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Abstract

Construction sites are among the most dangerous work environments. Worldwide, thousands
of workers are injured or killed while working with or around machinery. For Volvo Construc-
tion Equipment, safety of the workers is one of the core values. The company strives for the
vision of "Zero accidents with Volvo Group Products " through high quality and innovative
products that reduce the frequency of accidents as well as their consequences. The purpose
of this thesis is to provide a solution towards this vision by developing a collision avoidance
system for construction machinery. This is achieved by implementing a model based de-
terministic threat assessment approach in which the movement predictions of the machine is
calculated and evaluated to determine the risk of a collision. The important aspect of general-
ization has also been considered, in which a new combined machine model has been developed
which can be utilized to represent the kinematics of three different types of construction ma-
chinery. The results obtained from the combined machine model are compared with true
machine models. Kalman filters and their extensions used for state/parameter estimation are
investigated. A new method is formulated for predicting the states using Extended Kalman
filter which has been proved to be better performing than the usual prediction methods. For
collision detection, an algorithm based on the separating axis theorem has been developed.
The developed system is investigated and validated using real-world data. The final result
obtained from the thesis was an accurate threat assessment system performing for both linear
and nonlinear trajectories by utilizing only GPS signals as input and also producing real time
collision detection measures.
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Chapter 1

Introduction

1-1 Background

Over the years the advancement in the safety standards has been restricted to road vehicles
alone. Based on the survey [2] , construction machinery has been one of the significant factors
contributing to the fatalities caused at construction sites . In 2011 alone, 710 fatal injuries
were caused due to contact with objects and equipments out of which 388 cases were caused
when the contact was with a construction machinery. One of the ways of mitigating such cases
is to avoid collisions with objects and other equipments. Collision avoidance systems have
already made its presence in road vehicles and according to the report by Insurance Institute
for highway safety, [1] such systems help in preventing or mitigating crashes by 69%. These
astonishing stats motivate the fact that such Collision Avoidance System (CAS) should also
be developed for construction machinery.
The work on this thesis has been carried out at Volvo Group Trucks Technology under the
department of Advanced Training and Research. Volvo Group is one of the leading companies
on the construction equipment and heavy machinery market. The company’s history begins
back in 1950 when AB Volvo bought an agricultural machine manufacturer renamed to Volvo
BM AB. The company expanded globally during the 1980s and 1990s by purchasing companies
in America, Asia and Europe. Today Volvo CE’s product range is of a big diversity featuring
for an instance, wheel loaders, haulers, crawling and wheeled excavators, motor graders,
demolition equipment and pipe layers.

1-2 Problem Statement

The intention of this thesis is to develop a safety system which could help the drivers to avoid
collisions with obstacles in a construction site. The problem statement can be divided into
three parts. First, to formulate a generic machine model which can be used to represent not
one but a class of construction machinery. The class being considered for the thesis has three
types of structures :
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2 Introduction

• Front Only Steered Machines

• Waist Steered articulated Machines

• Front and Rear Steered Machines

Second, to estimate and predict the dynamics of the machine with the aid of Global Positioning
System (GPS) measurements alone. Using the GPS information, other dynamics of the
machine has to be estimated and predicted. Third, using the predictions, the machine should
be able to avoid collisions with static as well as dynamic obstacles. In order to achieve this,
collision avoidance algorithms will be developed which will have two functionalities: issue
threat warnings and brake actively when the warnings are ignored by the driver.

1-3 Limitations

The machine model developed will only consider the kinematic model of the machine con-
sisting of the parameters namely position, acceleration, velocity, heading and steering angle.
During the development of the machine model, the wheel slip angles will not be considered.
The project focuses on developing collision avoidance system for low operating speeds and
wheel slip doesn not play have a major effect on the dynamics at low speeds. Although, in-
cluding the slip produces better estimates and predictions, it increases the complexity of the
model. Moreover varying wheel dimensions (Front and back wheel dimensions are different
for a loader) and wheel types (Compactor has rollers instead of wheels) makes it even more
difficult to model. High accuracy GPS alone will be used as the sensor for the safety system.
This is not optimal since GPS will not always produce accurate measurements due to the
presence of noise in the signals. However, in this work, the focus is not on developing an
accurate sensor system and therefore only GPS will be used. Only situations where the GPS
sensor produces correct data will be utilized for validation of the functionality.

1-4 Previous Work

There has not been much development in the safety systems for construction machinery
over the past years. The following sections describe some of the existing safety features for
construction machinery:

1-4-1 Passive safety

The widely used passive safety systems in the present construction machines include seatbelt
and roll over protection systems. Seat belts helps the driver to stay intact with the machine
during roll overs or collisions. Roll over protection system help in protecting the driver
from getting crushed by the machine itself during roll overs [30]. But during collisions or
other critical scenarios, the machines pose greater threats to the surroundings. The statistics
describe that most number of accidents are caused when workers or other vehicles are hit
by the construction equipments [2]. Seat-belts and ROPS do not provide any safety to the
surroundings of a machine.
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1-4 Previous Work 3

Apart from these two, the other passive techniques for safety includes providing training
and education to the workers as well as drivers to change behavior before the construction
starts. The behavior of individuals on the work-site, however, may change due to various
factors/distractions most of which cannot be foreseen.

Figure 1-1: Roll Over Protection for Compactor: The roll over protection structure can be seen
over the drivers seat

1-4-2 Active Safety

The active safety in construction equipments is considered to be of two types.

• Re-Active

• Pro-Active

Re-Active

Re-active technology collects data in real-time, but requires a post data collection processing
effort to convert the data into information. This information is utilized to assess the overall
safety by noting any potential hazards in the operating site. After the analysis, necessary
precautionary steps are taken in the future events. The same data is also used for pre-
task planning,including work task force scheduling and other managerial purposes. Video
cameras and 3-D Laser scanners are the widely used tools to collect the real-time data. One
of the important benefits obtained from this method is the detection of blind spots. Blind
spots contribute to a significant number of accidents involving the construction equipments.
Extensive measurements with the help of 3-D lasers helps in determining the blind spots. Once
the blind spots are studied, necessary measures are undertaken to overcome the problem[31].
Figure shows the end results obtained from the blind spot detection automation tool:

One of the major drawbacks of Re-active safety systems is that, it does not help during
the occurrence of any unseen scenarios. There can be some situations which are not antici-
pated by the safety system and therefore it fails to provide any safety to the machine or the
surroundings.
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4 Introduction

Figure 1-2: End Result from a Blind spot detection tool

Pro-Active

Pro-active technology works in real-time to warn and alert personnel of the dangers occurring
at that moment. The system continuously calculates the distance between the machines and
workers/vehicles. If two or more construction resources are in too close proximity to one
another, the sensing technology will activate visual acoustic and vibration warnings/alert to
warn workers based on data from devices called Equipment and Personal Protection Units
.The proximity can be calculated using senors like RADAR, GPS, radio transceiver tags,
sonar, cameras or combination of these sensors. Based on some of the recent works, RF
proximity warnings have proved to be the most efficient sensor systems. Some work on
proximity warning systems can be found in [29][28]. A sample criteria for selecting proximity
warning and alert technology is given in Figure 1-3:

Figure 1-3: Criteria table for proximity warning system[28].

However, such proximity warning systems have some serious drawbacks:

• Proximity warning systems are strongly affected by the environment conditions such
as the humidity, temperature presence of other signal emitting devices. Construction
sites usually have harsh environments which could affect the performance of the system
significantly.

• Presence of metal objects in between the system can again have an adverse affect on
the performance of the system

Vignesh Radhakrishnan Master of Science Thesis



1-4 Previous Work 5

• The workers/machines are still prone to collisions. The technique used in pro-active
only ’warns/alerts’ other machines/workers of the threat but does not take control of
the machine itself. There might be scenarios where the machines/workers avoid the
warnings in which the threat of collision remains unchanged.

Most of the research work has been focused on automating the construction machinery. In [3]
an experiment is conducted for automating the navigation system for a load, haul and dump
truck. With the help of inertial sensors, odometer and bearing LASERS, the navigation
system is designed to cope up with the vehicle slip for various kind of terrains. This works
provides an idea of how a particular articulated machine is modeled and methods to estimate
the unobserved parameters using an extended Kalman filter.

A similar work [4] at Lulea University of technology focuses on modeling, control and path
planning of an articulated vehicle. Based on a novel error dynamics modeling approach, the
nonlinear kinematic model of the vehicle has been transformed in a linear switching model
representation, which also considers the effect of the slip angles. The switching modeling
system is based on a switching model predictive control scheme which controls the rate of the
articulated angle. The diagram Figure 1-4 describes the work flow conducted for the project.

Figure 1-4: Research sequence for control and path planning

Also, with the help of this Model Predictive Control (MPC) scheme, path planning is con-
ducted taking collision avoidance with obstacles into consideration. Similar kind of methodol-
ogy is also used in [5]. Here the different kind of estimation techniques (Moving Horizon based
estimation, Particle filters and Genetic algorithm based MHE) for estimating the non-direct
observable states are evaluated along with the evaluation of a linear/non-linear MPC for an
automated LHD machine.

The work in [6] is based on the state space approach, where the distributed position esti-
mation problem is addressed. The transfer matrix and measurement matrix of the vehicle
are established and based on vehicle dynamics and kalman filtering, the model of the state
estimation and state prediction are formulated. The model for the vehicle considered here is
a constant acceleration model. This work is a part of the intelligent transportation system
focusing on improving the safety of road vehicles.
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Work related to collision avoidance had been conducted usually under the path planning
process for automated machines. For example in [7] the work is conducted to create an
MPC algorithm, which is able to plan a safe and efficient path while avoiding obstacles.
Both the ability to plan a path for a heavy duty vehicle and operate it along this path is
investigated which also includes collision avoidance techniques. The work provides an idea
about how the obstacles are represented. Various cases involving static and dynamic obstacles
are taken into consideration. The work in [8] is focused on road vehicles. The work provides a
description about the decision making process under different scenarios. The focus is on how
to determine the threat of a collision given that the state of the obstacle is a known factor.
It provides a good description about how the mitigation systems need to be integrated with
the decision making process for providing an optimal control over the vehicle under different
threat scenarios.

1-5 Thesis Outline

This section is intended to give a brief overview of the contents found in the chapters con-
stituting this Master’s thesis report. Chapter 2 explains the basic functionality of a collision
avoidance system and the different sub systems involved in a collision avoidance system. Ma-
jor emphasis is given to the threat assessment system since, the thesis is mainly based on
developing the same. Also, the model based approach is explained on which the threat as-
sessment system is developed for the thesis.
In chapter 3, kinematic modeling of the three models considered for the project are explained.
In addition, a new kinematic machine model is developed which is capable to capture dynam-
ics of the three models being considered.
Chapter 4 is devoted to the theory behind Kalman filters which are used for estimation and
prediction purposes. Theory behind Extended kalman filter, an extension of kalman filter is
explained followed by the algorithms involved in the filters. Followed by the explanation is
the validation of the filters and the kinematic model developed in chapter 3.
Chapter 5 explains the last and final subsystem of the collision avoidance system, that is the
threat assessment system. Model based approach is explained and the braking model which
is utilized to calculate the predictions is described. The results are compared for two different
kind of trajectories. Also, a new method for calculating the predictions is formulated and
compared with the previous method for both the trajectories. The last part of the chapter
consists of the algorithm used for collision detection amongst convex polygons.
The last chapter consists of the results achieved in the thesis project followed by the future
work which can be performed over this project.
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Chapter 2

Collision Avoidance System

In this chapter, the basic functioning of a collision avoidance system is described. The dif-
ferent parts namely, the sensor systems, decision making system and the actuating system is
explained. Furthermore the different parts are explained with major emphasis on the projects
requirements.

Collision Avoidance System (CAS) as the name suggests are driver support systems which
help in avoiding collisions by warning the driver or braking automatically with the help of
real time senor data from the environment. A basic CAS consists of the following three parts:

• Sensor System

• Decision making

• Actuators

Figure 2-1: Collision Avoidance System
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8 Collision Avoidance System

2-1 Sensor System

Current CAS in passenger cars and trucks utilize data from multiple sensors such as cameras,
RADAR, Global Positioning System (GPS) etc. With the help of sensor data fusion, a more
wider and diverse aspect of the system is measured and hence a detailed description of the
environment is obtained. But it is be noted that the focus of the thesis is more toward
developing an accurate decision making system and not on developing an accurate senor
technology, therefore a GPS senor system is utilized for the project. It is assumed that the
data obtained from the GPS is accurate and continuous. Developing a complex sensor system
can be considered as a future scope of this project.

2-1-1 Global Positioning Systems

The Global Positioning System is a global navigation satellite system used in a vast range of
both military and civilian applications where localizations and synchronization is essential.
The system consists of a set of satellites which continuously transmits radio signals containing
the information of the time and its orbital position. A GPS receiver is thereby able to locate
itself by calculating the received signals travel time and interpret the times as imaginary
spheres originating from the corresponding satellites. The intersection of those spheres define
the possible positions of the receivers antenna. Figure 3-2 illustrates the principle of GPS
positioning where a,b,c denotes three visible satellites and r the position of the visible antenna.

Figure 2-2: Illustration of the idea behind GPS positioning

But there are some serious drawbacks for just using the GPS technology alone for the esti-
mation purpose. In order to compute its location in three-dimensional space, a GPS receiver
must be able to lock onto signals from at least four different satellites. Moreover, the receiver
must maintain its lock on each satellite’s signal for a period of time that is long enough
to receive the information encoded in the transmission. Achieving and maintaining a lock
on four (or more) satellite signals can be impeded because each signal is transmitted at a
frequency (1.575 GHz) that is too high to bend around or pass through solid objects in the
signals path. For this reason, GPS receivers cannot be used indoors. Outdoors, tall buildings,
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2-2 Decision Making 9

dense foliage,or terrain that stand between a GPS receiver and a GPS satellite will block the
satellite’s signal. Thus, in urban or heavily foliated environments a GPS receiver may be
unable to provide a position fix for indefinitely long periods of time.

Figure 2-3: DGPS Functioning

Due to the drawbacks, a DGPS system is considered for better accuracy. Differential global
positioning systems (DGPS) reduce GPS errors and provide more reliable readings. Differen-
tial correction uses a radio signal broadcast from known locations on Earth. A base station
with a known location tracks the satellites and has a true range to each satellite. This infor-
mation, along with its known location, is sent to the rover receiver. When the reference signal
is compared to the signal received by the rover, there is a signal phase difference between the
two.

2-2 Decision Making

Consisting of two parts, threat assessment and decision threshold, the decision making system
interprets the estimates obtained from the sensor system to make decisions on when and how
to assist the driver. The estimates are provided by the tracking system, and are used in one
or more decision function to determine the appropriate collision avoidance action. One of the
important task of this system is to determine the threat of a collision given that the state of
other objects is known. Now depending on the uncertainty of state estimates obtained from
the tracking system, threat assessment process can be of two types:

• Probabilistic Threat Assessment

• Deterministic Threat Assessment
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10 Collision Avoidance System

Figure 2-4: Comparison of different types of DGPS systems

Probabilistic threat assessment systems as the name suggests perform decisions based on the
uncertainty of the estimates obtained from the sensor system. These uncertainties are mod-
eled using stochastic models with the help of which a probability of collision is estimated.
Deterministic approach neglects the uncertainty present in the estimates. The focus is on
how to determine the threat of a collision given that the state of other objects is known. One
major setback using the probabilistic approach is the additional computational load. Often,
stochastic models are difficult to implement in real-world applications due to the computa-
tional load and hence are restricted to theoretical findings. Hence, a deterministic approach
is used in this project for decision making.

Some of the commonly used techniques for calculating the risk of a collision using both
deterministic and Probabilistic methods are explained below:

TTC- Time to collision based threat assessment

Time to collision is defined as the time to contact between two objects under the assumption
that the heading and velocity of both objects remain constant. Time To Collision (TTC) is a
common measure for calculating the collision risk. It is also useful for illustrating and com-
paring the intervention timing for threat assessment algorithms in different crash scenarios.
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2-2 Decision Making 11

The time for collision can be expressed as:

f(n) =



− p̃x

ṽx
ṽx < 0 and ãx = 0

− ṽx
ãx
−
√
ṽx

2−2p̃xãx

ãx
ṽx < 0 and ãx 6= 0

− ṽx
ãx

+
√
ṽx

2−2p̃xãx

ãx
ṽx ≥ 0 and ãx 6< 0

undefined ṽx ≥ 0 and ãx ≥< 0
undefined ṽx

2 − 2p̃xãx < 0

(2-1)

Where p̃x, ṽx, ãx are the relative position, velocity and acceleration, respectively. So, when
the host vehicle is approaching a stationary target object with constant velocity, the time to
collision is linearly decreasing with the relative position according:

tcollision = − p̃x
ṽx

= p̃x
vx, host

(2-2)

When approaching a target the driver has can steer around the object, brake before the object
or perform a combination of the two. Some work has been done based on the above technique
can be found in [9][10]. The advantage with TTC based decision making algorithms is of course
simplicity. However, there are several major disadvantages with such algorithms. One of the
major disadvantage is that, many collisions can be avoided with moderate steering maneuvers,
even at a very low TTC. Since this aspect of steering is not included in the algorithm, it
is expected that the decision making algorithms solely based on TTC will generate a high
number of unnecessary interventions in traffic situations that the driver considers as normal.

Required Acceleration Method

The required acceleration ax measures the acceleration required to bring the relative velocity
to zero at the time of collision.

ahostx,req = solahost
x

{[
p̃x(t) ṽx(t)

]T
=
[
0 0

]T}
(2-3)

where, = solahost
x
{· · · }denotes the solution with respect to the host vehicle acceleration ahostx

where p̃x(t) ≥ 0 for all t.With the assumption of constant acceleration the solution to above
equation is given by solving the equation system:{

0 = ṽx,0 + ãx,0t

0 = p̃x,0 + ṽx,0t+ ãxt2

2
(2-4)

This yields the constant acceleration required to avoid a collision, according to:

ahostx,req = aobjx,0 − ãx = aobjx,0 −
|ṽx,0| ṽx,0

2p̃x,0
(2-5)

In the similar way, other components of acceleration can also be utilized to calculate the
collision time. [8][11][12].
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12 Collision Avoidance System

Potential Force

In potential field algorithms an artificial potential force acting on the host vehicle is calculated.
This force is used to generate a control input to avoid any obstacle. This potential force can
also be viewed as a collision decision function. A common and simple expression to calculate
the potential force is given by:

F = − c∥∥∥P̃∥∥∥i P̃ (2-6)

where c is a constant, and i ∈ N . Potential field algorithms are common in robotic and
autonomous vehicle applications. This approach was first introduced in [13], references to
different applications and more sophisticated potential field algorithms than the above de-
scribed method can be found in [14] [15]

Model Based Approach

Figure 2-5: In the figure, trajectories of vehicle A and B are plotted with predicted positions
of A and B at t = 2secs. A good model of the vehicle will result in accurate prediction of the
position of the vehicle. Based on the predictions , it can be calculated weather the trajectories
will collide with each other or not.

The basic idea in model based diagnosis is to compare observations of the real system with the
predictions from a model. Hence, rather than calculating the TTC of the real-time machine,
TTC of the future trajectories is calculated and based on this measure, different maneuvers
are formulated. Automatic brake or steer interventions are then triggered to avoid or mitigate
a collision when the probability of a collision is high. Both the host vehicle and the objects
in the surroundings are represented as dynamic models. Figure 2-5 provides a better descrip-
tion of the approach. Based on the current states of the vehicle and objects, and using their
dynamics model, the predictions of their future trajectories can be calculated. The accuracy
of the trajectories will, to a large extent, depend upon how well the dynamics of the true
system is described by the model. Generally speaking, a better model yields a better tracking
performance. Hence selection of models for representing the vehicles is as important as the
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2-2 Decision Making 13

decision making process. A part of the thesis is focused on developing the appropriate model
of the machine for state estimation and prediction purposes.

This project is based on this approach which has proven to be of high capability [8]. The
Figure 2-6 describes the basic flow involved in the project.

Figure 2-6: Project Flow Diagram

• Sensor System: As discussed in the earlier section, GPS is the only sensor system
used for the project. The GPS information of the host machine along with the GPS
information of the workers and other construction machines are fetched to the threat
assessment system.

• Threat Assessment System: The threat assessment system involves a dynamic model
of the machine used by a filter which estimates the missing states and parameters. Using
this information the states are predicted for a varying prediction horizon. A collision
detection algorithm calculates if there will be a collision between the future position of
host machine and other machines/obstacles.

• Actuator System: Actuator systems are the final elements of the CAS which responds
to the instructions provided by the threat assessment system. This is usually done by
by providing information of the driver through human machine interface or by taking
control over the machine. This project does not consider the different aspects of the
actuator system and can be seen as the future scope of this project.
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Chapter 3

Modeling of Construction Machinery

Construction machines in general is a huge class of machines ranging from large mining
excavators to small loaders. This project addresses three types of construction machine model
as shown in the Figure 3-1. A model describing how a machine’s position and other important
vehicle parameters evolve over time is an essential feature in a successful collision avoidance
system. This section describes the kinematic model of the three kind of machine models.
Then the aspect of generalization is addressed.

Figure 3-1: Construction Machinery models considered for the project
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16 Modeling of Construction Machinery

(a) BackHoe Loader (b) Wheel Loader

Figure 3-2: Front Steered Machines

3-1 Front Only Steering machines

This type of machines are similar to the from steered road vehicles and trucks. The driver
controls the front axle of the machine to steer the vehicle. Some of the machines which is based
on this type of machine models are Wheel Loaders and Backhoe Loaders. One of the common
ways to represent the front steered machines is the bicycle model. Without considering the
wheel slips, the kinematic model of the machine is given by:

Figure 3-3: Front Steered Vehicle Model
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3-2 Waist Steered Machines 17

(a) BackHoe Loader (b) Wheel Loader

Figure 3-4: Waist Steered Machines

xk+1 = xk + u1Tcos(θk) (3-1)
yk+1 = yk + u1Tsin(θk) (3-2)
θk+1 = θk + u2T (3-3)

where u1 and u2 are the translational velocity and the angular velocity respectively. The
location of the vehicle is described by the coordinates x and y and its orientation by the angle
θ to the x-axis which is also considered as the heading angle of the machine. The translational
and angular velocity can be formulated as:

u1 = vcos(α) (3-4)

u2 = v

L
sin(α) (3-5)

(3-6)

where L is the distance between the steer axis and the rear axis.

3-2 Waist Steered Machines

This is a nonlinear-model designed for an articulated machine. The machine is steered with
the help of the waist angle, hence the name waist steered model. It was formulated by
Tokunaga and Ichihashi [27]. It consists of two moving parts: tractor and trailer. This model
is more concentrated towards the relative position of the two parts with respect to a particular
co-ordinate axis. Figure 3-5 describes a waist steered model without considering the body
and wheel slip.
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18 Modeling of Construction Machinery

Figure 3-5: Articulated Structure Without Slip

x0k+1 = x0k
+ v∆t

l
tan(u(t)) (3-7)

x1k+1 = x0k
− x2k

(3-8)

x2k+1 = x2k
+ v∆t

L
sin x1k

(3-9)

x3k+1 = x3k
+ v∆t cos (x1k

) sin
x2k+1 + x2k

2 (3-10)

x4k+1 = x4k
+ v∆t cos (x1k

) sin
x2k+1 + x2k

2 (3-11)

where, L is the length of the Rear part.

.

3-3 Front and Back Steer Machines

In such type of construction models, the machine is steered using both front and steered
vehicles. The driver has control over both the steering angles. Such kind of machines are
modeled using a bicycle model with two steering angles.

Figure 3-6: Compactor with front and rear steering parts
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3-4 Generalized Model 19

Figure 3-7: Kinematic Model of the front and rear steered machine.[32]

xk+1 = vkcos(ψk + β) (3-12)
yk+1 = vksin(ψk + β) (3-13)

ψk+1 = vkcos(β)(tan(δf )) + tan(δr))
lr + lf

(3-14)

where, β = arctan
lf tan(δr)+lrtan(δf )

lr+lf .
In this model, there are four inputs: two steering angles, δf and δr, and two wheel velocities,
vf and vr. The state variables of kinematic motion are the vehicle configuration ( X,Y,ψ)
[32].

3-4 Generalized Model

In order to develop a system which can be implemented on all three type of machines, all
the three models described above has to be included in the system which will increase the
complexity of the system and the computational load. Instead, a single model can be used
to represent the three models described above. Two different techniques are discussed here
which can be used for performing the same:

• Point mass models

• True Machine model

3-4-1 Point Mass Models

Point mass vehicle models are the simplest form of representing a moving object. The whole
vehicle/body is considered to be a point mass. Hence the behavior of the point mass is studied
for different type of transitions. The different scenarios are described below:
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20 Modeling of Construction Machinery

Constant Velocity Model

In this form for prediction and tracking, the vehicle is modeled as traveling at an approxi-
mately constant velocity in magnitude and direction. The transitions between different ve-
locity are modeled by white random noise, and there is no correlation between motion in the
x and y directions. The discrete model can be represented as:

Pxk+1

Pyk+1

Vxk+1

Vyk+1

 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1



Pxk

Pyk

Vxk

Vyk

+


0
0
wx
wy

 (3-15)

A model that assumes that tracked objects have constant velocity is, of course, a very simple
one. In usual scenarios the vehicle undergoes varying velocity hence this model will provide
inaccurate results.

Constant Acceleration/Deceleration Model

A simple extension of the above model is to add the acceleration as a state, and assume that
the acceleration is piecewise constant. This model models the uncertainty of deviations from
the constant acceleration by unknown driver maneuvering.

Pxk+1

Pyk+1

Vxk+1

Vyk+1

Axk+1

Ayk+1


=



1 0 T 0 1
2T

2 0
0 1 0 T 0 1

2T
2

0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1





Pxk

Pyk

Vxk

Vyk

Axk

Ayk


+



0
0
0
0
wx
wy


(3-16)

For our scenario, a non-linear point mass model is considered without taking into consideration
the slip involved in the wheels. The kinematic equations are given by:

xk+1 = xk + u1Tcos(θk) (3-17)
yk+1 = yk + u1Tsin(θk) (3-18)
θk+1 = θk + u2T (3-19)

where θ is the heading angle and u1 is the translational velocity and u2 is the angular velocity
of the machine.

3-4-2 Combined Machine Model

This section is focused on developing a more accurate model of the machine. A single model is
developed which can be utilized to represent the three models under consideration by altering
some parameters. This class of construction machines involves three types of models described
in theFigure 3-1.
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3-4 Generalized Model 21

Figure 3-8: Construction Machinery models

Figure 3-9: Articulated machine

The aim is to develop a model which can be used to represent all the three models. For an
articulated machine as shown in model 3 of 3-8, the kinematic equations of motion when slip
is not being considered are given by:

xk+1 = xk + vk.T.cos(ψk).cos(β) (3-20)
yk+1 = yk + vk.T.sin(ψk).cos(β) (3-21)

ψk+1 = ψk + vk.T.sin(β)
lf + lr.cos(β) (3-22)

The objective of having a generalized model can be achieved if all the three models can be
derived from a common model. In order to achieve this, the points ’A’ and ’B’ of the structure
are connected. The Figure 3-10 describes the modified model.
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22 Modeling of Construction Machinery

Figure 3-10: Modified Model of the articulated structure

It can be observed that in the modified model, by connecting the points A and B, the resulting
structure AB with length ’L’ is also the model 2 of Figure 3-8. In this model, three new
variables are introduced L, θ1, θ2. The interesting point to be noted here is that the three
variables are a function of the articulation angle β. Now, the kinematic equations for this
modified model will be derived with the three variables as a function of the articulation angle
β. By deriving the kinematic model of the this modified model, it will be shown the model 1
and model 3 can also be represented as model 2 of Figure 3-8. Using the cosine rule to the
triangle ’AOB’ of Figure 2,

L =
√
l2f + l2r − 2lf lrcos(π − α) (3-23)

And using the sine rule and above relationship for the same triangle,

lr
sin(θ1) = L

sin(π − α) ,
lf

sin(θ2) = L

sin(π − α) (3-24)

θ1 = sin−1
(
lrsin(π − α))

L

)
θ2 = sin−1

(
lfsin(π − α))

L

)
(3-25)

In Figure 3-11, ’N’ is the instantaneous rolling center of the machine. This point is the inter-
section of lines ’AN’ and ’BN’ which are perpendicular to the orientation of the two steering
parts. ’M’ is the center of gravity pointed by drawing a perpendicular from the articulation
point ’O’ on the axis ’AB’. ’R’ is the length of the line segment joining the center of gravity
and the and rolling center ’N’. The velocity at the COG is perpendicular to the line segment
’OM’. The direction of the velocity at the COG with respect to the longitudinal axis of the
machine is called the slip angle denoted by β.

Now applying sine rule to the triangle ’AMN’,

Lf
sin(θ1 − β) = R

sin(π2 − θ1) (3-26)

Lf
sin(θ1)cos(β)− sin(β)cos(θ1) = R

cos(θ1) (3-27)
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Figure 3-11: Kinematic model

And, applying sine rule to the triangle ’NMB’,

Lr
sin(θ2 + β) = R

sin(π2 − θ2) (3-28)

Lr
sin(θ2)cos(β) + sin(β)cos(θ2) = R

cos(θ2) (3-29)

multiplying both sides of Equation 3-27 by cos(θ1)
Lf

and Equation 3-29 by cos(θ2)
Lr

, we get:

tan(θ1)cos(β)− sin(β) = Lf
R

(3-30)

sin(β) + tan(θ2)cos(β) = LR
R

(3-31)

Adding the above equations and rearranging gives:

R = L

cos(β) ((tan(θ1) + tan(θ2)) (3-32)

Now, the slip angle β can be calculated by multiplying Equation 11 by Lr and subtracting it
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from Equation 3-31 multiplied by Lf :

β = tan−1
(
Lrtan(θ1)− Lf tan(θ2)

L

)
(3-33)

The rate of change of orientation angle is also the angular velocity of the machine. Therefore
we have:

ψ̇ = v

R
(3-34)

Using equation 13, ψ̇ can be calculated as:

ψ̇ = vcos(β)
L

(tan(θ1) + tan(θ2) (3-35)

The overall equations of motion can be given by :

xk+1 = xk + vkTcos(ψk − β) (3-36)
yk+1 = yk + vkTsin(ψk − β) (3-37)

ψk+1 = ψk + vkTcos(β)
L

(tan(θ1) + tan(θ2)) (3-38)

where L, θ1 and θ2 are given by:

L =
√
l2f + l2r − 2lf lrcos(π − α)

θ1 = sin−1
(
lrsin(π − α))

L

)
θ2 = sin−1

(
lfsin(π − α))

L

)
where α is the articulation angle. Now, the other two models can be modified as follows:

Front only steering machine

In this model, with the given length of the machine, and the rear articulation angle being
θ2 = 0, the model can be modified as:

xk+1 = xk + vkTcos(ψk − θ1) (3-39)
yk+1 = yk + vkTsin(ψk − θ1) (3-40)

ψk+1 = ψk + vkTsin(θ1)
L

(3-41)

Front and rear steering machine

In this type of machine model, with the given length of the machine, the equations become:

xk+1 = xk + vkTcos(ψk − β) (3-42)
yk+1 = yk + vkTsin(ψk − β) (3-43)

ψk+1 = ψk + vkTcos(β)
L

(tan(θ1) + tan(θ2)) (3-44)
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where L,θ1 and θ2 are given by:

θ1 = sin−1
(
lrsin(π − α))

L

)
θ2 = sin−1

(
lfsin(π − α))

L

)
and lr = lf = L/2.
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Chapter 4

Kalman filters and State Estimation

4-1 Kalman filters for state and parameter estimation

A Kalman filter estimates the state of a noisy linear dynamic system by noisy measurements
that could be linear related to the systems state. If the corrupting noise is independent, white
and normal distributed with a zero mean; the KF will be a statistically optimal estimator
with respect to any reasonable quadratic function of estimation error.

4-1-1 Linear Kalman Filters

The original KF assumes the underlying dynamic system to evolve in a linear manner and is
for that particular reason commonly referred to as the linear Kalman filter (LKF).

Algorithm

A Kalman filter could be divided into two distinct phases. In the first phase, the prediction
phase, the KF estimates the current state of the system based on the previous state using a
given model of the system. This estimation is called the a priori state estimate since it is an
estimate prior the observation of the system state. The latter is done in the second phase,
the correction phase, where the current state is observed through sensor measurements. The
observations are then combined with the a priori state estimate to form the a posteriori state
estimate - an improved state estimation of the true system state.

Prediction Equations

Looking at the prediction phase, the a priori state estimate vector x̂k|k−1 and the a priori
estimate error covariance matrix Pk|k−1 is given by:

x̂k|k−1 = Fkx̂k−1|k−1 +Gkuk, (4-1)
Pk|k−1 = FkPk−1|k−1F

T
k +GkΓkGTk +Qk (4-2)

Master of Science Thesis Vignesh Radhakrishnan



28 Kalman filters and State Estimation

In this phase the KF essentially drives the state forward in accordance with the system model
and input model matrices represented by Fk and Gk, respectively. Through the covariance
matrices Γk and Qk, the KF is given knowledge about the noise corrupting the system state.
Consequently the KF utilizes this knowledge to, with the estimate error covariance matrix,
reflect the uncertainty of the a priori state estimate.

Correction Equations

The correction phase begins with calculating the innovation ỹk reflecting the difference be-
tween the actual observation zk and the predicted observation

ỹk = zk −Hkx̂k|k−1 (4-3)

and where the innovation covariance is given by

Sk = HkPk|k−1H
T
k +Rk (4-4)

The Kalman gain Kk is a factor determining the extent of the innovation accounted for
when calculating the a posteriori state estimate. The factor is determined by the relative
uncertainty between the a priori state estimate and the innovation.

Kk = Pk|k−1H
T
k S
−1
k (4-5)

= Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 (4-6)

Lastly the a posteriori state estimate x̂k|k, where the predicted state is corrected by the
knowledge obtained from the observation, and the a posteriori estimate error covariance Pk|k
are calculated by:

x̂k|k = x̂k|k−1 +Kkỹk (4-7)
Pk|k = (I −KkHk)Pk|k−1 (4-8)

which completes the KF.

Kalman Filter is an optimal filter for estimating a linear system. Due to its simplicity, it has
found its usage in numerous practical applications. However, many real-world systems are
nonlinear in nature. In order to deal with nonlinearities, many extensions have been devel-
oped over the kalman filter. Here, Extended Kalman filter is described where it accounts for
nonlinearities by linearizing the system about its last-known best estimate with the assump-
tion that the error incurred by neglecting the higher-order terms is small in comparison to
the first-order terms.
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4-1-2 Extended Kalman filter

The Extended Kalman Filter (EKF) is an extension to the original KF to allow for its use
on non-linear systems. The EKF uses a Taylor series approximation to linearize the state
equations about the operating point. This linearizion is made implicit within the filter by
calculation of the Jacobian and Hessian matrices that represent the derivatives of the state
and measurement transition matrices. A full derivation of the equations is not provided here,
but can be found in [16]. Given the dynamics model and the measurement model,

xk = f(xk−1, uk;ψk) + wk−1 (4-9)
zk = h(xk; vk) (4-10)

where wk−1 and vk are the process and observation noises which are both assumed to be zero
mean multivariate Gaussian noises with covariance Qk and Rk respectively. The function f(·)
can directly be used by the EKF to compute the a priori state estimate

x̂k|k−1 = f(x̂k−1|k−1, uk) (4-11)
(4-12)

However, it is not possible to apply f(·) directly to the computations of the a priori estimate
error covariance. To deal with this problem the EKF linearizes f(·) around the a posteriori
state estimate x̂k−1|k−1 of the previous time instance in accordance with

Fk =
∣∣∣∣∂f∂x

∣∣∣∣
x̂k−1|k−1

(4-13)

Gk =
∣∣∣∣∂f∂u

∣∣∣∣
x̂k−1|k−1

(4-14)

where the Jacobian matrices Fk andGk contains the first-order partial derivatives of f(· · · )
with respect to the state x and input u vectors, respectively. The prediction phase is completed
by calculating the a priori estimate error covariance

Pk|k−1 = FkPk−1|k−1F
T
k +GkΓkGTk +Qk (4-15)

Similar to the case of f(·) the function h(·) is directly applied to the a priori state estimate
in the purpose of calculating the innovation

ỹk = zk − h(x̂k|k−1) (4-16)

Again, in order to utilize h(·)in the remaining equations it needs to be linearized. This time
the linearizion takes place around the a priori state estimate x̂k|k−1 as started by

Hk =
∣∣∣∣∂h∂x

∣∣∣∣
x̂k−1|k−1

(4-17)

(4-18)
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where Hk is the the Jacobian matrix of h(· · · ) with respect to the state x. Finally the
correction phase is completed by

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 (4-19)

x̂k|k = x̂k|k−1 +Kkỹk (4-20)
Pk|k = (I −KkHk)Pk|k−1 (4-21)

which completes the EKF as well.

4-2 Model and Filter Validation

In this section, the filter and the machine model developed in the previous chapter is validated.
It is assumed that the only information obtained from the GPS is position and velocity of the
machine. With the help of an EKF the other states are estimated. Since the model developed
in the previous chapter also has unknown parameters which are used to calculate the states,
the same filter is also used for parameter estimation. The parameters are considered as
additional states and augmented with the state equations. The augmented state equations
are given by:

zk+1 =
[
xk+1
θk+1

]
=
[
f(xk, uk, θk)

θk

]
(4-22)

where, xk+1 are the states and θk are the parameters to be estimated. Now, the states are
defined in the following ways for pointmass and machine model:

Point mass filter

zk+1 =


xk+1
yk+1
vk+1
θk+1
acck+1

 =


xk + vkTcos(θk)
yk + vkTsin(θk)
vk + Tacck

θk
acck

 (4-23)

Machine Model

zk+1 =



xk+1
yk+1
ψk+1
θ1k+1

θ2k+1

Lk+1
βk+1
αk+1


=



xk + vkTcos(ψk − β)
yk + vkTsin(ψk − β)

ψk + vkTcos(β)
L (tan(θ1k

) + tan(θ2k
))

sin−1
(
lrsin(π−αk))

L

)
sin−1

(
lf sin(π−αk))

L

)√
l2f + l2r − 2lf lrcos(π − αk)

tan−1
(
Lrtan(θ1k

)−Lf tan(θ2k
)

L

)
αk


(4-24)
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The process and measurement covariance matrices Q and R, also act as the tuning matrices of
the filter. The starting values for the tuning matrices were assumed to be diagonal matrices
with diagonal elements as the standard deviation of the noise present in the GPS signals. So,
for R we have,

R =

σx 0 0
0 σy 0
0 0 σv

 (4-25)

After a number of simulations, the following values of Q and R gave desirable results.

R =

3.7334e− 09 0 0
0 3.7334e− 09 0
0 0 0.23

 (4-26)

Q =



10−6 0 0 0 0 0 0 0 0 0
0 10−6 0 0 0 0 0 0 0 0
0 0 10−5 0 0 0 0 0 0 0
0 0 0 10−4 0 0 0 0 0 0
0 0 0 0 10−6 0 0 0 0 0
0 0 0 0 0 10−5 0 0 0 0
0 0 0 0 0 0 10−6 0 0 0
0 0 0 0 0 0 0 10−6 0 0
0 0 0 0 0 0 0 0 10−5 0
0 0 0 0 0 0 0 0 0 10−6


(4-27)

One of the essential aspect of the full kinematic model previously derived is the machine
heading. The validity of the model is thereby possible to verify by comparing the heading
measured by the GPS with the value obtained from the model. Also, along with the position
and velocity, heading is the only other parameter obtained from the GPS. Hence the heading
can be compared with the real heading obtained from GPS. In addition, the filtered position
is also compared with the true GPS position. Sometimes, the filter behaves in favor of a single
state on the cost of other states causing the filter to perform poorly. Hence its necessary to
validate the crucial states (Position and Heading) of the system.

The plots clearly indicate that the filter is able to estimate the heading with good accuracy
for both point mass model and machine model. Also, the position is being filtered with high
accuracy described in the position error plot Figure 4-4 . With the validation of the filter,
it can also be concluded that the combined machine model derived in th previous chapter
reflects the behavior of the actual machine.
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Figure 4-1: Estimated Heading angle comparison with True GPS Heading
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Figure 4-2: Absolute error between estimated and true heading
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Figure 4-4: Absolute error between filtered and true GPS position
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Chapter 5

Threat Assessment System

5-1 Braking/Warning Model

In conventional Collision Avoidance System (CAS) functioning in todays cars/trucks, there are
two zones defined for which the collision avoidance system performs two different functions.

• Warning Zone: This is the region, where the system anticipates a risk of collision and
hence issues waring warning to the driver using some type of driver interface.

• Braking zone: If the driver fails to react to the warnings, and a machine/obstacle is
detected in the braking zone, the machine is brought to a complete stop without the
drivers intervention.

The same technique is utilized for this project. The two zones are determined by defining two
prediction horizons for which the machines position are calculated.

5-1-1 Warning/Braking Model

An effective CAS depends on many factors. Basically the system needs to reliably be able to
detect surrounding objects, take decisions on when to warn, and finally issue the warnings to
the driver using a human machine interface. The timing of a CAS alarm is fundamental to the
functionality of the complete system. The algorithm used by CAS which results in this alarm
timing is usually based on objective assumptions of a driver’s response when required to brake,
along with the physical characteristics of the vehicle in its stopping ability. For example, a
CAS under development at Honda calculates the braking distance based on velocity, relative
velocity and deceleration of the two vehicles [17]. Whenever the real distance between the
following and the leading vehicle is less than the braking critical distance calculated by the
algorithm, the CAS sounds its warning. Basically, two driver behavior parameters are critical
in determining a drivers stopping distance based on a collision warning [17]. The first is the
reaction time which is the time it takes the driver to understand the situation and apply
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36 Threat Assessment System

Figure 5-1: Conventional CAS utilized in Trucks and Passenger cars consisting of two regions:
Braking and Warning region

the brakes in addition to a possible system delay to execute the command. The second
parameter is the acceleration the driver applies. In order to calculate the appropriate warning
time, a warning model which is widely recognized [18],[19] is used. According to the models,
the stopping distance which the driver needs to bring the vehicle to a complete stop when
receiving a warning is

dstop = twvw −
v2
w

2ar
where tw is the sum of the driver and brake system reaction time, ar is the deceleration
the driver responds applies to the warning,vw is the vehicle speed at the time the warning
is issued. Based on this model, it is possible to decide if a crash will occur and what the
collision velocity vc would be for given velocity and warning timing if tw and ar are known.
Hence the important issue is to calculate the warning time tw.
tw is dependent two variables, the driver’s reaction time and the brake system reaction time.
It is assumed that the desired braking acceleration is constant and reached instantly when
applying the brakes. The driver’s reaction time is a variable which varies from driver to
driver. There has been a lot of analysis performed on driver’s reaction time [18][20], some
standard organizations have even established norms (2.5 secs in the United states and 2.0 sec
in Europe). In [21] it is stated that 85% of all drivers are able to react to a warning within
1.18 seconds whereas in [18], a reaction time of 1.12 was found to be appropriate.
Based on the above two analysis, a reaction time of 1.15 secs was selected for the warning
model. The driver braking response is a factor which varies for different scenarios and also
depends on the machine under consideration. It is assumed that there is no rise time during
the braking period. Also, the braking response for construction machines will be lower due
to their low operating speed. For this project it is assumed that the driver decelerates the
machine at the rate of −3.5m/s2.
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Figure 5-2: Reaction time according to [21]

Figure 5-3: Lognormal Distribution of Driver Braking Reaction Times (Histogram at 0.2 Second
Intervals) [18]

The two regions, warning and braking regions are defined as Twarn and Tbrake. The idea is to
calculate the predicted position every time step up to Twarn and Tbrake and to warn the driver
when a obstacle is detected in the warning region, and brake actively with full potential when
an obstacle is detected in the braking region. Therefore, the final equations for calculating
the two prediction horizons Twarn and Tbrake are :

Twarn = vw
ar

+ treact (5-1)

Tbrake = vb
amax

(5-2)

where, treact is the reaction time considered as 1.15 sec, vw is the velocity of the machine
when an obstacle/machine is detected in the warning zone, ar assumed acceleration with
which the driver reacts for the warnings issued, vb is the velocity of the machine when an
obstacle/machine is detected in the braking zone and amax the maximum acceleration with
which the machine decelerates to bring the machine to a complete stop.
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Figure 5-4: Visual representation of the two regions

5-2 Prediction Results

The prediction model that is utilized is described in (5-3) to (5-6) . Two different trajectories
were considered to validate the predictions one being more nonlinear than the other. The two
trajectories considered are described in the plot Figure 5-5:

xk+1 = xk + vkTcos(ψk − β) (5-3)
yk+1 = yk + vkTsin(ψk − β) (5-4)
vk+1 = vk + Tacck (5-5)

ψk+1 = ψk + vkTcos(β)
L

(tan(θ1k
) + tan(θ2k

)) (5-6)

These trajectories are obtained from recorded GPS measurements from the machines and
are used as the input for the filter. Following results describes the error between the GPS
measurements and the predicted position for the two prediction horizons. Results for each of
the two trajectories are described for both prediction horizons, t = tbrake and t = twarn. The
error for prediction horizon tbrake is usually less since a machine does not require much time
to brake completely utilizing its full potential. Also, The predictions are calculated for both
point mass model and the machine model and compared.

For Trajectory A

For trajectory A, the results obtained from point mass models are similar to the machine
model with machine model performing marginally better than the point mass model. This
can be attributed to linearity of the trajectory.
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Figure 5-5: Real-Time Trajectories A and B on which the whole analysis has been conducted.

Model RMS of Error
Point Mass Model 0.0520
Machine Model 0.0475

Table 5-1: RMS Position Error Comparison for t = tbrake

Model RMS of Error
Point Mass Model 0.6619
Machine Model 0.6596

Table 5-2: RMS of Position Error Comparison for t = twarn

For Trajectory B

Model RMS of Error
Point Mass Model 0.1179
Machine Model 0.1046

Table 5-3: RMS Position Error Comparison for t = tbrake

Type of Trajectory RMS of Error
Point Mass Model 1.0383
Machine Model 0.8057

Table 5-4: RMS Position Error Comparison for t = twarn

In this trajectory, the path contains more non-linearity which causes the point mass model to
perform poor. The machine model, which reflects the behaviors of the actual machine is able
to determine the actual dynamics involved and hence performs better than the point mass
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model when the machine has to follow a non-linear trajectory. A conclusion can be made
that the point mass models fails to capture the dynamics of the machine and hence is not
a reliable model for calculating predictions. Point mass models have an advantage when it
comes to simplicity, but a trajectory of a machine cannot be anticipated and hence a system
which can perform in both kind of trajectories has to be utilized. The further analysis in the
report is based on the machine model.

5-2-1 Prediction using Iterative Extended Kalman Filter (EKF)

Figure 5-6: Iterative EKF calculates the new predictions for a horizon of 0.1 iterated till t = twarn

and t = tbrake

The prediction model used for the analysis so far calculates the future positions based on the
model described in (5-3) to (5-6), where T varies every sample according to the calculated
Twarn and Tbrake. There exists another technique for calculating the predictions. The tech-
nique used in the analysis so far faces a serious issue while addressing non-linear trajectories.
When the prediction horizon is large, the model fails to anticipate the non linearities and
hence causes the position error to be large. This problem can also arise when the machine
makes abrupt changes in its trajectory. The issue can be described in the Figure 5-6. The
predictions are calculated based on the present states alone which causes the large errors
in the position when the prediction horizon is large. In order to deal with this problem an
iterative EKF is utilized in which the filter is iterated upto the calculated prediction horizon.
Since the input measurements are not available for the future estimation calculations, the
measurements matrix is considered as zero and only the time update is performed. The time
update is performed for The results are shown in the following figures.

Trajectory B RMS of Error
t = tbrake 0.1540
t = twarn 0.5902

Table 5-5: RMS of position error for Trajectory B using Iterative EKF method
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Algorithm 1 Calculating Predictions Using Iterative Time Update of EKF
1: procedure ITER EKF
2: tsamp = SmaplingT ime
3: iter = twarn/tsamp
4: for i=1: iter do
5: T=0.1

6: zk+1 =



xk + vkTcos(ψk − β)
yk + vkTsin(ψk − β)

ψk + vkTcos(β)
L (tan(θ1k

) + tan(θ2k
))

sin−1
(
lrsin(π−αk))

L

)
sin−1

(
lf sin(π−αk))

L

)√
l2f + l2r − 2lf lrcos(π − αk)

tan−1
(
Lrtan(θ1k

)−Lf tan(θ2k
)

L

)
αk


7: end for
8: Return zk+1
9: end procedure
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Figure 5-7: Histogram Comparison of position error calculated at prediction horizon t = twarn

for trajectory B with and without Iterative EKF

The comparison is conducted for both trajectory A and B. Trajectory A being more linear
produces more or less the same results for the type of models. Trajectory B on the other
hand is more nonlinear hence providing a better idea on how the iterative EKF works better
than the prediction model used in the previous analysis. The results describes the improve-
ments achieved by the iterative EKF method over the normal prediction model especially for
trajectory B.

The root mean square of the position error for t = twarn is reduced by 20%. A better
understanding of the problem can be achieved by looking at the histogram plot. Apart from
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the reduced RMS values, another important aspect which the iterative EKF accomplishes
is the reduced frequency of position errors which are more than 1 meters Figure 5-7. The
CAS becomes much more efficient when the position error of the predictions is less than 1
meters. This is a major advantage over the normal prediction method, since the normal
method calculates predictions which are at instances more than 3 meters because of the
reasons explained before Figure 5-6.

5-3 Combined Machine Model vs True Machine Model

The- combined machine model was developed in order to save the extra computational power
caused while using the three different models individually but not on the cost of model
performance. This section compares the results obtained from predictions calculated at t =
twarn for the combined machine model and their original machine models. The system was
investigated with two type of machines models, the waist steered machines and the front only
steered machines. The results are described below:
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Figure 5-8: Histogram Comparison of position error calculated at prediction horizon of t = twarn

(Front Steered Model)

Front Steered Machine RMS of Error
Machine Model 0.2895

True Machine Model 0.3417

Table 5-6: RMS comparison of position error calculated at prediction horizon of t = twarn for
Front steered machine

For both the cases the combined machine model reflects the behavior of the machine better
than its actual model. This can be attributed to the fact that combined machine model is
capable to capture more dynamics when compared to the front and waist steered machine.
The performance would be similar if the true machine model is capable to capture the dy-
namics introduced in the combined machine model. But again, adding more dynamics to
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Figure 5-9: Histogram Comparison of position error calculated at prediction horizon of t = twarn

(Waist Steered Model)

Front Steered Machine RMS of Error
Machine Model 1.1075

True Machine Model 1.4630

Table 5-7: RMS comparison of position error calculated at prediction horizon of t = twarn for
articulated steered machine

the true model and using them together in the system would increase the complexity and
computational load of the overall system which is not desirable.

5-4 Fault Detection Based on Residual

For a collision warning system to be effective there are many requirements that need to be
fulfilled. To start with, the system needs to reliably be able to detect surrounding objects,
take decisions on when to warn, and finally issue the warn to the driver using a human
machine interface. The importance of the timing of the warning has been pointed out in
several publications [24]. The requirements on the warning timing can be expressed in two
opposing requirements [24]:

• the warning should be early enough so that the driver can react and avoid the accident

• the warning should be late enough so that it does not trigger during normal operation
conditions

If the first requirement is not fulfilled, the driver will not be able to avoid the accident. In this
case, the collision might in best case be mitigated. If the second requirement is not fulfilled,
the system will warn in situations where the operator perceives the warning as inappropriate
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since he or she is in full control of the situation. This will cause irritation among the drivers
and lead to miss-trust in the system. If possible, the drivers might actually turn the function
off [26]. These consequences will result in either severely limited or no safety benefits.

Global Positioning System (GPS) measurements are sometimes corrupted with high level of
noise. Hence, the predictions obtained are sometimes false. The idea is to switch of the
warning system when the predictions obtained are false. In order to have such a system
which could anticipate the false predictions, the prediction system was tested on real time
data to check where the predictions have the largest error. It was found that every time the
machine changes direction or has a abrupt change in the velocity, the predictions started to
have large error.
This problem is solved using a moving horizon based residual approach. At every sample, the
position is predicted at T = 1 and compared with the true GPS location. Whenever the error
difference between the true GPS position and the prediction is more than a threshold value,
the system stops issuing warnings. A moving horizon is set up each for the GPS inputs and
for the predictions calculated. At time t the , the last T GPS measurements and predictions
are known.

GPS =
[
x(t− T ) x(t− T + 1) · · · x(t− 1) x(t)
y(t− T ) y(t− T + 1) · · · y(t− 1) y(t)

]
(5-7)

ˆPredPos =
[
x̂(t− T ) x̂(t− T + 1) · · · x̂(t− 1) x̂(t)
ŷ(t− T ) ŷ(t− T + 1) · · · ŷ(t− 1) ŷ(t)

]
(5-8)

The window size is calculated by:

Ws = PredictionHorizon

Samplingtime
(5-9)

where the prediction horizon is a tuning parameter. The residual is given by:

Res =
√

(x̂(t− T )− x(t))2 + (ŷ(t− T )− y(t))2 (5-10)

Based on this residual the divergence is anticipated and the warning system is switched of.
The result is shown in Figure 5-11. The red lines indicate the instances when the algorithm
anticipates the divergence. During these instances the warnings will be switched off.

This can be considered as one of the drawbacks of the system since, the warnings does not have
a 100% operating region. These situations exist when the driver makes abnormal maneuvers
or when the GPS is corrupted with significant noise level.

5-5 Collision Detection Algorithm

After the predictions are calculated for the two predictions horizons, the next step is to detect
the possibility of a collision. In order to achieve that, the machines have to be represented in
some form since, the GPS only provides the point mass location. There can be different ways
of representing the machines given the length and breadth of the machine. Two of the most
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Algorithm 2 Fault Detection Algorithm
1: procedure ERR DETECT
2: Ph=Prediction Horizon
3: tsamp = SamplingT ime
4: T = Ph/tsamp
5: GPS = zeros(2, T )
6: Pred = zeros(2, T )

7: GPS=
[
x(t− T ) x(t− T + 1) · · · x(t− 1) x(t)
y(t− T ) y(t− T + 1) · · · y(t− 1) y(t)

]

8: Pred =
[
x̂(t− T ) x̂(t− T + 1) · · · x̂(t− 1) x̂(t)
ŷ(t− T ) ŷ(t− T + 1) · · · ŷ(t− 1) ŷ(t)

]
9: err =

√
(x̂(t− T )− x(t))2 + (ŷ(t− T )− y(t))2

10: for i=1:T do
11: GPS(:, i) = GPS(:, i+ 1)
12: Pred(:, i) = Pred(:, i+ 1)
13: end for
14: end procedure

0 20 40 60 80 100 120 140 160 180 200 220 2400

0.5

1

1.5

2

2.5

Time (Sec)

A
bs
ol
ut
e
Er

ro
r
(m

)

Warning Off signal (1/0)
Position error at twarn

Figure 5-10: Warning off signals when Position error increases more than a threshold value (1
meter)

prominent ways of representing the machine is by circles and polygons. In many analysis
for obstacle avoidance, the machine as well as the obstacles are represented as circles with
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fixed radius [22], [8]. but in those applications, the system developed was a machine specific
application. As discussed earlier, generalization is considered as one of the main factors of the
project. Representing construction machines as circles lead to an additional problem. With
increasing size of the machine, the circular representation adds on more ineffective space to
the algorithm. This can be represented by the following figure :

Figure 5-11: Problem using Circles for representing Machines and their predictions

To overcome this issue, the machines are represented as convex polygons. Given the length
and the width of the machine, the convex polygons provides much more efficient way of
representing the machines. Separating axis theorem is one of the widely used algorithms for
collision detection [33]. It states the following:

• if two convex polygons are not intersecting, there exists a line that passes between them.

• such a line only exists if one of the sides of one of the polygons forms such a line

Basic Idea of Seperating Axis Theoram

A test for non intersection of two convex objects is simply stated: If there exists a line for
which the intervals of projection of the two objects onto that line do not intersect, then the
objects are do not intersect. Such a line is called a separating line or, more commonly, a
separating axis. The translation of a separating line is also a separating line, so it is sufficient
to consider lines that contain the origin.

Figure 5-12: Separating Axis Theorem visual representation
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For a pair of convex polyhedral in 3D, only a finite set of direction vectors needs to be
considered for separation tests. That set includes the normal vectors to the faces of the
polyhedra and vectors generated by a cross product of two edges, one from each polyhedron.
The intuition is similar to that of convex polygons in 2D. If the two polyhedral are just
touching with no inter penetration, then the contact is one of face-face, face-edge, face-vertex,
edge-edge, edge-vertex, or vertex-vertex. In any of these cases, the algorithm would detect a
collision.

Projection

The next concept that Separating Axis Theorem (SAT) uses is projection. Imagine that you
have a light source whose rays are all parallel. If light is shown at an object, it will create a
shadow on a surface. A shadow is a two dimensional projection of a three dimensional object.
The projection of a two dimensional object is a one dimensional shadow.

Figure 5-13: A 2-D projection of a 3-D Convex Polygon

(a) Two Separated Convex
Shapes

(b) Two Separated Convex
Shapes With Their Respective
Projections

Figure 5-14: Non-Itersecting Polygons
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No Intersection

If we choose the perpendicular line to the line separating the two shapes in Figure 5-14a, and
project the shapes onto that line we can see that there is no overlap in their projections. A
line where the projections (shadows) of the shapes do not overlap is called a separation axis.
In Figure 5-14b the dark gray line is a separation axis and the respective colored lines are the
projections of the shapes onto the separation axis. Notice in Figure 5-14b the projections are
not overlapping, therefore according to SAT the shapes are not intersecting.

Intersection

Figure 5-15: Two Intersecting Polygons

If, for all axes, the shape’s projections overlap, then we can conclude that the shapes are
intersecting. Figure 5-15 illustrates two convex shapes being tested on a number of axes.
The projections of the shapes onto those axes all overlap, therefore we can conclude that the
shapes are intersecting.

The host machines and the other machines and their predictions are represented as convex
polygons. Hence the theorem explained above can be utilized in real time collision detection
among the polygons. The plots Figure 5-16 to Figure 5-20 describes how the algorithm works
in real time. During each time sample, every side of both the polygons are projected on
four axes (4 sided convex polygons) and calculated if an overlap exists among the respective
projections.

5-6 Plots

The following section describes the results obtained from different analysis performed in the
thesis project. First, the position errors are plotted for the point mass model and combined
machine model for trajectory A and B. It is followed by the position error obtained from the
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iterative EKF method. After the analysis of the different plots, collision detection algorithm
using SAT is described. Finally, a scenario is simulated for the Trajectory A , where the
machine is simulated to collide with an stationary obstacle. The plots describe the different
scenarios which can happen during real time implementation of the system.
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Figure 5-16: Trajectory A: Error plot for Point Mass and Machine Model, for a predicted horizon
t = tbrake
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Figure 5-17: Trajectory A: Error plot for Point Mass and Machine Model, for a predicted horizon
t = twarn
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Figure 5-18: Trajectory B: Error plot for Point Mass and Machine Model, for a predicted horizon
t = tbrake
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Figure 5-19: Trajectory B: Error plot for Point Mass and Machine Model, for a predicted horizon
t = twarn
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Figure 5-20: Trajectory B: Error Plot calculated using iterative EKF method for both predicted
horizons t = twarn and t = tbrake
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Figure 5-21: Collision not detected: The
polygons 1 (black) and 2 (green) do not in-
tersect each other. On the right and left
part, the projections do not overlap each
other

Figure 5-22: Collision detected: One side
of the polygon 1 (black) intersects two sides
of the polygon 2 (red). On all four sides, the
projections overlap each other.

Figure 5-23: Collision detected: Two sides
of the polygon 1(black) intersects one side
of the polygon 2 (red). On all four sides,
the projections overlap each other.

Figure 5-24: Collision detected: One side
of the polygon 1(black) intersects two sides
of the polygon 2 (red). On all four sides,
the projections overlap each other.

Figure 5-25: Collision not detected: The polygons 1(black) and 2 (green) do not intersect each
other. On the top and bottom, the projections do not overlap each other
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Figure 5-26: Plot describing a collision scenario of a waist steered machine with a stationary
obstacle. Two parts of each of the polygon depicts the front and rear part of waist steered
machine. In this scenario, the machine is simulated to collide with the obstacle. The position
error at t = twarn is given at the top right of the plot which varies at every time sample.
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Figure 5-27: Polygon in Green for twarn and in blue for tbrake indicates that there is no collision
detected among the predicted position and obstacle.
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Figure 5-28: The polygon detects a collision and hence turns into red. At this moment, the
system will warn the driver of a possible collision through Human Machine Interface (sound/light
warnings)
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Figure 5-29: This is a scenario when the driver does not respond to the warnings. The polygon
at t = twarn is still in red color and continues issuing warning because the algorithm still detects
a collision between the position at t = twarn and t = tbrake. This is done by performing the
collision detection algorithm for every time sample existing between t = twarn and t = tbrake.
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Figure 5-30: The obstacle’s presence in the braking region turns the polygon to red color.
As soon as the polygon detects a collision, the machine is brought to full stop by applying its
maximum deceleration force
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Figure 5-31: The machine here is under normal working condition
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Figure 5-32: The polygon at t = twarn is absent in this figure. This is where the warning is
switched off because the position error crosses the threshold value, here the threshold being set
at 1 meter.
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Figure 5-33: Once the position error decreases below the threshold value, the warning is again
switched on and the system operates in its normal condition
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Chapter 6

Conclusions and Future Work

6-1 Results

In this thesis, three important aspects of Collision Avoidance System (CAS) was investigated.
First, the problem of model generalization was addressed , second an Extended Kalman
Filter (EKF) filter was formulated for estimating the missing states and parameters. Third,
a model based deterministic approach was implemented for the threat assessment system.

• A new model was derived which has capability to capture the dynamics of all the
three considered models. In order to validate the model, the prediction results of the
derived combined machine model were compared with their true machine models. The
results show that the model is capable of producing better results than their original
models. This is due to the fact that the combined machine model is able to capture
more dynamics than the true models.

• An extended kalman filter was formulated for calculating the missing states and pa-
rameters of the derived model. The model was validated by comparing the results of
the filter with real-time Global Positioning System (GPS) data. Predictions were calcu-
lated for two different trajectories (linear and non-linear). A new method was devised
which utilized a kalman filter in a iterative way to calculate the predictions. This new
method proved to be better performing than the usual prediction method for non-linear
trajectories.

• With the help of a predefined warning model, two prediction horizons were formulated
taking into consideration the driver’s reaction time. A fault detection system was also
designed for switching off the warning system when an error is anticipated in the cal-
culated predictions. The result described that the fault is diagnosed but with a delay
which depends on the window side (Tuning factor). Finally, a collision detection algo-
rithm was devised which was based on the separating axis theorem which considered
the host machine and its future predictions as convex polygons.
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6-2 Future Work

1. One of the most important aspect for a efficient CAS is the knowledge about the en-
vironment where the machine is operating. This is achieved by equipping the machine
with more number of sensors. More sensors (Radar, Lidar, Cameras) other than the
GPS units alone can be utilized and with the help of sensor fusion more knowledge about
the environment can be obtained. Such systems have proved to be of high capability
in todays Trucks and passenger cars. Another way of improvising it is to combine the
GPS measurements with the inertial navigation system. According to literature, such
systems are very efficient in providing necessary information without the danger of loss
of information during GPS outrage.

2. Another area which can be investigated more is the threat assessment system where
instead of a deterministic approach, probabilistic approach is applied. Probabilistic
approach tends to be more computationally heavy but helps in providing better under-
standing of a risk of a collision [8].
In another approach, the future driver inputs of the surrounding objects can be mod-
eled as random variables. In order to capture realistic driver behavior, a dynamic driver
model can be implemented as a probabilistic prior, which computes the likelihood of a
potential manoeuver. A distribution of possible future scenarios can be then approxi-
mated using Monte Carlo sampling. Based on this distribution, probability of collision
or time to collision can be calculated [34].

3. The threat assessment system can be further improved by improvising a gain scheduling
controller which could control the deceleration of the vehicle based upon the distance
of the machine from the obstacle. This will help in braking the machine with smoother
transitions rather than braking the machine instantly causing discomfort to the driver.
Furthermore, path planning algorithms can also be integrated with CAS which can help
provide more accurate predictions since the machine trajectory will be predefined.
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Glossary

List of Acronyms

CAS Collision Avoidance System

GPS Global Positioning System

MPC Model Predictive Control

TTC Time To Collision

EKF Extended Kalman Filter

SAT Separating Axis Theorem
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