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Abstract 

Deployable structures using tape-springs are a promising option to minimize the volume occupied by 

satellites at launch and reduce launching costs. The attractive characteristics of tape-springs made of 

ultra-thin woven composites are their high specific stiffness and bi-stable behavior. However, the 

most important shortcoming is the complexity of their mechanical analysis. Textile composites are 

formed by the weaving of bundles of fibers creating a very complex microstructure, and tape-springs 

present a highly nonlinear mechanical behavior subjected to multi-axial loadings. Therefore, conven-

tional mechanical models developed for unidirectional lamina no longer apply since they do not take 

into account stress gradient effects through the representative volume element (RVE). In this work, a 

multi-scale approach is validated to predict the failure initiation of tape-springs. Micromechanical 

models are used to predict analytically the stiffness properties of the fiber bundles, while FE- 

mesoscale models describe the woven structure and provides stiffness and strength properties for 

computations on macroscale. A case study of hybrid laminates composed of woven and unidirection-

al layers is analyzed for its application on tape-springs. Manufacturing defects related to ply waviness 

of the UD layer have been detected and taken into account to estimate the reduction of the overall 

stiffness properties. Finally, a dedicated failure criteria based on the force and moment resultants 

have been used to predict failure initiation of the tape-springs under multi-axial loading conditions. A 

good correlation was found between the finite element analysis and experimental observations. 
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 Introduction 

The concept of deployable structures allows large satellites to be packed compactly during transpor-

tation which can be expanded back for operation. This may enable space structures to have larger 

dimensions than the available payload volume of a launcher. Tape-springs are thin-walled self-

deployable strips that can be highly elastically deformed. Deployable structures made of composite 

tape-springs are a promising option to pack space structures because of their low coefficient of 

thermal expansion and low mass to deployed stiffness ratio [1]. The use of woven composites is pre-

sented as one of the best options to obtain tape-springs with tight coiled stable state, which allows 

very compact and lightweight designs. 

The space industry design standards require a structure to avoid any type of failure, thus an accurate 

prediction of damage onset is essential for the safest and yet, optimized design [2]. Although numer-

ous failure theories to predict damage behaviour have been developed for unidirectional composite 

plies, this task becomes particularly complicated in woven laminates subjected to complex loading 

conditions. For example, stress gradients can be seen in an individual fibre tow due to the complexity 

of the weave geometry. Dedicated failure theories are still under development. 

1.1 Aim 

The goal of this thesis is to validate a model to predict the failure initiation of tape-springs made of 

woven composites that are subjected to multiaxial loadings by using a multi-scale approach that con-

siders stress gradient effects through the representative volume element of the woven composite. 

Based on the thesis objective, the following research questions are proposed: 

1. How accurately is it possible to predict the stiffness and failure initiation of woven compo-
sites by using a multi-scale approach that idealizes the RVE of the actual woven composite by 
considering elliptical/lenticular section yarns and homogenized elastic properties? 

a. Is it acceptable to assume a simplified RVE when compared to experimental data? 
b. Does the effect of these assumptions vary between plain and twill weave patterns? 

2. What is the best weaving pattern to be used in composite tape-springs for deployable space 
structures? 

a. How does the weaving pattern affect the overall stiffness of tape-springs? 
b. Is there a significant change in the failure initiation load due to the weaving pattern? 

1.2 Context 

This thesis has been carried out at Thales Alenia Space (TAS) in the in the Research and Technology 

(RT) department. The project is part of an ambitious program that seeks to develop new deployable 
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satellite systems to face new market trends. Specifically, the thesis is focused on the damage initia-

tion prediction in textile composites for deployable structures based on tape-springs.  

On the one hand, most of the work previously done by the department has been focused on thermo-

mechanical properties characterization of woven fabrics by using conventional mechanical models 

such as the Classical Laminate Theory. These models assume that either the stress or the strain state 

is uniform across a representative volume element (RVE) of the textile composite, which is the small-

est part to represent the homogenized properties of the macroscopic material. Although this as-

sumption may be valid to predict in-plane thermo-elastic properties, there are significant deviations 

in the flexural properties, especially for thin woven laminates [3]. This thesis hypothesizes a dedicat-

ed micromechanical approach that includes non-uniform stress considerations in order to determine 

the multiaxial stiffness of woven composites. 

On the other hand, there has been little or no work on the failure initiation prediction of hybrid tex-

tile composites subjected to multiaxial loadings. Textile composites are formed by the weaving of 

bundles of fibers creating a very complex microstructure. Therefore, conventional failure theories 

developed for unidirectional lamina no longer apply. This thesis validates a dedicated failure initia-

tion theory that accounts for the interactions between yarns in the mesoscale level when complex 

multi-axial loads are applied in the macroscale level. 

1.3 Outline 

This dissertation is organized in six chapters. After the present introduction, Chapter 2 presents a 

review of the mechanical behaviour of deployable structures based on tape-springs. The characteris-

tics of woven composites are introduced, and the existing modelling techniques to analyse them are 

compared. Chapter 3 describes the FE unit cell approach and presents the micromechanical model 

used to homogenize the mechanical properties of woven composites. The failure analysis procedure 

is validated using three different weave laminates under different loading conditions. Chapter 4 ex-

tends the application of the unit cell approach to hybrid composites based on woven and unidirec-

tional layers, whose peculiarities are analysed by making use of micrographs. The mechanical proper-

ties of the laminates are estimated and the results are used in Chapter 5 to predict the macroscopic 

failure behaviour of tape-springs subjected to multi-axial loading. Finally, Chapter 6 presents the 

overall conclusions and suggest a set of recommendations for future research. 
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 Background and Literature 

Study 

2.1 Deployable Space Structures 

There is great interest in developing innovative compact structures that require no external source of 

energy when deployed in orbit. The goal is to reduce launching costs by making efficient use of the 

available payload volume, i.e. minimize the volume occupied by the satellite at launch. Since the 

mass is also an important limiting factor, deployable elastic structures are a promising alternative to 

heavier structures with articulated joints. Thales Alenia Space is working on new satellite concepts 

based on tape-springs. 

Tape-springs have been typically made from well-known materials such as steel or copper-beryllium 

alloys. However, materials with near-zero coefficient of thermal expansion (CTE) and high specific 

stiffness are required in support structures of high technology satellites. Fiber-reinforced composite 

materials with in-plane CTE that is near zero can be achieved by varying the orientation of plies hav-

ing positive and negative CTEs [4]. 

Another essential requirement is to ensure that no damage occurs during the operational life of the 

satellite. Damage tolerance philosophy is adopted in the aeronautical industry with regular aircraft 

maintenance. However, this philosophy is no longer valid in the space industry, where satellites can-

not be repaired after launch. Therefore, the strength of the composite tape-springs must be high 

enough to avoid failure initiation. 

During launch, the spacecraft experiences the most critical loading conditions. The satellite structure 

must prevent launch vibrations from harming the payload instruments [5]. The structure will be in 

the stowed position, with the tape springs loaded in tension to handle the dynamic launch loads. 

However, due to the tape spring mechanical behavior there is a moment required to flatten the tape-

springs as shown in Figure 1. Therefore, the tension force in the stowed position leads to a complex 

loading state that will define the strength requirements of the tape-springs. 
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Figure 1. Tape-spring configurations [6, 7] 

2.2 Bi-stable Tape Springs 

Tape-springs are thin-walled strips, with a constant curved cross-section in its free state as shown in 

Figure 1 at top-right. They can be compared to a straight beam that can be folded elastically and 

capable of deploying themselves by releasing the stored strain energy [8]. This allows the use of 

lightweight guides to control the structure deployment without the need of actuators. Tape-springs 

may have two stable states if made from fiber-reinforced composites: an extended state where there 

is no energy stored, and a tight coiled state. Both correspond to equilibrium configurations, i.e. the 

strain energy has zero slope for small variations in the principal curvature κx and the angle β sub-

tended by the cross-section (see Figure 1). However, these configurations will be stable only if the 

energy is at a local minimum. On the one hand, the extended state is clearly stable since there is no 

strain energy stored. On the other hand, the coiled state satisfies the stable equilibrium conditions if 

there is no coupling between bending and twisting (D16 = D26 = 0), and if the following expression is 

positive [9]. 

4
𝐷66
𝐷11

+ 2
𝐷12
𝐷11

− 2
𝐷22

𝐷11𝐷12
> 0 (1) 

where Dij are coefficients of the [ABD] matrix, which relates forces and moments to strains and cur-

vatures for any laminate as follows: 
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 (2) 

The advantage of the bi-stable tape springs is that they avoid the need of a mechanism to retain the 

coiled configuration, which results in a very compact and lightweight design. 

The two bi-stability conditions mentioned above can be achieved by anti-symmetric layups using 

unidirectional plies. However, such laminates may have significant in-plane/out-of-plane coupling 

since the [B] matrix terms are not zero. This generally leads to out-of-plane distortions during manu-

facturing and operation in space environment due to thermal loads. The use of woven fabrics is a 
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better option because laminates with zero [B] matrix can be obtained, as it is further explained in 

Section 2.3. Furthermore, textile composites present higher interlaminar strength in comparison to 

composites made from UD lamina. Fiber undulation in the thickness direction contributes to en-

hanced out-of-plane mechanical properties and resistance against delamination [10, 11]. 

2.3 Textile Composite Materials 

Textile composites can be classified as woven, braided and knitted fabrics according to the machines 

and processes used to arrange their reinforcing elements [12]. From this classification, Thales Alenia 

Space is particularly interested in woven composites because of their versatility and desired mechan-

ical properties in bi-stable tape springs. Textile composites materials are made using continuous 

bundles of fibers, called yarns or tows, and the matrix that binds them together. Woven fabrics are 

formed by interlacing two sets of tows, referred to as warp and weft yarns. Some examples of inter-

lacing patterns are shown in Figure 2 below. 

 

Figure 2. Weave style of plain, satin and twill fabrics [13] 

The weave styles shown in Figure 2 above are periodic, thus only a representative volume element 

(RVE) is needed to represent the homogenized properties of the macroscopic material. Symmetric 

woven styles are of particular interest because laminates with no bending/torsion coupling and no 

in-plane/out-of-plane coupling can be obtained. This can be explained by looking at the plain weave 

style shown in Figure 2. First, it could be argued that the stacking sequence matrix/fill/warp/matrix is 

asymmetric, and thus extension/bending coupling will exist. However, the exactly opposite undula-

tion of two adjacent fill/warp yarns leads to opposite signs for the in-plane/out-of-plane local cou-

pling coefficients that will cancel each other [14]. Therefore, the overall extension/bending effect is 

restrained, which is necessary for the correct mechanical behaviour of tape-springs as it is pointed 

out in Section 2.2. 

Within the group of symmetric weaving patterns, the plain weave stands out due to the excellent 

fabric stability as well as the simplicity and smaller size of the repetitive unit cell. The disadvantage of 

this pattern is that it presents a high degree of waviness or yarn crimp that negatively affects the in-

plane stiffness properties [15]. However, Thales Alenia Space reduces this effect by using low tex 

(fibers per yarn) bundles. 

The complex structure of woven composites makes the experimental evaluation of the material 

properties very difficult. Tests for obtaining the material parameters in the thickness directions 

would be required, which are not easy to perform. Furthermore, this approach is not feasible at the 
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early stages of design when many iterations are required. Virtual tests using a multi-scale analysis 

approach are an attractive alternative to experiments as demonstrated by many authors.  

The multiscale analysis consists of three levels, micro, meso, and macroscale. Stiffness properties of 

fiber bundles can be determined with micromechanical models. The mesoscale describes the woven 

structure and provides stiffness and strength properties for computations on macroscale [16]. 

2.3.1 Micro-mechanical modeling 

The fiber and matrix are discretized in the microscale, where the transversely isotropic material pa-

rameters of the yarns are obtained. The homogenized elastic properties could be well predicted us-

ing simple analytical models such as the Rule of Mixtures and Chamis equations [17]. Although 

Chamis model yields very good results and is widely used to calculate the longitudinal extensional 

modulus E1, see Equation (3), and the Poisson’s ratios, see Equation (4), Younes et al. [18] showed 

that the Halpin-Tsai model [19] enhances the prediction of the transverse extensional modulus E2, 

see Equation (6), and shear modulus G12 = G13, see Equation (5). The transverse shear modulus G23 

represents the main challenge since the results do not agree so well with experimental data. For this, 

Quek et al. [20] recommend using the expression shown in Equation (8), developed by Christensen 

and Waals [21] in order to get accurate results. Therefore, taking into account that FE methods do 

not prove to be more accurate [18], the independent engineering constants can be calculated as 

follows. 

𝐸1 = 𝐸1𝑓𝑉𝑓 + 𝐸𝑚(1 − 𝑉𝑓) (3) 

𝜐12 = 𝜐13 = 𝜐12𝑓𝑉𝑓 + 𝜐𝑚(1 − 𝑉𝑓) (4) 

𝐺12 = 𝐺13 = 𝐺𝑚
(𝐺12𝑓 + 𝐺𝑚) + 𝑉𝑓(𝐺12𝑓 − 𝐺𝑚)

(𝐺12𝑓 + 𝐺𝑚) − 𝑉𝑓(𝐺12𝑓 − 𝐺𝑚)
 (5) 

𝐸2 = 𝐸3 = 𝐸𝑚
1 + 𝜒𝜂𝑉𝑓

1 − 𝜂𝑉𝑓
 (6) 

where χ is a parameter that depends on the fiber geometry and loading conditions (Daniel and Ishai, 

2006), and η is calculated as: 

𝜂 =
𝐸2𝑓 − 𝐸𝑚

𝐸2𝑓 − 𝜒𝐸𝑚
 (7) 

The transverse shear modulus G23 is given by solving the following equation: 

(
𝐺23
𝐺𝑚

)
2

𝐴 + (
𝐺23
𝐺𝑚

)𝐵 + 𝐶 = 0 (8) 

where 
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𝐴 = 3𝑉𝑓(1 − 𝑉𝑓)
2
(
𝐺12𝑓

𝐺𝑚
− 1) (

𝐺12𝑓

𝐺𝑚
+ 𝜁𝑓) + [(

𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 + 𝜁𝑚𝜁𝑓 − ((

𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 − 𝜁𝑓) (𝑉𝑓)

3
]

× [𝜁𝑚𝑉𝑓 (
𝐺12𝑓

𝐺𝑚
− 1) − ((

𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 + 1)] 

(9) 

𝐵 = −6𝑉𝑓(1 − 𝑉𝑓)
2
(
𝐺12𝑓

𝐺𝑚
− 1) (

𝐺12𝑓

𝐺𝑚
+ 𝜁𝑓) + [(

𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 + (

𝐺12𝑓

𝐺𝑚
− 1)𝑉𝑓 + 1]

× [(𝜁𝑚 − 1) (
𝐺12𝑓

𝐺𝑚
+ 𝜁𝑓) − 2(𝑉𝑓)

3
((
𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 − 𝜁𝑓)]

+ (𝜁𝑚 + 1)𝑉𝑓 (
𝐺12𝑓

𝐺𝑚
− 1) × [

𝐺12𝑓

𝐺𝑚
+ 𝜁𝑓 + ((

𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 − 𝜁𝑓) (𝑉𝑓)

3
] 

(10) 

𝐶 = 3𝑉𝑓(1 − 𝑉𝑓)
2
(
𝐺12𝑓

𝐺𝑚
− 1) (

𝐺12𝑓

𝐺𝑚
+ 𝜁𝑓) + [(

𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 + (

𝐺12𝑓

𝐺𝑚
− 1)𝑉𝑓 + 1]

× [
𝐺12𝑓

𝐺𝑚
+ 𝜁𝑓 + ((

𝐺12𝑓

𝐺𝑚
) 𝜁𝑚 − 𝜁𝑓) (𝑉𝑓)

3
] 

(11) 

and 

𝜁𝑓 = 3 − 4𝜐12𝑓 (12) 

𝜁𝑚 = 3 − 4𝜐𝑚 (13) 

The transversal Poisson’s ratio ν23 is then obtained from the Hooke’s law for transversely isotropic 

materials [22] as follows: 

𝐺23 =
𝐸2

2(1 + 𝜐23)
 (14) 

2.3.2 Meso-mechanical modeling 

The tow architecture is discretized in the mesoscale. The material parameters from the microscale 

are used to characterize the fiber bundles which are modeled as homogenized continua. The textile 

architecture is described with a representative volume element (RVE) for reasons of numerical effi-

ciency [16]. The final objective is to determine the material properties of one lamina for the mac-

roscale level. Existing models are divided into two main categories: analytical and numerical models. 

Early work on analytical modeling of woven composites was performed by Ishikawa and Chou [23] 

based on Classical Laminate Theory (CLT). They proposed the so-called mosaic model, which idealized 

the RVE as an arrangement of asymmetric cross-ply laminates and assumed a constant stress or 

strain condition in order to homogenize the mechanical properties. The prediction of the stiffness of 

the laminate is not complete because the model ignored the yarn crimp and the through thickness 

shear deformation. The fiber undulation model [24] was extended to consider fiber continuity and 

undulation in the longitudinal direction but neglected the transverse dimension. The undulation 

model was further refined by Naik and Ganesh [25] with a two-dimensional model which accounted 

for undulations in both the warp and weft directions. The RVE was fully described taking into account 

the cross-section geometry of the yarn, however, the model was only valid for the case of plain 
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weaves and the overall stiffness properties were obtained by assuming again either iso-stress or iso-

strain conditions throughout the RVE. Many other models were derived from this concept. The dis-

cretization of the RVE is often refined and the method is generalized to more interlacing patterns. 

Special mention is deserved by Scida et al. [26] and Adumitroaie and Barbero [14] for developing one 

of the few methods to also predict the strength of woven fabric composites. However, they only 

consider uniaxial in-plane loading. 

Given that the above mentioned analytical models are based on the fundamental assumptions used 

within the CLT, the prediction of three-dimensional properties lack any accuracy for thin laminates 

[3]. Furthermore, their simplicity does not allow to consider the stress concentrations which exist as 

a result of both external loads and complex 3D fabric architecture. Therefore, the use of numerical 

models will be necessary in order to deal with bending properties, micro-effects and damage onset. 

Prodromou et al. [27] developed a model that falls between the analytical and finite element catego-

ries. This model is an implementation of the cell method originally formulated by Aboudi [28]. The 

stress field is obtained by minimizing the complementary energy function. Thus, the method does 

away with the constant stress/strain assumption and allows the prediction of stiffness and strength 

with better accuracy than the analytical methods, but not as well as the finite element models. Its 

greatest limitation is that it is not applicable for strength and failure prediction in multiaxial loading 

conditions. 

Numerical models are based on the Finite Element Method (FEM) and their complexity depends on 

the geometrical description of RVE. The simplest way is by using 1D truss elements to represent the 

yarns. The first work on this subject was performed by Cox et al. [29] with the so-called binary model. 

This method has shown to provide good results for in-plane stiffness properties with low calculation 

cost. Soykasap [3] proposed beam elements to also study the bending stiffness. However, both tech-

niques do not provide detailed insight into the stress field in the RVE since the actual yarn cross-

section is not considered.  

A 3D solid model of the RVE would therefore be the best approach for investigating both the stiffness 

and strength properties of fabric composites. A major drawback is the complexity of modeling and 

meshing the fabric geometry. A flexible modeling framework is the use of textile-oriented CAD tools 

such as WiseTex or TexGen, which have demonstrated to work well for woven composites [30, 31]. 

However, they present issues of yarn intersections that need to be carefully addressed when creating 

the geometry. For example, the yarn cross-sections and rotations may need to be adjusted to re-

move intersections. A gap between yarns may also be specified for this purpose, but special attention 

is needed to ensure the correct fibre volume fractions [32]. 

Although it is practically impossible to model the exact geometry, special care should be taken as 

stress concentrations will depend on it. It is common to extrapolate the weave geometry from the 

dry fabric by considering a constant elliptical section yarn. This shape approximation has been used 

thoroughly in the literature [14, 33, 34]. However, micrographs are recommended by many authors 

such as Mallikarachchi and Pellegrino [35] in order to measure the actual geometric properties of the 

impregnated fabric. 
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Many authors have used three-dimensional finite element models to predict the mechanical proper-

ties of woven composites. The required computation times have been minimized by using boundary 

conditions that take advantage of the symmetry and periodicity of the RVE [36]. The stresses and 

strains in the elements are related to the external loads applied on the RVE in order to obtain the 

homogenized material properties. However, most of the existing models for prediction of the 

strength only consider in-plane uniaxial loads [37, 38, 39] or, at most, biaxial loads [20, 33]. It is obvi-

ous that multiaxial loading presents a great increase in modeling complexity. 

Karkkainen and Sankar [40] presented a direct micromechanics method (DMM) to determine the 

constitutive relations and failure initiation for textile composites. The RVE is modelled as a linear-

elastic thin Kirchhoff plate which is subjected to force and moment resultants. The constitutive rela-

tionship is therefore written in the form of the ABD matrix. Thus, multiaxial loading is considered 

since any load can be defined as a combination of force and moment resultants. Rather than making 

assumptions based upon uniform stress or strain, the constitutive properties are obtained by averag-

ing the micro-stresses over the entire RVE. The micro-stresses are used to predict the failure of the 

yarns or matrix by using well known failure criteria such as the maximum stress and Tsai-Wu. It is 

undoubtedly the best existing option to capture the unique characteristics of tape springs made out 

of woven composites. A more detailed explanation of this approach is presented in Section 3.2. 

2.4 Failure Criteria 

Common failure criteria developed for UD composites cannot be extended to model failure in macro-

scopic textile composite structures because they do not capture the unique characteristics intrinsic 

to textile geometry. However, they can be used to predict failure of the yarns or matrix at the 

mesoscale level. Karkkainen and Sankar [40] suggests the maximum principal stress criterion for the 

isotropic matrix and the Tsai-Wu failure criterion for the orthotropic fiber tows. It is noteworthy to 

mention that micro-stresses in the tows must be transformed in the warp and weft local coordinate 

systems (see Figure 3) in order to properly apply the corresponding failure criterion. 

 

Figure 3. Stress components in the fiber tow-symmetry axes [41] 

According to Kassapoglou [42], the maximum stress failure criterion compares the principal stresses 

induced in the material with their corresponding strength values as follows: 

𝜎1, 𝜎2, 𝜎3 < 𝜎𝑢𝑙𝑡
𝑡  

(15) 𝜎1, 𝜎2, 𝜎3 > 𝜎𝑢𝑙𝑡
𝑐  

|𝜏12|, |𝜏13|, |𝜏23| < 𝑆 
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where 𝜎𝑢𝑙𝑡
𝑡 , 𝜎𝑢𝑙𝑡

𝑐 , and 𝑆 are tension, compression and shear strength of the material, respectively. 

Failure will therefore occur as soon as one of the left-hand sides equals the right-hand side. 

The form of the Tsai and Wu [41] failure criterion for 3-dimensional transversely isotropic materials 

is: 

𝐹1𝜎1
′ + 𝐹2(𝜎2

′ + 𝜎3
′) + 𝐹11𝜎1

′2 + 𝐹22(𝜎2
′2 + 𝜎3

′2 + 2𝜎4
′2) + 𝐹66(𝜎5

′2 + 𝜎6
′2)

+ 2𝐹12(𝜎1
′𝜎2
′ + 𝜎1

′𝜎3
′) + 2𝐹23(𝜎2

′𝜎3
′ − 𝜎4

′2) ≤ 1 
(16) 

where Fi and Fij are strength tensors of the second and fourth rank, which expressed in terms of en-

gineering strengths are as follows [41]: 

𝐹𝑖 =

{
 
 
 
 

 
 
 
 
1

𝑋𝑡
−

1

|𝑋𝑐|
1

𝑌𝑡
−

1

|𝑌𝑐|
1

𝑌𝑡
−

1

|𝑌𝑐|
0
0
0 }

 
 
 
 

 
 
 
 

 (17) 

𝐹𝑖𝑗 =

{
 
 
 
 
 
 

 
 
 
 
 
 

1

𝑋𝑡|𝑋𝑐|
𝐹12 𝐹12 0 0 0

 
1

𝑌𝑡|𝑌𝑐|
𝐹23 0 0 0

  
1

𝑌𝑡|𝑌𝑐|
0 0 0

   2 (
1

𝑌𝑡|𝑌𝑐|
− 𝐹23) 0 0

    
1

𝑆2
0

     
1

𝑆2}
 
 
 
 
 
 

 
 
 
 
 
 

 (18) 

where: 

- Xt is the tension failure along the fibers 

- Xc is the compression failure along the fibers 

- Yt is the tension failure transverse to the fibers 

- Yc is the compression failure transverse to the fibers 

- S is the pure shear failure 

The interaction strength terms F12 and F23 are unfamiliar quantities that have to be determined ex-

perimentally using combined stress tests which are neither common nor straightforward. Assuming 

there will be no failure under practical levels of hydrostatic and equal transverse compression, DeTe-

resa and Larsen [43] derived the following relations in terms of the uniaxial strength parameters: 

𝐹12 = −
𝐹11
4

 (19) 
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𝐹23 = −𝐹22 (20) 

Thus, the Tsai-Wu failure criterion becomes: 

𝐹1𝜎1
′ + 𝐹2(𝜎2

′ + 𝜎3
′) + 𝐹11𝜎1

′ [𝜎1
′ −

1

2
(𝜎2

′ + 𝜎3
′)] + 𝐹22(𝜎2

′2 + 𝜎3
′2 − 2𝜎2

′𝜎3
′ + 4𝜎4

′2)

+ 𝐹66(𝜎5
′2 + 𝜎6

′2) ≤ 1 

(21) 

The failure mechanics of textile composites is particularly complex under multi-axial loading due to 

the stress gradient effects through the representative volume element (RVE). Karkkarinen et al. [44] 

developed an analytical expression to predict failure initiation with the ability to fit any general plate 

loading condition. The expression is based on the quadratic interactive nature of the stress state but 

written in terms of force and moment resultants as shown below: 

𝐶𝑖𝑗𝐹𝑖𝐹𝑗 + 𝐷𝑖𝐹𝑖 = 1 (22) 

where: 

- Fi are the general load terms Nx, Ny, Nxy, Mx, My, and Mxy. 

- Cij and Di represent 27 failure coefficients that accounts for the relative influence of each 

load as well as the interactions between them. Specifically, the terms Di and Cii correspond to 

uni-axial loading conditions, while the coefficients Cij with i ≠ j relate to coupling between dif-

ferent loads. 

The 27 failure coefficients can be reduced to 16 in case of symmetric woven composites, such as 

plain or twill weaves, because the strengths in both principal directions are the same. Furthermore, 

Karkkarinen et al. [44] state that coefficients D3 through D6 are equal to zero since failure values 

should not depend on the sign of the shear, moment, or twist loads. Mallikarachchi and Pellegrino 

[45] go further and state that the failure moment of an axially loaded plate should also be independ-

ent of the bending direction, which sets Cij = 0 for i = 3,...,6 or j = 3,...,6 when i ≠ j. All the stated sym-

metry conditions above reduce the number of failure coefficients to only 6 and thus the quadratic 

failure criterion in Equation (22) becomes: 

𝐷1(𝑁𝑥 + 𝑁𝑦) + 𝐶11(𝑁𝑥
2 + 𝑁𝑦

2) + 𝐶12𝑁𝑥𝑁𝑦 + 𝐶33𝑁𝑥𝑦
2 + 𝐶44(𝑀𝑥

2 +𝑀𝑦
2) + 𝐶66𝑀𝑥𝑦

2 = 1 (23) 

Mallikarachchi and Pellegrino [45] performed experimental tests for two-ply plain weave CFRP lami-

nates under combined loading in order to evaluate the accuracy of the failure criterion presented by 

Karkkarinen et al. [44]. It was observed that the axial-bending interaction was not quadratic and that 

many of the experimentally determined failure points lie inside the Nx - Mx failure envelope (Figure 

4). 
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Figure 4. Axial-bending interaction for a two-ply plain weave composite [45] 

It can be seen from Figure 4 above that a polygonal criterion would be more appropriate to describe 

the interaction between Nx and Mx. Therefore, Mallikarachchi and Pellegrino [45] proposed an alter-

native failure criterion inspired by experimental observations that considers the following three pro-

jections: 

- Failure under pure in-plane loading, see Equation (24). 

- Failure under biaxial bending, see Equation (25). 

- Failure due to the interaction between in-plane and bending loads, see Equation (26). 

In the case of in-plane loading, failure is satisfactorily defined by the original quadratic form, and thus 

Equation (22) reduces to: 

𝐷1(𝑁𝑥 + 𝑁𝑦) + 𝐶11(𝑁𝑥
2 +𝑁𝑦

2) + 𝐶12𝑁𝑥𝑁𝑦 + 𝐶33𝑁𝑥𝑦
2 < 1 (24) 

Experimental results presented by Yee [46] and Mallikarachchi and Pellegrino [45] show that the 

value of Mx at failure is practically independent of My for thin plain weave laminates. Hence, it is as-

sumed that only the maximum of the two bending moments leads to failure under biaxial bending. 

The failure limits for bending and twisting loads can therefore be defined as follows: 

𝐶44𝑀𝑥
2 + 𝐶66𝑀𝑥𝑦

2 < 1 
(25) 

𝐶44𝑀𝑦
2 + 𝐶66𝑀𝑥𝑦

2 < 1 

In the case of combined in-plane and bending loading, the experimental tests show that axial failure 

does not change when a moment is applied in transverse direction. Similarly, the shear strength does 

not change in the presence of a twisting moment. Thus, Mallikarachchi and Pellegrino [45] concluded 

that the only significant interaction is between in-plane and bending resultants applied in the same 

direction. As previously mentioned, a quadratic failure criterion does not perfectly work in this case 

and the following linear interaction is assumed: 

𝑁𝑥
𝐹𝑥
+ √𝐶44 ∙ |𝑀𝑥| < 1 

(26) 
𝑁𝑦

𝐹𝑦
+ √𝐶44 ∙ |𝑀𝑦| < 1 
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where Fx and Fy are the axial failure strengths given by: 

𝐹𝑥 =
−(𝐷1 + 𝐶12𝑁𝑦)

2𝐶11
±
√(𝐷1 + 𝐶12𝑁𝑦)

2
− 4𝐶11(𝐷1𝑁𝑦 + 𝐶11𝑁𝑦

2 + 𝐶33𝑁𝑥𝑦
2 − 1)

2𝐶11
 

(27) 

𝐹𝑦 =
−(𝐷1 + 𝐶12𝑁𝑥)

2𝐶11
±

√(𝐷1 + 𝐶12𝑁𝑥)
2 − 4𝐶11(𝐷1𝑁𝑥 + 𝐶11𝑁𝑥

2 + 𝐶33𝑁𝑥𝑦
2 − 1)

2𝐶11
 

It is important to note that failure by delamination was not taken into account in the proposed fail-

ure criterion. However, this failure mode was not visible in any of the strength measurement tests 

performed by Mallikarachchi and Pellegrino [45]. 
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 Unit Cell Analysis of Textile 

Composites 

This chapter presents the modelling techniques that have been used for the analysis of woven com-

posites. The different characteristics between plain and twill patterns will be studied, as well as the 

peculiarities of ultra-thin composites. This section will allow to validate the methodology that will be 

later used for the analysis of the tape-springs made out of ultra-thin laminates. The unit cell ap-

proach is explained in detail. First, the generation and discretization of the textile geometry is ad-

dressed for each case study. Second, the methodology to estimate the mechanical properties and the 

failure initiation is described. The plain and twill models are subjected to in-plane pure tension load 

in order to understand the mechanisms of failure initiation and compared the results against experi-

mental data. Finally, the ultra-thin model is subjected to more complex loads, such as shear or bend-

ing, to better represent the loading conditions that will be encountered in tape-springs.  

3.1 Unit Cell Generation 

The unit cell or representative volume element (RVE) is the smallest possible building block needed 

to represent the textile composite [31]. The periodic structure of woven composites makes possible 

to evaluate the homogenized mechanical properties just by using an RVE of the entire composite. A 

realistic model of the RVE geometry is therefore essential for a reliable prediction. However, the 

complex weave architecture of textile composites makes the RVE modeling extremely challenging. 

The RVE is modeled as a rectangular cuboid with the dimensions of the repetitive textile pattern. The 

modeling of the yarns is the main challenge since the matrix is assumed to fill the volume left in the 

cuboid. The open source software TexGen [47] has been used to create the textile geometry. TexGen 

defines the yarn path as a cubic spline based on certain input parameters such as weave pattern and 

yarn dimensions. The textile models usually present issues of local interpenetrations of the yarns, 

which need to be carefully addressed when creating the geometry. 

An additional difficulty is how to discretize the RVE from the textile geometry. A mesh with tetrahe-

dral shaped elements may present distorted elements between the yarns, which increase solution 

error. This drawback can be solved by using a voxel mesh, which is formed by a regular grid of cubic 

elements where non-orthogonal interfaces are stepped. The aspect ratio is defined a priori, but arti-

ficial stress concentrations will appear as a consequence of the stepped geometry [48]. Although this 

spurious effect is relatively benign for elastic stiffness characterization, it will have a significant im-

pact for prediction of damage initiation. To overcome this limitation, Fang et al. [49] proposed a 

post-processing stress averaging technique to alleviate local artificial stresses. However, the most 

correct solution would be using a mesh with tetrahedral or hexahedral shaped elements, which is a 
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difficult task due to the lack of capability of most existing auto-meshing softwares to generate a peri-

odic mesh for complex geometries. 

3.1.1 Plain Woven Composite 

A plain weave laminate [50] with no layer shift has been the first composite chosen for the validation 

study. Plain woven composites have the simplest RVE with only two warp and two weft yarns, thus it 

is the most appropriate weave style to start investigating the geometric and meshing generation 

issues mentioned above. First of all, the following parameters are required by TexGen in order to 

construct the unit cell of a woven composite: 

- Width and height of yarns 

- Yarn spacing 

- Ply thickness 

- Weave pattern 

The parameters above can be obtained by using an optical microscope. Ito and Chou [50] performed 

an experimental study of the plain weave composite and Matveev [32] used their microscopic obser-

vations to model the textile geometry with TexGen. The geometric parameters and composite details 

are given in the following table: 

Table 1. Parameters of plain weave composite [32] 

Plain Weave 

Fibre volume fraction, % 42 

Laminate thickness, mm 4.99 

Number of layers 8 

Warp/weft spacing, mm 3.14 

Warp/weft width, mm 2.97 

Warp/weft yarns 12K AS4 carbon fiber 

Matrix Vinyl ester (Dow DERAKANE 411-C-50) 

TexGen has a Graphical User Interface to describe the weaving pattern and create the geometry by 

using the parameters shown in Table 1. This procedure can be very time-consuming, as the textile 

geometry needs to be entirely redefined to apply any small modification. Therefore, the models were 

generated using Python, which is embedded in the TexGen GUI and allows easy access to every func-

tionality.  

The yarns were initially defined by considering a constant lenticular cross-section, but they presented 

multiple local interpenetrations. This problem was attempted to be solved by introducing an artificial 

gap between the yarns. However, the resulting models were not realistic since the unit cell thickness 

had to be increased. Furthermore, this approach requires several trial and error attempts, which 

makes it infeasible. The yarn interference issues have been solved by using a built-in TexGen algo-

rithm which allows to automatically adjust local rotations and changes of cross-sections to remove 

the interpenetrations [51]. The resulting plain woven geometry and dimensions of the unit cell are 

shown in the following Figure 5. 
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Figure 5. Representative volume element of plain woven composite generated with TexGen 

The next step is to discretize the RVE geometry, which is a complex task due to the small gaps be-

tween the yarns. The simplest strategy to discretize the model is creating a voxel-based mesh using 

TexGen. However, this technique has important drawbacks. The first one is that a very high number 

of elements is required to capture all of the detail in the textile, which is limited by the computation-

al demand. The second drawback is related to the artificial stress concentrations induced due to the 

block-like representation of the tow/matrix interface surfaces [48]. This effect needs to be avoided 

for failure prediction where local stresses play an important role, especially under multi-axial loading 

conditions. Figure 7 shows that the stepped geometry cannot be avoided even when a large number 

of voxel elements is used. 

A conformal mesh would therefore be the best option to discretize the textile geometry, but the 

meshing process is more difficult to implement for general geometries. The first approach tried was 

to import the textile geometry as a .STEP file into Abaqus for creating a tetrahedral-based mesh. The 

importing process often fails due to an imprecise geometry error from Abaqus, which cannot always 

be solved by repairing the geometry. Furthermore, this approach was discarded because the mesh 

usually contains elements with unacceptable aspect ratios in regions between yarns.  

The second approach was to create the tetrahedral mesh using the algorithm TetGen [52] imple-

mented in TexGen. The software has a merge tolerance option that allows to reduce the bad quality 

elements between yarns. Although this approach is found to be robust, the major problem is that 

nodes are not always coupled on opposite sides of the RVE as is required when periodic boundary 

conditions has to be applied. However, this problem has been overcome by using a novel methodol-

ogy to apply periodic BCs (see Section 3.2.1.). Hence, the latter approach has been found to be the 

most appropriate solution to generate a tetrahedral mesh for an arbitrary woven composite RVE. 

Figure 6 below shows the resulting mesh for the plain woven geometry previously defined.  
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Figure 6. Tetrahedral-based (left) and voxel-based (right) mesh 

3.1.2 Twill Woven Composite 

The twill woven laminate chosen for validation was manufactured by Matveev [32] imposing no layer 

shift. Micro-CT analysis were used to measure the impregnated textile geometry. The parameters 

required to create the unit cell model using TexGen are listed in Table 2. 

Table 2. Parameters of twill weave composite [32] 

Twill Weave 

Fibre volume fraction, % 55 

Laminate thickness, mm 4.0 

Number of layers 6 

Warp/weft spacing, mm 2.5 

Warp/weft width, mm 2.5 

Warp/weft yarns 12K Grafil 34-700 carbon fibre 

Matrix Epoxy resin (Gurit Prime 20LV) 

The twill weave style is done by passing two warp yarns every two weft yarns, which makes the unit 

cell geometry more complex than for plain woven composites. The micro-CT images showed that the 

rotations of the yarn’s cross-section is much more pronounced. This effect has been captured by 

using the automatic geometry refinement implemented in TexGen. The resulting model of the unit 

cell is shown in Figure 7 below.  

 

 

Figure 7. Representative volume element of twill woven composite 

The discretization of the textile geometry was performed as described above for the plain weave. It is 

important to note that the number of elements required for mesh convergence increases considera-
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bly due to the larger size of the unit cell. TexGen has the option to export linear or quadratic tetrahe-

dral elements. As it is described in Section 3.3.2, it has been observed that second order elements 

give better predictions when out-of-plane loads are present. However, the option to export them 

sometimes causes distorted elements. Hence, linear tetrahedral elements has been chosen to create 

the mesh with Texgen, and the Abaqus software has subsequently been used to modify the element 

order. 

3.1.3 Ultra-thin Plain Weave Composite 

The models to validate the unit cell approach under tensile loading for both plain and twill weaves 

have been presented above. However, additional validation is still necessary for out-of-plane loading 

of ultra-thin woven composites since these conditions will be given in the tape-springs. Almost no 

research has been conducted on this subject, thus experimental data is hardly available.  

Mallikarachchi [35] carried out a series of tests to characterize the membrane and bending stiffness 

properties of a two-ply T300/Hexcel 913 plain weave laminate. Micrographs were also performed to 

determine the geometrical properties of the yarns. An example of micrograph taken is shown in Fig-

ure 8. Full details of the weave architecture were not measured, but the most important average 

values were given as shown in Table 3. 

Table 3. Average geometric properties of a T300/HexPly913 tow [35] 

Laminate thickness, mm 0.22 

Weave length, mm 2.664 

Maximum tow thickness, mm 0.059 

Tow cross-sectional area, mm2 0.0522 

 

Figure 8.  Micrograph of T300/913 two-ply plain weave laminate [35] 

Mallikarachchi [35] used Autocad software to measure the geometric properties of four different 

specimen. Alternatively, the cross-sectional area of a yarn has been measured using the Image Seg-

menter Toolbox in Matlab in order to compare the result and validate future measurements per-

formed in tape-spring samples. The toolbox allows to measure the dimensions in pixels, which can be 

scaled to mm by using the scale bar given by the micrographs. The tow cross-sectional area obtained 

with Matlab is A = 0.0508 mm2, which is in very good agreement with the average value presented in 

Table 3. 
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An important observation is the amount of voids existing in the composite specimen. A detail image 

is shown in Figure 8. The void content between yarns is significant even though the samples were 

cured in an autoclave. It is important to note the amount of resin gaps existing in the bottom part of 

the micrograph, while the top part is free of them. This effect has also been observed in the tape-

spring samples, which were initially manufactured by using a vacuum bag. Mallikarachchi [35] used 

the same method to produce composite tubes, which is schematically illustrated in Figure 9 below: 

 

Figure 9.  Vacuum bagging technique to produce composite tubes [35] 

It has been observed that the tape-springs produced with this technique present high waviness at 

the surface in contact with the vacuum bag. Therefore, a different technique with two rigid molds 

has been finally chosen in order to avoid this undesirable effect and obtain perfectly flat surfaces.  

Unlike the plain and twill woven composites presented before, shift layer was not controlled during 

the manufacturing process of the two-ply laminate studied in this section. This is also the case for the 

tape-spring samples manufactured by Thales Alenia Space, thus it is an important factor to take into 

account. As it can be seen from the micrograph shown in Figure 8, it seems as if the tows tend to 

interpenetrate the adjacent layer rather than staying in an iso-phase configuration.  

Three different models were created in order to study the effect of the layer shift. The following 

three extreme configurations were considered: layers in-phase, π/2 out-of-phase, and π/4 out-of-

phase. The unit cells were created using TexGen assuming that both reinforcement and matrix occu-

py all the volume with no voids. However, the fibre volume fraction has been estimated as detailed 

in Section 3.2.2 by considering this assumption.  

  
(a) (b) 
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(c) 

Figure 10. Three extreme ply configurations; (a) fibers in-phase, (b) fibers π/2 out-of-phase, (c) fibers π/4 out-

of-phase 

3.2 Finite Element Micromechanics Method 

3.2.1 Periodic Boundary Conditions 

For the homogenization of the mechanical properties it is necessary to apply certain boundary condi-

tions to the RVE. Different options have been proposed in the literature, such as the Dirichlet, Mixed, 

and Periodic boundary conditions. However, only periodic boundary conditions satisfy the periodicity 

of the stress-strain field. The RVE must be mechanically repeatable to ensure continuity of micro-

stresses and compatibility of displacements, which means having equal response to strains and cur-

vatures for every location of the RVE [53, 40]. 

The periodic boundary conditions have to be applied by linearly constraining the displacements of 

paired nodes on opposite sides of the RVE. The expression for two arbitrary nodes A and B can be 

written as follows:  

𝐮A = 𝐮B (28) 

An additional term needs to be added to Equation (28) above in order to simulate an applied macro-

scopic load and thus evaluate the homogenized properties of the RVE. For this, opposite nodes of the 

unit cell can be subjected to a relative displacement as follows: 

𝐮A − 𝐮B = ε ∙ d (29) 

where ε is the applied strain and d is the distance between opposite nodes.  

Karkkainen and Sankar [40] developed a micromechanics method in which individual unit strains and 

curvatures are applied to the unit cell in order to evaluate the stiffness [ABD] matrix. Figure 11 and 

Table 4 below shows the appropriate boundary conditions when each independent macroscopic unit 

deformation is applied. 
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Figure 11. RVE geometry definition [40] 

Table 4. Periodic displacement boundary conditions [40] 

 

The displacement boundary conditions defined by Karkkainen and Sankar [40] should be applied for 

thin woven composites where multi-axial loading conditions are present. However, it is important to 

note that these periodic BCs are applied only in the in-plane direction and not through-thickness 

direction, as this would alter the bending stiffness and bending extension coupling. Thus, the top and 

bottom faces of the unit cell are under stress free conditions. Periodic BCs should be applied in all 

three directions (see Figure 12) for a single-layer model where periodic geometry exists through-

thickness direction. However, the latter approach assumes that the unit cell is embedded in an infi-

nite medium in all three coordinate directions. Hence, it neglects any possible edge effect, which 

may have a severe impact on thin-laminates. The effect of both models will be explored in Section 

3.3.1. 

 

Figure 12. Periodic connectivity of nodes in all three directions on a simple cubic domain boundary 

A periodic mesh on the external domain boundary of the unit cell is necessary to define the periodic 

boundary conditions. This means that node positions on opposite boundaries should have an exact 

1:1 correlation. However, as it has been pointed out in Section 3.1.1, a different approach has been 

adopted since it is not straightforward to create a conformal mesh for a textile geometry with the 

nodes perfectly coupled. The nodes from one face were copied to the opposite face and the surface-

to-surface ties in Abaqus were used to constrain the copied nodes to the underlying RVE mesh. Final-

ly, the periodic relationships were imposed between the nodes on the original and the copied face. 
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This approach has been carried out by using a novel Micromechanics Plugin developed for Abaqus 

2017.  

3.2.2 Unit Cell Homogenization 

In the micromechanics method [40], each applied macroscopic unit strain and curvature results in a 

detailed map of RVE micro-stress fields. In the same way, each case will correspond to a certain mac-

ro force and moment resultant that can be obtained as follows: 

𝑁𝑖𝑗 =
1

𝑎𝑏
∑𝜎𝑖𝑗

𝑒 𝑉𝑒 (30) 

𝑀𝑖𝑗 =
1

𝑎𝑏
∑𝑧𝜎𝑖𝑗

𝑒 𝑉𝑒 (31) 

where a and b are the dimensions of the unit cell as indicated in Figure 11, 𝑉𝑒  is the element volume, 

and 𝜎𝑖𝑗
𝑒  is the microstress tensor of each element. 

Thus, the constitutive [A], [B] and [D] matrices of Equation (2) can be evaluated by independently 

applying the six load conditions shown in Table 4. Based on these results, the laminate stiffness 

properties in all directions can be calculated using the following relations [42]. 

𝐸1𝑚 =
1

ℎ𝑎11
 

𝐸2𝑚 =
1

ℎ𝑎22
 

𝐺12𝑚 =
1

ℎ𝑎66
 

𝜐12𝑚 = −
𝑎12
𝑎22

 

𝜐21𝑚 = −
𝑎12
𝑎11

 

𝐸1𝑏 =
12

ℎ3𝑑11
 

𝐸2𝑏 =
12

ℎ3𝑑22
 

𝐺12𝑏 =
12

ℎ3𝑑66
 

𝜐12𝑏 = −
𝑑12
𝑑22

 

𝜐21𝑏 = −
𝑑12
𝑑11

 

(32) 

where h is the thickness of the laminate, [a] = [A]-1 and [d] = [D]-1. It is important to note that these 

equations are valid only for symmetric laminates where the coupling matrix [B] is zero, which is a 

necessary requirement for bi-stable tape springs as discussed in Section 2.2. 

The mechanical properties of a simple isotropic plate has been calculated by using the micromechan-

ics approach explained above. Results have been compared with the Classical Laminate Theory in 

order to validate the method. The model used has been the unit cell created for the plain woven 

composite in Section 3.1.1. Matrix and yarns were both defined as isotropic materials with Young’s 

modulus E = 3450 MPa and Poisson’s ratio ν = 0.35. The results for each independent macroscopic 

unit strain and curvature are shown in Figure 13 below. 
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Figure 13. Stress field for the six independent unit deformations 

The ABD stiffness matrix is then calculated by using Equations (30) and (31). The integration point 

stresses and the volume associated with each corresponding integration point have been used in 

order to average the micro-stresses over the entire RVE. The following result was thus obtained: 

[𝐴] = [
2453 858.7 0
858.7 2453 0
0 0 797.3

]  𝑀𝑃𝑎 −𝑚𝑚 

[𝐵] = [
0 0 0
0 0 0
0 0 0

]  𝑀𝑃𝑎 −𝑚𝑚2 

[𝐷] = [
80.05 27.84 0
27.84 80.05 0
0 0 25.88

]  𝑀𝑃𝑎 − 𝑚𝑚3 

The ABD matrix has also been calculated using the Classical Laminate Theory [42]. First of all, the 

stiffness matrix Q for an isotropic thin-plate under plane stress is given as follows: 

{

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

} =

[
 
 
 
 
 

𝐸

1 − 𝜈2
𝜈𝐸

1 − 𝜈2
0

𝜈𝐸

1 − 𝜈2
𝐸

1 − 𝜈2
0

0 0
𝐸

2(1 + 𝜈)]
 
 
 
 
 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} (33) 

Since the material is isotropic, there is not coupling between the membrane and bending defor-

mations. Therefore, the membrane and bending response can be calculated by using the following 

equations: 

𝐴𝑖𝑗 = 𝑄𝑖𝑗ℎ (34) 

𝜀𝑥 = 1 𝜀𝑦 = 1 𝛾𝑥𝑦 = 1 

𝜅𝑥 = 1 𝜅𝑦 = 1 𝜅𝑥𝑦 = 1 
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𝐷𝑖𝑗 = 𝑄𝑖𝑗
ℎ3

12
 (35) 

The relative error between the analytical and numerical results is almost exactly zero, which validates 

the application of the periodic boundary conditions as well as the methodology used to calculate the 

[ABD] matrix of the RVE. 

3.2.3 Unit Cell Failure Analysis 

Failure initiation can be studied by using the element stresses obtained from the application of the 

six independent unit deformations described above. First, the micro-stress field resulting from any 

general macro deformation can be extrapolated as follows [40]. 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 
𝑒

= [𝐹]𝑒

{
 
 
 

 
 
 
𝜀𝑥
𝑀

𝜀𝑦
𝑀

𝛾𝑥𝑦
𝑀

𝜅𝑥
𝑀

𝜅𝑦
𝑀

𝜅𝑥𝑦
𝑀 }
 
 
 

 
 
 

 (36) 

where: 

- [F]e is a 6 x 6 matrix that contains the six stress components in each element resulting from 

the six single unit macrostrain analysis. 

- εM and κM are the macroscopic strain and curvature corresponding to a general applied force 

[N] or moment [M] resultant. 

Failure is checked by applying a certain failure criterion to each element of the RVE while gradually 

increasing a selected macroscopic load. The macrostrains εM and curvatures κM are calculated using 

the ABD stiffness matrix obtained from the unit cell homogenization. The complete failure analysis 

procedure is summarized in the flow diagram shown in Figure 14, where e is the element number. 

 

Figure 14. Flow diagram for failure analysis [40] 

The yarns are assumed to be homogenous and transversely isotropic, thus any benchmarked failure 

criteria for UD composites could be used. Strength tensor based criteria such as Tsai-Wu are usually 

more suitable to predict failure of anisotropic materials subjected to complex stress states since it 

takes into account the interaction of biaxial stresses. However, they do not predict the damage 
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mode, which strongly affects the mechanisms of strength reduction [54]. Rujiter [55] proposed a 

modified maximum stress criterion to overcome this limitation.  The criteria is based on the following 

damage variables: 

𝐷1 = max (
𝜎11
𝑆11
𝑡 , −

𝜎11
𝑆11
𝑐 ) (37) 

𝐷2 =
√𝜎12

2 + 𝜎13
2

𝑆12
 (38) 

𝐷3 = max (
max (𝜎22,𝜎33)

𝑆22
𝑡 , −

min(𝜎22,𝜎33)

𝑆22
𝑐 ) (39) 

Failure initiation occurs when any of the three damage variables Di > 1. Additionally, Ruijter [55] de-

fined the following rule to model the stiffness degradation after the initiation of failure: 

𝐸1 = 𝐸1
0 {
        1, 𝐷1 ≤ 1 
0.001, 𝐷1 > 1 

 (40) 

𝐸2 = 𝐸3 = 𝐸2
0max(0.001,min(𝑃(𝐷2), 𝑃(𝐷3))) (41) 

𝐺12 = 𝐺13 = 𝐺12
0 max(0.001,min(𝑃(𝐷2), 𝑃(𝐷3))) (42) 

where 

𝑃(𝐷𝑖) = 1 −
1

exp(−𝑐1𝐷𝑖 + 𝑐2)
 (43) 

where c1 and c2 are empirical constants. 

Although damage propagation is out of the scope of the present work, the expressions above are 

very useful to understand damage initiation. As can be seen, it is assumed that damage in the fibers 

direction leads to catastrophic failure, while damage propagates gradually in the transverse direc-

tion. The advantage of this criterion with respect Tsai-Wu is the possibility to distinguish the modes 

of failure, which can be classified as shown in Figure 15. The mode L represents fibre failure; the 

modes T and Z represent transverse cracking; the others correspond to shear failure [54]. The failure 

analysis procedure has been implemented in Matlab as further detailed in the following Section 3.3. 
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Figure 15. Damage modes for fibre bundles [54] 

3.3 Numerical Results 

This section is organized in two parts. The first one presents the results of the plain and twill models 

subjected to in-plane pure tension, and the second one presents the results of the ultra-thin woven 

model under in-plane and out-of-plane loading. 

3.3.1 Tensile loading 

The plain and twill models, presented respectively in Section 3.1.1 and Section 3.1.2, have been ana-

lyzed using the numerical unit cell approach and the results have been compared against experi-

mental data from tensile tests. For simplicity, the modeling details are introduced by using the plain 

woven composite. First of all, the homogenized material properties used to define both matrix and 

yarns are listed in Table 5 below. 

Table 5. Material properties of matrix and yarns for plain woven composite [32] 

 
E11, 
GPa 

E22 = E33,  
GPa 

G12 = G13,  
GPa 

G23, 
GPa 

ν12 = ν13 ν23 
S11, 

MPa 
S22, 

MPa 
S12, 

MPa 

Vinyl ester 3.45 3.45 1.28 1.28 0.35 0.35 76 - - 

Yarns 
(Vf = 0.63) 

140.5 10.6 7.9 3.11 0.285 0.349 2497 31.6 36 

The material properties of the yarns are orthotropic, thus it is extremely important to assign the cor-

rect material orientation in the Abaqus model. For this purpose, the center points of the fiber tow 

elements are used to interrogate the TexGen model and extract the orientation information that is 

input in Abaqus. Figure 16 below shows the normals to the yarn path orientation. 

 

Figure 16. Material orientation vectors in a yarn 
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It is important to note that the plain weave laminate consists of 8 layers as shown in Table 1. Howev-

er, the model has been simplified as a single-layer in order to reduce the computational effort. Two 

models have been created in order to study the effect of boundary conditions: a first one in which 

periodic BCs are applied in the in-plane direction and a second one where they are applied in all 

three directions. The unit cell homogenization has been performed as described in Section 3.2.2. The 

results obtained and the corresponding relative error are listed in Table 6 below. 

Table 6. Homogenized Young’s modulus of the plain woven composite 

 Young‘s modulus, GPa Error, % 

Experimental value [50] 40.5 (2.12) - 

FE with periodic BCs in the in-plane direction 34.6 14.5 

FE with periodic BCs in all three directions 42.5 4.9 

The results show good agreement with the experimental data. It is observed that leaving the top and 

bottom faces of the unit cell are under stress free conditions leads to a relative error of 14.5%, while 

applying periodic BCs in through thickness direction reduces the error to 4.9%. As it has been ex-

plained in Section 3.2.1, periodic BCs in all three directions are more appropriate when modeling 

thick laminates as a single-layer. The plain woven composite was manufactured by imposing the ex-

act same position for each layer [50], thus it is acceptable to assume that the unit cell is embedded in 

an infinite periodic medium in all three coordinate directions. This assumption neglects any possible 

edge effect, which might be the reason for the relatively small error. Slight variations in the geometry 

and material definition might also affect the result accuracy. The stress field for the longitudinal and 

transverse yarns are shown in Figure 17 below. The yarn elements have been isolated from the ma-

trix in order to provide better insight. The longitudinal stresses S11 and transverse stresses S22 are 

shown for the longitudinal and transverse yarns, respectively, since they correspond with the maxi-

mum principal stresses. It can be seen that the critical locations are close to the edges at the inter-

section between the weft and warp yarns. 

       

Figure 17. Stress field (MPa) for the longitudinal (left) and transverse (right) yarns for a unit strain applied in 
the x-direction 
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The six independent components of the stress tensor for each element were exported to Matlab in 

order to predict failure initiation due to tensile loading. It is important to note that the displacement 

in the transverse direction is not zero when the plain woven composite is loaded in the yarn direc-

tions. Hence, the stress field resulting from any tensile force has to be extrapolated by considering 

both longitudinal and transverse strains as follows: 

{
 
 

 
 
𝝈𝒙
𝝈𝒚
𝝈𝒛
𝝈𝒚𝒛
𝝈𝒙𝒛
𝝈𝒙𝒚}

 
 

 
 
𝑒

=

[
 
 
 
 
 
 
 
 𝝈𝒙
𝜀𝑥=1 𝝈𝒙

𝜀𝑦=1

𝝈𝒚
𝜀𝑥=1 𝝈𝒚

𝜀𝑦=1

𝝈𝒛
𝜀𝑥=1 𝝈𝒛

𝜀𝑦=1

𝝈𝒚𝒛
𝜀𝑥=1 𝝈𝒚𝒛

𝜀𝑦=1

𝝈𝒙𝒛
𝜀𝑥=1 𝝈𝒙𝒛

𝜀𝑦=1

𝝈𝒙𝒚
𝜀𝑥=1 𝝈𝒙𝒚

𝜀𝑦=1
]
 
 
 
 
 
 
 
 
𝑒

{
𝜺𝒙
𝑀

𝜺𝒚
𝑀} (44) 

Damage onset can be studied using Matlab by gradually increasing the tensile force as described in 

Section 3.2.3. The resulting macrostrains are used to calculate the new components of the stress 

tensor for each element as shown in Equation (44). The modified maximum stress criterion present-

ed in Section 3.2.3 has been used in order to understand the mechanisms of damage initiation. The 

criteria is applied on an element-by-element basis, which allows to detect the location of failure. For 

that, the input file (*.inp) generated by Abaqus was exported to Matlab in order to sort out the yarn 

and matrix elements. It is assumed that the yarn elements fail in the longitudinal direction when D1 > 

1. However, two different approaches have been considered for the definition of initial transverse 

failure of the yarns, as it is assumed that the elements would not abruptly collapse in this direction. 

The first one considers failure when D3 > 1, see Equation (39), and will be referred as Early Damage 

Initiation. This definition will indicate the initiation of the first transverse micro-cracks, but it does 

not represent the complete failure of the element. The second one will be referred as Damage Initia-

tion and it assumes that the element completely fails when the following expression is satisfied: 

𝑃(𝐷3) = 1 −
1

exp(−𝑐1𝐷3 + 𝑐2)
≤ 0.001 (45) 

where the empirical parameters c1 and c2 have been determined by Ruijter [55] as 8.0 and 13.0, re-

spectively, for plain weave composites. This expression has been adopted from the damage rule pre-

sented in Section 3.2.3. 

The stress-strain results obtained in the FE simulation have been compared against the experiment 

results [50] in Figure 18 below. It can be seen that the experimental curve starts deviating from linear 

behaviour at a strain of about 0.45%. Obviously, the stress-strain curve for the FE simulation does not 

show this behaviour because the microstress field is linearly extrapolated from the results obtained 

in the single unit strain analysis, which does not take into account propagation of damage. In the 

experiments [50], it was observed by using micrographs that cracks in the transverse yarns were al-

ready present at the stress of 187MPa, which explained the non-linear behaviour observed beyond 

this value. The unit cell failure analysis is in good agreement with these findings. Failure initiation was 

predicted in the transverse yarns at 168MPa when the Equation (45) was considered, while it was 

predicted at 96MPa for the most conservative approach. It is important to note that the latter result 
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corresponds to an applied strain of 0.23%, a typical value for which the first transversal micro-cracks 

are found in textile composites loaded in tension [56, 57]. 

 

Figure 18. Experimental and FE stress-strain results for the plain woven laminate 

Although damage propagation has not been studied, it is interesting to mention that failure in the 

longitudinal yarn elements was first detected at 1.57% strain, which is very close to the ultimate 

strain 1.60% found in the in experiments. This proves that final failure of the plain woven composite 

is governed by the longitudinal yarns, even though the transverse yarns start failing at a much earlier 

stage. The location of failure initiation for both longitudinal and transverse yarns have been plotted 

with Matlab as shown in Figure 19 below. It can be noticed that failure initiates at the critical loca-

tions observed in Figure 17. 

 

Figure 19. First failed elements in yarns longitudinal (left) and transverse (right) to the loading direction 

The same procedure was followed to study the mechanical properties of the twill woven composite. 

The unit cell homogenization has been carried out by using the material properties listed in Table 7. 

Periodic BCs in all three directions have been applied since the twill weave laminate consists of 6 iso-

phase layers. The Young’s modulus obtained for the RVE-FE simulation is compared against the ex-

perimental value [32] in Table 8. The relative error between both results is 7.7%, which is slightly 

higher than the error obtained for the plain-weave. This might be due to the lower number of layers, 

which affects the assumption of an infinite periodic medium through the thickness.  
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Table 7. Material properties of matrix and yarns for twill woven composite [32] 

 
E11, 
GPa 

E22 = E33, 
GPa 

G12 = G13, 
GPa 

G23, 
GPa 

ν12 = ν13 ν23 
S11, 

MPa 
S22, 

MPa 
S12, 

MPa 

Epoxy 3.5 3.5 1.29 1.29 0.35 0.35 73 - - 

Yarns 
(Vf = 0.72) 

169.3 9.5 5.1 2.75 0.24 0.37 3498 30 42                                                                                                                                                                                                                                                             

Table 8. Homogenized Young’s modulus of the twill woven composite 

 Experimental value [32] FE simulation Error, % 

Young‘s modulus, GPa 54.1 (1.23) 58.3 7.7 

The stress-strain results for both FE simulation and experiment [32] have been plot together in Figure 

20 below. It can be observed that the twill composite behaves linearly up to 0.8% strain, while the 

plain model starts deviating from linear behaviour at 0.45%. However, according to the FE simula-

tion, early failure initiation starts in both cases at very similar strains due to transverse damage in the 

transverse yarns. Experimental observations [58] have shown that textile composites under tensile 

loading exhibit similar damage onset scenarios in general, but the cracks can propagate differently 

depending on the textile architecture. The initiated transverse cracks may stay localized and not 

propagate immediately through the sample, which explains the different behaviour after damage 

initiation between plain and twill samples. In fact, a less conservative result is obtained if the initial 

transverse failure of the yarns is assumed to be given by Equation (45) with parameters c1 = 8 and c2 

= 24 [32]. By doing so, it is assumed that the elements do not fail catastrophically when D3 > 1 and 

the damage onset is then estimated at 0.51% strain. 

 

Figure 20. Experimental and FE stress-strain results for the twill woven laminate 

Acoustic energy (AE) measurements were performed during the original experimental tests [32] in 

order to estimate the first damage threshold strain. The result obtained was ε1 = 0.48%, which is in 

good agreement with the last value estimated. However, it was advised to treat the results with cau-

tion because a high threshold was used to filter out low energy events. In fact, Lomov and Verpoest 

[57] performed dedicated AE measurements to predict damage initiation and development in textile 

composites under tensile loading, where it was found that low energy events start before the first 

damage threshold strain. Figure 21 below shows a typical AE diagram in which the difference be-
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tween the minimum εmin and the first ε1 damage threshold can be observed. Micrographs taken just 

after the strain εmin showed the first localised microcracks, while the onset of transversal matrix 

cracks corresponded to the strain ε1. 

 

Figure 21. Typical AE diagram (example for a glass/epoxy woven material) at logarithmic scale [57] 

The results presented in this section are in reasonable good agreement with the findings made by 

Ivanov [56], who stated that failure initiation for different textile patterns is remarkably similar when 

expressed in terms of applied strain. Most of the textile composites loaded in tension show early 

damage initiation at about 0.15 – 0.35%, while damage initiation appears at approximately 0.6% in 

cross-ply laminates [59]. The difference is clearly a consequence of the textile geometry. Figure 22 

below shows the stress-field and the first damage location for the twill yarns transverse to the load-

ing direction. It can be seen that stress concentrations are present in the yarn edges where the yarns 

overlap each other, leading to the initiation of transverse cracks. 

 

Figure 22. Stress field (Pa) in transverse yarns for a unit strain applied in the x-direction (left) and first damage 

location (right) 
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It is concluded that the stiffness and damage onset under tensile loading is well predicted using the 

methodology presented above. The Young’s modulus has been predicted with an error of 4.9% and 

7.7% for the plain and twill model, respectively. The error could be reduced by using a multi-layer 

model of the unit cell instead of a simplified single-layer, but the computational effort would in-

crease dramatically. A realistic model of the RVE geometry is the key for an accurate failure predic-

tion, thus special care should always be taken since stress concentrations will depend on it. The 

benchmark analysis performed in this section provides confidence to increase the complexly towards 

multi-axial loading in ultra-thin laminates.   

3.3.2 In-plane and out-of-plane loading 

The components of the whole ABD matrix have been calculated for the two-ply T300/Hexcel 913 

woven composite presented in Section 3.1.3. The samples were produced by using two fabric layers 

and three film layers of resin. The material properties of the constituents (fiber and matrix) are given 

in the following Table 9. 

Table 9. Fiber and resin elastic properties for the two-ply woven composite [60] 

Properties T300 carbon fiber HexPly 913 resin 

Longitudinal stiffness, E1 (N/mm2) 233000 3390 

Transverse stiffness, E2 (N/mm2) 23100 3390 

Shear stiffness, G12 (N/mm2) 8963 1210 

Poisson′s ratio, ν12 0.2 0.41 

Density, ρ (kg/m3) 1760 1230 

Areal weight of fabric/film, W (g/m2) 98 30 

The first challenge encountered was to estimate the correct fibre volume fraction of the yarns. The 

unit cell model assumes a perfect rectangular cuboid in which the matrix fills all the volume not oc-

cupied by the yarns. However, micrographs images shown in Figure 8 demonstrate that the amount 

of internal and superficial resin gaps should not be neglected. The original source of the micrographs 

[60] assumed no voids to calculate the fibre volume fraction of the laminate by using the following 

expression: 

𝑉𝑓
𝑅𝑉𝐸 =

𝜌𝑚𝑊𝑓

𝜌𝑚𝑊𝑓 + 𝜌𝑓𝑊𝑚
 (46) 

from which the overall areal weight of the matrix, Wm, was calculated by using the areal weight of 

cured samples, Wcomp, as follows: 

𝑊𝑚 = 𝑊𝑐𝑜𝑚𝑝 −𝑊𝑓 = 280.53 − 98.0 ∙ 2 =  84.53 g/m
2 (47) 

The overall fiber volume fraction obtained was 𝑉𝑓
𝑅𝑉𝐸 = 0.62, which is unusually high in plain woven 

composites due to the amount of resin existing in between the yarns. This approach assumes a per-

fect laminate volume without taking into account manufacturing defects such as surface waviness. 

These assumptions can lead to unrealistic high fiber volume fractions since the unit cell boundaries 

are assumed to be perfectly flat. Therefore, an alternative approach is proposed to directly calculate 

the fibre volume fraction of the yarns without having to use the overall volume of the laminate. First, 

the mass of a yarn, 𝑀𝑦𝑎𝑟𝑛, can be calculated by using the following expression: 
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𝑀𝑦𝑎𝑟𝑛 = 𝜌𝑦𝑎𝑟𝑛 ∙ 𝑉𝑦𝑎𝑟𝑛 (48) 

The volume of a yarn, 𝑉𝑦𝑎𝑟𝑛, can be obtained from the FE-RVE model and the density of a yarn, 

𝜌𝑦𝑎𝑟𝑛, can be calculated by adding up the density of fibres and resin as follows: 

𝜌𝑦𝑎𝑟𝑛 = [𝑉𝑓𝜌𝑓 + (1 − 𝑉𝑓)𝜌𝑚]
𝑦𝑎𝑟𝑛

 (49) 

Also, the following expression can be used to calculate the fiber mass fraction of the yarns, 𝑀𝑓
𝑦𝑎𝑟𝑛

: 

𝑀𝑓
𝑦𝑎𝑟𝑛

=
[𝑉𝑓𝜌𝑓]

𝑦𝑎𝑟𝑛

𝜌𝑦𝑎𝑟𝑛
 (50) 

The expressions above depend on the unknown fibre volume fraction of the yarns, 𝑉𝑓
𝑦𝑎𝑟𝑛

. However, 

the areal weight of the fabric, 𝑊𝑓, is known from the manufacturing datasheets and the area of the 

RVE, 𝐴𝑅𝑉𝐸 , can be obtained from the micrographs. Therefore, the mass of a yarn can alternatively be 

calculated as follows: 

𝑀𝑦𝑎𝑟𝑛 =
𝑀𝑓𝑖𝑏𝑟𝑒−𝑏𝑢𝑛𝑑𝑙𝑒  

𝑀𝑓
𝑦𝑎𝑟𝑛  (51) 

where 𝑀𝑓𝑖𝑏𝑟𝑒−𝑏𝑢𝑛𝑑𝑙𝑒  is the mass of the bundle of fibres and can be deduced from the number of 

yarns in the RVE, 𝑛𝑦𝑎𝑟𝑛𝑠, as follows: 

𝑀𝑓𝑖𝑏𝑟𝑒−𝑏𝑢𝑛𝑑𝑙𝑒 =
1

𝑛𝑦𝑎𝑟𝑛𝑠
𝑊𝑓𝐴

𝑅𝑉𝐸  (52) 

The volume of a yarn was calculated from the unit cell model by using Abaqus and the result ob-

tained was 𝑉𝑦𝑎𝑟𝑛 = 0.125 mm3. Finally, the fibre volume fraction of the yarns can be obtained by 

setting the Equation (48) and (52) equal to each other. The result obtained was 𝑉𝑓
𝑦𝑎𝑟𝑛

= 0.75, which 

is in agreement with the typical dense fibre packing values observed inside the yarns of woven com-

posites [61]. The result is also within the theoretical limits of fiber packing arrangement, which are 

illustrated in Figure 23. The maximum Vf is equal to 0.785 for the square configuration, and 0.907 for 

the hexagonal one. 

 

Figure 23. Fiber packing arrangement; (a) square and (b) hexagonal [62] 

The overall fiber volume fraction of the laminate can now be calculated by using the following ex-

pression: 

𝑉𝑓
𝑅𝑉𝐸 =

𝑛𝑦𝑎𝑟𝑛𝑠 ∙ 𝑉𝑓
𝑦𝑎𝑟𝑛

∙ 𝑉𝑦𝑎𝑟𝑛 

𝑉𝑅𝑉𝐸
 (53) 
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where the volume of the RVE is found from the FE-RVE model as 1.56 mm3. The overall fiber volume 

fraction obtained was finally calculated to be 𝑉𝑓
𝑅𝑉𝐸 = 0.48, which agrees very well with typical plain 

weave composite experimental values [63]. As a conclusion, the approach presented above ensures 

to obtain an accurate fibre volume fraction of the yarns by directly using the geometry of the im-

pregnated yarn, which is derived from the micrographs, and the mass of the bundle of fibres, which 

is given by the manufacturing data sheets. Furthermore, this approach allows to estimate the fibre 

volume content of hybrid multilayer composites, as it will be shown in Chapter 4. 

Once the fibre volume fraction of the yarns has been estimated, the homogenized elastic properties 

can be calculated by using the analytical micromechanical models described in Section 2.3.1. The 

material properties of the constituents have been used as given in Table 9, and the following results 

have been obtained: 

Table 10. Homogenized elastic properties of the T300/913 yarns for Vf = 0.75 

Material Properties Value 

Longitudinal stiffness, E1 (N/mm2) 175597 

Transverse stiffness, E2 = E3 (N/mm2) 12985 

Shear stiffness, G12 = G13 (N/mm2) 4439 

Transverse shear stiffness, G23 (N/mm2) 4595 

Poisson′s ratio, ν12 = ν13 0.253 

Poisson′s ratio, ν23 0.413 

 

The values listed in Table 10 above have been used to characterize the yarns as homogenized contin-

ua in the unit cell model. The constitutive [A], [B] and [D] matrices have been calculated for the three 

layer shift configurations defined in Section 3.1.3. The six macroscopic unit deformation have been 

applied with the corresponding boundary conditions shown in Table 4. The results for both tensile 

and bending loading have been compared against experimental data [60] in Table 11 by considering 

the following relations: 

𝜀𝑥 = 𝑎11𝑁𝑥 (54) 

𝑀𝑥 = 𝐷11𝜅𝑥 (55) 

Table 11. Homogenized material properties of the two-ply woven composite 

Unit cell model 
𝟏 𝒂𝟏𝟏⁄  

[N/mm] 
𝝊𝟏𝟐 
[-] 

𝑫𝟏𝟏 
[N·mm] 

In-phase 12389 0.119 45.5 

Out-of-phase 13212 0.043 40.8 

π⁄4 phase 12769 0.095 42.9 

Experiments [60] 
12833 

(12,070 – 13,220) 
0.11 

(0.05 – 0.14) 
37.84 

(30.58 – 45.81) 

The original source of the experiment noted a significant variation of certain results but it did not 

argue the possible reasons. The minimum and maximum value have been shown in Table 11 above in 

order to highlight the difference. As it can be seen, the results for the three layer shift configurations 

are within the range found in the experiments. The models with the layers in-phase and π/4 out-of-

phase are the most representative for the sample average. It is interesting to note that the layer shift 
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observed in Figure 8 is in between these two configurations, which might be the reason for this simi-

larity. However, the strong variation observed in the experimental bending stiffness is not explained 

by the layer shift. It is very likely that samples had slightly different thickness as a consequence of the 

manufacturing process, which would affect the bending properties significantly. However, the thick-

ness of each sample was not measured during the experiments, thus it is not possible to make a 

proper comparison. 

It has been shown that the stiffness results for the model with the layers π/4 out-of-phase are in 

between the two other two extreme configurations. Hence, this model has been chosen in order to 

study failure initiation under in-plane and out-of-plane loading by using the aforementioned proce-

dures. The results of maximum principal stresses under each independent macroscopic unit defor-

mation are shown in Figure 24 below. It can be observed that the critical locations are always close to 

the yarn edges where the yarns overlap each other. Furthermore, it is particularly interesting to note 

that the top and bottom layer present similar stress distribution patterns for each load case except 

𝜅𝑥 = 1, where the longitudinal yarns are loaded in tension in the top and compression in the bottom. 

The entries of the constitutive ABD matrix were found to be as follows: 

𝐴𝐵𝐷 =

[
 
 
 
 
 
12885 1220 0 0 0 0
1220 12885 0 0 0 0
0 0 707 0 0 0
0 0 0 42.9 5.4 0
0 0 0 5.4 42.9 0
0 0 0 0 0 2.5]

 
 
 
 
 

 (56) 

where the units are in N and mm. 

  
(a) (b) 

  
(c) (d) 
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Figure 24. Stress field (MPa) for the two-ply weave composite under (a) 𝜀𝑥 = 1, (b) 𝛾𝑥𝑦 = 1, (c) 𝜅𝑥 = 1, and (d) 

𝜅𝑥𝑦 = 1 

It should be noted that the prediction of failure initiation under shear loading required special con-

siderations. The shear response was first calculated by using the following strength material proper-

ties: 

Table 12. Yarn and matrix strength material properties for the two-ply woven composite [60] 

Material Properties T300/913 UD HexPly 913 resin 

Longitudinal tensile strength, 𝜎1𝑡
𝑢  (N/mm2) 2005 65.5 

Longitudinal compressive strength, 𝜎1𝑐
𝑢  (N/mm2) 1355 - 

Transverse tensile strength, 𝜎2𝑡
𝑢  (N/mm2) 68 - 

Transverse compressive strength, 𝜎2𝑐
𝑢  (N/mm2) 198 - 

Shear strength, 𝜎𝑠
𝑢 (N/mm2) 150 - 

The yarns were assumed to have the same strength properties of a unidirectional composite. Failure 

was checked element-by-element while the shear loading was gradually increased. First-element 

failure was found due to shear cracking in the yarns at the load 𝑁𝑥𝑦 = 17.5 N/mm. However, the 

experimental stress-strain curve [60] showed deviation from the linear behavior at a much lower 

value. Therefore, a different approach was attempted to predict the initiation of failure. The unit cell 

model was rotated 45 degrees in order to simulate a [±45] tensile test and thus evaluate the shear 

response. It is important to mention that the size of the RVE had to be increased by √2 in order to 

keep the periodic geometry, as shown in Figure 25 below. Otherwise, the periodic BCs are not appli-

cable. 

 

Figure 25. Rotation of the unit cell 

The homogenization and the failure analysis of the rotated unit cell was performed as before. The 

following expressions were used to determine the shear resultant and strain: 

𝑁𝑥𝑦 =
𝑁𝑥
2

 (57) 

 𝛾𝑥𝑦 = 𝜀𝑥 − 𝜀𝑦 (58) 

First-element failure was found at the same load and strain. A possible error in the methodology was 

ruled out since the tensile loading has been already validated. Thus, the assumed strength parame-

ters of the impregnated yarns were questioned. Ito and Chou [50] found that the critical shear 

strength 𝜎𝑠
𝑢 depends on the location in the yarn, with the centre line having higher values. To take 

this into account, they recommended to apply the shear strength of the fabric composite as the criti-

cal shear strength value for the yarns. Mallikarachchi [60] estimated the pure shear strength of the 
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two-ply weave laminate as 𝜎𝑠
𝑢 = 80.59 N/mm2. The failure analysis under shear loading was then 

conducted by using this value and the following result was obtained. 

 

Figure 26. Experimental and FE shear response for the two-ply weave composite 

First-element failure was found due to shear cracking in the yarns at the load 𝑁𝑥𝑦 = 9.0 N/mm and 

the strain 𝛾𝑥𝑦 = 0.013, which agrees reasonably well with the initial deviation from linear behaviour 

observed in the experimental curve. Furthermore, the damage mode coincides with the experi-

mental studies reported by Lisle et al. [64], where they observed matrix microcracks in the yarns as 

the damage initiation mechanism. After this validation, first-element failure was calculated for pure 

tension, compression, shear, bending and torsion loading by assuming that the yarns have the 

strength properties of the unidirectional composite and the critical shear strength of the fabric com-

posite. The modified maximum stress criteria has been compared against Tsai-Wu criteria to predict 

failure of the yarns. The results obtained are shown in Table 13 below. 

Table 13. Uniaxial failure strengths for the two-ply woven composite 

Load Ultimate Strength [60] 
Failure Initiation Load 

Max. Stress Tsai-Wu 

Tension, N/mm 139.47 49 49 

Compression, N/mm 63.42 66 60 

Shear, N/mm 17.73 9.0 9.5 

Bending, Nmm/mm 3.04 1.6 1.6 

Torsion, Nmm/mm 0.92 0.45 0.50 

As it was expected, it can be seen that failure initiation is predicted at much lower values than the 

experimental ultimate strength, except for compression loading. The reason is that compression 

loading causes first failure in the load-aligned yarns, which leads to catastrophic failure. Therefore, it 

is safe to assume that the entire material fails when failure of the longitudinal yarns is detected [65]. 

Failure initiation was found in the transverse yarns for tension and bending.  Specifically, bending 

loading lead to failure in the transverse yarns of the top layer due to tensile stresses. Finally, shear 

failure in both weft and warp were found in shear and torsion loading. It can be concluded that the 
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modified maximum stress criteria and Tsai-Wu give very similar results. However, the modified max-

imum stress criteria is preferred since it has allowed to detect the damage mode, which has been 

extremely useful to understand the mechanisms of failure initiation. 

3.4 Conclusions 

The multi-scale approach presented in this chapter has demonstrated to be a powerful method to 

predict the elastic properties of woven composites, as well as the failure initiation under in-plane and 

bending loads. However, it presents some challenges and limitations that should be pointed out. First 

of all, the modelling and discretization of the RVE is a very time-consuming task. The software 

TexGen and its python interface have been found very useful to generate almost any textile geome-

try, but the process can become very tedious if a realistic unit cell model is wanted. Despite the solu-

tions proposed, the mesh generation can require some trial and error until a good quality mesh is 

obtained. Regarding the methodology itself, the major limitation is the linear assumption to extrapo-

late the results obtained in the single unit strain analyses. As has been shown, this assumption allows 

to estimate the initiation of failure, but limits the possibility of studying damage propagation. A total-

ly different approach would be necessary to study the non-linear material behaviour after failure 

initiation. 

The estimation of failure initiation using the unit cell approach might be considered conservative if 

the mechanisms of failure initiation are not taken into account. It has been observed that the first 

micro-cracks initiate at relatively low strain level due to the stress concentrations caused by the in-

terlacing warp and weft yarns. Although these micro-cracks do not immediately propagate, they real-

istically represent the initial damage of the composite. These findings have been contrasted with 

those from acoustic energy measurements, which detect low energy events at similar strain levels. 

The unit cell approach allows to predict the location of failure, so the results should be interpreted 

depending on the damage mode detected. 

It is important to note that an accurate prediction of the overall mechanical behaviour would not 

have been possible without a correct estimation of the homogenized mechanical properties of the 

yarns. The entire micromechanical model depends on the fibre volume fraction of the yarns, so spe-

cial attention has been paid on the methodology to estimate its value. The proposed approach will 

be used in the following section to estimate the mechanical properties of hybrid laminates composed 

of woven and unidirectional layers. 
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 Hybrid Woven/UD Laminates 

This chapter presents a case study of hybrid laminates composed of two woven layers with a ply of 

UD fibres between them. The tape-springs have been produced using this laminate stacking se-

quence in order to obtain improved mechanical properties. Two different configurations have been 

analyzed, the first one using plain weave layers, and the second one using twill weaves. First of all, 

the fibres' architecture has been measured from micrographs. The data obtained have been used to 

analyze each layer separately. Secondly, the woven layers have been discretized in the mesoscale to 

estimate the fibre volume fraction and the yarn properties, which are not known a priori. Then, the 

material properties of the lamina have been homogenized using the aforementioned FE-RVE ap-

proach. Subsequently, the material properties of the UD layer have been estimated using an analyti-

cal approach that considers the influence of ply waviness on the stiffness. The overall laminate prop-

erties have been finally calculated using the Classical Laminate Theory. The results obtained here will 

be used in Chapter 5 to predict the macroscopic failure behaviour of the tape-springs. 

4.1 Micrograph Measurements 

The laminates for the micrographs were directly cut from the tape-spring samples as shown in Figure 27. 

The tape-spring were previously tested until failure, thus the laminate samples were taken as far as possi-

ble from the damaged area. The UD and the woven layers are oriented in the 0° and 45° direction, respec-

tively. Therefore, the samples were cut in both directions in order to measure the weave length and the 

cross-sectional area of the yarns, as well as to analyze the cross-section of the UD layer. 

 
Figure 27. Samples preparation 

The samples were cut with dimensions N × M and then polished in order to avoid scratches in the surface. 

The micrographs were obtained with the help of the Laboratoire physico-chimique at Thales Alenia Space 

by using the microscope with ×N1 and ×N2 magnification. An example of the images taken for the twill 

weave and plain weave samples is shown, respectively, in Figure 28 and Figure 29 below. 
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Figure 28. Micrograph of Twill/UD/Twill hybrid laminate 

 

Figure 29. Micrograph of Plain/UD/Plain hybrid laminate 

The micrographs images were imported into Matlab and the geometric properties listed in Table 14 

were measured by using the Image Segmenter Toolbox. The resolution of the micrographs was not 

high enough to apply a threshold that automatically select the image regions having similar gray lev-

els. Thus, the edges of the yarns and the UD were defined by using a continuous polygon drawn. The 

data points were used to calculate the geometric dimensions needed to create the unit cell model. 

Table 14. Geometric properties of the plain and twill weave layers 

 Plain weave layer Twill weave layer 

RVE weave length, mm - - 

Maximum tow thickness, mm - - 

Tow cross-sectional area, mm2 - - 

Micrographs showed that significant ply waviness exists in the UD layer between the two plain wo-

ven plies. The undulation amplitude can be observed in Figure 29, where the UD layer has been high-

lighted in yellow. However, it is noted that there is no ply waviness in the UD layer between the two 

twill woven plies. This difference may be attributed to the layer shift rather than the different textile 

architecture. On the one hand, the top and bottom plain weave layers are approximately π/4 out-of-

phase, thus the UD layers tends to follow the weaving pattern. On the other hand, the twill samples 

show a perfect out-of-phase shift between the woven layers, which allows to keep the UD layer in a 

flat configuration. The weaving parameters shown in Table 15 have been obtained from the micro-

graphs in order to study the effect of the UD waviness on the mechanical properties as it is further 

detailed in Section 4.2.2. It is important to note that the image shown in Figure 29 has been taken 

from a sample cut in 45°, while the UD layer is oriented in the 0° direction. Therefore, Equation (59) 

below has been used to estimate the weave length of the UD layer in the fibre direction: 

𝑈𝐷 𝑤𝑒𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = √2 ∙
𝑅𝑉𝐸 𝑤𝑒𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

2
 (59) 

Table 15. Weaving parameters of the UD layer 

 Plain weave laminate Twill weave laminate 

UD ply thickness, mm - - 
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UD peak-to-peak thickness, mm - - 

UD weave length, mm - - 

The geometric parameters presented above will be used in the following Section 4.2.1 to create the 

unit cell models of the woven layers by using TexGen. Furthermore, the findings regarding the UD 

waviness will be studied in Section 4.2.2 to quantify the influence of manufacturing defects on the 

overall stiffness of ultra-thin hybrid laminates. 

4.2 Estimating Elastic Material Properties 

4.2.1 Woven layer 

The first parameter required to estimate the elastic properties of the woven layer is the fibre volume 

content of the yarns. This parameter cannot be calculated from the areal weight of the laminate 

since the woven and the unidirectional layers are composed of different constituent materials (fibre 

and matrix) with different densities. The alternative method proposed in Section 3.3.2 was therefore 

used for this purpose. First, the unit cell model of the woven layers was created using TexGen in or-

der to calculate the volume of the yarns. The geometric parameters from the micrograph measure-

ments were used to model both plain and twill configurations as follows: 

 

Figure 30. Plain and twill layer models for the hybrid laminate 

The volume of one yarn was measured by using Abaqus, obtaining 0.665 mm3 for the plain model 

and 0.947 mm3 for the twill model. The density of the fibres and the matrix, as well as the areal 

weight of the fabric are detailed in the Appendix I. The fibre volume fraction of the yarns was ob-

tained by setting the Equation (48) and (52) equal to each other, obtaining 𝑉𝑓
𝑦𝑎𝑟𝑛

= 0.65 and 

𝑉𝑓
𝑦𝑎𝑟𝑛

= 0.69 for the plain and twill configurations, respectively. Then, the transversely isotropic 

material patermers of the yarns were estimated using the micromechanical analytical models de-

scribed in Section 2.3.1. The following results were obtained: 

Table 16. Homogenized elastic properties of the yarns for the plain and twill configurations 

Material Properties Plain weave Twill weave 

Longitudinal stiffness, E1 (N/mm2) - - 

Transverse stiffness, E2 = E3 (N/mm2) - - 

Shear stiffness, G12 = G13 (N/mm2) - - 

Transverse shear stiffness, G23 (N/mm2) - - 

Poisson′s ratio, ν12 = ν13 - - 

Poisson′s ratio, ν23 - - 
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The homogenization of the unit cell models was conducted by applying the periodic boundary condi-

tions described in Table 4. The procedure described in Section 3.2 was followed and the following 

stiffness matrices were obtained: 

𝐴𝐵𝐷𝑝𝑙𝑎𝑖𝑛 =

[
 
 
 
 
 
− − 0 0 0 0
− − 0 0 0 0
0 0 − 0 0 0
0 0 0 − − 0
0 0 0 − − 0
0 0 0 0 0 −]

 
 
 
 
 

 (60) 

𝐴𝐵𝐷𝑡𝑤𝑖𝑙𝑙 =

[
 
 
 
 
 
− − 0 0 0 0
− − 0 0 0 0
0 0 − 0 0 0
0 0 0 − − 0
0 0 0 − − 0
0 0 0 0 0 −]

 
 
 
 
 

 (61) 

where the units are in N and mm. 

4.2.2 UD layer 

The goal of this subsection is to investigate the stiffness reduction due to ply waviness of the unidi-

rectional layer. As it has been previously shown in the micrographs images, the UD fibres may con-

form to the adjacent plain woven plies, which might not be negligible. Bogetti et al. [66] developed 

an analytical model that estimates the stiffness reduction by assuming ply waviness in only one direc-

tion. The wavy ply geometry and the corresponding unit cell are schematically depicted in Figure 31 

below. 

  

Figure 31. UD ply waviness: Unit cell [66] 

The wavy ply configuration is idealized as a sine wave, where 𝐴 is the amplitude of the undulation 

and 𝐿 is the half-wavelength. The representative unit cell can be mathematically defined as a func-

tion of 𝑥. Specifically, the distances along the half-sine are written by Bogetti et al. [66] as follows: 

ℎ2(𝑥) = −
𝐴

2
−
ℎ𝑓

2
+ [1 + sin (

𝜋

𝐿
(𝑥 −

𝐿

2
))]

𝐴

2
 (62) 

ℎ3(𝑥) = −
𝐴

2
+
ℎ𝑓

2
+ [1 + sin (

𝜋

𝐿
(𝑥 −

𝐿

2
))]

𝐴

2
 (63) 
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The expression above can be used to define the local out-of-plane undulation angle as follows: 

𝜃(𝑥) = tan−1 [
𝑑(ℎ2(𝑥))

𝑑𝑥
] = tan−1 [

𝑑(ℎ3(𝑥))

𝑑𝑥
] (64) 

The approach consists in applying the classical laminate theory to each segment of width 𝑑𝑥 in which 

the unit cell is divided. The effective response is obtained by averaging the compliances assuming 

constant in-plane stress within each discrete segment. First, the ABD matrices for each segment are 

calculated by using the ℎ𝑖(𝑥) values given above. For this, the stiffness matrix 𝑄𝑖𝑗  must take into 

account the out-of-plane orientation, thus the effective engineering properties are given as a func-

tion of the undulation angle as follows: 

𝐸𝑥(𝜃) = [
𝑙𝜃
4

𝐸1
+ (

1

𝐺13
− 2

𝜈13
𝐸1
) 𝑙𝜃

2𝑚𝜃
2 +

𝑚𝜃
4

𝐸3
]

−1

 (65) 

𝐸𝑦(𝜃) = 𝐸2 (66) 

𝜈𝑥𝑦(𝜃) = 𝐸𝑥(𝜃) [
𝜈12𝑙𝜃

2

𝐸1
+
𝜈32𝑚𝜃

2

𝐸3
] (67) 

𝐺𝑥𝑦(𝜃) = [
𝑚𝜃
2

𝐺23
+
𝑙𝜃
2

𝐺12
]

−1

 (68) 

where 

𝑙𝜃 = cos 𝜃 (69) 

𝑚𝜃 = sin 𝜃 (70) 

The effective [abd] matrices for each segment can be directly computed through inversion of the 

[ABD] matrices. However, it should be noted that local warping, i.e. local out-of-plane deformation, is 

allowed in the model presented above. Ishikawa and Chou [67] stated that local warping may be 

constrained by the adjacent layers in a multilayer composite. Both behaviors are limiting conditions, 

a warping suppressed condition may be more realistic for laminates of appreciable thickness. The in-

plane compliance matrix 𝑎𝑖𝑗  can be rewritten with local warping constrained as follows: 

𝑎𝑖𝑗
∗ = [𝑎𝑖𝑗 − 𝑏𝑖𝑗𝑑𝑖𝑗

−1𝑏𝑖𝑗] (71) 

Then, the average in-plane compliance for both limiting conditions can be obtained by the following 

integration: 

𝑎𝑖𝑗
∗∗ =

1

𝐿
∫ 𝑎𝑖𝑗(𝑥)
𝐿

0

𝑑𝑥    or    𝑎𝑖𝑗
∗∗ =

1

𝐿
∫ 𝑎𝑖𝑗

∗ (𝑥)
𝐿

0

𝑑𝑥 (72) 

Finally, the average mechanical properties of the wavy ply are calculated by using the compliance 

coefficients above and the Equations (32).  

It is important to note that the model takes into account ply waviness in only one direction. Howev-

er, the woven ply architecture of the adjacent plies will deform the unidirectional ply along the whole 
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x-y plane. The goal is to quantify the influence of undulation on the stiffness reduction in the load 

direction because significant variations have been noticed on different tape-spring samples as it will 

be further explained in Section 5.3. Therefore, it is acceptable to assume ply waviness in only the 

fibre direction since the undulation on the transversal direction will barely have an effect. 

The mechanical properties of the UD composite prepreg are given in Appendix I. The reduction of the 

original properties have been estimated using the approach described above and the geometric 

weaving parameters listed in Table 15. The graph in Figure 32 shows the effect of the undulation 

amplitude on the Young’s modulus Ex for both local warping limiting cases. The results indicate that 

there is a significant stiffness reduction for the undulation amplitude measured from the micro-

graphs. As it was expected, stiffness reduction is not as severe when local warping is constrained 

(~25%) than when local warping is allowed (~40%). Although predictions based on local warping al-

lowed may be too conservative for a thick laminate, they may match better for the ultra-thin lami-

nates used in the tape-springs. 

 
Figure 32. Influence of undulation amplitude on Ex 

The results obtained above will explain the significant difference in mechanical properties between 

tape-springs made out of plain and twill weave patterns, as it will be further detailed in Section 5.3. 

The manufacturing process strongly influences the relative position between the external woven 

layers, which directly affects the waviness of the UD layer in the middle. From the graph shown in 

Figure 32 above, it can be stated that the ratio A/hf should be lower than ~0.3 in order to avoid a 

stiffness reduction larger than 10%. For this, the shift between the exterior woven layers should be 

avoided in order to reduce the undulation amplitude of the UD layer. 
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4.2.3 Overall Laminate 

The constitutive [ABD] matrices for the multi-layer composite will be required for the macroscopic 

failure analysis of the tape-spring, as further detailed in Section 5.2.2. The expression for the overall 

stiffness can be written as follows: 

𝐴𝑖𝑗
𝑀𝐿 =∑𝐴𝑖𝑗

𝑆𝐿 (73) 

𝐷𝑖𝑗
𝑀𝐿 =∑(𝐷𝑖𝑗

𝑆𝐿 + 𝐴𝑖𝑗
𝑆𝐿ℎ2) (74) 

where the superscripts SL and ML represent, respectively, single-layer or multi-layer properties, and 

h is the distance from the bending axis to the centre of a layer. Note that the coupling [B] matrix is 

not accounted since laminates with zero [B] terms have to be used for the tape-spring application. 

It is important to note that the ABD matrices for each single layer should be defined in the same 

global direction in order to apply the Equations (73) and (74) above. The material direction of the 

woven layers have been chosen for simplicity.  The goal is simply to reduce as much as possible the 

number of coordinate transformations in the macroscopic failure analysis. The results for each lami-

nate configuration are shown in Appendix I. 

4.3 Failure Parameters 

The strength of the yarns need to be known in order perform the failure analysis of the woven and 

twill models. Except the transverse tensile strength, which strongly depends on the matrix, the yarns 

can be assumed to have similar strength properties in composites with the same types of fibres and 

volume fractions. Therefore, the strength of the yarns were taken from those given in Section 3.1.3 

for the two-ply woven composite, excluding the transverse tensile strength, which has been estimat-

ed based upon the ratio of the different resin strengths [50]. Note that this indicates that the 

strength of the yarns in the transverse direction can be greatly improved by using high-strength res-

ins. The values for yarns and matrix are listed in Table 17. 

Table 17. Yarn and matrix strength material properties for the hybrid woven laminates 

Material Properties Yarns Resin 

Longitudinal tensile strength, 𝜎1𝑡
𝑢  (N/mm2) - - 

Longitudinal compressive strength, 𝜎1𝑐
𝑢  (N/mm2) - - 

Transverse tensile strength, 𝜎2𝑡
𝑢  (N/mm2) - - 

Transverse compressive strength, 𝜎2𝑐
𝑢  (N/mm2) - - 

Shear strength, 𝜎𝑠
𝑢 (N/mm2) - - 

As explained in Section 2.4, the failure criterion proposed by Mallikarachchi and Pellegrino [44] can 

be expressed in terms of six different coefficients, which can be written as follows: 

𝐷1 =
1

𝐹1𝑡
−
1

𝐹1𝑐
 

𝐶11 =
1

𝐹1𝑡𝐹1𝑐
 

𝐶44 =
1

𝐹4
2 

𝐶66 =
1

𝐹6
2 

(75) 
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𝐶33 =
1

𝐹3
2 𝐶12 = −

𝐶11
2

 

where, 

- 𝐹1𝑡 is the tension failure strength, 

- 𝐹1𝑐 is the compression failure strength, 

- 𝐹3 is the shear failure strength, 

- 𝐹4 is the bending failure strength, 

- 𝐹6 is the twisting failure strength. 

As has been demonstrated in previous sections, the five uniaxial failure strengths can be calculated 

using the micromechanical unit cell approach. However, it should be noted that Mallikarachchi and 

Pellegrino [44] obtained these values from failure strength experiments, which indicate the ultimate 

failure loads. The unit cell failure analysis give the values corresponding to failure initiation. There-

fore, the failure predictions will be considerably more conservative, but they will realistically repre-

sent the initial damage. Table 18 shows the failure strength results obtained for both plain and twill 

woven models. The two definitions of initial transverse and shear failure of the yarns, presented in 

Section 3.3.1, have been considered. 

Table 18. Uniaxial failure strengths for the plain and twill woven laminas 

Strength Plain woven Twill woven 

F1t = F2t, N/mm - - 

F1c = F2c, N/mm - - 

F3, N/mm - - 

F4 = F5, Nmm/mm - - 

F6, Nmm/mm - - 

(*) Early failure initiation 

It is important to note that failure envelopes for the woven composites could be generated by grad-

ually increasing a selected force or moment resultant. This approach on its own will not be readily 

applicable to predict failure in multiaxial loading conditions at the macroscopic level since the various 

force and moment resultant spaces will be many and quite different in nature, which is why the phe-

nomenological failure criteria proposed by Mallikarachchi and Pellegrino [44] will be used. However, 

the potential of the micromechanics method should not be overlooked, as it could be used to replace 

complex experimental tests. As an example, the micromechanics approach has been used to study 

failure under biaxial bending and confirm the hypothesis that the value of Mx at failure is practically 

independent of My in woven composites [46]. As a comparison, the biaxial Nx – Ny force envelope has 

also been plotted to show that the interaction between these loads is effectively quadratic. Figure 33 

below shows the result obtained for the plain woven lamina studied in this section.  



Hybrid Woven/UD Laminates 

45 
 

 

Figure 33. Failure envelopes for biaxial loads (left) and moments (right) 

4.4 Conclusions 

The complexity of the laminate has been increased in this section by combining both woven and UD 

layers. The homogenization of the entire composite has been carried out layer by layer. On the one 

hand, the material properties of the impregnated woven layers have been estimated by using the 

geometric properties measured from the micrographs and the unit cell approach described in the 

previous Chapter 3. For this, the fiber volume content has been estimated by just looking at the ge-

ometric and material constituents of the yarns. The woven and UD layers are composed of different 

types of fibre and resin, thus traditional approaches to measure the fibre volume content cannot be 

used. 

On the other hand, the micrographs have shown severe ply waviness of the unidirectional layer. This 

manufacturing defect has been attributed to the layer shift between the woven layers. As shown in 

Section 3.3.2, layer shift do not have a significant impact in ultra-thin woven composites. However, 

this is completely different for hybrid composites since the UD layer can be affected. An analytical 

approach based on the classical laminate theory has been used to estimate the effect of the undula-

tion amplitude on the stiffness reduction. The results show that its effect cannot be neglected as has 

been done so far. The fact that the twill woven layers are in perfect out-of-phase, contrary to the 

plain woven layers, might be just a coincidence. Therefore, more attention should be given to control 

the layer shift during the manufacturing of the tape-springs. 

Finally, the failure parameters required to perform the failure analysis of the entire tape-springs have 

been calculated. An important finding in this regard is that the strength of the yarns in the transverse 

direction can be greatly improved by using high-strength resins. As shown in Chapter 3, early failure 

initiation under tensile and bending loading is caused due to transverse damage in the transverse 

yarns, thus the initiation of the first micro-cracks could be significantly affected by just changing the 

type of resin. 
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 Analysis of Tape-springs 

The aim of this chapter is to estimate failure initiation of tape-springs under multi-axial loading con-

ditions. The mechanical properties calculated on the mesoscale will now be used to analyze the mac-

roscopic behaviour. A series of tape-springs have been produced and tested by a contractor. The 

details of the experimental set-up will be first introduced in order to reproduce the test using the 

finite element method. The simulation set-up is described in detail as well as the failure analysis pro-

cedure. A comparison between the experimental and numerical results is performed to provide con-

fidence in the damage initiation predictability.  

5.1 Experimental Set-up 

The goal of the experiments was to identify the ultimate failure force of a tape-spring that is initially 

bent according to a specific radius of curvature. Two different tape-spring were produced and tested. 

The selected lay-up consists in a single UD ply between two plain woven plies for the first tape-

spring, and between two twill woven plies for the second one. The geometrical and stacking se-

quence details are given in Appendix II. The two extremities of a bent tape-spring were attached into 

adapted jaws that are linked to a classical testing machine. The loading was applied through a cylin-

drical pin that is also linked to the testing machine as shown in Figure 34. The distance d between the 

two undeformed tape-spring arms was set equal to the pin diameter. 

 

Figure 34. Testing tool principle (left) and testing device (right) 

The tests were performed at the contractor’s laboratory by using three different pin radius: R1, R2, 

and R3. The following testing sequence was followed for each sample: 
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- 1st run: load N applied with R1 pin, 

- 2nd run: load N applied with R2 pin, 

- 3rd run: load until failure applied with R3 pin. 

It is very important to note that failure initiation was not taken into account and the same tape-

spring sample was used for every test. However, cracking sounds were reported since the very be-

ginning of the test, which indicates the presence of some kind of damage. The FE methodology pre-

sented in the following Section 5.2 does not consider damage propagation, thus only the first test 

can be considered for comparison purposes. 

5.2 Tape-spring modeling 

Tape-springs are thin-walled self-deployable strips that experience very large displacements when 

subjected to bending loads. Specifically, they can undergo opposite and equal sense bending as 

shown in Figure 35, depending if the longitudinal and transverse curvatures are applied in the same 

sense or not [68]. 

 

Figure 35. Opposite (top) and equal (bottom) sense bending of a tape spring [68] 

As can be seen, the tape-spring folding is a highly geometric non-linear problem, which means that 

the solution needs to be found by splitting the simulation into small increments in order to find an 

approximate equilibrium configuration at each one. There are many possible solution methods to 

solve the problem, such as the Newton-Raphson, the Modified Newton-Raphson or the Arc Length 

method. A detailed description of these methods and others is given by Bathe [69]. The arc length 

method is a powerful numerical technique to solve global buckling problems. However, the tape-

spring folding presents local buckling in-stabilities that cannot be handled by the arc length method. 

Therefore, the Newton-Raphson with artificial damping has demonstrated to be the best choice to 

achieve a converged solution [70].  

It is important to note that the stabilization parameter should be as low as possible to ensure that 

the solution is not dominated by damping effects. This is particularly important for ultra-thin shell 

models due to their low bending stiffness. An optimal constant damping value could be found by 

comparing the strain energy against the energy dissipated due to viscous forces until the ratio be-

tween them is sufficiently small and a converged solution is obtained. However, this would require 

several trial-and-error analysis since the optimal value may change from different tape-spring config-

urations. Consequently, this approach was discarded in favor of an adaptive automatic stabilization 
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scheme, in which the ratio of the total stabilization energy to the total strain energy has been directly 

limited to 0.05 [71]. 

5.2.1 Simulation Set-up 

The software Abaqus/Standard was chosen to perform the FE simulations. The first challenge en-

countered was to define a modelling strategy that could be used for any tape-spring and cylinder 

dimensions. A certain curvature is created in the middle of the tape-spring when a bending load is 

applied. This means that the tape-spring could be folded while the cylinder is subsequently placed in 

between by ensuring initial contact, which is required when treating contact problems within the 

finite element method. However, this approach would only be valid if the radius of curvature of the 

pin is smaller than the one of the tape-spring. Otherwise, the pin would not fit. The radius of curva-

ture depends on several factors such as material properties or tape-spring initial geometry, thus it 

was necessary to define a strategy in which both the tape-spring and the pin are involved since the 

beginning of the simulation. The initial configuration of the finite element model is shown in Figure 

36. 

 

Figure 36. Finite element model of tape-spring and cylindrical pin 

The cylindrical pin is modelled as a rigid body since it is assumed to be undeformable. It is associated 

with a reference point in its center that governs the motion of the entire cylinder. Regarding the 

tape-spring, two reference points RP1 and RP2 were created at the middle of the extremes in order 

to control the bending simulation. The nodes at the curved edges were connected to each reference 

point by using a multi point constraint. The tape-spring and the pin are placed together as illustrated 

in the Figure 36 by using the surface-to-surface contact definition without allowing separation. The 

goal is to fold the tape-spring while the cylinder follows the same displacement to eventually end up 

at the correct position.  

The tape-spring has to be slightly pinched before starting to bend it. Otherwise, the initial fold might 

not occur at the middle point and the resulting local instabilities can cause the pin to separate from 

the tape-spring, among other convergence problems. This process is simulated by moving the pin in 

the positive y-direction as shown in Figure 37. The rigid pin is not allowed to move or rotate in the 

other directions to maintain symmetry. All degrees of freedom at the reference points RP1 and RP2 

are also restrained in order to define the total displacement and the angle rotation in the next step. 

 

Figure 37. Pinching of the tape-spring 
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For the folding simulation, the rigid pin is allowed to move along the y-direction while the other de-

grees of freedom are kept retrained. The boundary conditions for the reference points RP1 and RP2 

are defined as follows: a rotation about the x-axis is incremented from 0 rad to π/2. A displacement 

along the z-direction is defined such that the final distance between the two tape-spring arms is 

equal to the pin diameter. All other degrees of freedom are held zero. By doing the above, the test 

set-up configuration can be achieved in a single step. Initial contact between parts is ensured since 

the beginning of the simulation and convergence problems are avoided. 

Finally, the pin is moved in the positive y-direction to simulate the tensile test. All degrees of free-

dom at the reference points RP1 and RP2 are restrained in order to simulate clamping conditions. 

The time interval must be chosen small enough so that the force is applied gradually through the 

rigid pin. 

5.2.2 Failure Analysis Procedure 

The failure analysis was carried out separately for the woven and the UD layers. The latter can be 

analysed by applying common failure theories, such as Tsai-Wu or maximum stress, to the stress 

components obtained from the finite element analysis. However, the woven layers require special 

considerations due to the stress gradient effects observed at the micromechanical level. The failure 

criterion proposed by Mallikarachchi and Pellegrino [45] has been presented in Section 2.4 as the 

most appropriate existing theory for woven composites. The criteria is expressed in terms of force 

and moment resultants. Therefore, the inputs required from the FE simulation are not the macro 

stresses as usual, but the section forces (SF) and moments (SM). For a section of thickness h, they are 

defined as follows [71]: 

(𝑆𝐹1, 𝑆𝐹2, 𝑆𝐹3) = ∫ (𝜎11, 𝜎22, 𝜎12)𝑑𝑧
ℎ/2

−ℎ 2⁄

 (76) 

(𝑆𝑀1, 𝑆𝑀2, 𝑆𝑀3) = ∫ (𝜎11, 𝜎22, 𝜎33)𝑧
ℎ/2

−ℎ 2⁄

𝑑𝑧 (77) 

It can be noted that the units are force and moment per unit width, thus they could be directly relat-

ed to the macrostrains by means of the constitutive ABD matrix. According to the Abaqus documen-

tation [71], the section force and moment resultants can only be given for the entire laminate. How-

ever, the strength parameters have been calculated in Section 4.3 from single-layer analyses, which 

means that the force and moment resultants must be evaluated at the layer level in order to apply 

the failure criterion. For this, Karkkainen et al. [72] proposed to calculate the multilayer mid-plane 

deformations as follows: 

{
[𝜀0]

[𝜅]
} = [

[𝐴] [𝐵]

[𝐵] [𝐷]
]
𝑀𝐿

−1

{
[𝑁]

[𝑀]
} (78) 

where [N] and [M] are the overall section force and moment resultants obtained from the FE simula-

tion, and [ABD]ML is the stiffness matrix for the multilayer composite calculated in Section 4.2.3. 
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Now, the obtained mid-plane multilayer strain state must be adjusted to represent the actual strain 

in the single layer of interest. The strains are proportional to the curvature and may be assumed to 

vary linearly through the thickness of the laminate as follows: 

𝜀𝑖𝑗 = 𝜀𝑖𝑗
0 ± ℎ𝜅𝑖𝑗 (79) 

Finally, the force and moment resultant at the layer level can be calculated by using the modified 

strain given by Equation (79) together with the single-layer constitutive [ABD]SL matrices calculated in 

Section 4.2.1. The adjusted force and moment resultants will have to be calculated for each woven 

layer and then directly input to the failure criterion. The procedure above has to be repeated for 

each element of the tape-spring and every step of the simulation.  

5.3 Numerical Results and Experimental Comparison 

The tape-spring material properties were defined in Abaqus by creating a composite lay-up using the 

results obtained from each single-layer unit cell homogenization. Before discussing failure initiation, 

the force-extension results for both simulation and experiment are compared in Figure 38 below. 

Note that the plain/UD/plain configuration was analysed with (blue dashed line) and without (green 

dashed line) considering the stiffness reduction of the UD layer due to ply waviness. 

 

Figure 38. Force-extension tape-spring results 

It can be observed that the finite element model captures reasonably well the global stiffness behav-

ior for both plain and twill woven configurations. There is a first phase in which the displacement is 

very large for the load applied. The tape-spring conforms to the cylinder radius during this stage as 

shown in Figure 39 below. The difference between each tape-spring configuration is due to the dif-

ferent material properties and thickness, which affect the initial radius of curvature. It can be seen 

that the FE simulation does not perfectly capture the conforming phase of the plain woven configu-

ration, where the experimental behavior is slightly stiffer. The FE model assumes only the in-plane 

stiffness reduction of the UD layer due to ply waviness. However, it does not take into account the 
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increase in bending stiffness caused by the undulation of the fibres in the out-of-plane direction. The 

influence of the UD ply waviness has been studied in Section 4.2.2 by assuming plane stress condi-

tions, which does not allow to estimate through-the-thickness properties. The above explains why 

the first stage is not as well predicted as in the twill woven configuration, where UD play waviness is 

not present. In the second phase, the tape-spring is stretched and the in-plane stiffness plays a dom-

inant role, so the prediction improves considerably. 

 

Figure 39. Stretching of a tape-spring 

It can be concluded that the stiffness behaviour of the tape-springs is dominated by the UD layer. 

The type of woven layer does not make any important difference as long as the UD layer is kept flat. 

These findings were not obvious by just looking at the test results. It has been necessary to perform 

micrographs to observe a manufacturing defect that was unknown. This highlights the importance of 

controlling the manufacturing process of the tape-springs, as the ply waviness of the UD layer might 

be strongly affected by the layer shift between the woven layers. 

Once the stiffness behaviour of the tape-springs have been analysed, the results of the failure analy-

sis can be discussed. Failure was checked by evaluating the Equations (24), (25) and (26), which de-

fine the three projections of the failure criterion proposed by Mallikarachchi and Pellegrino [45]. The 

following failure indices were defined: 

- FI-1, for failure under pure in-plane loading, 

- FI-2, for failure under biaxial bending, 

- FI-3, for failure due to the interaction between in-plane and bending loads. 

The failure criteria was applied by using the uniaxial failure strengths listed in Table 18. First of all, 

the analysis was carried out by using the most conservative values obtained from the unit cell failure 

analysis, which indicate the initiation of the first microcracks. It was found that early failure initiation 

at the woven layers was already present in the folded configuration, with no tensile load applied 

through the pin. The contours of each failure index are shown in Figure 41. The results indicate that 

the initiation of failure is mainly sensitive to shear loading at the woven layers, which are oriented in 

the 45° direction. A sample graph showing the typical response of a ±45° woven laminate is shown in 

Figure 40 to better understand the damage mode under shear loading. 

F 
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Figure 40. Typical shear response of woven composite [73] 

It can be seen from Figure 40 above that the strain causing fiber failure is more than 10 times larger 

than the strain causing the first microcracks. This behaviour was also observed in the shear response 

for the two-ply weave composite shown in Figure 26. Therefore, the failure analysis indicates that 

matrix cracking begins to occur due to the axial strains at the folded region. This finding perfectly 

agrees with the crack sounds detected in the first folding cycles of the tape-springs. 

A second failure analysis was carried out by using the less conservative uniaxial failure strengths 

listed in Table 18, which were estimated to avoid fiber breakage but assuming transverse and shear 

damage in the yarns. It was found that the load causing failure was very similar for both plain and 

twill woven configurations, as shown in Figure 38. The top woven layer was the first one failing in 

both cases. The contours of the three failure indices are shown in the following Figure 41. 

Early Damage Initiation 
 

 Damage Initiation Threshold 
 

 
FI-1 

 

 
FI-1 

 
FI-2 

 

 
FI-2 
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FI-3 

 

 
FI-3 

Figure 41. Failure indices for early damage initiation (left) and damage initiation threshold (right) 

The damage initiation threshold was found at the transition zone due to the interaction between in-

plane and out-of-plane loads. Some interesting observations can be made by comparing the results 

above with the images shown in Figure 42, which were taken during the experimental test at 2000 

and ultimate failure. First, matrix crack saturation can be observed in the tape-spring at the 2000 

load, which shows a slight change in color around the folded area. However, the experimental curves 

shown in Figure 38 do not present any drop in stiffness, but this does not mean there is no material 

damage. The overall stiffness is dominated by the UD layer, so small changes in the woven layers will 

barely affect the overall behavior. The second observation is related to the location of ultimate fail-

ure. The FE model predicts that fibers eventually begin to fail at the transition zone, which agrees 

with the experimental observations. 

  

Figure 42. Tape-spring test at load X (left) and ultimate failure (right) 

It can be concluded that the failure criteria presented by Mallikarachchi and Pellegrino [45] can pre-

dict the initial failure of woven composites under multi-axial loading conditions if the appropriate 

failure strength parameters are used. Mallikarachchi and Pellegrino showed that the criterion can 

predict ultimate failure of woven composites by using the strength values obtained from failure ex-

periments. However, it has been seen that early damage mechanisms prior to ultimate failure, such 
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as matrix cracking, would not be captured by using these values. The effect of early damage initiation 

should be considered and further studied. Although it does not cause catastrophic failure, the pres-

ence of microcracks will affect the fatigue behaviour of the tape-springs, but the unique characteris-

tics intrinsic to textile geometry and multi-axial loading conditions make a possible numerical analysis 

extremely challenging. Additional experimental tests will be required in the future.  

5.4 Conclusions 

The modelling techniques to study the response of tape-springs under multiaxial loading conditions 

have been defined in this chapter. The tape-springs present a highly nonlinear mechanical behaviour, 

thus the FE simulation has been setup to minimize local instabilities and avoid contact convergence 

issues. The material properties of the tape-spring have been defined by using the results obtained 

from the micro- and meso-scale analysis. It has been found that the type of weave pattern would not 

have appreciable effects on the stiffness behaviour of the tape-spring if there was no ply waviness of 

the UD layer. This means that the experimental results presented here should not be used to draw 

conclusions on which type of laminate configuration is better. 

Initiation of failure has been studied by using a dedicated failure criteria based on the force and mo-

ment resultants. This criterion has been implemented in a Matlab based routine by using the 

strength parameters calculated from the unit cell analyses. The force and moment resultants ob-

tained from the FE simulation are evaluated at the woven layer and failure is checked for each ele-

ment of the tape-spring and every step of the simulation. Results have shown that early failure initia-

tion occurs when the tape-springs are fully folded. This finding was expected since crack sounds can 

be detected when the tape-springs are folded for the first time. However, the extent and origin of 

the damage could not be estimated from the crack sounds. The failure analysis has shown that the 

tape-spring samples can be safely folded in equal sense without causing fibre breakage, but that in-

tra-yarn matrix cracking could hardly be avoided due to the large strains in the folded region. 
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 Conclusions and Future work 

6.1 Conclusions 

Deployable structures using tape-springs have shown to be a promising option to minimize the vol-

ume occupied by satellites at launch and reduce launching costs. In the literature study, the require-

ments for satellite structures have been studied along with the mechanical behaviour of tape-

springs. This review has provided insight into the most critical loading conditions as well as the ad-

vantages of using woven composites. The usually applied conventional micromechanical models for 

textile composites cannot be used to analyse the bending behaviour of tape-springs. Multi-axial load-

ing requires techniques designed to capture stress gradients across the RVE. Therefore, the tape-

springs studied in this thesis have been modelled on the basis of these premises. 

The micromechanical models presented in this dissertation are based on an accurate description of 

the textile geometry. It has been shown how simple macro deformations can produce a very complex 

micro-stress field in the mesoscale. Thus special care has been taken in the definition and discretiza-

tion of the RVE geometry. Woven composites present local variations in yarn cross-sections caused 

by the interlacing of warp and weft yarns. This effect has been taken into account in order to avoid 

issues of local interpenetrations, and thus construct a realistic unit cell model. Three different weave 

laminates have been chosen from the literature to validate the repeating unit cell approach and the 

application of periodic boundary conditions. It has been demonstrated that is acceptable to simplify 

the RVE definition by assuming homogenized material properties of the yarns. The stiffness of both 

plain and twill woven composites have been well-predicted when compared to experimental data. 

The failure initiation analysis conducted for the validation of the methodology have shown that the 

first microcracks appear at very low applied strains as a consequence of the textile geometry and the 

stress gradients across the yarns. This type of failure is not easy to detect by experimental mechani-

cal tests since the micro-cracks do not immediately propagate and the overall stiffness is not affect-

ed. However, acoustic energy measurements from the literature have demonstrated that early dam-

age actually exists at the strain values predicted with the unit cell approach. For tensile and bending 

loading, it has been demonstrated that is acceptable to assume that the failure of the yarns is similar 

to that of a UD composite with the same constituent materials. However, this assumption is not valid 

when shear or twisting loads are present, as the critical shear strength depends on the location in the 

yarn. It has been proven that the shear strength of the fabric composite should be used as the critical 

shear strength value for the yarns in order to capture the failure initiation under these loading condi-

tions. 

Once the unit cell approach was validated, the laminates of a couple of tape-spring samples were 

analysed. The tape-springs were produced by using two woven layers with a ply of unidirectional 
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prepreg between them. Micrograph images were taken in order to measure the geometric parame-

ters of the impregnated fibre bundles. The micrographs showed that it might exist significant undula-

tion of the UD layer, thus an analytical method was used to estimate its influence on the in-plane 

stiffness properties. The results revealed that this manufacturing defect cannot be neglected since 

the overall stiffness behaviour is dominated by the unidirectional layer. It was concluded that the 

reason for the ply waviness might be due to the relative positioning between the woven layers. The 

UD ply tends to conform to the adjacent woven layer surfaces if the woven layers are not in-phase. 

Finally, the stiffness and the strength properties were homogenized by using the unit cell approach in 

order to analyse the tape-spring behaviour at the macroscopic level. 

The Abaqus/Standard element solver was used to simulate the highly non-linear mechanical behavior 

of tape-springs subjected to multi-axial loading conditions. The tape-springs were initially bent ac-

cording to a specific radius of curvature and tension was subsequently applied through a cylindrical 

pin. The loading state at the transition zone of the tape-spring is extremely complex due to the addi-

tional transverse moment induced by the flattening of the original transverse curvature. It was defi-

nitely not acceptable to assume a homogenous micro-stress field across the RVE, so a failure criterion 

based on force and moment resultants have been used to study failure initiation. The elastic behav-

iour of the tape-spring was proved to be practically independent on the weaving pattern of the wo-

ven layers. It can be stated that the important differences observed in the experimental tests are due 

to the ply waviness of the UD layer, but not to the type of woven layer itself. Early damage initiation 

was predicted at the woven layers when the tape-springs are fully bent due to the large strains in-

duced at the folded region. No significant differences were observed between the plain and twill 

woven configurations, which is consistent with the finding that failure initiation is remarkably similar 

for different textile patterns when expressed in terms of applied strain. It can be concluded that in-

tra-yarn matrix cracking will have to be accepted if the tape-springs presented here want to be used 

on future deployable space structures.  

6.2 Recommendations for future work 

There are several aspects of the multi-scale approach presented in this dissertation that could be 

further investigated. First, in terms of unit cell modelling, the properties of the impregnated yarns 

could be assigned locally instead of assuming them as homogenized continua. Local variations in the 

yarn cross sections have been taken into account to create the textile geometry, but not for the es-

timation of local variations in the fibre volume fraction. This might not affect the homogenized elas-

tic properties, but its influence on damage could be a question for future consideration. 

The failure analysis of the unit cell could be extended to incorporate damage propagation. However, 

the challenges are many. Existing formulae for the material degradation have several deficiencies, 

such as the arbitrary choice of empirical constants. Current research on meso-FE modelling of dam-

age is still focused on simple in-plane loading conditions, thus incorporating a model of progressive 

failure for complex loading is a broad subject for further investigations. 

The influence of UD ply waviness on the overall in-plane stiffness of hybrid laminates has been stud-

ied using an analytical model based on the fundamental assumptions of the Classical Laminate Theo-

ry, which does not allow to estimate the influence on the through-the-thickness properties. The FE-
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homogenization approach could be used to estimate the material properties in every direction, but a 

realistic model of the undulated geometry would have to be generated first.  

Incorporation of damage propagation at the meso-scale will not be easily related to the macro-scale. 

The simulation of both scales should be run in parallel in order to update the material and loading 

state. As an example, damage caused by bending loads will reduce the laminate thickness due to the 

stretching of the yarns, which will significantly affect the bending stiffness properties. Also, the 

straightening of the undulated UD layer could be possible due to matrix damage. The author believes 

that modeling damage propagation at both scales under multi-axial loading conditions is still unfeasi-

ble with the current computational capacity and numerical techniques. Further experimental tests 

are therefore recommended to study the effect of intra-yarn matrix cracking on the fatigue behavior 

of the tape-springs. The use of acoustic energy measurements is strongly recommended, since it 

might be possible to distinguish damage events such as fibre breakage. 
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