h +2T +B
max_squat = h −T −ukc
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(2.5)

Equation 2.5 is valid for shipping in confined waterways. When the waterway is unconfined, for example, on
the open sea, another function should be used. For this study, it is assumed that the shipping route is freely
routable; this means that the waterway is not confined. Equation 2.5 can be used for unconfined waterways
by taking b = 9W W L.
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2.5. Optimizing with graph theory
In Chapter 1, the different route optimisation methods that are available in the literature are summarised,
and the choice for optimisation method that is used in this study is elaborated. The optimisation method
that is used in this study is graph theory. This section elaborates the subject graph theory. Optimising a route
through several vertices and edges is a classic problem. In the early stages of numerical computational math-
ematics, algorithms were developed to solve these problems. However, the real ground-breaking application
of these algorithms developed much later due to the lack of computational power. Today we are living in
a time and age where these numerical applications can solve significant problems. This study focuses on
finding an innovative application for these decades-old algorithms. This section explains the shortest path
algorithms that exist in the literature. This section starts with the variations of the shortest path algorithms
that exist, continuous with the distinctions between graphs, to end up with a general description of the spe-
cific problem that is relevant for this study, namely the single-pair shortest path problem (SPSPP). Lastly,
there is an example given of Dijkstra’s algorithm; this is the most basic SPSPP algorithm and is used often in
this study.

2.5.1. Variations of the shortest path problem
The shortest path problem consists out of multiple sub-problems. To find the right method for the correct
problems, categorisation of these problems should be made. Four distinct categories can be defined for the
shortest path problem (Cherkassky et al., 1996, Goldberg and Johnson, 2009, Turner, 2011). All four groups
have different numerical methods to solve them. This section describes all four of them and explains which
is relevant for the optimal route problem.

First, there is the all-pairs shortest path problem. This problem searches for the route with the lowest cost
function that travels through all the vertices, for no given start or end. Second, there is the single-source
shortest path problem. This problem searches for the route with the lowest cost function that travels through
all the vertices, for a given start but no given end. Third, there is the single-destination shortest path prob-
lem. This problem searches for the route with the lowest cost function that travels through all the vertices,
for no given start but a given end. This problem is the inverse of the single-source shortest path problem for
undirected graphs; however, it is different for directed graphs. Lastly, there is the single-pair shortest path
problem. This problem searches for the shortest path between a source vertex and a target vertex. The so-
lution does not travel through all the points and depending on the cost function does not have to be the
geometrical shortest path.

2.5.2. Distinctions between graphs
The shortest path algorithm seeks to find the cheapest solution of edges that are a solution for the spe-
cific problem. In graph theory, the route can travel from node to node when there is an edge specified. In
graph theory, there is a database that contains all the nodes, edges, and weights of the specific problem. This
database is called a graph. This section elaborates on the difference between the graphs.

A general distinction between graphs can be made based on directionality and weights Networkx (2014, 2015).
Unweighted graphs are graphs that have no weights assigned to their edges; for these graphs, all the edges
have the same weight. Weighted graphs have weights assigned to their edges. This is done with a so-called
cost function (Nannicini and Liberti, 2008). The optimal route is the set of edges with the lowest total weight.
This is called the optimisation of the cost function. Within the weighted graphs, there are directed, undirected
and mixed graphs. For directed graphs, the output of the cost-function depends on the direction of the edge.
for example: C (V 1,V 2) 6= C (V 2,V 1) (C is the cost function, V1 and V2 are Vertex 1 and 2). A mixed graph
means that some edges are directed, and some edges are undirected. This implies that a directional or mixed
graph is per definition a weighted graph; otherwise, the cost function cannot be different.

2.5.3. Single Source Shortest Path Problem (SSSPP) algorithms
The problem that needs to be solved in this study is a single-pair shortest path problem for directed and
weighted graphs. A commonly used method to solve the single-pair shortest path problem is by using a
single-source shortest path problem method. The stop criteria are changed from stop when all vertices are
visited to Stop when target vertex is reached. The single-destination and all-pair method cannot be used for
the single-pair method.
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Figure 2.12: Graph of the simple example with a total of 5 vertices and 7 edges. The shortest pat from vertex A to B is: A −→ D −→ B

The Floyd-Warshall algorithm (Floyd and Warshall, 1962) specialises on finding shortest paths in a weighted
graph with positive or negative edge weights (but with no negative cycles). The Johnson algorithm (John-
son, 1977) specialises for sparse graphs with positive or negative edge weights (but with no negative cycles).
Both these algorithms calculate the shortest path or the all-pairs shortest path problem. These algorithms
are therefore not useful in this study.

In Dijkstra (1959) the Dijkstra algorithm for the single-source shortest path problem is given. This method has
a time complexity of O(V 2) (where V is the number of vertices). The method is applicable for single-source
shortest path problems with undirected weighted graphs.

Bellman and Odcira (1956) proposes the Bellman-Ford algorithm. The Bellman-Ford algorithm solves the
single-source shortest path problem if edge weights may be negative. This method has a time complexity of
O(|V E |) (where V is the number of vertices and E the number of edges). The algorithm is slower than the
Dijkstra algorithm but is more versatile in return. The method is applicable for single-source shortest path
problems with directed weighted graphs.

Hart et al. (1968) the A* search algorithm is proposed for solving the single-pair shortest path problem. This
algorithm uses heuristics to try to speed up the search. This method has a time complexity of O(E). The
method is applicable for single-pair shortest path problems with directed weighted graphs.

2.5.4. Example of Dijkstra’s algorithm
This section shows a simple example of the steps that Dijkstra’s algorithm makes to find the shortest route. For
this example, the arcs are weighted and undirected. The simple example is to find the shortest path through
the graph in figure 2.12. The following parameters are defined to start the computation:

• start vertex = A

• destination vertex = B

• current vertex = start vertex

• visited = []

• initial values of the weights see table 2.1

Table 2.1 show three columns. The first column is the column that indicates the vertex, and the second col-
umn indicates the distance from the initial vertex (A) to the vertex of that row, the last column shows the
previous vertex in the shortest path to the vertex of that row.
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Table 2.1: Simple example of Dijkstra’s algorithm. Table with results at t = 0.

Vertex
Distance

from A
Previous

vertex

A 0
B ∞
C ∞
D ∞
E ∞

In the enumeration below the while-loop of Dijkstra’s algorithms is displayed. The loop is repeated until the
while condition is no longer valid.

While current vertex is not destination:

1. Visit the unvisited vertex with the smallest know distance from the start vertex

2. For the current vertex, calculate the distance of each neighbour from the start vertex.

3. If the calculated distance is less than the known distance update the distance.

4. add the current vertex to the list of visited vertices.

Below the iterations for this example are listed. For this specific example, it takes four iterations. The shortest
path for this example can easily be verified for this example. For Dijkstra’s algorithm, it is proven that it always
gives the correct solution for non-negative weights. From the fourth iteration in Table 2.2, the shortest route
can be determent. The weight of vertex B is three and can be reached via D, D weights two and can be reached
via A. The shortest route is therefore A −→ D −→ B with a total weight of 3.
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Table 2.2: Simple example of Dijkstra’s algorithm. The table shows the detailed steps of the five iterations that it takes to find the shortest
path

Iteration 1 Test if None 6= B

1. visit vertex A, current vertex = A.

2. A −→ D = 1, A −→ B = 6.

3. update the table below

4. visited = [A]

Vertex
Distance

from A
Previous

vertex

A 0
B 6 A
C ∞
D 1 A
E ∞

Iteration 2 Test if A 6= B

1. visit vertex D, current vertex = D.

2. A −→ B = 2, A −→ E = 2, A −→ A = 2.

3. update the table below

4. visited = [A, D]

Vertex
Distance

from A
Previous

vertex

A 0
B 3 D
C ∞
D 1 A
E 2 D

Iteration 3 Test if D 6= B

1. visit vertex E, current vertex = E.

2. A −→ B = 4, A −→C = 7, A −→ D = 3.

3. update the table below

4. visited = [A, D]

Vertex
Distance

from A
Previous

vertex

A 0
B 3 D
C 7 E
D 1 A
E 2 D

Iteration 4 Test if E 6= B

1. visit vertex B, current vertex = B.

2. A −→ A = 9, A −→ D = 5, A −→ E = 5, A −→C = 8,

3. update the table below

4. visited = [A, D]

Vertex
Distance

from A
Previous

vertex

A 0
B 3 D
C 7 E
D 1 A
E 2 D

Iteration 5 Test if B 6= B . This is false so stop.
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In this chapter, the existing knowledge, given in chapter 2, is implemented for the specific problem of this
study. The results of the methods is a python package that can solve for the optimal route given a hydro-
dynamic model. In this chapter, it is explained how the python tool is developed. The methods of model
development are described in four parts. First, the graph strategy is discussed. In this section research ques-
tion, one is answered. Second, the time-dependent shortest path problem is discussed. This section answers
research question 2. Third, the cost functions and variable shipping speeds are discussed. Last, the modular
package implementation is discussed. This section answers research question 3. After the methods for the
model development are discussed the methods for the model application are discussed, this section answers
research question 4.

3.1. Methods for model development
In this chapter, the computations behind the route optimisation toolbox are explained. With the develop-
ment of a good route, optimisation toolbox, the first four research questions are answered. The section starts
with the graph schematisation of the problem. This part answers the first research question. The section
continues with the time-dependent route optimisation. This section answers the second research question.
Lastly, the different cost functions are explained.

Many studies have aimed to optimise shipping route for many different purposes, on many different scales.
Literature shows many route optimisation studies for transatlantic shipping routes (referred to as large scale
shipping routes). On these large scales, currents become less important, and weather conditions dominate
the routes. This results in a branch of route optimisation called weather routing (Böttner, 2007, Krata and
Szlapczynska, 2018, Perera and Soares, 2017, Walther et al., 2016). This branch seeks to optimise routes for
wind and wave fields. Other studies have searched to optimise shipping routes for comfort (Kosmas and Vla-
chos, 2012). These optimisations are mainly applied for passenger’s vessels. Other studies tried to optimise
routes from a more economical and environmental point of view. These studies have tried to minimise the
fuel consumption of routes (Kuo, 2010, Lee et al., 2018b, Park and Kim, 2015). The last type of route optimisa-
tions is shipping speed optimisations (Li et al., 2018, Park and Kim, 2015). In these studies, the sailing velocity
is varied in order to optimise for fuel consumption.

Many different algorithms are used in shipping route optimisations. Many studies use graph theory (Lee et al.,
2018a, Mannarini et al., 2013, Montes, 2005). Other studies use hill-climbing algorithms (Dorer and Calisti,
2005, Tierney, 2013), a simulated annealing algorithm (Kosmas and Vlachos, 2012), the Pareto Evolutionary
Algorithm (Vettor and Guedes Soares, 2016), or Neural networks (Zhang et al., 2019). Which algorithm is the
best highly depends on the optimisation purpose.

In this study graph theory is used to find the optimal route through a continuous solution space. As discussed
in chapter 1, there are several different methods for optimising a route through a continuous solution space.
The main reason why this method is chosen is that it cannot get stuck in local minima. Methods as the hill-
climbing algorithm or the annealing method are known for the outcome to depend on the initial conditions.
For a different initial route, the algorithm can return a completely different solution. The algorithm returns
a local minimum instead of a global minimum. This difference between the local minima and the global
minima is crucial for highly dynamic problems such as flooding and drying of banks, or finding the route
around islands. The main reason for choosing graph theory is the property that is that it cannot get stuck in
local minima, but always returns the global minima.

3.1.1. Graph strategy
In order to calculate an optimal shipping route, The continuous solution space needs to be discretised into
a graph with nodes and edges. For large graphs with many nodes and edges, computation time can increase
very fast. However, for small graphs, the numerical error becomes large, and the resolution of the route
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becomes small. This section searches for an algorithm to keep the graph small but the resolution of the route
as large as possible. This section answers research question 1, the first research question is:

What is the best graph strategy given computational power constraints?

For graphs with a high resolution and a relatively low number of nodes, the grid size cannot be uniform over
the graph. For area’s where the flow is uniform, and isotropic the grid size of the mesh can be much larger
than for area’s where the flow is non-uniform and non-isotropic. For creating such a grid, the nodes can be
pruned on places where the resolution is not very important while maintaining the high resolution on im-
portant places. In order to create such a mesh with a varying grid-size per cell, a Triangular Irregular Network
(TIN) is used. With a TIN grid, the nodes are no longer in a straight line or curved line (as done with straight
or curvilinear meshes), but the points can be random. All the nodes are later connected with triangles. For
meshing these random points into a TIN grid, the Delaunay algorithm is used. This algorithm maximises
the minimum angle of all the angles of the triangles in the triangulation. This algorithm is named after Boris
Delauney’s work in 1934 (Delauney, 1934) this algorithm is implemented in the Scipy package.

A length scale is used to determine the spatial resolution of the grid. This length scale represents the spatial
resolution of the grid. The length scale should be low for areas where the flow is non-uniform and non-
isotropic, and the length scale should be large for areas where the flow is uniform and isotropic. For deter-
mining the grid size based on the length scale, a lower and upper bound of the grid size is determined. In the
route optimisation package, the upper bound is set to the grid size of the flow model and the lower bound can
be specified by the user. If the length scale in a certain point is equal to one, the grid size becomes the upper
bound of the grid size, if the length scale is 0 the grid size in that point becomes the lower bound of the grid
size. To determine the nodes of the TIN grid the route optimisation package loops over all the points (within
the project domain) of the flow model and determines the distance to the closest node of the TIN grid. Only
if this distance is larger than the length scale in that point, the node is added to the nodes of the TIN grid.
When all the nodes are determined, the mesh is determined with Delauney’s algorithm.

This length scale is based on the vorticity (curl) of the flow. The curl of the flow is a measure for the vorticity
of the flow (see equation 3.1). When the absolute value of the curl is low, the flow is isotropic, and when the
absolute value of the curl is high, the flow is non-isotropic. The curl of the flow can be transformed into a
length scale. Figure 3.1 shows the relation between the curl and the length scale of the grid size. In order to
calibrate the length scale, non-linearity parameters are introduced. This non-linearity parameter is a shape
parameter of the length scale function. In equation 3.2 this non-linearity parameter is called β.

cur l =∇×−→u = ∂u

∂y
− ∂v

∂x
(3.1)

Another method to determine the length scale is by using the magnitude of the flow. For determining the
length scale, it uses the same method as for the curl method only instead of the curl the magnitude of the
flow velocity is used. In the python package, both methods are implemented in the same function. This is
done with a blend factor. The length scale is calculated based on the curl and based on the magnitude of the
flow. Then the length scale is averaged with a blend factor. In equation 3.2 the blend factor is called α. In this
study, the length scale is chosen as a function of the flow.

When this function for the length scale is used, the length scale is a time-dependent parameter. However, the
grid is constant in time. The length scale is set to the maximal value of the time series to transform the length
scale into a non-time dependent value. Another method to do this is to take the time-averaged value of the
length scale or the root-mean-square (RMS) value of the length scale. Since the length scale is an oscillating
parameter, the mean value will approach 0, and the RMS value will give the standard deviation of the length
scale. In this study, it is chosen to use the maximal value because this gives the normative length scale instead
of the standard deviation of the length scale.
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Equation 3.2 shows the function of the Length scale based on the properties of the flow. With: LS = resulting
length scale, α = blend factor between the curl and the magnitude method,∆mi n = minimal length scale, βc =
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Figure 3.1: The Length scale as a function of the curl / magnitude of the flow for different non-linearity factors

non linearity parameter for the method with the curl of the flow, βm = non linearity parameter for the method
with the magnitude of the flow, −→u = the velocity vector of the flow, and ur is the reference flow velocity. In or-
der to correctly formulate the expression for the length scale all the parameters are made dimensionless. This

results in a dimensionless length scale LS
∆mi n

, and a dimensionless flow vector
−→u
ur

. By doing so the parameters
α, βc , and βm are dimensionless parameters. In this study the reference flow velocity (ur ) is set to 1.

In order to create a graph, both nodes and arcs are needed. In the previous subsection, the nodes are re-
duced into a TIN mesh. The arcs of the graph need to be determined to create a useful graph. The arcs of
the graph are based on the neighbours of each node. The arcs are determined from a start node to a neigh-
bouring node. By doing the possible directions of the shipping, the route is schematized from a continuous
360-degree solution space to a discrete number of directions. In Figure 3.2, the neighbouring nodes of a
central node are shown. In blue, the direct neighbours of the central node are shown. For these edges, the
continuous 360-degree solution space is discretised in 6 directions. This results in a directional resolution of
360/6 = 60 degrees. However, the directional resolution can be increased when the edges are not only defined
between direct neighbours, but also between neighbours of neighbours. The orange nodes of Figure 3.2 are
not direct neighbours of the central node but are neighbours of the blue nodes. In this report, the orange
nodes are referred to as second layer neighbours (or nb = 2). With these second layer neighbours, the number
of arcs is increased from 6 to 12, and the directional resolution is increased to 360/12 = 30 degrees. The green
nodes of Figure 3.2 are not second layer neighbours of the central node, but they are neighbours of the orange
nodes. In this report, the green nodes are referred to as third layer neighbours (or nb = 3). With these third
layer neighbours, the number of arcs is increased from 12 to 24, and the directional resolution is increased to
360/24 = 15 degrees. This process is generalised for any layer of neighbouring nodes. This parameter for the
directional resolution (nb) is set as an input parameter for creating the graph.

When the edges are defined for only direct neighbours, the hydrodynamic features of an arc are the average
of the start and stop nodes. When this method is applied for multiple layers of neighbouring nodes, the
algorithm is allowed to "jump over" obstacles. In other words, the spatial resolution of the graph decreases.
Therefore, a new algorithm is presented to increase the directional resolution without decreasing the spatial
resolution. The nodes between the start and stop node are also taken into account to prevent the loss of
spatial resolution. The right plot of Figure 3.2 shows how these in-between nodes are determined. In this
figure, the nodes of influence for the arc between the two blue nodes are determined. The two blue nodes
are third layer neighbours of each-other (nb = 3). For this example, the nodes of influence are the blue nodes
plus the green nodes. The green nodes are defined as the set of nodes that are contained in both the sets of
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Figure 3.2: The left figure shows the branches for 3 neighbouring layers in a perfect Delauney mesh, the right figure shows the nodes that
determine the weight of the branch.

second layer neighbour nodes of the start and stop nodes. The nodes of influence, of a (nb)’th order arc, are
determined in this study as the start and stop node plus the set of nodes that are contained in both the sets
of the (nb-1) layer neighbour nodes of the start and stop nodes (in which nb is the number of neighbouring
layers).

3.1.2. Time dependent shortest path problem
In Chapter 2.5 it is found that the single pair shortest path problem (SPSPP) can be solved with Dijkstra’s
algorithm or with the A* algorithm. For the SPSPP the weights of the arcs between the vertices are constant in
time. However, for the problem that is considered in this study, the weights of the arcs are highly dynamic in
time. This distinction gives rise to the Time-Dependent Shortest Path Problem (TDSPP). By finding a solution
for the TDSPP, the second research question is answered. Research question 2 is:

What is the best method for time-dependent route optimisations?

The TDSPP can be considered by changing the weights of the arcs from a constant value to a time series (Nan-
nicini et al., 2009). In the algorithm, the weight of the arc can be determined by taking the correct weight for
the departure time of that vertex from the time series. An important note is that for the TDSPP 3D graphs
do not have to be considered. A logical thought would be that the TDSPP can be solved by adding a time
dimension to a 2D graph resulting in a 3D graph. However, this method gives rise to several complications
with discretising the velocity and makes the TDSPP algorithms much slower. Therefore in order to keep the
computation time low, a 2D graph is considered.

When the weights of the arcs are defined as a time series instead of as a single value, the time-dependent
shortest path problem is considered. The time-dependent shortest path problem (TDSPP) can be solved
with a variant on the Dijkstra (Yu and Qin, 2008) and A* (El-Sherbeny, 2014) algorithms. These algorithms
are very generic and can be used in most cases. However, there are a few conditions of correctness for the
algorithms. When these conditions of correctness are satisfied, the algorithm is proven to give the correct
solution. The time-dependent A* algorithm has the following conditions of correctness:

• Non negative arc weights;

• FIFO property: For all vertex v ∈V and t1 ≤ t2, t1 +WAB (t1) ≤ t2 +WAB (t2)

• Triangle inequality: For all edges e(A,C ) ∈ E , WAB (t ) ≤WAC (t )+WC B (t )

• Time window condition: For all vertex v ∈V and t1 ≤ t2, [av1,bv2] ≤ [av2,bv2]

The time-dependent Dijkstra algorithm has the following conditions of correctness:

• Non negative arc weights;

• FIFO property: For all vertex v ∈V and t1 ≤ t2, t1 +We (t1) ≤ t2 +We (t2)
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Figure 3.3: Triangle inequality and the FIFO property explained with an simple example. The triangle inequality is on a length scale while
the FIFO property is on a time scale.

The FIFO condition implies that waiting for tides is never faster than sailing away directly (Yu and Qin, 2008).
The triangle inequality implies that travelling around something does not result in a lower cost than travelling
in a straight line (see figure 3.3). The graphs for which the FIFO and the triangle inequality hold are so-called
FIFO graphs. When Dijkstra or A* are used for non-FIFO graphs, the solution can get stuck in a local mini-
mum.

The FIFO property of a graph can be specified per edge. The graph is called a FIFO graph if all the edges have
the FIFO property. When a edge does not comply with the FIFO property it can be transformed to a FIFO edge
(Yong-liu and Aiguang-yang, 2007). Suppose that Wi j is the weight function of the arc (vi , v j ). According to

the definition of the FIFO property an arc is FIFO if t1 +Wi j (t1) < t2 +Wi j (t2). For the limt→ 0
Wi j (t2)−Wi j (t1)

t2−t2

This can be rewritten to dW
d t < −1. For non-FIFO edges this condition will be exceeded for at least one time

interval. The time interval Ω is the waiting interval of extreme points (ts , tm), see figure 3.4. Note that this is
not the same as the interval for witch dW

d t <−1 holds.

A non-FIFO edge can be transformed into a FIFO edge with equation 3.3. In figure 3.4, an example of a non-
FIFO edge that is converted to a FIFO edge is shown. In the left figure, the travel time is plotted against the
departure time and on the right, the arrival time is plotted against the departure time. It is visible that in the
time interval Ω it is better to wait until tm . A horizontal line represents this in the right plot and the left plot
as a slope of -1.

W ′ =
{

Wi j (t ) if t ∉Ω
tm +Wi j (tm)− t ift ∈Ω (3.3)

Now that the graph satisfies the FIFO condition and the non-negative arc weights condition, the graph com-
plies with all the conditions of correctness for the TDSPP Dijkstra’s algorithm. Note that the conditions of
correctness for the A* algorithm are not satisfied. Unfortunately, the triangle inequality is complicated to sat-
isfy for the considered problem of this study. For this reason, the A* algorithm is not used in this study. All the
shortest path computations are executed with the time-dependent Dijkstra algorithm.

3.1.3. Cost functions and variable shipping speed
This section describes the different cost functions and restrictions that transform the mathematical solution
for graph theory into a practical solution for hydrodynamic route optimisation. In order to optimise for the
cheapest and least pollutant path, the shipping speed should be considered as a variable instead of as a con-
stant. This is done by adding an extra dimension to the nodes. Meshing the nodes to a TIN grid with Delauney
edges results in a 1D list of nodes and a list with for each node a list of edges. Each node can be specified with
a single index that refers to the list of nodes from which the (Lat ,Lon) values can be read. With this index,
the edges of the node can be requested from the list of edges.
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Figure 3.4: Transforming a non-FIFO Time series of an edge into a FIFO time series. In the left figure, the travel time is plotted against the
departure time and on the right, the Arrival time is plotted against the departure time. It is visible that in the time interval Ω it is better
to wait until tm . A horizontal line represents this in the right plot and the left plot as a slope of -1.

In order to make the shipping speed variable, the nodes are now described by two indices. The first index
refers to the list of (Lat ,Lon) values and the second index refers to a list of shipping velocities. The shipping
speed is determined by the second index of the destination node. For example with vshi p = [3,5,7] the ship-
ping speed on the edge ([2305,2], [110,1]) is 5 m/s and the shipping speed on the edge ([421,2], [1120,0]) is 3
m/s (Note that indices start with 0 in python). A critical note is placed by the number of steps in the discreti-
sation of the shipping velocity. The computation time scales with the square of the number of steps in the
shipping velocities. A large number of different possible shipping velocities result in considerable computa-
tional time and a sizeable preprocessing file.

For a node with a certain location index and shipping speed index, the node can reach all the all other
shipping velocities for the destination node. For example, for the edge from (spatial) node 120 to 140, and
vshi p = [3,5,7], all the edges between these nodes are:

• ([120,0], [140,0]), ([120,0], [140,1]), ([120,0], [140,2])

• ([120,1], [140,0]), ([120,1], [140,1]), ([120,1], [140,2])

• ([120,2], [140,0]), ([120,2], [140,1]), ([120,2], [140,2])

In this study, there are four cost functions defined. These four cost functions result in optimisation for the
shortest path, the fastest path, the cheapest path, and the least pollutant path. For the optimisation for the
cheapest path and the least pollutant path, the number of steps in the discretisation of the shipping velocity
must be at least two. With these four cost functions, most optimisations can be performed. Below the details
of each cost function are described.

The fastest route can be calculated when the weights of the arcs are the travel time between the nodes. The
travel time is equal to the velocity divided by the distance. The distance between two nodes can be calculated
with the haversine equation (de Mendoza, 1795), and the velocity can be calculated with equation 2.4. The
cost function returns an infinite travel time when one of two conditions are met. These checks are done for
all the cost functions. The first condition is that both the start and destination node cannot be masked. When
the start or destination nodes are masked, there is not sufficient water depth. The second condition is that
the ship has enough installed power to sail against the current. This gives ns > vmax , where vmax is the ship’s
velocity over land and ns is the of the flow velocity perpendicular to the course of the ship (see equation 2.4).
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Finally, the time series is transformed into FIFO edges with the method described in subsection 3.1.2.

The shortest route can be calculated when the weights of the arcs are the distance between the nodes. The
distance between two nodes can be calculated with the haversine equation. This cost function is the most
straightforward cost function. The cost of an arc is only dependent on the distance between the start and
destination point of the arc. The distance between two points in a WGS84 coordinate system can be calcu-
lated with the haversine function. The time series is transformed into FIFO edges with the method described
in subsection 3.1.2.

The cheapest route can be calculated when the weights of the arcs are the costs in euros between the nodes.
The function that determines the cost of sailing with a ship can vary between different ship and different com-
panies. This function of the cost is most of the time considered as corporate secret. Therefore this function
is not hard-coded in the route optimisation package. In the preprocessing calculation, this function needs to
be specified. The part that is hard-coded in the route optimisation package are the dependencies of the cost.
In this study, it is assumed that the cost is dependent on time and fuel consumption.

Equation 3.5 calculates the cost in order to travel from a start node to a destination node. This function con-
sists of two parts. The first part is non-variable cost. This represents the cost per unit of time for the ship. The
second part is the variable cost. When the ship has a larger power output, it burns more fuel and is, there-
fore, more expensive. In Barrass (2004), Holtrop; and Mennen (1982) it is found that the fuel consumption is
related to the sailing velocity to the third power. For this use, all the calibration parameters are summarised
in λ f and λt . When this equation for the sailing cost is used, there is an optimal sailing velocity. This optimal
sailing velocity is a function of λ f and λt .

In equation 3.5 W is the weight of the arc in euros, tT is the travel time in seconds, vmax is the velocity of the
ship compared to water, λt is the cost of the ship per second in euros, and λ f is the fuel rate of the ship.

W = f (tT , vmax ) =λt tT +λ f tT v3
max (3.4)

The least pollutant route can be calculated when the weights of the arcs are the emitted pollution of that edge.
This pollution can be CO2. However, vessels emit other particulate matters as well. The function to calculate
the emission per edge is shown in Equation (3.5). For this function, the emission is related to the third power
of the shipping velocity (Górski et al., 2013, Molland et al., 2011). In this equation, W is the weight of the arc
in emission terms, tT is the travel time in seconds, and vmax is the velocity of the ship compared to water.

W = f (tT , vmax ) = tT v3
max (3.5)

3.1.4. Modular package implementation
An important objective of this study is to make the results general applicable. In this study, it is chosen to
do this by developing an open-source python tool that contains the route optimisation method. Since Open-
CLSim was written in python, it was chosen to write HALEM in python as well to make the mix in more fluently.
With the development of this modular tool, the third research question is answered. The third research ques-
tion is:

How can the route planner be implemented in a modular package so that it can be used in different cases?

In order to make the python code of this study in a modular package, a few features were included in the
python code. The first is the Git version management (Chacon and Straub, 2014). The python code is gathered
in a repository, and the repository is managed in GitHub 1. GitHub offers the possibility to make backups
of the software. It also is a great platform for corporations between multiple authors. GitHub offers the
possibility for a third party branch of the master. In this branch, new features can be added, and the code can
be changed. When the third party is done, it can create a pull request so that the changes are implemented in
the master branch. To make this repository accessible for everyone the package is published on the Python
Package Index 2 (PyPI). The releases of the package are given a Digital Object Identifier (DOI) (Freeman and
Freeman, 2013, Vernon, 2010). This is done via Zenodo 3. To make the package more accessible for other user

1https://github.com/TUDelft-CITG/Route_optimization_in_dynamic_currents
2https://pypi.org/project/halem/
3https://zenodo.org/record/3363005.XUwXEegza70
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documentation is written. This documentation is published on ReadTheDocs 4. To guarantee the quality of
HALEM each commit on GitHub is automatically tested for bugs with CirclCI 5. In the repository, test functions
are defined (Bader, 2018). These test functions are designed in such a way that it tests for bugs. In CircleCI a
docker is build that runs the test for each commit on Github.

3.2. Methods for model application
After the model is developed, the usability of the model is demonstrated in a case study. For this case study,
the routes of a dredging project are optimised with the HALEM package. The goal of this case study is to
see how much influence the currents have on the route and how much the optimal route deviates from the
standard route.

3.2.1. Implementation of HALEM in OpenCLSim
For this research, the practical case study is simulated with OpenCLSim. In order to make OpenCLSim com-
patible with HALEM, a mix-in has to be created. This mix-in is realised in 3 steps. These steps are explained
below.

First, OpenCLSim needs to know that the user wants to optimise the route. This needs to be specified in the
user interface. For now, the user interface of the OpenCLSim project is a notebook. In the user interface the
roadmap is first loaded from a file and then added to the environment with my_env.Roadmap = Roadmap.
Besides adding the roadmap to the environment, the movable object needs to have the instance Routable.
In this instance the value for opti mi ze_r oute needs to be True (Default value False). In this instance, the
optimisation type needs to be specified with the options: time, space, cost and co2 (default time). With
these two actions, the OpenCLSim software knows that it must optimise the route. Secondly, in the function
g et_di st ance the route between the start and destination location is determined. This is done based on the
one-line function in HALEM and the given optimisation type. It is first checked if the route must be optimised.
If the route must be optimised the one-line function is used, otherwise the route is a straight line between
start and end. Third, the object is moved from the start location to the destination. If the object has the class
movable the object is moved according to the optimised path.

Due to the restriction in water depth, the optimal sailing route that results from HALEM is dependent on the

draft of the vessel. Since the draft of the vessel is related to the load factor (r = Wshi p−Wempt y

W f ul l−Wempt y
) it is safe to say

that the optimal route is dependent on the load factor. Sailing with a higher load factor can result in a longer
route than sailing with a lower load factor. However, sailing with a low load factor can decrease production
since less volume is displaced. This trade-off between sailing time and load factor can be optimised. This
section explains the method that is used for optimising the load factor in OpenCLSim in combination with
the HALEM packages. This method is then implemented in the mix in that is created for OpenCLSim. When
an array of load factors is specified in the user interface, this load optimisation function becomes active.

The optimisation of the load factor is done with a simple brute force calculation. For each load factor in
the list of load factors, the duration of the dredging cycle is calculated. Then the production of the dredging
cycle is calculated by multiplying the load factor by the hopper capacity and dividing it by the duration of the
dredging cycle. The load factor for which the product is the highest is chosen as the optimal load factor.

3.2.2. Generalisation of the flow model: Tidal analysis
In order to optimise the shipping routes based on the hydrodynamic conditions, a flow model is needed.
However, most projects are planned far in advance. Hydrodynamic models typically give a prediction time of
up to 10 days (for example the DCSMv6-ZUNOv4 model has a prediction time of 3 days). This is much less
than is needed in order to plan ahead of time. In order to be able to use the model for planning purposes, the
flow model is generalised. With a generalised flow model simulations can be done further in advance, and the
model is no longer dependent on the prediction time of the hydrodynamic models by a generalisation of the
hydrodynamic model. Since the tidal components of the hydrodynamic models are highly regular, an easy to
predict the generalisation is based on the tide. The wind-driven behaviour and the density-driven behaviour

4https://halem.readthedocs.io/en/latest/
5https://circleci.com/gh/TUDelft-CITG/Route_optimization_in_dynamic_currents/tree/master
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of the hydrodynamic models are neglected for the generalisation, and the tidal signal is filtered from the to-
tal signal. This is done with a tidal analysis that applies a Fourier analysis on the signal and filters the tidal
constituents from the total signal. In this research, the python package Utides is used, since it is available
(open source), complete, validated, and a reliable package (Bowman, 2019). For each node of the hydrody-
namic model, a tidal analysis is performed for the water level, u, and v flow velocities, this generalised signal
is then saved in a new file. The results of this tidal analysis and the used tidal constituents can be found in
Appendix B.

With the results of a tidal analysis, the water level and flow velocity can be reproduced for every moment in
time. This means that for each moment in the future, no matter how far away, an estimation of the water lev-
els and flow velocities can be determined. However, it is not possible to create a roadmap that is always valid.
Since the transformation from flow field to weights of the edge is such a computation-intensive calculation,
this must be preprocessed. Therefore the time period of the roadmap is chosen in such a way that indefinitely
repeating the roadmap gives a good approximation for the hydrodynamic conditions.

The M2 tide has a period of 12 hours and 25.2 minutes (12.42 hours) And the S2 tide has a period of 12
hours exactly. The combination of these two signals can be rewritten as a carrier wave and a signal wave,
see equation 3.6. In order to be able to repeat the roadmap, the roadmap must have the exact length of the
period of the carrier wave. For the M2 S2 interdependency, this results in a period of the carrier wave of 355
hours (14.8 days), see equation 3.7. In which, TM2 is the period of the M2 tide and TS2 is the period of the
S2 tide and Tc is the period of the carrier wave. It should be noted that indefinitely repeating the roadmap
is not an exact solution of the tidal flows. Due to other tidal constituents than just the S2 and M2 tide, the
spring tide neap tide variations will vary from month to month. This is not accounted for when the roadmap
is repeated indefinitely. However, the errors that result from this are small in comparison with the signal and
are therefore accepted.

si n(ax)+ si n(bx) = 2 si n

(
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2
(a +b) x

)
cos

(
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(a −b) x

)
(3.6)
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The duration of a tidal observation — generally called the observation "length" — will vary from case to case.
This means that the resolvability of independent constituents, each having its fixed frequency, varies from
situation to situation as well. For how many constituents must be solved can be determined with the Rayleigh
criteria. The definition of the Rayleigh criteria is given in equation 3.8, Foreman and Henry (1989). In which
T is the length of the observed period, Re y is the Rayleigh parameter, TM2 is the period of the M2 tide and TS2

is the period of the S2 tide. For this analysis, the length of the observed time series is 840 hours (35 days), and
the period of the carrier wave is 355 hours. This means that R ≤ T

Tc
≤ 2.36 = 2.3 .For this analysis, the length

of the observed time series is 840 hours (35 days), and the period of the carrier wave is 355 hours. this means
that Re y ≤ T

Tc
≤ 2.36 = 2.3.

(
1

TM2
− 1

TS2

)
T ≥ Re y (3.8)

For the tidal decomposition, a python package called Utides is used. This packages can decompose an h, u, v
time series into tidal constituents and rebuild the astronomical tide from these constituents. In table 3.1 the
settings that were used in the tidal analysis calculations are displayed.
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Table 3.1: Used parameters in the tidal analysis calculation. The tidal analysis calculations are performed with the Utides package in
python.

Start of original time series 08−05−2018 00 : 00 : 00
End of original time series 10−06−2018 23 : 50 : 00
Time step of the original time series 10 min
Start of tidal analysis time series 09−05−2018 23 : 00 : 00
End of tidal analysis time series 24−05−2018 23 : 00 : 00
Time step of the tidal analysis time series 60 min
Latitude 53 degrees;
nodal F al se
trend F al se
method ol s
conf_int l i near
Rayleigh_min 2.3

3.2.3. case study Schouwen Westkop Noord
The case study that is done in this graduation research is the beach nourishment at Schouwen Westkop No-
ord (near the Oosterscheldekering in Zeeland). This project is chosen out of several available case studies
such as Windpark Fryland, beach nourishment Ameland, Project Afsluitdijk or Project Fhermanbelt. This
project was chosen over the other projects because of two reasons. First, the OpenCLSim modelling of this
project is straightforward. It is just one vessel, one source location and one dump location. A project such as
Afsluitdijk, Fhermanbelt of Windpark Fryland included much more vessels, more source locations and more
dump locations. This would be much more difficult to simulate in Openclsim and would make the results
of the case study more difficult to interpret. Second, the route was not a straight line between the start and
destinations. Due to the bathymetry of this location, it is not possible to sail in a straight line between the
start and destination. Since the vessel must sail around a shallow part, there is much more to optimise, than
compared to the other projects. By working out this case study research question, 4 is answered. Research
question 4 is:

How can dredging projects be optimised for the given route optimisation package and OpenCLSim?

For all simulations holds that they are not an exact copy of reality. Firstly, the parameter settings of the project
and the equipment are realistic, but not of real equipment. Secondly, the simulations do not cover every
part of the project. These simulations do not take into account events such as crew change, fuelling, delays
(scheduled and not-scheduled), mobilisation, and demobilisation. Therefore these simulations give realistic
indications for the influence of route optimisation, but cannot be used as a project estimation.

In Figure 3.5, the bathymetry of the case study is displayed. In this figure water depth at low water is dis-
played. From this figure, it becomes clear that the pump location is hard to reach for the given tide. The route
that maximises the minimal water depth is much longer than the shortest route. This route goes through a
gully along the coast of Schouwen-Duiveland. This is a natural gully caused by the large tidal flow induced by
the Oosterscheldekering.

In order to simulate the project, the OpenCLSim python package is used. This software package was chosen
since van Oord is part of the development of this package and because it is an excellent platform to use the
route optimisation function. What this package does and how it does it is further explained is Chapter 1. In
order to use the HALEM package in the Openclsim package, a mix-in needs to be created. With this mix-in,
the user can specify whether it wants to optimise the route, for which cost function it wants to optimise, and
so on. Creating this mix-in gives partly answer to research question 3. This mix also optimises the load factor
width the route optimisation. With this optimisation, the load factor can dynamically change in time. For this
case study, the optimisation of the load factor is very important since the project is so limited by bathymetry.

The project is first worked out with the current methodology to quantify the improvement over the old method.
The modelling for this base case is performed with the OpenCLSim software without the HALEM package.
This base case gives a good view of the challenges of these projects, and the solutions that are provided by the
HALEM package. The modelling of this project is done with a specified route for the hopper. The route that is
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Figure 3.5: In this figure, the bathymetry of the case study is displayed. In the upper figure shows the water depth of the area for a water
level at mean low water (NAP -1.3 m). The dark blue areas the water depth is larger than the draft full + ukc of the vessel. The light blue
areas are only accessible when the ship is empty, and the orange areas are never accessible for the vessel. The pump and dredge locations
are indicated with blue and green dots. The standard route is indicated with a magenta line. The lower figure displays the bathymetry of
the standard route from pump location to dredge location.

specified is the route the maximises the minimal water depth of the route. In the right figure of Figure 5.5 the
specified route and the bathymetry of the area are displayed. In the lower-left figure of Figure 5.5 the water
depth during the route is given (from pump location to dredge location). This route utilised the narrow gully
along the coast of Shouwen.

The vessel has a depth restriction to simulate the influence of the dynamically changing bathymetry on the
project. The lowest point of the bathymetry is at the start of the gully along the coast of Shouwen (The most
right point of the route), the bed level is here -7.86 below NAP. At this point, the water level (based on the tidal
analysis of the Zuno model) is given to the model with the OpenCLSim mix-in core.HasWeather. The minimal
needed water depth of the vessel is assigned to the simulation with the mix-in core.HasDepthrestriction and
is based on the load factor of the vessel. When a depth restriction and hydrodynamic conditions are specified
in OpenCLSim, the software optimises the load factor of each dredging cycle by maximising the production
of that cycle. The maximal production is a trade-off between waiting for the tide and reducing the load factor.

For the route optimisations of the case study, the HALEM package is used instead of core.HasDepthrestriction
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and core.HasWeather. Since the route is optimised by the HALEM package the route is no longer given as an
input value, therefore only the start and stop location is given. For the case study the routes are optimised for
the path, sailing velocity, and the load factor, these optimisations are based on a time-dependent flow, and
water level field instead of a single point.

To asses the influence of the different hydrodynamic models on the route, five different road maps are made.
All the are the same except for the source of the hydrodynamic data. The first four road maps are generated for
the four different hydrodynamic models that are described in Section 2.3. The last roadmap is generated for
the hydrodynamic data from the tidal analysis. The tidal analysis that is done is for the DCSM-Zuno model.
The DCSM-Zuno model is chosen for the tidal analysis since it is the most accessible model for practical use.
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This chapter describes the model validation of HALEM. This chapter contributes to the overall credibility of
HALEM but is not necessary for the story of this thesis. This chapter consists of a method of validation, results
of the validation and the discussion of the validation.

4.1. Methods for model validation
Chapter 3.1 describes the theory behind the python functions. However, to know that the method works,
the method needs to be validated. By validating the model, it is found whether the model is implemented
correctly and whether it works correctly. The validation of the model is split up in two parts; the first part
checks if the model is correctly implemented, and the second part checks if the model gives correct results.
To check if the model is correctly implemented the model is tested for some trivial test cases. With these
test cases, for which the outcome is known beforehand, it is checked if the model works according to the
expectations. The outcome of the model is compared to an executed project to check if the model gives
correct results.

4.1.1. Model validation with trivial test cases
To test if the route optimisation function works according to the expectations the toolbox is tested with trivial
test cases. These test cases are not a real situation that can occur in the real world but are cases that test
the limits of the route optimisation toolbox. For these test cases, the exact solution or the expected result is
known, with this, the toolbox can be tested if it behaves according to the expectations.

The first and most simple case is to find the fastest route for a potential flow field. In Equation (4.1), the
equations that describe the flow are displayed. In this equation, x0 and y0 are the coordinates for the lower-
left corner, and L and B are the sizes of the domain. These equations result in a simple rotating flow around
the centre of the domain. For this flow common sense dictates that the fastest shipping route should be a
sinus between the start and endpoint in its first Fourier mode.{

u = cos(π(x−x0)
L )

v =−cos(π(y−y0)
B )

(4.1)

The second test case is to find the fastest route through a rotation flow around the centre of the domain with
a tidal component in the time. In Equation (4.2) the equations that describe the flow are displayed. In this
equation, x0, y0, t0 are the coordinates for the lower-left corner and L, B and T is the size of the domain. The
expected result should be a sinus between the start and endpoint in a higher Fourier mode, dependent on the
tidal period of the flow. {

u = cos(π(x−x0)
L )× si n(2π t−t0

T )

v =−cos(π(y−y0)
B )× si n(2π t−t0

T )
(4.2)

Another test case for the route optimisation is waiting for an obstacle. With this test case, the solution to the
FIFO problem is tested. In this test case, this is simulated with a case without currents and a uniform water
depth of 20 meters. Except for the first 5 hours, then the water depth in the area for x ∈ [3,4] and y ∈ [50.4,50.6]
is 0 meters. The fastest route is to wait for the obstacle to disappear (after 5 hours) and then to sail. Sailing
around the obstacle takes in this example more time. When the solution for the FIFO problem works, the
solution waits and travels in a straight line when the solutions for the FIFO property fails; the solution will
travel around the obstacle.

4.1.2. Model validation with a real-life test case
Section 3.1 discusses the mathematical correctness of the model. Chapter 4.1 discusses the correctness of the
implementation of the model. In order to make the validation of the model complete, the model should as
well be tested for applicability. This section describes the validation of the applicability of the model. To do
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so, it is tested how good of a fit the model is compared to reality. If the model has a good fit with reality, the
model is applicable.

In order to compare the model with reality, the measurements of a project that is already completed are com-
pared to the simulation of that project. For the measurements of the project AIS (Automatic Identification
System) data is used. The location, sailing velocity and other parameters of a vessel are always recorded with
AIS. This AIS data is saved as a time series. AIS data is open-source data. However, van Oord buys the filtered
AIS database from a third party. For this study, the van Oord AIS is used because it is available.

From May the 9th 2018 to June the 12th 2018 van Oord executed beach nourishment at Texel. For this project
van Oord used the Geopotes 15. This is a Trailing Suction Hopper Dredger with a hopper capacity of 9,930
m3 and a length overall of 133.54 m. This ship made 184 dredging cycles to complete the project. The project
has a dredging location relatively close to the project site. The beach nourishment is performed by pumping
the liquidised sand in a pipe to the shore. At the project site, there are two connection points. After a section
of the beach, nourishment is completed for the specific beach section an extra pipe is coupled to the existing
pipe to extend the reach of the hopper and to nourish another part of the beach. By adding an extra pipe, the
resistance increased, and the pumping takes longer.

The dredging cycle is discretised in four steps: dredging, sailing full, pumping, and sailing empty. With a
python script, the time per activity and the sailing velocities can be extracted from the AIS data. In the script,
two polygons are defined. The first polygon is a polygon around the dredging location and the second poly-
gon is a polygon around the pumping location. If the vessel is in the dredging polygon it is dredging, if the
vessel is in the pumping polygon, it is pumping, and if it is not in a polygon, it is either sailing full or sailing
empty. If the previous activity was dredging it is sailing full otherwise it is sailing empty. With these defini-
tions, the time spent on each activity and the sailing full and sailing empty velocities can be determined. The
project is simulated by simulating each sailing activity separately. This is done with the HALEM package and a
simple for loop. A specific start point (Lon, Lat) endpoint (Lon, Lat), and time of departure is extracted from
the AIS data. This results in 184 start points for sailing full, 184 start points for sailing empty, 184 departure
times, 184 sailing full velocities, and 184 sailing empty velocities. For each of these 368 routes, the optimal
shipping route is calculated using HALEM. The input shipping velocities that are used in HALEM are the aver-
aged sailing speed full over the entire project, and the averaged sailing empty full over the entire project. This
results in 184×2 = 368 calculated sailing velocities.

The simulated project and the actual project are compared with a spread plot. On the x-axis, the measured
velocities are plotted, and on the y-axis, the calculated velocities are plotted. For the perfect model, the fitted
line should have a slope of 1 an r 2 value of 1 and an intercept of 0. The slope is the result of the fit of the
points to a linear regression (minimising for r 2), and the r 2 value is how good the line the points describes.
An important note is that the slope does not have to be 1 for the r 2 to become 1.

The hydrodynamic model that is used for this validation case is the DCSMv6-ZUNOv4 kf model. This is
done because it is the most available model. Other models were not available for the specific domain and
time period of this specific project. This model is a 2DH model that does take wind forcing into account. A
disadvantage of this model is that it returns a depth-averaged current instead of surface currents. The model
that is used is a 2DH model and does not account for variations of the flow velocity over depth. The output
of this model is, therefore, a depth-averaged result. Since the flow velocity at the bed must be zero due to
the no-slip condition. The surface flow velocity is, in most cases, larger than the depth-averaged velocity.
There is, however, no proper way to convert the depth-averaged flow to the surface flow. Most of the time this
conversion is done with a logarithmic profile, which results in a factor of about 1.3, this is, however, most of
the time a choice for the lesser of two evils. Chapter 2.2.4 explains the challenges of transforming the depth-
averaged currents into surface currents. In this study, there are three different simulations done for three
different surface compensation factors. The three surface compensation factors are 1, 1.3 and one where the
slope of the spread plot is equal to 1. The value for the surface compensation factor for which the slope of the
spread plot is equal to one is calculated iteratively.
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4.2. Results of the model validation
The validation of the model is separated into two parts. The first part of the model validation is the trivial
test cases, and the second part is the comparison to an executed project. In chapter 4.1, the method of the
first part of the model validation is explained. This section describes the results of the first part of the model
validation. Chapter 4.1 describes three different test cases for which the outcome is known. With these three
test cases, the model is validated whether it does what is expected. In chapter 3.2 the mathematical correct-
ness of the model is elaborated. These trivial test cases are therefore not intended to check the mathematical
correctness of the model, but these cases test if the model is implemented correctly.

4.2.1. Model validation with trivial test cases
Chapter 4.1 names three test cases. The first is a simple rotating flow around the centre of the domain. The
second is a time-dependent rotation flow around the centre of the domain with a tidal component. And the
third is a test case for flooding and drying, in which the vessel should wait for a bank to flood again. These
three test cases test the implementation of the model.

In figure 4.1, the results of the three simulations are displayed. The top three plots of figure 4.1 show the top-
view in latitude and longitude. These figures show the optimised route, the start and endpoints, the nodes
of the graph, and the hydrodynamic conditions at t = t0. The hydrodynamic conditions are displayed in two
parts. The quiver plot shows the direction of the flow (Note that it does not represent the magnitude correctly
due to scaling), And the contour plot represents the water depth. The lower three graphs represent the s/t
diagram of the route. In these figures s is the sailed distance since the start of the route and t is the time in

Figure 4.1: This figure displays the three test cases that are described in chapter 4.1. The top three plots show the top-view in latitude and
longitude. The lower three graphs represent the s/t diagram of the route. The most left plots display the results for the simple rotating
flow, the centre plots show the results time-dependent rotating flow, and the right plots show the results for the flooding and drying test
case.
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hours since the start of the route. In these figures, the red dots represent the nodes of the route. The contour
plot represents the mask file of the roadmap. The mask file indicates if the vessel can sail over that edge. If it
is possible the mask array for that edge and time is equal to False, if it is not possible to sail over that edge the
mask array for that edge and time is equal to True. The contour plot of this masked array shows, therefore,
the obstacles that the route faces in its path. The contour plot displays the barriers that it has to wait for as
well as the deadlines for the route to be possible. For the example, for the flooding and drying case (lower
right plot of figure 4.1) the vessel has to wait for the bank to flood. In the contour plot, this is displayed as a
column starting at the bottom (t = t0) of the plot. However, the vessel has a deadline as well. It has to sail over
the bank before it dries again. This is displayed in the contour plot with a column starting at the top (t = te )
of the plot.

The results of the test cases show the expected route. In chapter 4.1 the expected results where defined as a si-
nus in its first Fourier mode for the simple rotational flow, sinus in its higher Fourier mode, dependent on the
period of the tide, for the time-dependent rotational flow, and a route that waits for the bank to flood for the
flooding and drying case. An important detail is that the simulations are run with several neighbouring lay-
ers parameter (see chapter 3.1) of 3,3,1 for respectively the simple rotating flow, the time-dependent rotating
flow and the flooding and drying flow. From figure 4.1 it is visible that this parameter influences the number
of possible directions (displayed in figure 3.2). The number of neighbouring layers parameter for the flood-
ing and drying test case is set to 1 since the route is a straight line. The calculation with the time-dependent
rotating flow is done with a grid size that is 2.5 times smaller than the grid size of the simple rotating flow and
the flooding and drying flow. For this particular test case, the results did not show the expected behaviour for
a larges grid size. This is due to the more detailed route of this test case. For the other test cases increasing
the grid size does not result in a better result.

4.2.2. Model validation with a real test case
By comparing the measurements of an executed project to a simulated project with the HALEM package, the
applicability of the model is validated. Chapter 4.1.2 the methods for this validation is described. This section
describes the results that follow from this validation. First, the results of the AIS data interpretation are pre-
sented, and from this AIS data the comparison between the measurements and the simulations are presented.

The dredging cycle is discretised into four parts. Dredging, sailing full, unloading (for this project this is
pumping), and sailing empty. With a python script, these parts of the project are separated. For each dredg-
ing cycle, the time spent on the activity and the sailing velocity per sailing activity is determined. Figure 4.2
shows three plots of this AIS data. The most right plots show the route sailed by the Geopotes 15. In this fig-
ure, we can see the dredging location and the pumping location. The figure shows as well that the Geopotus
went twice to Den Helder for fueling or a crew change or fueling or maintenance. This figure also shows two
polygons. The first polygon is a rectangle around the dredging location and the second polygon is a rectangle
around the pumping location.

In Appendix C The results of the model validation with current compensation are shown. Figure 4.3 shows
the results of the comparison between the measurements and the simulation without compensation for sur-
face currents. The results of the fitted line are an r 2 value of 0.742, a slope of 0.56, and an intercept of 2.787.
Another way of interpreting the r 2 value is by comparing the standard deviation of the time series of the mea-
surement with the standard deviation of the time series of the simulation. Figure 4.3 displays a lower standard
deviation for the simulated data and a higher standard deviation for the measured data. This shows that the
model accounts for some of the variability but not for all the variability; in other words, the r 2 value is lower
than one.

Figure C.3 shows the results of the comparison between the measurements and the simulation for compen-
sation for surface currents factor of 1.3. This simulation shows, however, not a significant increase in the
slope. Figure C.4 shows the results of the comparison between the measurements and the simulation for
compensation for surface currents factor of 2.6. This is the simulation for which the compensation factor for
the surface is chosen in such a way that the slope of the spread plot is 1. The value of 2.6 is found iteratively.



4.3. Discussion of model validation 37

Figure 4.2: This figure displays the AIS-data analysis of the Texel beach-nourishment project. The right figure shows the route sailed by
the Geopotes 15 and the left figures show the time spend per activity and the sailing velocities.

4.3. Discussion of model validation
The validation of the model is separated into two parts. The first part of the model validation is the trivial
test cases, and the second part is the comparison to an executed project. By executing trivial test cases, the
model implementation is validated. For each of the conditions of the correctness of Dijkstra’s algorithm, a
test case is constructed for which the outcome is known in advance. By performing these trivial test cases, it
is checked if there are no errors in the package. In the second part, a simulation of a project is compared to
the measured reality. By doing so, the fit of the model with reality is assessed.

4.3.1. Discussion of model validation with trivial test cases
In this study, three trivial test cases are executed. In chapter 4.1, the method of the first part of the model val-
idation is explained. Chapter 4.2.1 the results of these trivial test cases are presented. With these test cases,
it is tested if the model is implemented correctly in python. The first test case is the test case for a rotating
flow around the centre of the domain. The second test case is the test case for a time-dependent rotating flow
with a tidal component. The last test case is a test case for flooding and drying, where the FIFO condition is
tested. The result displayed in figure 4.1 show that the results are the same as the expected results. From this,
it is concluded that the model is implemented correctly and that there are no mistakes made in the imple-
mentation of the model in python.
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Figure 4.3: These are the results for the validation case Texel with a compensation factor based on a logarithmic profile of 1.0. The centre
plot and the right plot show respectively the distribution of the calculated sailing velocity and the distribution of the measured sailing
velocity. In the title of these plots, the mean values and standard deviations are given. The left figure shows the correlation between the
measured and calculated velocity. The parameters that describe the correlation are displayed in the title.

More reliable validation of the model could be done with a physical experiment. The steady-state rotating
flow experiment and the time-dependent rotating flow experiment could be performed in a testing facility to
validate the outcome of the model. With these physical experiments, the ship movement model can better
be validated. These experiments can result in better confidence intervals for the model.

4.3.2. Discussion of model validation with real-life test case
A comparison is made between the measurements of an executed project to a simulated project with the
HALEM package to test the model’s applicability. By comparing the measurements and the simulation, the
ship movement model can be validated. In chapter 4.1.2, the method for this validation is described. Chapter
4.2.2 shows the results of this validation. This section explains the meaning of these results. In this section,
the reasons why the model is not perfect are given, and it is explained when this model is a good fit or appli-
cable.

Figure 4.3 shows the spread plot of the calculated sailing velocity versus the measured AIS velocity. For the
perfect model, the fitted line should have a slope of 1 an r 2 value of 1 and an intercept of 0. The spread plot
has an actual r 2 value of 0.742 and an actual slope and intercept of 0.56 and 2.787. Respectively. The slope is
the result of the fit of the points to a linear regression (minimising for r 2), and the r 2 value is how good the
line the points describes. An important note is that the slope does not have to be 1 for the r 2 to become 1.
The reason why the r 2 value and the slope deviate from 1 is explained below.

The most strange result is that the slope of the spread is only half of what is expected. A reason for this misfit
of the slope could be the difference between depth-averaged currents and surface currents. In chapter 4.2.2,
the result of a simulation with a compensation factor of 1.3 and a compensation factor of 2.6 is shown. These
values are chosen with the reason that 1.3 is the most commonly used factor for this transformation, and 2.6
is that value for which the resulting slope is 1. For the simulation with the compensation factor of 1.3 this
results in a r 2 value of 0.719, a slope of 0.543, and a intercept of 3.125 (see figure C.3). For the simulation with
the compensation factor of 2.6 this results in a r 2 value of 0.65, a slope of 0.978, and a intercept of -0.15 (see
figure C.4). In the results, it is visible that the simulation with a surface current compensation factor of 1.3
does improve the slope of the spread plot. Figure C.4 shows the result for the surface current compensation
factor for which the slope of the spread plot is equal to 1. Here it is found that the depth average current
should be multiplied with a factor of 2.6 in order to represent the surface currents. However, this is a too big
factor to be realistic. In order to get an accurate description of the surface currents, a 3D model is needed.
From this, we can conclude that the 2DH model cannot be improved with a surface current compensation
factor and that the misfit in the slope of the spread plot is not due to the difference between surface currents
and depth-averaged currents.
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Another likely reason for the misfit of the slope of the spread plot could be the shortcomings of the model.
Chapter 6 explains the shortcomings of the model, and these shortcomings explain why the slope is not equal
to 1. These assumptions are neglecting of wind and wave forces, the neglecting of inertial effects of the ship,
and the truncation errors made in the roadmap. With these assumptions and errors, this model is not perfect.
This explains why the model only can predict a part of the variability and not all of the variability. From this,
it is concluded that the currents account for about 56% of the variability in the shipping velocity, but not for
100% of the variability. Another factor that is not taken into account in the simulation are the decisions of the
captain. In the simulation, it is assumed that the ship always sails the fastest path to the destination with full
power. However, other factors can make the captain decide not to sail with full power or not with the fastest
route. This can influence the result of the slope as well as the result of the r 2 value.

The r 2 value would be considered a low r 2 value for a replica of the project; however, for this case, it is con-
sidered a good correlation. The reason why this value is low is that there are factors that are not taken into
consideration for this validation case. The first factor that can account for a lower r 2 value is the chosen poly-
gon. In order to make sure all the cycles were contained in the polygon, the polygon is quite large. This results
in substantial variability in the start and stops velocities. The second reason that can account for a lower r 2

value is inertial effects. Since the sailing time is short, the inertial effects (accelerating and decelerating) are
substantial. However, one of the core assumptions of the route optimisation package was that inertial effects
could be neglected. In combination with the large polygon, this leads to a decrease of the r 2 value. The third
reason that can account for a lower r 2 value is wind and wave forcing. These forces on the ship were not
included in the model and can cause an extra variability in the shipping velocity. This will result in a lower
r 2 value. The last reason that can account for a lower r 2 value are decisions of the captain and non-variable
shipping speeds. For this validation case, the shipping velocity with respect to water is assumed constant;
however, in reality, the captain does not sail constant with full throttle and changes its shipping velocity with
time. This result in a lower r 2 value. All factors considered an r 2 value of 0.742 is large enough to consider
this a good model.
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The results of this thesis consist out of two parts. The software package HALEM is the first and most important
result of this study. CrefCH:Resultso ft hemodeld evelopmentdescr i bestheHALEMpackag e.Secondl y, ther ear ether esul t so f thecasestud y.T hecasestud ydi spl ay sthepr acti cal useo f HALEM.InSecti on 5.2, ther esul t so f thi scasestud y ar e f ur ther el abor ated .

5.1. Results of the model development
This section explains the result of model development. The results of the model development led to a pack-
age. This package is entirely modular so that it is usable without needing other software or data. Making the
package modular answers the fourth research question. The route optimisation toolbox is published as an
open-source repository on Git-Hub Halem (2019). The link in figure 5.1 provides access to the repository. The
name of this package is HALEM (Hydrodynamic Algorithm for Logistical Enhancement. Module). From this
chapter onward the route optimisation toolbox will also be referred to as HALEM. Listing 5.1 (Halem, 2019)
sows the code to install the software with python. Another way to use the package is to fork the branch and
install it in editor mode.

Figure 5.1: https://github.com/TUDelft-CITG/Route_optimization_in_dynamic_currents

1 pip i n s t a l l halem

Listing 5.1: installation manual for installing the route optimisation package HALEM

This paragraph describes the toolbox that results from the model development. All the features the literature
study and chapter three describe are processed in two python functions. The first function schematizes the
continuous solution space into a graph. The second functions calculate the optimal route using this graph.
This section contains three subsections. The first two subsections explain the steps of the two functions,
fig. 5.2 shows a schematisation of these steps. The last section shows the results of the node reduction. The
documentation website of HALEM 1 shows an example of route optimisation. This example optimises the
route for a rotating flow around the centre of the domain. For this example is a fictive hydrodynamic model
used so that the model runs without any other data.

Figure 5.2: flow chard of route optimisation steps

1https://halem.readthedocs.io/en/latest/examples.html
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5.1.1. Roadmap generator layout
The first function of the route optimisation package is the Road map generator. This function takes the flow
model and other parameters and generates the road map. This function is also called the preprocessing func-
tion.

The first step is to load the hydrodynamic model. The road map generator function takes as input a class
Load_ f low . For each type of flow model (DCSMv6-ZUNOv4 or DCSM-FM 0.5 nm or another flow model),
a custom Load_ f low class is defined. The second step is the node reduction. 3.1 describes the method for
the node reduction. First, a length scale based on the curl of the flow and the magnitude of the flow is deter-
mined. Then the nodes are added if the nearest neighbour is further away than the length scale.

A large schematisation is the minimal water depth and the shipping velocity. These parameters determine for
a large part if a time series satisfies the FIFO condition or not. Therefore these parameters have to be known
in the preprocessing part. If these parameters are determined after the preprocessing the computation of
the optimal route can take much longer (in worse cases up to a factor 100). To make a distinction between
sailing full and sailing empty, multiple arrays for the shipping velocity can be specified in the preprocessing
phase. A example for the input of the shipping speed is vshi p = [[1,3,5], [2,4,6], [3,5,7]]. The last step of the
preprocessing phase is to calculate the time series of the weights of the edges. The algorithm generates a list
of weights for each of the four cost functions (time, space, cost, co2). These lists contain several graphs that
are equal to the number of arrays in the shipping velocity. For the previous example, this results in 4 lists with
for each list three graphs. In the optimisation phase, the right graph can be selected based on the correct
maximal shipping velocity (for this example 5,6, or 7 m/s) for that case.

5.1.2. Route optimizer layout
The second function of the route optimisation package is the route optimiser function itself. The initialisation
function of HALEM defines four one-line functions. For each cost function (time, space, cost, and co2) a
function is made that calculates the optimal route for that cost function. A critical note can be placed to the
start and stop node of the algorithm. Since the continuous solution space is discretised into discrete nodes,
the input coordinates of the start and stop location are not the same as the coordinates of the start and stop
vertex of the graph. The function uses the nearest node to the exact start location as the start node. This
approximation results in a truncation error — the same holds for the end node. When the start and endpoint
are determined, Dijkstra’s algorithm calculates the optimal route. The Dijkstra function returns a large matrix
of numbers. The one-line functions extract the optimal route (x, y, t) from this matrix.

5.1.3. Results of the node reduction
This chapter 3.1.1 answers the first research question. the first research question is "What is the best graph
strategy given computational power constraints?" In chapter 3.1.1 it is found that the number of nodes can be
reduced based on the vorticity of the flow and the magnitude of the flow, while still keeping the resolution
of the graph high. This section shows the results of the node reduction. This step removes resolution in the
places that do not matter. However, if the wrong parameters are used, this can result in a graph with a low
resolution.

In figure 5.3 the results of the node reductions are displayed. The first figure shows the node reduction based
on the vorticity of the flow (α= 1,∆mi n = 0.04,βc = 0.6,βm = 3.5), the second figure shows the node reduction
based on the magnitude of the flow (α= 0, ∆mi n = 0.04, βc = 0.6, βm = 3.5), and the last figure shows a node
reduction based on a blend between the vorticity and the magnitude (α= 0.8,∆mi n = 0.04,βc = 0.6,βm = 3.5).
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Figure 5.3: This figure shows the results of the node reduction. The red dots are the nodes after the node reduction step, the lines between
the nodes are the arcs of the graph, and the contour plot is the length scale of the node reduction step (LS in equation 3.2)
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5.2. Results of model application
This section describes the results of the route optimisation for the project Schouwen Westkop Noord. In Sec-
tion 3.2.3, the methods for the optimisation of the project are described. Project Schouwen Westkop Noord
is a beach-nourishment in Zeeland, near the Oosterscheldekering, due to gullies, banks and tides the sailing
is hard to predict. Therefore, the HALEM package is implemented in OpenCLSim to see what the influence of
route optimisation on projects is. In this study shows seven simulations of the project, the first simulation
is the base case, and the other six simulations are optimisations with different hydrodynamic models (see
Section 3.2.3). The base case only optimises the load factor. The other simulations optimise the route, sailing
velocity and load factor with HALEM.

The input parameters of the seven simulations are all kept the same. Listing 5.2 shows the input parame-
ters of the simulations, their units, and their physical meaning. These values are fictional. The real values
of the hoppers of van Oord cannot be published due to corporate secret-keeping. To show the behaviour
of OpenCLSim and HALEM without breaking corporate secret-keeping fiction values are used. The scaling for
each parameter is different. The real value of the parameter can deviate up to 30 % compared to the real value.

1 load_factor = np . linspace ( 0 , 1 ,1 1 ) # load f a c t o r s (−)
2

3 s t a r t = [3.6740 , 51.7096] # Location of the pumping area ( lon , l a t )
4 stop = [3.5226 ,51.7688] # Location of the dredging area ( lon , l a t )
5 Volume = 425_500 # Total volume to be dredged (m^3)
6

7 unloading_rate = 1.5
8 loading_rate = 1.5
9 ukc = 1.0 # Under Keel clearance (m)

10 WWL = 20 # Width on Water Line (m)
11 LWL = 80 # Length on Water Line (m)
12 hopper_capacity = 4000 # Maximal capacity of the hopper (m^3)
13 V _ f u l l = 10*0.514444444 # Velocity in deep water when maximal loaded (m/ s )
14 V_emp = 12*0.514444444 # Maximal s a i l i n g v e l o c i t y empty in deep water (m/ s )
15 T _ f u l l = 6.5 # Draft when maximal Loaded (m)
16 T_emp = 3.5 # Draft When empty (m)
17 WVPI_full = 10000 # Weight when maximal loaded ( t f )
18 WVPI_empt = 4000 # Weight empty ( t f )
19

20 func_cost = compute_cost(700_000 , 0.008) # Cost function for route optimiser ( $ )
21 func_co2 = compute_co2 ( 1 ) # Cost function for route optimiser ( g CO2)
22 func_velo = compute_v_provider (V_emp, V _ f u l l ) # Vessel v e l o c i t y i s dependent on load f a c t o r (m/ s )

Listing 5.2: Input parameters of the seven simulations in OpenCLSim

The first simulation for this case study is the base case. This base case represents the state of OpenCLSim
without the HALEM package. This base case does not optimise the routes. The vessel follows a predetermined
path. Figure 5.5 shows a schematic representation of the results of the base case. In the lower-left figure, the
percentage of the time spent per project activity are displayed. From this figure, it becomes clear that sailing
is a large part of the project, which takes 68 % of the total project duration. The base case is used as a reference
case for how much the HALEM package improves the project. To do so, some core values are used. In table
section 5.2 the core value of the base case are displayed. In this table values for project duration, the number
of project dredging cycles, production, and averaged time and volume per cycle, can be found.

Section 2.3 introduces four different hydrodynamic models. The case study uses these different models to
access the influence of the hydrodynamic models. In Figure 5.4, the three different grids of these models are
shown. From these figures, it is visible that the 3D DCSM 0.5 nm model is the most coarse. In plot 2 of Fig-
ure 5.4, the nodes of the DCSMv6 zunv4 kf model are shown. It is visible that this model has a medium-fine
grid. From the figure, it is visible that this is a curvilinear grid. Plot 3 of Figure 5.4 shows the nodes of DCSM
FM 100 m model. This model has a fine grid. From the figure it is visible that the model has different resolu-
tions in different places, this is a clear feature of a Flexible Mesh (FM) grid.

The simulations for the 3D DCSM-FM 0.5 nm and DCSM-FM 0.5 nm model show that the resolution of this
model is too coarse to capture the essence of the problem. The fifth plot of Figure 5.5 shows the grid of these
two models (the models have the same grid points). This figure shows that the grid is so coarse that it does
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Figure 5.4: This figure shows the different girds of the used model for the case study. Note that the black lines are is the TIN mesh of the
HALEM software, and not the edges of the hydrodynamic model.

not show the gully, in which the pumping location is located. This coarse resolution means that the vessel
never has to sail through the gully because the water level is not sufficient. These were unrealistic results.
Therefore the DCSM-FM 0.5 nm and 3D DCSM-FM 0.5 nm are not included in the results.

The case study uses three different hydrodynamic models. The first is the DCSMv4-zunov6 kf model (referred
to as zuno model), second the DCSM-FM 100m model (referred to as the FM model), and last the tidal anal-
ysis model based on the DCSMv4-zunov6 kf (referred to as the zuno model tidal analysis). Each model is run
twice, once with the lowest directional resolution possible (1 layer of neighbouring nodes), and once with
the highest directional resolution possible (2 or 3 layers of neighbouring nodes, the directional resolution is
limited by the computational power).

The results of the simulations are shown in Section 5.2 and Figure 5.5. It is visible that the hydrodynamic ef-
fects have a significant influence on the outcome of the projects. The results show that the DCSM FM model
with two neighbouring layers (referred to as the FM model with nb = 2) captures the route optimisation for
this specific project the best. This simulation shows improvement in the production of 21 per cent, an in-
crease of the total sailed distance of 8 per cent and a decrease of the project duration of 17 per cent over
the base case. This improvement is considered a fairly significant improvement for dredging projects. In the
paragraphs below the specifics of the results are explained, and explains why the FM model with nb = 2 cap-
tures the route optimisation the best.

From the second plot of Figure 5.5, it is visible that the total sailed distance decreases when the directional
resolution increases. This effect is due to the Manhattan distance error (Black, 2019). The limited directional
resolution causes this error. This is visible in Figure 5.5. For a larger number of neighbouring layers, the Man-
hattan distance error decreases and the improvements increase. The seventh plot of Figure 5.5 shows these
smooth tracks.

From Section 5.2 and Figure 5.5 it can be seen that the difference between the Tidal analysis zuno model and
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the real data zuno model are minimal. For the highest directional resolution (zuno model nb = 3 and TA zuno
model nb = 3) the difference in production is 2 %, the difference in project duration is 1 %, and the difference
in total sailed distance is 1 %. These differences are comparable to the truncation errors in the model. The
reason that these differences are so small is that water depth dominates the route. The water depth is mainly
a tidal feature. Tidal analysis models accurately describe these tidal features.

On further examination of the FM model, we can see that there is some strange behaviour. For the simula-
tions with the FM model, the reduction in production is also approximately half. Moreover, the simulations
show an increase in the total sailed distance. However, from plot 8 in Figure 5.5, we can see that the vessel
takes shorter routes than the base case. This contradiction is due to the increase in the number of dredging
cycles. In the distribution of the load factors, it is visible that the load factor for the FM simulations is on av-
erage lower than for the other models (shown in plot 3 of Figure 5.5). This difference is because the grid of the
zuno model barely captures the problem. However, the FM has such a fine grid that all the small details are
fully captured by the hydrodynamic model. This results in a more accurate description of the project, which
turns out to be less optimistic than the results for the zuno model.

In the second plot of Figure 5.5 it is visible that the FM model and the base case do not always sail away di-
rectly, but sometimes wait for the tide to change. For the base case, these are logical and expected results.
However, for the FM model, this result in a smaller slope of plot 1 of Figure 5.5. The physical meaning of this
decrease in the slope is that the production decreases (for this case, it is only a small decrease). This error is
due to the lack of resolution in the discretisation of the load factor. If the load factor were discretised in steps
of 0.01 instead of steps of 0.1, this error would be prevented. The resolution of the load factor is in this study
not increased since it is limited by computational power.



5.2. Results of model application 47

Figure 5.5: This figure shows the results of the simulations visually. Plot 1 shows the volume in the destination location. Plot 2 shows
the total sailed distance since the start of the project. Note that for plot 1 and 2 shows only the first ten days of the project. This is
done to make details more visible. Plot 3 shows the histogram of the load factors of the different simulations. Plot 4 shows the activity
distribution of the simulations. Plot 5 shows the nodes of the 3D DCSM FM 0.5 nm and DCSM FM 0.5 nm model. Plot 6 shows the
optimised routes for the simulation with the zuno model and nb = 1. Plot 7 shows the optimised routes for the simulation with the zuno
model tidal analysis and nb = 3. Plot 8 shows the optimised routes for the simulation with the FM model and nb = 2. The contour-plot of
plot 5 - 8 represents the water depth. The orange area never has sufficient water depth. The dark blue always has enough water depth,
independent on the tide and load factor. For the light blue area, it depends on the tide and the load factor whether the water depth is
sufficient. Note that for plot 6 - 8, the colour of the route changes with time. The route is blue at the start of the project and red at the
end of the project. The colour changes with the colours of the rainbow gradually.
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Table 5.1: This table shows the results of the different simulations with the digital twin of the use-case Schouwen Westkop Noord. The
different core values describe the results of the simulation. The first column is the base case, and in the six other columns the simulations
for the six different hydrodynamic models are found.

Core value
Base
case

Zuno model FM model
Zuno model

Tidal analysis

Layers of
Neighbours

: - 1 3 1 2 1 3

Production
(103 m3 / week)

: 107 150 154 130 129 149 153

Project
duration

:
27 d
22 h

19 d
20 h

19 d
6 h

22 d
23 h

23 d
4 h

20 d
0 h

19 d
12 h

Number
of cycles

: 109 117 118 148 144 118 119

Total sailed
distance [106 m]

: 5.72 5.22 5.03 6.75 6.16 5.26 5.09

Percentage
of time spend

on loading
: 16 % 17 % 17 % 14 % 14 % 16 % 17 %

Percentage
of time spend
on unloading

: 16 % 17 % 17 % 14 % 14 % 16 % 17 %

Percentage
of time spend
on sailing full

: 38 % 41 % 41 % 43 % 46 % 43 % 41 %

Percentage
of times pend

on sailing empty
: 30 % 25 % 25 % 29 % 26 % 25 % 25 %

Improvement
in production

: 0 % 41 % 45 % 21 % 21 % 40 % 43 %

Reduction of
project time

: 0 % 29 % 31 % 18 % 17 % 28 % 30 %

Reduction in
sailing distance

: 0 % 9 % 12 % -18 % -8 % 8 % 11 %
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The previous chapters described the model development, model validation, and model application. This
chapter discusses the meaning of these results and describes the features, schematisation, and pitfalls of the
model. The discussion exists out of four parts. The first section describes the strong points of the model. The
second section describes the limitations of the model. The third section describes how the model should be
used. The last section describes how the results compare to other route optimisation studies.

6.1. Features of HALEM
The computational time of both the preprocessing step and the route calculation step significantly increase
when the model uses the nodes of the hydrodynamic model. Therefore the first improvement is the node
reduction. For longer routes or more detailed hydrodynamic models, the number of nodes in the hydro-
dynamic model become so large that the computational times can become unreasonably long. This study
presents a new method to reduce the number of nodes without reducing the resolution of the route. This
method uses the vorticity and the magnitude of the flow to prune the nodes in irrelevant areas. The result is
that the method removes points in isotropic and homogeneous areas, and keeps the nodes in relevant areas.
This step is the most crucial discretisation of this study. This step aims to remove resolution in the places
where it is not needed. This so-called node reduction results in a road map with a low number of nodes
but a high spatial resolution. However, poorly chosen parameters (∆mi n , α, βc , and βm) could result in a bad
roadmap. This roadmap might miss important features such as currents, bathymetry, or other hydrodynamic
properties. This error could eventually lead to a physically impossible route.

The second improvement this study makes is the addition of time-depended hydrodynamic features. Nan-
nicini et al. (2009) presents a method that includes time dependencies by changing the weights of the graphs
to time series. This transformation results in a TDSP (Time Depended Shortest Path ) algorithm with a slight
modification of Dijkstra’s algorithm. For this algorithm, the FIFO criteria need to be satisfied. The method
presented in Yong-liu and Aiguang-yang (2007) transforms the edges in such a way that the FIFO criterium is
guaranteed. With route optimisation for cost or emission reduction, the optimal sailing velocity is no longer
constant. In HALEM a new method is implemented for optimising the sailing velocity during the route. In
addition in HALEM the sailing velocity is discretised in N different velocities (where N is an input value for the
preprocessing). For each point in space, there are then N nodes defined. In the graph these nodes have the
same latitude and longitude coordinates but have different sailing velocities. For each connection between
two adjacent points in space, N 2 edges are generated to connect all the different sailing velocities. This dis-
cretisation results in an excellent way to include the optimal sailing velocity in the optimal shipping route.

This study embeds the python tool HALEM in a framework to optimise not only single routes but the routes of
entire projects. This tool is OpenCLSim. OpenCLSim implements the digital twin methodology. This software
can be used as a platform to optimise the routes for entire projects. This study implements the HALEM soft-
ware in OpenCLSim with a so-called python mix-in. With this mix-in, OpenCLSim can optimise the routes of
the projects with a given hydrodynamic model. The combination of the HALEM tool and the OpenCLSim tool
provide new insights into the influence of hydrodynamic features on the optimal shipping route. The mix-in
of HALEM in OpenCLSim gives the option to optimise the load factor of the vessel. The preprocessing phase
discretises the load factors of the vessel in a limited number of steps. OpenCLSim determines the resulting
production of the dredging cycle for each of these load factors. The method then selects the load factor with
the highest production.
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Figure 6.1: This figure shows the limitations that follow from neglecting the inertial forces. The black route is the optimal route, without
currents or limitations, with the minimal turning circle. The red line shows the optimal route that neglects the minimal turn circle.

6.2. Limitations of HALEM
Chapter 1 introduces the assumptions of HALEM. These assumptions were neglecting the inertial forces, ne-
glecting wind and wave forces, and assuming that the path of the vessel is freely routable. These assumptions
have a considerable influence on the behaviour of HALEM. The implemented features of HALEM find their
origin in these assumptions. Since these assumptions are essential to the model, the section below discusses
these influences.

The first assumption is neglecting the inertial forces. Neglecting the inertial forces results in two errors within
the route. The first error is that acceleration and deceleration are not taken into account. This error is rela-
tively small since sailing velocities in a dredging project are relatively low, and acceleration and deceleration
times are short in comparison to the total sailing time.

The second error caused by this assumption is neglecting the minimum turning circle of the vessel. Neglect-
ing the inertial forces assumes that the ship can physical take any bend, no matter how sharp, in reality, this is
not the case. The second error that results from neglecting inertial forces is not taking in account the minimal
turning circle. Fitriadhy et al. (2012), Yasukawa and Yoshimura (2015), Zhang et al. (2017) discuss the effects
of inertial forces on the minimal turning circle. When the distance between the start end location of a project
are close to each other, the vessel can not sail in a straight line between start and end because of the minimum
turning circle. Since the ship also has to sail back, the route becomes an oval between the start and finish.
Figure 6.1 Shows this effect. The AIS data of the validation case shows this behaviour as well (see Figure 4.2).
The optimal shipping route that is calculated by HALEM is for this case not possible. How large the effect of
this turning circle highly depends on the distance between the start and end of the project, bathymetry and
currents and is therefore difficult to quantify.

The second assumption is that the shipping of the project is free navigation. This assumption is reason-
able since the contractor gets, for most cases, a permit to sail outside the buoys for dredging purposes. This
only results in a small error with the squat calculations. The squat calculation assumes that the waterway
is unrestricted. However, when the route sails through a narrow channel (such as for case study Schouwen-
Duiveland) the waterway is restricted, and this assumption is not valid. This effect leads to an overestimation
of the sailing velocity.

The last assumption is the neglecting of the wind and wave forces. In reality, the wind and wave forces also
influence the ship movement. By neglecting these forces the required memory for the calculations reduces
significantly. Including the wind and wave forcing should be a relatively simple step, it would, however, re-
quire a lot more memory (both RAM and storage memory). The case study Schouwen was, among other
reasons, chosen because wind and wave influences were not dominant. The client chose the period of the
case study based on the lowest amount of waves and winds present. The results show that water depth dom-
inates the shipping routes. Currents, waves, and wind have far less impact on the shipping routes. Another
reason why water depth dominates the project is that the bathymetry dictates the route. Therefore it is safe
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to model this specific project without wind and waves.

In the simulations of section 5.2 the model calculates the needed water depth for the route as the draft of the
vessel plus the ukc. The ukc can be seen as a safety factor to prevent grounding of the vessel. The use case
uses a minimal ukc of 1.0 meter. The actual ukc is, in reality, not a constant but a probability distribution. Due
to dynamic water depths while sailing, the ukc is not constant with time (however, always greater than the
minimal ukc). When the mean ukc is lower, the probability of grounding is more substantial than when the
average ukc is larger. Therefore, it can be argued that when the shipping routes are optimised the averaged
ukc becomes lower and therefore the risk of grounding becomes larger.

What the distribution of the ukc actual is and how it changes is highly dependent on the use case. The mean
ukc does not necessarily decrease when optimising shipping routes since sailing velocities decreases in shal-
low waters (Due to the squat effect, see Section 2.4.3). In the base case, the vessel waits at low water for the
tide to rise in order to leave the shallow channel. This limited water depth means that the ukc for the base
case is already low. The effect of optimising the routes on the distribution of the uck is in this study not
investigated.

The discussion that optimising the routes may lead to an increase in the probability of grounding is an exam-
ple of an argument of why HALEM or OpenCLSim should not be used as an autopilot. Other arguments regard
safety, ship collision, or other topics. OpenCLSim or HALEM should never be used as the absolute truth but it
should function as an advisory role. On vessels the captain should make the decision. Although OpenCLSim
or HALEM can advise the captain, it can not and should not replace said captain.

6.3. HALEM compared to the literature
This study shows that hydrodynamic features influence shipping routes. The case study showed that op-
timising shipping routes results in a significant improvement of the project production. This optimisation
results in the question of why HALEM should be used instead of other available models. For example, Kosmas
and Vlachos (2012), Lee et al. (2018b), Park and Kim (2015), Wang et al. (2019), Zhang et al. (2019) show good
alternative models for ship route optimisation. Which model is better highly depends on the application.
Different physical processes, such as currents, water depth, wind, and waves, influence route planning. The
application determines which process dominates the route optimisation. Route planning models (including
this study), in general, do not take all physical processes into account. This section explains why this study
neglects certain physical processes and elaborates which physical processes are taken into account in other
models and why.

As described in Section 3 HALEM uses the flow velocity and water depth output of a hydrodynamic model as
the input of the route optimisation. This study does not take wind and wave influences into account. The ship
movement model reduced the sailing velocity for squat and compensated for the currents. The ship move-
ment model neglects inertial forces to determine the sailing velocities. These assumptions result in a model
that can optimise the route when hydrodynamic features are the dominant process. This model can optimise
the route when for routes limited by water depth and currents. The case study reflects this. The client chose
the period of the case study such that the least amount of waves and winds are present. This period results in
a case study where wind and wave forces are not dominant. Due to the limiting bathymetry of the case study,
the water depth mainly dominates the shipping routes. Due to its high resolution, this physical process of
available water depth is relatively good captured in HALEM. These properties make HALEM a good model for
this specific case study.

While HALEM functions as a good model for specific projects, other project might have other dominating
physical processes. For these other projects, Table 6.1, shows six route optimisation studies for four different
purposes. This table shows which studies take which processes into account. Study 1 (Wang et al., 2019),
study 2 (Lee et al., 2018b), and study 3 (Park and Kim, 2015) optimise shipping routes for transatlantic ship-
ping. For this case, wind, waves and variable engine power are the dominant processes. Study 5 (Zhang et al.,
2019) optimises the shipping routes in arctic waters. In this study arctic water ice forming was the dominant
process, showing that the dominant processes determine the model that must be used to optimise the routes.
Lastly, study 6 (Kosmas and Vlachos, 2012) optimised shipping routes for passenger-vessels. Comfort was the
main optimisation purpose in this study; for this purpose, winds and wave are the dominant physical pro-
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cesses. Since HALEM does not capture winds, waves, variable engine power, or ice forming, it cannot be used
for transatlantic shipping, arctic shipping or passenger shipping. However, since Kosmas and Vlachos (2012),
Lee et al. (2018b), Park and Kim (2015), Wang et al. (2019), Zhang et al. (2019) do not take dynamic water
depths into account and have a courser resolution, they cannot be used for route optimisation of dredging
projects.

Table 6.1: Comparison of different dominant physical processes in different route optimisation studies.

Variable
engine
power

Currents
Dynamic

Water
Depth

Wind Waves

Kosmas and Vlachos (2012) X X
Park and Kim (2015) X X X

Lee et al. (2018b) X X X X
Wang et al. (2019) X X X X

Zhang et al. (2019) X X
HALEM X X

The importance of taken the correct dominant processes into account also holds for the input of HALEM. The
case study compares the simulations with the DCSM and the simulation with the tidal analysis of the DCSM
model. For this specific use case, the results did not show significant differences. This similarity lies in the fact
that the tide mainly determines the water level. Other features such as wind forces, waves, and stratification
have much less influence than the tide, which means that tidal features dominate the hydrodynamic condi-
tions. However, hydrodynamic conditions are not always dominated by tidal features. Other features may
dominate in other cases. For example, the stratified flows of the Frisian front dominated the shipping for the
realisation of Gemini Wind park (Claessens, 2016). In order to make an accurate simulation for these routes,
a hydrodynamic model that accurately captures the three-dimensional flows is of vital essence. When the
model output does not represent the dominating hydrodynamic conditions, the results of the route optimi-
sation are not accurate. Therefore knowledge about the dominating hydrodynamic conditions of the project
site is of vital importance for the use of HALEM. This study shows the potential use of hydrodynamic mod-
els. Therefore, it is recommended to keep investing in the development of high resolution 3D hydrodynamic
models. Without the correct hydrodynamic model, these route optimisations are not possible.



7 | Conclusion and recommendations

The main question of this study is: How can the optimal shipping route be determined for given currents in the
North,- and Wadden sea? To elaborate the main question, four research questions were formulated. These
research questions should be answered first to form a conclusion to this study. This sections answers the
main questions by first answering the research questions.

The first research question is: What is the best graph strategy given the computational power constrains? As
discussed in Section 3.1.1 this study uses the nodes of the hydrodynamic model as the vertices of the graph.
This approach introduces the problem that there are too many nodes. Therefore the nodes of the graph are
reduced. This nodes reduction is made based on the vorticity and the magnitude of the flow. This method
results in a grid with a low number of nodes, but a high resolution in the places where it is relevant. Once the
nodes of the graph are determined, the nodes of the graph are connected with edges to complete the graph.
Due to the node reduction, the nodes do not have a structure anymore. Therefore, Delaunay’s algorithm
generates a TIN mesh to find neighbours of each node. To increase the directional resolution of the graph
edges are not only defined between neighbouring points, but also between neighbours of neighbours. The
algorithm uses this parameter for the directional resolution (nb) as an input parameter to create the graph.

The second research question and its answer is: What is the best method for time-dependent route optimisa-
tions? This question is answered in Section 3.1.2. For the time-dependent shortest path problem (TDSPP),
this study uses the method presented in Nannicini et al. (2009). This study uses a time-dependent Dijkstra al-
gorithm that takes temporal variations into account by changing the weight into time series. A transformation
of the edges meets the FIFO-criteria of this algorithm. Yong-liu and Aiguang-yang (2007) presents a method
for this transformation. The weights of the edges are determined based on the vector addition model. This
study defines weights for four different optimisation purposes. These four purposes are the shortest route,
the fastest route, the cheapest route and the least polluting route.

The third research question and its answer is: How can the route planner be implemented in a modular pack-
age so that it can be used in different cases? This question is answered in Section 3.1.4. This research imple-
ments the algorithm in an open-source modular python package called HALEM. By developing this package,
many different projects can use the algorithm. This package is distributed and published via GitHub, PyPI,
Zenodo, and ReadTheDocs (van Halem, 2019). The OpenCLSim software is used to make the influence of
route optimisation on dredging projects visible (Van Koningsveld et al., 2019). This study presents a mix-in
for the HALEM software into the OpenCLSim software.

Research question 4 and its answer is: How can dredging projects be optimised for the given route optimisa-
tion package and OpenCLSim? A case study simulates a beach-nourishment at Schouwen Westkop Noord to
demonstrate the practical use of HALEM and OpenCLSim, see Section 5.2. For this project, 425,500 m3 sand
should be dredged offshore and pumped onto the beach. Due to the narrow gullies and tidal changes in hy-
drodynamic features, the routes were hard to predict. The simulation with HALEM and OpenCLSIM shows an
increase in the production with 21 % compared to the simulation with just OpenCLSim.

The main question and its answer is: How can the optimal shipping route be determined for given currents in
the North Sea and Wadden Sea?. This thesis introduces a new algorithm for optimising shipping routes within
a dredging project; HALEM. This tool uses graph theory to find the time-dependent fastest path between start
and destination. The case study discussed in this thesis demonstrates that route optimisation can increase
project production by 21 %. This study concludes that HALEM is an innovative tool that can help access the in-
fluence of small scale hydrodynamic features on shipping routes. The same case study showed that HALEM, in
combination with OpenCLSim, can reduce the cost and emission of a project significantly. Since the model is
generally applicable for projects dominated by small scale hydrodynamic features at any location, the model
contributes to the global search for optimisation and reduction of emissions.
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7.1. Recommendations
This study presents an algorithm that works and meets the requirements that the research questions de-
manded. However, it still can be improved on a few points. This section provides the point of improvements
to increase the accuracy of the output.

Neglecting the wind and wave forces is the first and most crucial error that this study makes. These wind and
wave forces can play an essential role in small scale route optimisation. Implementing these wind and wave
forces is relatively easy. The wind force changes the forcing vector in Equation (2.4). The waves do not change
the direction of the course but change the acceptable ukc (under keel clearance). With small waves, the ukc
can be small, and with big waves, the ukc must be higher. With extreme waves the work-ability conditions of
the vessel can be exceeded, an infinite large ukc solves this.

Neglecting the inertial forces, acceleration, and turning circle is the second invalid assumption that this study
makes. In Chapter 6 the specific errors of this assumption are discussed. A post-processed hill-climbing re-
finement can solve these errors. The main disadvantages of the hill-climbing algorithm is that it depends on
the initial solution, making it a convex algorithm. However, after graph theory finds the optimal route, the
refinement step is no longer a non-convex problem, and an initial solution is known. This problem is suitable
for the hill-climbing algorithm. This refinement step can take the inertial forces of the vessel into account.
This step will also solve the Manhattan path error that found in Section 5.2 and allow the algorithm to run on
a lower directional resolution.

This study introduces four cost-functions for four different optimisation purposes. However, the case study
only uses the fastest route and does not use the other three cost-functions. Although Section 3.1.3 introduces
a method for including the variable shipping speeds, the case study does not take this variable into account.
It is therefore recommended to conduct additional research in the effect of these variable shipping speed and
the influence of different cost-functions.

Computational power limits the computations of this research. This research is performed on a computer
which has 24.0 GB RAM (random access memory), and an Intel(R) Core(TM) i5-8350U CPU @1.70 GHz 1.90
GHz processor. Although Van Oord generously gave a relatively large amount of RAM, the memory error
still formed a limitation in this study. Another limitation was the computation time. By performing most of
the calculations in the pre-processing step, the computation times were managed to be kept relatively low.
However, computing the entire Schouwen project with the high-resolution FM model, and a high directional
resolution resulted in computation times in the order of hours. These limitations in RAM and computational
time for large scale projects can be solved in by implementing the following improvements:

1. A professional clean-up of the software. Before the lack of capabilities of HALEM can be attributed to
external factors such as programming language, and hardware, it must be considered that the code of
HALEM itself can be inefficient in some points. The current software of HALEM is developed with little
programming experience. This package is the first real package developed by the author. This lack of
experience means that the code can be inefficient at some points. A clean-up of the code by someone
with more coding experience will fix this problem.

2. Rewriting the HALEM package in a faster programming language. Python is a relatively slow program-
ming language. Therefore there is still room improving the efficiency by implementing HALEM in a
faster language.

3. Multi-threading, the software. HALEM currently uses only a single core of the processor. This limitation
is because python does not support multi-threading. Writing the software in a language that support
multi-threading will solve this issue.

4. Running the software on a server. When a professional clean-up of the code and other software re-
lated measures to improve the capabilities of HALEM do not work, it can be considered to improve the
hardware on which HALEM is run. An example of a better platform is a server. Running HALEM on a
server can provide a faster CPU, with more cores, and more RAM than a laptop or desktop can provide.
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A.1. Latin Symbols

Symbol Meaning

b Width of the waterway
Cb Block coefficient
E Edge of a graph, connection between two vertices

F R Froude number
g Gravitational constant
h Water depth

IzG , Jz Moments of inertia of the vessel
L,B ,T Dimensions of the vessel (Length, Width, Draft)

LS Length scale for the pruning of the nodes
m Inertial mass of the vessel

mx ,my Added inertial mass in x and y direction
ns , ss Velocity vector of the vessel rotated to the course of the vessel
n f , s f Forcing vector rotated to the course of the vessel

r Load factor
r 2 Coefficient of determination
R Yaw rate of the vessel

Ray Rayleigh parameter
RH Hydraulic radius
S Blockage coefficient

TM2 Tidal period of the M2 tide
TS2 Tidal period of the s2 tide
TC Tidal period of the carrier-wave−→u = [u, v] Flow velocity in x,- and y-direction

u f , v f Forcing vector on the vessel
ut , vt Velocity of the vessel
ukc Under keel clearance

Vmax Velocity of the vessel in deep water
V Velocity of the vessel reduced for squat

Wempt y Total weight of the vessel when fully empty
W f ul l Total weight of the vessel when fully loaded
Wshi p Total Weight of the vessel

XH ,YH , Nh Hull forces on the vessel
XP Propeller forces on the vessel

XR ,YR , NR Rudder forces on the vessel
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A.2. Greek Symbols

Symbol Meaning

α Blend factor between the vorticity and the magnitude of the flow
α1 Angle between course and horizontal
α2 Angle between course and flow velocity
β Drift angle
βm Non-linearity factor for the magnitude of the flow
βc Non-linearity factor for the vorticity of the flow
δ Rudder angle

∆mi n Minimal resolution of the grid
ρw Density of water

A.3. Units
This report has been based upon the metric system and adopts the SI system and its derivative units:

Symbol Meaning

h hours
km kilometers
kg kilograms
m meters
s seconds

A.4. Abbreviations

Abbreviation Meaning

AIS Automatic Identification System
CFD Computational Fluid Dynamcis

DCSM Dutch Continental Shelf Model
DOI Digital Object Identifier
FIFO First In First Out
FM Flexible Mesh
GUI Graphical User Interface

HALEM Hydrodynamic Algorithm for Logistic Enhancement, Module.
MMG Maneuvering Modeling Group

OpenCLSim Opensource Complex Logistic Simulator
PyPI Python Package Index or Cheese Shop
RAM Random access Memory
RMS Root Mean Square
ROFI Region of fresh water influence

SSSPP single-source shortest path problem
SPSPP single-pair shortest path problem
TDSP Time Dependent Shortest Path problem
TSHD Trailing Suction Hopper Dredger

TIN Triangular Irregular Network
ukc Under keel clearance



B | Tidal analysis

This appendix shows the results for the tidal analysis for one point. In the figure and table of this appendix
are the resulting constituents and time series displayed.

Table B.1: Result of the tidal analysis in one point. This table shows all the tidal constituents for h, u and v.

Amplitude h Phase h Amplitude u Phase u Amplitude v Phase v
M2 1.35 86.21 0.36 109.98 0.57 43.35
S2 0.3 19.04 0.08 41.53 0.13 340.16
M4 0.14 173.52 0.03 125.64 0.04 198.1
M6 0.1 155.61 0.03 103.01 0.03 233.55
O1 0.09 250.04 0.02 49.02 0.02 127.77
K1 0.08 298.02 0.01 63.94 0.02 155.61
MS4 0.08 112.31 0.01 190.12 0.02 160.57
2MS6 0.08 89.23 0.01 145.95 0.01 206.99
MSF 0.05 270.89 0.01 228.7 0.01 167.12
M8 0.03 219.37 0.0 69.92 0.01 209.96
2SM6 0.01 36.76 0.0 251.59 0.0 48.67
S4 0.01 89.04 0.0 27.25 0.0 163.63
M3 0.01 59.46 0.0 167.97 0.0 140.65
SK3 0.01 209.17 0.0 203.73 0.0 57.25
2MK5 0.0 251.54 0.0 54.33 0.0 168.68
3MK7 0.0 261.21 0.0 278.97 0.0 271.29
2SK5 0.0 271.67 0.0 309.37 0.0 199.08
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Figure B.1: Results of the tidal analysis for a single node. A list of all the used tidal constituents is displayed in table B.1



C | Results of the validation case Texel for
current compensation

Figure C.1: This figure displays the AIS-data analysis of the Texel beach-nourishment project. the right figure shows the route sailed by
the Geopotes 15 and the left figures show the time spend per activity and the sailing velocities.
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Figure C.2: These are the results for the validation case Texel with a compensation factor based on a logarithmic profile of 1.0. The centre
plot and the right plot show respectively the distribution of the calculated sailing velocity and the distribution of the measured sailing
velocity. In the title of these plots, the mean values and standard deviations are given. The left figure shows the correlation between the
measured and calculated velocity. The parameters that describe the correlation are displayed in the title.

Figure C.3: These are the results for the validation case Texel with a compensation factor based on a logarithmic profile of 1.3. The centre
plot and the right plot show respectively the distribution of the calculated sailing velocity and the distribution of the measured sailing
velocity. In the title of these plots, the mean values and standard deviations are given. The left figure shows the correlation between the
measured and calculated velocity. The parameters that describe the correlation are displayed in the title.
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Figure C.4: These are the results for the validation case Texel with a compensation factor based on a logarithmic profile of 2.6. The centre
plot and the right plot show respectively the distribution of the calculated sailing velocity and the distribution of the measured sailing
velocity. In the title of these plots, the mean values and standard deviations are given. The left figure shows the correlation between the
measured and calculated velocity. The parameters that describe the correlation are displayed in the title.
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