<]
TUDelft

Delft University of Technology

Fourier Multiplier Methods in the Study of Growth and Decay of Semigroups

Deng, C.

DOI
10.4233/uuid:85e10ab4-5f9-4385-a861-2525b73093e0

Publication date
2025

Document Version
Final published version

Citation (APA)

Deng, C. (2025). Fourier Multiplier Methods in the Study of Growth and Decay of Semigroups. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:85e10ab4-5ff9-4385-a861-
2525b73093e0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.4233/uuid:85e10ab4-5ff9-4385-a861-2525b73093e0
https://doi.org/10.4233/uuid:85e10ab4-5ff9-4385-a861-2525b73093e0
https://doi.org/10.4233/uuid:85e10ab4-5ff9-4385-a861-2525b73093e0

FOURIER MULTIPLIER METHODS IN THE STUDY OF
GROWTH AND DECAY OF SEMIGROUPS






FOURIER MULTIPLIER METHODS IN THE STUDY OF
GROWTH AND DECAY OF SEMIGROUPS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates
to be defended publicly on
Monday 1 December 2025 at 10:00 o’clock

by

Chenxi DENG

Master of Science in Operational Research and Cybernetics,
Northeast Normal University, China
born in Shandong, China



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof. dr. ir. M.C. Veraar, Delft University of Technology, promotor

Dr. ir. E. Lorist, Delft University of Technology, copromotor
Prof. dr. Q. Zhang Beijing Institute of Technology, external advisor
Independent members:

Dr. C. Cuny, Université de Bretagne-Occidentale, France
Prof. dr. ir. M.B. van Gijzen, Delft University of Technology

Dr. J. Rozendaal, IMPAN, Poland

Prof. dr. Q. Xu, University of Franche-Comté, France

Prof. dr. D.C. Gijswijt Delft University of Technology, reserve member

The doctoral research has been carried out in the context of an agreement on joint doc-
toral supervision between Beijing Institute of Technology, China and Delft University of
Technology, the Netherlands.

It x k¥

BEIJING INSTITUTE OF TECHNOLOGY

Delft
e t University of
Technology

Keywords: Polynomial stability, strongly continuous semigroup, discrete semi-
group, strongly Kreiss bounded operator, Fourier multiplier theory
Cover by: The cover art was kindly designed by Ruocheng Li.

Copyright © 2025 by C. Deng
ISBN 978-94-6518-137-0

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.


https://repository.tudelft.nl/

CONTENTS

Summary ix
Samenvatting xi
Preface xiii
1 Introduction 1
1.1 Modernanalysisof PDEs. . . . .. ... ... ... 1
1.2 Reviewofthemainresults . . . ... ... .. ... ... ... ... ..., 2
1.2.1 Polynomial stability of Cp-semigroups . .. ... ............ 2

1.2.2 Discrete semigroups: weak Ritt operators and Kreiss operators . . . . 4

1.2.3 Fourier multiplier theory under weak smooth conditions . ... ... 7

1.3 OVEIVIEW . . . v ot e e e e e e e e e e e e 8

2 Preliminaries 9
2.1 Generalnotation . .. ... ... .. ... 9
2.2 Some basic functionalanalysis . . . ... ..... ... .. .. oL, 10
2.3 Fourier multipliertheory . ... ... ... ... .. .. .. ... .. .. ... 11
2.3.1 Fouriertype . . . .o v v it i e e e e e e e e e e e e 11

2.3.2 Fouriermultipliers . . . . . . .. vttt e 12

24 UMDBaNaChspaces . . . . v v v v v ittt ettt et et e e e 13
2.5 Type, cotype, and related properties . . . . . . .. .. ... .. ... 15
2.6 Functionspaces . . . .. ... ...ttt it e 16
2.6.1 Boundedvariation ............ .. .. ... . ... 16

2.6.2 Banachfunctionspaces .. ... .. ... ... ... 17

2.7 Interpolation SPaces . . . . v v v it i e e e e e e e e e e 18
2.7.1 Complexinterpolation . . ... ... ... .. ... ... .. ....... 18

2.7.2 Realinterpolation. . ... ... ... ... ... ... 19

3 Improved polynomial decay for non-uniformly bounded semigroups 21
3.1 Introduction . .. .. ... . ... e 21
311 Setting . . v o o e e e e e e e e e e e e 21

3.1.2 Previouswork . . . . .. ... e 22

3.1.3 Mainresult. . . . . . oL L e 23

3.1.4 The strategy of the proof and organization . . .............. 25

3.2 Preliminaries . ... ... ... ... .. e 25
3.2.1 Notationinthischapter . . ... ... .. .. ... ... ......... 25

3.2.2 BeSOVSPACES . . . . . . e e e e e e e e e e e 26

3.3 Polynomial Stability on Real Interpolation Spaces . . . . .. ... ....... 27



CONTENTS

3.4 Polynomial Stability on Fractional Domains . . ... .............. 32
A weak Ritt condition on bounded linear operators 37
4.1 Introduction . . . . . . . . . o i e e e e e 37
4.2 Preliminaries . .. ... ... .. ... e 39
4.2.1 Notationinthischapter . ........ ... ... ... ... ...... 39
4.2.2 (f, (Z; £(X,Y))-Fourier multipliertheory . . . . . ... ......... 39
4.2.3 Fractional power Operators . . . . . . . o v v v v ittt e 40
4.24 WeakRittcondition . ............ .. ... .. . ... 43
425 Ergodictheory. ... .. ... ... . 46
43 MainResult . ... ... ... .. . 48
4.3.1 Resultsin general Banachspaces. . ... ................. 48
4.3.2 Results in Banach space with Fourier type pe (1,2] . . ... ... ... 52
4.4 CompariSON . . . . v vttt e e e e e e e e e e 56
4.4.1 Comparisonbetweenmainresults. . ... ... ............. 56
4.4.2 Comparison with other knownresults. . . ... ... .......... 58
45 Application. . . . . . i i e e e e e e e 59
4.5.1 Polynomial stability of damped wave equations . . . . ... ... ... 60
4.5.2 Polynomial acceleration of fixed point problems . . .......... 61
Strongly Kreiss Bounded Operators in UMD Banach Spaces 65
5.1 Introduction . . . . .. . ... .. e 65
5.2 Fourier Decompositions . . . . . . .. ..ot 68
5.2.1 LP(T;Z(X,Y))-Fourier multipliertheory . . . . ... ... ....... 68
5.2.2 (9(LP)-Fourier decompositions . .. ...............o.... 69
5.2.3 Basicproperties . . . . . . . ... e e e e e 70
5.2.4 Necessity of type and cotype properties . . . . . ... ... ....... 75
525 Examples. . . ... .. e 77
5.3 Main Resultson UMD BanachSpaces . . . .. .................. 78
5.3.1 Statementoftheresults ... ....... ... ... ... ... 78
5.3.2 Preparatorylemmas . ... ... ... ... ... 81
5.3.3 ProofofTheorem5.3.1 ... ... ... ... ... .. .. . ..., 86
5.4 Resultsin Banach FunctionSpaces. . . .. ... ... ... ........... 88
5.4.1 Positive strongly Kreiss bounded operators . . . ... .......... 89
5,5 OpenProblems . .. ... .. ..t e e 92
Multiplier theory in intermediate UMD Banach spaces 93
6.1 Introduction . ... ... .. ... ... e 93
6.2 Preliminaries . ... .. .. ... ... ... e 95
6.2.1 Notationinthischapter . ......... ... ... .. ....... 95
6.2.2 Fourier multipliers in Weighted LP-spaces . .. ............. 95
6.2.3 The function spaces R, VSand C* ... ................. 97
6.3 Relationto Z-boundedness . . . . ... ... ... ... ... 103
6.4 Weighted, vector-valued variational Carleson estimates . ... ........ 104

6.5 MainResult . . . . . . . e e 107



CONTENTS

VII

6.6 ComparisonandExample . . . .. ... ... . i 110
6.6.1 ComparisSOn . . . . . v vt ittt e e e e e e e e 110

6.6.2 Example . ... ... e 112
Bibliography 115
Acknowledgements 125
Curriculum Vitee 127

List of Publications

129






SUMMARY

In this dissertation, we aim to apply Fourier multiplier theory as a unifying method to
advance the study of semigroup theory and further develop the Fourier multiplier theory
itself. These theories provide powerful tools for studying the behaviour of solutions to
PDEgs, including their existence, uniqueness, regularity, and stability.

Chapter 1 provides a brief introduction to the applications of semigroup theory and
Fourier multiplier theory in modern PDE analysis. We outline the contributions of this
dissertation and offer an overview for the subsequent chapters.

Chapter 2 introduces general notation and necessary preliminaries, including founda-
tional concepts and theorems that will be used throughout this dissertation.

Chapter 3 studies polynomial decay rates of non-uniformly bounded Cy-semigroups
in Banach spaces with Fourier type p € [1,2]. We refine the earlier results of Rozendaal
and Veraar by addressing the endpoint case of positive decay rates and improve those of
Santana and Carvalho by removing the logarithmic correction in the decay rate. We also
study the bounded case in weighted Lebesgue spaces, under certain a priori assump-
tions on the Fourier transform in such spaces.

Chapter 4 extends these ideas to the discrete setting, focusing on powers of bounded
linear operators T on Banach spaces with Fourier type p € [1,2]. We analyse the decay of
T"(I-T)", n — oo for some 7 > 0, where I is the identity operator. We establish a connec-
tion between decay rates and the weak Ritt condition, a variational resolvent condition
of the Ritt operator. Our results can be viewed as discrete counterparts to those of non-
uniformly bounded Cy-semigroups.

Chapter 5 explores strongly Kreiss bounded operators, defined in close analogy to Ritt
operators. We prove the growth bound of T” is strictly below % in general UMD spaces.
Our result extends the work of Arnold and Cuny, who considered the same problem in
Lebesgue spaces.

Chapter 6 develops a Fourier multiplier theory that emphasizes the role of Banach
space geometry. We establish a vector-valued Fourier multiplier theorem in weighted
Lebesgue spaces, assuming the multiplier has Z-bounded range and satisfies an ¢ -
summability condition on its bounded s-variation seminorms over dyadic intervals, for
some s,r > 1. The exponents s and r reflect the relationship between the geometric
properties of Banach spaces and the boundedness of Fourier multiplier operators.






SAMENVATTING

In dit proefschrift streven we ernaar om Fourier multipliertheorie toe te passen als een
unificerende methode om de studie van halfgroepentheorie verder te brengen en Fourier
multipliertheorie zelf verder te ontwikkelen. Deze vakgebieden bieden krachtige hulp-
middelen voor het bestuderen van het gedrag van oplossingen van partiéle differentiaal-
vergelijkingen (PDVen), zoals hun bestaan, uniciteit, regulariteit en stabiliteit.

Hoofdstuk 1 biedt een korte inleiding tot de toepassingen van halfgroepentheorie en
de Fourier multipliertheorie in de moderne PDV-analyse. We schetsen de bijdragen van
dit proefschrift en geven een overzicht van de daaropvolgende hoofdstukken.

Hoofdstuk 2 introduceert algemene notatie en noodzakelijke preliminaries, inclusief
de fundamentele concepten en stellingen die in dit proefschrift gebruikt zullen worden.

Hoofdstuk 3 bestudeert het polynomiale verval van niet-uniform begrensde Cy-halfgr-
oepen in Banachruimten met Fourier type p € [1,2]. We verfijnen de eerdere resultaten
van Rozendaal en Veraar door het eindpuntgeval met positief verval te bestuderen en
verbeteren resultaten van Santana en Carvalho door de logaritmische correctie in het
verval te verwijderen. We onderzoeken ook het begrensde geval in gewogen Lebesgue
ruimten, onder bepaalde a priori aannames over de Fourier transformatie in dergelijke
ruimten.

Hoofdstuk 4 breidt deze ideeén uit naar het discrete geval, met een focus op machten
van begrensde lineaire operatoren T in Banachruimten met Fourier type p € [1,2]. We
analyseren het verval van T"(I-T)", n — oo voor sommige T > 0, waarbij I de identiteits-
operator is. We leggen een verband tussen dit verval en de zwakke Ritt-voorwaarde, een
variatie op de resolvente conditie in de Ritt-voorwaarde. Onze resultaten kunnen wor-
den gezien als discrete tegenhangers van die van niet-uniform begrensde Cy-semigroep-
en.

Hoofdstuk 5 onderzoekt sterk Kreiss-begrensde operatoren, gedefinieerd in analogie
met Ritt-operatoren. We bewijzen dat de groeibegrenzing van T" strikt onder % ligt in
algemene UMD-ruimten. Ons resultaat breidt het werk van Arnold en Cuny uit, die het-
zelfde probleem in Lebesgue ruimten hebben beschouwd.

Hoofdstuk 6 ontwikkelt Fourier multipliertheorie die de rol van Banachruimte geome-
trie benadrukt. We bewijzen een vectorwaardige Fourier multiplierstelling in gewogen
Lebesgue ruimten, onder de aanname dat de multiplier een 22-begrensd bereik heeft en
voldoet aan een ¢"-sommeerbaarheidsvoorwaarde op begrensde s-variatie halfnormen
over dyadische intervallen, voor zekere s, > 1. De exponenten s en r reflecteren de re-
latie tussen de geometrische eigenschappen van de Banachruimtes en de begrensdheid
van Fourier multiplieroperatoren.
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INTRODUCTION

Partial differential equations (PDEs) are equations involving unknown functions of two
or more variables along with their partial derivatives. PDEs are fundamental in many
areas of science and engineering, as they provide a framework for modeling diverse phe-
nomena. Examples include the heat equation (modeling temperature distribution), the
wave equation (describing sound or light propagation), the Laplace and Poisson equa-
tions (governing steady-state and potential fields of electric systems), the Navier—Stokes
equations (describing viscous fluid flow), the Euler equations (for inviscid fluids), the
Schrodinger equation (modeling quantum wave functions) and so on.

In this chapter, we briefly introduce a modern analytical method for studying PDEs,
present a brief review of the key results in later chapters, and provide an overview of the
dissertation structure.

1.1. MODERN ANALYSIS OF PDES

The solvability of PDEs has always been one of the central challenges in mathematics. In
the early stages, mathematicians primarily relied on classical analysis, such as separa-
tion of variables, integral transforms, and the method of characteristics to solve specific
types of linear equations. Classical analysis provided the foundational mathematical
framework for scientific research throughout the 18th and 19th centuries. However, as
scientific problems became increasingly complex, the limitations of classical analysis
gradually emerged. For instance, the fundamental solution method is a commonly used
technique in classical PDE theory. However, the concept of a "fundamental solution"
could not be precisely defined within the classical analysis. It was not until the estab-
lishment of distribution theory that this issue was resolved. Therefore, it is essential to
develop modern analytical methods for the continued study of PDEs. For standard ref-
erences on PDE theory, see [6, 51, 57, 81] and the references therein.

A modern theory widely used in initial value problems for partial differential equations
is operator semigroup theory [50, 117]. By reformulating a partial differential equation as
an abstract Cauchy problem, where the differential operator is redefined in a suitable
functional framework, we can use the theory of operator semigroups to analyse the ex-
istence, uniqueness, and stability of solutions. A powerful approach to study semigroup
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theory is Fourier multiplier theory, which investigates the boundedness of Fourier mul-
tiplier operators on Lebesgue spaces, see [71-73, 147] and the references therein.

In this dissertation, we employ the Fourier multiplier method as a unifying framework
to advance the study of semigroup theory; moreover, we will also develop the Fourier
multiplier theory itself. The subsequent chapters will focus on the following questions.

1. The decay and growth of semigroups, in both continuous and discrete settings. This
involves analysing the long-time behaviour of semigroups: Do they decay to zero?
If so, at what rate and under what conditions? If the semigroup exhibits growth,
can we characterize its power bound? How does the underlying space influence the
results?

2. The development of Fourier multiplier theorems. We aim to establish a vector-
valued Fourier multiplier theorem that uncovers the relation between the bound-
edness of Fourier multipliers and the geometric properties—such as type and co-
type—of the underlying Banach spaces.

1.2. REVIEW OF THE MAIN RESULTS

In this section, we provide a concise overview of the main results of this dissertation. For
amore detailed discussion of each topic, we refer readers to Chapters 3-6.

1.2.1. POLYNOMIAL STABILITY OF Cy-SEMIGROUPS

Semigroup theory arises when we study the abstract Cauchy problem on a Banach space
X:

1 =Au(r), t=0,

{ur() u(t) a2

u(©0) = uy,

where ug € X. Assume that equation (1.2.1) is well-posed, and the operator A generates
a Cp-semigroup (T (1)) ;=0 of bounded operators on X. Then the solution of (1.2.1) can
be written as u(t) := T(f)uy, for up € X. Note that a Cy-semigroup (T(?))= is called
uniformly bounded if there exists a constant C = 0 such that || T ()| = C for all ¢ = 0;
otherwise, it is non-uniformly bounded and satisfies tlggo 1T =oo.

We say the solution u (or the semigroup) is exponentially stable if there exists a w > 0
such that
1T uollx < Ce™“ llugllx, o€ X, t— o0,

and polynomially stable of order s if there is a s > 0 such that
IT(Ouollx < Ct *luollpay, Uo€ D(A), t— oo.

Direct calculation of T(¢) as t — oo may be difficult; however, the resolvent of its
generator (denoted by R(A, A) for A in the resolvent set p(A)) is often more accessible.
Therefore, a classical approach to analysing the asymptotic behaviour of a semigroup is
through studying the resolvent operator of its generator. This approach has been exten-
sively investigated over the past decades, including the exponential stability and poly-
nomial stability of the uniformly bounded and non-uniformly bounded Cy-semigroups.
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Among them, the research on exponential stability has been relatively complete, see [56,
65,107, 120, 145, 148] and the references therein. Therefore, the focus has shifted to the
study of polynomial stability. We summarize some known results ([8, 12, 20, 130]) in the
following table. For a detailed discussion of these results, see the introduction of Chap-
ter 3. Note thatin Table 1.1, R denotes the real numbers, C. denotes the right half-plane,

Table 1.1: Comparison of uniformly bounded and non-uniformly bounded Cp-semigroups.

Resolvent condition Hilbert space Banach space
UB IRGE, Al =CA+IENP, EeR IT(HA™L S(C/l‘)llﬁ IT()A™) < (Clog(2+ l)/t)”ﬁ
—(L-1- =
NUB | [RA,DI=CA+IANP, AeCy | IT((ATI=Ct (=179 ITOATI<Ct B

B >0,7 > B, and € > 0 is arbitrary. If —A is an injective and sectorial operator, then the
fractional power operator (—A)" is well-defined for all T € R. The polynomial stability
results for non-uniformly bounded semigroups were unified in [130] using the theory
of Fourier type p € [1,2], which means the Fourier transform % : LP(R; X) — L (R; X)
is bounded (see Section 2.3 for more details). To better understand our result, we first
restate [130, Theorem 4.9] in a more concise form.

Proposition 1.2.1. Let A be the generator of a Cy-semigroup (T (1)) ;=0 on a Banach space
X with Fourier type p € [1,2]. Suppose that C.. < p(A), and there exist p >0 and C =0
such that the resolvent of A satisfies

IR, Al <CA+IADP, Aec,.
Then foreach s =0 andallt > (s+ 1)+ % - #, there exists a C > 0 such that
IT()xlx < Ct *lxlp(-ar), t=1,x€D(-A)").

Note that every Banach space has Fourier type 1 and every Hilbert space has Fourier
type 2. It is clear that Proposition 1.2.1 generalizes the results in Table 1.1, which are
originally from [8] in the Banach space setting. The Hilbert space case, on the other
hand, follows from [130, Corollary 4.11]. However, in the latter work, the authors were
only able to establish the endpoint case for Hilbert spaces, yielding 7 = (s+ 1) + % - ﬁ.
For Banach spaces with Fourier type p < 2, the endpoint case remains an open problem.
Recently, [134] achieved a result for 7 = (s + 1) + % - #, incorporating a logarithmic

correction in the decay rate. Our result shows that the logarithmic term can be removed.

Theorem 1.2.2. Let A be the generator of a Cy-semigroup (T (1)) ;=0 on a Banach space X
with Fourier type p € [1,2]. Suppose that C. < p(A), and there exist > 0 and C = 0 such
that

IR, Al <CA+IADP, Aec,.

Lets>0 and sett:= (s+1)B+ % - ﬁ. Then there exists a C = 0 such that

ITHxlx < Ct *Ixlp-ar, t=1,xeD(-A"). (1.2.2)
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In Chapter 3, we will prove a more general version of the above theorem using Fourier
multiplier theory, real interpolation, and properties of Besov spaces, see Theorem 3.1.1.
Our result improves [134] by removing the logarithmic factor, and thereby entirely im-
proves [130, Theorem 4.9]. However, this method fails when s = 0. To address this issue,
additional assumptions on the underlying space X are required (see Section 3.4 for de-
tails). Then, for s =0, (1.2.2) also holds for the initial values in D((— A)?) for 7 = 8+ % — %.

1.2.2. DISCRETE SEMIGROUPS: WEAK RITT OPERATORS AND KREISS
OPERATORS

Inspired by the study of Cp-semigroups, we are also interested in the discrete case, which
is widely used in the convergence of iterations of linear equations.

Let T be a bounded linear operator on a Banach space X. One can view (T") ;> as a
discrete analogue of a Cy-semigroup. If there exists a constant C = 0 such that || T"|| < C
for all n = 1, then T is called power bounded. The study of discrete semigroups can be
divided into two aspects.

(1) Decay rates of the difference norm || 7" (I - T)||. Consider the following fixed point
problem

x=Tx+g, (1.2.3)

where T is a bounded linear operator on a Banach space X and g is a given vector in
X such that this equation has at least a solution. To solve this problem, given an initial
value xy € X, consider successive approximations

k-1
Xpi=Txp+8=Tr+ Y T'g, k=1 (1.2.4)
i=0

Moreover, notice that

k=1
x=Tx+g=Trx+) T'g, k=1
i=0

If x — x¢ is in the range of I — T, then there exists a y € X such that
_ Tk _ 7k
X=x=T"(x=x0)=T"(I-T1)y.

Therefore, TX(I — T) appears when investigating the convergence of iterations.

The breakthrough in this area is the Katznelson-Tzafriri theorem [75]: given a power
bounded operator T, the difference norm |T"(I — T)|| — 0 if and only if a(T) N {A €
C||A| = 1} € {1}. Inspired by the theory of Cy-semigroups, studies of T"(I — T) shifted
from whether it converges to zero to its rates of convergence. However, most studies fo-
cus on power bounded operators, see [9, 14, 34, 46, 47, 85, 109, 111, 112, 135] and the
references therein. In particular, Seifert [135] proved that if T is power bounded and
o(T)n{A[|Al = 1} = {1} on a Banach space, then for 8 = 1, the resolvent condition

IR, TYI<Clo™, o0<|0l<n (1.2.5)
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1
implies |T"(I-T)| = C (10%) S Ng and Seifert [112] investigated the result in Hilbert
space, removing the log correction in the decay estimate.

By comparing the results of uniformly bounded Cy-semigroups (see Table 1.1) and
power bounded operators, we conclude that power bounded operators (T"),>o can be
viewed as a discrete counterpart to uniformly bounded Cy-semigroups (T(¢)) o, while
the operator I — T plays a role analogous to the inverse of generators A~! in the con-
text of uniformly bounded Cy-semigroups. One natural question is for general bounded
operators, does an analogous result hold in between general bounded operators and
non-uniformly bounded Cy-semigroups (Proposition 1.2.1)?

Note that an operator is called a Ritt operator if it satisfies the Ritt condition:

IRA, D < 1<iA]<2.

C
A-11’
By [98] and [106], Ritt operators are power bounded. By [31, Lemma 3.3], (1.2.5) can be
viewed as a weak version of the Ritt condition. Inspired by this, we put forward the weak
Ritt condition:

IRAA, T < 1<A]<2, (1.2.6)

C
IA-11P’
for some § > 1. Since B > 1, the above condition does not necessarily imply power
boundedness of T.

In Chapter 4, we explore the relation between the weak Ritt condition and the decay
rates of bounded operators (T") ;>0 when composed with operators of the form (I — T)*
for some 7 > 0. A simple version of our main result reads as follows.

Theorem 1.2.3. Let X be a complex Banach space, T be a bounded linear operator on X,
and D be the unit disk. Assume thato(T) <D U {1} and o(T) n{A||A| = 1} = {1}. Further-
more, suppose there exists a constant 3 > 1 such that the weak Ritt condition (1.2.6) holds.
Then for each se N and allt > (s+ 1) — 1, there exists a C > 0 such that

IT"I-T)I<Cn”%, n=1.

From the above result, we conclude that achieving an improved decay rate inherently
requires a trade-off in the form of increasing the exponent of the difference operator
I—-T. The result is established in the context of general Banach spaces. We further ex-
plore the decay rates on Banach spaces with Fourier type p € (1,2] (Theorem 4.3.4) and
highlight the bounded case (Corollary 4.3.6). The primary approach involves adapting
Fourier multiplier methods used in the continuous parameter setting, combined with
fundamental resolvent calculations. A detailed comparison between our main results
and other related findings is provided in Chapter 4.

(2) Growth power bound of || T"|. Let us return to the problem (1.2.3). If g =0, then
(1.2.4) reduces to x; = T*x for all k = 1. Such expressions commonly arise in numerical
analysis as a result of time discretization. For the stability of a numerical scheme, it is de-
sirable that T¥ does not grow rapidly when T is not power bounded. In a d-dimensional
space, the Kreiss matrix theorem (see [78, 86, 138]) asserts that if an operator T is Kreiss
bounded with constant K, then it is power bounded, and satisfies || T"| < Ked.
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Definition 1.2.4. An operator T is called Kreiss bounded with constant K if

A-D7H = ,IA>1, 1.2.7
[A-1) ||<W_1 Al > (1.2.7)
and T is called strongly Kreiss bounded with constant K; if
K.
A-D7"|s—"—, AI>LnzLl (1.2.8)
” | (Al=-1" A

Clearly, by the Neumann series argument, power bounded operators are (strongly)
Kreiss bounded. In finite dimensional spaces, Kreiss boundedness implies power bound-
edness as well by the Kreiss matrix theorem. However, in infinite dimensional spaces,
Kreiss bounded operators are generally not power bounded. Counterexamples see, e.g.
[7,28,43,77,96, 111]. In particular, we present [111, Example 4] in Section 4.4.2.

As mentioned above, in applications to numerical analysis, it is often desirable to en-
sure that T" does not grow very fast when T is not power bounded. Therefore, investi-
gating the power bound of 7" becomes an essential subject. Let T be a Kreiss bounded
operator on a Banach space X with constant K. By Cauchy’s integral formula, we have

[T"| <Ke(n+1), n=1.

Besides, [96, Theorem 2.1] shows if T is strongly Kreiss bounded with constant K, then

[T"] < Ksv/2n(n+1), n=1.

These results can be improved if further geometric assumptions are added to the space
X, e.g. Hilbert spaces and LP spaces for p € (1,00). We refer to Chapter 5 for a thorough
introduction to the previous works. In particular, if X is a UMD Banach space, which
means the Hilbert transform is bounded on L”(R; X), [37, Theorem 3.1] proved that the
bound of Kreiss bounded operators can be improved to | T"|| = O(n/(log(n + 2))P) with
B = m. Here g and g* denote the (finite) cotypes of X and the dual space X*,
respectively. However, the counterpart result for strongly Kreiss bounded operators in
UMD Banach spaces was missing. In Chapter 5, we aim to solve this problem and mainly
prove the following fact.

Theorem 1.2.5. Let X be a UMD Banach space and T be a strongly Kreiss bounded oper-
ator on X, then there exist a a € [0,1/2) depending on X and a constant C > 0 depending
on X and K such that

[T"]|=Cn®% n=1

In Chapter 5, we derive a precise bound for strongly Kreiss bounded operators un-
der additional geometric assumptions on the Banach space (see Theorem 5.3.1). Since
UMD Banach spaces always satisfy these assumptions, Theorem 1.2.5 follows naturally
as a corollary. The proof of Theorem 5.3.1 is inspired by the approach in [7], where the
growth of strongly Kreiss bounded operators in L” spaces was studied. We extend their
results to general UMD Banach spaces in Chapter 5, thanks to [21]. To achieve this, we
introduce ¢9(LP)-Fourier decompositions, whose properties-such as duality, type, co-
type, interpolation, and extrapolation—are thoroughly examined in Section 5.2. Fur-
thermore, we also consider the growth of positive strongly Kreiss bounded operators on
Banach function spaces, which is a direct extension of [7, Proposition 4.1].
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1.2.3. FOURIER MULTIPLIER THEORY UNDER WEAK SMOOTH CONDITIONS

Let X be a Banach space, % and .% ! be the Fourier transform and its inverse on the
Schwartz function space . (R; X), respectively. Fourier multiplier theory studies suffi-
cient conditions of a bounded scalar-valued or operator-valued function m such that
the Fourier multiplier operator T,, := & “1(mZ) can be extended to a bounded linear
operator on LP (R; X) for some p € (1,00).

A foundational result in this field is the Marcinkiewicz multiplier theorem, which states
that T}, is bounded on L”(R) for all p € (1,00) if m is of bounded (1-)variation over dyadic
intervals. Denote m|; the restriction of m on an interval J € R. For s € [1,00), define the
bounded s-variation space £°°(V*(A)) as the space of all m € L°(R) such that

2]l goo (s (ayy := supUlml |l Loy + (Ml lvs(py) < o0,
JeA

where A is the family of all dyadic intervals, and [-]ys(j denotes the bounded s-variation
seminorm on the interval J € A, i.e.

o =

n
[mlflvsg = sup (Z [m (1) — m(fk)ls) .
§0<...<€n:60,--6n€J k=1

In 1988, Coifman, Rubio de Francia, and Semmes [32] improved the Marcinkiewicz
multiplier theorem on LP(R) for p € (1,00), assuming m € ¢*°(V°(A)) where s satisfies
1/s>|1/p—1/2|. We note that bounded s-variation is implied by %—Hélder smoothness,
so larger s corresponds to a weaker smoothness assumption. This approach was ex-
tended to the operator-valued setting by Hytonen and Potapov [68]. They assumed that
the Banach space has the Littlewood-Paley—Rubio de Francia property (LPR,, property),
a condition known to hold only for a limited class of spaces, such as Hilbert spaces and
usual Lebesgue spaces. Later, [1] generalized [32] to Banach function spaces.

Motivated by the ¢79(LP)-type Fourier decompositions discussed in Chapter 5, and
building on the strategies developed in [1, 68], we investigate the variational Carleson
operator on L spaces and apply these insights to the study of Fourier multiplier theory.
We derive sufficient conditions in terms of the ¢"-summability of bounded s-variation
seminorms of the multiplier, for some s > 1, under the assumption that the multiplier
has 2-bounded range. A simplified formulation of our main result is stated below.

Theorem 1.2.6. Let Xy and Y be UMD Banach spaces, H a Hilbert space and define X =
[Xo, Hlg for some0 € (0,1]. Suppose that X has cotype q and Y has typet and set% = %

Letse|[l, ﬁ) andm: R— Z£(X,Y) have Z-bounded range and

1
7

1
v

P r
Imllor s a5, vy)) = (]ZA[mU]vsu;z(&Y))) <00,
€

where £(X,Y)) denotes the bounded linear operators from X to Y. Then Ty, is bounded
from LP (R; X) to LP(R; Y) for all p € (s,00).

Theorem 1.2.6 is proved in Chapter 6 as Theorem 6.5.4, where we also extend the re-
sult to weighted Lebesgue spaces. Our proof strategy is inspired by techniques from [1,
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32, 68]. We begin by establishing a weighted, vector-valued estimate for the variational
Carleson operator, which serves as a key ingredient for developing a Fourier multiplier
theory in atomic R-spaces (see Section 6.2.3).

The main idea is to decompose the multiplier m into two parts: m — N and N, where
N lies in the closure of the convex hull of the range of m. For the difference m — N, we
exploit the embedding of bounded s-variation spaces into R-spaces to derive bounds
on Tp,_p in terms of the ¢"-summability of the bounded s-variation seminorms of m.
For the component N, we apply the Littlewood-Paley inequality together with the 2-
boundedness of the multiplier range to control T)y. Combining these two estimates
yields the desired operator norm bound for T,.

In contrast to the approach in [1, 68], our method avoids the need for the LPR), prop-
erty and the stronger ¢2(¢")-boundedness condition on the multiplier range. Instead,
we require only 2-boundedness of the range, along with an ¢ -summability condition
on the bounded s-variation seminorms of m, where the exponent r is determined by the
type and cotype of the underlying Banach spaces. Furthermore, our framework allows
for operator-valued multipliers m € £ (X, Y) with X and Y being two (possibly distinct)
UMD Banach spaces, and only X is assumed to be a complex interpolation space. As a
result, our theorem encompasses new classes of multipliers that lie beyond the scope of
current operator-valued Fourier multiplier theorems.

1.3. OVERVIEW

The dissertation is organized as follows. In Chapter 2, we introduce general notation
and provide necessary preliminaries that will be frequently used throughout this work,
including important properties of spectrum and resolvents, Fourier multiplier theorems,
type and cotype properties of Banach spaces, etc.

In Chapters 3-5, we focus on the application of Fourier multiplier theory to the decay
and growth of semigroups. In Chapter 3, we investigate the decay rates of non-uniformly
bounded Cy-semigroups, improving the results in [130, 134]. In Chapter 4, we extend
these ideas to the discrete case of bounded linear operators, establishing a connection
between decay rates and the weak Ritt condition. Chapter 5 explores strongly Kreiss
bounded operators, defined in a manner analogous to weak Ritt operators. We show that
the growth is below % in general UMD spaces. Inspired by the Littlewood-Paley-Rubio
de Francia decomposition, we further develop the so-called ¢7(LP)-Fourier decomposi-
tions and apply them in the proof of our main results.

In Chapter 6, we are dedicated to establishing new multiplier theorems assuming the
type and cotype properties of the underlying Banach spaces. Motivated by the form
of ¢9(LP)-Fourier decompositions in Chapter 5, we derive sufficient conditions for the
Fourier multiplier in terms of its £” -summability of bounded s-variation seminorms, for
some s, > 1 decided by the geometry of the Banach spaces. Our results encompass a
broader class of multipliers that fall outside the scope of current operator-valued Fourier
multiplier theorems.



PRELIMINARIES

2.1. GENERAL NOTATION

In this dissertation, we adopt the following notation and conventions.

We denote the set of integers by Z, the positive integers by N:= {1,2,...}, and the natu-
ral numbers (including zero) by Ny := N U {0}. The scalar field is represented by K, which
encompasses both the complex plane C and the real numbers R. We define the right half
of the complex plane as C; := {1 € C | ReA > 0}, where Re A denotes the real part of 1,
and the left half as C_ := —C,.. The torus is denoted by T := [0, 1], and for n € Z, we write
en () = e?mim,

Banach spaces are represented by X, Y, and Z. The dual space of X is denoted by
X*, and the norm on X is written as || - || x, with the subscript omitted when no ambi-
guity arises. The space of bounded linear operators between complex Banach spaces X
and Y is denoted by £ (X, Y), and Z(X) := £ (X, X). We write X € Y if X embeds in Y
continuously. The space of X-valued Schwartz functions on R is denoted by . (R; X),
and the space of X-valued tempered distributions by .#'(R; X). For p € [1,00] and a
measurable weight function w : R — [0, 00), the Bochner space of equivalence classes of
strongly measurable, p-integrable, X-valued functions on R with respect to w is denoted
by LP (R, w; X). When w = 1, this space is simply written as L” (R; X).

Let P denote a probability measure, and (Q, «/,P) represent a probability space. The
expectation and variance of a random variable ¢ are denoted by E[e] and Var(e), respec-
tively.

For an operator A on X, its domain and range are denoted by D(A) and Ran(A), respec-
tively. The adjoint operator of A is written as A*, and the identity operator is denoted by
I. The indicator function of a set S is represented by 1.

Constants depending on parameters a, b,... are denoted by C, 5, , and their values
some constant C, . = 0 independent of s, with analogous definitions for f(s) 2, p,..
g(s) and f(s) ~g4,p,.. g(s). The restriction of a function f: R — X on an interval / S R is
defined by f|;. The notation ¢ 1 ¢p and c | ¢y signifies that ¢ monotonically increases
or decreases, respectively, to a constant ¢y. The floor function |a] denotes the largest
integer less than or equal to a, while the ceiling function [a] denotes the smallest integer
greater than or equal to a. The complement of a set S is written as S€. The maximum and



10 2. PRELIMINARIES

minimum of p and g are denoted by p v g and p A g, respectively. The Holder conjugate

p' € [1,00] of p € [1,00] is defined by the relation 1 = % + %.

2.2. SOME BASIC FUNCTIONAL ANALYSIS

We first recall some basic knowledge of resolvent and spectrum that will be used several
times in the later chapters. For further details, we refer the reader to monographs on
functional analysis, such as [108, 150].

Let A: D(A) € X — X be a closed operator. The resolvent set of A is defined as

p(A):={1eC|A—- A:D(A) — X is invertible and (1 — A le LX)

The resolvent (A— A)~! is denoted by R(A, A) and the spectrum is the complement of p(A)
in C, denoted by o(A). Note that if p(A) is not empty, then A is closed. If A is a densely
defined operator with p(A) # @, then for every A € p(A), the space D(A) with the norm
llzllpcay := (A — A)z]|l for all z € D(A) is a Banach space. The norms defined above for
different A € p(A) are equivalent to the graph norm. Moreover, the embedding D(A) € X
is continuous. The resolvent identity is the following identity.

R, A)—R(u, A) = (u— AR, AR, A), A, e p(A).
Let A be alinear operator on a Banach space X. For w € (0, ), set
Sw:=1{z€C\{0} | |arg(z)| < w}.
Then — A is a sectorial operator if there exists an w € (0, ) such that o(-A) < S,, and
sup {IAA + 4) 00 1A € €\, | <00 2.2.1)
for each w; € (w, 7). If — A is a sectorial operator, then the fractional power (—A)“ is well-
defined for each a € C,, see [63, Chapter 3]. If, additionally, A is injective, then (—A)%

is well-defined for all a € C. Note that D((—A)?) € D((—A)*) whenever f € C satisfies
Ref >Rea.

Lemma2.2.1. IfAe Z(X) is such that || Al < 1, then I — A is invertible and

oo .
R(1,A) =) Al, and|R(1,A)| < .
j=0 1-lAl

Lemma 2.2.2. For A€ p(A), R(A, A) is an analytic £ (X)-valued function. If u € p(A), |u—

1
M < trgear then

RA, A) =Y R(u, A7 (u—2)7.
j=0

In particular,
R, AW = —DFKIRA, AR keN.
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Remark 2.2.3. By Lemma 2.2.2, the set p(A) is open, thereby, o(A) is closed. Moreover,
forall A € p(A),
1
IRA, T = it oAl

seo(A)

Finally, we collect some theorems throughout this dissertation. The following density
argument can be found in [108, Proposition 1.18]. With this, we only need to prove that
a linear operator is well-defined and bounded on a dense subspace in many cases.

Lemma 2.2.4 (Density argument). Let X and Y be Banach spaces, and let Xy be a dense
subspace of X. Suppose that the linear operator T : Xo — Y satisfies |Tx|y < x|l x forall
x € Xo. Then T extends uniquely to a bounded linear operator on X.

The Minkowski’s inequality can be found in [71, Proposition 1.2.22].

Lemma 2.2.5 (Minkowski’s inequality). Let(S1, <4, 1) and (Sz, s, l12) be measure spaces
and let X be a Banach space. For all 1 < p < g < oo, we have the contractive embedding

LP(S1; L9(S2; X)) € L(S2; LP (15 X)).

With the following result from [71, Theorem 2.1.9], we only need to consider scalar
spaces in many cases when proving results in Hilbert spaces.

Proposition 2.2.6 (Paley-Marcinkiewicz-Zygmund). Let (S1, 4, 1) and (Sz, <o, t2) be
measure spaces and let p1, p2 € [1,00). Consider a bounded linear operator T from LP*(S;)
to LP2(S,). Let H be a Hilbert space. Then T ® Iy uniquely extends to a bounded operator
from LP1(Sy; H) to LP2(Sy; H) and its norm satisfies

ITI<IT®Iul Spyp, 1T

2.3. FOURIER MULTIPLIER THEORY

This section focuses on the vector-valued Fourier multiplier theory, which forms the
cornerstone of the methods used in later chapters. For further details on scalar-valued
Fourier multiplier theory, see [61, Chapter 6]. For a comprehensive treatment of operator-
valued Fourier multiplier theory, we refer the reader to [71-73].

2.3.1. FOURIER TYPE

Definition 2.3.1. Let p € [1,2],q € [2,00], X is said to have Fourier type p if the Fourier
transform & : LP(R; X) — L” (R; X) is bounded. Moreover, X is said to have Fourier co-
type q if X has Fourier type ¢'.

Every Banach space X has Fourier type 1. Moreover, Example 2.3.6 below indicates
that the Fourier type necessarily requires p € [1,2]. Hausdorff-Young theorem states the
Fourier transform is bounded, with the norm at most one, as an operator from L? (R; H)
to LV (R; H) for any p € [1,2] (see [71, Corollary 2.4.10]). Furthermore, by [71, Proposi-
tions 2.4.16 and 2.4.20], X has Fourier type p if and only if X* has Fourier type p.

The following statement is known as the Plancherel theorem, which implies that every
Hilbert space H has Fourier type 2. Conversely, any Banach space with Fourier type 2 is
isomorphic to a Hilbert space by Kwapien’s theorem (cf. [83] and [71, Theorem 2.1.18]).
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Proposition 2.3.2 (Plancherel theorem). Let H be a Hilbert space. If f € L*(R; H)nL' (R; H),
then f € L2([®R; H) and || fewm = 1 fllzgm- In particular, the Fourier transform (more
precisely, its restriction to L[2(R; H) n LY (R; H)) extends to an isometry on L2(R; H).

The following lemma shows that the notion of Fourier type could equivalently be de-
fined in terms of the Fourier transform on the torus, see [71, Proposition 2.4.20].

Lemma 2.3.3. Let X be a Banach space, p € [1,2]. Then the following are equivalent:
(i) & extends to a bounded operator from LP (R; X) to LY (R; X);
(ii)) F extends to a bounded operator from LP (T; X) to 77, X);

(iii) F extends to a bounded operator from ¢P(Z; X) to LV (T; X);

2.3.2. FOURIER MULTIPLIERS

Let X and Y be Banach spaces and p € (1,00). For a symbol m € L®(R; Z(X,Y)) we
define the Fourier multiplier operator Ty, : & (R; X) — %' (R; Y) as

Tpf =F 'mf), feF®R;X).

Then m € L®(R; £(X,Y)) is said to be an LP -multiplier (on R) if there exists a constant
C < oo such that

1Tmfllrreyy <Clfllrex), fe€FLRX).
We also have analogous formulations for the torus. A bounded sequence (m,) ez is
called an L? -Fourier multiplier (on T) if there exists a constant C < oco such that for all
fe2(T;X)
Y maf(ne,

nez

f—_— Clfllizr;x)-
By density the mappings f — & ‘1(mf) and f — Y ez mnf(n)en can be uniquely ex-
tended to bounded linear operators which will be denoted by T}, € Z(L”(R; X); LP(R; Y))
and T, € Z(LP(T; X), LP(R; Y)), respectively.

Using transference it is possible to transform multipliers for the real line to the periodic
case and vice versa (see [71, Section 5.7]):

Lemma 2.3.4. Let X and Y be Banach spaces and p € (1,00). Let me L™ (R; £(X,Y)) be
a Fourier multiplier from LP (R; X) to LP (R; Y). Suppose that for all x € X, the point k€ Z
is a Lebesgue point of m(-)x and set myx := m(k)x. Then {my}cz is a Fourier multiplier
from LP(T; X) to LP(T;Y), and in fact,

| Timy ez L2 @r r;x, 00 ) < 1 Tl 2 0r @ 30,20 @) -

Lemma 2.3.5. Suppose m € L°(R; £ (X, Y)) is Riemann integrable over any bounded in-
terval. Suppose that {m(ek)} xez\i0; are Fourier multipliers from LP (T; X) to LP (T; Y) hav-
ing uniformly bounded multiplier norm for some sequence of numberse | 0. Then m is a
Fourier multiplier from LP (R; X) to LP(R; Y), and

I Tl o020 ;30,10 ;7)) =< lirgll(i)nﬂl Tim(elrezvo | 2@p (1;50,L0 (T;7)) -
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The example below implies that the Fourier type necessarily requires p € [1,2].

Example 2.3.6. Define m:R — C by m := ™ for ¢ € R and let p € [1,00). Define the
Fourier multiplier operator Ty, : ¥ (R) — %' (R) by

Tnf:=F 'mf), feZLR).
By calculation we have Z~1(m) = ei % e~i"*_ Then by Young’s inequality,
I T fllzeom = I1F 1 m) * fllo@ < 1F M)l o)l fll 1 @y

implying that T, € £ (L' (R), L°°(R)). On the other hand, by Plancherel theorem (Propo-
sition 2.3.2), T), € Z(L*(R)) since

1T fll 2@ = Imfll 2@ =1 fll 2 - 2.3.1)

Thus, by Riesz-Thorin Theorem (cf. [124] and [71, Theorem 2.2.1]), T, € £ (LP ([R),Lp/ ®)
forall p € [1,2]. If Ty, € L(LP(R)) for some p < 2, then using Riesz-Thorin Theorem again
yields Ty, € Z(LP(R), L?(R)). By (2.3.1),

”f”LZ([R) = || Tmf”LZ(R) = ||f||Lﬂ([R)y

which derives a contradiction. If T;, € £Z(LP(R)) for some p > 2, by a similar analysis we
yield T, € Z(I*(R), L” (R)), implying the same contradiction. Therefore, T,, € £ (L” (R))
ifand only if p = 2.

However, by Hausdorff-Young theorem, for any g € (2,00), % € & (Lq/ (R),LIR)). IfC
has Fourier type ¢, i.e. & is a bounded operator from L7(R) to L4 (R), then for every
m € L*°(R) we get

” Tmf”Lq/ (R) = ”*gng([‘q(R)’Lq' (R) ” mf”Lq(R)
= ||9”$(Lq(R),Lq, (R) ” m”L(’O(R) ”f”L‘f(lR)

S IF N a1 @y ML= ®@ I F | 210 @), La@y L f1l Lo @)-

This contradicts the above analysis when m = " ¥ Therefore, even for the scalar case,
the definition of Fourier type cannot be extended to (2,00).

2.4. UMD BANACH SPACES

In this section, we give a brief introduction to the so-called class of UMD Banach spaces,
which in many ways provides the correct setting for vector-valued analysis. For an intro-
duction to UMD Banach spaces we refer the reader to [71, Chapters 4 and 5] and [118].

Let pe (1,00), NeN, (S, <, 1) be a o-finite measure space, (9,1)2’:0 be a o -finite filtra-
tion, and let ( fn)I,;’:0 be a finite martingale in L”(S; X). Define its martingale differences
bydf,:=fn—fa-1forn=1.




14 2. PRELIMINARIES

Definition 2.4.1. A Banach space is said to have the property of unconditional martin-
gale differences (UMD property) if for all p € (1,00) and N € N, there exists a finite con-
stant C = 0 (depending on p and X) such that for all finite martingales f;, € LP(S; X) and
all scalars |[e,|=1,n=1,---, N, we have

N
endfp

n=1

<C
LP(S;X)

N
3 an

LP(5;X)
If this condition holds, then X is said to be a UMD Banach space.

Although the UMD property is defined probabilistically, it turns out to be equivalent to
a purely analytic statement-the boundedness of Hilbert transform H. For f € ¥ (R; X),
the Hilbert transform is the principal value integral

Hf(x) ::p.V.lfMdy, xeR. (2.4.1)
TJrx—y

By [71, Proposition 5.2.2], we have for f € #(R; X),
Hf(© = ~isgn(©f(©).
In particular, we have
H=-iS[0,00) +1S(~00,0;, [H+I1=2S80,00), —IiH+I1=2S_00] (2.4.2)

where Sy~ is called the Riesz projection. By the seminal works of Burkholder [24] and
Bourgain [22], this characterisation is equivalent to the probabilistic definition of the
UMD property in terms of the Unconditionality of Martingale Differences, see the theo-
rem below.

Theorem 2.4.2. Let X be a Banach space and let p € (1,00) be fixed. The following asser-
tions are equivalent:

1. X isa UMD space;
2. forevery f € LP(R; X), the Hilbert transform extends to a bounded operator on L” (R; X).
3. forevery f € LP(R; X), the Riesz projection extends to a bounded operator on LP (R; X).

Next, we state some properties that will be used throughout this dissertation. We refer
the readers to [71, Chapter 4].

e Let p € (1,00), LP(S; X) isa UMD Banach space whenever X isa UMD Banach space.
e UMD spaces are reflexive and super-reflexive.
e If X is a UMD Banach space, then X* is a UMD Banach space.

Hilbert spaces (in particular R and C), as well as all closed subspaces and quotient
spaces of L”(S) for p € (1,00) are UMD spaces (see [24]). Note that L!(S) and L>°(S) do
not satisfy the UMD property, as they are not reflexive.

The following lemma provides a sufficient condition for the duality of L”(S; X) when
X is a UMD Banach space.
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Lemma 2.4.3. IfX is a UMD Banach space, then for any p € [1,00),
LP'($;X*) = (LP(S; X))*.

Proof. If X is a UMD Banach space, then X* is also a UMD Banach space and there-
fore reflexive. By [71, Theorem 1.3.21], X* possesses the Radon-Nikodym property (see
[71, Definition 1.3.9]) with respect to the measure space (S, <, 1t). The conclusion then
follows from [71, Theorem 1.3.10]. O

2.5. TYPE, COTYPE, AND RELATED PROPERTIES

In this section, we introduce some notions related to the geometry of the Banach space
such as type and cotype, see [72] for more details.

A Rademacher variable is a random variable € : Q — K defined on some probability
space (Q, «/,P), which is uniformly distributed over Sk := {z € K||z| = 1}. A Rademacher
sequence is a sequence (¢,),>1 of independent Rademacher variables. The following
lemma from [72, Theorem 6.2.4] will be used several times in later chapters, we present
it here for the reader’s convenience.

Lemma 2.5.1 (Kahane-Khintchine inequality). Let (¢,),>1 be a Rademacher sequence.
Then for all0 < p < g < oo and all sequences (xn)]r:[=1 in any Banach space X, we have

=C
L9(;X)

N N
Z EnXn Z EnXn
n=1 n=1

LP(0Q;X)

The space X is said to have fype p € [1,00] if there exists a constant 7, x > 0 such that
for all x1,---,x, € X, we have

T

n
£
k=1

n
p
<o S 1)
2 = TPX kglll klly

The space X is said to have cotype q € [1,00] if there exists a constant ¢4, x > 0 such that
forall x1,---,x, € X, we have

n 1 n
(k; ”xk”?()q = C”'XH kgf"x" 2@x

In the above, the complex Rademacher sequence can be replaced by a real Rademacher
sequence (see [72, Proposition 6.1.19]). By Kahane-Khintchine inequality, the space
L2(Q; X) in the left hand side of the inequality can be changed to LP(Q; X) for any p €
[1,00). By the triangle inequality, every Banach space has type 1. Note that Rademacher
sequences are real-symmetric, then by [72, Proposition 6.1.5], we have

n
latllx = lexllpa < €| Y enxn
k=1

24X
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Hence, every Banach space has cotype co. The space X has type 2 and cotype 2 if and
only if X is isomorphic to a Hilbert space ([83, Proposition 3.1]). Moreover, by consider-
ing the scalar case, it follows that necessarily p € [1,2] and g € [2,00] in the above defini-
tions. Indeed, recalling that a Rademacher sequence is a sequence (5,,)1,;]:1 of indepen-
dent Rademacher random variables, then

N 2 N N N , N ,
Y Enkn Y enxp| =) Var(enx,) = ) Ellenxnll® =Y lxal®
n=1 n=1 n=1 n=1 n=1

= Var
If C has type p > 2, then

1 1
lxnl®| = <tp| 2 lxal”]
n=1 2@ n=1

which leads to a contradiction since ¢” ¢ ¢? for any p > 2. A similar argument shows
that g € [2,00]. We say that X has non-trivial type if X has type p € (1,2], and finite cotype
if it has cotype g for some g € [2,00). If X has type p (cotype g), it also has type u € [1, p]
(cotype v € [g,00]). If X has type p, then X* has cotype p’ (see [72, Proposition 7.1.13]).
If X has non-trivial type and finite cotype ¢, then X* has type g’ (see [72, Proposition
7.4.10 and Theorem 7.4.23]). This is the case when X is a UMD or super-reflexive space.
Finally, note that Fourier type p implies type p and cotype p’ (see [72, Proposition 7.3.6]).

E

N
Z EnXn

n=1

2.6. FUNCTION SPACES

In this section, we present two classes of function spaces: variation spaces and Banach
function spaces. For comprehensive treatments, we refer the reader to [54] for variation
spaces and to [90, 151] and the recent survey [95] for Banach function spaces.

2.6.1. BOUNDED VARIATION

We begin by introducing the bounded variation space V! and its applications in multi-

plier theory. We will delve deeper into bounded s-variation spaces and develop a varia-

tional multiplier theory based on the Marcinkiewicz multiplier theorem in Chapter 6.
We say that a sequence (a,) ez S ¢°°(Z; X) is said to be of bounded variation if

lalyizx) = Z |Gn+1— anl < oo,
nez

and we denote by V! the space of all such sequences equipped with the norm

lallyiz,x) = lallgoz;x) + lalyrz,x)-

The following vector-valued Marcinkiewicz multiplier theorem is due to [23]. A corre-
sponding version on R with operator-valued m can be found in [72, Theorem 8.3.9]. Via
transference, the periodic case can also be derived from [72].

Lemma 2.6.1 (Marcinkiewicz multiplier theorem). Let X be a UMD space and 1 < p <
oco. fmef>®n V1, then m is an LP -Fourier multiplier on T, and there exists a constant
My, x = 1 such that

| Tl < Mp,X”m”Vl(z;X)-
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2.6.2. BANACH FUNCTION SPACES

We briefly introduce Banach function spaces and the associate space, see [90, 151] for
more details.

Definition 2.6.2. Let (S, </, u) be a o-finite measure space and denote the space of mea-
surable functions f: S — C by L°(S). A vector space, X < L°(S) equipped with a norm
-1, is called a Banach function space over S if it satisfies the following properties:

* Ideal property:If fe Xand ge L2(S) with gl <|fl, then ge X with gl < | fIl.

* Fatou property: If 0 < f, 1 f for (fu)n=1 in X and sup,,», |l full < oo, then f € X and
I £1=sup,=1 Il full.

 Saturation property: For every measurable E < S of positive measure, there exists a
measurable F ¢ E of positive measure with 1 € X.

We note that the saturation property is equivalent to the assumption that there is an
f € X such that f > 0 almost everywhere. Moreover, the Fatou property ensures that X is
complete.

We define the associate space X’ of a Banach function space X as the space of all g €
L%(S) such that

lglx := sup | |fgldu<oo,
Ifi<1Js

which is again a Banach function space. For g € X', define ¢4 : X — C by

¢g(f) :=fsfgdu,

which is a bounded linear functional on X, i.e. ¢, € X*. Hence, by identifying g and
@g, one can regard X' as a closed subspace of X*. Moreover, if X is reflexive (or, more
generally, order-continuous), then X' = X*.

The following notions, closely connected to type and cotype, will play an important
role in Section 5.4 (see [90, Section 1.d] for details).

Definition 2.6.3. Let 1 < p < g < co. We call X p-convex if for all finite sequences

), =X,

(iunv’)’l’

N 1
< (X 1%al?)”,
n=1

and we call X g-concave if for all finite sequences (xn)ﬁyzl cX,

N 1 N 1
q q
(3 1) " < (3 1a19)
n=1 n=1

Note that any Banach function space is 1-convex by the triangle inequality, and any
Banach function space is co-concave. Indeed, for any x,, x;; € X, since | x| < ||x,| VXl
and | x| < |lxp] V | X1, then by the ideal property,

sup [[xzll < sup |xulll, x1,---,xnv€X.
1<sn<N 1=nsN
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One often defines p-convexity and g-concavity using finite sums of elements from X
and a constant in the defining inequalities. However, by [90, Proposition 1.d.8], one can
always renorm X such that these constants are equal to one, yielding our definition.
Moreover, X is p-convex (p-concave) if and only if X* or X' is p’-concave (p’-convex) by
[90, Proposition 1.d.4], since X’ is a close subspace of X*. As a simple example, we note
that L"(S) is p-convex for all p € [1, r] and g-concave for all g € [r,00]. Indeed,

r

(S 161)

<[ 1l 0= 31

;
Lr (S) »
L'(S)
and the other inequalities follow from Minkowski’s inequality (see Lemma 2.2.5).

Let (S, </, 1) be a o-finite measure space and denote the space of measurable func-
tions f: S — C by L(S). For s € (0,00) and a Banach function space X, define the s-
concavification

XS::{fELO(S):|f%€X},

equipped with the quasi-norm

s
. (2.6.1)
X

T Nk

If s <1, X* is always a Banach function space. For s > 1, X* is a Banach function space if
and only if X is s-convex. Note that for 0 < s, p < oo, f € (LP(S))*,

P S
Iflwpesys = (fsm : dﬂ)p < oo,

then we have (LP(S))’ = L% (S). For more details we refer to [2].

2.7. INTERPOLATION SPACES

In this section, we recall some basic properties of complex and real interpolation spaces.
See [97, 142] for more details.

2.7.1. COMPLEX INTERPOLATION

Definition 2.7.1. A Banach space X is called a 6-intermediate UMD Banach space if it
is the complex interpolation space between a UMD Banach space Z and a Hilbert space
H,i.e. X =[Z, H]g for some 8 € (0,1].

Note that X = H if 6 = 1. We say X is an intermediate UMD Banach space if it is
0-intermediate UMD for some 6 € (0,1]. Note that reflexive Lebesgue spaces, Sobolev
spaces, Triebel-Lizorkin spaces, and Besov spaces are all intermediate UMD Banach
spaces. Since the UMD property is stable under complex interpolation, any interme-
diate UMD Banach space is a UMD Banach space. Conversely, by a result of Rubio de
Francia [133], all UMD Banach function spaces are intermediate UMD Banach function
spaces. For general Banach spaces, this is an open problem.
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Let0<6p<0; <1,1:=(1-0)0y+00,, we have the following reiteration identity ([87,
Example 6.6]):

[(Z, Hlg,, (2, Hlg, |y = |Z, H]). 2.7.1)

The following result on complex interpolation spaces of L”-spaces will be used several
times later, see [71, Theorem 2.2.6].

Proposition 2.7.2. Let1l < py<p; <ocoorl<pyg<p; =ocoandlet0<6 <1. Forany
interpolation couple (Z, H) of complex Banach spaces and any measure space (S, <, 1)
we have

[LP°(S; 2), LPY(S; H) |, = LP(S;1Z, Hlp),

: : 21 1 1-0 6
A - = == + —_
lsomemcally with » o 1

2.7.2. REAL INTERPOLATION

Let — A be a sectorial operator on a Banach space X, and let 7 € (0,00) and g € [1,00].
Then the real interpolation space associated with A, 7 and g is

Da(,q):= (X, D(=A)N/a,q) (2.7.2)

where a € (1,00) is arbitrary. It follows from reiteration that D4(7, g) is independent of
the choice of a. In particular, one has

Da(r,q) = (X, D(=A"Nt/m,q = (X, DA™ z/m,q

whenever m € N satisfies m > 7. By basic properties of interpolation spaces [142, Theo-
rem 1.1.3],

Da(t9,q0) €Da(t1,q1)
if 1] <719, 0rif 71 =79 and gg < ¢;. By [63, Corollary 6.6.3],

Da(1,1) € D((-A)") € D(T,00) (2.7.3)

for all T > 0. Also, D((—A)%) is a dense subset of D 4(7, ) for all @ > 7 and g < oo, by [63,
Theorem 6.6.1]. Similarly, we also have reiteration identity ([142, Theorem 1.10.2]):

(DA(TO)p)rDA(Tl’p))g,q :DA(T) Q), (274)

where 7 = (1 -0)19+ 6711, p,q € [1,00]. If X has Fourier type p € [1,2], —A is a sectorial
operator and 0 € p(—A). Then both D((—A)") and D 4(7, p) also have Fourier type p, for
allt>0.







IMPROVED POLYNOMIAL DECAY
FOR NON-UNIFORMLY BOUNDED
SEMIGROUPS

3.1. INTRODUCTION

3.1.1. SETTING

We study the asymptotic behaviour of solutions to the abstract Cauchy problem

1(t) = Au(r), t=0,

o= Au® (3.1.1)
u0) =x,

on a Banach space X. We assume that (3.1.1) is well posed, so that the solution oper-
ators form a Cy-semigroup (T(1)) =0 S Z(X) of bounded operators, with generator A.
Throughout, we will consider A satisfying E € p(A), where C, := {z€ C|Rez > 0}. Un-
der these assumptions, there are two well-known flavors of results that relate informa-
tion about the resolvent operators to asymptotic behaviour of the semigroup orbits.

Firstly, the classical Gearhart-Huang-Priiss—Greiner theorem [56, 65, 120] says that,
if X is a Hilbert space, then the semigroup (T(#));>¢ is uniformly stable (| T(#)|| — 0 as
t — 00), and all orbits decay exponentially to zero, if and only if

sup [|R(A, A)ll 2 (x) < co. (3.1.2)
AeCy

Versions of this theorem on non-Hilbertian Banach spaces were discovered later [107,
145, 148]. Here an assumption such as (3.1.2) typically guarantees exponential decay
only for sufficiently smooth initial data, with the degree of smoothness depending on

This chapter is based on the article [40]: C. Deng, J. Rozendaal, and M. Veraar. “Improved polynomial decay
for unbounded semigroups”. In: J. Evol. Equ. 24.4 (2024), Paper No. 99.
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the geometry of the underlying Banach space. It is relevant to note that all these results
make no a priori assumptions on the growth of the semigroup; only spectral information
is required.

On the other hand, a more recent line of research considers the setting where the re-
solvent is not bounded on the right half-plane, but instead blows up along the imaginary
axis at a specified rate. In this case the semigroup is not uniformly stable, and one can at
best hope to obtain uniform decay rates for sufficiently smooth initial data. Semigroups
with these properties arise naturally in the study of the damped wave equation

G%u(t,x) =Agu(t,x) - a(x)0:u(t,x), (f,x)eRxM, (3.1.3)

on a Riemannian manifold (M, g), where a € C(M) [4, 25, 27, 84, 121, 122]. A succession
of results in semigroup theory (8, 11, 12, 20, 128] has elucidated the relationship between
the rate of resolvent blowup and the rate of decay of classical solutions to (3.1.1), in the
case where the semigroup is a priori assumed to be uniformly bounded (| T(¢)| < C for
some C > 1). The latter assumption is in turn satisfied if the damping function a in (3.1.3)
is non-negative.

However, when considering functions a in (3.1.3) that change sign, the associated
semigroup need not be uniformly bounded and one may encounter unexpected spec-
tral behaviour (see e.g. [123, 129]). Moreover, polynomially growing semigroups appear
naturally in the analysis of Schrodinger operators with unbounded potentials [38, 62],
perturbed wave equations [59, 115], delay differential equations [137] and hyperbolic
equations on non-Hilbertian Banach spaces [33, 127].

Hence it is natural to wonder what can be said when one combines some of the diffi-
culties of both the lines of research mentioned above, that is, if the semigroup (7(¢)) ;>0
is non-uniformly bounded (| T ()|l < e®! for some w > 0) and the resolvent is not uni-
formly bounded on the right half-plane. This is the setting that will be considered in this
chapter.

3.1.2. PREVIOUS WORK

Throughout this chapter, we will consider Cp-semigroups (T (t));>o with generator A
such that C; < p(A) and

IR, Al ez < CA+IADP, Aec,, (3.1.4)

where $,C = 0 are independent of 1. Under these assumptions, — A is a sectorial operator
of angle n/2. Indeed, the semigroup generation property implies that |R(A, Al ¢ S
1/Re A for Re A large, which gives a uniform bound in (2.2.1) for || large if ' > /2. On
the other hand, (3.1.4) implies that C, < p(A), which in turn yields the required bound
in (2.2.1) for |A| small.

Unless § =0, i.e. unless (3.1.2) holds, the resolvent might blow up along the imaginary
axis, with polynomial rate at most O(AI%). As in the work for uniformly bounded semi-
groups mentioned above, one hopes to derive polynomial rates of decay for semigroup
orbits with sufficiently smooth initial data.

In this regard, it was first shown in [8] that, on general Banach spaces, for each p =0
and 7 > (p+ 1)+ 1 one has

1T xlx St PlIxlpi-am (3.1.5)
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forall £ =1 and x € D((—A)"). Later, [130] improved this estimate under additional ge-
ometric assumptions on the underlying Banach space. Namely, if X has Fourier type
p € [1,2] (see Section 2.3.2), then (3.1.5) holds for each 7 > (o + 1) + % — %. Moreover,
if p =2, i.e. if X is a Hilbert space, then one may let 7 = (p + 1) 3. However, it was left as
an open question whether one may also let 7 = (p+ 1)+ % - % for Banach spaces with
Fourier type p € [1,2) (see also [126, Appendix B]).

Recently, it was shown in [134] that the results from [130] regarding (3.1.5) can in fact

1

be improved. More precisely, for each p >0 and o > % — 3 one has

IT@xlx < ¢ °log(®)? Ixllpi-am) (3.1.6)

for t =2 and x € D((—A)7), where 7 = (o + 1) B + % - %. That is, for p >0 and p € [1,2),
(3.1.6) attains the missing endpoint exponent from [130], up to alogarithmicloss. In fact,
[134] combined methods from [130] with ones from the theory for bounded semigroups
in [11] and considered resolvents with more general growth behaviour, but specializing
to polynomially growing resolvents leads to (3.1.6).

Finally, it is important to emphasize that the results from [130] and [134] are far from
optimal if the semigroup (T'(#)) ;>0 is uniformly bounded. Indeed, in this case [12] yields,
on general Banach spaces and for all p = 0,

IT(Oxlx St Plog()P 11Xl pi-am) (3.1.7)

for t = 2 and x € D((—A)"), where 7 = pf. Moreover, by [20], if X is a Hilbert space
then the logarithmic factor in (3.1.7) can be removed, yielding (3.1.5) for 7 = p. On the
other hand, for non-uniformly bounded semigroups on Hilbert spaces and for p = 0 one
cannot in general expect to obtain (3.1.5) for 7 < (p + 1) 8, as follows from an example
of Wrobel (see [149, Example 4.1] and [130, Example 4.20]). We also refer to [130, Sec-
tion 4.7.1] for an application to polynomially growing semigroups of the combination of
(3.1.7) and a rescaling argument.

3.1.3. MAIN RESULT
For 7 > 0 and g € [1, o], we will work with the real interpolation space

Da(r,q) = (X, D(Am))r/m,qy

where m € N with m > 7t arbitrary (see also (2.7.2)). Moreover, we refer to (3.4.2) and
(3.4.3) for the definitions of Hardy-Littlewood type and Hardy-Littlewood cotype, re-
spectively. The following is our main result.

Theorem 3.1.1. Let A be the generator of a Cy-semigroup (T (1)) ;=0 on a Banach space X
with Fourier type p € [1,2]. Suppose that C, < p(A), and that there exist f >0 and C =0
such that (3.1.4) holds. Letp =20 and sett:=(p+ 1)+ % - #. Then there existsaCy =20
such that

IT(OxIx < Cot Pl Dacr,p) (3.1.8)

forallt =1 and x € D(z,p). If p > 0, then (3.1.8) also holds with D 4(t, p) replaced by
Dy(t,q) for any q € [1,00], or by D((—A)").
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Suppose, additionally, that p > 1 and that X has Hardy-Littlewood type p or Hardy-
Littlewood cotype p'. Then, forp =0, (3.1.8) also holds with D 4(t, p) replaced by D((— A)").

The first two statements of Theorem 3.1.1 are contained in the main text as Theorem
3.3.5, while the last statement is Theorem 3.4.3.

Given that any Banach space has Fourier type p = 1, the first part of Theorem 3.1.1
applies to general Banach spaces. For p € (1,2], the assumptions on X in Theorem 3.1.1
are satisfied in particular if X is isomorphic to a closed subspace of L' (S), for (S, </, 1) a
measure space and r = p or r = p’ (see Section 3.4).

For p € [1,2), the first part of Theorem 3.1.1 improves (3.1.6) by removing the loga-
rithmic factor for p > 0, and it yields an endpoint result for p = 0. The second part of
Theorem 3.1.1 in turn fully extends (3.1.5) to p=0and 7 = S+ % — #, under additional
geometric assumptions. Also note that, for all p € [1,2] and p > 0, (3.1.8) involves a larger
space of initial data than considered in [130] and [134], since D((—A)") € D4(t,00). On
the other hand, for p =0, (3.1.8) complements the main result of [130] on Hilbert spaces,
since in general one neither has D((—A)") € D4(7,2) nor Dy(t,2) € D((—A)").

The exponent 7 in Theorem 3.1.1 is sharp for p =2 and p = 0, as noted above, and
for general p € [1,2] as § — 0, as follows from a modification of an example of Arendt
concerning exponential stability (see [5, Example 5.1.11] and [148, Section 4]). We do
not know whether, for a general Banach space with Fourier type p € [1,2) and for p =0,
(3.1.8) also holds with D 4(t, p) replaced by D((—A)7).

For any Cy-semigroup (T (%)) ;>o there exists an w € R such that

ITOlex Je®, t=0. (3.1.9)

It follows from (3.1.9) that (3.1.4) holds whenever ReA = w + 1. This is because by [50,
Theorem 1.1.10],

IR, A)ll ) S <A +1ADP.

Rel—w

Moreover, (3.1.4) directly extends to A € iR as well. Hence (3.1.4) is in fact an assumption

on the growth of the resolvent as A tends to infinity in the strip {fA € C|0 <= Red <= w +1}.
One may weaken assumption (3.1.4) somewhat, by requiring instead that

IR, Allgon S A+IADP, Lec, (3.1.10)
for some By > 0, and that
IRGE Al g S A+1ENP, EeR.

Then the conclusion of Theorem 3.1.1 still holds, and the specific value of By in (3.1.10)
plays no role. Indeed, the place in the proof of Theorem 3.1.1 where one genuinely uses
polynomial resolvent bounds for A € C, is in the proofs of Theorems 3.3.4 and 3.4.3, to
obtain a dense subset of initial values for which the semigroup orbits are integrable, and
there the value of f is irrelevant. Instead, as in the theory for uniformly bounded semi-
groups, to obtain concrete rates of decay we work with the behaviour of the resolvent on
the imaginary axis.

As in [130, 134], our techniques in principle also allow for A to have a singularity at
zero. More precisely, one could suppose that (3.1.4) holds for [A| = 1, and that there
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exists an a > 0 such that |R(A, A) |l ¢x) < IAI7 for [A] < 1. In this case one has to assume
additionally that —A is an injective sectorial operator, and the initial values have to be
restricted to the range of a suitable fractional power of —A. For simplicity, we will not
consider such a setting in this article.

3.1.4. THE STRATEGY OF THE PROOF AND ORGANIZATION

Our approach is similar to that in [130] (see also [126]), applying Fourier multiplier the-
ory to the resolvent on the imaginary axis. However, whereas [130] mostly involved
Fourier multipliers from LP(R; Y) to L9 (R; X) for suitable 1 < p<g<ooand Y € X, in
the present chapter we proceed differently.

Namely, the first part of Theorem 3.1.1 is proved using Proposition 3.2.2, which con-
siders multipliers between the Besov space B;, p([R; Y) and LY (R; X), for suitable values
of p and s. Working with such multipliers allows us to obtain endpoint estimates. In
turn, Besov spaces are intimately connected to the real interpolation method, and in
Proposition 3.3.2 we show that real interpolation spaces can also be used effectively to
cancel out resolvent growth, as is required to satisfy the conditions of our Fourier mul-
tiplier theorems. This somewhat different approach also necessitates other changes to
the setup from [130].

On the other hand, for the second part of Theorem 3.1.1 we consider Fourier multi-
pliers between weighted spaces LP (R, w; Y) and LY(R, v; X), for suitable weights w and
v. This setting allows us to obtain endpoint results involving fractional domains, at the
cost of having to make a priori assumptions about the mapping properties of the Fourier
transform between such weighted spaces.

This chapter is arranged as follows. In Section 3.3 we then prove the first part of Theo-
rem 3.1.1, and in Section 3.4 we prove the final statement in Theorem 3.1.1.

3.2. PRELIMINARIES

3.2.1. NOTATION IN THIS CHAPTER
In this chapter, we define the Fourier transform % : LMR; X) — [P (R; X) by

FFE) =) = fR € (e, EER,
and the inverse Fourier transform %! : L (R; X) — L®°(R; X) is defined by
1 .
F(D) = _f P dE, teR.
27 Jr

We write f’ for the first-order derivative of a function f: R — X.

Let Y be aBanach spaceand m:R — £ (X, Y). We say that m is X -strongly measurable
if £ — m(&)y is a strongly measurable X-valued map for every y € Y. Throughout this
chapter, we will consider m that has the additional property that there exist §,Cg = 0

such that |[m()l ¢ x,y) = Cp(l + Icfl)ﬁ for all £ € R. In this case, we may set
Tpf:=F Ymf) feFR;X).
Then T, : #(R; X) — &' (R; Y) is the Fourier multiplier operator with symbol m.
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3.2.2. BESOV SPACES

Next we introduce the space we mainly considered in this chapter: the Besov space. We
refer the readers to [73] for more details. Throughout this chapter, fix an inhomogeneous
Littlewood-Paley sequence (¢i)r>0 S Co°(R). That is, one has ¢; (&) = 0if [¢] ¢ [1/2,2],
Or(&) = P (27F+1¢) for each k> 1 and ¢ € R, and

Y gre)=1, EeR.
k=0

Let p,q € [1,00] and s € R. Then the Besov space B;yq(R; X) consists of all f € &' (R; X)
such that &1 () = f € LP(R; X) for each k = 0, and such that

”f”B;’q(R;X) = 1R F ) Dizollearm;x)) < oo.

Then #(R; X) < Bf,yq([R; X) and the embedding is dense if p,q < oo ([73, Proposition
14.4.3]). Finally, we will use the simple observation that

®; X) € By, (R; X) (3.2.1)

pth pqz

for all p,q1,g2 € [1,00], s1 > S2, OF q1 < (2,51 = S2. Furthermore, by [73, Proposition
14.4.18],

B) \(R; X) S LV (R; X) € By o, (R; X) (3.2.2)

forall p € [1,00].
The following lemma will be used in the proof of Proposition 3.3.1.

Lemma 3.2.1. Let p € [1,00), g € [1,00] and s € (0,1/p). Then there exists a C = 0 such
that 1o,c0) f € B}, ,(R; X) forall f € By, ,(R; X), and

0,00 f 15, @:x) < Cllf B3, @)
Proof. For p > 1, the statement in fact holds for s € (-=1/p, 1/ p), as is shown in [73, Corol-

lary 14.6.35]. In the proof of the latter result, one can see that for s € (0, 1/ p) one may also
allow p = 1. O

Finally, the following Fourier multiplier result, [73, Proposition 14.5.7], is one of the
key ingredients in the proof of the first half of Theorem 3.1.1.

Proposition 3.2.2. Let X and Y be Banach spaces with Fourier type p € [1,2], and let
m:R— £(Y, X) be X -strongly measurable, with Sup;cpll m(é)|l ¢ (v,x) <oo. Then

Ty: Bk~ P (R y) — IP' ®; X)

is bounded.
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3.3. POLYNOMIAL STABILITY ON REAL INTERPOLATION

SPACES

This section is devoted to the proof of the first half of Theorem 3.1.1. To this end, we
need some preliminary results.

The following proposition, connecting interpolation spaces to the Besov spaces from
Chapter 2, will play a key role in the proof of part of Theorem 3.3.4.

Proposition 3.3.1. Let A be the generator of a Cy-semigroup (T (1)) ;=0 on a Banach space
X, and suppose that — A is a sectorial operator. Let M = 0, w € R be such that | T (t)|l ¢(x) <
Me@ V! forall t =0, and let p € [1,00), g € [1,00] and s € (0,1/p). Then there exists a
constant C = 0 such that [t — 19 ) (e ' T(D)x] € B;’q([R; X) forall xe D (s, q), with

(£ 10,00 (De T (1)x] IBs ,@x) = ClxlDycs,q-

Proof. Let J: X — LP(R; X) be the bounded linear operator given by Jx(¢) := e~ x,
for x € X and t € R. Since (Jx)'(#) = —sign(t)e ' T(|¢])(w — A)x for x € D(A) and t # 0,
then

I XN wir @y S ITXIe@x) + 100 Tr@x S Ixlx + 1 @—A)xlx S 1xlpay-

This proves the restricted operator J : D(A) — WLP(R; X) is bounded. Note that by [73,
Theorem 14.4.31],

(X,D(A)sq =Dals, @), LP®RX),W"PR;X))s 4= By, (R X).

Real interpolation shows that J : D4 (s, ) — By, ;(R; X) is bounded as well. Now the proof
is concluded by applying Lemma 3.2.1. O

In turn, the following proposition will be crucial for the proof of Theorem 3.1.1.

Proposition 3.3.2. Let A be be the generator of a Cy-semigroup (T (t)) =0 on a Banach
space X. Suppose that C, < p(A), and that there exist f > 0 and C = 0 such that

IR, Al < CA+IADF, Aec,. (3.3.1)
Then iR < p(A), and
SuP{IIR(is‘,A)kllx(DA((nﬂ)ﬁ,q),X) [{€ER,k€0,...,n+1}} <00

forallneNy and g € [1,00].

Proof. The required statement is trivial for k = 0. If k > 0 and |{| < 1, for all n € Ny and
g €[1,00], (3.3.1) yields

IR(E, A¥xllx = C2" VP xllx < C2"* VP xI by nenpg) X €Daln+1)B,q).

Henceforth we will consider k > 0 and ¢ € R with [{| = 1.
By basic properties of resolvents, it follows from (3.3.1) that iR < p(A) and

IR(i&, Al ) < CA+1EDP, EeR. (3.3.2)
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Moreover, we conclude from the assumptions that D(—A) NnRan(—A) is dense in X, and
— A is a sectorial operator of angle /2. Then by [73, Proposition 15.2.12], D((-A)#) =
D((1 - A)P) for any B > 0 with equivalent graph norms. Note that

IR(i&, A (= A) Pl g0 = IRGE Al o pay x)0
(3.3.2) and [130, Proposition 3.4] yield

sup | R(i&, A) (= A) Pl 0 = sup IRGE Al gpi b x)
[¢1=1 1€1=1

, (3.3.3)
~ sup IRGS, Al (pia-a),x) < 0©-
I€1=1
Then, for ke {1,...,n}and |{| =1,
IRGE A ~ IR(EE A* (-4~
’ LD(-A)"P),X) ~ ||R(l€; A)*(-A) “f(X)
<IR(EE, HF =A™ (=A™ Pl g0 S1.
Together with (3.3.2), this implies
IRGE, A1l o aypyx0 S A+IEDP,  kell,.. n+1} (3.3.4)
On the other hand, another application of [130, Proposition 3.4] shows that
IRGE A=A P oo SA+1EDT
This, combined with (3.3.3), yields
”R(lgr A)k||$(D((_A)(n+1)ﬁ+1)'x) ~ ||R(i§,A)k(—A)_(n+l)ﬁ_l ||$(X)
< IR, A=A PIGLIRGE A=A P el A PIGL! (3.3.5)
Sa+EnT,
forall ke {l,...,n+1}and |&]| = 1.
Now, by (2.7.3), (3.3.4) and (3.3.5), we have
IRGE AVl 204,05 S A +1EDP,
IR, A* 2@ S A+ED T
for|{|=1and ke {1,...,n+1}. Finally, by (2.7.4)
Dal(n+1DB,q) = DanB,1),Dal(n+1)+1,1) 5 e
1+p’
interpolating these estimates yields sup¢ >, I R(i¢, Ak | 2D atrn+1),q), %) < 00. a

We next give the following extension of [130, Proposition 3.2] to the mixed Besov-
Lebesgue setting.
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Proposition 3.3.3. Let A be the generator of a Cy-semigroup (T (1)) ;=0 on a Banach space
X, and let Y be a Banach space that is continuously embedded in X. Suppose that iR <
p(A), and that there exist > 0 and C = 0 such that

IR(GE, Al oy x) < CA+IENP, EeR. (3.3.6)

Let p € [1,00) and s € [0,00) be such that either s >0, or s =0 and p = 1, and suppose that
there exist q € [1,00] and n € N such that

Trei,mi By p®Y) — LT[R X) (3.3.7)
is bounded for each j € {n—1,n} NN. Then

TR an: By, ®Y) — L ([R; X)
is bounded.

We only assume (3.3.6) to guarantee that the Fourier multiplier operator in (3.3.7) is
well-defined; the specific value of § plays no role here.

Proof. The proof is analogous to that of [130, Proposition 3.2]. For the convenience of
the reader, we provide the argument. By Lemma 2.2.4, it suffices to show that there exists
a C = 0 such that

sup [ Tr- an f(Nlx = Clfllgs ,@iv) (3.3.8)
k<y<k+1 '

forevery f € #([R;Y) and k € Z, since #(R; Y) is a dense subset of B), ,(R; Y).
By the assumption, for each j € {n -1, n} NN, there exists a K; = 0 independent of f
such that

1 Trei i flLamx) < Kill fllss , @;v)- (3.3.9)

Hence for every k € Z, there exists a t € [k — 1, k] such that

1 TR, 4 fOllx = Kjll fll s, ,@v)- (3.3.10)

Otherwise, there exists some ky such that for all ¢ € [ky — 1, ko],

| T i FOllx > K1 Flgs, @iyy-

Then

I T, a1 FllLa@x) 2 1 Trei., a7 Fllzako -1k > Kil fllgs ,@iv)»

which is contradict to (3.3.9).
Now let 7 € [0,2]. By direct calculation,

T@) Trian f(D) = 55 Jge P e ST T@RGE ARGE A" () dE
= o [p @ ORGE, A" FE) dE
_ﬁ f[R f()T plé(t+T=r) T(I‘)R(if,A)n_lf(f) drdé
= Trgi,ayn f(E+7) = [ T(r) T -1 f(E+7 = 1)dr

(3.3.11)
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Hence, by (3.3.10), Holder’s inequality and (3.3.9), for n > 1 one has

T
| Trei-, ayn f(E+T) I x S TR am (D)l x +f I Tre;. a1 fE+T = 1) xdr
0
1q'
< Knll fllgs ,@v) +7 TN Tri. mn-1 fllLamwx
SIfUBs @ y)-

This implies (3.3.8) for n > 1.
Finally, for n = 1, by the assumptions on p and s as well as (3.2.1) and (3.2.2), one has
B;, p(R; Y)c Bg,l (R;Y) < LP(R; Y). Hence Holder’s inequality gives

T T ’
j(; ||f(t+T—T)||Xdr§f0 If(t+7—r)llydr<tP Iflr@wyy S ”f”Bf,yp(IR{;Y)-

Combining this with (3.3.11) gives

T
| Trii 4 fE+Dx S TR(i-,A)f(t)llx+f0 If+7=nlxdr S1flss,@v)»

finishing the proof. O

We will also rely on the following version of [130, Theorem 4.6] in the mixed Besov-
Lebesgue setting.

Theorem 3.3.4. Let A be the generator of a Cy-semigroup (T (t)) ;=0 on a Banach space X .
Suppose that C.. < p(A), and that there exist 5 > 0 and C = 0 such that

IR, Al < CA+IANP, Aec,. (3.3.12)

Lety >0, p €[l,00) and s € (0,1/p), and suppose that there exist n € Ny and q € [1,00]
such that

Triak B @ Daly, p)) — LY(®; X) (3.3.13)
is bounded for each k € {n—1,n,n+ 1} NN. Then there exists a C,, = 0 such that
IT(OxIx < Cnt™ "I xlDsy+s,p) (3.3.14)
forallt=1andxe Dy(y+s,p).

Note that (3.3.12) automatically extends to all A € E» so (3.3.13) is well-defined. Also,
as in Proposition 3.3.3, the specific value of § in (3.3.12) plays no role.

Proof. We want to show that || T(f) x|l x < Cnt‘”llxIIDA(YH,p) forall £=1and x € Da(y +
s,p). As stated in Section 2.7, D(A) is dense in D(y + s, p) whenever I € N satisfies
I > y+ s, we then may suppose throughout that x € D(A!) for some large I due to Lemma
2.2.4. Hence, setting g (1) := t"1(900) (1) T(I£]) x for t € R, by [130, Lemma 4.3], one can find
ap< T—lgl —1large enough suchthatn—p<-1,and [ T(®)| = C, t~P for t = 1. Thus,

s} 1
ftnlm(t)T(Itl)xdt:f t"T(t)xdt+f t"T(t)xdt
R 1 0
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0o 1
stf t”t‘PIIxIIdt+f t"IT()Ixlldt < oo.
1 0

Then g € LY(R; X). In turn, [130, Lemma 3.1] then implies that g(¢&) = nlR(i&, A" x for
allé eR.

Next, let (T(1)) ¢ restrict to a Cp-semigroup on Dy(y, p), wemay fix M =1 and w € R
such that | T()l£p,q,py = Me@ V! forall £ = 0. Set f(1) := Lgo0) (e T(|t])x. Re-
calling that D4(y + s, p) € Da(y, p), then

I fllzo@Daty,py < MIXIDay,p) SNXNDAcy+5,p)- (3.3.15)

Moreover, the generator of (T'(¢)) ;=0 is the part of Ain D4 (y, p), which has domain D4 (y+
1, p). Then

1185, @D atp) S XN DAG.p.DAG+1LpN s S NXNDAG+5,p)) (3.3.16)

as follows from Proposition 3.3.1 and [142, Theorem 1.10.2]. By [143, Proposition 2.3.1],
we have w+ i € p(A) and forall { e R,

R(w+icf,A)x=f e @O () xdr = F©),
0

In particular, if we set
m(é) := nl(R(ié, A" + wR(iE, A,

then m(&) f (&) = §(©).

By combining all this, we see that

sup It T(Oxllx = I T f ll oo w; )
=0 (3.3.17)

< (I Trei o fllzoo@x) + @Il Treio, aynt fllzoomix) )-

For n > 0, one can apply (3.3.13) and Proposition 3.3.3 to the final line, and then use
(3.3.16) as well, to obtain

supllt"T(HOxlx S ||f||3;p([R;DA(y,p)) SIxDacy+s,p)-
=0 '

For n = 0, the same reasoning can be used for the second term in brackets in (3.3.17),
while for the first term one can directly rely on (3.3.15), since Tg(;. 40 f = f. O

We are now ready to prove the first part of Theorem 3.1.1.

Theorem 3.3.5. Let A be the generator of a Cy-semigroup (T (t)) ;=0 on a Banach space X
with Fourier type p € [1,2]. Suppose that C.. < p(A), and that there exist f >0 and C =0
such that

IR, A)ll g = CA+ ADP, Aec,.

Letp=0andsett:=(p+1)f+ % - %. Then there exists a Cy, = 0 such that
IT(Oxx < Cot Pl acr,p) (3.3.18)

forallt =1 and x € D4(z, p). Moreover, if p > 0, then (3.3.18) also holds with D4(z, p)
replaced by D (7, q) for any q € [1,00], or by D((—A)").
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Proof. We first consider the case where p € Ny. Note that X having Fourier type p implies
D 4((p + 1) B, p) also have Fourier type p. Moreover, by Proposition 3.3.2,

. k
sup IR(i¢, A"l 2D ((p+1)p,p), X) <00
eR

forall k€{0,...,p + 1}. Hence Proposition 3.2.2 implies that

Trink: Bob P ®:Dallp+ DB, p) — L & X)

is bounded for every k € {0,...,p + 1} since R(i-, A)¥ is X-strongly measurable. Finally,
Theorem 3.3.4 yields (3.3.18).

To extend (3.3.18) to general p = 0 we proceed as follows. Fix £ =1 and p > 0. Let
00, P1 € Ny be such that pg < p < p1, and let 8 € (0,1) be such that p = (1-0)pg +6p;. Set
Ti:=(pi + 1B+ % - # for i € {0,1}. Then, by what we have already shown,

IT (O 2D aeip),x) < Cpit ™

for some constant C,, = 0 independent of ¢. Now, due to reiteration, real interpolation
with parameters 6 and g € [1,00] gives

ITON2Dac,q,% < Cot™?

for some C, = 0 independent of ¢. This proves both (3.3.18) and the final statement of
the theorem, since D((—A)") € D4(1,00). O

3.4. POLYNOMIAL STABILITY ON FRACTIONAL DOMAINS

This section is devoted to the proof of the final statement in Theorem 3.1.1. For y € R,
denote the weight wy : R — [0,00) by

wy(x):=1x|", xeR. (3.4.1)
We say that X has Hardy-Littlewood type p € (1,2] if
F:LP(R; X) — LP (R, Wp-2; X) (3.4.2)

is bounded, where w),_» is defined in (3.4.1). Moreover, X has Hardy-Littlewood cotype
g€ [2,00) if
FLIR, wy—2; X) — LY’ X) (3.4.3)

is bounded. Note that, if X = C, then (3.4.2) is the Hardy-Littlewood inequality. In the
latter case, and in fact for any Hilbert space X, (3.4.2) holds for all p € (1,2], and (3.4.3)
for all g € [2,00) by [71, Theorem 2.1.9].

If X has Fourier type py € (1,2], then X has Hardy-Littlewood type p for all p € (1, po),
and Hardy-Littlewood cotype for all g € (p(’),oo) (see [42, Proposition 3.5]). Also, if X is
a Banach lattice which is p-convex and p-concave with p € (1,00), then X has Fourier
type p and Hardy-Littlewood type p if p <2, and Fourier type p’ and Hardy-Littlewood
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cotype pif p = 2 (see [55, Proposition 2.2] and [42, Proposition 6.9]). This holds in partic-
ular if X is isomorphic to a closed subspace of L”(S), for any measure space (S, </, 11). For
more on the relation between the notions of Fourier type, Hardy-Littlewood (co)type,
and convexity and concavity in Banach lattices, we refer to [42].

We first show the weighted space L (R, ws,; X) is a subspace of &' (R; X), which will be
used in Proposition 3.4.2.

Lemma3.4.1. Letre€[1,00),8 € (—00,1/1"). Then L (R, ws,; X) <. (R; X).
Proof. Let f e #(R), g€ L" (R, ws,; X). Define Lg: #([R) — X by

Lg(f) :=fRf(x)g(x) dx.

Then

ILg(AI = fiyer 1F OGN+ fiyor I F (X)) dx

3.4.4
<1glp s 1o + fxgar 1f g0 dx. 544

By Holder’s inequality,

f lgldx = f 1 IxI? 12170 dx
[x|=1 |x|<1

1/r , 1/r'
< ( f g 1xI?" dx) ( f x| dx)
|x|<1 |x|<1

/7
51
< 18l @, ws,;x) (f |x]~°" dx) <oo.
|x|=1

Thus, the first term in the right hand side of (3.4.4) is finite since f is continuous.
For the second term in the right hand side of (3.4.4), note that 1 + | x| < 2|x| for |x| > 1,
choose a number a large enough such that @+ §r’ > 1. Then

f| | 1||f(X)g(x)|| dx = f I£ollx1 2 1x1% Il g ()| dx

|x|>1

1/r 1/
< ( f g " 1x1°" dx) ( f X170 | F o1 dx)
[x|>1 |x|>1

r
< gl @ ws:x) UH 1(1+le)“(1+|xl)7“|f(x)|' |x| =0 dx)
X|>

1/r!
= 1811 @agyi SUPA+12) (0 Ul (112D =) x|~ dx)
x€eR

x|>1

1/r
SIglLr @ ws,; % sup(1 +[xNY" | f (%)l (f (1+]x])~470r dx)
x€eR x[>1

[x|>

!
SIglLr @ ws,;x0 sup(L + [ xDY 7| £ ().
xeR

By the above analysis, we have

ILg (O S N1 @ wsyix) SUp( +1xD ™V F ()],
xeR
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finishing the proof. O

The following proposition will play the same role in this section that Proposition 3.2.2
did in the previous section. For y € R, recall the definition of the weight wy : R — [0,00)
from (3.4.1).

Proposition 3.4.2. Let p,q € [1,00], r € [1,00), 61 € R and 63 € (—oo,1/1"). LetY be a
Banach space such that
F LPRY)—- L (R ws,;;Y) (3.4.5)

is bounded, and let X be a Banach space such that
F L' (R, ws,r; X) — LI(R; X) (3.4.6)

is bounded. Let m : R\ {0} — ZL(Y, X) be an X -strongly measurable map for which there
exists a C = 0 such that ||m(&) |l ¢y x) < CIEI%1%2 for all ¢ € R\{0}. Then Tp,: LP(R;Y) —
L9(R; X) is bounded.

Proof. Note that since 6, < 1/1/, L' (R, ws,,; X) € &' (R; X) by Lemma 3.4.1; Thus, the
inverse Fourier transform is well-defined. Simply combining the assumptions on X, m
and Y, we get

1T fllLa@x) S Nmf L @uws, 30 S Nws, We, -6, f Il r@syy S Flr@sy
forall fe LP(R;Y). O

We are now ready to prove the last statement in Theorem 3.1.1, as a special case of the
following result.

Theorem 3.4.3. Let A be the generator of a Cy-semigroup (T (1)) ;=0 on a Banach space X
with Fourier type p € (1,2], and suppose that X has Hardy-Littlewood type p or Hardy-
Littlewood cotype p'. Suppose that C. < p(A), and that there exist f > 0 and C = 0 such
that

IR, A)ll£x) = C+ IADP, Aec..

Letp=0andsett:=(p+1)p+ % - #. Then there exists a Cp = 0 such that
IT@®)xlx < Cot Pllxlp-a)

forallt=1andxe D((-A)").

Note that Theorem 3.4.3 is independent of Theorem 3.3.5 in the special case where
p =0. For p > 0 the conclusion of Theorem 3.4.3 already follows from Theorem 3.3.5.

Proof. The proof is analogous to that of [130, Theorem 4.9], and as such also similar to
the proof of Theorem 3.3.5. We will indicate the key steps.

By interpolation, cf. [130, Lemma 4.2], it suffices to consider p € Ny. Note that the
resolvent assumption extends to iR as before. We first show

. ~(5=7)
||R(l€yA)k”Z(D((—A)T),X)§(1+|§|) Pop (3.4.7)
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forall ke {l,...,p+ 1} and an implicit constant independent of { e R. If [{| < 1,

-

1_
ca+pPa+inr v Tt
¢ 1 61 lxllx S A+IEND iz ”)||x||D((_A)T), xeD((-A)).

A+KEnr ¥

IRGE, A¥xllx <

If |¢] > 1, using the assumption and [130, Proposition 3.4], one gets

IRGE A=) P ||$(X)N||R(i§,A)k||
i’(D((—A)

\._‘
|~

P7),X)

-4

(1
<1 T <aen T,

'q\»—- i

where we use [¢]| > 1+T“r‘ Note that we still have (3.3.3) here, then for all k € {1,...,p + 1},

IRGE, A%l 2o .30 = IRE, A)’“(—A) PG5
< |R(E, A)( APISL IRGE A=A P 0 - A) e
<@+ien 5,

Next, since D((—A)") has the same Fourier type and Hardy-Littlewood type and cotype
as X, because X and D((—A)") are isomorphic. In particular, if X has Hardy Littlewood
type p, then one may apply Proposition 3.4.2 withr=p, g=p',61==5 — = and 6y =
On the other hand, if X has Hardy-Littlewood cotype p’, then one can apply Pr0p0s1t10n
3.42withg=r=p',6:=0and 6, = % — #. In both cases, it follows from (3.4.7) that

Trgak : LP R D(=A)) — LV ®; X)

is bounded for all k € {1,..., p + 1}, which satisfies [130, Theorem 4.6] with ¢ = 0. The
result follows from [130, Theorem 4.6]. O







A WEAK RITT CONDITION ON
BOUNDED LINEAR OPERATORS

4.1. INTRODUCTION

In the last chapter, we studied the decay rates of non-uniformly bounded Cy-semigroups,
which plays an important role in the analysis of stability of damped wave equations (see
[11, 20, 91-93] and the references therein). In this chapter, we focus on the decay of the
discrete analogues and their applications in the stability of non-autonomous Cauchy
problems and the convergence rates of numerical schemes.

Let T be a bounded linear operator on a Banach space X. One can view (T"),>( as
a discrete analogue of a Cy-semigroup. A foundational study along this direction is the
Katznelson-Tzafriri theorem [75], saying if T is a power bounded operator on a Banach
space, then |T"(I — T)|| — 0 if and only if the o(T) n{A||A| = 1} < {1}. This can be re-
garded as a characterization of the decay of discrete semigroups. Many improvements
and extensions have been made in this direction, ranging from the question of whether
| T"(I - T)| converges to 0 to quantitative analysis of convergence rates, see [9, 14, 34,
46,47, 85,109, 111] and the references therein.

A classical technique in studying the stability of evolution equations is to study the
relation between the decay rates of Cy-semigroups and the resolvent condition of the
generator of the semigroups, see [8, 12, 20, 65, 128, 148] and the references therein. By
adapting the methods used for the Cy-semigroups, similar results can be obtained for
discrete semigroups. Seifert [135] proved that if T is power bounded and o(T) N {A||A| =
1} = {1}, then for B = 1, the resolvent condition

IREY, T <cClo17?, 6—0 4.1.1)

implies the following decay estimate

1
logn\s
||T”(I—T)||5C( 5 ) (4.1.2)
on Banach spaces for all sufficiently large n = 0. Later, given the same resolvent con-
dition, Ng and Seifert [112] gave a similar result to (4.1.2) in Hilbert spaces, remov-

ing the log correction on the right hand side of (4.1.2). The above works are discrete

37
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time analogues of uniformly bounded Cy-semigroup (|| T(#)| = C for some C = 1 and all
t = 0) results of Batty and Duyckaerts [12] on Banach spaces, and those of Borichev and
Tomilov [20] on Hilbert spaces, respectively. Let § = 1. These results are summarised
in the following table. By Table 4.1, power bounded operator (T"),en can be regarded

Table 4.1: Comparison of continuous and discrete time semigroups.

Resolvent condition Banach space Hilbert space
T
Continuous | |RGE AN SA+EDP¢eR | 1T@A IS ()P | ITmatige!/P
I
Discrete | IR, DI S1017P.0€ 02m | IT"u-DI(8%)P | 1rma-mygn VP

as discrete-time analogues of uniformly bounded Cy-semigroups (T (#)) =0, while (I - T)
corresponds to the inverse of the generator of a bounded Cy-semigroup A~!. Recall that
Rozendaal and Veraar [130] provided a result for non-uniformly bounded Cy-semigroup
on Banach spaces with Fourier type p € [1,2] (see Proposition 1.2.1). A natural question
is whether analysing the resolvent condition of T allows us to obtain a similar result to
Proposition 1.2.1 for not power bounded operators (T") 02

Note that by [31, Lemma 3.3], the resolvent condition (4.1.1) for power bounded oper-
ators is equivalent to the weak Ritt condition:

IRAA, T < 1< <2,

C
IA-11F"
for some B > 1. If B = 1, the above estimate is the well-known Ritt condition, imply-
ing power boundedness of T. Since > 1, the weak Ritt condition does not neces-
sarily imply power boundedness of T. To the best of the authors’ knowledge, there is
little research studying the relation between the weak Ritt condition and the discrete
semigroup (T™),=o for T a bounded linear operator that is not power bounded. In the
early 2000s, Nevanlinna [111, Theorem 9] proved that under the weak Ritt condition, a
Kreiss bounded operator T (see (1.2.7)) has a decayrate | T"(I - T)"|| < n~* for s € N and
T=0(s+1)—-1.

In this chapter, we are interested in the relation between the weak Ritt condition and
the decay rates of bounded operators (7"),>o under composition with operators of the
form (I — T)? for some 7 > 0. A simple version of our main result is as follows (also see
Theorem 4.3.2):

Theorem 4.1.1. Let X be a complex Banach space, T be a bounded linear operator on X,
and D be the unit disk. Assume that o(T) cDu {1} and o(T) N {A||A| = 1} = {1}. Further-
more, suppose there exists a constant 3 > 1 such that

IRA, Dl = 1< <2

_C
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holds. Then for each s N and allt > (s+ 1) — 1, there exists a C > 0 such that

IT"I-T)I<Cn¥, n=1.
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It is easy to see our result may be viewed as a discrete analogue of the results in [130]
for non-uniformly bounded Cy-semigroups on general Banach spaces. We also inves-
tigate the relation between the decay rates and the geometry of the underlying Banach
spaces (i.e. the Fourier type), see Theorem 4.3.4. Theorem 4.1.1 is obtained by a direct
calculation, whereas Theorem 4.3.4 is obtained by adapting the Fourier multiplier the-
ory, which is similar to the techniques used in [130]. Furthermore, see Proposition 4.3.1,
where we consider a sector condition (4.2.5) and obtain a better decay for the discrete
semigroups; this result directly extends [109, Theorem 4.9.3]. We will give a comprehen-
sive comparison of these results in Section 4.4.

The chapter is organized as follows. In Section 4.2, we collect some preliminaries on
the weak Ritt condition and other related concepts. In Section 4.3, we prove our main
results, Theorems 4.3.2 and 4.3.4, and in Section 4.4, we provide a detailed compari-
son between our main results and related results. Finally, in Section 4.5, we present two
applications of our results: the asymptotic behaviour of solutions to non-autonomous
Cauchy problems and the convergence rates of polynomial acceleration methods for
fixed point problems.

4.2. PRELIMINARIES

4.2.1. NOTATION IN THIS CHAPTER

Eet D :={A € C||A| < 1} be the unit disc, 3D := {1 € C||A| = 1} be the boundary of D, and
D := DudD be the closure of D. We denote the null space of T € £ (X) by Ker(T) :=
{x € X|Tx = 0}. We denote by C¥(R) with k € N the space of k-th order continuously
differentiable functions in R. For a function f € C*¥(R), we denote by f®) the k-th order
derivative of f.

R In this chapter, we define the Fourier transform F01(7; X) — [°°(T; X), fi=nez—

fas
F(NEO:=F&) =Y fae—n®), &EeT,

nez

and the inverse Fourier transform %' : L/(T; X) — ¢*°(Z; X),g — & as
F @) (n):=gn) ::fvg(t)en(t)dt, nez,

where e, () := e¥"" for te Tand n € Z.

4.2.2, £§(Z;$(X, Y))-FOURIER MULTIPLIER THEORY
Define the space

co0(Z; X) :={a:= (ay) nez < X | there exists an N > 0 such that a,, = 0 for all |n| = N}.

Clearly, coo(Z; X) is dense in ¢ (Z; X) for all p € [1,00). Let m € L (T; £(X,Y)). Define
the Fourier multiplier operator Ty, : coo(Z; X) — coo(Z; Y) by

T f(n):=F '(mf) = fv m@f(&end)dé, feco(ZX), neZ.
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If there exists a constant C > 0 such that for all f € cyo(Z; X),

I Tmflleaz;yy < Cll fllerz;x),

then we say m is an ZZ(Z; Z(X,Y))-Fourier multiplier. By density, Ty, can be uniquely
extended to a bounded linear operator from ¢7(Z; X) to ¢9(Z; X).
The following result is a discrete analogue of [131, Proposition 3.9].

Proposition 4.2.1. Let X be a Banach space with Fourier type p € [1,2], Y be a Banach
space with Fourier cotype q € [2,00]. Let r € [1,00] be such that% = % - Ll]. Letm:T —
2L (X,Y) be an X-strongly measurable map such that m € L' (T; £(X,Y)). Then m isa
[Z(Z; £ (X,Y))-Fourier multiplier with

Tl < Cqy (D Cp x (D) Imllpr 1,2, vy) - (4.2.1)

Proof. By a density argument, it suffices to consider f € cy9(Z; X). Since X has Fourier
type p and Y has Fourier cotype g, let C, x(Z) and Cy,y(T) denote the operator norms
of F : ¢P(Z;X) — U”('I]';X) and 1. 9 (T;Y) — ¢9(Z;Y), respectively. By Holder’s
inequality,

Imfll e .y < Imler@ex )l fllp q.x < Cox@DlImlraex,ylfllerzx)-

Hence,

1T fleazyy = 1F " mHlleazy) < Coy MIMFll g 7.y

< Cq,y MCpxDmlrr a2, 0l fllerzx)-

4.2.3. FRACTIONAL POWER OPERATORS

In this section, we define fractional power operators under the weak Ritt condition (4.2.9)
and the sector condition (4.2.5) below.

Let A € p(T), T € R. Fix a branch cut from 1 to oo along the real axis, so that (1 - A1)7 :=
19804 5 single-valued and analytic on C\[1,00). Let T be a bounded linear operator
on a Banach space X such that o(T) €D and o(T) n0D = {1}. Define the fractional power
operator (I1—T)" by

(I-T)7":= L,f(l - AN'RA, T)dA. (4.2.2)

2mi Jr
where I'is a contour surrounding o (7T), avoiding the cut by starting and ending at 1 along
rays(see Figure 4.1). The following proposition shows that the definition is well-defined.

Proposition 4.2.2. Let f > 1 and v > f—1. Let T be a bounded linear operator on a
Banach space X such that o(T) €D and o(T) N oD = {1}. Assume that

IRA, D)l < 1< A <2.

C
A-118
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Figure 4.1: A contour I as in (4.2.2).

Then the fractional power operator defined by (4.2.2) is well defined and satisfies the semi-
group property: forti,72> -1,

(I-T)V"(I-T)2=I-T)"*",

Proof. Let T be a contour surrounding o (T), starting from and ending at 1, and assume
that near 1 it coincides with a ray

y::{1+tei9° [te(0,e)}cT

for some ¢ > 0 and |0y| € (0, Z) (see Figure 4.1). Since the only singularity of the integrand
in (4.2.2) lies at A = 1, it suffices to analyse the behaviour as A € y. A direct computation
gives

1

ol
1T < ibgyr__ ~
fy(l A) R(/l,T)d)L“NfO el s

|5
2mi
€
5[ 7P dr < oo,
0

due to 7 > f—1. Hence (I — T)" is a bounded operator on X, and the definition is well
posed.

To prove the semigroup property, let I'y and I', be two admissible contours starting
and ending at 1, with T'; strictly inside I'; and intersecting only at 1. Using the resolvent
identity and Fubini’s theorem, one obtains

I-T(I-1"2= 1-A)" (f AQ-w"™Ru,T) d/,t)R(A, T)dA
1 I

@ni)? Jr
—NT1(] — 72
= 1_2 M(R(M,T)—R(A,T))dud/l
(2mi)? Jr, Jr, A-u
(4.2.3)
—L (L wdﬂl)(l_ )TZR( T)d
C2miJr, \2miJr, A-p K o H

1 1 Q- ) .
_ — | =™ _dula-=-10"'R, T)dA.
2mi Jr, (Zni frz A-u dp]A-DTR(A, THdA
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We now evaluate the two terms in the right hand side of (4.2.3) separately. For the first
term, note that (1 — 1)™! is continuous on the closure of the region bounded by I'; and
analytic in its interior. Since I'; intersects I'; only at the point 1, and this single point
has measure zero for the outer integral, we may ignore it. Hence, by the Cauchy integral
formula,

1 1-nn

— dA=Q1-w", o\ {1}
2ni b A—p A-w, pelx\{}

For the second term, the same reasoning allows us to disregard the case A = 1. For A € '} \
{1}, fix 1 < ¢ < 2 and choose the branch cut along [#,00). By the dominated convergence

theorem,

1 1- )" 1 - )"
- Ay =lim —— -

—_ du=0.
2niJr, A-p tl1 2ni Jr, A—p #

Therefore, the second term vanishes. Substituting back into (6.4.1) yields
1
I-n"I-nr= —f I-w™ 2R, T)du=I-T)"""2.
2ni Jr,
This proves the semigroup property. O

Next, we introduce the sector condition. For details, we refer to [109, Chapter 4]. Let
6 >0and

Ksi={A=1+1e"|£>0,101 < 3 +5}. (4.2.4)

We say the resolvent of T satisfies the sector condition if

Figure 4.2: the shape of K.

IRAA, T = Ae{leKslIA] <2}, (4.2.5)

C
IA-11F’
for some 8 = 1. A similar proof of Proposition 4.2.2 shows the definition in (4.2.2) for

7> 3—1is well-defined and also satisfies the semigroup property if the sector condition
holds. We will explore this further in Section 4.3.1.
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4.2.4. WEAK RITT CONDITION

Let T be abounded linear operator on a Banach space X satisfying o (T) < {1]|1] < 1}U{1}
and the Ritt condition

IR, DIl =

o AL (4.2.6)
In 1953, Ritt [125] proved that (4.2.6) implies || T"|| = o(n), which is an important con-
dition in ergodic theory [44, 99]. Tamdor [141] improved the result to || T"| = O(logn).
Lyubich [98] and Nagy and Zemének [106] finally proved independently that the Ritt con-
dition (4.2.6) holds if and only if T is power bounded and | T" (I - T)|| = o).

The Ritt condition has many equivalent characterizations. We summarize them as
follows.

Lemma4.2.3. Let T be a bounded linear operator on a Banach space X such thato (T) <
D and o(T) N 0D = {1}. Then the following are equivalent:

(1) There exists a constant C > 1 such that (4.2.6) holds.

(2) There exists a constant C > 1 such that

IRAA, Dl = 1<A]<2. (4.2.7)

-1

(3) There exists a constant C > 1 such that for some $ >0,

IRAA, Tl = A€ Ks, (4.2.8)

IA-11"
where K is defined in (4.2.4).

Proof. The fact that (1) implies (3) is a brilliant result proven independently by Lyubich
[98] and Nagy and Zemdének [106] independently. Moreover, it is clear (3) implies (2).
Therefore, it suffices to show (2) implies (1). Let f(A) := [A - 1[|R(A, )| for L € {1 €
ClIAI> T}, then
FAO <N IT/A*—1, Al - oo
k=0

Moreover, define S:= {A € C|2 < |A| = || T||}. Since Sis compactand f(A) := [A-1[|R(A, T)||
is a continuous function on S, f is uniformly bounded on S. Therefore, there exists a
constant C > 1 such that for [1| =2, f(1) = C.

O

Motivated by (4.2.7), we give the following definition.

Definition 4.2.4. Let T be a bounded linear operator on a Banach space X. We say T
satisfies the weak Ritt condition if there exists a constant C = 1 such that

IRAA, Tl = 1< <2, (4.2.9)

IA-11p’

for some > 1.
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Remark4.2.5. The case that § = 1is the Ritt condition which implies T is power bounded;
The case that § < 1 is not of interest in this context, because then 1 € p(T) by [|R(A, T)|| =
m. Thus the spectral radius is smaller than 1 and thereby || 7" | decays exponen-
tially.

Next, we recall the definition of polynomial bounded operators and its resolvent esti-
mate.

Definition 4.2.6. Let X be a Banach space and T be a bounded linear operator on X. We
say T is polynomial bounded if | T"|| < p(n) for some polynomial p and all n € N.

Obviously, a polynomial bounded operator may not be a power bounded operator.
Without loss of generality we assume the polynomial to be of the form p(t) = Ctf for
some € N and all ¢ € R. The following lemma gives a characterization of the relation
between polynomial bounded operators and its resolvent in a neighbourhood of 1 (see
[49, Theorem 2.4] and [48, Theorem I1.1.17]).

Lemma 4.2.7. Let T be a bounded linear operator on a Banach space X with the spectral
radiusr(T) < 1. If for some 5 = 0,

limsup(IA]| - D?|RQ, T)| < oo, (4.2.10)
|/1|"1+

then
IT"<CnP, neN. (4.2.11)
Moreover, if (4.2.11) holds for some B = d, then (4.2.10) holds with f =d + 1.

We end this section with two examples of operators satisfying the weak Ritt condition
(4.2.9).

n

1 1 1
Example4.2.8. Let X :=R?, T:= (0 1), then T" = (0 )

I ()l=]0)

Thus, T is not power bounded. Furthermore, forany A e R, A-T = (

). By calculation,

=Vn2+l—-00, n—oo.

A-1 -1 .
0 A—l)’WhICh

shows o (T) = {1}. By a direct calculation,

L1
-1 -

A-1 1 )
CA-12

A-1 1
0 A-1
exists a constant C > 0 such that

Define x := (f) and A:= ( ), then by a direct calculation, for 1 < |1| < 2, there
2

IAll= sup [|Ax] = sup \/I(/l—l)xl+Xz|2+|(/1—1)Xz|2sC,
lel=1 Ixl=1



4.2. PRELIMINARIES 45

(1

so|A-D)7 Y < On the other hand, we have || A| = > 1. Therefore, there

|[A- 1|2
exists a constant C > 0 such that

C
IA-11%

1
<lA-D =
-1p = I =
Example 4.2.9. Let A be a linear operator on a Banach space X. Assume that there ex-
ists w1 € (0, Z) such that — A generates an analytic semigroup (e_z“‘)zezw1 onX, :={z¢€
Cl|largz| < w1} and
le ?A Slzl+1, z€Xy,.

Let T:=(1+ A)~L, then o(T) DU {1} and

IRAA, D < 1<A]<2. (4.2.12)

C
A-1p2’
Indeed, by [88, Lemma 2.3], there exists w, € (0, %), such that g (A) Z_wz and
1 1
lz+ A< —5+—, 2€Z5 4,
R P4 1
Thus, C_ € p(A) and T is well-defined. We now show that o (T) €D u {1}. Since

A-T=A-0+A'=20-1"1+40+4)"L (4.2.13)

Letz:=A"!-1,then A= Z+1 Note that A € o(T) if and only if z € o (A). It is easy to see
that for z € 0(A) € C, one has |[z+ 1| = 1, and the equal sign holds if and only if z =
Therefore, o(T) €D uU {1}.

Next, we show the resolvent estimate (4.2.12) holds. Since z € p(A) is equivalent to
A€ p(T). By (4.2.13), one has

RAT=2"10+A0-A2"1+47= l+—(1 Ah AL

A A2
Forl1<|Al <2 wehave 1-1"1¢€ Z,, w,- IFIA=1] < 1, then |/1 T IAIIIZ; Otherwise,
we have 1<|A-1| <3 and then IJL < <1= :1 }:2 < . 1|2 The same calculation yields
W < = 1‘2 Therefore,

1 1 1 1
RADINS =+ o | = + =7
IRA IS s wz(|1 e |1-%|)

1 1 1

S—t+——+—
Al IA=112 A=1]

1
S——, 1<lA<2
SICIE 1Al

Furthermore, by Lemma 4.2.7, (4.2.12) implies | T"|| < C n2. In other words, the operator
T is polynomially bounded, but not power bounded.

Remark 4.2.10. An operator A satisfying the assumptions in Example 4.2.9 can be found
in [88].
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4.2.5. ERGODIC THEORY

We now introduce some basic concepts from ergodic theory in order to present the split-
ting theorem for the space X. For more details, we refer the readers to [45] and [79].

Let Ap(T) := % Z?:‘Ol T', where T is a bounded linear operator on a Banach space X.
Definition 4.2.11. An operator T is said to be Cesaro bounded if there exists a constant
C > 0 such that

1 n-1
=) T'x|=Clx|, xeX.

sup
nizo

neN

Moreover, T is said to be absolutely Cesaro bounded if there exists a constant C > 0 such
that

1 n—1 .
sup— Y IT x| <Clxl, xeX.
neN 1 ;=p

Obviously, power bounded operators are (absolutely) Cesaro bounded, but the con-
verse is not true. A counterexample is the following (also see [17, Corollary 2.3]).

Example 4.2.12. Let 1 < p < co. Denote the standard canonical basis dj in ¢, where
the kth coordinate is 1 and the other coordinates are 0. Let T be the unilateral weighted
backward shift on ¢” defined by Tdy =0,k <1 and Tdy = wydyi_1,k = 2, where wy :=

a
(%) for k=2, withO< a < %. Then by [17, Theorem 2.1], T is absolutely Cesaro

a
bounded on ¢”. Moreover, we have | T"dy|l =0 for k < nand || T"dy|l = (kan) for k> n.
Then,

IT" 1= 1T  dpsall = (n+ 1),

so T is not power bounded.
On the other hand, let x := Zzo?oo crdy, where ¢ € R, k € Z satisfies that Y -, [ck|P =1,
we obtain

7
IT"I= sup [IT"x|= (Z ||Candk||p)

lxllep=1 k>n

<=

< (Z Ickl’”) sup | T" d |
k>n

k>n

<m+1)% neN.

Therefore, | T = (n+1)* for n € N.

We next recall a stronger property.

Definition 4.2.13. We say T is mean ergodic if A,(T) converges in the strong operator
topology.

Define
Xme :={x€ X|r}im An(T)x exists }.
—00
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If T is mean ergodic, then X,,, = X. Furthermore, since %71 =A,(T) - "T_lAn_l (T), we
have
T 1x
lim =0, xeX. (4.2.14)

n—oo n

It is clear mean ergodic implies Cesaro bounded and (4.2.14). Conversely, we have the
following result, see [45, Corollary VIII - 5-4].

Lemma 4.2.14. If X is a reflexive Banach space, then T is mean ergodic if and only if T is
Cesaro bounded and (4.2.14) holds for all x € X.

Recall related splitting conclusions in X, see [79, Theorem 2.1.3].

Theorem 4.2.15. Let T be a Cesaro bounded operator on a Banach space X and (4.2.14)
holds for all x € X. Then

(1) The space X, =Ker(I-T) oRan(I-T).
(2) The operator P : X, — Ker(I — T) defining by Px = ,}i_IEOAn(T)x is a projection of
Xme on toKer(I — T). Moreover, P = P2=pT=TP.
(3) Foranyze X, ’}iilgoAn(T)x =0ifandonlyifze Ran(I-T).
We immediately have
Corollary 4.2.16. If T is mean ergodic, then
X =Ker(I-T)®Ran(I - T).

Now we claim that if X = Ker(I — T) @ Ran(I — T), certain subspaces are always dense
in X.

Lemma 4.2.17. Let T be a bounded linear operator on X. If X =Ker(I - T) ®Ran(I - T),
then for everyt € N, X; :=Ker(I — T) @ Ran(I — T)" is dense in X. In particular, if T is a
contractionon X, i.e. |T| <1, then the conclusion holds for every t > 0.

Proof. We first prove the first conclusion. For any € > 0 and x € Ran(I — T), there exists
x! € X, such that x! = %; + x;, where %; € Ker(I - T), x; € Ran(I — T) and

&
lx—I-T)xll = llx—(I-Tx'l < -

For such x; € Ran(I — T), there exists x2 € X, such that x% = %, + x», where %, € Ker(I-T),
X2 € Ran(I - T) and

&
lxy — (I=Dxzll = llxy — I = T**| £ ——r.
! 2 ! T =T

Similarly, for x;_; € Ran(I - T),3 < k < 1, there exists x* € X, such that x* = % + xt,
where X € Ker(I - T), x; € Ran(/ — T) and

Ixk-1 = (= D)xgell = Iy =T = DM £ ————.
k-1 k k-1 =T
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Then, by the triangle inequality,
lx—I-=T)xel=lx—UI-Tx1+UT-Tx1—T=T)?xp++T-T)" " x4_1 — (I = T)" x|l

T
<lx=U-Dxll+ Y M- TIF xpo — T - Dxgll < e,
k=2

which means Ran(I — T)7 is dense in Ran(I — T). Therefore, X; = Ker(I-T)®Ran(I-T)"
is dense in X.

Note that a contraction is mean ergodic, X = Ker(I — T) @ Ran(/ - T). If 7 € (0, 1), the
result follows directly from [41, Proposition 2.1]. Forany 7 = 1, ¢ > 0 and y € Ran(I - T),
there exists z; € Ker(I - T) and zp € Ran(/-T), such that z=z1+ 2z € X and ||y — (I -
Nz < % Moreover, by [41, Proposition 2.1], Ran(I — T)"~"! is dense in Ran(I— 7).

([T l7] ___&_
Let xe X besuchthat ||zo— (I—T) x| < =TT Then

ly—U-Dxl<lly-U-DN 2+ 1~ DMz — (1 - T) x|
<ly-U-D"zl+1I-T)N" Nz —T-T)"" x| <e.
O

Remark 4.2.18. Recall the unilateral weighted backward shift operator T on ¢P,1 < p <
oo in Example 4.2.12. We have that X; = Ker(I — T) @ Ran(I — T)" is a dense subspace in
¢P for T € N. Indeed, T is absolutely Cesaro bounded on ¢7 , then by [17, Corollary 2.7],
T is mean ergodic. Therefore, the result follows from Corollary 4.2.16 and Lemma 4.2.17.

4.3. MAIN RESULT

In this section, we study the polynomial decay rates of the discrete semigroup (T") =0
when composed with the operator (I — T)* for some 7 > 0, in general Banach spaces in
Section 4.3.1 and in Banach spaces with Fourier type in Section 4.3.2. Our main results
are Theorems 4.3.2 and 4.3.4.

4.3.1. RESULTS IN GENERAL BANACH SPACES

We first investigate the polynomial decay of 7" (I — T)* in general Banach spaces as n —
oo. Two cases are considered: when the resolvent of T satisfies the sector condition
(4.2.5) and when it satisfies the weak Ritt condition (4.2.9).

Recall the definition of K; in (4.2.4). The following result directly extends [109, Theo-
rem 4.9.3].

Proposition 4.3.1. Let X be a complex Banach space, T € £(X),0(T) €D and o (T)noD =
{1}. Suppose that Ks < p(T) for some d > 0, and there exists a constant C = 1 such that

IR, DIl = » Ae{uekKsllul <2},

C
IA-11P
holds for some 3 > 1. Then for every s > 0, there exists a constant Cs ; g such that

IT"(I-T)"ll < Cs5pn°, n—o0,

wheret =s+f-1.
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Proof. By (4.2.2),

1
T'"I-T)" := —_fl"(l - AR, T)dA
27i Jy

holds for y := y; Uy2 Uys where y, is a line segment of the form {1 = 1+ te!Z*® | > 0},
Y2 is a circular arc of the form {1 = re'®|r <1 fixed and 6 varies }, and y3 is symmetric
with y; and joints it at 1. Since o(T) N 0D = {1}, we may choose r in such a way such that
I(1-A)*R(A, Tl is uniformly bounded on y». Then the contour v is inside the unit circle
and surrounds o (T) (see Figure 4.3).

Figure 4.3: a contour y.
On y», we have
1
||—,f AM1-D)TRA, TYdA| = Crr™.
271 Jy,

2_ .
By an elementary calculation, there exists a constant ¢ > 0 such that ¢s < — w

on Y1, implying || < e~ %" while c5 — 0 when § — 0. Note that on 71 we also have (4.2.5)
holds, then

1 1
\)—. A1 - AR, T) (m” < —f IAMIA=1 IR, T) Il dA|
27 Jy, 27 Jy,

<c | AMA-1"P|dA|
71

o0
< Cf e—C5nttr—ﬂ+l—1 dr
0
o0
- C(c(;n)*”*ﬁ“)f o1 g,
0
=Corpl(r =+ 0 TP,
The treatment of y3 is identical. Then
IT"(I- )7 < Csr pT(x = B+ D~ TPV 1 C257", neN.

Note that r < 1, the conclusion follows since r” decays faster than n~ "B+ a5 n — co.
O

A decay result for (T"(I — T)") ,>1 under the weak Ritt condition is the following.
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Theorem 4.3.2. Let X be a complex Banach space, and T be a bounded linear operator
on X. Assume that 0(T) < D and o(T) N 0D = {1}. Furthermore, suppose there exists a
constant 3 > 1 such that the weak Ritt condition (4.2.9) holds. Then for each s € N,

e forallt > B(s+1)— 1, there exists a constant C; > 0 such that
IT"I-T)l<Cin”°, neN;
e fort = B(s+1)—1, there exists a constant C > 0 such that
IT*(I-T)'|<Cnlogn, neN.

Proof. LetseN,7=p(s+1)—1. Fix6 € (0,%) and choose € € (0,6). Set r := Snil(g‘sg) , which
is motivated by the geometric configuration in Figure 4.4. For sufficiently small € > 0 we
havere (1, %) and r — 1 as € — 0. Define the contour I' :=T"; uT',, where

T ={ref? |e<O<27—¢}, F2={1+uei5|0<,us si;igfe)}.
By (4.2.2),
T"I-T)'x = 2}” JrA"1=A)"RQA, T)xdA,
= 25 [/, A" = DTRA, DxdA + fr, A= DR, T)xdA)

_ 1 27[ ErrH-l l(n+l)9(1 rel@)TR(relQ’T)xde

Zn
+ 0 fr, ML= D)TRA, T)xdA.
r
r T,
8
o 1\ 2 2
Figure 4.4: the integral path I'.
Therefore,
+1)S 2n—¢ i ) .
[+ DT (1-T)"x| < (nz ) f r”“e’(”“)g(l—relg)TR(relg,T)deH
]zn+1)5 4.3.1)
f AT1-AM)TRA, T)xdl”.
I
For the first term in the right hand side of (4.3.1), we have
| (n;nl)s ffnl_s Pl gi(n+D0 (1 _ 1 oi0\T p(reif T)xdo|
(= z)s r2m—e Li(n+1)01(s) i0y1 i0
= || = e 1-re')'R(re'Y, T)xdo
== ST S 00 - reTR(re?, Dxde| 43.2)

|| Zs—l[ei(n+l)9](j)[(1_reiQ)TR(reiB T)x](sfl—j)ﬁﬂ—l;‘”
pet’ ” fZ” € pi(n+ 10 p( 10

—271
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where P(re®®, T) := [(1-re®®)"R(re'®, 1O = X3 _ () [A-re®) 1P R(re’, )P, which

isindependent of n and €. By an elementary calculation, for k=1,---, s,
. k . o
Rre", 1)® =i*Y" a;R(re®, 1)/* 1l e,
j=1

. k . . . ..
[A-re))® =ik Y b1 —rel)Irieli?.
j=1

where aj, bj, j =1,2,---, k are constants. For writing convenience, we omit the constants
from now. By Leibniz’s law,

. S . .
P(rele’ T) — Z [(1 _ rele)T](k)R(rele’ T)(S—k)

k=0
=1,k . . N S—k . .

— Z ( Z r]el]6(1 _ retﬂ)r—])( Z R(Telg, T)l+1rlellf))
k=1"j=1 =1

. s . . . s . .. . .
+(1-re )Y R(re®®, ) rle® £ R(re®®, 1) Y riei0(1 - rel%)T,
I=1 j=1

The assumption (4.2.9) further implies
10 s—1 k i07—j s—k 1
1PGe®, T <705yt (25, 1= ref®I) (S5 )
S| _ +pl0T S 1 rs s _ ol T—j
+rifl-re™ "X, T T ijlll re'’|
— 5[ ys-1 k s—k 7 _ 5 ,i017—j-B+1) s _ 4 pl017-BI+])
= ro(Z (ZhL mzk - ref?) )+ 2, 1= ref?)

+X5 11— reielT‘f‘ﬁ).

(4.3.3)
Since §>1,ift > f(s+1)—-1,onehast-k—-f(s—k+1)>-1fork=0,1,---,s,and

T—j-pU+1)>-1,1<j<kl<l<s-kl<sk<s-1;
T-BU+1)>-1, lsi<s;
T—j-p>-1, l<sjs<s.

which implies P(re'?, T) e 110, 27; £ (X)) by [100, Lemma 3.1 (1-a)]. On the other hand,
ift = B(s+1) -1, by [100, Lemma 3.1 (1-b)],

2m .
f IP(re', T)|l ¢ x)d0 < Cr'log (4.3.4)
0

r—1’
Moreover, for any 0 € (0,27) and j =0,---,s—1,
H (/D01 W) (] — rei®)TR(re® T)x] 1)) ”
s=1-j

= [ e VY - e O R(re™, Ty IRy
k=0
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o s=2—j &k ) ) s=1-j-k . .
_ is—l(n+1)]ez(n+1)9[ Z (Z rneme(l_rele)r—n)( Z R(re’B,T)l“rlelle)
k=1 "n=1 =1
e _ Lslej .
+(1_rete)r Z R(re’e,T)l“rle’m+R(re’6,T) Z rneme(l_rele)r—n]
=1 n=1
§=2—j  k s-1-j- )
<(n+ i1 ][ Z (Z y |1_rel(9|r—n—ﬁ(l+l))
k=1 "n=1 =1
=y 0, 1-pU+D) Y S i0 B
sl](z rezr (+1)+Z|1 rez|1n )
=1 n=1

Using a similar analysis as above with s replaced by s—1— j. Since 7 = (s + 1) — 1, one
gets
T-k-(s-j-kpB>0, j=0,1,...,s—1,k=0,1,...,s—1—].

Take 6 = +¢. By the Sine rule,

iie' _ |sing|

1- __|smel
1-re [sin@ —o)]

Therefore, the boundary terms in (4.3.2) vanish as € — 0.
For the second term of the right hand side of (4.3.1), we have

| izl Je, A= A)TR, T)xdA||

g (n+1) j‘sm(é £) |1 ,Uel6| |uel§| ||R(1+uel§ T)x|||dl~t| (4.3.5)
S, (Il + 1)8 suﬁgfs) 1+ sn?tgfs) )n+r ﬁ”x”

where we use the weak Ritt condition again.
Let ¢ — 04 in (4.3.1), note that we also have r — 1. If T > (s + 1) — 1, by (4.3.1)-(4.3.5)
we obtain

1 2m .
A+n)*T"(I-T)" x| < Efo 1P(e"; T) Il 201 x11 6 < Cr lx].

fr=p(+1)-1letr=1+ %, then by (4.3.4),

n+1 ;
A+m)T"U-T)x <5 STIPE; Tl 2 llx] dO (4.3.6)
1yn+l+s e
=Ca+5) logn| x|l.
Since (1+ 1)"*1%S — ¢ as n — oo, the right hand side of (4.3.6) is uniformly bounded in
n. O

4.3.2. RESULTS IN BANACH SPACE WITH FOURIER TYPE p € (1,2]
In this section, we add more assumptions on the geometry of the underlying Banach
space X and get an £”-norm decay of discrete semigroups, see Theorem 4.3.4.

We first introduce a lemma which will be used in the main result.
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Lemma 4.3.3. Let T be a bounded operator on a complex Banach space X, S < p(T) be
a bounded set, and let B € N, s € [1,00]. Then R(-, T)(I — T)P € L*(S; £ (X)) if and only if
R, T)I- ‘)ﬁ € L5(S; £ (X)), with constants depending on B, || T\, and sup|A|.

AeS
Proof. The case f=1isclear. If > 1, let A € S, then there exists a constant C such that
|A] = C. By binomial theorem,

p . .
I-VP=U-T+T-1f =) (ﬁ_)(I—T)J(T—A)ﬁJ.

j=0
Therefore,
B i . .
RATUI-VP=RA,DU-TP =Y |" |u-TP (-1 4.3.7)
j=1
Since |1| < C, the last term of (4.3.7) is bounded, finishing the proof. O

Our main result on a Banach space with Fourier type p is stated as follows.

Theorem 4.3.4. Let X be a complex Banach space with Fourier type p € [1,2] and w €
[1,00] be such that ;= — ;. Assume that T € £(X) with o(T) €D and 0(T) N 8D = {1}.
Letse Ny and 8 = 1 be such that

© BBl €10, grryy) P <2
* peNifp=2.

Suppose there exists a constant C = 1 such that the weak Ritt condition

IRA, Tl = 1<|Al<2,

C
A-11F’
holds for such B. Lett = (s+ 1)|B]. Then

In—n’T"I-T)"xl,, <Cellxll, xe€X.

Remark 4.3.5. In the case f = 1, we already saw that T is power bounded. Consequently,
1/p

wehave |T"(I-T)|<C (10%) in Banach spaces, as established in [135]. Furthermore,

the logarithmic correction can be removed in the Hilbert space setting, as shown in [112].

Proof of Theorem 4.3.4. Without loss of generality, fix s € N, the case s = 0 can be proved
similarly. Let T" = 0 if n < 0. By Neumann series expansion, we have for 0 € T,

Y e n@ T r " =1 PR, T), 1<r<2. (4.3.8)
n=0
andfor k=1,
. k . . . ..
R(re®™ 0, 1)® =¥ a;R(re?™0, 1)/ 2710 1<r <2, (4.3.9)

j=1
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where aj, j =1,---, k are constants. By Lemma 4.2.7,
s+ﬁ
le—n@)n’r "T"(I-T)"xIl S IT-T)"xll, neN.

Since the right hand side of this inequality is summable, we get the sum
Y e,@On'r"T"U-T)"

n=0

is uniformly convergent. Define

T

Z a; rjeZJIt]HR(reZJUG T)]
j=1

By (4.3.8) and (4.3.9), we have

( i )S Z (e—Zﬂine)(S)r—nTn(I_ T)Tx

Y e On'r " T"(I-T)"
??O A 27mi0 27i0 ($)
%) _( ) (re?™ O R(re?™®, 7)) (1- T)"x

n=0
Teyigemmcran
l' N nzo s . .
=(§) (Z : R(re?™0 T)®) (1g2mi0y(s=K) (1 _ )7y
k=1

+@2ai)Sre®™ O R(re?™i0 TY(I-T)7 )

P\S s k .
(2 ) ((27”')5"“ 27”92(Z)((Zm’)kzajR(reZ”“g,T)]“r] 20 (1 - 1) x
j=1

+@2mi) re*™ O R(re?™ 0, T) (I - T)" )
. , s () K , .. , .
= l)eranBR(reZMB, T)(l + Z (k) Z ajr]ean](?R(reZMH’ T)])(I— T)Tx
=1\%/ j=1
= (1)°re?™ O R(re*™ 0, T) A g (I- T)" x.
(4.3.10)
Let f;(n) := e~ V"r " T"x, where v > 0 such that
logn < >n, neN.
+ =
p
We deduce from || T"| < n# that
(e ) L e} 1
Ifiller = (X e r T xP)r S (Y (e nP)P) 7 ||
n=0 n=0
(4.3.11)
X 1 1,1
Y T b)) sl = (Y =) 7l < Cllxl.
n=07
(4.3.12)

Therefore, by (4.3.8),
Z e—2mn8 VR R rev+2ni9R(rev+2ni9’ T)x, 0T

gfr(e) =

n=0
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Let
me(©) = (-1)* Ao (I - T) (reZ”igR(reZ”ia, T)Y1-e ")+ e—V) ,
andlet g(n) :=nr"T"(I-T)"x,neN. By (4.3.10) and (4.3.12),
meF fr = (<) Apg (= T)7 (re* R(re*™, T)(1 - e ™) + e‘V) re"*? O R(re" ¥ T)x
= (—1)%re¥™0 A, o(I— T)"R(re"*?" T) (reZ”i"R(reZ”"", T)(e' - I) + I) X

— (_1)sre2m'6Arﬂ (I- T)TR(reW'Zﬂie, T)R(rezme, T) (rev+2m'6 _ T) X

= (-1)°re?™R(re*™ ", 1) Aro(I- T) x
=Zg.

Hence,
nr TN =T x = F Y F ) () = Ty, fr(0).

Assume for a while that Ty, : £P — o7 s uniformly bounded with respectto 1 < r < 2,
recalling (4.3.11), one has

Iln—n'r"T"1- T)Txllgpr =Clxll, xeX.

Forany N e N,

<~

N 7 N
! p’
)» ||nST"(I—T)’x||”) =(Z

n=1 n=1

lim n°r " T" (I~ T)Txup’)
r—1y
L,

N A
lim (Z IInSTnTn(I—T)Tx”p)

=L\ 1

=Cilxll, xeX.
By the monotone convergence theorem, this yields
In—nT"(I-T)"xl,, <Cellxll, xeX.

Finally, we show that Ty, : £” — ¢”" is uniformly bounded with respect to 1 < r < 2.
We only need to prove that R(re?™?, 1)/ (I- T)" is a EZ, (Z; £(X))-Fourier multiplier for

l1<j<s+1landl<r<2.ByProposition 4.2.1, it suffices to show that R(re?*%?, T)J (1 —
7)€ LY(T; £(X)), 1 < j < s+ 1 with uniform estimate in r.

Foreach1 <r<2,letS,:={A||A| =71}. f w =00 (i.e. p = 2), we immediately conclude
from (4.2.9) that R(re?™® T)(I — re?™0)lBl € [2°(S,; L (X)); if w < oo, recall that 0 < B—
1Bl < ﬁ, and hence

IR, TYUI - M)P i@ dA = f IR(re?™ 1, T)(I - re®™ %)) jv ag
Sr T
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C
S_[T |T— re2ni6|(ﬁ—[ﬁJ)wj d6

C
va TEEaT] do < oo.

Therefore, R(re?™0 T)(I — re?™9)lAl ¢ [Jo(S,; £ (X)) with uniform estimate in r. Recall
that r < 2, by Lemma 4.3.3, we have R(re*™® Ty1-T)P e L1?(S,; £ (X)) with uniform
estimate in r. Note that for 7 € N satisfying 7 = (s + 1) | 8], we have

f IR(re®™ 0, T) (1 - T)"||®d6 f IR(re®™ 0, Ty (1 - TY/ VY@ (1 - )" 1P 12 ap

<Crf IR(re?™, T)(I - )P 11° d6 < oo,

finishing the proof. O

In particular, we get the following boundedness result, which shows || 7" (I — T) x| can
be bounded without assuming that T is power bounded. This result coincides with [100,
Theorem 3.4] if p = 1.

Corollary 4.3.6. Let X be a complex Banach space with Fourier type p € [1,2], Let0 < a <
5 - zfp #2and a =0 ifp =2. Assume that T € £ (X) witho(T) <D, o(T) n0D = {1}
and

IRA, D)l = 1< Al <2.

C
M_ 1|l+a’
Then
In—T"I-Txl,, <Clxl, xe€X.

4.4, COMPARISON

In this section, we present a comparison of our findings alongside relevant results from
prior studies.

4.4.1. COMPARISON BETWEEN MAIN RESULTS

In this chapter, we studied the decay rates of the discrete semigroup (7")>¢ when com-
posed with operators of the form (I-T)" for some 7 > 0. We assumed throughout that the
spectrum of T is contained in the closed unit disk while only point 1 lies on the boundary
of the spectrum. Regarding the resolvent assumption, we examined two cases.

First, we considered the sector condition: for some > 1and 6 >0,

IRA, D)l < AefleKs||Al <2}

C
A—1]p

Under this condition, we established Proposition 4.3.1 on general Banach spaces, which
shows for every s; > 0, there exists 7; = s; + f; — 1 such that

IT"(I-T)"<Cn™™, n—oo.
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This is a direct extension of [109, Theorem 4.9.3].
Second, we considered the weak Ritt condition: for > 1,

IRAA, T < 1< <2.

C
IA-11F’
Note that if § =1, i.e. T is a Ritt operator, the above resolvent conditions are equivalent
by Lemma 4.2.3. However, when (3 > 1, clearly the sector condition implies the weak Ritt
condition but the converse is unknown. Our main interest was the weak Ritt condition.

Under the weak Ritt condition, we focused on the effect of the underlying space X on
the decay rate, and we mainly considered two types of spaces:

* General Banach spaces;
* Banach spaces with Fourier type p € (1,2].

Using the Cauchy formula and differential calculations, we established Theorem 4.3.2,
which states that for every s, € N, and 72 > f2(s2 + 1) — 1, one has

IT"(1=- 1) Sn™%.

Comparing Theorem 4.3.2 with Proposition 4.3.1, one may conclude that the decay rate
s1 is better than s,. Indeed, given 71 = 72, f1 = B2 > 1, Proposition 4.3.1 yields the decay
rate s; = 71 + 1 — 1 while Theorem 4.3.2 shows s, < ”Jrﬁl—;ﬁz < s1. This reflects the fact
that the sector condition is stronger than the weak Ritt condition.

If X is a Banach space with Fourier type p € [1,2), then for every s3 € N, there exists

T3 = (s3+1)| B3] where B3 — 3] < iy (% - %) and

ln— n3T"(1- T)T3x||[pr =Clxll, xeX.

Clearly, this implies
IT"(I-T)|<Cn™%.

Letp=1,82=P3=p,s2=s3=s.If €N, then Theorem 4.3.2 is stronger than Theorem
4.3.4. However, if 0 < f— | B8] < sTll’ Theorem 4.3.2 yields

To> B+ 1) -1=(s+DBl+(s+D(B-1BH-1=T13.

Hence, Theorem 4.3.4 is stronger than Theorem 4.3.2.
There are a few minor differences between the above results. Theorem 4.3.2 imposes
no restriction on f,, whereas Theorem 4.3.4 requires the additional assumption: 3 —

B3] < 531+ T (% - %). However, Theorem 4.3.2 does not cover the boundedness case while

we get the boundedness of n — T"(I—T) in ¥ as a corollary of Theorem 4.3.4 (see
Corollary 4.3.6). Moreover, in the above three results, s; need not be an integer, whereas
2, $3 have to be integers due to the techniques used in the proof.

The convergence in ¢ v provides stronger information and, in certain cases, leads to
improved decay estimates. To illustrate this point, we first introduce Lemma 4.4.1 below,
which was shown to us by Mario Ullrich.
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Lemma4.4.1. Let(ay),»1 € ¢! bea positive decreasing sequence. Assume that (apn®) 1 €
0. Then
a, <n*', neN.

Proof. Since (a,) =1 is a decreasing sequence, then

1 1
ap<min{ay:n/i2<ksn}<—= > ar<— ) ai ifnisanodd number,

[’_l
21 k>3 k>%
and .
ap<min{ai:n/2<k<n}<— ) ai ifnisaeven number.
k>g
Here we use the fact that the minimum is smaller than the average. Moreover, since
Y k=1 ark® < oo, then
Y ar<n )Y ark’*<n”%, neN.

k>4 k>2

Thus,

O

Remark 4.4.2. Suppose that the assumptions in Theorem 4.3.4 hold. Given x € X, let
an:=||IT"(I- T)"3x|”, then by Theorem 4.3.4, ¥,,51 apn? 8 < || x|I7. If (an) n=o is a de-
creasing sequence, Lemma 4.4.1 yields

e L
IT"(I =T x| <n” 7 |xll,

which improves the original result || T" (I — T)™ x|l < n™% || x|l in Theorem 4.3.4.

4.4.2. COMPARISON WITH OTHER KNOWN RESULTS

In this chapter, we assume T is a bounded linear operator on X. While our general frame-
work assumes only boundedness, stronger decay estimates can be obtained under addi-
tional operator-theoretic assumptions.

Recall the following result of Nevanlinna in [111, Example 4 and Theorem 9]. Let X
denote the space of analytic functions in D such that f) has boundary values in the
Hardy space H', equipped with the norm

1 (" :
1= oo + 1"l = supl F@1+ 5= [ 7V a6,
lzl<1 21 J-n

LetT:= % (1+ M) where M, is the multiplication operator with the independent variable
z. Then T is Kreiss bounded (see (1.2.7)) and o(T) = {A||A —1/2] < 1/2}. In particular,
o(T) N oD = {1}. Moreover, we have

(1) There exists a constant C; > 0 such that

Ci'Vn+1<|T"I<CiVn+1, neN;
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(2) There exists a constant C, > 0 such that

IR, DIl = 1<]Al<2;

C
A1’
(3) There exists a constant C3 > 0 such that

Gl <IT"(I-D) < Cs;

(4) Then for every integer k € N, there exists a constant Cy, > 0 such that

Ck

TnI_T2k+15 ,
1T T s

neN.

However, if we apply Theorem 4.3.2 with exponent § = 2 to achieve the same de-
cay rate of order k, we obtain the estimate |7"(I - T)*| < % for any 7 > 2k + 1. This
is slightly weaker than the [111, Example 4], which further requires the assumption of
Kreiss boundedness of T.

Recently, [100] considered the so-called Ritt—Kreiss condition, or the (f,y)-RK condi-
tion: for B,y = 0, there exists a constant C > 0 such that

|/1|ﬁ+7—1

RANDN=Corormr———
VS T T

Al > 1.

Clearly, the (f,y)-RK condition is similar to the weak Ritt condition discussed in this
chapter. The difference is that the (8,7)-RK condition will blow up both at 1 and oo,
while the weak Ritt condition only blows up at 1. In [100], the authors discussed the
power difference of T" under the (B,y)-RK condition, achieving several bounded and
growth results with respect to the choice of § and y. In particular, under the (§,0)-RK
condition, [100, Theorem 3.4] gave the boundedness of || T n+l_ 7 for 1 < B <2, which
is consistent with Corollary 4.3.6 in this chapter.

While [100] investigates the upper bound of power difference T"(I — T) under the
(B,7)-RK condition, we focus on establishing decay rates under the weak Ritt condition.
To achieve decay rates, we introduce a trade-off in the composed operator: instead of
considering T"(I — T), we study T"(I — T)* for some 7 > 1. This approach parallels the
relationship between uniformly bounded strongly continuous semigroups and power
bounded operators (see Table 4.1). Additionally, we explore how the geometry of the
underlying Banach space X influences the achievable decay rates, as made precise in
Theorem 4.3.4.

4.5. APPLICATION

In this section, we illustrate the application of our main results to two significant ar-
eas: the asymptotic behaviour of solutions to non-autonomous Cauchy problems and
the convergence rates of iterative and polynomial acceleration methods for fixed point
problems.
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4.5.1. POLYNOMIAL STABILITY OF DAMPED WAVE EQUATIONS

The study of the asymptotic behaviour of orbits of evolution families is inspired by the
work of [116]. However, our approach differs from that of [116] in a key aspect: while
[116] focuses primarily on uniformly bounded evolution families, we extend the analysis
to include evolution families that are not necessarily uniformly bounded.

Let X be areflexive Banach space. Recall the definition of evolution family (U(%, ) t=s=0
as follows.

Definition 4.5.1. A two parameter family of bounded linear operators (U(t, $)) t>s>0 On
X is called an evolution family if the following two conditions are satisfied:

M) Us,9)=L U, nUms)=U(t,s)foral0ss<r<t=<T,;
(2) (t,8) — U(t,s) is strongly continuous forall0<s< ¢t < T.

The evolution family (U(¢, ) ;>s=0 is usually used in non-autonomous Cauchy prob-
lems, we consider the homogeneous case:
1) =A)z(t), =0,
z¢ (1) (1)z(1) 4.5.1)
z(0) =x,

where A(?), t = 0 are closed, densely defined linear operators and x € D(A(0)). The evolu-
tion family (U (¢, s)) ;=520 is said to be k-periodic for some ke N, if U(t+k,s+k) =U(¢, ),
forall t=s=0.

Let k, 7 € N. Define the operator T := U(k,0) and the space X; := Ker(/—T)®Ran(I — T)".
If T is mean ergodic, then X; is dense in X by Corollary 4.2.16 and Lemma 4.2.17. We
further impose the following assumptions:

(Hp) The family (A(f)) =0 is sufficiently well behaved so that there exists an associated
evolution family (U(¢, s)) r=s=0, and the solution of (4.5.1) can be represented as

z(t)=U(t,0)x, t=0.

(H,) The evolution family (U(t, s))=>s=0 is k-periodic for some k € N.
(H3) The operator T := U(k,0) is mean ergodic.

(Hy) X: < D(A(1)) for every t > 0, and there exists a projection operator P from X to
Ker(I-T).

We refer the readers to [117, Chapter 5] and [50] for a detailed exposition of the re-
lation between the family (A(#));>0, the evolution family (U(t, s))s=s=0, and the solu-
tions of non-autonomous Cauchy problems (4.5.1). Moreover, if A(f) = A is indepen-
dent of t, then U(t,s) = U(t — s) and the two parameter family of operators reduces to
the semigroup (U(1)) >0 generated by A. One says the evolution family (U (¢, $)) ;>s=0 as-
sociated with (A(?)) ;>0 is uniformly bounded if there exists a constant C = 1 such that

sup |U(¢,s)|l < C. Our focus is on the asymptotic behaviour of the solution to equation
0<s<t
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(4.5.1) when the initial value x € X7, and (U(¢, §)) t=s=0 is non-uniformly bounded, fur-
ther implying T is not power bounded. For previous results concerning the stability of
periodic evolution families, see [10, 13, 144] and the references therein.

Let z* be the periodic solution of (4.5.1) with the initial value z*(0) = Px, i.e. z*(f) =
z*(0) if t = nk for n € N. The conclusion is as follows.

Theorem 4.5.2. Let X be a complex Banach space and assumptions (H;) — (Ha4) hold.
Assume that o(T) €D and o(T) n 0D = {1}. Suppose that there exists a p > 1 such that
the weak Ritt condition (4.2.9) holds. Then for x € Xp2p-115 the solution of equation (4.5.1)
satisfies

lz(5) = z" (Il = 0, t—o0.

Proof. Since T is mean ergodic, then Xj,5_17 is dense in X by Corollary 4.2.16 and Lemma
4.2.17. Therefore, for any x € Xp2p-11, X = Px+z where z € Ran(J — T)rzﬁ‘”. Since
(I - P)x € Ran(I — T)?P~11 there exists y € X such that (I - P)x = (I — T)?f-11y. By
Theorem 4.3.2,

IT"x—Pxl| = | T"(I - P)x| = | T"(I - D*P Ny <ntiyl =0, n—oo.  (45.2)

Given t = 0, choose a proper n such that t—nk € [0, 1), then by periodicity of (U(¢, $)) t=s=0
and the boundedness of U(t — nk,0), we have T" = U(k,0)" = U(nk,(n—-1Dk)U((n -
Dk,(n—-2)k)---U@k, k)U(k,0) = U(nk,0) and

lz(t) = 2" (Ol = 1U(¢,0)(x = Pl = |U(t - nk + nk, nk)U (nk,0)(x — Px)||
= |U(t—nk,0)(T"x—Px)|| <C|T"x - Px||. (4.5.3)

The proof is completed by (4.5.2) and (4.5.3). O

Remark 4.5.3. Unfortunately, we can not extend this result to x € X since X217 is not
closed by [109, Theorem 4.4.5].

4.5.2. POLYNOMIAL ACCELERATION OF FIXED POINT PROBLEMS

In this section, we study the application of our main results in polynomial acceleration
of fixed point problems; for details, we refer to [109].

Let T be a bounded linear operator on a Banach space X, and g € (I - T)* X for some
7 € R be a given vector such that the following fixed point problem

x=Tx+g (4.5.4)

admits a solution on X. One simple method to solve equation (4.5.4) is successive ap-
proximation. We construct a sequence of approximations (xy) x>o defined by

Xps1:=TxXk+ 8,
with a given starting vector xp € X. Define

di:=Xg1—xp=Txp—xp+g
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as the associated residual. We seek an approximation to the solution x in the subspace
Xo +spanfdy, Tdy, -, Tk-1 do}. In other words, we look for coefficients a i such that

k-1 )
X =X+ Z aixT'dp.
i=0
By a direct calculation,
k-1 )
die=Txp—xp+8=|1-U-T) Y ayT"|do.
i=0

This motivates the definition of the polynomials

k-1 _
Ge-1 M) =Y aigd', pr) =1-1 - g1 (A).
i=0

Recall the following lemma from [109, Proposition 1.4.2].

Lemma 4.5.4. Let g be an arbitrary polynomial and set
p():=1-(1-)gh).
If x solves the fixed point problem (4.5.4), then it solves the problem
x=p(Mx+q(Dg. (4.5.5)
Conversely, if additionally Ker q(T) = {0}, then (4.5.5) implies (4.5.4) as well.
For ye Ran(I - T)°, set
Iyl: :=inf{llally = (I- T)"a}.

Let pr(A) := Ak, gr-1(A) = Z;‘:_Ol Al Then pr(A) =1—-(1—-A)gk-1(A). By a direct calcula-
tion,

X 1= pk(T)x0+qk_1(T)g, keN. (4.5.6)

We are interested in studying the iteration speed of x;. for the fixed point problem (4.5.4)
when g € Ran(I — T)™*!, which implies x stays in Ran(/ — T)”. Here, the parameter T
quantifies the degree of "amenability" of the data g, which is intrinsically linked to the
decay rate s of the iteration process. Specifically, a larger value of 7 typically corresponds
to faster decay, reflecting a more regular g by Theorem 4.3.4. The conclusion is as follows,
which is similar to [109, Theorem 4.9.1].

Theorem 4.5.5. Let X be a complex Banach space with Fourier type p € [1,2] and w €
[1,00] be such that ; = ; — 5. Assume that T € £(X) witho(T) D and o(T) nOD = {1}.
LetseNy. Ifp<2,let p =1 besuch that f— ] € [0,1/w(s+1)); If p =2, let f € N. Suppose
the weak Ritt condition (4.2.9) holds for such B. Assume that (4.5.4) has a solution x €
Ran(I - T)" fort =(s+1)|B]. Then

Ik — kST*(I = T) 1l ypr < Crllxllz.
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Proof. By Lemma 4.5.4, if x solves the fixed point problem (4.5.4), then it also solves the
problem

x=pr(Mx+qr-1(T1)g.
Let a;,¢ be a vector satisfying x— xo = (I — T)* ajns with || ainsll = inf{l|all | x —x¢ = (I-T)" a}.
Then by Theorem 4.3.2,
Ik — k*(c=x )l ppr = k= K pre(T) (x = x0) I
Sl TR = D aingl
S lainell = Il x = xoll7,

which completes the proof. O

A similar argument, replacing Theorem 4.3.4 with Theorem 4.3.2, yields the following
decay rate result.

Proposition 4.5.6. Let T be a bounded linear operator on a Banach space X witho (T) €D
and o(T) N 0D = {1}. Suppose that there exists a f > 1 such that the weak Ritt condition
(4.2.9) holds. Let se N and 1 > (s+1)8 — 1. Assume that (4.5.4) has a solution x € Ran(I —
T)'. Then for any xo € Ran(I — T)*, we have

lx—xell Sk~*Nx—xoll;, k— o0,

where xi. is defined in (4.5.6).







STRONGLY KREISS BOUNDED
OPERATORS IN UMD BANACH
SPACES

5.1. INTRODUCTION

In the last chapter, we studied the decay rates of discrete semigroups (T"),>¢ whose

generator T is a weak Ritt operator T. In this chapter, we study the growth bounds for

(T™ =0 where T satisfies a slightly weaker resolvent condition than the Ritt condition.
Let X be a Banach space. If T is power bounded, then by the Neumann series

n

A-n"'= n;o T AL
one obtains
n
[A-D7H =) 177 € st

£ —,
=0 A A=

One can repeat the above calculation after differentiation, to see that

|a-n*| < ¢ sLken
(1Al =Dk
These observations motivate the definitions of (strongly) Kreiss bounded operators,
which we already mentioned in Definition 1.2.4. By the above observations, we see any
power bounded operator (Ritt operator) is (strongly) Kreiss bounded. By letting A — oo
one sees that K, K = 1.

This chapter is based on the article [39]: C. Deng, E. Lorist, and M. Veraar. “Strongly Kreiss bounded opera-
tors in UMD Banach spaces”. In: Semigroup Forum 108.3 (2024), pp. 594-625.

65
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In applications to numerics and ergodic theory, one often needs power boundedness
of T or sharp estimates for | T"|| as n — oo, which can be difficult to obtain directly.
However, it is often possible to check (strong) Kreiss boundedness. Therefore, it is useful
to investigate the converse to the above observations:

(i) Does (strong) Kreiss boundedness imply power boundedness?

(ii) If this is not the case, which growth of | T"|| can one obtain from the (strong) Kreiss
boundedness of T?

In the continuous time setting, the Hille-Yosida theorem provides a result of this form.
It gives the equivalent characterization between bounded Cy-semigroups and the pow-
ers of the resolvent of its generator. Moreover, the Hille-Yosida theorem yields that T is
strongly Kreiss bounded with constant K if and only if

HeET”SKsel‘f', fec, (5.1.1)

see [110, Proposition 1.1].

There is a gap between (5.1.1) and power boundedness of 7, stemming from the gap
between the growth of an entire function and the decay of its Taylor coefficients (see
[110]). Therefore, the answer to Question (i) is unfortunately negative: not every (strongly)
Kreiss bounded operator is power bounded. Counterexamples to this and related ques-
tions can be found in [7, 28, 43, 77, 96].

Question (ii) has been extensively studied. For instance, using Cauchy’s integral for-
mula, one can check that if T is Kreiss bounded with constant K, then (see [139, p.9]) we
have

[T"|| < Ke(n+1), neN, (5.1.2)

and, if T is strongly Kreiss bounded with constant Ky, then (see [96, Theorem 2.1]) we
have

[T"|| = Ksv2n(n+1), neN. (5.1.3)

Moreover, these growth rates in n are known to be optimal in general Banach spaces,
see [136, 139] for Kreiss bounded operators, and [96, Example 2.2] for strongly Kreiss
bounded operators.

Under geometric assumptions on X one can improve the above bounds. In the special
case that X is d-dimensional, the “Kreiss matrix theorem” (see [78, 86, 138]) asserts that
Kreiss boundedness with constant K implies T is power bounded with | T"| < Ked. In
applications, the dimension may be very large (see [43]), so it is of interest to study the
sharpness with respect to d, which was established in [77] up to multiplicative constants.
In the finite dimensional setting, this seemed the end of the story. However, 20 years later
in [114], it was shown that the bound can be improved to sublinear growth in d under
further conditions.

In the infinite dimensional setting several results are known which improve the es-
timate (5.1.2) for Kreiss bounded operators and the estimate (5.1.3) for strongly Kreiss
bounded operators:
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If X is a Hilbert space:

~ (5.1.2) can be improved to | T"|| = O(n/+/log(n+2) (see [19, Theorem 5] and
[30, Theorem 4.1]).

~ (5.1.3) can be improved to | T"| = O((log(n + 2))?) for some > 0 depending
on T (see [30, Theorem 4.5]). Moreover it is also shown in [30, Proposition 4.9]
that 8 can be arbitrary large.

o If X=LP with pe(1,00)\{2}:
~ (5.1.2) can be improved to | T" | = O(n/+/log(n +2)) as well (see [37, Corollary
3.2)).

1.1
- (5.1.3) can be improved to || T"|| = O(nl2 P|(log(n+2))ﬁ) for some § > 1, where

the number |% - %| is optimal (see [7, Theorem 1.1]).

If X isa UMD space, g and g* denote the (finite) cotypes of X and X*, respectively:

- (5.1.2) can be improved to || T"|| = O(n/(log(n+2))ﬁ) with g = ﬁ (see [37,
Theorem 3.1]).

Table 5.1: Growth rates for (strongly) Kreiss bounded operators in various spaces.

Banach Hilbert LP UMD
KB Oo(n) O(n/+/log(n+2)) O(n/+/log(n+2)) O(n/(log(n +2)F)
1_1
SKB | O(/m | O(logn+2)P) | 0m'Z7 7 togn+2)P) This chapter

See Table 5.1 for an overview of these results. An improvement of (5.1.3) for general UMD
spaces seems to be missing. The main results of this paper give such improvements.
Moreover, we recover the results for strongly Kreiss bounded operators from [30, Theo-
rem 4.5] and [7, Theorem 1.1] in the Hilbert and LP-cases, respectively. The following
two results (see Corollaries 5.3.2 and 5.3.3) are special cases of our main result:

e If X is a UMD space, there exists an a € (0,1/2) depending only on X such that
IT"] = O(n%);

e If X = [Y, H]p (complex interpolation), where Y is a UMD space and H is a Hilbert
space with 0 € (0, 1), then there exists an « € (0, (1 —8)/2) depending only on X such
that | T"|| = O(n%).

For instance, the above conclusions can be applied to L”-spaces both in the commuta-
tive setting and non-commutative setting. Improvements of (5.1.3) for Banach function
spaces are discussed in Theorems 5.4.1 and 5.4.4.

The previously mentioned improvements of (5.1.3) follow from one single theorem,
in which the main condition on X is formulated in terms of upper and lower estimates
for decompositions in the Fourier domain, which we introduce and study in detail. The
definitions and properties of these decompositions will be given in Section 5.2.
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Theorem 5.1.1. Let X be a Banach space which has upper €9 (LP)-decompositions and
lower ¢91(LP)-decompositions, where p € (1,00) and 1 < qg < q, <oo. If T is a strongly
Kreiss bounded operator on X, then there exist constants C, 3 > 0 depending on X and T
such that

11 _ 1
”T"”SC"z("" ”1)(log(n+2))/3, n=1.

One can see that gy = ¢q; would lead to logarithmic growth. However, this equality can
only occur if X is isomorphic to a Hilbert space. This follows from Propositions 5.2.10
and 5.2.11 and Kwapieri’s theorem (see [83]).

The structure of this chapter is as follows. We explain our main tool: Fourier decompo-
sition properties in Section 5.2, including duality, interpolation, extrapolation, (Fourier)
type, and cotype properties. With the help of Fourier decompositions, we can prove our
main results in Section 5.3 for general UMD space and in Section 5.4 for UMD Banach
function spaces. In Section 5.5 we collect some open problems related to the results of

paper.

5.2. FOURIER DECOMPOSITIONS

In Theorem 6.1.2, we used an assumption in terms of decompositions in the Fourier
domain. In this section, we will introduce these concepts.

5.2.1. LP(T; £ (X,Y))-FOURIER MULTIPLIER THEORY
Definition 5.2.1. Define the Fourier transform %:L"(T; X) — (*°(Z; X), f — f as

F((n) Z=f(ﬂ)i=ﬁf(t)en(t)dt, nez.

We call f(n) the n-th Fourier coefficient of f. For a sequence g = (g,)nez € £1(Z; X),
define the inverse Fourier transform %~ : 01(Z; X) — L®(T; X), g — g as

FH@W=¢g®:=) guen®), teT.

nez

In this chapter, we mainly consider the Fourier transform of trigonometric polynomi-
als, the definition is as follows.

Definition 5.2.2. A trigonometric polynomial f: T — X is a function of the form

f):=Y ape®™ =Y ayen,

nez nez
where (a,) ez is a finitely supported sequence in Z.

Let Z(T; X) denote the set of all trigonometric polynomial f: T — X, then Z(T; X)
is dense in LP(T; X) for all p € [1,00). Observe that in view of the orthonormality of the
exponentials we have for all n € Z and f € Z(T; X), f(n) = ay.
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Let Y be another Banach space, for abounded sequence m = (my) nez € *°(Z; £ (X, Y))
and f € Z(T; X), define the Fourier multiplier operator

Tnf:=F 'mP =Y maf(nen,

nez

which is well-defined since fis a finitely nonzero sequence. Let p € [1,00). If there exists
a constant C > 0 such that for all f € Z(T; X),

| T fller vy < Clfllzrarx,

we call ma LP(T; £ (X, Y))-Fourier multiplier. In this case, T;, can be uniquely extended
to a bounded linear operator on L”(T; X) by Lemma 2.2.4.

5.2.2. ¢9(LP)-FOURIER DECOMPOSITIONS

After the above preparation we can now introduce the ¢9(LP)-Fourier decompositions.
A family .# of subsets of Z is called an interval partition if it is a partition of Z and each
I € ¢ isan interval. For an interval I € Z and f € Z(T; X), define

Sif:= TlIfZeg._l(lIf) = Z f(n)en-

nel

Note that S is called the Riesz projection if I := Z... For p € (1,00), we will write Ry, :=
I T1,, lwr(r;x))- By Theorem 2.4.2, X is a UMD Banach space if and only if the Riesz

projection is bounded. For any I := [a, b] < Z, denote M, f(x) := ez”i“xf(x). For xeT,
we have

I1Stfllrrxy = 1S1a00 f = Siboo) [ 2P (T;x)
=IMaS1,, M—af — MpS1,, M_p fllLr(1;x) (5.2.1)

<2Rx,pll fllLr(T;x)-
Definition 5.2.3. Let X be a Banach space and p, g € [1,00].

(i) The space X is said to have upper ¢9(LP)-decompositions if there exists a constant
U > 0 such that for each interval partition .# and all f € Z(T; X),

1
Ifllrax sU(Y ||SIf”ZP(1r;X))q'
Iey

(ii) The space X is said to have lower ¢9(LP)-decompositions if there exists a constant
L > 0 such that for each interval partition .# and all f € Z(T; X),

1
(> ||81f||27,,ﬂr;x))’4 <LIflrax-
Iey

By the triangle inequality,

Ifllrax =1 Y. Sifllrax < Y I1Stflrmx-
leg leg
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Hence every Banach space has upper ¢! (L”)-decompositions for any p € [1,00]. More-
over, if X is nonzero, then g < oo and in fact g < 2 A p’ for the upper decompositions (see
Proposition 5.2.10).

Any UMD Banach space has lower ¢°°(LP)-decompositions for p € (1,00), which fol-
lows from (5.2.1). In Theorem 5.2.9 we shall see that this can be improved. Moreover, the
UMD property and p € (1,00) cannot be avoided for the lower decompositions. In other
words, if there exist p, g € [1,00] such that (a nonzero) X haslower ¢9(LP)-decompositions,
then p € (1,00), and X is a UMD space. To see this, take I = Z, and I» = Z_\ {0}. Defini-
tion 5.2.3(ii) immediately implies that for all f € Z(T; X),

IS, fllzrr,xy < LI fllzrrx)s

which gives the boundedness of the Riesz projection. Thus, X is a UMD space and p €
(1,00) due to the reflexivity of X.

5.2.3. BASIC PROPERTIES

Let us discuss some basic properties of the upper and lower decompositions. We start
with a simple duality result.

Proposition 5.2.4 (Duality). Let X be a Banach space, p € (1,00) and q € [1,00]. The
following are equivalent:

(1) X isaUMD space which has upper ¢9(LP)-decompositions.
) X* has lower ¢7 (Lp')—decompositions.

Proof. If g = 1, by the analysis in Section 5.2.2, X* has lower £ (L”')-decompositions
implies X* has UMD and so does X. It is trivial that X has upper ¢! (L”)-decompositions
for any p € [1,00]. On the other hand, if X is a UMD space, then X* also has UMD. Hence
X* has lower £°°(LP)-decompositions for all p € (1,00). By Propositions 5.2.10 and 5.2.11
below, g cannot be infinity. We next consider the case g € (1,00).

(2)=(1): We already noted that X* is a UMD space in Section 5.2.2. Then X** is also
a UMD space, thereby reflexive. Thus X = X**. To show the upper estimate, let .# be an
interval partition, let f € &(T; X) and g € Z(T; X*). If g < 0o, by Holder’s inequality and
the assumption, we have

[<F28) 1yr0,0 i

:‘A(ﬁé’)x,x* ft‘=’fvlezj(31f,81g)xlx*dt’

< Y IStflzrcrx I1S181 7 (.x%)
lIey

1 ’
<[ IS1F ) (X IS1g0 7, )
ler BN\ LPTX)

=

1
<L YIS 1 per) 181 crixey
lIey

Taking the supremum over all g which satisfy | gl 7 Txn S 1, it follows from Lemma
2.4.3 that X has upper ¢9(LP)-decompositions.
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(1)=(2): Let g € Z(T;X"). Let fr € Z(T;X) for I € .#, where we suppose that only

finitely many f7 are nonzero. Let f :=) jc # S; f1. Holder’s inequality and the assumption
give that

f(f[)81g>XX*dt| f(f g)XX"< dl’| ”f"Lp(—[fX)”g”Lp (T; X*)

Iey

1
q
<U( X I8 1) 1800 ey
Iey

1
q q
= ZURX’p(IZ’y ”fI“Lp(—[]';X)) "g”Lp’(-W;X*)-
€.

where, in the last step, we applied the boundedness of the Riesz projection. Taking
the supremum over all (f7) ey € €9(LP(T; X)) with Y jc s ||f1||Zp(T,X) < 1, it follows from
Lemma 2.4.3 that X* has lower ¢9 (L”’)—decompositions. O

In the following proposition, we show that one can trade ¢9-summability for polyno-
mial growth in the number of intervals in the decomposition properties, which seems
like a natural way to prove upper decompositions. A similar result holds for the lower
decompositions case.

Proposition 5.2.5 (¢/7-summability versus growth «). Let X be a Banach space and let
p,qe€ll,00].

(1) If X has upper ¢9(LP)-decompositions, then there exists a constant U > 0 such that
forr € (q,00l, all finite families of disjoint intervals . and f € & (T; X) with support
inu{l e 7},

x\H

1_
IfllLrrx) < U @#F)a (Z ||51f”LP(1IX)) .

Iey

where#.% is the number of intervals in % .

(2) Conversely, if there exists an r € (q,00] and a constant U > 0 such that for all finite
families of disjoint intervals ¢ and f € £ (T; X) with support in U{I € ¥},

1.1 L
1F s <UED T (X AS 1)
Iey
then X has upper ¢°(LP)-decompositions for1 < s < q.
Proof. Note that (1) follows directly from Holder’s inequality:

_1
-

Q=
Q\'—‘

(Z ||SIf||LP('[r X))

leg

Iflprxy <U( D1 ”SIf”LPﬂIX)) U(Z l(r/q))
leg Ieg

~ =
~I=

<UD (LIS M) -

Iey
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For (2),let .# = {I} : k = 1} be an interval partition of Z. For a trigonometric polynomial
f:T— X, set fi:= Sy, f. Without loss of generality, we may assume that

I fileraxy 2 W fresi ey, k=1

Otherwise, one may relabel the indices of the intervals in the partition. By the triangle
inequality and the assumption, we get

2/ -1

o0 o0
I fllerrx) = ” > fk” <> H > fk”
o rax T ol S lrax
o o4 ., 2i-1 1
(-D(;-3)
SUZZJ q. T ( ||fk||£p(1r;x))r
j=1 k=2i-1

© j-1
SUD 277 | foiallrmx
j=1

1
o (1A g+ FlHi 5 pmran ) *
< UZZ - LP(T;X) . LP(T;X)
o 2]—1
j=1
o ,-DE-1) (2 §
(-5 s s
SUZZ a.s '(Z”fk”u)mr;;o) .
j=1 k=1
Since % — % < 0, assertion (2) follows. O

In the next proposition, we discuss a complex interpolation result for the decomposi-
tion properties.

Proposition 5.2.6 (Interpolation). Let (Xo, X1) be an interpolation couple of UMD spaces.
Let pg, p1 € (1,00) and qo, q1 € [1,00]. Let 6 € (0,1), set Xy = [Xo, X119 and
1 1-6 6 1 1-6 0
— =+

p Po E’ q qo E

If X; has upper (lower) €9 (LP)-decompositions for i = 0,1, then Xy has upper (lower)
29(LP)-decompositions.

Proof. We start with the proof of the lower case. Since Xy is a UMD space, it has lower
£*°(LP)-decompositions. Thus we may assume without loss of generality that g < co and
thus min{qy, g1} < co. Let .# be an interval partition of Z. Let

T:LPU(T; X;) — 0% (%; L7 (T; X;))

be given by T'f = (S;f)je.s for i =0,1. From the assumption we see that T is bounded
of norm L; for i = 0,1. Therefore, by Proposition 2.7.2, we obtain that T : LP(T; Xg) —
29(LP(T; Xp)) is bounded and

1-0 ;0
I TN s2(p v;x9), 09 L (T;x90) < Lo Ly

This gives the required result.
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For the upper case, in Proposition 5.2.10 below, we will show that g, g1 < co. Define
an operator T: ¢9(.#; LV (T; X;)) — LPi(T; X;) by

T((fres):= Y, Sift

Iey

for i =0, 1. Note that

I T((fDres)lLri(T:x,) = H Z SIfIH

LPi(T;X;)
SUz( |S] IfIH )
jes" iy LPi(T:X)
L]
<Ul(ZH Ifl LPi(T;X;) ) l

< 2U;iRx; p, | (fD ezl gai ;10 (T;:X))

where, in the last step, we applied (5.2.1) again. Therefore, by Proposition 2.7.2, we ob-
tainthat T: ¢9(%; LP(T; Xy)) — LP(T; Xp) is bounded. Applying thisto (f1)je.s = (S;f) 1es
for f € P(T; Xp), then T((f)1er) =X1e.0 S1S1f =Y 1c.# Sif and

I fllrrxy = || X SIfHmeXg) < Z(UORXo,pO)I_G(UlRXl,pl)6”(Slf)leﬂ”l”l(ﬂ;LP('l]’;Xg))r
Iey

completing the proof. O
With a similar method we obtain the following “extrapolation result”.
Proposition 5.2.7 (Extrapolation). Let X be a UMD space, p € (1,00) and g € (1,00).

(1) If X has upper ¢9(LP)-decompositions, then X has upper ¢°(L")-decompositions for
everyse[l,q)andre,ps'IghYu(p's'lq"),00).

(2) If X has lower ¢9(L”)-decompositions, then X has lower ¢5(L")-decompositions for
every s€ (q,00] andr e (1,ps/q)u ((p's/q)’,00).

Proof. We first prove (2). For every s € (q,00], let 6 = %, ifr< %, then there exists ¢ €
(1,00) such that
1 1-6 0
—_—= -, (5.2.2)
r t p

If r > (p's/q), then there exists t € (1,00) such that % = [,9 + >, which implies (5.2.2)

as well. Moreover, X has lower #*°(L!)-estimates for all t € (l,oo) by the boundedness of
the Riesz projection. It therefore follows from Proposition 5.2.6 that X has lower £5(L")-
estimates by (5.2.2) and 1 = L0 + %

By the duality result in Pr0p0s1t10n 5.2.4 and ((2)), we have if X has upper ¢9(LP)-
decompositions, then X has lower ¢ q (L”/)-decornpositions, and then X has lower ¢° (Lr/)-
decompositions for every s’ € (¢',o0l and r' € (1, p’s'/ ') U (ps' I ¢', 00). Using Proposition
5.2.4 again conclude the result. O
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The decomposition properties also behave well in the following sense, where we note
that extrapolation to other exponents can be deduced from Proposition 5.2.5 and Corol-
lary 5.2.7.

Proposition 5.2.8. Let (S, </, 1) be a o -finite measure space. Let X be a Banach space and
letp,qe(1,00).

(1) IfX hasupper ¢9(LP)-decompositions, then LP (S; X) has upper ¢P"9(LP)-decomposi-
tions.

2) IfX has lower ¢9(LP)-decompositions, then L” (S; X) has lower ¢P9(LP)-decomposi-
tions.

Proof. (1): By Fubini’s theorem, the assumption, the contractive embedding ¢P"9 c ¢4,
and Minkowski’s inequality (see Lemma 2.2.5), we obtain that for f € 2(T; L”(S; X)),

I flizeereresxy = I f lLrs;ercr;x)
< UNS1 N iesllipseas;ir a;xm
< UlS1 ) resllLes;erna o;irmxo
< UGSt 1eslerna ors;Lr (T:X))
= Ull(S1 ) 1eslernacgLr(rLe(s;x)-

(2): This can be proved in the same way:

1(S1 ) 1esllervaca,ira;irs;xn = 1St eslervacairs;iraxn)
< (St H1eglLps;ervacs;LrT;x))
< 1(S1H)reslrs;eacr;0r m:x0)
< LI fllr(s;Lr (1;x0)
= fllLrrers;xy,

where we use the contractive embedding ¢ c ¢PV49, O

A Banach space X is super-reflexive if and only if for any C < oo, there exists a constant
M and two numbers p > 1 and g < oo such that

1 1/q 1/p
— (X 1l ) = | X x| = M( X al?)
sl G o)< | o] <M pr)
for any basic sequence (x,),e7 in X of constant < C (see [74]). The following result is

much deeper and follows from [21] and [52]. It will play a role in some of the results
below.

Theorem 5.2.9. Let X be a Banach space and p € (1,00).

(1) X is super-reflexive if and only if there exists a q € (1,00) such that X has upper
29(LP)-decompositions.

(2) X isaUMD space if and only if there exists a q € (1,00) such that X has lower £9(LP)-
decompositions.
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Proof. Note that an X-valued block sequence on the characters of T is (S, f)i=1 for
f € LP(T;X) and (I})ren an interval partition of Z. Then (1) is immediate from [21,
Theorem 10] and [52, Theorem 9.25]. For (2), note that if X is a UMD space, then X*
is a UMD space as well, and thus super-reflexive by [71, Corollary 4.3.8]. By (1) for each
p' € (1,00), there exists a ¢’ € (1,00) such that X* has upper Zs (Lp/)—decompositions. Ap-
plying Proposition 5.2.4, X has lower ¢9(LP)-decompositions. The converse implication
has already been observed below Definition 5.2.3. O

5.2.4. NECESSITY OF TYPE AND COTYPE PROPERTIES

We have already seen that super-reflexivity and UMD are necessary for upper and lower
decompositions, respectively. Our next aim is to show that the decomposition properties
also imply (Fourier) type and cotype. Recall that the space X has Fourier type p € [1,2] if
there exists a constant ¢y, , > 0 such that for all finitely nonzero (x,) ez in X, we have

Z enXn

7 (T:X) =@Px,p 1 (xn) n=1 ”[ﬁ(Z;X)-
To deduce type and cotype properties, we will present the details in the case of upper
decompositions. The lower case will be derived by duality.

Proposition 5.2.10 (Upper decompositions implies type and cotype). Let X be a Banach
space and p, q € [1,00]. If X has upper ¢9(LP)-decompositions, then g € [1,p' A2] and

(1) X has type q;

2q'

(2) X has Fourier type r’ and cotyper foranyr € (m’

o).

Proof. By the assumption applied to the trigonometric polynomial f = }}"_, exxx, and
I = {k} for k € Z, we obtain

Y enxy

nez

<U X). 5.2.3
L) 1 (xn) n=1lleaz;x) ( )

This implies g € [1, p'l. Indeed, if g > p', (5.2.3) yields

Z €nXn

nez

X 1 nz1ll g z:x)-

This leads to an improvement of the classical Hausdorff~Young inequalities, which is
known to be false for C (see Example 2.3.6 and Lemma 2.3.3) and thus for one-dimensional
subspaces of X. We also refer the readers to another proof in [42, below (4.6) with a €
(0, DI

(1): For fixed t € T, (5,,)27:1 and (£nen(t))2’=1 are identically distributed Rademacher

sequences. For any N € N and (xn)gzl, Fubini’s theorem and (5.2.3) yield

-J

LP(;X)

P p
dr

LP(;X)

N
Y enxp
n=1

N
Y enxp
n=1
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g
g/

N
< [ Mmoo a2 | 2 1
Q n=1

p
dt

LP(O;X)

p

N
Z Enen(t)xp

n=1

dp
LP(T;X)

N
Z Enen(t) Xy

n=1

P
q

By Kahane-Khintchine inequality, X has type g, and thus in particular g < 2.
(2): If p <2, interpolating (5.2.3) with the trivial bound

I

n n
erX = Xl
ISR WY

k=1

£ we deduce from the Riesz-Thorin Theorem

andsetting@z%and%=¥+%=1—2q

that

n
| ¥ e
k=1

oy n) "
< X
2(T;X) P

Note that s € [1,2] as a consequence of g < p’. Therefore, Holder’s inequality implies that

|

On the other hand, if p > 2, (5.2.3) and Holder’s inequality yield

lq 1_1 12
Y ennl| 0 S (ankn") <Un 2(Z||xk||) . 629

n

Z €k Xk

k=1

1

<UP2pi- %(Zuxkn) - (5.2.4)

L2(T;X)

nez
By [73, Lemma 13.1.32], (5.2.4) and (5.2.5) imply Fourier type r’ if % =1- ’;—2,2, which
is the required result. Since Fourier type r’ implies cotype r by [72, Proposmon 7.3.6],
this completes the proof. O

Proposition 5.2.11 (Lower decompositions implies type and cotype). Let X be a Banach
space, p € (1,00) and q € [1,00]. If X has lower ¢9(LP)-decompositions, then q € [p' v 2,00]
and

(1) X has cotype q;
(2) X has Fourier typer' and typer' foranyr € (%,oo).

Proof. Note that the assumption implies that X is a UMD Banach space. By Proposi-
tion 5.2.4, we know that X* has upper ¢4 (L )-decompositions. Thus Proposition 5.2.10
gives that ¢’ € [1, p A 2], and X* has type ¢'. Therefore, X has cotype g and this proves

(1). Similarly, X* has Fourier type r’ forany r € (%, oo). This implies that X has Fourier
type r’, and thus also type r’ by [72, Proposition 7.3.6]. O
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5.2.5. EXAMPLES

We have already seen that every UMD space admits nontrivial upper and lower ¢£9(LP)-
decompositions. In this section, we give some concrete spaces and indicate what the
admissible p and g are on these spaces.

Example5.2.12. Let H be a Hilbert space. Then
* H has upper ¢P(LP)-decompositions for p € (1,2].
* H has upper ¢9(LP)-decompositions for p € [2,00) and ¢ € [1, p').
* H has lower ¢”(LP)-decompositions for p € [2,00).
* H has lower ¢9(LP)-decompositions for p € (1,2] and g € (p’,00].

Indeed, it suffices to prove the the last two statements because the first two claims fol-
low by the duality (Proposition 5.2.4). Moreover, for the last two statements it suffices to
consider H = C by Proposition 2.2.6. By Rubio de Francia’s Littlewood-Paley inequality
for arbitrary intervals ([132, Theorem 1.2]) and [71, Proposition 5.7.1], thereisa C > 0
such that for p € [2,00), each interval partition .# and all f € & (T), we have

(S 5t < )

It is trivial that C has lower ¢9(LP)-decompositions for p = 2 and g € (2,00]. For p €
(1,2), g € (p’,00), by Minkowski’s inequality (Lemma 2.2.5) with ¢ > p’ > p, and Rubio de
Francia’s inequality ([132, Section 7]) and transference, there is a C > 0 such that

<C .
L I fllze

(gﬂllszflli,,m)’l’ <| (gﬁw,ﬂq); |, =C A1

The endpoint g = p’ is missing when p # 2. We leave it as an open problem whether the
endpoint holds, see Problem 5.5.3.

Example5.2.13. Let (S,</, 1) be a o-finite measure space and p € (1,00). From Example
5.2.12 and Proposition 5.2.8 we immediately obtain

e LP(S) hasupper ¢P (LP)-decompositions for p € (1,2] and upper ¢9(L”)-decomposi-
tions for p € [2,00) and g € [1, p').

e LP(S) haslower ¢P(L”)-decompositions for p € [2,00) and lower ¢9(L”)-decomposi-
tions for p € (1,2] and g € (p’,00].

The claims about ¢” (L?)-decompositions are optimal, which follows from the optimality
of Corollary 5.3.5 below. Whether the endpoints g = p’ hold is even unclear in the case S
is a singleton thus LP(S) = C, see Problem 5.5.3. The spaces X = LY(S) and X = L®°(S) are
not reflexive in general and thus not UMD. By Theorem 5.2.9, they do not have nontrivial
upper and lower estimates.

An efficient method to create many examples is through interpolation. It is actually an
open problem if all UMD spaces can be written as an interpolation space as below. For
UMD lattices this is indeed the case (see [133]).
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Example 5.2.14. Let X :=[Y, Hlg, where Y is a UMD Banach space and H is a Hilbert
space such that (Y, H) is an interpolation couple, and 6 € (0,1). Let p € (1-6/2)"1,2/6).
Then there exists a 0y > 0 depending on 6, p and Y such that

2
e X haslower ¢% (LP)-decompositions.

2
e X has upper ¢2-% (LP)-decompositions.

As a trivial consequence, the same holds with 8y = 0. To derive the above, we first explain
the lower case. By the assumption on p we can find pg € (1,00) such that
_1-6 0

l (5.2.6)
p po 2

By Theorem 5.2.9 there exists an s € (1,00) such that Y has lower ¢%(LP?)-decompositions.
Note that s = p; v 2 by Proposition 5.2.11. Since H has lower ¢%(L?)-decompositions,
Proposition 5.2.6 gives that X has lower ¢ (L”)-decompositions where r € [2, 5] satisfies
% = % + g > g. Then there exists a 8y > 0 such that r = %. This gives the result in the
lower case.

The upper case can be proved similarly. We can still find a pg € (1,00) such that (5.2.6)
holds. By Theorem 5.2.9 and Proposition 5.2.10, there exists an s € [1, p(’) A 2] such that
Y has upper ¢°(L"°)-decompositions. Since H has upper £2(L?)-decompositions, we get
X has upper ¢" (L”)-decompositions where r € [s,2] satisfies % = % + g <1l- g. Then

there exists a 6y > 6 such that r = 2_2—90. This completes the proof.

5.3. MAIN RESULTS ON UMD BANACH SPACES

5.3.1. STATEMENT OF THE RESULTS

In this section, we prove Theorem 6.1.2 and discuss several consequences. We use a
slightly more general formulation below, as this is required to obtain sharp estimates

in Corollary 5.3.5. The main extra ingredient is to allow growth in the upper and lower
decompositions.

Theorem 5.3.1. Let X be a Banach space, let p, qo, q; € (1,00) and letyy € [0, l/q[’)), Y1€
[0,1/q1). Suppose that the following conditions hold:

(1) There exists a constant U > 0 such that for all finite families of disjoint intervals .&

and all f € P (T; X) with support in U{I € .#},

1
e rsx) < U#ST( D ”Slf"lzgﬂr;X)) “,
leg

where#.% is the number of intervals in % .

(2) There exists a constant L > 0 such that for all finite families of disjoint intervals ¥
and all f € P (T; X) with support in U{I € .#},

1
(X IS1f1 i) ™ < LEAD I fllrax)-
Iey
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Suppose that T € £ (X) is strongly Kreiss bounded with constant K. Then there exist con-
stants C, 3 > 0 depending on X and K such that

7" < cntlaar+rom) (log(n+2)?, n=1.

For yo =y =0, the conditions (1) and (2) in Theorem 5.3.1 are equivalent to the upper
¢ (LP)-decompositions and lower ¢9'(LP)-decompositions of X, respectively. More-
over, this implies gy < 2,q; = 2 by Proposition 5.2.10. In many cases it is sufficient to
consider yo = y; = 0. Furthermore, note that by Proposition 5.2.5, the estimate in (1) im-
plies that X has upper ¢°(L)-decompositions for all s satisfying 1 > % +Yo = 3. Asimilar
implication holds from (2) to lower decompositions of X, and one has qii +7 2 % Fi-

nally, note that it is not useful to consider yo = 1/¢; or y1 = 1/4q1, because the obtained
bound in the theorem

1(1 1++)>1(1+1+1+11>1
=== +votmn|zs [+ —+5+5-1|2,
2\q0 q1 2\q0 @1 q, q; 2

which is worse than the known result, see (5.1.3).
Before we turn to the proof, we derive several immediate consequences. Using Theo-
rem 5.2.9, we obtain:

Corollary 5.3.2 (General UMD case). Let X be a UMD Banach space. Suppose that T €
Z(X) is strongly Kreiss bounded with constant K;. Then there exists an « € [0, %) depend-
ing on X, and a constant C depending on X and K; such that

[T"|<=Cn% n=1.
For interpolation spaces we can also provide explicit growth rates.

Corollary 5.3.3 (Intermediate UMD). Let X :=[Y, Hly, where Y is a UMD Banach space
and H is a Hilbert space such that (Y, H) is an interpolation couple, and 8 € (0,1). Sup-
pose that T € £ (X) is strongly Kreiss bounded with constant K;. Then there exists an
a€[0,(1-0)/2) depending on X, and a constant C > 0 depending on X and K; such that

|7"]| < Cn®(ogn+2)F, n=1.
In particular, one can also take a = (1-0)/2 in the above.

2
Proof. By Example 5.2.14 we know that X has lower ¢% (L?)-decompositions for some

2
6o > 0. Then by duality, X has upper ¢2-% (L?)-decompositions. Thus it remains to ob-

. 2-6g _ @ _1-0y 1-60
serve that a := i U e O

Similarly, the results of [30, Theorem 4.5] follow from Example 5.2.12.

Corollary 5.3.4 (Hilbert spaces). Let X be a Hilbert space. Suppose that T € £L(X) is
strongly Kreiss bounded with constant K. Then there exist constants C, § > 0 depending
K such that

[7"] < Clog(n+2)?, n=1.
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We can also recover [7, Theorem 1.1], for which we will need the parameters yg,y; in
Theorem 5.3.1. Note that in [7, Proposition 1.2], the authors showed for every 1 < p < oo,
there exists a strongly Kreiss bounded operator on £”(Z) and some constant Cj, = 1 such
that for every n e N,

ali3lic, <) < nlt3l.

Hence, the exponent )% - ‘ cannot be improved.

1
p
Corollary 5.3.5 (LP-spaces). Let (S, </, ) be a o-finite measure space and let X = LP(S)
with p € (1,00). Suppose that T € £ (X) is strongly Kreiss bounded with constant K. Then
there exist constants C, § > 0 depending on p and K; such that

177 < cnl Flaogn+ 208, n=1.

Proof. Due to the missing endpoint, using Example 5.2.13 would yield the asymptotic
n® for a > )% - %‘ We therefore argue differently, using the growth parameters y,y; in
Theorem 5.3.1.

By duality, it suffices to consider p € (1,2]. By Example 5.2.13 we know that assumption
(1) in Theorem 5.3.1 holds with g¢ = p and y( = 0. Next we claim that assumption (2) in
Theorem 5.3.1 is satisfied with ¢ =2 and y, = % This readily follows from [7]. Here
we include the details for convenience.

Since .% : L?(T) — ¢?(Z) is an invertible isometry, then by Fubini’s theorem, for finite
families of disjoint intervals .# and all f € &(T) with support in u{I € .},

1
p

(< 1sr2)’

Iey

Ie# \nel

3 12 2
2o (Ig,y ||51f||izm) = (Z (Z |f(n)|2) )

= (Z |f(n)|2) =1 fll2em-

nez

By the boundedness of the Riesz projection from L' (¢?) into L'*°(£?) (see [76]), we get

(x50

Iey

1
LLOO(]]’] < C(#j) 2 ”f”Ll ('[r)

Applying the Minkowski’s inequality and Marcinkiewicz interpolation theorem (see
[71, Theorem 2.2.3]) yields

(15t =I(5 09

Iey

Nl—

29 1_1
<c,Cr  #HIF)P 2 .
e = Cp #Z)r 2N flieem

By Minkowski’s inequality and Fubini’s theorem (LP (S; C2(LP(T))) € O2(LP(T; LP(S)))), we
obtain

1

3 24 1_1
(Z 11 imsy)” <epC7 7 @7 21 flnrsy,
Iey
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which implies the claim.
From the above and Theorem 5.3.1 we see that

[T"] < Cn®(ogn+2))P, n=1,

with
BTN 1111 1y 11
a—g(—qo——ql+Y0+Y1)—§(Z—E+O+;—5)————.
O

A further application for Banach function spaces will be presented in Theorems 5.4.1
and 5.4.4.

5.3.2. PREPARATORY LEMMAS

Before we prove Theorem 5.3.1, we need several preparatory lemmas. We start by noting
the key property that we will use of strongly Kreiss bounded operators, which follows
from [60] and [105, Corollary 3.2].

Lemma 5.3.6. If T is a strongly Kreiss bounded operator on a Banach space X with con-
stant K, then we have

" Ak <20K;(n+1), |Al=1,neN. (5.3.1)
| 27|

Proof. It was shown in [60] that if T is a strongly Kreiss bounded operator with constant
K, then we have

n k
sup|| Y a

nz0" =0

4K;

A1 |A]>1.

<
/1]“'1 | -

By [105, Corollary 3.2], this is equivalent to
n
| X Ak 74| <20k, n 41, 1A1=1, 025,
k=0

If n <4, (5.3.1) holds because of (5.1.3). The proof is complete. O

Next, we present some technical estimates based on the standard Stirling formula.
These are quantified and optimized versions of results from [7].

Lemma5.3.7. Letn=2. Then for all integers k € [0,2/n],

el nn—k el

< <
28yn "~ (n—k)! 81
5

. (5.3.2)
n
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Proof. The case n € [2,99] can be checked by hand. In the following we assume n = 100.
It is elementary to check that log(1 — x) < —22_—xx for x € [0,1). Therefore, setting g(x) =

T x,weﬁnd

log(e*(1-%)"")=x+(n-xlog(1-%)

X
<x—-(n—-x) e =g(x).

The function g: [0,2+/11] — [0,00) is increasing. It follows that for all x € [0,2+/n],

g0 < g(2\/ﬁ) _ 4n _ 2 - 20
= = _ - — 1 - )
2n-2vyn 1 NG 9

where in the last step we used n = 100. Therefore, we can conclude

20

n-k
F(1-£)"" <o, (5.3.3)
Next, we show that (5.3.2) holds via the standard Stirling formula
B 2nn(2)" <nl< et 27n(2)", n=1. (5.3.4)

Let n =100 and k € [0,2+/n]. It follows that n— k = n—2y/n = 80. Thus, by the upper
estimate of (5.3.4) and (5.3.3), we have

(- < v2r(n— i) (25)" K erim
= vamn(2)"F(1- &) e
< Vamy/a(2)" ek oot
:ege%\/ﬁ\/ﬁnn—ke—n
<28vnn"ke",

The first estimate in (5.3.2) is proved.

On the other hand, since f(x) := e*(1- )" ¥ is increasing, we have f(x) = f(0) = 1
for x€[0,2y/n]. Notethatn—k=n-2y/n= % due to n = 100. Thus the lower estimate
of (5.3.4) gives

n—k
(n—k)!z\/Zn(n—k)("%k) ¢ TZB
81 n-k -n_k k n—k
2\/?\/ﬁn e"e (l—ﬁ)
> /%\/ﬁnn—ke—n’

finishing the proof. O
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The following lemma will be used in the calculation of a self-improvement result of
strongly Kreiss bounded operators. Note that we use the notation Y ,<,,<; for a, b e R to
denote the sum over all integers me Zsuchthata<m<b.

Lemma5.3.8. Forn =2 and me [n—+/n,nl, define

bnm

k
n

m—yn<ksm-1

_ o1
an,m:=e€" by,

and ay,,;, = bp,m = 0 otherwise. Then we have ||(ay,m) mezllee < 32 and [(an,m) mezl 1 <
978.

Proof. The case n € [2,99] can be checked by hand. In the following we assume 7 = 100.
We start with the boundedness of ay, ,,, for m € [n - /n,n]. From (5.3.2) it is almost
immediate that

] = 5 < 28¢" <28(1+ —) =32
Ap,ml| = = — =< — | < 32.
bn,m L yusksm-1 \e/_ﬁ vn-1

Next, we show that (@, m)mez has bounded variation. First we fix m € [n—/n,n—1]
andlet L:=[m—+/n]. By (5.3.2),

n™ _ nb

m! L!

-1 -1
|an»m+1_an,m|:en|bn,m+1_bn,m| :enb b
n,mYn,m+1

m I’lL

-n
=e (_+F)'an,man,m+l

n e’ , 914
<e " 2——=-32"< —.
81, vn

5

Therefore, we can conclude

[(@an,m)mezlyr =2 suplay,ml + Z |@n,m+1— Gn,m| <978,
mz1 n—ynsmsn-1

finishing the proof. O

The following key lemma will provide a way to obtain a special self-improvement of
bounds for strongly Kreiss bounded operators. The proof is a straightforward extension
of [7], where X = LP was considered. In order to obtain not too large explicit constant,
some adjustment and optimization seemed necessary. Moreover, it can be helpful to see
where the geometry of the space X enters.

Lemma 5.3.9. Let X be a UMD space and p € (1,00). Let T € £(X) be strongly Kreiss
bounded with constant Ks. Suppose that there exists an increasing function h : R, —
[1,00) such that forallxe X andn=2,

m
| ¥ ent x”Lp(T;X)sh(n)llxll. (5.3.5)

l=ms=n
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Then there exists a constant Cx,, > 0 such that forall j 20, n=1 and x € X,

H Y emex“meX) < Cx,p Ksh(vn)ll x|l (5.3.6)

n—y/n+j<ms<n

Proof. Define Sy :=¥,. < memT"™. Then

ex(nT)k
eelnTSn — Z k(k' ) Z eme
k=0 : 1=sm<yn

nk

=2 X gemT”

k=0 k+1<sm=<k+vn
= Z ’Bn,meme+ Z bn,meme’
l=msyn m=|y/n|+1

~ k k
where bp,m := Losk<m-1 % @and bn,m := ¥ mekem-1 T -

We first consider the case n = 6 and thus /n = 2. Fix j = 0andlet I, = [n—+/n+ j, n]nN.
Note that f(x) := x> —2x — 1 is increasing in [v/6,00), then

n—-vn=|vn|+1.

By the boundedness of the Riesz projection with constant Ry ,, (5.1.1) (which uses the
strong Kreiss boundedness), and (5.3.5) we obtain

|5 et

mel,

< 2Rx e S, x|l o (T,
L X,pll nXllLr

<2KRx pe" ISnxllr (1;x) 6.3.7)
<2KRx pe"h(vn)|x|.

Letan,m:= e"b;,lm for m € I, and zero otherwise. Then by Lemma 5.3.8, || (@n,m) mez ll g <
32 and [(@n,m) mezly1 < 978. Therefore, the Fourier multiplier Lemma 2.6.1 and (5.3.7)
imply that

n m m
H E ee,T x” =H E an,mbn,memT x”
met, rax = LP(T;X)

<1010Myp| X bumenT™x]

mely, LP(T;X)

<2020My,,KsRx,pe" h(v/n)| x||.
Dividing by e” gives (5.3.6) with
CX,p = ZOZOMXJ,RXYP.

To prove the estimate for n < 5, note that by Lemma 5.3.6 we can write

n
Y em meH
= LP(TX)

<40(n+ D KsRx plxl
< Cx,p Ksh(vm) 1 x]l. O

e me” <2R |
“ 2 em LP(T;X) X.p

mel,
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Combining Lemma 5.3.9 with the upper ¢9(L”)-decompositions, we obtain the fol-
lowing self-improvement result.

Proposition 5.3.10. Let1 < p,q <oo, vy € [0,1/q"), and suppose that X is a UMD which
satisfies Theorem 5.3.1(1) with (qo,Yo) replaced by (q,y). Let T € £ (X) be strongly Kreiss
bounded with constant Ks. Suppose that there exist constants d € [0,1] and P = 1 such
thatforallxe X andn=1,

n
m < d
| > ent x”me;X) < Pn?|xl. (5.3.8)

m=1

Then there is a constant éx,p >0 suchthatforallxe X,andn =1,

|

Proof. Let N e Nbesuchthat (N-1)> <n<N?and.? := {[kK®+ 1, k> + k]U[k* + k+1, (k+
?3]lk=0,---,N—1}. Letting ny = kK2+k,thenk<ni<k+landm = k?®+1=n—-k+1=
— /N1 + 1. Hence by Lemma 5.3.9 with h(n,) = Pnf, we obtain

n
m (d+1+y)
enT x” < PUCx ,Kn? x|l
Z:’l m LP(T:X) X,pKsn ” ”

K+k 4
m
” § emT x|‘LP('[I';X)SKsCX'pP(k+1) .

m=k?+1

By similar discussion, we also have

|

Then by the boundedness of the Riesz projection with constant Ry, the upper decom-
positions with constant U, we find

(k+1)2 J
e me“ < K;Cx ,P(k+1)%.
m=k2+k+1 " iy~

n q N? q
e meH < (2R ‘7” e meH
” mzzl m ) = @R Z: m LP(TX)

Ic +k
<y q qay my
UT(2Rx p)"(2N) Z(” k2+1emT ”LP(TX)
(k+1)?
o2 et )
m=k?+k+1 LPm:x)
N-
< PTU9@2Ry,p)7CY K] @N)T Z 2(k+ 1)) x| 9
k=0

< 21+677+67p17R; pUqC)i sz‘iN(dﬂ/)tHl xN9,

where Cy, ), is the constant defined in the proof of Lemma 5.3.9. If N =1, thenn=N = 1;
If N =2, then by assumption N < 2N —2 < 2y/n. In both cases we get N < 21/n, this gives
the result with constant (use d + % +2y<d+2<3)

1 1 C
20" Ry Cx,p2" 17 < 16Rx ,Cx p 1= Cx . -
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5.3.3. PROOF OF THEOREM 5.3.1

We can finally turn to the proof of the main result, which is an extension of the argument
in [7].

Proof of Theorem 5.3.1. Since T and T* are both strongly Kreiss bounded, it follows from
Lemma 5.3.6 and (5.1.3) that for S€ {T, T*} and n = 1 we have

n
b eks"x”LP(T.X) <min{20K(n+1) +1,Ksny/2m(n+ D} x|
k=1 !
< 21K;nlx|,

using the first term in the minimum for n > 64 and the second term for n < 64. Therefore,
(5.3.8) holds for T and T* with d = ¢y =dp :=1 and P := 21Kj.

Using the assumption Theorem 5.3.1(2), by a similar duality argument as in Proposi-
tion 5.2.4, one can check that the estimate Theorem 5.3.1(1) holds with (X, p, o, Y0, U)
replaced by (X*, p’, q,71,L). Define cy and dy for N € N by

1 Yo I n
C(N=—v—— v, and dy=——-—.
2Nq(’) 2N 2N T 2N
Let Fx,, := UCx,,K; and Fx- ,y = LCx= ,yKj, where Cy p is the constant defined in the
proof of Proposition 5.3.10. By Proposition 5.3.10 and an induction argument one sees
that for every N = 1,

z k N CN+,, +Yo -
\k;ekT ”an) P(Fx.) o Txl, nz1,xeX,
n
” Z ekT*kx*
k=1

Let n = 14 and thus n+2 = e°. We claim that there exist N € N and wy, w; > 0 such that

dn+2r+11
<P(Fx-p)n 1 |x*), nzlx*eX".

LP (T;X*)

(Fx,p)Vn < (log(n +2))*, (5.3.9)
(Fx+ )V < (log(n +2))“". (5.3.10)
Indeed, let N € N be such that 2V < &% < 2N+l Then

log(n+2)
neN < (n+2)CN — echog(n+2) — log(log(n+2))7log(logm+2)

log(n+2)

= (log(n +2)) Plogm=21 N < (log(n +2))%/ =210,

n < (log(n +2))?/ 1=,

log(n+2)
= log(log(n+2))

then N < log(lff% Therefore, since (FX,,,)N >1, (FX*'p,)N >1,

Moreover, from 2V < and log(log(n +2)) = 1, we obtain that 2V < log(n +2),

log(log(n+2)) log F- logFx, 085 X,p
(Fx, )N = eNlo8Fxr < o™ Togz— °87X0 = (log(n +2)) 82
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logFX* p’

(FX*_pr) =(log(n+2)) sz
This gives (5.3.9) with

logF 2 log Fyx«
g X'p, wlz__2Y1+M'
log2 q1 log2

2 2Yo +
Wo = ——2Yo
o
From (5.3.9) and (5.3.10) we can conclude that for all # > 14, and x€ X, x* € X*,

H Z et "“Lp o = Pllog(n +2) 0na x|, (5.3.11)

n
‘ Z ekT*kx*
k=1

L
< Plog(n+2)"in®% ' x*. (5.3.12)

P (T;X*)

logFx,p 10g(8080)
log2 = log2

Slnce wtrez; L and wy = , one can readily check that (5.3.11) extends

tons< 13 with a larger p:

n L
| ekax”Lmr.X) < 13Ksv/27(n+1)|x] < Plog(n+2)"n# 7| x|,
k=1 ’

where we used the bound (5.1.3) once more. The same holds for (5.3.12).
If n = 3, note that 1 + v/n < 2y/n,log(v/n + 3) <log(n + 2), applying (5.3.12) we find

L
> ek Fxt S <2P(log(n+2)"" n*1 * |x*|. (5.3.13)
1<k<1+yn !
If n <2, by (5.1.3) we get
k Wt
X ey = ) Kev2m(k+1) < Pllogn+2)" n*h " lx".
1<k<l+yn LPmX") k<o

Hence, (5.3.13) holds for n = 1.
1
By Lemma 5.3.9 and (5.3.11), with h(n) := P(log(n +2))"° n%ﬂ/o, we obtain

1.7
H Z ekax“ = PKsCX,p(IOg(ﬂ+2))w°n2"°+ 2 |l xll. (5.3.14)
n—-yn<k<n LPT:X)
It follows that forall n > 1 and x € X, x* € X*,
A+ VaD[x*, T x) xe x|
— i Z (T*kx*,T"+l_kx)X*,X|

1<k<l+yn
_ )< Z T*kx*, Z Tn+1fmx>X* Xf ek_mdt|
1<k<l+yn l=m=1+yn JT

( Z ekT*k * Z éanJrl—mx)X*th)
T 1<k<1+vn 15m51+\/ﬁ ’
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< ” Z ekT*k *
1<k<l+yn

Yt
n—yn<ksn (T:X)

1.1 1
(L tyo+ L+
2(‘70 Yo qi 12

P (T;X*)

< 2P*KCx,p(log(n+2))* "1 n ol 1,

where in the last step we used (5.3.13) and (5.3.14). Taking the supremum over ||x|| <1
and ||x*|| =1, we obtain foralln =1,

| 7" = Cllog(n+2)Pn? G 0" a1,

where C := 2P2KsCX,p and = wy + w;. O

5.4. RESULTS IN BANACH FUNCTION SPACES

In this section we will discuss the growth of strongly Kreiss bounded operators in the
particular case when X is a Banach function space. Recall the terminologies convexity,
concavity and s-concavification X* of a Banach function space X in Section 2.6.2.

Our main result of Banach function spaces reads as follows.

Theorem 5.4.1. Let X be a Banach function space over S and s € (1,2). Suppose X is
s-convex and s'-concave, and

Xs:= ((XS)’)ﬁ

is a UMD Banach function space. Suppose that T € £ (X) is strongly Kreiss bounded with
constant K. Then there exist constants C, 8 > 0 depending on X and K such that

| 7" < Cn? ¥ Qog(n+2))#, n=1.

1
Proof. Let f € X%, then | f | s € X. Since X is s’-concave, then for any finite sequences
fano €X,

n=1—

S N /
g

=(Z AL =

/ Y
Hence, X® is %—concave, so (X%)is (%) -convesy, i.e. 5 ~CONVEX, then we can conclude
that X; is a well-defined Banach function space because of the line below (2.6.1). By [113,
Corollary 2.12] and [26] we have

ro1 IS
g

(L))

ol
e

S (S

(S 1515)

XS

X= (X)) 75 -19(8) =[x, I2(9)] 2.

Since 12215 = 1 _ 1 ‘Corollary 5.3.3 yields the result. 0

S”

Let us illustrate Theorem 5.4.1 and the space X; with some examples. We start by
calculating the space X for X = LP(S).
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Example5.4.2. Let (S, </, 1) be a o-finite measure space and let X = LP(S) with p € (1, 00).
Let1<s< pAp'. Note that L”(S) is s-convex and s’-concave. Moreover, we have

1 1

Xe=((L50)) 7 = (175 ) =17 (9= L9

Since

_ _ _ I
=—(2 S)p<oo, and ¢'= 2-s)p :(2 SIp <

p—s p+s—sp p'—s
we observe that g € (1,00) and thus that X; is a UMD Banach function space. Therefore,
Theorem 5.4.1 yields that for any strongly Kreiss bounded operator T € £ (X), there are
C, B > 0 depending on p and K; such that

i

[ 7" = Cn%_%(log(n+2))ﬁ, n=1.

The above method can also be extended to non-commutative LP-spaces. Note that the
result in Example 5.4.2 is almost as sharp as Corollary 5.3.5. So, in this particular case, the
general result in Theorem 5.4.1 almost recovers the specialized result in Corollary 5.3.5.
Of course, the advantage of Theorem 5.4.1 is that it is applicable to many other Banach
function spaces, such as Lorentz, Orlicz and variable Lebesgue spaces. Let us illustrate
the result for variable Lebesgue spaces:

Example5.4.3. Let (S, </, 1) be a o-finite measure space, fix py, p1 € (1,00) and assume
p: S— [po, p1] is measurable. Let X = LPV)(S) be the space of all f € L°(S) such that

/If(x)l”m dp(x) < oo,
S

which, equipped with the corresponding Luxemburg norm, is a Banach function space.
Let 1 < s < pg A p} and note that LPY(S) is s-convex and s'-concave. Moreover, by the
same computation as in Example 5.4.2, we have X = L99)(S), where g: S — (1,00) satis-
fies

_ 2-9)px) < 2-9m <
px)-s po—s
2-9p) _ 2-9p, -

!
= , S.
qx) ) =5 < s 00, XE

q(x)

0o, XE€ES,

So, by [89, Corollary 1.2] we know that X is a UMD Banach function space. Therefore,
Theorem 5.4.1 yields that for any strongly Kreiss bounded operator T € £ (X), there are
C, B> 0 depending on p and K; such that

|77 = Cn?~¥ Gog(n+2))#, n=1.

5.4.1. POSITIVE STRONGLY KREISS BOUNDED OPERATORS

We end this chapter by considering positive strongly Kreiss bounded operators T (i.e.
Tf =0forall f=0) on aBanach function space. The main result is the following exten-
sion of [7], where the case X = LP was considered.
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Theorem 5.4.4. Let X be a Banach function space. Suppose that T € £ (X) is a positive
operator which is strongly Kreiss bounded with constant K.

(1) If X is p-convex with p € (2,00), then there exist constants C, = 0 depending on X
and K such that
1
|77 < Cn¥ Qogtn+2))?, n=1.
2) If X is g-concave with q € [1,2), then there exist constants C, 8 = 0 depending on X
and K such that
1
|77 = Cn¥ Gogn+2)F, n=1.

Proof. The case n =1is clear. In the following, we assume nz2.
2): for k € [n—2+/n,n]. Using the

positivity of T and ¢! — ¢9, we obtaln

zsf = k"

N 130 L (R (3
[renfeF )’

x

IA

I/\

kO

Since X is g-concave, it follows from (5.1.1) that

T I (T ator)]
28v/n n—ynsksn 28v/n n—-yn<ksn
ka
=2 £ a a =|le"" x| = Kse" 1 xll,
k=0
Therefore,
1
(T 7)) <28kl (5.42)

—vn<k=sn
Forall xe X, x* € X*, from (5.4.2) we can estimate
A+ WD x| 7= Y Tk k) |9

1<k<l+vn
< Y TR TR 9
1<k<l+vn
< Y k)9 sup  NTRI9 9
n—vn<ksn 1<k<l+yn

< (28Ky)Tn? x| sup || T¥]|lx*19.
1<k=<2yn

Therefore, since v/n < 1+ |v/n], taking the supremum over | x||,||x*| < 1, and using
I T = | T*"|l, we find that

||T”+1||5281<5n2+a’ sup ||Tk||528K5(n+1)2%¥’ sup || T¥|.
1<k=<2yn 1<k<2vn+1
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Changing n + 1 to nyields

||T"||528Ks"2%” sup | TF|. (5.4.3)
1<k<2yn

Since || T"|| < Ksv/27m(n + 1) in any Banach space by (5.1.3), from (5.4.3) we obtain

1
=+

| 7| < 28K, -2v/7K; 27 - n2

-

Since ¢’ > 2, combining the above and (5.4.3) we get

1 1

1, 1 1 .1
” Tn” = (28K5)2 'ZﬁKS'22+2q’+4 .p2d *2
1.1
S(28Ks)2'ZﬁKS'Z%'Z-n0’+22(2 7’
By induction that for any N =0,

1, (1_1y9-N
||T"|| SZJJ_IKS-QN;M’HZ 7? ,
where Q = 28v/2K.
Now we proceed as in the proof of Theorem 5.3.1 below (5.3.9), with P := 2/7K,
Fxp:=Q= 28V2K, =1, ey = (% - #)Z’N for N = 0. If n = 14, let N € N be such that

N log(n+2) N+1
27 < log(log(n+2)) =2 - Then

_2
nN < (n+2)V < (10g(”+2))1 7.

From 2V < loé(()lgo(g++n-2+)2)) and log(log(n +2)) = 1, we obtain N < mgaﬁ?%. Since Q = 1,
N _ NI B2 s o
QV=e 08Q < (log(n +2)) ez . This gives
logQ ., 2
QVn®N < (log(n+2)) e .
Letting 8 := llzggg +1- %, we obtain
1
[T"] < Pn¥ (og(n+2)f, n=1a. (5.4.4)

If n<13,by (5.1.3), IT"|l < Ksv/27(13 + 1) < 10Kj. Substituting P with C := 10K, in (5.4.4)
yields the conclusion for n = 2.

(1): If X is p-convex with p € (2,00], then by duality X* is p’-concave. Applying (2) on
X* gives

|77 = | 77| < Cn¥ dog(n+2)), n=1.
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5.5. OPEN PROBLEMS

In this section we collect some open problems related to the results of the chapter.

The upper and lower decompositions imply (Fourier) type and cotype properties of X
as we have seen in Propositions 5.2.10 and 5.2.11. It would be interesting to know if a
converse result holds.

Problem 5.5.1. Let X be a UMD space and p, g € (1,00). Find a sufficient condition for
£9(LP)-upper or lower decompositions in terms of (Fourier) type and cotype of the space
X.

Our decomposition properties are Fourier decomposition properties on T. One may
similarly define Fourier decomposition properties on R, in which case it is natural to
wonder if these properties would be equivalent. Note that transference methods are not
directly applicable.

Problem 5.5.2. Are the decomposition properties equivalent to their counterparts on R?

Even for the scalar field, we do not know for which p and g the upper and lower £7(LP)-
decompositions hold. The following problem concerns the missing sharp endpoints.

Problem 5.5.3. Does the scalar field C have lower ¢7' (LP )-decompositions for p € (1,2)?

If one reverses the roles of #7' and L , then the above estimate fails as was observed
in [35], which answered a problem left open in [132]. In particular, a positive answer to
Problem 5.5.3 would be a special case of the following:

ra\/
Problem 5.5.4. Does Proposition 5.2.7 hold in the sharp case r = % orr= (%) ?
In Corollary 5.3.5 we have seen a sharp result for X = LP(S) for strongly Kreiss bounded
operators. It is natural to ask if this result can be extended to non-commutative LP-

spaces.
Problem 5.5.5. Does Corollary 5.3.5 hold for non-commutative LP-spaces?

It seems that the bounds for positive operators obtained in Section 5.4.1 are non-
optimal. Especially for LP (S)-spaces we expect that there is an improvement. The bounds
obtained from Corollary 5.3.5 and Theorem 5.4.4 are different. Moreover, as observed in
[7], the bound of Theorem 5.4.4 is worse than the one in Corollary 5.3.5 if p € (4/3,4). It
is unclear to us if and how positivity can help in the case p € (4/3,4). Given the results
for L1(S), L?(S) and L®(S) (see [7]), one could even hope that 8 = 0 in the case of positive
operators.

Problem5.5.6. Let T be a positive operator on LP (S) with p € (1,00) \ {2} which is strongly
Kreiss bounded. What is the infimum of all 8 € [0, 1/2) for which there exists a C such that
1T <Cn foralln=1.

There has been a lot of interest in Kreiss bounded operators in finite dimensions (see
[78, 86, 138]). However, it seems to be unknown whether the obtained bounds in terms
of the dimension can be improved for strongly Kreiss bounded operators.

Problem 5.5.7. Let X be d-dimensional. Let T be strongly Kreiss bounded. Determine
the best 6 € (0, 1] for which there exists a C such that || T"|| < Cd? forall n = 1.



MULTIPLIER THEORY IN
INTERMEDIATE UMD BANACH
SPACES

6.1. INTRODUCTION

In Chapter 5, we demonstrated that £7(LP)-Fourier decompositions improve the power
bounds of strongly Kreiss bounded operators in Banach spaces. Motivated by this result,
we will study the variational Carleson operator and explore its potential applications in
multiplier theory.

Let X and Y be Banach spaces. Recall that a vector-valued Fourier multiplier operator
is an operator T}, of the form

Tuf=F '(mZF(f), feSR®X),

where m: R — £(X,Y), #(R; X) is the class of X-valued Schwartz functions and & de-
notes the Fourier transform. In the scalar-valued case X = Y = C, sufficient conditions
for the boundedness of T}, on Lebesgue spaces are provided by the classical Fourier mul-
tiplier theorems due to Marcinkiewicz, Mihlin and Hérmander [64, 101, 103, 104], etc.
The classical multiplier theorems were extended to UMD spaces in two stages. The case
X =Y with scalar-valued multipliers was first addressed in the 1980s by McConnell [102]
and Bourgain [23]. Subsequently, in the early 2000s, the more general setting with X # Y
and operator-valued multipliers was developed. The operator-valued analogue of the
Mihlin multiplier theorem was proven by Weis [146], and shortly after an analogue of the
Marcinkiewicz multiplier theorem by Strkalj and Weis [140].

Recall that the classical scalar-valued Marcinkiewicz multiplier theorem states as fol-
lows.

Theorem 6.1.1. Let1 < p <oo and A be the dyadic interval partition of R. Let m € L*°(R)
such that for J € A, m|y € V' (J) and

7721l goo (/1 () = S]1€1£>||m|f||v1(n < 0o, (6.1.1)

93
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where V1(]) is the bounded variation space. Then Ty, is bounded on L” (R).

In 1988, Coifman, Rubio de Francia and Semmes [32] extended the assumption of
bounded variation in Theorem 6.1.1 to bounded s-variation (see Section 6.2.3 below)
for some s > 1. Note that bounded s-variation is implied by %-Hﬁlder smoothness, so
larger s corresponds to a weaker smoothness assumption. Coifman et al. proved the re-
sult in three steps. First, they showed boundedness of T, on LP(R) with p € [2,00) under
the assumption that m € £°°(V*(A)) with s € [1,2), using the Littlewood-Paley-Rubio de
Francia estimate [132]. Then by duality, the boundedness of T, extends to p € (1,2). Fi-
nally, by Plancherel theorem, the map (m, f) — Ty, f is bounded from L®(R) x L?(R) to
L2(R) for all p € (1,00). Since £>°(V™°(A)) = L™(R), by bilinear interpolation this yields
that Ty, is bounded on L (R) if m € £°°(V*(A)) with 1 > |% -3l

Later, this approach was extended to the operator-valued setting with X = Y by Hyt6-
nen and Potapov [68]. To this end, they assume that X is a complex interpolation space
between another Banach space X, and a Hilbert space H, thereby enabling the use of
interpolation techniques. Furthermore, they assume X has the LPR,-property, a vector-
valued version of the Littlewood-Paley—-Rubio de Francia estimate introduced by Berk-
son, Gillespie, and Torrea [15] and further studied in [2, 58, 70, 119]. However, the
known examples of Banach spaces with the LPR,-property are limited to Banach func-
tion spaces satisfying specific geometric conditions [119]. For this reason, Amenta, Lorist,
and Veraar [1] extended the results of [68] to Banach function spaces X and Y. Besides
the LPRy-property, their theory required a strengthening of the #-boundedness con-
dition on the range of m, called ¢?(¢")-boundedness. Notably, Z-boundedness itself,
which strengthens uniform boundedness, was shown to be necessary by Clément and
Priiss [29].

Motivated by the £9(LP) structure of Fourier decompositions and the strategy of [1], we
investigate a weighted operator-valued Fourier multiplier theorem under the ¢” sum of
the bounded s-variation seminorm of the multiplier on dyadic intervals for some s, r > 1.
This reveals the relation between geometric (type and cotype) conditions on the under-
lying Banach spaces and the boundedness of Fourier multiplier operators. A simplified
version of our main result is as follows.

Theorem 6.1.2. Let X be a 0-intermediate UMD Banach space and Y be a UMD Banach
space for some 0 € (0,1]. Suppose that X has cotype q and Y has type t and set% = lr -1

7
Letse[l, ﬁ) andm: R— Z£(X,Y) has Z-bounded range and

- r T
Il or (s as o 0x, vy = (]ZA[’”U]vsu;z(x,y))) < 00,
€

Then Ty, is bounded from LP (R; X) to LP (R; Y) for all p € (s,00).

Theorem 6.1.2 is established in the main text as Theorem 6.5.4, where Muckenhoupt
weights are also incorporated. Weighted extensions of such multiplier results have been
previously studied in the scalar-valued setting [16, 80, 82], and in the operator-valued
setting in [1]. Our approach begins by proving a weighted vector-valued estimate for a
variational Carleson operator, which serves as the foundation for developing a multi-
plier theory in atomic R-spaces (see Section 6.2.3). The central idea is to decompose the
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multiplier operator into two components: T,,—y and Ty, where N lies in the closure of
the convex hull of the range of m. For the operator T,—y, we utilize the embedding of
bounded s-variation spaces into R-spaces to establish boundedness in terms of the ¢ -
summability of the bounded s-variation seminorms of m over dyadic intervals. For the
operator Ty, we apply the Littlewood-Paley inequality along with the Z-boundedness
of the range of m to obtain the desired norm estimate. Combining the bounds for both
components yields the full conclusion.

The conceptual framework of our proof is inspired by [1]. However, we replace the
LPR,-property with a vector-valued variational Carleson estimate, which is verifiable
using an interpolation assumption [3]. This assumption is known to hold not only for
Banach function spaces but also for, e.g. the Schatten classes. Moreover, in contrast to
the ¢?(¢")-boundedness condition required in [1], we only assume Z-boundedness of
the multiplier range, along with mild decay conditions on m(¢) as |¢| — co. More specif-
ically, we replace (6.1.1) with an ¢"-summability condition on the bounded s-variation
seminorms of m, where r is determined by the type and cotype properties of the under-
lying spaces.

This chapter is organized as follows. In Section 6.2 we discuss some preliminaries on
weighted LP-spaces and bounded s-variation spaces. Then in Section 6.3 we briefly in-
troduce Z-boundedness which is one of the key assumptions in our main result. In Sec-
tion 6.4 we prepare for our main result by establishing a weighted version of the vector-
valued variational Carleson estimate. Afterwards, we establish our main result in Section
6.5. Finally, we compare the main result to the literature and give an example in Section
6.6.

6.2. PRELIMINARIES

6.2.1. NOTATION IN THIS CHAPTER

Let A denote the dyadic partition of R (i.e. A := Urez £[2¥,25*1)), and let conv(S) denote
the closure of the convex hull of a set S. The Fourier transform of f € &' (R; X) is denoted
by Z f or f. IffELl([R;X), then

f(f):zfe—zﬂifffmdr, EeR.
R

Define the space of X-valued smooth compactly supported function on R\ {0} as Z(R\
{0}; X), and define

PR\ {0}; X) := {gey(R;X)|g= f for some f € 2R\ {05X)},

where f denotes the inverse Fourier transform of f.

6.2.2. FOURIER MULTIPLIERS IN WEIGHTED LP-SPACES

For p € (1,00), we define the Muckenhoupt Ay -class as the class of all locally integrable
weights w: R — (0,00) such that

L 1 1 1-p' p_l
(Wla, = st;p(mf]w(x)dx)(mj;w(x) p dx) < 00,
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where the supremum is taken over all intervals / < R. By Holder’s inequality, we have
[w]a, = 1for pell,o0):

1
|ﬂf mfw@vmmnu<mmﬂ

Moreover, these classes are increasing in p, i.e. if pg < p1, then Ay, € Ay, with [w] 4 -
[(w]a, -

We call w' := w'™P = w™ 77 the dual weight of w € Ap. By [61, Proposition
7.1.5], we Ay if and only if w' € Ay and

1
-1
(W4, =wl} " 6.2.1)
__1 1
Then (W) =(w 7 1) V1 =w
We have the following self-improvement lemma

Lemma 6.2.1. Let p € (1,00), then for any w € Ay, we have

-1
(Wla,_, Sp (Wla,, O=e= %
1+ Cd[w]Ap
Proof. Recall the definitions of [w] 4 and [w]‘;‘X in [69]

(wla,, = sup me(w(x)l])dx)

(w]5? =

A up(m/w(x)dx) exp(m/]logw(x)—ldx),

where M stands for the usual uncentered Hardy-Littlewood maximal operator. Then by
Jensen'’s inequality ([61, Exercise 1.1.3(b)]),

1 b1 1 p'-1
exp(mﬁlogw (x) dx) (|]| f w(x)dx) .
Combining this with [67, Proposition 2.2] and (6.2.1), we get

1

(WA SWNGP < 1wla, = (W]}

Let gg := ﬁ. By [69, Theorem 1.2], for every w € Ay, we have w € Ay S Ap—¢
with

[Wla,_, <wla, ., Splwla,

O
Let X and Y be Banach spaces. For p € (1,00) and w € A, we define L? (R, w; X) as the
space of all strongly measurable f: R — X such that

Y
I fllLe ®,w;x) := ([R I1f )1 wi(x) dx) ¥ < 0.

The following lemma follows immediately from [53, Lemma 3.3] since PR\{0}; X) <
Z([R; X).
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Lemma 6.2.2. Let X be a Banach space, p € (1,00) and w € A,. Then & (R; X) is dense in
LP (R, w; X).

Let m e L®(R; £(X, Y)), define the Fourier multiplier operator Ty, : & ([R; X) — &' (R; Y)
as
Tpf=F 'mf), feFR;X).

If, for some p € (1,00) and w € Ap, we have

” Tmf”Ll’(R,w:Y) 5 ”f”LF’(IR{,w;X)

for all f € #(R; X), then T, can be extended to a bounded operator from L” (R, w; X)
to LP(R, w; Y) by density with the operator norm |m| 1r®,w:2x,v)), and m is called a
LP (R, w; £(X,Y))-Fourier multiplier.

For an interval I € R, we define S; as the Fourier multiplier operator with symbol m =
1;. We have the following weighted, vector-valued Littlewood-Paley inequality, see [53,
Theorem 3.4]. Note that the unweighted case, i.e. w = 1, was first proved in [23].

Proposition 6.2.3. Let X be a UMD Banach space, (€]) jepn be a Rademacher sequence,
p e (1,00) and w € Ayp. Then we have for all f € LP R, w; X),

1
Zmax{l,ﬁ}

[E”]ZAE]S]]C”L”(R,LU;X) Sxp W]y, 171 e @0
€

1

=
! [E” Z Efs]f“LP([Re,w;X)‘
JeA

2max{1,
”f”LP([Ri,w;X) Sxop (W],

6.2.3. THE FUNCTION SPACES R’, VS AND C%

In Section 2.6.1, we introduced the bounded variation space V1. We now extend this
framework to the bounded s-variation spaces V* for s € [1,00), which will play a central
role in the main result of this chapter.

Let X be a Banach space and J <R be a bounded interval, s € [1,00). Define

N—1 1/s
[flvsoin 1= sup Y f-ralx| (6.2.2)
i=0

where P :={(tp,--, tN) IN€N, t; < tj+1,i =0,---, N —1} is a finite partition of J. Denote
f € VS(J; X) if (6.2.2) is finite. We say that f has bounded s-variation for s € [1,00), de-
noted by f € V¥(J; X), if

”f”vsu;X) = ||f”L°°(];X) +[f] vsyu;x) <90 (6.2.3)

Furthermore we define V*°(J; X) := L*°(J; X) by convention.
Given a collection of bounded disjoint intervals _# in R and r € [1,00]. We define the
spaces ¢"(VS(_#; X)) and ¢" (V¥(_#; X)) as

R 1/r o
I fllervscgixn = (}Zjllfl MWysgs) <00 FEL®®X),
€
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and
1/r

1l osi iy = (}Zj[fl Myey) <00 FEL®®X),
€

with the usual modifications for r = co.
We say that a function a: J — X is an R*(J; X)-atom, written as a € R}, (J; X), if there
exists a set .# of mutually disjoint subintervals of J and a set of vectors (cj) je.s € X such

that U
S
a= Z crl; and (Z”C["S) <1.
Iey Ie.g

Define R*(J; X) € L*®(J; X) by
R(J; X):= {f:f =Y Aklr, Akz1 € 01, (@) k=1 S R;t(];X)}’
k=1

with norm -
1l sz = inf{ll(ﬂtk)kzlllgl :f=) Axayas above}.
k=1

For a collection of bounded disjoint intervals _¢ in Rand r € [1,00], the space " (R*(_¢; X))
consists of all f € L*°(R; X) such that

1/r
”f“[r(Rf(f;X)) = ( > ”f|]|llr?3(];X)) <00,
Je g

with the usual modification for r = oco.
For a € (0,1] we define the space of a-Hdlder continuous functions C*(J; X) as the
space ofall f: J — X with

Imllceg;x) := Imliree g x) + [Mlcay;x),

where
(] = sup lm(t;) — m(B)|l
Co(J;X) = —_—
t1,hej] |t1 - t2|05

The next lemma gives the interpolation inclusions of V* spaces.
Lemma 6.2.4. Let X, X; be Banach spaces and J < R be a bounded interval. For sy, s) €
[1,00],0 € (0,1] we have the continuous embedding
[V(J; X0), VU (J; X1)]g € V' (J; [ X0, X11p),

1 _1-0, 6
where %= s T

Proof. Let X be a Banach space and s € [1,00]. Note that the norm (6.2.3) of V*(J; X)
equivalent to

1

N-1 s
o =l sup X 1=l <o 620
i=0
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where P:={(fg, -, IN) INEN, t; < tj41,i =0,---, N — 1} is a finite partition of /. Define an
operator Tp: V5(J; X) — ¢5(X) as

Tpf = (f(to), f(t1) = fto), -+, f(tn) — f(tn-1)).
Then

1

N-1 s
0T fll sy = {1 F @5 + X [ fCian) = Fan ]| -
i=0
By (6.2.4), it is clear
“f”VS(];X) = Sl}l)p ” TPf”éS(X) = ”f” VS X) ! (6.2.5)

where the supremum is taken over all finite partitions. Then for any fixed partition P, we
have T}, is a bounded linear operator from V% (J; Xp) to £*(X,) and from V*'(J; X;) to
£91(X1). Therefore, by complex interpolation and [71, Theorem 2.2.6], Ty is a bounded
linear operator from [V (J; Xo), V1 (J; X1)]g to [€% (J; Xo), €1 (J; X1)1g = €% ([ X0, Xalg)- T-
his combined with (6.2.5) yields

1150 ¢, 50009 55‘;}’ 0T £l (130 30100 = 1l vso g0, v gixi00

finishing the proof. O

We recall the definition of dyadic martingale differences. Let k € Z. We denote the set
of all dyadic intervals with the length of 2% by

Dy = {[nz_k, (n+ 1)2_k) ,nE Z}

and the set of all dyadic intervals by 2 := Ugcz k.

Definition 6.2.5. Let f:[0,1] — X be a integrable function and I € &y be a dyadic inter-
val. The conditional expectation of f with respect to the increasing family of o-algebras
0 (2;) generated by 2y, is defined as

Ex(N(®):= Y Avg;(NH1(1), keNp.
1P

Here, Avg;(f) denotes the average value of f over the interval I. The dyadic martingale
difference of f is then defined as

Di(f) = Ex(f) —Ex-1(f), keN,
and we denote Dy, as the dyadic martingale difference operator.

Next, we recall the result of Coifman, Rubio de Francia, and Semmes, originally es-
tablished concisely in [32, Lemma 2]. A detailed proof was later provided by Manuel
Bohnert (Karlsruhe Institute of Technology) in his Master’s thesis [18]. Using Bohnert’s
argument, we extend the result in a different direction: given s; < s € [1,00), for every
function m € V%, there exists an operator N € conv(Ran(m)) such that the R%2-norm of
m — N can be controlled by the V*!-seminorm of m in the vector-valued setting.
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Lemma 6.2.6. Let X be a Banach space, ] <R be an interval, and sy, s, € [1,00) satisfying
$1 < $2. Then for every m € V1 (J; X), there exists an operator N; € conv(Ran(m)) such that
lm = Nyllre xS [mlvsig;x),

Proof. Ifm(t)=xe X forall t€ J,thenm = ||x||-ﬁl]€Rs2(];X) where iljeRflf(];X)

TxT i
and the conclusion holds clearly with Ny := x. From now on we assume m € V*(J; X)

with [m]ys (j.x) = 1. Without loss of generality, let J:= [a,b] SR, n € N. Define g: ] —
[0,1] as

g =sup ) lIm(ti1) — m()|*, (6.2.6)
Py i>0

where P, is a partition of [a, t]. Define M : [0,1] — X by
M(y):=m(t), te],y:=g(1). (6.2.7)

Note that M is well-defined. Indeed, if there exist ¢, 7 € J such that ¢ < f and g(¢) = g(7) =
¥, then by the definition of g, we have m(t) = m(%). Finally, define

1
Nj:= fo M(y)dy. (6.2.8)

Then by [71, Proposition 1.2.12], Ny € conv(Ran(M)) = conv(Ran(m)).
Moreover, let f > t and P; be an arbitrary partition of [a, 7], then

g = sup (Z lm(tis1) - m(ti)ll‘“) = g(t) + Im(@) - m()|*.
P \i=0

Thus, we conclude from the above and j:= g(7) that

1 1
M) =MWl = lm(® -m@| <Ig(® - g =7-yl,

which means M is s—ll—Hﬁlder continuous.

Now we seek a representation of M using dyadic martingale differences. For each y €
[0,1), there exists a unique sequence (I,y)jeny With I; y € 9; including y and m‘l?gl Iy =
{y}. Then

illI&Ei(M)(y) = lim Z Avg,(M)1;(y) = ilil’{.loAVinyy(M) =M(y).

=X jeg;
Here we use M is Hélder continuous and thereby continuous. Recalling that D (M) (y) =
E (M) (y) — Ex—1 (M)(3), k = 1, we have
oo n
Y De(M)(y) = lim Y Dp(M)(y) = lim E,(M)(y) — Eo(M)(y) = M(y) — Eo(M)(y).
=1 n—oo =1 n—o00
Therefore, we obtain

M(y) = Es(M)(y) + ) De(M)(p), y€[0,1]. (6.2.9)
k=1
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Next, we show Dy (M) is pointwise bounded for every k € N. For any y € [0, 1), there
exists n € Z such that y € I := [n2-%~Y (n+1)2-*-D). Define I; := [2n27%, 2n + 1)27F)
and I, := [(2n+ 2% 2n+ 1)2"‘), it is obvious that I € D._1,1;, I, € D, ;U I, = 1, I} N
I, = @, and y lies in either I; or I,. We assume that y € I;. The calculation for y € I, is
similar. Note that M is i—Hﬁlder continuous, let 7:= r+27%, then

I DMWY = || Ex (M) () = Ex—1 (M) (1) |

= D Avg;(M)1;(y)— Y. Avg,(M)1;(y)
Ie@k IE@k—l
1 1
= | ave, o) - Ave 0w | = || — M(t)dt——f!\/ﬂ(t)dt”
! 1 Jy, 11 Jg
@n+1)27k (n+1)2- =D
= zkf MI(t)dt—Zk_lf M(r) dt
2n2-k n2-(k=1)
@n+1)27k @n+1)27k 2(n+1)27k
= z’Hf 2M(t)dt—2k’1f M(t)dt—zkflf M(zr) dr
2n2-k 2n2-k (2n+1)2-k
@n+1)27k 2(n+1)27k
= zk—lf Mmdr—zk‘lf M(r) dt
2n2-k (2n+1)2-k
2(n+1)27k o 2(n+1)27%
= zk—lf M(t)dt—Zk_lf M(r) dt
(2n+1)2-k 2n+1)2-k
1 2(n+1)2°F ~
=2 f [M(®) -M(0)| dr
(2n+1)2-k
2(n+1)27F N kL
szk_lf [t—F51 dt<2 = 1,
(2n+1)2-k

and then i

IDrM)llfcoo1;) =2 1 .
By definition, it is clear that the dyadic martingale difference is constant on each dyadic
interval in 9. In particular, D (M) is constant on [nZ_k, (n+ 1)2"“) for0 < n < 2%, Thus,
we have the representation D (M) = Zflk:_ol Bl ok (n11)2-k), Where piy, satisfies

_k_
]| < IDEM N o001, s 27 L on=0,--,281
We conclude that
1 1
2k-1 2 f2k-1 5
(S| [T )] st it
n=0 n=0

$2

k_1 iy . k_1 (i : .
Thus, Di(M) = Uk X559' G Linz-*,inenz-t) With X! (%) =1, implying

kL
I D (M) | gs2 (j0,1y;%) < Uk =2 (51 SZ)-
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Now we conclude from (6.2.9) that

IM—Eo(M) g2 0,150 < X5, 1Dkl gsa (10,13 X) < ﬁ
-1

1_1
2051 82

(6.2.10)
Ssus Mlvegx)-

Hence, M — Eo(M) € R2([0,1); X). Then by definition, there exist sequences (A;)>1 € ¢!
and (ap)i=1 S R;%([O, 1); X) such that M — Eg(M)) = ¥ »1 Arax, where ag = Y jeg, C1xl1
with . a family of mutually disjoint subintervals of [0,1) and (cj ) k=1 € £ (X, Y) satis-
fying Y e, lcpill®? < 1.

For k= 1, define I := {t € Jlyele %} and ﬁk := UI. Then, foreach re I e jk, there
exists y € I € % such that

m(t) — Ny =M(y) - Eo(M) = Y Agcpi.

k=1
R = o ._ _ ~ ._ _MA)-N;
Define ¢; . = crx and dx := L 7 ¢j 1. Next, wedefine Ip:= {r € J|y = 1}, do := jey=p, 1 Lio»
Ao :=[IM(1) — Ny||. Note that
1
[Ao] = IM(1) — Nyl Sfo IM1) =MW IIdy < [m]ys %) (6.2.11)
Thus, we can construct
m()—=Ny= )Y Agdg, te].
k=0
Therefore, by (6.2.10) and (6.2.11), we obtain
||m_N]“R~‘2(];X) < 2 Mkl Sops Imlvai i
k=0
Moreover, we also conclude from (6.2.10) that Eo(M) € R%2([0,1]; X) and
Imllrs: (;x) = IMll RS2 (10,1330 S, 1Ml vs1 ;x)-
O

Note that the spaces V*(J; X), R*(J; X) and C*(J; X) are Banach spaces, and satisfy the
following embedding results by [1, Lemma 4.3].

Lemma 6.2.7. Let X be a Banach space, let ] < R be a closed, bounded interval, and s €
[1,00).

(i) We have R*(J; X) < V5(J; X) and forall f € R°(J; X),

/1

V(LX) S ”f”RS(];X) :
(ii) We have Cs (J; X) < VS(J; X) and for all f € Cs (J; X) we have

1
V(LX) = ||f”L°°(],X) + |]| $ [f] cls(;:x)+

/]
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6.3. RELATION TO Z£-BOUNDEDNESS
In this section, we briefly introduce the basic properties Z-boundedness which plays a
key role in our main result. For details we refer to [72, Chapter 8].

Let X and Y be Banach spaces and (¢,,) ,>1 be a Rademacher sequence on a fixed prob-
ability space (Q2,[P). Consider a family of operators 9 € Z(X,Y).

Definition 6.3.1. We say 9 is Z-bounded if there exists a constant C = 0 such that for
all finite sequences (Tn)ﬁl\[:1 in9 and (x,,)ffz1 in X,

<C
L2(Q;Y)

N
Z EnXn
n=1

N
Z enTnxy, .
n=1 2@X)

The least admissible constant in the inequality is called the Z2-bound, denoted by 22(9).
Note that using Kahane-Khintchine inequality one can replace L2(Q; X) with LP(Q; X)

for 1 < p < oo in Definition 6.3.1. By [72, Propositions 8.1.21 and 8.1.22], if I is %-
bounded in £ (X, Y), then conv(9") and conv(J") are also Z-bounded with

R(T) =R (conv(9)) = Z(conv(9)). (6.3.1)

In the next result, we show a function in R" (J; £(X,Y)) for r > 0,J < R is Z-bounded
under cotype and type assumptions on X and Y.
Proposition 6.3.2. Let X, Y be Banach spaces and _¢ be a collection of disjoint intervals
J < R. Suppose that X has cotype g € [2,00] and Y has typet € [1,2]. Let% =1_1 Then

1t q
felT(R"(£; £(X,Y))) has Z-bounded range.

Proof. Let J € ¢ and .# be a family of mutually disjoint subintervals of . For each a €
Rl (J; £(X,Y)), there exists a sequence {c[}je.s € £ (X,Y) suchthat a= Y jc s cf1;. Then
by [72, Proposition 8.1.20],

ZRan(a) = ZUestc) S (Y el <1.
ley
Thus, for each f|; € R"(J; £(X,Y)), there exist sequences (Ax)x=1 S C and (ag) =1 S
Rl (J; £(X,Y)) such that f|; =Y > Axak. Then

ZRan(f1)) < Y 1Ak|ZRan(ax)) < || f1sllrr s 2x,v))-
k=1

Let fe /" (R"(#;£(X,Y))), then Ran(f) = Uyse g Ran(f1;)1; where f|; € R'(J; (X, Y)).
Therefore, again by [72, Proposition 8.1.20],
ZRan(f) S Y. IZRan(FININT S Flerrr g z00v)-
Je g
O

We immediately conclude the following corollary from Lemmas 6.2.6 and 6.2.7 and
Proposition 6.3.2 for Holder continuous functions and bounded s-variation functions.
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Corollary 6.3.3. Let X, Y be Banach spaces and _# be a collection of disjoint intervals
J € R. Suppose that X has cotype q € [2,00] and Y has type t € [1,2]. Let% = % —%

and s € (1,r) . Then any function in W(C%(j;fé’(x, Y) or 0" (VS( ¢, £(X,Y))) has #-

bounded range with

‘%(Ran(f))g”f”z'(c%(J:z(X,Y)))’ fell(C(FH2X ),

% Ran(@) S 8l vs pzcry €€ VILLHZLX, V),

where the implied constant depends on the various parameters in the statement, but is
independent of the function.

6.4. WEIGHTED, VECTOR-VALUED VARIATIONAL CARLESON

ESTIMATES

In this section, we prepare for our main result by establishing a weighted version of the
vector-valued variational Carleson estimate. We start by extending the boundedness of
the vector-valued Carleson operator from [66] to a weighted setting. For f € & (R; X) and
a € R define

a o~ .
Caf (x):= f fO ¢, xeR.
—00
The Carleson maximal operator is defined as

1@ = 5p [6af W = Caf O gy HER
ae

Proposition 6.4.1. Let X be an intermediate UMD Banach space and let p € (1,00). There
exists a non-decreasing function ¢x p : [1,00) — [1,00) such that for all w € A, and [ €
LP (R, w; X),

”(g*f"LF’([R,w) = (PX,p([w]Ap) ”f”LP([R,w;X) .
Proof. Since €.f = f — Sia,00)f, by Lemma 2.2.4 it suffices to prove that there exists a

non-decreasing function ¢y, : [1,00) — [1,00) such thatforall we Ay and f € SR X),

< ¢x,p(wla) | Fll o @wxo - (6.4.1)
LP (R, w)

sup [|S(a,00) f Il x
acR

Define .4 f := x — e~2"*% f(x) and note that

IS0t Pl = | Stac ], = [ -

Let H denote Hilbert transform. By (2.4.2), it is equivalent to show that there exists a
non-decreasing function ¢x, : [1,00) — [1,00) such that for all w € A, and f € #(R; X),

sup | H.22° 1| x < ¢x,p (W) | 1| o i (6.4.2)

LP(R,w)
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To prove (6.4.2), we want to apply the sparse domination result in [94]. To do so, let
po € (1,00) and define T : LPO(R; X) — LPO(R; L (R; X)) by

Tf(x,a):=HH*f(x), x,aceR, felP'R;X).

If w=1, [66, Theorem 1.1] shows that (6.4.1) holds and therefore (6.4.2) also holds, which
implies that T is well-defined and bounded by density. For f € L (R; X), furthermore
define

M f(x) :=supesssup | T(flms) (x1) = T(f1msD) (%) | oy ¥ ER,

I3x x1,x€l

where the supremum is taken over all intervals I containing x.
Fix x € R and an interval I containing x. Take x;, x, € I and denote the length of I by ¢.
Note that for y e R\51,
lx=yl=lx1 =yl = lx2 =yl 2 2e.

Then by (2.4.1),
” T(fIR\5I) (xl) - T(fIR\5I) (x2) ||L°°([R;X)

s | m ) wa

X1 — Xo|
S T3 — vl — vl d
N[[R\SI 1x1 — yllx2 — ¥l |7 llx dy

1
S d
Ngfu%\sz lx— y[2 £l dy

(o]

1
< — d
Sel jz eyt Ty My

<y 1 2
Nk:1§2k+18\/|‘x—y|52j+15 ”f(y) ”X dy

< v 1 <
< £ Ml < (it
where M is the Hardy-Littlewood maximal operator. Therefore we obtain

My fx0) < M(anx)(x), xER.

Since M is weak L'-bounded by [71, Theorem 2.3.2], M’ extends to a weak L'-bounded
operator as well. We have now checked all assumptions of [94, Theorem 1.1] with p; =
po, p2 =1, r=1and (S,d, u) is R with the Euclidean metric and the Lebesgue measure.
By [94, Corollary 1.2], we conclude for all p € (pg,00), w € Ap/p, and f € LP (R, w; X),

max{
= ‘CX’pO.[w]Ap/p

P®Rw) P—Po

L1
op " ”f”Ll’([Ra,w;X)’ (6.4.3)

sup | H4“f ||
acR

2
where the factor # arises from the proof of [94, Proposition 4.1] and Cy, , is compa-
rable to the constant in (6.4.2) for the case w = 1, i.e. the constant from [66, Theorem
1.1]. By inspection of the proof, it is clear that Cy,,, — oo as po | 1.
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Now, for fixed w € Ap, let pg € (1, p) such that % = p —¢€ with € > 0 as in Lemma
6.2.1. Combined with (6.4.3), we conclude that there is a non-decreasing function ¢x  :
[1,00) — [1,00) such that (6.4.2) holds, finishing the proof. O

We will use Proposition 6.4.1 to extend the boundedness of the vector-valued vari-
ational Carleson operator from [3] to the weighted setting as well. Note that we only
rely on Proposition 6.4.1 (and thus the main result of [66]) in the proof. Hence, we also
provide an alternative way to prove the unweighted boundedness of the vector-valued
variational Carleson operator, originally proven in [3].

Recalling that a family .# of subsets of R is called an interval partition if it is a parti-
tion of R and each I € .# is an interval. For sp € [1,00) and f € #(R; X) we define the
variational Carleson operator

1
€ f0) 1= [a—Caf ()] sy =sup( X ISIfI®)%, xeR,
S ey

where the supremum is taken over all finite interval partitions .# of R.

Theorem 6.4.2. Let X be a0-intermediate UMD Banach space for some0 € (0,1]. Let sy €
(2/18,00) and p € (s(’),oo). There exists a non-decreasing function ¢x p,s, : [1,00) — [1,00)
such that for all w € Aprs) and f € LP (R, w; X),
162 Fl o @y < Px.pso(Wla, ) 171 2o @i - (6.4.4)
Proof. Let ne€N, define J,, := [-n,n] and
€L f (%) :=[a— Caf (¥)] v, XER.

By monotone convergence theorem, it suffices to prove the statement for 6.°,, f.

Fix u > 2. We start by proving an estimate on a Hilbert space H. Note that H is isomor-
phic to L?, then the u'-concavification H ' is a UMD Banach function space since L%/ u
is a UMD Banach function space, see Section 2.6.2 for more details. For any po > v/, by
[2, Theorem 5.2] and Proposition 6.4.1, there exists a non-decreasing function ¢y, p, 4 :
[1,00) — [1,00) such that forall v € AL? and f € LP(R, v; H),

u

”(gf,nf”mo(u@,y) = (PHYPO’M([U]ApO/u') ”f“LPO([R,v;H)’

and

1Ge, @) = €af O 1o RuVEUH) = “ la— cgﬂf(')||L<>°(],,;H) HLPO ®)

la=af O vuimm | o, 649

= (rbHrpovu([V]ApO/u’) ”f“LF’O (R,v;H) *

|

Let Xp be a UMD Banach space, H be a Hilbert space such that X := [Xp, H]gp. Set
0 := % Then by reiteration identity (2.7.1), there exists an i € (0,1) small enough such
that X := [Xo, H]; and

X = [Xo, Hlg = [X1, Hlg,-
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Proposition 6.4.1 yields for all p; € (1,00), there exists a non-decreasing function ¢ x;, p, :
[1,00) — [1,00) such that for v € Ap,, f € LP' (R, v; X),

|66 @) = Caf | o1 @iz ixoy = Px00 WA, [ F 11 s - (6.4.6)
Fixwe Ap/s(/), choose

! !
po:=bu'>u, pr=£>1.
0 0

Then
1-6g , 6o _ 1
p1 + po  p’

so by Lemma 6.2.4 and [71, Theorem 2.2.6] we have
[LPY(R, w; L (J; X1)), LP° (R, w; V¥ (Jn; H)g, € LP R, w; V (J; X)).

Hence, using complex interpolation between (6.4.5) and (6.4.6), we conclude that there
is a non-decreasing function ¢bx s, : [1,00) — [1,00) such that for all f € L” (R, w; X),

” (x,a) — Caf(x) ” LP@®,w; V0 ;X)) = ¢X»Py50([w]Ap/56) ”f”Lﬂ([Rz,w;X)-

6.5. MAIN RESULT

Having shown the required weighted, vector-valued variational Carleson estimate, we
now turn to the proof of our main theorem, Theorem 6.5.4. We start with a corollary of
the variational Carleson estimate in Theorem 6.4.2 and the Littlewood-Paley inequality
in Proposition 6.2.3.

Proposition 6.5.1. Let X be a 0-intermediate UMD Banach space for some 8 € (0,1]. As-
sume that X has cotype q € [2,00). Let s € (1, ﬁ) and p € [s,00). Then there exists a non-
decreasing function ¢x p,s : [1,00) — [1,00) such that forallw e Ap and f € LR, w; X),

(S sup( X i) sy = x50 | £ 1o 6.5.1)

JeA I Ieygy
where the supremum is taken over all finite interval partitions .%; of J.

Proof. By Lemma 6.2.2, it suffices to prove the conclusion for f € 9 (R\{0}; X), for which
there are only finite non-zero terms in its Littlewood-Paley decomposition. Further-
more, by rescaled Rubio de Francia extrapolation (see [36, Corollary 3.14]), it suffices to
prove the proposition for p = g and w € Ag/;. Indeed, by Fubini’s theorem, Theorem
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6.4.2 (s < 525, then §' > %), cotype q of X, Kahane-Khintchine inequality, and Proposi-
tion 6.2.3, there exists a non-decreasing function ¢y, 4 s : [1,00) — [1,00) such that

H(ZJEASUPJ] (ZIeJ/”SIf”i)%)é”
= (Z]GA
S (Z]€A Zq([ﬂe,w))q
Stpx,q,s([W]A%) (Z/eA ||51f||Za([Rz,w;X))

g(PX,q,s([w]A%)“ (Xea ||S]f"§]()% ||Lq(Rw)

Sﬁbx,q,s([w]fl%)“ HZ}eA«‘?ISJf“m(Q;X) ”
g([)x,q,s([w]A%)E“ ZJEAEJS]f”Lq([R{,w;X)
SQDX,q,s([w]Ag) “f”L‘f([Re,w;X)’

L1([R,w)

g
[sup,s, (S re, 1517 £1)

1
) q
. L4(R,w)

551

Q=

L9 (R, w)

where (€7) jep denotes a Rademacher sequence. O

We are now ready to prove an analogue of our main result for R¥-spaces, which will
imply the corresponding result for V*-spaces.

Proposition 6.5.2. Let X be a 0-intermediate UMD Banach space and Y be a UMD Ba-
nach space for some 6 € (0,1]. Suppose that X has cotype q and Y has type t and set
1:=1- %. Lets€ [1,5%5) and me £" (RS (A; £ (X, Y))). Then for all p € (s,00), there exists
a non-decreasing function ¢x,y,p,s: [1,00) — [1,00) such that for all w € Apys,

I T ll 2 (1P @ ;0,7 R, w3 ) < Px, v, p,s (WA, Ml er msa;2x,v)) -

Remark 6.5.3. Note that our assumptions in Proposition 6.5.2 imply m has Z-bounded
range by Proposition 6.3.2. Indeed, by interpolation, we see % > g, then % <1l- g < %
Thus, we obtain " (RS(A; £(X,Y))) €7 (R"(A; £ (X, Y))).

Proof of Proposition 6.5.2. By Lemma 6.2.2, it suffices to prove the conclusion for f €
PR\{0}; X), for which there are only finite non-zero terms in its Littlewood-Paley de-
composition. By Fatou’s lemma we may further assume for any J € A, m|; admits finite
non-zero functions ay ; € R°*(J; £(X,Y)),1 < k < ny such that

ny
mly=3Y Agjar;, aky= Y. cilp
k=1 IEBky]

where | ml;llgs(;. 2x,v)) = ZZ;I [Ak 7l < oo, cr€ £(X,Y), and By, is a family of mutually
disjoint subintervals I < J.
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Applying Proposition 6.2.3 and the type ¢ of Y and A,,s € Ap, we know there exists a
non-decreasing function ¢y, : [1,00) — [1,00) such that

I Tmf”LnaRa,w;Y) =|F (ZIeAmUlfﬂ ”U’([R,w;Y)
= HZ}eA S](ZZ] 1Ak Ziey crStf) HU’([R w;Y)

Sy plw A,,)[E” Y ren€rSi(XiL, Ak ieny, c1S1f) H
1

Sbvplwlay)| (Srea |51 Ak Siesy, ersif 1)

LP (R,w;Y)

LPRw)

where (€7) jea denotes a Rademacher sequence.
Further estimating by Holder’s inequality and Proposition 6.5.1, we have

(%1

“( kzj‘lmk’/' > ||CI||$(X,Y)||SIf||X)t)
-1

IEBk,]

B ¥ asl))
Y

IEBk]

LP(R,w)

~ |

LP([R,w)

-

<|(x( kan[( Y el (X 18171507 ])')

JeA IEBk] IeB k,J

”(Z ZMMI( Y ||slf||§);)t)%

Jea I€By; LP®R,w)

”(Z (Z|/1k]|) ( sup Z ||Slf||§)§)t)

JeA k=1 1<k=njIeBy;

1oL
5” 2 mils s zcvy - Sup 2 ||31f||§()5’)

JeA <ksn; IeBy,

LP (R, w)

1
t

LP(R,w)

1
t

LP(R,w)

q,1
<lmller szl (X sup X ISIFY) | g
JeAl<k=nj IeBy;

= ¢x,p,sUwlap)mllerrsa2x,v)) ”f”Ln(R,w;X),
S

with the usual modification for r = co. Combined with the previous estimates, this fin-
ishes the proof. O

As announced, our main result is now a consequence of Proposition 6.5.2 and Lemma
6.2.6.

Theorem 6.5.4. Let X be a 0-intermediate UMD Banach space and Y be a UMD Banach
space for some 0 € (0,1]. Suppose that X has cotype g € [2,00] and Y has typet € [1,2] and

set% = %— %. Letse |1, ﬁ). Assume thatm e 07 (VS(A; £(X,Y))) has #-bounded range.
Then for all p € (s,00) there exists a non-decreasing function ¢x,v,p,s: [1,00) — [1,00) such

that forallw € Ay,

I T ll 2. (1P @, w0530, LP R, w3 v)) < PX,v,p,s (W] a,,) (Il Ml r s 2x, vy + Z(Ran(m))).
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Proof. Denote the restriction of m on J by m;. By Fatou’s lemma, it suffices to consider
finite non-zero terms of m; for J € A. Then by Lemma 6.2.6, for every m, there exists an
operator Ny € conv(Ran(m]|j)) < conv(Ran(m)) such that

Imy—Njllrsi 206, v) S Imylvsg, 2, vy

Define N(-) := }_jea Ny1;(-). By Lemma 6.2.1, for every w € Ag, there exists s; € (s, ﬁ A

p) dependingon p,s,[w]4, suchthatwe Ap and [wls, Sp,s [Wla, . Then by Proposi-
s 51 ST s

tion 6.5.2, there exists a non-decreasing function ¢x, Y,p,s : [1,00) — [1,00) such that

1
;

” Tm—N” = (PX,Y,p,S([w]Ap/Sl)( Z ”m] _lelgsl (];f(X,Y)))
JeA

?
= ‘PX,Y,p,s([W]Apxs)( > [m]](/w;z(x,yn)
JeA
=ox, v, pswWla, Imlgr s, 2, vy)-

On the other hand, since Ran(m) is Z-bounded, by (6.3.1), conv(Ran(m)) is also 2-
bounded with Z(conv(Ran(m))) = Z(Ran(m)). Then Proposition 6.2.3 yields

ITN fllr @ w;v) Sv,ps Ox,7,p,s (W] 4, EN Y e F ' NIl Hllr @ wy)
JeA IeA

Svps Ox,v,p,s((Wla, JEN Y e NS fllr@®uw;v)
JeA
SX,Yopes dx,v,ps((W]a,, )R Ran(m) | fll L @,w;x)-
Combining the above estimates yields the conclusion. O

Note that Fourier type t implies type ¢ and cotype t’, we then have the following corol-
larywhen Y = X.

Corollary 6.5.5. Let X be a 0-intermediate UMD Banach space for some 0 € (0,1]. As-

sume that X has Fourier type t € [1,2]. Let + := lt—% and s € [1,5%;). Assume that

m e 0" (VS(A; £(X))) has R-bounded range. Then for all p € (s,00), there exists a non-
decreasing function ¢x p,s: [1,00) — [1,00) such that for all w € Ap/s,

I Tl 2 (1P ®,w;x0) < (PX,p,s([w]Ap/S) (” m”[r(VS(A;g(X))) + %(Ran(m))) .

6.6. COMPARISON AND EXAMPLE

As mentioned in the introduction, this chapter is motivated by the strategy of [1]. In this
section, we compare our result to [1] and show an application to Theorem 6.5.4.

6.6.1. COMPARISON
We first recall the statement of [1, Theorem 5.18].
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Theorem 6.6.1. Let p € (1,00) and 6 € (0,1). Let Y and H be an interpolation couple,
with Y a UMD Banach space, H a Hilbert space, and Y N H dense in both Y and H. Let
X =[Y,Hlg. Suppose I < ZL(Y n H) is a Banach disc which is Z-bounded on Y and
uniformly bounded on H. Let s € (1,00) satisf_'y% > max{%, 1- g} and me 0°(VS(A,T)).
Then for all w € Apys, there exists a non-decreasing function Py,p,s0: [1,00) = [1,00) such
that

I Tl 2pw,x)) < Py,p,s0 (W4, IImleeovsa,g) [T 1.

Theorem 6.5.4 and Theorem 6.6.1 both study the boundedness of the multiplier opera-
tor Ty, on weighted vector-valued L”-spaces, under the assumptions that the multiplier
m lies in a bounded s-variation space and has #-bounded range. Their key differences
are summarized as follows:

* Space assumptions. In Theorem 6.5.4, we allow m to be an operator-valued mul-
tiplier in Z (X, Y) with X, Y being two (possibly distinct) UMD Banach spaces and
only X needs to be an interpolation space. In contrast, Theorem 6.6.1 restricts to
the case X = Y, where X is explicitly assumed to be a complex interpolation space
between a UMD space and a Hilbert space.

* Variation and summability. Both theorems assume a bounded s-variation condition
on the multiplier, with s > 1 satisfying % > rnax{%, 1- g}. However, Theorem 6.5.4
highlights the role of Banach space geometry by requiring m € ¢" (V¥(A; £2(X, Y))),
where r is determined by the cotype and type properties of X and Y. In contrast,
Theorem 6.6.1 assumes r = co, which is a weaker assumption.

* Range assumptions. Theorem 6.5.4 assumes that the range of m is Z-bounded. In
Theorem 6.6.1, the range of m lies in a Banach disc that is %-bounded on Y and
uniformly bounded on the associated Hilbert space H.

We next consider a special case of Theorem 6.5.4, i.e. X is a Lebesgue space.

Proposition 6.6.2. Let u € (1,00),1 = |2 ul andr=ocoifu=2. Letse (LLunu'),pce
(5,00), W€ Ap. Assume that m e €7 (VS(A; L(LY(S)))) has Z-bounded range. Then misa
LP (R, w; L (L%(S)))-Fourier multiplier.

Proof. Note that by [72, Proposition 7.1.4], L*(S) has type u A 2 and cotype u v 2. For
any u > 2, there exists 2 < u < v < 00,0 € (0,1) such that L%(S) = [LY(S), L?(S)]g where

110,858 ByTheorem 6.5.4 we see r = 2% and s < ;45 < ;25 = u'. The case

u = + 2 Zu—2

u=2 1s dlrectly from Theorem 6.5.4 with 6 = 1. Flnally, ifu<2, thereexists 1 <v<u<
2,0 € (0,1) such that L”(S) [LY(S), L2(S)lp where 1 = 1=0 + 8 <1 -8 By Theorem 6.5.4
2u <52l =y O

weseer =3 and s < 555 < 55,5

29

Remark 6.6.3. Comparing Proposition 6.6.2 with [1, Example 5.12], we observe the fol-
lowing:

* When u = 2, our result closely parallels [1, Example 5.12(i-a)], with the exception
that the endpoint case p = s is not included in our setting.




112 6. MULTIPLIER THEORY IN INTERMEDIATE UMD BANACH SPACES

°* When u > 2, our assumptions on the p and w are weaker than those in [1, Ex-
ample 5.12(ii-a)]. However, we further assume m € Z% (VS(A; L(LH(S)))) for s €
(1, ') and m has Z-bounded range. Regarding the range condition, [1] assumes £?-
boundedness of the multiplier range, which is equivalent to the Z-boundedness.

* When u < 2, our assumptions on p, s, and w coincide with those in [1, Example
5.12(iii-b)]. The key difference lies in the range condition: we assume that the mul-
tiplier m € =T (VS(J; £(L*(S)))) has Z-bounded range, whereas [1] imposes the
stronger £ (¢ s')-boundedness condition.

6.6.2. EXAMPLE

At the end of this chapter, we show that for s <2, a %—Hﬁlder continuous function m is a
Fourier multiplier if it has 2-bounded range and its restriction on each J € A satisfies a
decay condition in terms of the length of J.

Proposition 6.6.4. Let X be a 0-intermediate UMD Banach space and Y be a UMD Ba-
nach space for some 6 € (0,1]. Suppose that X has cotype q € [2,00] and Y has type
te(l,2] and set p>1:=1- %. Let s € [1,5%5),p € (5,00) and w € Ap. Assume that
m:R — ZL(X,Y) has Z-bounded range and for each ] € A, m|; isin € C%(];.,%(X, Y))
and

iyl <L

Mes gz ™ T+ logy 1116

Then m is a LP (R, w; £ (X, Y))-Fourier multiplier.

Proof. Tt suffices to prove that m € £ (V*(A; £(X, Y))), then the conclusion follows from
Theorem 6.5.4. Let Ji; := +[2",2""1), my () := mly: () and myp n() := mlj; (). By as-
sumption we can write m = 3 ez 1+ myn + 15, Mg ). Define ¢y, ¢, : [1,2] = L(X,Y)
as

O :i=my (), y:=27""tte];,

and
wa(y) i=mp (), y:=-27"tte],.

Then ¢, ¥y € C5 ([1,2]; £(X, Y)) and

1
1 , 1 < —.
1nl et 1 oo vy 1Vl cd 2200 v 1+|n|B

By direct calculation,

I ml,n(tl) —my (1) I

[m] [my,n]

CYULLXY) CY UL YY) I
" ’ m ’ n,6ely |ty — b]s
27" =, 27 ")
= 100270 =0 )]
Zl,tgef,t |t1 - t2|§
ldn (1) =Py _n
< = s
= sup 2l et ey

n 1
yLy€ll2l 25|y - yols
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On the other hand, let P, = {(9,---, tn) IN€N, tj_1 < tj, j = 1,---, N} is a finite partition
of J}. Since for U5 LX) ViU £L(X, 1), we get
1

1515 < [dnl < L

(mlvs iz ooy < m] C3(1,2,2(X,Y) ~ T+InlP

1
Cs (J}2(X,Y))
By a similar calculation, we also have

1

m —. < ——
[mlvs 0y [w”]c%([l.zl;z(x,m)”1+|n|ﬁ

Therefore,

r

1 r
Iml?, e v =Y [mlll, . <) (—) <oo
ez T M0 S T 1P
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