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Summary

When modeling physical systems, several sources of uncertainty are present. For
example, variability in boundary conditions like free stream velocity or ambient pres-
sure are always present. Furthermore, uncertainties in geometry arise from produc-
tion tolerances, wear or unknown deformations under loading. Uncertainties in com-
putational fluid dynamics (CFD) simulations can have a significant impact on the
computed aerodynamic performance. Since CFD simulations are computationally
intensive, an efficient uncertainty quantification approach is required.

The main objective of this research is to obtain an efficient approach for uncertainty
quantification in CFD simulations. This was achieved by focusing on efficient uncer-
tainty propagation and the practical applicability to a wide range of test cases.

The Probabilistic Collocation method was developed as an efficient non-intrusive un-
certainty propagation method. It is based on the polynomial chaos framework and
shows spectral convergence with respect to the polynomial chaos order. Its effective-
ness was demonstrated on several flow cases using a commercial CFD solver.

For cases with a discontinuous response or involving long time integration, modifica-
tions of the Probabilistic Collocation method were used to efficiently propagate the
uncertainties. A multi-element formulation was successfully applied to capture the
discontinuous response of a stall flutter problem. Furthermore, a time-independent
parameterization was used to efficiently propagate uncertainties in case of vortex
shedding behind a circular cylinder, which required long time integration.

Geometric uncertainties were shown to have a significant influence on the aerodynamic
performance. Since geometric uncertainties affect the shape, a new computational
grid should be computed for every collocation point in the Probabilistic Collocation
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Summary

method. To efficiently treat geometric uncertainties in CFD, a grid deformation
technique was used.

Most CFD simulations in this thesis involved solving the Reynolds-averaged Navier-
Stokes equations. This required a turbulence model to close the system of equations.
Turbulence models often contain several parameters that are tuned to computed or
measured simplified flow problems, which introduces uncertainty in the model. Un-
certainty quantification was applied to the parameters of the k-ǫ turbulence model in
combination with wall functions in the cases of flow over a flat plate and flow around
a NACA0012 airfoil. The drag coefficient showed a coefficient of variation of 3-4%
for both cases. The wall function parameters κ and C and the model parameter Cµ

proved to affect the solution most. General conclusions require more test cases, like
a shear layer and an expanding jet.

Compressor rotors are components of a gasturbine that are highly sensitive to op-
erational and geometrical uncertainties. Operational uncertainties like static outlet
pressure and the total pressure profile at the inlet of the rotor were considered. The
Probabilistic Collocation method was validated using a Monte Carlo simulation using
10,000 Latin Hypercube samples. It was shown that the mass flow was most sensitive
to the uncertainty in the total pressure profile at the inlet.

Multiple uncertainties were shown to be effectively handled using a two-step approach.
The first step was a screening of the parameters. A sensitivity analysis was used
to identify the most important parameters of the problem. Here it was assumed
that all parameters are independent and have no combined effects. Secondly, the
probability density functions of the most important parameters are propagated using
the Probabilistic Collocation method.

The Probabilistic Radial Basis Function approach was developed as an alternative ef-
ficient approach for multiple uncertain parameters. To obtain an accuracy of 10-2-10-3

for the mean and variance, the CFD test cases required 10-35 support points for 3
uncertain parameters. Close agreement between the Probabilistic Radial Basis Func-
tion approach and a Monte Carlo simulation using 10,000 Latin Hypercube samples
was shown for flow around a RAE2822 airfoil with three uncertain parameters.

It can be concluded that the Probabilistic Collocation method and adapted versions
are capable of efficiently propagating uncertainties in CFD simulations. The devel-
opment of the Probabilistic Radial Basis Function approach provided an efficient
alternative for cases with multiple uncertain parameters. From the test cases it be-
came clear that there is not a single method that is most efficient for all possible
cases.

Uncertainty quantification increases the reliability of CFD computations, since the
effect of uncertain parameters on the output of interest is quantified. It was shown
that small coefficients of variation of uncertain parameters can lead to a significant
variability of the aerodynamic performance. Taking uncertainties into account in CFD
simulation is therefore of great importance and with the current state of technology
feasible for many real world applications.
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CHAPTER 1

Introduction

In this thesis an efficient approach for uncertainty quantification in computational
fluid dynamics (CFD) is investigated. Due to increasing computing power and ad-
vancing algorithms deterministic computations can be very accurate. However, by
treating the parameters that describe a physical system as fixed values, uncertainties
and errors are introduced. To increase the reliability of CFD, a lot of research is
performed to quantify these uncertainties and errors.

This research is performed in the NODESIM-CFD project [Hirsch and Dinescu (2007)],
represented by a consortium of 17 partners. Among these are industrial partners from
the aerospace and power generation industry, research institutes and universities. The
acronym stands for Non-Deterministic simulations for CFD-based design methodolo-
gies. The goal of the project is to identify sources of uncertainty, develop efficient
uncertainty propagation methods, perform non-deterministic simulations for CFD test
cases, and to disseminate the gained knowledge.

A more elaborate introduction on uncertainty quantification and its application to
CFD is given in section 1.1. After that the objectives of this thesis and the approach
to meet them are formulated in section 1.2. An outline is provided in section 1.3.
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Chapter 1: Introduction

1.1 Uncertainty quantification

To avoid confusion between uncertainty and error, the definitions used in this thesis
are written below. The following definition of error is stated by the American Institute
of Aeronautics and Astronautics (AIAA, G-077-1998):

Error:
A recognizable deficiency in any phase or activity of modeling and sim-

ulation that is not due to lack of knowledge.

This definition was extended by Oberkampf et al. (2000) to acknowledged and unac-
knowledged errors. Acknowledged errors include round-off error, discretization error
or the error due to an oversimplified model of a physical process. Procedures exist
to remove or estimate these errors. Unacknowledged errors are mistakes like pro-
gramming errors or wrong use of the code. Procedures can be effective in addressing
unacknowledged errors, but due to the human factor there is no guarantee that they
are not present.

Uncertainty is divided in two categories [Cullen and Frey (1999); Oberkampf et al.
(2000)]:

Epistemic uncertainty:
A potential deficiency in any phase or activity of the modeling process

that is due to the lack of knowledge.

Aleatory uncertainty:
The physical variation present in the system being analyzed or its en-

vironment.

The epistemic uncertainty is also called reducible uncertainty because by increasing
knowledge the uncertainty can be reduced. The epistemic uncertainties contain some
vagueness, for these uncertainties no probability density function can be specified.
Examples are insufficient experimental data or physical knowledge of the system being
analyzed. Epistemic uncertainties are characteristic for the analyst.

The aleatory uncertainty can be found in literature as irreducible uncertainty, vari-
ability and inherent uncertainty, this uncertainty is the natural variablity that is
inherently present. Examples of aleatory uncertainty appear among others in the
boundary conditions or the geometrical description of the model. The variability of
boundary conditions and geometrical parameters will always be present because of
natural variability and limited accuracy of for example production processes. Aleatory
are characteristic for the system being analyzed.

Figure 1.1 shows three measures of uncertainty [Zang et al. (2002)], ordered with re-
spect to the amount of information that is known of the uncertain parameter. The
first is the uncertainty of which least information is known, which is a typical epis-
temic uncertainty. The only information of the uncertain parameter is the interval in
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1.1 Uncertainty quantification

which the parameter lies. Interval analysis [Moore and Yang (1959); Kearfott (1996)]
is a tool to quantify these uncertainties. A uniform distribution is typically used
to propagate the interval, but no conclusions can be drawn on the probability or
mean and variance of the solution in that case. A bit more information is given
when the membership function of the parameter is known. Membership functions
are used in possibility analysis, where fuzzy logic is used to propagate the uncertainty
[Moens and Vandepitte (2002); Wilcox and Ayyub (2003)]. Membership functions in-
dicate the membership of a parameter to a fuzzy set. For a value of 1, the parameter
is definitely a member of the set and if the membership function is 0, the parameter is
definitely not a member of the set. Each value in between, corresponds to an interval,
which can be propagated using interval arithmetic. The last one is the uncertainty of
which the complete probability density function is known. This is a typical aleatory
uncertainty which is considered in this thesis. The probability density function is
put into the model and propagated using an uncertainty propagation method. The
solution is computed including its probability density function. Methods to prop-
agate are among others the commonly used Monte Carlo method [Kelvin (1901);
Metropolis and Ulam (1949)], the more recent Galkerin Polynomial Chaos method
[Ghanem and Spanos (1991); Xiu and Karniadakis (2002)] and the Probabilistic Col-
location method [Babuška et al. (2007); Loeven, Witteveen and Bijl (2007a)].

Uncertain parameterUncertain parameterUncertain parameter

Interval bound Probability density functionMembership function

Possibility Probability density

Area = 1

1

Figure 1.1: Three different measures of uncertainty (from Zang et al. (2002)).

Several sources of uncertainty are present in CFD simulations. Operational uncer-
tainties, geometric uncertainties, and model uncertainties are commonly encountered
by engineers when designing new products. Examples of operational uncertainties
include free stream conditions like pressure, velocity, temperature or angle of inci-
dence. Due to physical variability, these are always present when considering a real
life process. By measurements one should be able to find probability density func-
tions for these parameters. These uncertainties are in general aleatory. Geometrical
uncertainties arise among others from production tolerance, wear of the product, or
unknown deformations under loading. Uncertainties like production tolerance can be
reduced by better production methods, but will never be zero. Furthermore, produc-
tion tolerance are often a trade-off between the costs and the quality of the product.
By measuring the final products a probability density function of the geometrical pa-
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Chapter 1: Introduction

rameters can be found. Uncertainty quantification can be used to quantify the effect
of this aleatory production tolerance on the performance of a product. The unknown
deformation under loading is a source of epistemic uncertainty and can be reduced by
increasing the knowledge or otherwise be quantified by, for example, interval analysis.
A more difficult form of uncertainty is the model uncertainty. Questions that may
rise are: “Are the Euler equations suitable to solve my problem?”, “Is the SST k-ω
turbulence model right for this type of flow?”, or “Are the model coefficients set to
the right values?”. These quantification of uncertainties that come with these ques-
tions often are epistemic and treated as such. If there is a physical background and
probability density functions can be found to describe the uncertainty, it is aleatory
and uncertainty propagation methods as described in this thesis can be employed.

In practice many problems will contain a mix of aleatory and epistemic uncertainties
[Oberkampf and Ferson (2007)]. A mix of probabilistic methods and possibilistic
methods has to be used to come up with estimates of the statistics of the output
of interest. The result is a so-called probability box, which represents an interval of
cumulative distribution functions.

The focus of this thesis is on uncertainty propagation used for aleatory uncertainties.
It is assumed that the probability distribution functions of the uncertain parameters
are known. Key issue is then to propagate that uncertainty through the system to
obtain the statistics of the output of interest. Since our main interest is in uncer-
tainty quantification in CFD problems, the efficiency of the uncertainty propagation
method is of utmost importance. A deterministic CFD computation can take days
or even weeks to compute. Therefore, the additional computational costs for non-
deterministic simulations may only be the equivalent of several deterministic solves.
If an engineer has to spend for example 100 times as much computational effort com-
pared to a deterministic computation, the added value of the computation should be
significant. Application of uncertainty quantification methods in CFD can be found
in the work of among others Godfrey and Cliff (2001), Walters and Huyse (2002),
Xiu et al. (2002), Hosder et al. (2006), and Witteveen (2009).

The main added value of uncertainty quantification is the increase of reliability of
a simulation. When a user specifies probability density functions of uncertain pa-
rameters, the effect on the performance is obtained. This will lead to a more robust
design, since the performance can be optimized in a mean sense, while the variabil-
ity of the performance is minimized. Furthermore, uncertainty quantification can be
used for more reliable model validation with experiments, see for example the work
of Ferson et al. (2008) and Ghanem et al. (2008).
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1.2 Objectives and the approach to achieve them

1.2 Objectives and the approach to achieve them

The main objective of this research is to obtain an efficient approach for uncertainty
quantification in computational fluid dynamics simulations.

The focus is on efficient uncertainty propagation and the practical application to a
wide range of test cases. This implies that the uncertainty quantification approach
is preferably non-intrusive. Non-intrusive means that the deterministic solver can
be used as a black box. Any (commercial) solver can then be used for uncertainty
quantification.

This pursued efficient approach deals with the efficient propagations of uncertainties
to minimize the computational effort. Many test cases are performed to demonstrate
the efficiency of the uncertainty propagation method and to identify possible difficul-
ties. Cases involve a smooth response, a discontinuous response (or a discontinuous
derivative), long time integration (where the response surface becomes more nonlinear
in time) and multiple uncertain parameters.

Operational and geometric uncertainties are considered. Operational uncertainties
are treated as parameteric uncertainties, which appear mainly in the boundary condi-
tions. Geometric uncertainties require a special treatment, since in CFD a change in
geometry requires a different computational grid. Geometric uncertainties directly in-
fluence the aerodynamic performance. Therefore, they are of great interest, especially
for industry.

A secondary objective is to apply the efficient uncertainty quantification approach to
some interesting test cases. Two test cases are considered, which are known to be
sensitive to uncertainties and have not been studied using probability density func-
tions. The first case involves the quantification of uncertainties in the k-ǫ turbulence
model parameters. Secondly, analysis of the effect of operational uncertainties on the
performance of a transonic axial flow compressor in a gasturbine is performed.

1.3 Outline of this thesis

This thesis is divided in the following chapters:

Chapter 2: The Probabilistic Collocation method.

This chapter derives and explains the theory of the Probabilistic Collocation
method. A comparison with existing methods is shown for one uncertain pa-
rameter.

Chapter 3: Flow applications of the Probabilistic Collocation method.

Firstly, subsonic flow around a NACA0012 with one uncertain parameter is an-
alyzed. Secondly, transonic flow around a RAE2822 airfoil with three uncertain
parameters is investigated.

5



Chapter 1: Introduction

Chapter 4: Modifications of the Probabilistic Collocation method.

The standard Probabilistic Collocation approximation fails in cases with dis-
continuous responses or unsteady problems. Slight modifications of the method
enable efficient use for these cases as well. First a multi-element formulation
is applied to a stall flutter problem with a discontinuous response. Secondly, a
period-1 parameterization is used to compute the statistics of a low Reynolds
number flow around a cylinder.

Chapter 5: Geometrical uncertainties.

Due to manufacturing tolerances, unknown deformations under loading or wear
and tear, the actual geometry is often different from the designed geometry. The
Probabilistic Collocation method is employed to analyse the effect of geometrical
uncertainties on the performance of airfoil.

Chapter 6: Uncertainty analysis of the k-ǫ turbulence model parameters.

The k-ǫ turbulence model and wall functions parameters are often tuned or
empirically determined using simplified flows. This introduces uncertainties,
which are often neglected. Flow over a flat plate and a NACA0012 airfoil are
used to analyse the effect of the uncertainties in the model parameter on the
solutions.

Chapter 7: Operational uncertainties for a transonic compressor rotor.

The compressor rotor is one of the most sensitive components of a gasturbine.
This chapter demonstrates how the Probabilistic Collocation is used to effi-
ciently analyse the effect of operational uncertainties on the performance of the
rotor.

Chapter 8: Two-Step approach for multiple uncertain parameters.

To use the Probabilistic Collocation method in an efficient framework for mul-
tiple uncertain parameters, a two-step approach is employed. The first step
identifies the most important parameter(s) by a sensitivity analysis. Secondly,
the probability density functions of the most important parameters are propa-
gated using a higher order Probabilistic Collocation approximation.

Chapter 9: A Probabilistic Radial Basis Function approach.

Since radial basis functions are known to be efficient interpolants in high di-
mensional spaces, they are written in a probabilistic framework to efficiently
propagate multiple uncertain parameters.

Chapter 10: Conclusions.

Conclusions on each chapter and the complete thesis are presented.

Chapter 11: Recommendations.

Recommendations for further research are presented in the final chapter.
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CHAPTER 2

The Probabilistic Collocation method

Computational Fluid Dynamics (CFD) simulations are often computationally inten-
sive. Typically a simulation runs for hours, even days. Since uncertainty propagation
increases the computational effort, an efficient method is required. In this chapter
the Probabilistic Collocation method is introduced. It is a non-intrusive uncertainty
propagation method, which shows spectral convergence with respect to the order of
approximation.

The chapter is organized as follows: it starts with a literature review in section 2.1.
Section 2.2 introduces the Probabilistic Collocation method, where first the polyno-
mial chaos framework is explained in section 2.2.1. Section 2.3 compares the efficiency
of the Probabilistic Collocation method with some existing uncertainty propagation
methods using numerical results for the one dimensional piston problem for one un-
certain parameter.

2.1 Literature review

Since Monte Carlo simulations typically use thousands of samples, it is not feasible
for CFD simulations. Many uncertainty propagation methods have been developed to
reduce the computational effort. Efficient methods are based on the polynomial chaos
framework [Ghanem and Spanos (1991)]. They exist in intrusive and non-intrusive
variants. Intrusive means that the uncertainty propagation method requires the source
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Chapter 2: The Probabilistic Collocation method

code for implementation, since the resulting set of equations is coupled. Non-intrusive
methods on the other hand, use the deterministic solver as a black-box for uncertainty
propagation.

Intrusive polynomial chaos method

The Galerkin Polynomial Chaos method [Ghanem and Spanos (1991); Ghanem (1999);
Xiu and Karniadakis (2002)] is an intrusive uncertainty propagation method. It is
based on the homogeneous chaos theory of Wiener (1938), who constructed a chaos
expansion using Hermite polynomials. Ghanem and Spanos (1991) provided the basis
for the current spectral stochastic finite element methods [Ghanem (1999)] like the
Generalized Polynomial Chaos method [Xiu and Karniadakis (2002)] and the Gram-
Schmidt Polynomial Chaos method [Witteveen and Bijl (2006a)]. A Galerkin projec-
tion is used to obtain the polynomial chaos coefficients, therefore, these methods are
refered to as Galerkin Polynomial Chaos methods. It is successfully applied to fluid
mechanics problems by Xiu et al. (2002) and Walters and Huyse (2002).

However, to be able to apply this method, the source code of the solver has to be
available. It is not trivial to implement the Galerkin Polynomial Chaos method effi-
ciently in an existing CFD solver. All variables need to be written as a polynomial
chaos expansion. For a Reynolds-averaged Navier-Stokes solver, this means that ap-
part from the flow variables, also the turbulent quantities need to be expanded for
each possible turbulence model. Applications with a commercial CFD solver has been
shown by Lacor and Smirnov (2007, 2008) and Dinescu et al. (2010).

Non-intrusive polynomial chaos methods

To enable application of uncertainty propagation methods in combination with a com-
mercial or inhouse CFD solver, non-intrusive methods have been developed. Similar
to Monte Carlo simulation, the non-intrusive methods use the deterministic solver as
a black-box.

To benefit from the efficiency of the Galerkin Polynomial Chaos method, Walters
(2003) and Hosder et al. (2006) developed the Non-Intrusive Polynomial Chaos method
and applied it to computational fluid dynamics problems. Both methods use sam-
pling to estimate the coefficients of the polynomial chaos expansion. The number
of samples required for the same accuracy is much less than for a full Monte Carlo
simulation. A similar approach is followed by Reagan et al. (2003), which they call
Non-Intrusive Spectral Projection.

Another class of non-intrusive uncertainty propagation methods are the Stochastic
or Probabilistic Collocation methods [Tatang et al. (1997); Mathelin and Hussaini
(2003); Babuška et al. (2007); Loeven, Witteveen and Bijl (2007a)]. There are, how-
ever, different choices of collocation points and polynomials, which results in a differ-
ent performance of the collocation methods.
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2.1 Literature review

First the Probabilistic Collocation method of Tatang et al. (1997) starts with the
same polynomial chaos expansion as the Galerkin Polynomial Chaos method. Since
the approach is different from the method used in this thesis, it is denoted as the
Probabilistic Collocation (T) method. The resulting equations that have to be solved
are similar to the Non-Intrusive Polynomial Chaos method of Walters (2003). The
sampling points are, however, taken to be collocation points corresponding to Gauss
quadrature points weighted with the probability density function of the uncertain
parameter. A detailed description of the Probabilistic Collocation (T) method can
be found in appendix B.

Next Mathelin and Hussaini (2003) developed the Stochastic Collocation method
based on Lagrange polynomials. To avoid confusion on the name, this approach
is denoted as the Stochastic Collocation (MH) method. The probability distribution
of the uncertain parameter forms the basis of a transformation to an artificial space
on [-1,1], which is different from the chaos transformation of the Galerkin Polynomial
Chaos method. For the collocation points, in this artificial space Gauss-Legendre
points are chosen. With Lagrange interpolation the probability distribution of the
solution is constructed. A Galerkin projection is applied to compute the expansion
coefficients, which is computed using Gaussian quadrature. The Stochastic Colloca-
tion (MH) method results in a set of decoupled deterministic equations, which makes
the method non-intrusive. Mathelin et al. (2005) showed a significant decrease in
computational time compared to the Galerkin Polynomial Chaos method for a quasi-
1D nozzle flow.

The Probabilistic Collocation method

In section 2.2 the Probabilistic Collocation method is presented as it was developed
by Loeven, Witteveen and Bijl (2007a). This method combines the idea of a chaos
transformation like in the Galerkin Polynomial Chaos method and the decoupled ap-
proach of the Stochastic Collocation (MH) method. A previous study [Loeven et al.
(2006b,a); Loeven, Witteveen and Bijl (2007a)] showed that the Stochastic Colloca-
tion (MH) method only shows spectral convergence for uniformly distributed un-
certain parameters. The Probabilistic Collocation method is a generalization of the
Stochastic Collocation (MH) method, it converges spectrally for arbitrarily distributed
uncertain parameters.

The collocation points with corresponding weights are computed based on the prob-
ability density function of the uncertain parameter to obtain spectral convergence
with respect to the polynomial order for arbitrary probability distributions. The ba-
sis of the Probabilistic Collocation method is formed by Lagrange interpolation and
Gaussian quadrature, with the same chaos transformation as the Galerkin Polyno-
mial Chaos method. A major advantage is that the Probabilistic Collocation method
can be used for all kinds of non-linearities where the Galerkin Polynomial Chaos
method might show difficulties [Debusschere et al. (2001); Mathelin et al. (2005);
Witteveen and Bijl (2006b); Sarkar et al. (2009)]. In the mathematics community
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the Probabilistic Collocation method was independently developed by Babuška et al.
(2007), who proved that for elliptic partial differential equations the Probabilistic
Collocation method is equivalent to the Galerkin Polynomial Chaos method.

2.2 Theory based on the polynomial chaos framework

The Probabilistic Collocation method as it is found in the work of Babuška et al.
(2007) and Loeven, Witteveen and Bijl (2007a) is derived in this section. Since the
method is based on the Galerkin Polynomial Chaos method [Ghanem and Spanos
(1991); Xiu and Karniadakis (2002)], the polynomial chaos framework is first ex-
plained. The following general stochastic differential equation is used to demonstrate
how the methods are applied:

L (x, t, ω; u (x, t, ω)) = S(x, t, ω), (2.1)

where u(x, t, ω) is the solution and L is a (possibly nonlinear) differential operator
which contains space and time derivatives and can be stochastic, indicated by ω. The
solution u(x, t, ω) is a function of space x ∈ D ⊂ R

n, time t and the random event
ω ∈ Ω. The complete probability space is given by (Ω,F , P ), where Ω is the set
of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a probability
measure. S(x, t, ω) is a space and time dependent source term, which can also depend
on the random event. The random event ω is introduced by the presence of one or
several uncertain parameter in the differential operator, source term, boundary and/or
initial conditions.

2.2.1 The Galerkin Polynomial Chaos method

The Galerkin Polynomial Chaos method results in a spectral representation of the
stochastic response of the solution and high order approximations of the mean and
variance. Based on the Homogeneous Chaos theory of Wiener (1938) the original
Galerkin Polynomial Chaos method was developed by Ghanem and Spanos (1991).
A polynomial chaos is a polynomial of random variables instead of ordinary vari-
ables. The term chaos in this context originates from the paper of Wiener (1938),
and should not be confused with deterministic chaos of dynamical systems. Later the
Polynomial Chaos framework has been extended to obtain spectral convergence for
arbitrary distributions [Xiu and Karniadakis (2002); Wan and Karniadakis (2005);
Witteveen and Bijl (2006a)] using numerical techniques to construct a set of poly-
nomials that are orthogonal with respect to the probability density function of the
uncertain parameter. The method has successfully been applied to fluid mechanics
by Walters and Huyse (2002) and Xiu et al. (2002). An advantage of the Polynomial
Chaos method is the spectral convergence with respect to the polynomial order, a dis-
advantage is the intrusiveness due to the coupled system of deterministic equations
that has to be solved.
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2.2 Theory based on the polynomial chaos framework

In the probabilistic framework, the solution and the uncertain parameter(s) become
random variables. The solution is the approximated by the following polynomial chaos
representation [Ghanem and Spanos (1991)]:

u(x, t, ω) ≈
M
∑

i=0

ūi(x, t)Ψi(ξ(ω)). (2.2)

This expansion is a spectral expansion in the vector of independent basis random
variables ξ(ω) with the random polynomial basis {Ψi}. Equation (2.2) divides the
random variable u(x, t, ω) into a deterministic part, the coefficients ūi(x, t) and a
stochastic part, the polynomial chaoses Ψi(ξ(ω)). The vector ξ consists of d indepen-
dent random variables {ξ1, . . . , ξd}, which are linear transformations of the d uncertain
parameters. The expansion is truncated to M + 1 terms, which is determined by d
and the highest order p of the polynomials {Ψi}:

M + 1 =
(d + p)!

d!p!
. (2.3)

The basis {Ψi} is a set of polynomials that are orthogonal with respect to the prob-
ability density function of the input uncertainty. For some standard distributions
corresponding polynomials exist, for example Hermite polynomials correspond to a
Normal distribution. The standard distribution and corresponding polynomials can
be found in the Askey scheme [Xiu and Karniadakis (2002)]. For other commonly used
distributions like the lognormal, truncated normal, and arbitrary unnamed distribu-
tions no corresponding standard polynomials exist. To handle arbitrarily distributed
uncertain parameters, the corresponding orthogonal polynomials can be constructed
using the Gram-Schmidt algorithm (Witteveen and Bijl (2006a)).

Substituting the polynomial chaos expansion (2.2) into the differential equation (2.1)
results in:

L
(

x, t, ω;
M
∑

i=0

ūi(x, t)Ψi(ξ(ω))

)

≈ S (x, t, ω) . (2.4)

A Galerkin projection on each basis polynomial {Ψk} is applied, to ensure that the
truncation error is orthogonal to the functional space spanned by {Ψi}:

(

L
(

x, t, ω;

M
∑

i=0

ūi(x, t)Ψi

)

, Ψk

)

= (S (x, t, ω) , Ψk) , k = 0, 1, . . . , M, (2.5)

where (·, ·) denotes the inner product. This set of M + 1 deterministic equations is
coupled and can be solved using standard numerical techniques. The inner product
(·, ·) is defined as:

(f(ξ), g(ξ)) =

∫

f(ξ)g(ξ)w(ξ)dξ, (2.6)
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where the weighting function w(ξ) is equal to the probability density functions of
the uncertain parameters. For orthogonal polynomials, the following orthogonality
relation holds:

(Ψi, Ψj) =
(

Ψ2
i

)

δij , (2.7)

where δij is the Kronecker delta. When the coefficients ūi(x, t) are known, the proba-
bility distribution of the solution can be constructed using equation (2.2). The mean
and variance are given by

µu = ū0(x, t), (2.8)

σ2
u =

M
∑

i=1

ūi(x, t)2
(

Ψ2
i

)

. (2.9)

These relations follow from the definition of the mean and variance. A total of M +1
coefficients need to be computed. To benefit from the block structure of the matrix,
a Block-Gauss-Seidel algorithm can be used. Typically, 2–5 iterations are required to
solve for the coefficients, depending on the required accuracy. The total amount of
work is therefore in the order of 2–5 times M + 1 deterministic computations.

2.2.2 The Probabilistic Collocation formulation

In the Probabilistic Collocation method a polynomial chaos expansion similar to the
expansion in equation (2.2) is used. The difference is that instead of polynomials
orthogonal with respect to the probability density function of the uncertain param-
eters, Lagrange polynomials are used. The coefficients are the collocation points,
which correspond to the Gauss quadrature points weighted with the probability den-
sity function of the uncertain parameters. By using Gauss quadrature a decoupled
set of equations is obtained and the approximated distribution is integrated exactly
to obtain the mean and variance.

Probabilistic Collocation expansion

The uncertain parameters and solution become random variables in the probabilistic
framework, just like in the polynomial chaos method. The solution is expanded,
similar to the expansion in equation (2.2), as follows:

u(x, t, ω) ≈
Np
∑

i=1

ui(x, t)Li (ξ(ω)) , (2.10)

where u(x, t, ω) is a space x and time t dependent random variable. The randomness
is introduced by the random event ω ∈ Ω. The number of collocation points is Np.
The coefficients ui(x, t) are the solutions u(x, t, ω) at the collocation points ωi; Li

are the Lagrange interpolating polynomial chaoses corresponding to the collocation
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points ωi; ξ is the (multi-dimensional) random basis ξ = {ξ1, ξ2, . . . , ξd} for d uncer-
tain parameters. Key difference between expansions (2.2) and (2.10) is the choice of
polynomials and coefficients. The Galerkin Polynomial Chaos expansion (2.2) uses
polynomials which are orthogonal with respect to the probability density function of
the uncertain parameters. The Probabilistic Collocation expansion (2.10), however,
uses Lagrange polynomials. Here the choice of collocation points is crucial, as they
should be equal to Gauss quadrature points weighted with the probability density
function of the uncertain parameters. The Lagrange polynomial chaoses are given by:

Li (ξ(ω)) =

Np
∏

j=1
j 6=i

ξ(ω) − ξ(ωj)

ξ(ωi) − ξ(ωj)
, (2.11)

with Li (ξ(ωj)) = δij . The Lagrange interpolating polynomial chaos is the polynomial
chaos Li (ξ(ω)) that passes through the Np collocation points. The random variables
ξ(ω) are chosen such that the uncertain input parameter is a linear transformation of
ξ(ω).

The collocation points are chosen such that they correspond to the Gauss quadra-
ture points used to integrate the function u(x, t, ω) in the ω domain. This ensures
spectral convergence of the Probabilistic Collocation method [Babuška et al. (2007)].
For convenience of notation the argument ω is omitted from here on. The solution is
integrated to obtain the mean or variance.

When multiple uncertain parameters are present, the collocation points are obtained
from tensor products of one dimensional points. The number of collocation points Np

then becomes Np = (p+1)d, where p is the order of approximation and d then dimen-
sion of the stochastic problem (i.e. number of uncertain parameters). The amount of
computational work is equal to Np deterministic solves, for every collocation point
a deterministic simulation has to be performed. To find the suitable Gauss quadra-
ture points and weights numerically, the Golub-Welsch algorithm [Golub and Welsch
(1969)] described below is employed.

Computing Gauss quadrature points with corresponding weights

A powerful method to compute Gauss quadrature rules is the Golub-Welsch algo-
rithm [Golub and Welsch (1969)]. This algorithm needs as an input the recurrence
coefficients [Gautschi (2005)] of polynomials which are orthogonal with respect to
the weighting function of the integration. For the Probabilistic Collocation method,
spectral convergence for arbitrary probability distributions is obtained when the
polynomials are orthogonal with respect to the probability density function of ξ,
so w(ξ) = fξ(ξ). In case of multiple uncertain parameters, this is done for each

ξj , j = 1, . . . , d separately.

The Golub-Welsch algorithm requires the recurrence coefficients of the orthogonal
polynomials. The recurrence coefficients are computed using the discretized Stieltjes
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procedure [Gander and Karp (2001)]. The Stieltjes procedure may become unstable
[Gragg and Harrod (1984)]. Gragg and Harrod (1984), however, show that it only
becomes a problem at very high quadrature orders (much higher than p = 100),
which are not used in uncertainty quantification for CFD in practice. When problems
with stability occur, an improved Stieltjes algorithm and the Lanczos algorithm are
available [Gragg and Harrod (1984); Gautschi (2005)].

Orthogonal polynomials satisfy the following three-term recurrence relation:

Ψi+1(ξ) = (ξ − αi)Ψi(ξ) − βiΨi−1 i = 1, 2, . . . , Np,

Ψ0(ξ) = 0, Ψ1(ξ) = 1, (2.12)

where αi and βi are the recurrence coefficients determined by the weighting function

w(ξ) and {Ψi(ξ)}Np

i=1 is a set of (monic) orthogonal polynomials with Ψi(ξ) = ξi +
O(ξi−1), i = 1, 2, . . . , Np. The recurrence coefficients are given by the Darboux’s
formulae [Gautschi (2005)]:

αi =
(ξΨi, Ψi)

(Ψi, Ψi)
i = 1, 2, . . . , Np,

βi =
(Ψi, Ψi)

(Ψi−1, Ψi−1)
i = 2, 3, . . . , Np, (2.13)

where (·, ·) denotes an inner product, defined by equation (2.6). The first coefficient
β1 is given by (Ψ1, Ψ1).

Stieltjes’ procedure is used to obtain the recurrence coefficients, it starts with i = 1.
With equation (2.13) the first coefficient α1 is computed. Now Ψ2(ξ) is computed by
equation (2.12) using α1 and β1. This is repeated for i = 2, 3, . . . , Np.

The Golob-Welsch algorithm [Golub and Welsch (1969)] can now be employed to
compute the collocation points ξi and corresponding weights wi from the recurrence
coefficients αi and βi, i = 1, 2, . . . , Np. With the recurrence coefficients the following
Jacobi matrix is constructed:

J =



















α1

√
β2√

β2 α2

√
β3 ∅√

β3 α3

√
β4

. . .
. . .

. . .

∅ √

βNp−1 αNp−1

√

βNp
√

βNp αNp



















. (2.14)

The collocation points ξi, i = 1, . . . , Np are the eigenvalues of J . The eigenvalues of J
are the roots of the polynomial of order Np from the set of the constructed orthogonal
polynomials. The weights are found by wi = β1v

2
1,i, i = 1, . . . , Np, where v1,i is the

first component of the normalized eigenvector corresponding to eigenvalue ξi.

Now the collocation points ξi in the ξ-domain are known. The collocation points ωi

are found by using the distribution function of ξ:

ωi = Fξ(ξi), i = 1, . . . , Np. (2.15)
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If multiple uncertain parameters are present, the collocation points are found using
tensor products of the one dimensional vectors containing the collocation points. To
reduce the number of collocation points a sparse grid approach [Xiu and Hesthaven
(2005); Ganapathysubramanian and Zabaras (2007)] can be used. The tensor prod-
ucts lead to a trivial implementation of anisotropic Probabilistic Collocation expan-
sions. For some parameters a second order approximation may suffice, while other
require a third or fourth order expansion.

Application to a general model

The application of Probabilistic Collocation method to a general model is shown. It is
demonstrated how the method is used when the parameter of interest is a functional
of the solution, like the lift coefficient of an airfoil. The expansion in equation (2.10)
is substituted into the general model given by equation (2.1):

L



x, t, ω;

Np
∑

i=1

ui(x, t)Li (ξ(ω))



 = S(x, t, ω). (2.1)

A Galerkin projection on each basis {Lk (ξ(ω))} is applied to ensure that the error is
orthogonal to space spanned by expansion (2.10):



L



x, t, ω;

Np
∑

i=1

ui(x, t)Li



 , Lk



 = (S(x, t, ω), Lk) , k = 1, . . . , Np. (2.16)

This projection is approximated using Gaussian quadrature as in equation (2.6), with
collocation points and corresponding weights based on the probability density function
of the uncertain parameter. The result is a fully decoupled system of equations, similar
to the deterministic equation (2.1):

L (x, t, ωk; uk (x, t, ωk)) = S(x, t, ωk), k = 1, . . . , Np. (2.17)

The distribution function is obtained from equation (2.10). From the distribution the
probability density function or probability intervals can be extracted. The mean and
variance of the solution are found by

µu =

Np
∑

i=1

ui(x, t)wi, (2.18)

σ2
u =

Np
∑

i=1

[

(ui(x, t) − µu)
2
]

wi, (2.19)

where wi are the weights corresponding to the collocation points ωi. These relations
are derived from the definition of the mean and variance. Similar expressions can also
be derived for higher moments like skewness and kurtosis.
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Output of interest

Often the output of interest is a functional of the solution, like the lift coefficient of
an airfoil. The flow around the airfoil is computed and integration of the pressure
coefficient on the surface of the airfoil yields the lift coefficient. Due to the uncertainty
present in the system, the lift coefficient becomes a random variable as well. The lift
coefficient is written as a Probabilistic Collocation expansion as follows

CL(ω) =

Np
∑

i=1

CLiLi(ξ(ω)), (2.20)

where CLi is the lift coefficient for collocation point ωi. CLi follows from the deter-
ministic computations for every collocation point. The distribution function of the lift
coefficient CL is then constructed using equation (2.20), the mean and variance are ob-
tained using equations (2.18) and (2.19). For the Galerkin Polynomial Chaos method
the functionals have to be applied to the reconstructed solution u(x, t, ω), which can
give troubles [Loeven, Sarkar, Witteveen and Bijl (2007); Sarkar et al. (2009)].

The error of the approximation is estimated using an one order higher approxima-
tion [Tatang et al. (1997)]. The estimated error of the lift coefficient for a pth order
approximation is given by

ǫCL =

√

√

√

√ 1
Np+1

Np+1
∑

i=1

wi

(

Cp+1
Li

− ĈLi

)2

1
Np+1

Np+1
∑

i=1

ĈLi

, (2.21)

where Np+1 is the number of collocation points, Cp+1
Li

are the lift forces for the

collocation points, all corresponding to a (p + 1)th order approximation. ĈLi are the
estimated lift forces at the collocation points of the (p + 1)th order approximation
using a pth order approximation.

A stochastic computation is now performed as follows:

1. Specify input distributions for every uncertain parameter by providing the prob-
ability density function.

2. Compute collocation points and weights based on the probability density func-
tions of the uncertain parameter(s), using equations (2.13), (2.14), and (2.15).

3. Perform deterministic computations for every collocation point. These compu-
tations can be performed in parallel.

4. Construct the stochastic solution using all obtained deterministic solutions, e.g.
mean/variance fields, uncertainty bars or probability density functions, using
equations (2.10), (2.18), and (2.19).
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2.3 Comparison between methods for one uncertain parameter

2.3 Comparison between methods for one uncertain pa-
rameter

In this section the efficiency of the Probabilistic Collocation method [Babuška et al.
(2007); Loeven, Witteveen and Bijl (2007a)] is compared with the efficiency of the
Galerkin Polynomial Chaos method [Ghanem and Spanos (1991)], Non-Intrusive Poly-
nomial Chaos method [Walters (2003)] and the Stochastic Collocation (MH) method
[Mathelin et al. (2005)] for the linear piston problem [Loeven et al. (2006b)] indicated
in figure 2.1(a).

Linear 1D piston problem

The linear piston is chosen since it is a test problem which is easily evaluated, but it
includes a nonlinear dependence between the solution and the uncertain parameter.
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Figure 2.1: The linear piston problem (a) and realizations (b) using different values for
the spring stiffness k of the linear piston problem for k = µk = 1.429 and k = µk ±10%.

It consists of a one-dimensional fluid domain on one side bounded by a mass which
is attached to a spring. The fluid is modeled using the linearized isentropic Euler
equations. The piston position q(t) and velocity q̇(t) are determined by the mass
of the piston m, the spring stiffness k, the length of the fluid domain L, the fluid
state U = (ρ, ρu)

T
, the ambient pressure pamb, and the initial conditions. The cross-

sectional area is A = 1. The piston problem is considered for small deviations from
the equilibrium only, therefore the fluid state vector can be split into two parts:

U = U0 + U ′,

with U0 the equilibrium state and U ′ the small deviation. The governing equations
for the perturbations become:

∂U ′

∂t
= −

[

0 1
c2
0 0

]

∂U ′

∂x
, (2.22)
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with c0 the speed of sound. The structure is governed by:

mq̈ + kq = px=L − pamb, (2.23)

where q is the displacement of the piston, px=L is the pressure acting from the fluid
on the piston and pamb is the ambient pressure surrounding the piston. The flow
and structure equations (2.22) and (2.23) are made dimensionless using the following
substitutions:

t̄ =
c0

L
t, x̄ =

x

L
, q̄ =

q

L
, ρ̄ =

ρ

ρ0
, ū =

u

c0
, m̄ =

m

ρ0L
, k̄ =

kL

ρ0c2
0

and Ū =

[

ρ̄
ρ̄u

]

.

The resulting non-dimensionless set of equations becomes:

∂Ū ′

∂t̄
= −

[

0 1
1 0

]

∂Ū ′

∂x̄
, (2.24)

m̄¨̄q′ + k̄q̄′ = ρ̄′. (2.25)

The coupling at the boundary x̄ = 1 is governed by:

ū′ (x̄ = 1) = ˙̄q′, (2.26)

the other boundary condition for the fluid is a fixed wall:

ū′ (x̄ = 0) = 0. (2.27)

From now the bar and prime to indicate non-dimensionality and small deviations are
omitted for convenience of notation.

Fluid domain spatial discretization and time integration

The fluid domain is divided into N cells and the equations are discretized using
a second order central finite volume discretization. Introducing two ghost-cells, at
x = 0 and x = 1, this results in the following equations:

dUi

dt
= −

[

0 1
1 0

](

Ui+1 − Ui−1

2∆x

)

i = 1, . . . , N, (2.28)

with use of the boundary conditions the properties of the ghost cells are given by:

U0 =

[

ρ0

ρu0

]

=

[

ρ1

−ρu1

]

and UN+1 =

[

ρN+1

ρuN+1

]

=

[

ρN − ∆x q̈
2q̇ − ρuN

]

. (2.29)

The parameter values of the piston problem are given in Table 2.1. These values are
chosen similar to the paper of van Zuijlen and Bijl (2004). This is done to be able to
verify the deterministic solution. The choice of m and k are such that the fluid has a
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Table 2.1: Parameter values for the piston problem.

Property Symbol Value
Mean spring stiffness µk 1.429
Mean piston mass µm 2

Amount of uncertainty ς 0.1
Number of fluid cells N 64

Initial position q(0) 1
Initial velocity q̇(0) 0

Time step ∆t 0.1

strong influence on the structural motion without dominating the structure dynamics.
With N = 64 the term ∆xq̈ is small compared to ρN . ∆xq̈ is therefore left out of the
calculations. The equations for structure are written as:

dQ

dt
=

[

0 1
− k

m 0

]

Q +

[

0
ρN+1/2

m

]

, (2.30)

with Q =

[

q
q̇

]

and ρN+1/2 =
ρN+1 − ρN

2
. Equations (2.28) and (2.30) are combined

to one system which is solved monolithically. The monolithic system is written as:

dx

dt
= Ax, (2.31)

in which

x =

[

xf

xs

]

and A =

[

Af Afs

Asf As

]

,

where xf contains the fluid properties Ui of all finite volume cells and xs = Q. The
matrices Afs and Asf provide the coupling between the fluid and the structure.

At t = 0 the fluid is at rest and the piston state is q(0)=1 and q̇(0)=0. Time
integration is performed using an ESDIRK-4 scheme [van Zuijlen and Bijl (2004)].

Uncertain spring stiffness k

The mean value for k is µk=1.429, the variance is set to σ2
k=6.8068×10-3, and corre-

sponding to U(µk ± 10%) for a uniform distribution. Figure 2.1(b) shows that for a
10% variation of k a significant change of the solution is present. Further results are
for the piston position at t=10.

The Probabilistic Collocation method is compared with the Galerkin and Non-Intrusive
Polynomial Chaos methods and the Stochastic Collocation (MH) method. The error
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Chapter 2: The Probabilistic Collocation method

convergence with respect to the amount of computational work is used to compare
the efficiency. The errors are defined by

εµu =

∣

∣

∣

∣

µu − µu,ref

µu,ref

∣

∣

∣

∣

and εσ2
u

=

∣

∣

∣

∣

∣

σ2
u − σ2

u,ref

σ2
u,ref

∣

∣

∣

∣

∣

, (2.32)

where the subscript u,ref indicates the reference solution. The reference solution is a
20th order polynomial chaos computation. The method was validated for lower orders
using a Monte Carlo simulation with 106 samples. The convergence of the methods
is much faster than Monte Carlo simulation, therefore very quickly the accuracy is
better than the accuracy of the Monte Carlo simulation. The work is expressed as
the number of times a deterministic problem needs to be solved. For the Galerkin
Polynomial Chaos method the amount of work is I × (M +1) where M is the number
of polynomial chaos expansion terms of the approximation (equation (2.2)) and I
the number of Block-Gauss-Seidel iterations required to obtain the polynomial coeffi-
cients. The Block-Gauss-Seidel algorithm makes use of the structure of the resulting
matrix. The stopping criterion for the iterations is a residual of 10-8. For the computa-
tions in this paper about 2–5 iterations were required. The Non-Intrusive Polynomial
Chaos method requires M + 1 deterministic solves to approximate the coefficients.
The Stochastic Collocation (MH) and Probabilistic Collocation method both use one
deterministic computation for every collocation point. The implementation of the
uncertainty propagation methods for the piston problem is shown in appendix B.

Probabilistic Collocation versus Galerkin Polynomial Chaos

First the Probabilistic Collocation method is compared with the Galerkin Polynomial
Chaos method to demonstrate the spectral convergence with respect to the polynomial
chaos order and the increase in efficiency due to the decoupling of the equations.
Figure 2.2(a) shows the convergence of both methods with respect to polynomial
chaos order. The convergence is the same for both methods, which holds for arbitrarily
distributed uncertain parameters, since the polynomial basis is contructed based on
the probability density function of the uncertain parameter.

Figure 2.2(b) shows the convergence with respect to the amount of computational
work, expressed in the number of deterministic solves. When the computational work
is considered, the strength of the Probabilistic Collocation approach comes forward.
The amount of work is equal to the number of collocation points, while for the Galerkin
Polynomial Chaos method a coupled system of equations has to be solved. In the
figure the amount of work for the Galerkin Polynomial Chaos is set to 2 × (M +
1), where M is the number of polynomial chaos coefficients. This is the minimal
computational effort required to solve the system of equations. In practice 2–5 Block-
Gauss-Seidel iterations are required.

This is, however, a test problem which does not contain any non-polynomial nonlinear-
ities. For problems with nonlinearities (especially non-polynomial) in the equations,
the Galerkin Polynomial Chaos method can become inefficient [Witteveen and Bijl
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2.3 Comparison between methods for one uncertain parameter

(2006b)]. In the case of polynomial nonlinearities, products of the polynomial chaos
expansions can still be evaluated analytically. For non-polynomial nonlinearities one
has to integrate the terms in the Galerkin projection (2.5) numerically, which can
become computationally intensive [Sarkar et al. (2009)]. The Probabilistic Colloca-
tion method has no problems with nonlinear equations, since the problem is solved
deterministically for each collocation point. The amount of work for the Probabilistic
Collocation method is the same for linear and nonlinear systems of equations.

It must be noted that the conclusions based on these results hold for one uncertain
parameter. Due to the tensor product approach for multiple uncertain parameters,
the amount of work for the Probabilistic Collocation method scales with Np = (p+1)d,
with p the order of approximation and d the number of uncertain parameters. So for
a large number of uncertain parameters, the Galerkin Polynomial Chaos can become
more efficient.
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Figure 2.2: Convergence for the Probabilistic Collocation method (PCM) and the
Galerkin Polynomial Chaos method (GPC), with respect to the polynomial chaos order
(a) and the computational work (b) for one arbitrarily distributed uncertain parameter.

In order to show that the Probabilistic Collocation method results in exactly the same
polynomial chaos approximation as the Galerkin Polynomial Chaos, the monomial
coefficients ûi of the expansions are compared.

Np
∑

i=1

ui(ωi)Li(ξ(ω)) =
M
∑

i=0

ūiΦi(ξ(ω)) = û0+ û1ξ(ω)+ û2ξ(ω)2+ . . .+ ûP ξ(ω)P (2.33)

Table 2.2 shows the monomial coefficients of the expansion for the piston position
at t = 10. It can be seen that the Galerkin Polynomial Chaos and the Probabilistic
Collocation method result in the same monomial coefficients. The Non-Intrusive
Polynomial Chaos, however, computes the coefficients based on some samples, so
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Chapter 2: The Probabilistic Collocation method

that an error is introduced. The magnitude of this error is case dependent. For
this case, the coefficients are approximated reasonably well. The effect of the error
in the coefficients on the mean and variance are discussed below. To compute the
coefficients of the polynomial chaos method exactly, the system of equations is solved
directly here. For general use of the Galerkin Polynomial Chaos the system is solved
iteratively, using the Block-Gauss-Seidel algorithm.

Table 2.2: The monomial coefficients of the 4th order expansion (2.33) of the piston
position at t = 10 obtained from the Galerkin Polynomial Chaos method, the Proba-
bilistic Collocation method, and the Non-Intrusive Polynomial Chaos method.

Coefficient Galerkin Probabilistic Non-Intrusive
Polynomial Chaos Collocation Polynomial Chaos

û0 -0.73204167739370 -0.73204167739370 -0.73204167739370
û1 0.11007272407613 0.11007272407613 0.11008631168539
û2 0.00969183126072 0.00969183126072 0.00969155246323
û3 -0.00069309123364 -0.00069309123364 -0.00069926645535
û4 -0.00000788645601 -0.00000788645601 -0.00000775982742

Probabilistic Collocation versus Non-Intrusive Polynomial Chaos

The Non-Intrusive Polynomial Chaos method results in approximations of the polyno-
mial chaos coefficients. Section B.2 shows a detailed description of the Non-Intrusive
Polynomial Chaos method. The convergence cannot be better than the Probabilistic
Collocation method, since this method yields the exact polynomial chaos coefficients.
The approximated monomial coefficients for the piston position q at t = 10 are in-
cluded in table 2.2. The first coefficient is accurately approximated for this case. The
other coefficients, however, show some discrepancies. The influence of these small
differences between the exact and approximated coefficients on the convergence is
clearly shown in figure 2.3, which shows the convergence of the error of the mean and
variance with respect to the computational work for the Probabilistic Collocation
method and the Non-Intrusive Polynomial Chaos method.

It must be stated that the convergence of the Non-Intrusive Polynomial Chaos method
heavily depends on the choice of the sampling vector ξ. For this comparison the choice
of Walters (2003) and Hosder et al. (2006) is followed. For the case of a normally
distributed spring stiffness k the sampling vector is ξ = 0, 1,−1, 2,−2. Reagan et al.
(2003) address the importance of the choice of the sampling vector as well. They are
not convinced that M + 1 samples are enough to accurately estimate the expansion
coefficients. They, therefore, use significantly more samples computed using Latin
Hypercube sampling. Later, Hosder et al. (2007) stated that 2 × (M + 1) samples in
combination with regression is a more robust choice.
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2.4 Summary
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Figure 2.3: Convergence for the Probabilistic Collocation method (PCM) and the
Non-Intrusive Polynomial Chaos method (NIPC) with respect to the computational
work.

Probabilistic Collocation versus Stochastic Collocation (MH)

The Stochastic Collocation (MH) method uses an artificial space instead of the chaos
transformation. A detailed description of the Stochastic Collocation (MH) method
can be found in section B.5. As a result, the Stochastic Collocation (MH) shows only
spectral convergence for uniformly distributed input parameters. This is shown in fig-
ure 2.4, which shows the convergence of the error with respect to the amount of com-
putational work. Figure 2.4(a) shows that when ξ(ω) is taken uniformly distributed
on [-1,1], the Probabilistic Collocation is equivalent to the Stochastic Collocation
(MH) method. This is due to the fact that the collocation points and corresponding
weights are the in both cases the Gauss-Legendre points. Figure 2.4(b) shows the
convergence for a lognormally distributed parameter. This is the general picture for a
non-uniform distribution. For all non-uniform distributions, the Legendre collocation
points of the Stochastic Collocation (MH) method are not the optimal choice. It can,
therefore, be concluded that the Probabilistic Collocation method is a generalization
of the Stochastic Collocation (MH) method, since spectral convergence is maintained
for arbitrarily distributed parameters.

2.4 Summary

The Probabilistic Collocation method was developed to be an efficient and easy to
use uncertainty propagation method. It is based on the polynomial chaos framework,
maintaining spectral convergence with respect to the polynomial chaos order for ar-
bitrarily distributed uncertain parameters. The Probabilistic Collocation method is
non-intrusive, enabling the use of existing (commercial) CFD solvers. A big advantage
with respect to the Galerkin Polynomial Chaos method is the fact that propagation
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Figure 2.4: Convergence for the Probabilistic Collocation method (PCM) and the
Stochastic Collocation (MH) method (SCMH) with respect to computational work for
uniformly (a) and lognormally (b) distributed uncertain parameters. The result for the
lognormal distribution is general for all non-uniform distributions.

through nonlinear models do not result in an increase of computational effort. Fur-
thermore, functionals of the solution are trivially obtained.

A comparison of the Probabilistic Collocation method with some existing methods for
one uncertain parameter demonstrated the spectral convergence with respect to the
polynomial chaos order. The Galerkin Polynomial Chaos method showed exactly the
same results as the Probabilistic Collocation method, however, at higher computa-
tional costs. The Non-Intrusive Polynomial Chaos method provides an approximation
of the polynomial chaos coefficients. This results in a convergence that is not spec-
tral and sensitive to the choice of sampling points. The Stochastic Collocation (MH)
method of Mathelin et al. (2005) shows only spectral convergence for uniformly dis-
tributed uncertain parameters. The Probabilistic Collocation shows spectral conver-
gence for arbitrarily distributed uncertain parameters if the response is Cp+1, where
p is the order of approximation.
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CHAPTER 3

Flow applications of the Probabilistic
Collocation method

In order to demonstrate how uncertainties can efficiently be propagated, the Proba-
bilistic Collocation method (see chapter 2) is used in combination with a commercial
flow solver. Two flow test cases with different characteristics are shown in this chap-
ter. A subsonic [Loeven, Witteveen and Bijl (2007a)] and transonic [Loeven and Bijl
(2009a)] flow case are shown, which were computed using the FINE�/Hexa solver of
Numeca International. Uncertainties are present in the free stream conditions, like
Mach number and angle of attack. The transonic case also involves an uncertain
relative thickness of the airfoil. The effect of the uncertainties on the solution (i.e. lift
and drag of the airfoil) is shown.

Several ways of representing the stochastic solution are shown. For example, the
probability density function of quantities of interest like drag or lift are shown. Fur-
thermore, the mean and variance fields of flow quantities are computed to see in what
part of the flow domain for example the pressure is most sensitive to an uncertain
parameter. The mean skin friction and pressure on the airfoil surface are plotted
with 99% uncertainty bars, which are obtained from the distribution function of the
solutions.
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Chapter 3: Flow applications of the Probabilistic Collocation method

3.1 Subsonic flow around a NACA0012 airfoil

The first test case is steady turbulent subsonic flow around a NACA0012 airfoil with
uncertain Mach number. The airfoil is put at an angle of attack of 5◦, with a Reynolds
number of 3×106. The deterministic computations are performed on a grid of 42,902
cells, created with Hexpress�. At the surface approximately 800 cells are present with
y+ ≤ 1. The grid layout is shown in figure 3.1.

(a) (b)

Figure 3.1: The computational mesh layout (a) and a detailed view of the airfoil (b).

The flow is modeled by the Reynolds-averaged Navier-Stokes equations using the
Spalart-Allmaras turbulence model. The simulations are converged up to 5 digits for
the lift and drag. The air properties are at 0m ISA. The free stream Mach number is
assumed to be normally distributed, with mean µM = 0.3 and a coefficient of variation
of 5%. Most probability is located around the mean and there is equal probability
of a higher or lower Mach number. The coefficient of variation corresponds with
a variations in Mach number of 0.015, which is approximately 5 m/s at sealevel.
The coefficient of variation is defined as CV = σ/µ, which results in a variance of
σ2

M = 2.25 × 10-4.

The uncertainty is propagated using the Probabilistic Collocation method, which is
described in chapter 2. The flow solver is run deterministically for every collocation
point. The deterministic solutions are used to compute the mean, variance and distri-
bution function of properties of interest according equations (2.10), (2.18), and (2.19).
Convergence of the Probabilistic Collocation method is checked using equation (2.21).
The collocation points and weights with the corresponding lift and drag for p = 0 to
4 are given in table 3.1. The estimated error is plotted in figure 3.2. It drops two
orders of magnitude when the approximation is increased from first to second order.
Based on the figure, a second order approximation is used for further results.

The computed mean drag is µD = 76.34 N with a standard deviation of σD = 7.212 N,

26



3.1 Subsonic flow around a NACA0012 airfoil
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Figure 3.2: Convergence of the Probabilistic Collocation method for the lift and drag
force with respect to the polynomial chaos order p.

Table 3.1: The uncertain Mach number and weights for the deterministic solves and
the solutions for the drag and lift for the polynomial chaos orders p = 0 to 4.

Polynomial Collocation Quadrature Mach Drag Lift
chaos order p point weight number [N] [N]

0 1 1.00000 0.30000 76.15972 3563.363

1 1 0.50000 0.28500 69.13470 3200.048
2 0.50000 0.31500 83.54528 3949.263

2 1 0.16667 0.27402 64.21719 2948.015
2 0.66667 0.30000 76.15972 3563.363
3 0.16667 0.32598 89.18566 4246.479

3 1 0.04588 0.26498 60.31209 2749.275
2 0.45412 0.28887 70.91320 3291.672
3 0.45412 0.31113 81.60429 3847.493
4 0.04588 0.33502 93.97566 4500.648

4 1 0.01126 0.25715 57.02602 2583.091
2 0.22207 0.27967 66.72228 3076.164
3 0.53334 0.30000 76.15972 3563.363
4 0.22207 0.32033 86.26064 4092.068
5 0.01126 0.34285 98.24158 4728.320
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Chapter 3: Flow applications of the Probabilistic Collocation method

this results in a coefficient of variation of 9.45%. The lift has a mean of µL = 3575 N, a
standard deviation of σL = 375.2 N and a coefficient of variation of 10.5%. As D, L ∼
M2, a second order expansion approximates this relation well. The probability density
functions of the drag and lift are shown in figure 3.3. A Monte Carlo simulation using
10,000 Latin Hypercube samples is added as a reference solution. The figure shows
a good correspondence between the Monte Carlo simulation and the Probabilistic
Collocation approximation using only three deterministic solves.
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Figure 3.3: The probability density function (as a histogram) and the cumulative
distribution function of the drag D (a) and the lift L (b) obtained from a second order
Probabilistic Collocation computation and a Monte Carlo simulation using 10,000 Latin
Hypercube samples.

Another way to visualize the results of a stochastic simulation is by observing the
mean and variance of the pressure field around the airfoil. Figure 3.4 shows the
pressure fields obtained from a second order Probabilistic Collocation computation.
The mean pressure around the airfoil is shown in figure 3.4(a) and the variance of the
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3.1 Subsonic flow around a NACA0012 airfoil

pressure field in 3.4(b). From the variance field it is clear that the input uncertainty
results in the highest uncertainty in the static pressure near the leading edge of the
airfoil’s upper surface.

(a) (b)

Figure 3.4: The mean (a) and the variance (b) pressure field obtained from a second
order Probabilistic Collocation computation, with FINE�/Hexa as deterministic solver.

The pressure distribution or skin friction on the airfoil surface can be represented
by uncertainty bar plots. Figure 3.5(a) shows the mean pressure distribution on
the upper and lower surface with the uncertainty bars indicating the interval which
contains 99% of all possible values. This interval is obtained from the distribution
function of the pressure at each position on the airfoil. It can be seen in the figure
that the uncertain free stream Mach number leads to the highest variation in pressure
on the upper surface near the leading edge. The uncertainty bars for the skin friction
along the airfoil surface are shown in figure 3.5(b). The skin friction shows more
constant variations along the entire airfoil for an uncertain free stream Mach number.
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Figure 3.5: Pressure distribution (a) and skin friction distribution (b) on the upper
and the lower surface of the NACA0012 airfoil. The mean is indicated by bold solid
lines, the uncertainty bars show the interval which contains 99% of all possible values.
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3.2 Transonic flow around a RAE2822 airfoil

3.2 Transonic flow around a RAE2822 airfoil

The Probabilistic Collocation method is applied to transonic flow around a RAE2822
airfoil [Loeven and Bijl (2009a)]. Three sources of uncertainty are present, the free
stream Mach number, the angle of attack and the relative thickness of the airfoil.
First all uncertainties are propagated independently, to see the separate effects of
the uncertainties. After that all three uncertainties are propagated simultaneously to
allow for interaction between the uncertainties.

3.2.1 Deterministic test case description

The geometry and a close up of the computational grid are shown in figure 3.6(a). A
grid convergence study has been performed (see table 3.2) to ensure that the deter-
ministic results are grid independent. All computations are performed on the grid of
76,063 cells. About 800 cells are present on the surface of the airfoil with y+ ≤ 1. Fur-
thermore, the computations are converged to a relative residual of 10-10 to eliminate
the iteration error. The coeffients are converged up to 7 digits in this case. The flow
parameters are set according to Cook et al. (1979), i.e. the mean flow Mach number
is M∞ = 0.734, the angle of attack is α = 2.79◦, and the Reynolds number is 6.5×106.
The Mach number in the flow field around the airfoil is shown in figure 3.6(b).

Table 3.2: Grid convergence study for flow around the RAE2822 airfoil. Shown are
the lift Cl and drag Cd coefficient rounded on 1 count (10-3 and 10-4 respectively) for
different grid sizes.

# grid cells Cl [-] Cd [-]
27,718 0.771 0.0194
37,675 0.771 0.0190
59,902 0.774 0.0187
76,063 0.772 0.0187

144,013 0.772 0.0187

3.2.2 Uncertain parameters

The uncertain parameters have normal distributions, as shown in figure 3.7. The
free stream Mach number has a mean of µM = 0.734 and a standard deviation of
σM = 0.005. The angle of attack has a mean and standard deviation of µα = 5◦ and
σα = 0.1◦. For the relative thickness, the mean and standard deviation are µt = 1
and σt = 0.005. This results in coefficients of variation CV = σ/µ of 0.68%, 3.58%,
and 0.5% respectively.
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Chapter 3: Flow applications of the Probabilistic Collocation method

(a) (b)

Figure 3.6: Computational grid near the airfoil (a) and the Mach number around the
airfoil (b).
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Figure 3.7: Probability distribution functions of the uncertain parameters.
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3.2 Transonic flow around a RAE2822 airfoil

3.2.3 Results Probabilistic Collocation method

In order to check the convergence of the Probabilistic Collocation method, computa-
tions are performed from p = 0 to 3. The error is estimated using an approximation
which is one order higher according equation (2.21). That is why the figures show
the estimated error up to p = 2. The convergence is shown until the estimated error
is below 10-3, for this test case a second order approximation was sufficient.

Uncertain Mach number

The convergence of Probabilistic Collocation method with respect to the polynomial
order is shown in figure 3.8 for the lift and drag coefficient for an uncertain Mach
number. The estimated error drops two orders of magnitude when the approximation
is increased to second order. The approximation of p = 0 corresponds with a deter-
ministic computation with all parameters set to the mean value. Further results are
for p = 2, which means 3 deterministic computations have to be performed.
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Figure 3.8: Convergence of the Probabilistic Collocation method for the lift coeffi-
cient Cl and drag coefficient Cd for an uncertain Mach number M with respect to the
polynomial chaos order p.

The mean of the Mach number around the airfoil shows no significant difference with
the deterministic Mach number (see figure 3.6(b)). Figure 3.9 shows the standard
deviation of the Mach number around the airfoil. There is a large standard deviation
present in the shock area. Also the wake shows an increased standard deviation.
The maximum standard deviation is 0.18, which is in the order of 25% of the free
stream Mach number. Clearly, this case is highly sensitive to variations of the free
stream Mach number. The distribution of the free stream Mach number only showed
a coefficient of variation of CVM = 0.68%.

Next, figure 3.10 shows the pressure coefficient distribution on the surface of the
airfoil. Uncertainty bars indicate the 99% interval. The interval is obtained from the

33



Chapter 3: Flow applications of the Probabilistic Collocation method

computed cumulative distribution function of the pressure and includes 99% of all
possible values that can occur. Also here, the largest uncertainty is present near the
shock.
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Figure 3.9: Standard deviation field
of the Mach number σM resulting from
an uncertain Mach number M .

Figure 3.10: The pressure coefficient
Cp on the surface of the airfoil with 99%
uncertainty bars resulting from an un-
certain Mach number M .

Other outputs of interest are the lift and drag coefficients. Figure 3.11 shows the
probability distribution functions of both quantities. The lift (figure 3.11(a)) depends
nonlinearly on the Mach number and shows a distribution which is bounded on the
upper side. There is a maximum in the response for a certain Mach number. At
a higher Mach number, the lift decreases again. The drag, shown in figure 3.11(b),
has a positive skewness. Although the input variation of the Mach number is small
(CVM = 0.68%), the variation in the drag coefficient covers a range of 100 drag counts.
The mean, standard deviation and the coefficient of variation are summarized at the
end of this section in table 3.3. The lift shows a coefficient variation of 0.38%, whereas
the drag has a coefficient of variation of 10.64%. For the chosen Mach number, the
drag coefficient of the RAE2822 airfoil is highly sensitive to the free stream Mach
number. A small uncertainty of 0.68% in the Mach number is amplified to a coefficient
of variation of 10.64% for the drag coefficient.

Uncertain angle of attack

The convergence of the Probabilistic Collocation method with respect to the polyno-
mial chaos order is shown in figure 3.12 for the lift and drag coefficient for an uncertain
angle of attack. Again a drop of two to three orders of magnitude are observed be-
tween a polynomial order of p = 0 to 2. Further results are for p = 2, which means 3
deterministic computations have to be performed.

Figure 3.13 shows the standard deviation of the Mach number around the airfoil.
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3.2 Transonic flow around a RAE2822 airfoil
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Figure 3.11: The probability density function (—) and the cumulative distribution
function (—) of the lift coefficient Cl (a) and the drag coefficient Cd (b) resulting from
an uncertain Mach number M .
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Figure 3.12: Convergence of the Probabilistic Collocation method for the lift coeffi-
cient Cl and drag coefficient Cd for an uncertain angle of attack α with respect to the
polynomial chaos order p.
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Chapter 3: Flow applications of the Probabilistic Collocation method

Again a peak of standard deviation is present in the shock area. The variation is
about 6% of the free stream Mach number. In the case of an uncertain angle of
attack, however, there is also a standard deviation present before the shock. This
is more clear in figure 3.14, which shows the pressure coefficient distribution on the
surface of the airfoil. Here relatively large uncertainty bars are present in the shock
area and on the upper surface before the shock. The shock position moves less than
for the case with an uncertain Mach number.
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Figure 3.13: Standard deviation field
of the Mach number σM resulting from
an uncertain angle of attack α.

Figure 3.14: The pressure coefficient
Cp on the surface of the airfoil with 99%
uncertainty bars resulting from an un-
certain angle of attack α.

The lift and drag coefficient show a large variation due to the uncertain angle of
attack. Table 3.3 shows coefficients of variation of CVCl

= 2.10% and CVCd
= 5.62%

respectively, resulting from a coefficient of variation of α of 3.58%. The probability
distribution functions in figure 3.15 cover, therefore, a wide range. The shape of the
distributions is similar to the truncated normal distribution of the uncertain angle of
attack.

Uncertain relative thickness

The convergence of the Probabilistic Collocation method with respect to the polyno-
mial order are shown in figure 3.16 for the lift and drag coefficient for an uncertain
relative thickness. The coefficient of variation of the relative thickness is only 0.5%.
For this small variation, the response is nearly linear. This results in a quick drop of
the estimated error for p = 1, and a small decrease of the error for higher orders. To
allow second order effects, further results are for p = 2, which means 3 deterministic
computations have to be performed.

The standard deviation of the Mach number in depicted in figure 3.17. The maxi-
mum value of the standard deviation is about 9.5% of the free stream Mach number.
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3.2 Transonic flow around a RAE2822 airfoil
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Figure 3.15: The probability density function (—) and the cumulative distribution
function (—) of the lift coefficient Cl (a) and the drag coefficient Cd (b) resulting from
an uncertain angle of attack α.
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Figure 3.16: Convergence of the Probabilistic Collocation method for the lift coeffi-
cient Cl and drag coefficient Cd for an uncertain relative thickness t with respect to the
polynomial chaos order p.
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Chapter 3: Flow applications of the Probabilistic Collocation method

Compared with the coefficient of variation of 0.5% for the relative thickness, it is a
large amplification of uncertainty. The standard deviation is only concentrated near
the shock, as can be seen in figure 3.18. The uncertainty bars of the pressure coeffi-
cient on the surface of the airfoil are very small, only near the shock some variation
is present.
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Figure 3.17: Standard deviation field
of the Mach number σM resulting from
an uncertain relative thickness t.

Figure 3.18: The pressure coefficient
on the surface of the airfoil Cp with 99%
uncertainty bars resulting from an un-
certain relative thickness t.

The small variation can also be seen in the lift and drag coefficients. Table 3.3 shows a
coefficient of variation of 0.06% and 1.13% respectively. Compared with the variation
of the relative thickness of 0.5%, the variation of the drag coefficient is more than
doubled. Figure 3.19 shows some skewness in the distributions, with a small range
for the lift coefficient and a significant range for the drag coefficient.

Uncertain Mach number, angle of attack, and relative thickness

The convergence of the Probabilistic Collocation method with respect to the polyno-
mial order are shown in figure 3.20 for the lift and drag coefficient. More than two
orders decrease of the estimated error was observed for a second order approximation.
Further results are for p = 2, which requires (2+1)3 = 27 deterministic computations.

The standard deviation of the Mach number around the airfoil is shown in figure 3.21,
which is similar to the case of uncertain Mach number (figure 3.9). The uncertain
Mach number is the dominating parameter for this output, the effect of the angle of
attack and relative thickness are small. From the pressure coefficient on the surface
of the airfoil in figure 3.22, a combination of the separate effects can be distinguished.
Before the shock, large uncertainty bars are present. This is mainly due to the
uncertain angle of attack, as can be seen in figure 3.14. In the shock area, the
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3.2 Transonic flow around a RAE2822 airfoil
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Figure 3.19: The probability density function (—) and the cumulative distribution
function (—) of the lift coefficient Cl (a) and the drag coefficient Cd (b) resulting from
an uncertain relative thickness t.
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Figure 3.20: Convergence of the Probabilistic Collocation method for the lift and
drag with respect to the polynomial chaos order p for an uncertain Mach number M ,
angle of attack α, and relative thickness t.
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Chapter 3: Flow applications of the Probabilistic Collocation method

uncertainty bars are similar to the case of the uncertain Mach number (figure 3.10).
The effect of the relative thickness is not noticeably present.

x/c [-]

C
p

[-
]

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

Figure 3.21: Standard deviation field
of the Mach number σM resulting from
an uncertain Mach number M , angle of
attack α, and relative thickness t.

Figure 3.22: The pressure coefficient
Cp on the surface of the airfoil with 99%
uncertainty bars resulting from an un-
certain Mach number M , angle of at-
tack α, and relative thickness t.

The probability distribution functions of the lift and drag coefficients are shown in
figure 3.23. The lift coefficient (figure 3.23(a)) is most sensitive to the angle of attack.
The probability distribution resulting from all three uncertainties closely resembles
the distribution functions of the angle of attack shown in figure 3.15(a). For the drag
coefficient (figure 3.23(b)), the Mach number is most important. This probability
distribution resulting from all three uncertainties is close to the distribution functions
of the Mach number shown in figure 3.11(a).

Table 3.3 summarizes the mean, standard deviation and coefficient of variation of Cl

and Cd. All uncertain parameters have a negative impact on the performance of the
RAE2822 airfoil. The mean drag increases and the mean lift decreases. Furthermore,
the flow around the RAE2822 airfoil is highly sensitive to the uncertain parameters.
The coefficients of variation of the parameters ranged from 0.5 to 3.58%, for all three
uncertain parameter simultaneously this results in a coefficient of variation of 11.96%
for Cd. The coefficient of variation of Cd is mainly determined by the uncertain M .
For Cl, the uncertain α contributes most to the coefficient of variation.

3.3 Summary

The Probabilistic Collocation method was applied successfully to two flow applica-
tions, subsonic and transonic flow around an airfoil. Since the method is non-intrusive,
a commercial CFD solver could be employed.
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Figure 3.23: The probability density function (—) and the cumulative distribution
function (—) of the lift coefficient Cl (a) and the drag coefficient Cd (b) resulting from
an uncertain Mach number M , angle of attack α, and relative thickness t.

Table 3.3: Summary of the mean, standard deviation and coefficient of variation of the
lift Cl and drag Cd coefficients obtained from a second order Probabilistic Collocation
approximation.

Uncertainty
Cl Cd

µ σ CV µ σ CV

M 0.7702 0.00309 0.40% 0.01877 0.002000 10.65%
α 0.7720 0.01624 2.10% 0.01873 0.001048 5.59%
t 0.7724 0.00051 0.07% 0.01867 0.000211 1.13%

M, α, t 0.7698 0.01652 2.15% 0.01883 0.002252 11.96%

deterministic 0.7724 - - 0.01866 - -

41



Chapter 3: Flow applications of the Probabilistic Collocation method

The first test case shows subsonic turbulent flow around the NACA0012 airfoil. The
free stream Mach number was assumed to be uncertain with a coefficient of variation
of 5%. A Monte Carlo simulation using 10,000 Latin Hypercube samples has been
performed to validate the Probabilistic Collocation method. Good agreement has
been found between the Monte Carlo simulation and a second order Probabilistic
Collocation approximation, requiring three deterministic solves. Probability density
functions are shown for the lift and drag forces. The coefficients of variation are 10.5%
and 9.45% for the lift and drag respectively. This is an amplification of a factor 2 of
the coefficient of variation of the uncertain free stream Mach number. The pressure
and skin friction on the surface of the airfoil are shown as the mean with uncertainty
bars indication the interval that contains 99% of all possible values. The mean and
standard deviation field of the static pressure showed that the flow is most sensitive
to the uncertain freestream Mach number near the suction peak at the leading edge.

The second test case was transonic turbulent flow around a RAE2822 airfoil. Uncer-
tainties were present in the free stream Mach number, angle of attack and relative
thickness of the airfoil. The uncertainties were propagated first separately to see the
effect of each parameter on the solution. Statistics of the lift and drag coefficient were
shown, as well as mean and standard deviation of the Mach number in the flow field
around the airfoil. Furthermore, the pressure coefficient on the surface of the airfoil
was shown as the mean with uncertainty bars indicating the interval that cover 99% of
all possible values. Finally, all three uncertainties were propagated simultaneously to
include interactions between the parameters. The results show that the flow is most
sensitive to uncertainties near the shock wave. The lift coefficient shows a coefficient
of variation of 2.15% and the drag coefficient has a coefficient of variation of 11.96%.
Especially the drag coefficient turns out to be sensitive, since the coefficients of varia-
tion were 0.68%, 3.58%, and 0.5% for the Mach number, angle of attack, and relative
thickness respectively. A second order Probabilistic Collocation approximation was
used to propagate the uncertain parameters. This required 3 computations for the
separate cases and 27 for the simultaneous case.
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CHAPTER 4

Modifications of the Probabilistic
Collocation method

For test cases with a discontinuous response or time dependent test cases for which
the response changes with time, the standard Probabilistic Collocation method needs
some modification to efficiently propagate uncertainties. Two test cases are shown in
this chapter to show the modifications of the Probabilistic Collocation method and
the use of them for these test cases.

The first test case considers a stall flutter problem. The model consists of a rigid airfoil
attached to a torsional spring. The required aerodynamic moment is obtained from
the Onera dynamic stall model [Tran and Petot (1981)]. This case is time dependent
and the dynamic stall model contains non-polynomial nonlinearities. Furthermore,
the response of the system has a discontinuous second derivative. The application of
the Probabilistic Collocation method to the stall flutter case and results can be found
in the papers of Loeven, Sarkar, Witteveen and Bijl (2007) and Sarkar et al. (2009).
In case of stall flutter, the output of interest is a bifurcation diagram. The goal for
this test case is to construct a stochastic bifurcation diagram resulting from an uncer-
tain structural equilibrium angle (through an external moment added to the model).
This uncertainty may arise due to differences between the designed wing and the ac-
tual product, or due to an unknown deformation under loading. The non-polynomial
nonlinearities in the model do not pose a problem to applying the Probabilistic Col-
location method. The discontinuous derivative of the response, however, results in a
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Chapter 4: Modifications of the Probabilistic Collocation method

Probabilistic Collocation approximation that oscillates around the reference solution
obtained from a Monte Carlo simulation. A multi-element formulation of the Prob-
abilistic Collocation method [Loeven, Sarkar, Witteveen and Bijl (2007); Foo et al.
(2008)] is used to accurately approximate the response near the bifurcation point.

The second test case in this chapter considers flow around a circular cylinder at low
Reynolds number. The flow reaches a state of period vortex shedding. For the cylinder
case, the lift and drag are periodic functions of time. If the standard Probabilistic
Collocation method is applied to this test case, an increasing order of approximation
has to be used if a constant accuracy is required. This is caused by the fact that
the response becomes more nonlinear with time. This problem is solved by utilizing
the periodic response of the system. The time series are parameterized by assuming
a periodic motion [Witteveen et al. (2007a,b, 2008)]. The Probabilistic Collocation
method is then applied to the time independent parameters that describe the periodic
motion like: mean value, phase, amplitude and frequency. This approach results in a
time independent error.

4.1 Multi-Element formulation applied to stall flutter

As will be shown later in this section, the response of the stall flutter model has a
discontinuous derivative. This is caused by a switch in the model, which activates
the stall model above a certain angle of attack. When the standard Probabilistic
Collocation method is applied, the reconstructed solutions show oscillations around
the reference solution obtained from a Monte Carlo simulation. In order to avoid
oscillations a multi-element formulation of the Probabilistic Collocation method is
proposed.

4.1.1 Multi-Element Probabilistic Collocation

In case of the Multi-Element Probabilistic Collocation method, each random variable
is expanded as [Loeven, Sarkar, Witteveen and Bijl (2007); Foo et al. (2008)]:

u(x, t, ω) =

Ne
∑

i=1

Np
∑

j=1

uij(x, t)Lij (ξi(ω)) , (4.1)

where the solution u(x, t, ω), a function of space x and time t and the random event
ω ∈ Ω. The expansion is written as a summation over the number of elements Ne and
the number of collocation points in each element Np. The complete probability space
is given by (Ω,F , P ), with Ω the set of outcomes, F ⊂ 2Ω the σ-algebra of events and
P : F → [0, 1] a probability measure. Furthermore, uij(x, t) is the solution u(x, t, ω)
at the collocation point ωij , which is the collocation point j in element i; Lij is the
Lagrange interpolating polynomial chaos corresponding to the collocation points ωij ;
ξi is the basis random variable in element i.
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4.1 Multi-Element formulation applied to stall flutter

The procedure to obtain the collocation points and weights is the same as the stan-
dard Probabilistic Collocation method, explained in section 2.2. In each element
the collocation points are computed based on the weighting function in the element
w(ξi) = fξi(ξi). The weighting function fξi(ξi) is set equal to the global weighting
function fξ(ξ) inside the element i and is set to zero outside the element. Figure 4.1
shows a lognormal distribution, which is approximated using 4 elements of equal
probability. The left figures show how the cumulative distribution function and the
probability density function are separated into 4 elements. The right figures show
the resulting weighting functions of each element, which are used to compute the
collocation points and weights inside the elements.
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Figure 4.1: The cumulative distribution function and probability density function
(left) of a lognormal basis with µ=10 and σ2=25. On the right the weighting functions
in each of the four elements.

4.1.2 Deterministic stall flutter model

In this dynamic stall flutter problem, the aircraft wing or wind turbine blade is mod-
eled as a two dimensional rigid airfoil. A NACA0012 airfoil is attached to a torsional
spring and is subjected to the aerodynamic moment obtained from the Onera dynamic
stall model [Tran and Petot (1981); Peters (1985); Dunn and Dugundji (1992)]. This
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Chapter 4: Modifications of the Probabilistic Collocation method

is standard practice in engineering aeroelastic problems. The structural model is
shown in figure 4.2. The equation of motion for the single degree-of-freedom pitching
airfoil is given below [Fung (1955)]:

Iαα̈ + Iαω2
αα + Knl1α

3 = M(t) + Mext1. (4.2)

Here, ¨ indicates a second order derivative with respect to time t, Iα is the wing
mass moment of inertia; α is the pitch angle, ωα the natural frequency of the pitch
elastic mode, Knl1 a nonlinear stiffness term accounting for concentrated structural
nonlinearities in the torsional direction, M(t) is the time dependent aerodynamic mo-
ment and Mext1 a constant external torque applied to the airfoil. First the equations
of motion are made non-dimensional to be able to investigate the effect of system
parameters. The non-dimensional equation of motion of the single degree-of-freedom
pitching oscillation is given by:

α′′ + α
1

U2
+ Knlα

3 =
1Cm

πµr2
α

+ Mext, (4.3)

where ′′ denotes the second order derivative with respect to τ = tV /b the non-
dimensional time, with V the free stream velocity, b is the semi-chord of the blade, Knl

is the non-dimensional form of Knl1, rα = Iα/mb2 the radius of gyration, µ = m/πρb2

the mass ratio, U = V /bωα the dimensionless free stream velocity, Cm the aerody-
namic moment coefficient depending on τ obtained from the dynamic stall model and
Mext is the non-dimensional form of Mext1. The external torque Mext is used to give
the model a structural equilibrium angle [Price and Keleris (1996)].

The aerodynamic model is the Onera dynamic stall model [Dunn and Dugundji (1992);
Peters (1985)] governed by the following set of differential equations

Cm = smα′ + kvmα′′ + Cm1 + Cm2 (4.4)

C′
m1 + λmCm1 = λm (aomα + σmα′) + αm (aomα′ + σmα′′)

(4.5)

C′′
m2 + 2dωC′

m2 + w2
(

1 + d2
)

Cm2 = −w2
(

1 + d2
)

(∆Cm|α + e∆C′
m|α) , (4.6)

where Cm is the aerodynamic moment. The aerodynamic moment is split into two
parts: the inviscid circulatory part Cm1 and the viscous part Cm2. The other coef-
ficients sm, kvm, λm, αm, aom, σm, d, w and e are empirically determined coeffi-
cients found by applying parameter identification techniques on experimental data.
The values for the coefficients for the NACA0012 airfoil have been obtained from
Dunn and Dugundji (1992). The cubic structural stiffness Knl is set to zero. The
function ∆Cm is a step function which activates a nonlinear function of α above the
static stall angle of 12◦ and is linear below the static stall angle.

The dimensionless free stream velocity U is used as bifurcation parameter for the
analysis of this system. The external torque Mext is set such that the system has an
equilibrium pitch angle of 4◦. The system is perturbed by an instantaneous pitch angle
of 10◦. A fourth order explicit Runge-Kutta scheme is used for the time integration.
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Figure 4.2: NACA0012 airfoil with a torsional spring.
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Figure 4.3: Deterministic bifurcation plot with the bifurcation point at U = 15.765.

After a transient part the system is in equilibrium. The deterministic bifurcation plot
of the pitch angle for a range of U ∈ [12, 22] is shown in figure 4.3. The bifurcation
diagram shows the minimum and maximum pitch angles of the time interval τ =
750−800. This time interval covers at least one period of oscillation and is outside the
transient part of the response. The bifurcation plot shows that the supercritical Hopf
bifurcation is located at Ubif,det = 15.765. To the left of the bifurcation point, U ∈
[12, 15.765], are the damped solutions, where the minimum and maximum pitch angles
are equal. To the right, U ∈ [15.765, 22], the solutions are period-one oscillations,
represented by a different value of the minimum and maximum pitch angle.

Since the choice of the external torque Mext has a strong effect on the bifurcation
diagram it has to be chosen carefully. Price and Keleris (1996) used values of the order
of 10-4. Here the mean µMext

is set to 8.3 × 10-4, which corresponds to a structural
equilibrium angle of 4◦. A lognormal distribution is assumed with a coefficient of
variation of CVMext

= 15%.

4.1.3 Uncertainty quantification for the dynamic stall flutter prob-
lem

This section treats the uncertainty quantification of the dynamic stall flutter prob-
lem and leads to a stochastic bifurcation plot and the stochastic properties of the
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Chapter 4: Modifications of the Probabilistic Collocation method

bifurcation point.

The solution of the dynamic stall flutter problem is given as a bifurcation diagram,
so the minimum and maximum pitch angles of the asymptotic state of the system are
required. For the minimum pitch angle, expansion (4.1) becomes

αmin(τ, ω) =

Ne
∑

i=1

Np
∑

j=1

αmin,ij(τ)Lij (ξi(ω)) , (4.7)

with

αmin,ij = min (αij(τ)) for the time interval τ = [τa, τb], (4.8)

where the time interval [τa, τb] is sufficiently large to contain at least one period of
oscillation and is outside the transient part of the response. For the maximum a
similar expression is used. Reconstruction of the stochastic properties of the min-
imum and maximum pitch angles (and thus the bifurcation diagram) is efficient
and accurate due to the collocational approach. αmin and αmax are functionals of
α(τ, ω). For the Galerkin Polynomial Chaos method the functionals have to be ap-
plied to the reconstructed solution α(τ, ω). Due to the long time integration, an
increasing order of approximation needs to be used to maintain the required accu-
racy [Wan and Karniadakis (2006)]. Another drawback of the Galerkin Polynomial
Chaos method for this dynamic stall flutter model is the presence of the nonlinear
step function ∆Cm. Since the (Multi-Element) Probabilistic Collocation method only
requires the output of the model, no problems with the nonlinearity in the stall flutter
problem occur [Sarkar et al. (2009)].

The response of the model can be divided into three categories, i.e. all damped solu-
tions, all period-one oscillations and a bifurcated response. The Probabilistic Collo-
cation method is used with one element for the first two response types and with two
elements when the system has a bifurcated response. Each of them are discussed in
detail below.

Damped solutions, U = 12

The non-dimensional velocity U is set to 12, such that all responses are damped. For
this range the equations are linear, since the pitch angle remains below the static stall
angle of 12◦. A third order Probabilistic Collocation approximation is used, requiring
four deterministic solves. The mean of the pitch angle is µα = 6.95◦ with a variance
of σ2

α = 3.31 × 10-4, this results in a coefficient of variation of the angle of attack
of 15%. Figure 4.4(a) shows that the cumulative distribution function computed by
the Probabilistic Collocation method corresponds to a Monte Carlo simulation using
100 uniformly sampled computations. The probability density function is shown in
figure 4.4(b). Close agreement between the Monte Carlo simulation and the Proba-
bilistic Collocation method is observed.
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Figure 4.4: Distribution functions of the pitch angle α, (a) the cumulative distribution
function Fα(α) and (b) the probability density function fα(α), resulting from a lognor-
mally distributed external torque Mext with µMext = 8.3 × 10-4 and CVMext = 15% for
U = 12.

Period-one oscillations, U = 22

The next case is a non-dimensional velocity of U = 22. All realizations result in a
period-one oscillation. The system is in the nonlinear regime, since pitch angles above
12◦ occur, which activate the ∆Cm function. Since no bifurcation is present in the
response, a single element is sufficient for the Probabilistic Collocation method. The
system is nonlinear now, which requires a higher order approximation. A third order
approximation is used, so 4 deterministic solves are required. Figures 4.5(a) and
4.5(b) show the distribution functions of the minimum and maximum pitch angles
during the oscillation. The mean of the minimum pitch angle is µα,min = 6.82◦ with
a variance of σ2

α = 7.81×10-4, this results in a coefficient of variation of the minimum
pitch angle of 23.5%. For the maximum pitch angle the mean is µα,max = 14.27◦ with
a variance of σ2

α = 1.49 × 10-4, so a coefficient of variation of 4.9% for the maximum
angle of attack is obtained. Since the input uncertainty has a coefficient of variation
of 15%, it is increased for the minimum and decreased for the maximum pitch angle.
The cumulative distribution function, shown in figure 4.5(a), matches the Monte Carlo
results obtained from 100 uniformly sampled computations. Figure 4.5(b) shows the
probability density function of the minimum and maximum pitch angle. Again a good
agreement between the Monte Carlo simulation and the Probabilistic Collocation
method is observed.
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Figure 4.5: Distribution functions of the pitch angle α, (a) the cumulative distribution
function Fα(α) and (b) the probability density function fα(α), resulting from a lognor-
mally distributed external torque Mext with µMext = 8.3 × 10-4 and CVMext = 15% for
U = 22.

Damped solutions and period-one oscillations, U = 16

The third case, where U = 16, has a bifurcated response. The results of a single ele-
ment computation are shown in figure 4.6. Due to the presence of the bifurcation the
global polynomial approximation of the Probabilistic Collocation method oscillates
around the response obtained from a Monte Carlo simulation using 100 uniformly
sampled computations. For the maximum pitch angle the oscillations are not that
severe, since the graph has just a small kink. For the minimum the discontinuous
derivative in the bifurcation point results in a non-smooth solution, which cannot
be approximated using polynomials. The difference between the Monte Carlo results
and the Probabilistic Collocation approximation is more clear in figure 4.6(b). Both
cumulative distribution functions deviate from the Monte Carlo results.

Multi-Element Probabilistic Collocation with search samples

In order to compute cases with a bifurcated response, the number of elements is
increased. This results in a piecewise polynomial approximation of the solution. To
keep the algorithm as efficient as possible the least amount of elements is used. Two
elements suffice for this case, since it was shown that the damped response and the
period-one oscillations are approximated separately. One element is used for the
approximation of the damped solutions and one for the period-one oscillations. This
means that the two elements have to be separated by the bifurcation point. Since the
location of the bifurcation point is in general not known in advance a search algorithm
is used to find a coarse estimate of the bifurcation point.
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Figure 4.6: The approximated response (a) of the pitch angle using the Probabilistic
Collocation method and the resulting cumulative distribution functions (b), result-
ing from a lognormally distributed external torque Mext with µMext = 8.3 × 10-4 and
CVMext = 15% for U = 16.

Another option is to use refinement of the elements [Foo et al. (2008)] to capture the
bifurcation point. Refining an element, requires redistributing the collocation points.
The collocation points that are already evaluated are not used anymore. For this test
case, search samples are believed to be more efficient than a refinement strategy since
the case is one dimensional.

Recently, the Adaptive Stochastic Finite Elements [Witteveen et al. (2009)] approach
was developed. Since it is based on Newton-Cotes quadrature, the collocation points
of the coarse approximation are also present in the refined approximation. This means
that every evaluation of the model is used for the stochastic computation. However,
no spectral convergence is obtained.

Search samples

First two samples at ω = 0.001 and 0.999 were used to determine if the bifurcation
is present. If there is a bifurcation, then a search algorithm is started. Figure 4.7(a)
shows the search samples used for the case with U = 16. The search samples are
numbered to show how the search is performed. The search algorithm subsequentially
halves the part of the parameter domain that contains the bifurcation. The third
sample will be chosen in the middle of the parameter domain and so forth. The
search is stopped when the amplitude of the period-one oscillation of the new point is
below a threshold, here set to 0.2 degrees pitch angle. The value of 0.2 was emperically
found to produce accurate results efficiently. Finally, one additional sample is added
for more robustness and accuracy of estimating the bifurcation point. This extra
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sample is located between the third sample, in the middle of the domain and the
boundary sample which has the same type of response. The final sample, number 6,
here is chosen halfway between sample 3 and 2, since they result both in a period-one
oscillation.
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Figure 4.7: The figures show (a) the search samples in the response domain and
(b) the collocation points of element I(◦) and II(⋄) based on the estimated bifurcation
point(∗).

Bifurcated response with Multi-Element Probabilistic Collocation

Figure 4.8 shows the new results for the distribution functions for a non-dimensional
velocity U of 16. Again a 3rd order approximation is obtained using two elements
both of order 3. For this case a total of 14 samples is used, 6 search samples and 4
samples per element for a 3rd order approximation. So the increase in robustness of
this approach is worth the effort, since 14 samples are sufficient to coincide with the
Monte Carlo simulation using 100 uniformly sampled computations. The mean of the
minimum pitch angle is µα,min = 10.62◦ with a variation of σ2

α,min = 3.38× 10-4, and

for the maximum µα,max = 11.82◦ and σ2
α,max = 4.14 × 10-4. Both have a coefficient

of variation of 9.9%, so the input uncertainty is damped in the output.

Bifurcation plot with uncertainty bars

The previous section shows that the framework of search samples in combination with
the Probabilistic Collocation method (using one or two elements) produces accurate
results for all three possible response types. Now the framework can be applied to the
stall flutter model to construct the stochastic bifurcation plot. Figure 4.9 shows the
bifurcation plot with uncertainty bars arising from an uncertain external torque Mext.

52



4.1 Multi-Element formulation applied to stall flutter

α [◦]

F
α
(α

)

MC min
MC max
MEPC min
MEPC max

5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

(a)

α [◦]

f α
(α

)

Minimum
Maximum

5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 4.8: The distribution functions of the minimum and maximum angle of at-
tack α, (a) the cumulative distribution function Fα(α) and (b) the probability density
function fα(α), resulting from a lognormally distributed external torque Mext with
µMext = 8.3 × 10-4 and CVMext = 15% for U = 16.

A total of 120 deterministic solves is used for the complete computation, including the
search samples. The uncertainty bars show the intervals which contain 99.8% of all
possible solutions, obtained from the distribution function of the minimum and max-
imum pitch angles. It can be seen that away from the region around the bifurcation
point the mean is close to the deterministic computation. Since the bifurcation point
has become a random variable, the mean shows no bifurcation point anymore. The
graphs of the mean of the minimum and maximum pitch angle smoothly separate.
The uncertainty bars, however, are very large indicating that the solution is sensitive
to variations in the external torque. At velocities above the bifurcation point, the
uncertainty bars of the minimum pitch angle covers an area which is larger than the
mean value.

Stochastic properties of the bifurcation point

For engineers the bifurcation point and the influence of uncertainties on the bifurcation
point is of great importance, since flutter can lead to failure of the structure. Due
to the uncertain external torque the bifurcation point becomes a random variable
as well. The mean is µUbif

=15.87, with a variance of σ2
Ubif

=1.37 which results in a
coefficient of variation of 7.4%. Figure 4.10 shows the cumulative distribution function
and the probability density function of the bifurcation point. The deterministic value
was Ubif=15.765. Suppose 1% probability of flutter is acceptable, the bifurcation
points becomes Ubif,1%=13.34, which is 15.4% lower than the deterministic value. It
is, therefore, of great importance to take uncertainty quantification into account in
flutter computations.
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Figure 4.9: Stochastic bifurcation diagram with uncertain Mext. Uncertainty bars
show the interval that contains 99.8% of all possible values. The deterministic bifurca-
tion diagram is shown by the solid black line.
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Figure 4.10: The probability density function (—) and the cumulative distribution
function (—) of the bifurcation point Ubif resulting from an uncertain external torque
Mext.
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4.2 Unsteady flow around a cylinder

4.2 Unsteady flow around a cylinder

This section demonstrates the application of the Probabilistic Collocation method
to an unsteady flow problem. The case is a low Reynolds number flow around a
cylinder. The incompressible laminar Navier-Stokes equations are solved using the
OpenFOAM® incompressible solver on a structured grid. The mean Reynolds num-
ber is 150, which is well in the laminar regime. If the standard Probabilistic Col-
location method would have been applied to this time dependent problem, the ap-
proximation will become less accurate after some time [Wan and Karniadakis (2006);
Witteveen et al. (2008)]. The cylinder case results in a periodic solution. This is uti-
lized by parameterizing the solution using 4 time-independ parameters to describe the
period solution. This results in an efficient Probabilistic Collocation approximation
with constant accuracy in time.

4.2.1 Probabilistic Collocation method for period-1 oscillations

As was seen in the stall flutter case, the Probabilistic Collocation method is success-
ful in obtaining the statistics of output functionals. For periodic motions like vortex
shedding behind a cylinder, a set of time-independent parameters can be defined
which describe the unsteady behavior. Assuming the lift coefficient of the cylinder is
governed by a cosine type period-1 oscillation, the lift coefficient can then be param-
eterized by:

Cl(t) = Cl0 + ACl
cos (2πfCl

t + ΦCl
) , (4.9)

resulting in four parameters, i.e. the mean value Cl0 , the amplitude ACl
, the frequency

fCl
, and the phase ΦCl

. These parameters will be the output functionals of interest
from the deterministic solves for each collocation point. For the cylinder case a cosine
type oscillation is assumed, but equation (4.9) can be generalized for any period shape
(see [Witteveen et al. (2008)]).

In case of an uncertainty in the system, the lift coefficient becomes a random vari-
able, of which the distribution changes in time. This means that the parameters in
equation (4.9) become random variables as well. Equation (4.9) becomes:

Cl(t, ω) = Cl,0(ω) + ACl
(ω) cos (2πfCl

(ω)t + ΦCl
(ω)) , (4.10)

where ω indicates a random event. The Probabilistic Collocation expansion (2.10) is
applied to each parameter. For example the amplitude is expanded as

ACl
(ω) =

Np
∑

i=1

ACl,i
Li(ξ(ω)), (4.11)

where ACl,i is the amplitude of the lift coefficient and Li is the Lagrange polyno-
mial for collocation point i, and ξ(ω) is the basis random variable, which is a linear
combination of the uncertain parameter in the problem.
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Summarizing, the procedure can be split into the following steps:

1. Determine the collocation points as done for the standard Probabilistic Collo-
cation method (see chapter 2).

2. Run the deterministic solver for each collocation point.

3. Determine Cl,0,i, ACl,i
, fCl,i

, and ΦCl,i
from the lift coefficient time history for

each collocation point.

4. Reconstruct the distribution functions Cl,0(ω), ACl
(ω), fCl

(ω), and ΦCl
(ω) us-

ing equation (4.11).

5. Use the distributions from step 4 to reconstruct Cl(t, ω) using equation (4.10).

Since this parameterization only holds for a periodic response, the transient behavior
of the system is not captured well. The standard Probabilistic Collocation method,
however, is able to capture the transient part, but breaks down at a later time. In
order to reconstruct the entire history of the lift and drag coefficient, the approach
of Witteveen et al. (2007b) is followed. First standard Probabilistic Collocation is
applied until a periodic response is obtained. From that point in time the Probabilistic
Collocation method for period-1 oscillations using equation (4.10) is used.

This approach has later been extended by Witteveen et al. (2007a) to be able to han-
dle damped responses and multiperiod time series. Recently, a multi-frequency for-
mulation using a wavelet decomposition was developed by Witteveen and Bijl (2009)
More information on uncertainty propagation for unsteady problems can be found in
the PhD thesis of Witteveen (2009).

4.2.2 Deterministic solution

The case is a cylinder in a laminar flow. Vortex shedding will occur, resulting in a
periodically changing lift and drag with time. The total grid size is approximately
130,000 cells for which the layout is shown in figure 4.11(a). A zoom is shown in
figure 4.11(b) where it can be seen that the grid is body conformal close to the
cylinder.

The flow is set to a Reynolds number of Re=150. This flow regime is in the laminar
parallel shedding range. The incompressible laminar Navier-Stokes equations are
solved using the OpenFOAM® solver. An instantaneous deterministic vorticity plot
with pressure contours at t=100 is shown in figure 4.12. It shows the fully developed
Von-Karman vortex street behind the cylinder.

The fully developed state of the flow is periodic vortex shedding. This results in
a periodic response of the lift and drag coefficient. The periodic response is shown
in figure 4.13(a) for the lift coefficient and in 4.13(b) for the drag coefficient, the
corresponding Cd-Cl plot is given in figure 4.14. For the deterministic simulations a
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(a) (b)

Figure 4.11: The total grid layout (a) and a zoom on the geometry (b).

Figure 4.12: Instantaneous deterministic vorticity plot at t=100.
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periodic response is obtained after t=80. Some additional periods have been computed
till t=100, as can be seen in figure 4.13.
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Figure 4.13: Period response (a) lift and (b) drag.
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Figure 4.14: Cd-Cl plot of the periodic motion.

The periodic response is characterized by the Strouhal number, given by:

Sr =
fCl

D

U
, (4.12)

where fCl
the frequency of the lift coefficient Cl, D the diameter of the cylinder, and

U the free stream velocity. In the flow solver D and U are set to 1, so for this case the
Strouhal number is equal to the frequency of the lift coefficient. For Re = 150 (i.e.
ν = 1/Re = 6.667 × 10−3) the Strouhal number is Sr = 0.18497, which corresponds
well with literature [Williamson and Brown (1998)].
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Figure 4.15: Input distribution of the (a) kinematic viscosity and (b) the resulting
distribution of the Reynolds number

4.2.3 Stochastic analysis

The uncertain parameter chosen is the kinematic viscosity ν. Hereby, the Reynolds
number becomes uncertain, which affects the vortex shedding. A Gaussian input
distribution is assumed with a coefficient of variation CVν = σν/µν of 5%. Fig-
ure 4.15(a) shows the (Gaussian) input distribution of the kinematic viscosity. The
resulting distribution of the Reynolds number is shown in figure 4.15(b).

4.2.4 Stochastic results

The uncertain kinematic viscosity is propagated using the Probabilistic Collocation
method of order p=2, 3, 4, 5, and 10. The low orders p = 2 till 5 are to check conver-
gence of the Probabilistic Collocation method, whereas the tenth order is computed
to obtain a reference solution. The results show that, except for ΦCd

and Cd,0, the
response is close to linear. However, for ΦCd

and Cd,0 a fourth orer approximation was
required. No difference between the fourth and higher orders are observed. There-
fore, a fourth order approximation is used for the computations. Figure 4.16 shows
the 99% region of the Cd-Cl graph for p=4. This means that with the given input
distribution 99% of all possible results will be inside this region.

The time-independent parameters describing the period motion of the lift and drag
coefficient are extracted for each collocation point from the interval t ∈[80,100] (see
figure 4.13). The mean Strouhal number is µSr=0.1850 based on the input distribution
for µ, which is slightly higher than the deterministic value of 0.18497. The probability
distribution of the Strouhal number is shown in figure 4.17(b). Other parameters that
describe the periodic motion of Cl and Cd are given in figures 4.17 and 4.18, which
are the amplitude ACl

/ACd
, the frequency fCd

/fCl
, the phase ΦCl

/ΦCd
, and the

mean value Cd,0. The mean value of Cl is zero for all realizations. Except for ΦCd
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Figure 4.16: Stochastic results: Cd-Cl graph with 99% interval.

and Cd,0 all responses are almost linear, the distribution functions are close to the
Gaussian distribution of ν. The distribution functions of ΦCd

and Cd,0 are not close
to a Gaussian distribution anymore.

Table 4.1 shows the deterministic values, mean values, standard deviations, coeffi-
cients of variation and the amplification factors of each parameter. The uncertain
kinematic viscosity has a coefficient of variation of 5%. Interesting to see is how the
system amplifies or damps this input variation. As a measure the amplification factor
Ψ is defined as:

Ψ =
CVout

CVin
. (4.13)

Where in this case CVin = CVν . An amplification factor much smaller than 1 indicates
that the output is not sensitive to variations in the input parameter, which is the case
for the frequencies Sr and fCd

and the mean value of the drag coefficient Cd,0. From
table 4.1 it is clear that an uncertain ν or Re mainly results in strong variations in
the amplitude and phase of both Cl and Cd.

With the results from figure 4.17 and figure 4.18, the time series of the lift and
drag coefficient can be reconstructed using equation (4.10). From the reconstructed
distribution, the mean and standard deviation are obtained.

As shown in figure 4.13, the coefficients are periodic from t=80. The parameters
describing the periodic motion are obtained from the time interval t ∈ [80,100]. The
mean and standard deviation show a transient stochastic behavior and reach a limit
state. To obtain the stochastic results until t=300, it is not necessary to run the de-
terministic simulations until that time. Since the parameters of the periodic response
are already known, the results can easily be extrapolated by evaluation equation (4.9)
till t=300. As can be seen in figures 4.19 and 4.20, all results reach a steady value
when t increases.
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Figure 4.17: Parameters that describe the periodic motion of Cl

Table 4.1: Mean µ, standard deviation σ, coefficient of variation CV and amplification
factor Υ of functional outputs of Cl and Cd.

Quantity
Deterministic Mean Standard Coeff. of Amp.

value µ deviation σ var. CV fac. Υ
ACl

0.3871 0.3878 0.02004 5.17% 1.034
Sr 0.1849 0.1850 0.00216 1.17% 0.234
ΦCl

2.0533 2.0625 0.18567 9% 1.8

ACd
0.0198 0.0199 0.002114 10.6% 2.12

fCd
0.3697 0.3699 0.004397 1.19% 0.238

ΦCd
3.5942 3.5008 0.43599 12.45% 2.49

Cd,0 0.9654 0.9657 0.0008271 0.0856% 0.0171
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Figure 4.18: Parameters that describe the periodic motion of Cd
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4.3 Summary

In the figures two lines are shown. First the dashed red line indicates the stan-
dard Probabilistic Collocation results. For the transient part, the results are good.
However, after a certain time, the standard Probabilistic Collocation approximation
breaks down. Increasing the order delays this effect only slightly. The blue line shows
the final solution, which consists of the standard Probabilistic Collocation approxima-
tion for the transient part and the Probabilistic Collocation for period-1 oscillations
for the periodic part. This approach is similar as the approach of Witteveen et al.
(2007b), where good agreement with Monte Carlo simulation is shown.

Figure 4.19 shows the time series for the mean and standard deviation of the lift
coefficient. The mean damps out to a value of µCl

=0, which is the same as the mean
of the mean value µCl,0

. The value of Cl,0 is 0 for all collocation points. The standard
deviation goes to a limit state of σCl

=0.2746.

The results for the drag coefficient are shown in figure 4.20. In the limit, the mean goes
to µCd

=0.9657, which is exactly the same as the mean of the mean value µCd,0
. The

response of the standard deviation of the drag coefficient (see figure 4.20(b)) is not
behaving smoothly. The switch between the standard Probabilistic Collocation and
the period-1 formulation is clearly visible. It has been checked that the time series
for each collocation point reaches a periodic motion, so the period-1 Probabilistic
Collocation formulation is valid here. The standard deviation reaches a value of
σCd

=0.0142.

Apart from the mean and standard deviation, also the probability distribution reaches
a limit state. The result is shown in figure 4.21. These histograms show a typical
picture of a cosine response with a phase and frequency shift between the colloca-
tion points. Highest probabilities occur near the edges, while the mean has a low
probability to occur.

4.3 Summary

For test cases with a discontinuous response or time dependent test cases for which
the response changes with time, the standard Probabilistic Collocation method can-
not readily be applied. With some minor modifications, it is possible to efficiently
propagate uncertainties in such cases.

First a stall flutter problem was shown where the model contains a (nonpolynomial)
nonlinearity. Furthermore, the output of interest is the minimum and maximum
pitch angle of the airfoil in the limit state. Due to the nonlinearity in the model
and this specific output of interest, the intrusive Galerkin Polynomial Chaos method
cannot be applied efficiently to this test case. The response of the model was divided
into three parts. The first part where all solutions are damped. The second part
contains a bifurcation point. Some solutions are damped, while other show a limit
cycle oscillation. An thirdly, the part were all solution result in a limit cycle oscillation.
The Probabilistic Collocation method shows no problem with approximations in the
first and third part. When the bifurcation is present, the approximation fails. For this
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Figure 4.19: Time series of the mean µCl and the standard deviation σCl of the lift
coefficient. The blue line (–) indicates the final solution based on standard Probabilistic
Collocation for the transient part and Probabilistic Collocation for period-1 oscillations
for the periodic part. The dashed red line (- -) indicates the standard Probabilistic
Collocation method. A fourth order approximation is used, requiring 5 deterministic
solves.

case a multi-element formulation in combination with search samples was successfully
applied. The result was a stochastic bifurcation plot, which showed the mean of the
minimum and maximum pitch angle with uncertainty bars indication 99.8% of all
possible values. Furthermore, the probability distribution of the bifurcation point
was found.

The second test case was a low Reynolds number flow around a cylinder. The Reynolds
number is assumed to be uncertain, to investigate the effect on the response of the lift
and drag coefficient. In this case the response surface becomes more nonlinear in time.
This is caused by a frequency difference in the solution due to the presence of the
uncertain parameter. This requires an increasing polynomial chaos order to maintain
the same accuracy. If the unsteady simulation results in a period-1 oscillation, the
Probabilistic Collocation method should be applied to time independent parameters
that describe the oscillatory response. These parameters are the amplitude, mean
value, period and phase. The result is a time independent accuracy, so a constant
polynomial chaos order can be used regardless of the simulation time. The period-1
Probabilistic Collocation approach was successfully applied to vortex shedding from
a circular cylinder. It was shown that the frequency and mean value are insensitive
to variation of the Reynolds number. On the other hand, the amplitude and the
phase are highly sensitive to the Reynolds number, the input uncertainy of 5% was
amplified to an output uncertainty in the order of 10%.
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Figure 4.20: Time series of the mean µCd and the standard deviation σCd of the drag
coefficient. The blue line (–) indicates the final solution based on standard Probabilistic
Collocation for the transient part and Probabilistic Collocation for period-1 oscillations
for the periodic part. The dashed red line (- -) indicates the standard Probabilistic
Collocation method. A fourth order approximation is used, requiring 5 deterministic
solves.
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Figure 4.21: Limit state of the probability density functions (histograms) of the lift
and drag coefficient at t=300.
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CHAPTER 5

Geometric uncertainties

Geometric uncertainties are present in reality, for example due to production toler-
ances or unknown deformations during operation. The geometry of a well-designed
airfoil might differ from the actually produced airfoil. Apart from that, the construc-
tion may deform under loading during operation or change due to for example icing.
In this study the geometric uncertainty is written as a parametric uncertainty by
parameterizing the geometry and assuming an uncertainty on the parameters. Geo-
metric uncertainties directly influence the aerodynamic performance. Therefore, they
are of great interest, especially for industry. Examples of the shape parameters of an
airfoil are the relative thickness, maximum camber, or leading edge radius, depending
on the parameterization.

The effect of geometric uncertainties on Computational Fluid Dynamics (CFD) has
been investigated before using sensitivity analysis [Ilinca et al. (2006); Etienne et al.
(2006)] and moment methods [Gumbert et al. (2002)]. Ilinca et al. (2006) treat shape
sensitivities of unsteady laminar flow around a cylinder in ground proximity. Shape
sensitivities are investigated by Etienne et al. (2006) for flexible plates in a flow do-
main. Gumbert et al. (2002) included first order moments in robust design optimiza-
tion of a 3D flexible wing with uncertain wing geometry.

Instead of sensitivities or lower order approximations of the mean and variance, in
this study the probability distribution function of the output of interest is computed.
From the probability distribution more accurate intervals can be extracted, which
contain for example 95% of all possible values that can occur. The Probabilistic
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Collocation method [Babuška et al. (2007); Loeven, Witteveen and Bijl (2007a)] de-
scribed in chapter 2 is used for uncertainty propagation.

The first test case is a 4-digit series NACA airfoil. For this airfoil series, the geometry
is determined by three parameters. These are the maximum camber, maximum cam-
ber location and the thickness, all in percents of the chord. Each shape parameter
is assumed to be uncertain separately to investigate the effect of the parameter on
the solution. After that all parameters are considered uncertain simultaneously to
study the combined effect. JavaFOIL [Hepperle (1996–2010)] is used as a determin-
istic solver, which uses low fidelity flow models. It consists of a potential flow solver
combined with boundary layer analysis. It is quick to run, but lack the capability of
computing and showing flow phenomena in the flow field.

The next step is to apply CFD, where a computational grid is constructed around
the object. On this grid, the equations governing fluid motion are solved by the
flow solver. When the geometry is uncertain, the geometry is different for every
collocation point. This means that a new computational grid has to be constructed,
which is a time consuming job. In this section the flow solver is adapted, such that
grid deformation techniques [de Boer et al. (2007)] can be used to treat geometric
uncertainties in an efficient way [Jakobsson and Amoignon (2007)].

Secondly, flow around a NACA0012 airfoil is considered with uncertain camber and
relative thickness. A commercial CFD solver is used to perform several deterministic
solves to obtain a Probabilistic Collocation approximation. Computations at subsonic
flow (M = 0.3) and at transonic flow (M = 0.8) are accomplished. The pressure
distribution on the surface of the airfoil with uncertainty bars is shown, as well as
the probability distribution functions of the lift, drag and for the transonic case the
shock location.

A problem in this approach is the determination of the probability density functions
of the parameters. Here truncated normal distributions are used, since this seems
a reasonable assumption for produced items. The mean has the highest probability
and products outside the tolerance interval are rejected. This chapter is based on the
results from Loeven and Bijl (2008a).

5.1 NACA5412 results using JavaFOIL

The geometry of an airfoil of the NACA 4-digit series is described by three param-
eters. The general form is NACAXYZ, where XYZ represent the following shape
parameters: X is the maximum camber, Y the maximum camber location and Z the
thickness of the airfoil, all in percents of the chord. For example NACA5412 (see
figure 5.1) is an airfoil with 5 percent maximum camber, located at 40 percent of the
chord and the thickness is 12 percent of the chord.

The next sections show the effect of uncertainties on all three shape parameters sep-
arately and simultaneously. These uncertainties occur in reality when due to the
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5.1 NACA5412 results using JavaFOIL

Figure 5.1: NACA5412 airfoil

production process the final product differs from the design. Two things have to
be taken into account when this approach is followed. First the choice of input dis-
tribution of a shape parameter is not obvious. Here truncated normal distributions
are used, since this seems a reasonable assumption for products. The mean has the
highest probability and products outside the tolerance interval are rejected. The co-
efficient of variation is set to CV = 10% and the distribution is truncated at µ ± 3σ.
Secondly, there are different ways of parameterizing the shape of an airfoil. Further-
more, if multiple uncertain shape parameters are considered, they are not likely to
be independent. All parameters together determine the actual shape, so an uncertain
shape will affect all parameters. The effect of the way of parameterization is not
investigated here.

The results of section 5.1 consist of a Cl and Cd for a range of angles of attack
of -1 to 15 degrees. The lift coefficient is obtained using the panel method with
stall and transition models [Eppler and Somers (1980); Eppler (1978)], implemented
in JavaFOIL [Hepperle (1996–2010)]. Here the Eppler stall model combined with
the eN transition model [Drela and Giles (1986)] are used. It has been validated by
Hepperle (1996–2010) that for this range of angles of attack the used panel method in
combination with the stall and transition model accurately predicts the lift and drag
of the airfoil.

The flow around the airfoil is set to a Reynolds number of 3×106 at sea level. The
uncertainty bars show the interval that contains 100% of all possible values, ob-
tained from the cumulative distribution function. A second order approximation is
used, meaning 3 deterministic solves for each parameter. The accuracy is checked by
computing a fourth order approximation with 5 solves, which showed no significant
improvement. Figure 5.2 shows that each parameter has a different effect on the lift
coefficient.

Uncertain maximum camber: NACAX412

The results for the uncertain maximum camber X are shown in figure 5.2(a). The
mean is set to µX=5% of the chord. With a coefficient of variation to CVX=10%,
the standard deviation is σX=0.5%. The uncertain camber shifts the Cl-α graph
up and down for every collocation point. From figure 5.2(a) it can be seen that
this results in equally sized uncertainty bars. The coefficient of variation of the lift
coefficient decreases when the angle of attack is increased, see figure 5.3(a). The input
coefficient of variation of 10% increases to 12% for low angles of attack and decreased
to 3% near the maximum lift coefficient.
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Figure 5.2: The lift coefficient of a NACA5412 airfoil for an uncertain (a) the max-
imum camber X, (b) maximum camber location Y and (c) thickness Z, assuming a
truncated normal distribution with a coefficient of variation of 10%. The uncertainty
bars show the 100% interval obtained from a second order Probabilistic Collocation
computation (3 deterministic solves).

Uncertain maximum camber location: NACA5Y 12

Figure 5.2(b) shows the results for a maximum camber location with a mean of 40% of
the chord with coefficient of variation of CVY =10%. This yields a standard deviation
of 4%. An uncertain maximum camber location Y has much lower influence on the
Cl-α graph as the maximum camber. Figure 5.3(b) shows that for low angles of attack
the coefficient of the variation is less than 5% compared to an input of 10%. Near the
maximum lift coefficient, the coefficient of variation decreases to less than 0.5%. It
can be concluded that the lift coefficient is not sensitive to variations in the maximum
camber location of the airfoil.

Uncertain maximum thickness: NACA54Z

Figure 5.2(c) shows the results for an uncertain thickness Z with an input coefficient
of variation of CVZ=10%. The mean thickness is µZ=12% of the chord, the standard
deviation is σZ=0.12%. The coefficient of variation of the lift coefficient is about 1%
for low angles of attack. When separation starts moving forward from the trailing
edge the coefficient increases rapidly to 6% at an angle of attack of 15◦, as can be
seen in figure 5.3(c). The turbulent separation is influenced mostly by the thickness.
On a thinner airfoil separation starts at a lower angle of attack than for a thicker
airfoil. This leads to larger uncertainty bars at higher angles of attack. When looking
at separation, one has to be careful. For JavaFOIL the stall and separation model
work well for standard airfoils like the NACA 4-digit series.
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Figure 5.3: The coefficient of variation of the lift coefficient of a NACA5412 airfoil
for an uncertain (a) the maximum camber X, (b) maximum camber location Y and (c)
thickness Z, assuming a truncated normal distribution with a coefficient of variation of
10%.

Complete geometry uncertain: NACAXYZ

The previous sections showed that each parameter has a different effect on the solu-
tion. Now all parameters are assumed to be uncertain simultaneously. For example
strains in the material can lead to a different maximum camber, maximum camber lo-
cation and thickness. Probably the parameters are correlated in reality. In the current
work, independency of the parameters is assumed. However, nonlinear interaction of
the uncertain parameters in the model are taken into account.

All parameters have a truncated Gaussian distribution with a coefficient of variation
of CVXYZ=10%. The mean airfoil is the NACA5412 airfoil shown in figure 5.1.
The input uncertainty is propagated using a second order probabilistic collocation
approach, requiring 27 deterministic computations. Figure 5.4(a) and 5.4(b) show
the lift and drag coefficient with respect to the angle of attack, including uncertainty
bars which indicate the interval that contains all possible values. For Cd the mean is
in the order of 10-3 and the variance in the order of 10-7 for low angles of attack. Due
to numerical errors, oscillations of the polynomial approximation are visible in the
100% interval. This is most clear at α is 2◦. The drag polar is shown in figures 5.5(a).
Figure 5.5(a) shows the 100% uncertainty bars from figures 5.4(a) and 5.4(b) in a drag
polar. For the lift coefficient the bars are vertical and for the drag the uncertainty bars
are horizontal. To clarify the figure, the bars are connected resulting in two areas, one
originating from the drag coefficient and one from the lift coefficient. For low angles
of attack (≤5◦), inside the drag bucket, the uncertainty of the drag coefficient is most
important. For angles of attack larger than 5◦ the lift coefficient’s uncertainty bars
determine the uncertainty region.
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Figure 5.4: Characteristics of a NACA5412 airfoil with all three geometric parameters
uncertain. Shown are the mean lift (a) and drag (b) coefficient with respect to the angle
of attack, the uncertainty bars show the 100% interval obtained from a second order
Probabilistic Collocation approximation (27 deterministic solves).
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Figure 5.5: The mean drag polar for a NACA5412 with all three geometric parameters
uncertain. The uncertainty bars show the 100% interval obtained from a second order
Probabilistic Collocation approximation (27 deterministic solves).
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5.2 Grid deformation for geometrical uncertainties

5.2 Grid deformation for geometrical uncertainties

When taking geometrical uncertainties into account like relative thickness, the geom-
etry changes for every collocation point. In CFD a computational grid is constructed
around the object. The equations governing fluid flow are then solved on this grid
by the flow solver. Creating a computational grid can be a time consuming job. In
order to avoid the construction of a new grid for every collocation point, a grid de-
formation technique is employed. The grid is deformed using radial basis functions
(RBF’s) [de Boer et al. (2007); Jakobsson and Amoignon (2007)]. RBF’s provide a
robust grid deformation technique for unstructured grids, and do not require connec-
tivity information. Here the thin plate spline RBF is used, which was shown to be
robust and accurate with the highest computational efficiency [de Boer et al. (2007)].
Normally, the grid deformation routine is only available for unsteady simulations.
The flow solver is adapted to be able to use grid deformation before the steady solver
was started. Jakobsson and Amoignon (2007) used grid deformation in a similar way
for aerodynamic shape optimization.

The grid deformation was tested for three relatively large geometrical deformations.
In uncertainty quantification problems the deviations from the nominal conditions
are in general in the order of a few percents up to 10 percent. If the CFD solver
can produce acceptable results for the extreme test cases, it is assumed to work
properly for uncertainty quantification. The baseline configuration is a NACA0012
airfoil, shown in figure 5.6(a). First the relative thickness is changed, such that the
airfoil becomes a NACA0018 airfoil (see figure 5.6(b)). This means the thickness
is multiplied by 1.5, which is a very large deviation from the nominal conditions in
uncertainty quantification. The second case is shown in figure 5.6(c), here the angle
of attack is change from 0◦ to 5◦. And for the third case the camber of the airfoil is
increased to 5 percent, depicted in figure 5.6(d).

For all cases in figure 5.6, the deformed grids are of good quality. To validate the
results, computations are performed using the deformed grids and the new geometry
with a new grid. For all cases the lift and drag coefficients were within a few percent,
so the procedure can safely be used for uncertainty quantification. Especially, since
the geometrical uncertainties for the test cases of chapters 3, 5 and 8 are much smaller.
The error due to grid deformation can be neglected for these test cases.

5.3 A NACA0012 airfoil with uncertain camber and

thickness

Two cases are presented for the NACA0012 airfoil with uncertain geometry. The first
case is at a Mach number of M=0.3. Here the flow is modelled using the Reynolds-
averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model. The
second case is transonic flow at M=0.8, where the flow is solved using the Euler
equations.
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(a) Original grid NACA0012 airfoil. (b) Deformed grid to a NACA0018 airfoil.

(c) Deformed grid to an angle of attack of 5◦. (d) Deformed grid to a camber of 5 percent.

Figure 5.6: The original grid layout near the airfoil (a) and the deformed grids for a
1.5 times thicker airfoil (b), an angle of attack of 5◦ (c) and a camber of 5 percent (d).

74
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5.3.1 Subsonic flow at M=0.3

The previous section showed that the camber and relative thickness have the largest
effect on the lift and drag of an airfoil. In this section flow around a NACA0012
airfoil with uncertain camber and relative thickness is considered. The uncertainties
are propagated using the Probabilistic Collocation method. The airfoil is under an
angle of attack of 5◦ and the Reynolds number is equal to 3× 106. The deterministic
computations are performed using the FINE�/Hexa solver by Numeca International
on a grid of 76,919 cells. Approximately 1600 cells cover the surface of the airfoil with
y+ ≤ 1. The grid layout is shown in figure 5.7.

(a) (b)

Figure 5.7: The computational grid layout (a) and a detailed view of the grid near
the airfoil (b).

The flow is modeled by the Reynolds-averaged Navier-Stokes equations using the
Spalart-Allmaras turbulence model. The air properties are at 0m ISA. The mean free
stream Mach number is set to M=0.3 and the free stream flow is fully turbulent. The
pressure coefficient around the mean airfoil is shown in figure 5.8.

The uncertainties are the camber c and the relative thickness t of the airfoil, both
are assumed to have a truncated normal distribution. The camber is truncated at
[-1%,+1%], the mean is µc=0% and the standard deviation is σc=0.4472%. The
relative thickness is truncated at [11%,13%] with a mean of µt=12% and a standard
deviation of σt=0.425%. Both uncertain parameters are assumed to be independent
and propagated through the system simultaneously. A second order Probabilistic
Collocation approximation is used, which requires 9 deterministic solves.

Figure 5.9 shows the pressure coefficient at the surface of the airfoil. The mean is
shown by the solid line, the uncertainty bars indicate the interval containing 95% of all
possible values. The uncertainties in camber and relative thickness have a significant
influence on the pressure near the leading edge and between 20 and 60 percent of the
chord.
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Figure 5.8: Pressure coefficient
around the mean airfoil at M=0.3.
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Figure 5.9: Pressure distribution at
the surface of the airfoil. The mean is
indicated with the solid line (−), the
uncertainty bars show the area contain-
ing 95% of all possible values.

The probability distribution functions of the lift and drag coefficient are shown in
figure 5.10(a) and 5.10(b). The deterministic coefficients (i.e. with both uncertain-
ties set to the mean value) are Cl=0.5416 and Cd=0.0127. From the uncertain-
ties in the camber and relative thickness the mean values result in µCl

=0.5405 and
µCd

=0.0128, which are very close to the deterministic values. The standard deviations
are σCl

=0.0479 and σCd
=0.0002, resulting in coefficients of variation of CVCl

=8.86%
and CVCd

=1.8%. The variation in the lift coefficient is much higher than the vari-
ation in drag coefficient based on the present uncertainties. The probability density
functions show that the lift is propagated almost linearly, it is close to a truncated
normal distribution. The drag coefficient, however, shows a highly skewed distribu-
tion. The area of the lift coefficient covers over 300 liftcounts. Although the area of
the drag coefficient covers about 10 dragcounts, it is still a significant amount.

5.3.2 Transonic flow at M=0.8

The airfoil is under an angle of attack of 5◦ and again the relative thickness and camber
are assumed to be uncertain. The deterministic computations are performed using the
FINE�/Hexa solver by Numeca International on a grid of 45,402 cells. Approximately
1600 cells cover the surface of the airfoil. No viscous layers are inserted since the flow
is modeled using the Euler equations. The close up of the grid layout is shown in
figure 5.11. A refined box is used to resolve the shock. The mean free stream Mach
number is M=0.8. The pressure coefficient is shown in figure 5.12, indicating a clear
shock starting at the upper surface at x/c=0.7809. The uncertainties are the camber
c and the relative thickness t of the airfoil, with the same parameters as the subsonic
case.
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Figure 5.10: Probability distribution functions for Cl and Cd using a second order
Probabilistic Collocation approximation.

Figure 5.11: The computational grid
layout near the airfoil.

Figure 5.12: Pressure coefficient
around the mean airfoil at M=0.8.
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Figure 5.13: Pressure distribution at
the surface of the airfoil. The mean is
indicated with the solid blue line (−),
the uncertainty bars show the region
containing all possible values. The red
bars (−) show the piecewise linear ap-
proximation near the shock location.
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Figure 5.14: Probability distribution
functions of the shock location using a
second order Probabilistic Collocation
approximation.

Figure 5.13 shows the pressure coefficient at the surface of the airfoil. The mean
is shown by the solid line, whereas the uncertainty bars indicate the 95% interval.
Due to the presence of the shock the response surface of the pressure coefficient
contains a discontinuity. This causes the global polynomial approximation to oscil-
late and produce erroneous approximations, as can be observed by the large uncer-
tainty bars near the shock location. To be able to accurately approximate the un-
certainty bars around the shock, a Multi-Element Probabilistic Collocation approach
[Loeven, Sarkar, Witteveen and Bijl (2007); Foo et al. (2008)] can be used (see chap-
ter 4).

Another way of treating the discontinuity is to use the information that is already
available from the collocation points. Namely, the shock location it self is a output
functional which is easily approximated using the Probabilistic Collocation method.
Based on the probability distribution of the shock position, the location where the
Probabilistic Collocation expansion will result in an oscillatory approximation due to
the discontinuity. Inside this part of the domain a piecewise linear approximation
through the collocation points is used to approximate the response surface without
erroneous results. The results of the piecewise linear approximation are shown in
figure 5.13 by the red bars. The linear uncertainty bars show no over or undershoots
outside the area around the shock. It is possible to obtain an accurate approximation
of the mean and the uncertainty bars using a second order Probabilistic Collocation
approximation requiring only 3 deterministic solves.

The probability distribution functions of the shock location are shown in figure 5.14.
The deterministic shock location is at xshock,det/c=0.7809. The mean shock loca-
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tion based on the input uncertainties is µxshock/c=0.7779 with a standard deviation
of σxshock/c=0.0288 resulting in a coefficient of variation of CVxshock/c=3.7%. This
variation is significant, the area of possible shock locations covers over 15% of the
chord (see figure 5.14).

5.4 Summary

Imperfections and wear are inherently present in real life, and can be treated as
uncertainties in simulations. These uncertainties can have a significant effect on the
performance and have, therefore, been investigated in this chapter. Other studies
used sensitivity analysis and moment methods. This study uses the Probabilistic
Collocation method, in order to propagate the probability density functions of the
uncertain geometric parameters to the performance parameters of the model.

First a low fidelity flow model was used to asses the effect of uncertainties in three
geometrical parameters on the performance of a NACA5412 airfoil. A coefficient of
variation of 10% was assumed for the maximum camber, maximum camber location,
and relative thickness, with a truncated normal distribution. The maximum camber
affected the polar in the complete range from α=0 to 15◦. The maximum camber
location showed a small effect on the performance of the airfoil. The tickness mainly
results in large standard deviations at higher angles of attack.

Secondly, a CFD test case was shown with two uncertain geometrical parameters (i.e.
maximum camber and thickness) for subsonic and transonic flow around a NACA0012
airfoil. To efficiently propagate the uncertainties, a grid deformation technique was
used to deform the grid of the case with the mean values for the uncertain geometric
parameters to the grid required for each collocation point. For the subsonic case, the
lift coefficient was shown to be most sensitive to the geometric variations. A coeffi-
cient of variation was obtained of 8,86% and 1.8% for the lift and drag coefficient,
respectively. The transonic case results in a shock wave at the upper surface of the
airfoil. The shock location showed a coefficient of variation of 3.7%. The standard
Probabilistic Collocation approximation fails near the shock due to the discontinuity
in the response. To be able to accurately approximate the uncertainty bars of the
pressure, a linear approximation is used in the area where the discontinuity is present.
This area was obtained from the probability density function of the shock location.
The discontinuity was treated successfully in this way and required no additions de-
terministic solves.
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CHAPTER 6

Uncertainty analysis of the k-ǫ

turbulence model parameters

In this chapter the effects of uncertainties in the k-ǫ turbulence model on the solution
of a computational fluid dynamics simulation are investigated. The flows computed in
this thesis are modelled using the Reynolds-averaged Navier-Stokes (RANS) equations
with a turbulence model. The number of RANS equations is less than the number of
variables, so additional equations are required. Here the Bousinesq hypothesis is em-
ployed, resulting in an eddy viscosity that has to be computed by a turbulence model.
These eddy viscosity turbulence models often contain a set of parameters that can
be tuned to specific problems. The default values for those parameters are obtained
or tuned from theory, experiments or direct numerical simulations of simplified flows.
After fixing these parameters, the model is applied to all kinds of flows. This in-
troduces uncertainties in the simulations due to experimental uncertainties and the
questionable applicability of the parameters to arbitrary flows.

The goal of this chapter is to quantify the effect of these uncertainties on the solu-
tion. First the probability distribution functions of the turbulence model parameters
have to be determined from the original experiments or simulations on which the val-
ues are based upon. Next the uncertainties are propagated through the CFD solver
using the Probabilistic Collocation method. The results are analyzed to determine
which parameters affect the solution most and to see the difference between the de-
terministic results and the stochastic results. Further information can be found in
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Platteeuw et al. (2008) and the master thesis of Platteeuw (2008). Turgeon et al.
(2002, 2004) studied the sensitivity of the k-ǫ turbulence model parameters on several
flow problems. The study of Turgeon et al. (2002, 2004) did not include probability
density functions and the physical relations between coefficients.

A big challenge is to find physically based probability density functions for the the k-ǫ
model parameters. Relations between parameters are maintained to assure physical
validity of the model as much as possible. The standard values for the the k-ǫ model
parameters are a compromise chosen to give the best performance for a range of flows.

Two test cases are computed to investigate the effect of the uncertainties in the
model parameters on the solution. Firstly, the turbulent flat plate test case with
a fully developed boundary layer is considered. Secondly, subsonic flow around a
NACA0012 airfoil is investigated.

6.1 Turbulence modeling

A brief introduction to turbulence modeling is given in section 6.1.1. Section 6.1.2
shows the standard k-ǫ model, which is used in this chapter.

6.1.1 Incompressible Reynolds-averaged Navier Stokes equations

When the velocity of a fluid is much lower than the speed of sound (u/a . 0.3), the
flow can be modelled by the incompressible Navier-Stokes equations. This means the
density is assumed to be constant. The equations without body forces, then become:

∂ui

∂xi
= 0, (6.1)

∂ui

∂t
+ uj

∂ui

∂xj
=

1

ρ

∂σij

∂xj
, (6.2)

with u the velocity, x the spatial coordinate, t time, ρ the density of the fluid and
σ the stress tensor. The indices i and j can have value 1, 2, or 3, as they represent
the x, y, and z directions respectively. Here the Einstein convention is used, thus a
repeated index means summation.

For a Newtonian fluid the stress tensor in the momentum equation (6.2) becomes:

σij = −pδij + µ

(

∂ui

∂xj
+

∂uj

∂xi

)

, (6.3)

where the isotropic part is the static pressure p and the non-isotropic term, the shear
stress, is related to the velocity gradients. Substituting equation (6.3) in equation (6.2)
results in the following momentum equation:

∂ui

∂t
+ uj

∂ui

∂xj
=

1

ρ

∂

∂xj

[

−pδij + µ

(

∂ui

∂xj
+

∂uj

∂xi

)]

. (6.4)
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Solving the Navier-Stokes equations (6.1) and (6.4) directly is not feasible for engi-
neering flow problems. To resolve all the turbulent scales, a very small time step and
fine spatial computational grid are required. The number of floating point opera-
tions scales with Re3, limiting direct numerical simulations to low Reynolds numbers.
To be able to model high Reynolds number flows, Reynolds averaging [Reynolds
(1894); Davidson (2004)] is applied. The Reynolds-averaged Navier-Stokes equations
are obtained by decomposing each instantaneous variable into an ensemble mean and
turbulent fluctuation:

ui = ui + u′
i. (6.5)

Equation (6.5) is substituted into equations (6.1) and (6.4) and takes the ensemble av-
erage, the results are the incompressible Reynolds-averaged Navier-Stokes equations:

∂ui

∂xi
= 0, (6.6)

∂ui

∂t
+ uj

∂ui

∂xj
=

1

ρ

∂

∂xj

[

−pδij + µ

(

∂ui

∂xj
+

∂uj

∂xi

)

− ρu′
iu

′
j

]

. (6.7)

The equations are similar to the original Navier-Stokes equations. In the momentum
equation, however, an extra term appeared, the so-called Reynolds-stresses Σij :

Σij = −ρu′
iu

′
j,

with ρ the fluid density and u′
i the velocity fluctuation in the i-direction. These cor-

relation terms form the coupling between the mean flow and the turbulence. Because
the number of unknowns is larger than the number of equations, extra relations are
needed to solve the problem.

Additional equations for the Reynolds stresses can be derived, which results in the
so-called Reynolds stress model. Here, the Boussinesq hypothesis is used, which
states that the Reynolds stress can be decomposed in a similar way as the fluid stress
(equation (6.3)), introducing a turbulent viscosity or eddy viscosity µT :

Σij = −1

3
ρu′

k
2δij + µT

(

∂ui

∂xj
+

∂uj

∂xi

)

. (6.8)

The Boussinesq hypothesis is based on the assumption that the turbulent length scale
is much smaller than the length scale of the problem. In other words the turbulent
stresses can be obtained from local flow properties, which is often not the case. As a
consequence, empirical relations and tuning of the models are required to make them
work for a large diversity of flow problems. Although a sound physical basis for this
approach is lacking, the approach provides reasonable results in many applications.
This mainly holds for flows around simple geometries. More on the Boussinesq hy-
pothesis and its limitations can be found in the books of Wilcox (1993), Nieuwstadt
(1998), Pope (2000) and Davidson (2004).
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Substituting equation (6.8) into the momentum equation results in the final Reynolds
averaged Navier-Stokes equations for an incompressible, Newtonian fluid:

∂ui

∂xi
= 0, (6.6)

∂ui

∂t
+ uj

∂ui

∂xj
=

1

ρ

∂

∂xj

[

−
(

p + 1
3ρu′

k
2
)

δij + (µ + µT )

(

∂ui

∂xj
+

∂uj

∂xi

)]

, (6.9)

where the turbulent pressure term 1
3ρu′

k
2 is often neglected since it is normally very

small compared to the static pressure. This means that for solving the mean flow,
only additional relations are required to determine the eddy viscosity. Three levels of
approximation can be distinguished when closing the system of equations.

First the algebraic or zero-equation models, where the eddy viscosity is directly com-
puted from the hydrodynamic variables. As a consequence, zero-equation models may
not be able to properly account for history effects on the turbulence, such as convection
and diffusion of turbulent energy. Commonly used models are the Baldwin-Lomax
model [Baldwin and Lomax (1978)] or the Cebeci-Smith model [Cebeci and Smith
(1974)].

Secondly, there are one-equation models, where a transport equation is solved for a
turbulent quantity. This can be the turbulent kinetic energy or a viscosity like vari-
able. The one-equation models are easy to use and computationally cheap. The mod-
els cover only one transport equation, therefore, the models fail for some test cases.
Since there is no turbulent decay, the spreading of a planar jet is heavily overpre-
dicted. On the other hand are external wall bounded flows well solved by the Spalart-
Allmaras model. Well known models are, among others, the Spalart-Allmaras model
[Spalart and Allmaras (1992)] and the Baldwin-Barth model [Baldwin and Barth (1990)].

Thirdly, two-equations models include two extra transport equations to represent the
turbulent properties of the flow. This allows to account for convection and diffusion
of turbulent energy. One of the transported variables is the turbulent kinetic energy
k. The second transported variable depends on the type of the two-equation model.
Common choices are the turbulent dissipation ǫ, or the specific dissipation ω. The
second variable can be thought of as the variable that determines the scale of the
turbulence (length-scale or time-scale), whereas the first variable, k, determines the
energy in the turbulence. Models like the k-ǫ model [Jones and Launder (1972);
Launder and Sharma (1974)], the k-ω model [Wilcox (1993)], and the SST k-ω model
[Menter (1994)] have become industry standard models and are used for most types
of engineering problems.

From zero- to two-equation models, the models become more complex, better in mod-
eling turbulence and computationally more expensive. All turbulence closure models
use model coefficients which are tuned for simplified flow experiments and fundamen-
tal flow problems. It is then assumed that these coefficients, which are derived from a
few experiments, are representative for a large range of flows. This means that there
is a certain amount of uncertainty present in the input of the turbulence model, which
can have an impact on the final solution.
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6.1.2 The k-ǫ model

In this chapter, uncertainty quantification is applied to the standard k-ǫ model of
turbulence as proposed by Jones and Launder (1972) by considering the model pa-
rameters as random variables. This will provide insight into the effect of uncertainties
in the model parameters on the solution. More on the probability distribution of the
model parameters can be found in the next section.

The two transport equations, which are added to the Reynolds averaged Navier-Stokes
equations are one for the turbulent kinetic energy k and one for the rate of turbulent
dissipation ǫ. A turbulent velocity scale is then given by v =

√
k, and a turbulent time

scale as τ = k/ǫ. For an incompressible flow, the transport equations are [Nieuwstadt
(1998)]:

∂k

∂t
+ ui

∂k

∂xi
= P − ǫ +

∂

∂xj

[(

ν +
νT

σk

)

∂k

∂xj

]

, (6.10)

∂ǫ

∂t
+ ui

∂ǫ

∂xi
= C1,ǫ

Pǫ

k
− C2,ǫ

ǫ2

k
+

∂

∂xj

[(

ν +
νT

σǫ

)

∂ǫ

∂xj

]

, (6.11)

where the production term P is given by:

P = −u′
iu

′
j

∂uj

∂xi
. (6.12)

The turbulent kinematic viscosity νT is then modeled as:

νT = Cµ
k2

ǫ
.

Up to this point five model constants are introduced: Cµ, σk, σǫ, C1,ǫ, and C2,ǫ. The
most commonly used values are given by Launder and Sharma (1974):

Cµ = 0.09, σk = 1.0, σǫ = 1.3, C1,ǫ = 1.44, C2,ǫ = 1.92.

The coefficients are determined by demanding that this turbulence model should sat-
isfy experimental data for certain simple standard flow cases, see Nieuwstadt (1998),
Pope (2000), and Davidson (2004).

Because the standard k-ǫ model is derived under the assumption of a high (local)
turbulent Reynolds number, regions of low turbulent Reynolds number, such as close
to the wall, are poorly modeled. In those regions the destruction-of-dissipation term
is singular at the wall since ǫ is finite and the turbulent kinetic energy k is zero.
This leads to numerical problems in the first two terms of the right-hand-side of
equation (6.11). Fixes to this problem include the use of damping functions or wall
functions.

In this work, wall functions as proposed by Launder and Spalding (1974) are used
which are based on the log-law equation:

u+ =
1

κ
ln y+ + C, (6.13)
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where κ is the von Kármán constant and C a parameter related to the wall roughness.
The dimensionless inner variables y+ and u+ are defined as y+ ≡ yuτ/ν and u+ ≡
u/uτ , with uτ the friction velocity. The friction velocity is defined as u+ =

√

τw/ρ,
with τw the wall shear stress. For smooth walls, generally one takes κ=0.4187 and
C=5.24. A consequence of employing wall functions near the wall is that the first cell
should lie within the log-law region 30 . y+ . 300. A good value is close to the lower
bound, so y+ ≈ 30 [Fluent Inc. (2005)].

6.2 Probability distributions of the model parameters

In the previous section, 7 constants were obtained from the standard k-ǫ model in
combination with wall functions. The turbulent inlet conditions for k and ǫ can also
be uncertain, but this chapter focuses on the model constants. For the uncertainty
analysis, probability density functions of the model parameters are required. The
probability density functions are fit through results from experiments and direct nu-
merical simulations. The quality of the fit is measured using the Kolmogorov-Smirnov
test [Stephens (1974)]. The distribution that fits the date best is used for further
analysis. Details of the distributions below can be found in appendix A. To avoid
problems with numerical stability and limiter interference, all distributions are taken
on a finite interval. When a (semi)-infinite distribution is obtained like for example
a normal distribution, it is truncated at F0.1% and F99.9%.

Model parameter Cµ

This model constant is obtained from considering simple turbulent shear flow with
S = ∂u1/∂x2 = u/∂y the only non-zero mean velocity gradient [Pope (2000)]. From
the definition of the eddy viscosity and production of turbulent energy, one can write
equation (6.12) as:

P = −u′
iu

′
jS = Cµ

k2

ǫ
S2.

Reworking towards Cµ yields:

Cµ =
P

ǫ

( ǫ

Sk

)2

.

The value of 0.09 was obtained from a measurement on channel flow, which is a
practical example of simple shear flow. The original data could not be found, so data
is used from a direct numerical simulation of Iwamoto (2002) and Hoyas and Jimenez
(2006). The flow database stretches over the Reynolds numbers Reτ=[110, 150, 180,
300, 400, 550, 650, 950, 2000] and serves as basis for an input distribution for Cµ.
The results of the direct numerical simulations are shown in figure 6.1.

The wall functions demand the first cell to be in the log-layer. Therefore, only mea-
surement points which satisfy the criterion y+ ≥30 are considered. The standard
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distribution that best matches this data set accoreding the Kolmogorov-Smirnov
test is a logistic distribution L(m, b) with parameters m=0.08355 and b=0.01069
(see appendix A for more information about the logistic distribution). The mean
µCµ=0.08355 is about 8% lower than the deterministic value of 0.09. The standard
deviation is σCµ=0.01939, so the coefficient of variation is 23.2%. The distribution
is truncated at the extreme values of the experimental data set. The distribution is
shown in figure 6.2.
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Figure 6.1: Cµ extracted from
the direct numerical simulations of
Hoyas and Jimenez (2006).

Figure 6.2: Probability distribution of
Cµ, with the experimental (—) and Lo-
gistic (- -) cumulative distribution func-
tions and the probability density func-
tion (—).

Model parameter C2,ǫ

The value of C2,ǫ is determined by considering homogeneous turbulence [Pope (2000)],
of which grid-generated turbulence is a practical example. For homogeneous turbu-
lence the two transport equations (6.10) and (6.11) become:

dk

dt
= P − ǫ, (6.14)

dǫ

dt
= C1,ǫ

Pǫ

k
− C2,ǫ

ǫ2

k
. (6.15)

In the absence of mean velocity gradients, the production is zero and the turbulence
decays. For this case, equations (6.14) and (6.15) have as solutions:

k(t) = k0

(

t

t0

)−n

, ǫ(t) = ǫ0

(

t

t0

)−(n+1)

,
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where k and ǫ have the values k0 and ǫ0 at the reference time t0 = nk0

ǫ0
. The decay

exponent n is:

n =
1

C2,ǫ − 1
⇔ C2,ǫ =

n + 1

n
.

In Mohamed and LaRue (1990), the value for the decay exponent of turbulence is
investigated. The experimental data is shown in figure 6.3. Since there is a limited
set of data points, outliers can have a strong effect on the probability density function
of C2,ǫ. Therefore, a box-and-whisker plot is used to identify and eliminate outliers.
The boxplot is shown in figure 6.4. The red line in the middle of the box indicates
the median of the data set. The edges of the box are the 25th and 75th percentiles,
and the wiskers indicate the largest/smallest data point that is within 1.5 times the
size of the box extending from both sides. The red crosses are outliers, which are
removed from the dataset.
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Figure 6.3: Variation of the de-
cay rate exponent n with respect
to the Reynolds number ReMu

from the experimental data of
Mohamed and LaRue (1990).

Figure 6.4: Box-and-whisker plot for
the experimental data for C2,ǫ.

With this limited amount of data, it is impossible to determine a reliable distribution
for C2,ǫ. Therefore, a truncated normal distribution is assumed. The best fit of the
truncated normal distribution has a mean of µC2,ǫ = 1.77 and a standard deviation
of σC2,ǫ = 0.008389, this means a coefficient of variation of 0.474%.

Pope (2000) states that experiments indicate a value of C2,ǫ ≈ 1.76. With this value,
however, good results are only obtained for decaying turbulence. For all other ap-
plications the results are bad. As a compromise C2,ǫ = 1.92 is used in numerical
simulations. Experience shows that it is a far better choice [Pope (2000)]. To take
this into account, the probability density function is shifted such that the mean value
corresponds to the common value 1.92, keeping the coefficient of variation equal to
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0.474%. So the final distribution parameters are N (1.92, 8.325× 10-5). The distribu-
tion is shown in figure 6.5.

Model parameter σk

Parameter σk is determined by a computer optimization process [Hanjalic and Launder
(1972)]. However, no data has been found to construct a distribution. Therefore, a
truncated normal distribution is assumed (based on a normal distribution truncated
on µ ± 3σ) with mean equal to the commonly used deterministic value µσk

= 1. The
standard deviation is defined such that the interval is within a 5% range with respect
to the mean, thus σσk

= 0.05/3. The is similar to the variation taken in the sensitivity
study of Turgeon et al. (2002). The distribution is shown in figure 6.6.
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Figure 6.5: Probability distribution
of C2,ǫ, with the shifted experimental
(—) and Normal (- -) cumulative dis-
tribution functions and the probability
density function (—).

Figure 6.6: Probability distribution of
σk, with the truncated Normal cumula-
tive distribution function (- -) and the
probability density function (—).

Von Kármán constant κ

The distribution for the von Kármán constant is obtained from measured velocity
profiles. Österlund et al. (2000) measured 70 velocity profiles and collected them in
terms of u+ and y+ values. The following diagnostic function Γ is used to find κ from
the velocity profiles:

Γ ≡ y+ du+

dy+
=

1

κ
, (6.16)

which is obtained by differentiating equation (6.13) with respect to y+. The prob-
ability density function for κ is based on these data as follows. The velocity gradi-
ent du+/dy+ is evaluated in each measurement point and substituted into equation
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(6.16), yielding a value for κ. The data are restricted to the values for κ in the range
50 ≤ y+ ≤ 100. For y+ ≤ 50, the location is not well within the log-layer and κ de-
viates significantly from the common value 0.42. For y+ ≥ 100, a decrease of κ from
the common low Reynolds value 0.42 to the high Reynolds value 0.38 is observed,
see also the work of Österlund et al. (2000). A box-and-whisker plot of the obtained
dataset is used to remove several outliers, as can be seen in figure 6.7.
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Figure 6.7: Box-and-whisker plot for
the experimental data for κ.

Figure 6.8: Probability distribution
of κ, with the experimental (—) and
truncated Normal (- -) cumulative dis-
tribution functions and the probability
density function (—).

The best fit to the final data set is a normal distribution with parameters N (0.417, 1.57×
10-4), the distribution is truncated at F0.1% and F99.9%. The mean is µκ = 0.417 and
the standard deviation is σκ = 0.0125, this results in a coefficient of variation of 3%.
The distribution is shown in figure 6.8.

Wall function parameter C

The wall function parameter C is also obtained from the measured velocity profiles
of Österlund et al. (2000). The values are computed by rewriting the log-law (equa-
tion 6.13):

C = u+ − 1

κ
ln y+, (6.17)

which is valid for the upper part of the low-law [Wilcox (1993)]. Therefore, the data
is restricted for the upper part of the log-law, i.e. y+ ≥ 100 and y/δ ≤ 0.2. The κ
is taken equal to the mean value of the previous discussion, i.e. κ = 0.417. For each
velocity profile, the values for C are averaged.

A shifted Weibull distribution is found to be the best fit with the following parameters:
shape α = 2.06, scale β = 0.415, and a shift to location θ = 4.855. The distribution
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is truncated at F0.1% and F99.9%. This results in a mean of µC = 5.22, a standard
deviation of σC = 0.1867 and a coefficient of variation of 3.6%. The distribution is
shown in figure 6.9.
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Figure 6.9: Probability distribution of C, with the experimental (—) and Weibull (- -)
cumulative distribution functions and the probability density function (—).

Model parameter C1,ǫ

For parameter C1,ǫ, no probability density function is required, since it depends on
C2,ǫ. Their relation is determined from homogeneous shear flow. As discussed in
Pope (2000), the principal experimental observations are that the Reynolds stresses
become self-similar, and that the non-dimensional parameters Sk/ǫ and P/ǫ become
constant. Since the imposed mean shear rate S is constant, the constancy of Sk/ǫ
implies that the turbulence timescale τ ≡ k/ǫ is also fixed. From the two turbulent
transport equations for homogeneous turbulence (6.14) and (6.15), we obtain:

d

dt

(

k

ǫ

)

=
dτ

dt
= (C2,ǫ − 1) − (C1,ǫ − 1)

(

P

ǫ

)

.

Evidently, the model predicts that τ does not change with time for the particular
value of P/ǫ:

(

P

ǫ

)

≡ C2,ǫ − 1

C1,ǫ − 1
.

Substituting the commonly used values for the two coefficients of the standard deter-
ministic k-ǫ model results in P/ǫ ≈ 2.09. In this study, the ratio P/ǫ is fixed to 2.09
and it is adopted that the variable C1,ǫ is dependent on C2,ǫ:

C1,ǫ =
1

P/ǫ
C2,ǫ +

P/ǫ − 1

P/ǫ
. (6.18)

So the value for C1,ǫ is adjusted according equation (6.18) when C2,ǫ is uncertain.
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Model parameter σǫ

Parameter σǫ depends on the other model parameters, so like for C1,ǫ no probability
density function is required. The parameter σǫ controls the diffusion rate of ǫ and
is determined by looking at wall flow and reproduction of the log layer [Nieuwstadt
(1998); Pope (2000)].

Consider a fully developed high-Reynolds-number channel flow. In this case, the state
variables only vary in a direction normal to the main flow, which is here denoted as
the y-direction. The turbulent transport equations (6.10) and (6.11) then reduce to:

0 =
d

dy

[(

ν +
νT

σk

)

dk

dy

]

+ P − ǫ, (6.19)

0 =
d

dy

[(

ν +
νT

σǫ

)

dǫ

dy

]

+ C1,ǫ
Pǫ

k
− C2,ǫ

ǫ2

k
. (6.20)

In the log-law region, the production and dissipation balance (both are equal to
u3

τ/(κy)) [Pope (2000)]. Hence in equation (6.19) P and ǫ drop out, implying a
uniform k. In equation (6.20), the equality of P and ǫ leads to a net sink balanced
by the diffusion of ǫ away from the wall. Following Pope (2000), equation (6.20) is
satisfied by :

ǫ =
C

3/4
µ k3/2

κy
,

and the constants are related by:

κ2 = σǫC
1/2
µ (C2,ǫ − C1,ǫ). (6.21)

Equation (6.21) is rewritten to compute σǫ:

σǫ =
κ2

C
1/2
µ (C2,ǫ − C1,ǫ)

. (6.22)

Hence σǫ is dependent on κ, Cµ, and C2,ǫ, and is computed using equation 6.22 when
one of these parameters is uncertain.

6.3 Turbulent flow over a flat plate

In this section uncertainty analysis of the k-ǫ model parameters is applied to the
turbulent flat plate test case. Stochastic computational results are compared with
deterministic computations and experiments. From the study of all uncertain param-
eters, it is concluded that Cµ, κ, and C are the most important parameters. For these
parameters, the results are discussed in more detail in the final section.
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6.3 Turbulent flow over a flat plate

6.3.1 Deterministic test case description

The incompressible turbulent flat plate from the experiment of Wieghardt and Tillman
(1951) is considered. In the experimental set-up, the boundary layer is tripped at the
start and is then allowed to build-up over the plate with length 5m. The fluid has an
oncoming velocity of U∞ = 33 m/s and kinematic viscosity of ν = 1.51 × 10-5 m2/s.
This results in a Reynolds number of approximately 1.09 × 107 when the length of
the plate is taken as characteristic length of the problem. This is a Reynolds number
of 2.18× 106 per meter plate, which is sufficient to obtain a fully developed turbulent
boundary layer. Furthermore, no pressure gradient is applied and p0 = 1 atm. The
turbulent inlet conditions are specified from the assumption of a turbulence intensity
of 2.5% at the beginning of the plate and freely decaying turbulence in front of the
plate.

The computational domain is sketched in figure 6.10 together with the numerical
boundary conditions. The computational box around the plate is made sufficiently
large to avoid interference of the boundaries with the solution in the vicinity of the
plate.
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Figure 6.10: Sketch of computational domain with accompanying boundary condi-
tions.

In the current test case, a non-uniform Cartesian grid is used. Grid refinement is
applied near the plate to capture the boundary layer. At the front of the plate
refinement is applied to properly model the large gradients in the developing boundary
layer.

In this study, standard wall functions are used, which demand that the first cell near a
solid boundary is in the log-law region. In literature [NUMECA International (2006);
Fluent Inc. (2005)] one finds that practice has shown that good results are obtained
if 20 ≤ y+

P ≤ 50. The best practice value of y+
P ≈ 30 is used to make the grid for all

simulations. In streamwise direction, the plate is covered with 350 volumes whereas
in vertical direction, 80 volumes are placed.

Table 6.1 shows the values of the drag coefficient for various grid sizes. The grid
containing 32,000 cells is chosen, it is within 0.5% (0.1 count) of the drag coefficient
resulting from the finest grid. In front of the plate, an extra grid block of 50 × 80
volumes is placed to avoid interference of the boundary conditions with the solution
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Chapter 6: Uncertainty analysis of the k-ǫ turbulence model parameters

near the beginning of the plate. The final grid is displayed in figure 6.11. The total
simulation time is in the order of 15 minutes on an AMD Opteron 2800 MHz processor.

Figure 6.11: The computational grid containing 32, 000 finite-volumes.

For the numerical computation, the open-source solver OpenFOAM® (2009) is used
to solve the incompressible turbulent Reynolds-averaged Navier-Stokes equations us-
ing the SIMPLE algorithm. The schemes are set to first-order upwind for the trans-
ported turbulent quantities and to second-order central for the velocity field. The
steady-state convergence criterion is to have a residual lower than 10-7 for all state
variables, which is attained within 1000 iterations (see figure 6.12).

Table 6.1: Properties of various grids
for the grid convergence study of the
turbulent flat plate test case.

Grid # Cells Cd × 10-3

1 3,976 2.9214
2 8,000 2.9343
3 15,792 2.9487
4 32,000 2.9587
5 63,958 2.9654
6 128,000 2.9701
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Figure 6.12: Convergence history of
the residuals of the flow parameters
with respect to the number of itera-
tions.

The drag coefficient of the plate only consists of friction, so Cd is obtained by inte-
grating the skin friction coefficient along the plate:

Cd =
1

L

∫ L

0

Cf (x)dx, (6.23)

with L the length of the plate. For the k-ǫ model, the drag coefficient becomes
Cd = 0.0029587. White (2006) provides a relation between the drag coefficient and
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Figure 6.13: Numerical results compared with experiments and theory, with (a) the
numerically computed skinfriction coefficient Cf compared with the experimental re-
sults of Wieghardt and Tillman (1951) and (b) the numerically computed boundary
layer profile compared to the law of the wall (equation (6.13)).

the Reynolds number:

Cd,White ≈
0.523

ln2 (0.06ReL)
. (6.24)

Substituting the values of the test case of this section, the estimated drag coefficient
of White becomes Cd,White = 0.0029156, which is 1.5% lower than the k-ǫ results.

Figure 6.13 depicts the numerical results in the same graph with experimental data
and the theoretical law of the wall. Figure 6.13(a) shows the skinfriction coefficient
along the plate. The numerical simulations predict slightly higher values than the
experimental data of Wieghardt and Tillman (1951). This effect has been mentioned
by Wilcox (1993) as well. Nevertheless, all experimental data points are within 4%
of the numerical predictions.

Figure 6.13(b) shows the law of the wall extraced at x = 4.8 m. The red line is the
theoretical relation of equation (6.13). The blue line indicates the numerical results
with the defect layer visible for higher y+ values. Since wall functions are used, no
numerical results are available for smaller y+ values.

6.3.2 Comparing the different parameters

For every parameter the convergence of the Probabilistic Collocation method is mon-
itored by estimating the error using an approximation of one order higher (see equa-
tion (2.21)). The error is evaluated for the drag coefficient. The convergence of the
estimated error with respect to the polynomial chaos order is shown in figure 6.14(a).
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The response surface of the drag coefficient (see figure 6.14(b)), is curved such that
a second order polynomial cannot approximate this function well. A third order ap-
poximation still shows discrepancies at lower values for Cµ, therefore, further results
are obtained using a fourth order Probabilistic Collocation approximation, requiring
5 deterministic solves.
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Figure 6.14: Results for an uncertain model parameter Cµ, with (a) the convergence
of the Probabilistic Collocation approximation with respect to the polynomial chaos
order p and (b) the response surface of the drag coefficient Cd obtained with a fourth
order Probabilistic Collocation approximation.

The convergence of the Probabilistic Collocation method for κ is shown in figure
6.15(a). For engineering applications a first or second order approximation is suffi-
ciently accurate. A low order approximation suffices for the Cd result because the
response surface is smooth and nearly linear, hence easy to approximate using poly-
nomials (see figure 6.15(b)).

As the convergence of the Probabilistic Collocation method for all other parameters
looks similar to the convergence for κ, a second order approximation is used. All
figures containing the response surfaces of the drag coefficient with respect to each
parameter are shown in figure C.1 in appendix C.

Table 6.2 shows the effect that all uncertain parameters have on the drag coefficient..
Most important is the coefficient of variation (CV = σ/µ) of the drag coefficient.
The von Kármán constant κ results in the largest coefficient of variation of the drag
coefficient. The parameters C and Cµ have less influence on the drag coefficient, but
are still worth taking into account. The parameters C2,ǫ and σk have a negligible
effect on the drag coefficient.

Another interesting parameter is the ratio between the CV of the drag coefficient
and the CV of the input parameter, here denoted as the amplification factor Υ. The
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Figure 6.15: Results for an uncertain von Kármán constant κ, with (a) the conver-
gence of the Probabilistic Collocation approximation with respect to the polynomial
chaos order p and (b) the response surface of the drag coefficient Cd obtained with a
second order Probabilistic Collocation approximation.

amplification factor is defined in equation (4.13), here this is Υ = CVCd
/CVparameter.

Υ is an indication of the sensitivity of the drag coefficient with respect to the uncertain
parameter. It tells how important it is to estimate the input distribution correctly. If
the amplification factor is larger than 1, the CV of the input is amplified. This results
in a larger CV of the drag coefficient than the input CV . If the amplification is much
smaller than 1, the system is not sensitive to variation of the uncertain parameter.

The coefficient of variation of κ is by far dominant for Cd followed by the wall function
parameter C. This could be anticipated since Cd is derived from the state variables
in the cells closest to the wall, exactly where the wall functions are applied. Model
parameter Cµ has a low amplification factor, but due to the high input coefficient of
variation, the impact on the drag coefficient is important to take into account. The
remaining parameters have a considerably smaller effect with σk the least important.
Turgeon et al. (2002) concluded from a sensitivity study that variations in σk have
the least effect on Cd, which is in agreement with the current results.

All results for each uncertain parameter can be found in appendix C. The appendix
shows the response surfaces in figure C.1, the statistics of the law of the wall and
the skinfriction coefficient along the plate in figures C.2 and C.3 respectively. Fur-
thermore, the probability distribution functions of the drag coefficient are depicted in
figure C.4.

In order to demonstrate the effect of each parameter in the freestream, figure 6.16
shows profiles of the coefficients of variation of the velocity CVU and the eddy vis-
cosity CVνT near the end of the plate at x =4.8m, where the boundary layer is fully
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Table 6.2: Statistics of the drag coefficient Cd for each uncertain parameter. The mean
µCd and the standard deviation σCd are obtained from the Probabilistic Collocation
method. The difference between the mean and the value of White (2006), CD,White =
0.0029156, is listed. Also the coefficient of variation CV = µ/σ and the amplification
factor Υ = CVCd

/CVparameter are shown.

Parameter µCd
ǫWhite σCd

CVCd
Amplification

×10-3 % ×10-4 % factor Υ
Cµ 2.9070 -0.293 0.1943 0.668 0.0288
C2,ǫ 2.9157 0.006 0.0061 0.021 0.0440
σk 2.9157 0.006 0.0007 0.003 0.0015
κ 2.9010 -0.499 1.2517 4.315 1.4365
C 2.9207 0.174 0.3362 1.151 0.3218

developed. It is confirmed that these profiles are qualitatively speaking identical for
the last three meters of the plate, hence the discussion is representative for the part
where the boundary layer is fully developed.
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Figure 6.16: Boundary layer profiles for the coefficient of variation of (a) the velocity
CVU and (b) the eddy viscosity CVνT at a streamwise location of x = 4.8m.

Figure 6.16(a) shows that both wall function parameters κ and C and Cµ are dominant
for variations in U . At the cell closest to the wall, uncertainty is largest for parameter
C.

Figure 6.16(b) shows the effect on the eddy viscosity. Parameter κ is dominant inside
the boundary layer and near the wall. Parameters C2,ǫ and Cµ have an effect on
the eddy viscosity of the free stream as well. The uncertainty in C2,ǫ leads to a
different decay in the free stream for each deterministic solve. Finally, recall that
νT = Cµk2/ǫ, hence the uncertainty in Cµ is directly propagated to νT . Despite the
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6.3 Turbulent flow over a flat plate

non-zero variation in the free stream for these three variables, the effect on the mean
velocity is negligible because the mean strain rate tensor is zero in the correspondent
region. The uncertain κ results in the coefficient of variation of the eddy viscosity in
the boundary layer of 25%, which is a huge amplification of the input variation of 3%.

Since the wall function parameters κ, C, and Cµ have a significant effect on the drag
coefficient and the flow field, they are discussed in more detail below. A combined
analysis where all parameters are simultaneously is not performed. Apart from κ,
the amplification factors of the drag coefficient are much smaller than one and the
standard deviation much smaller than one drag count.

Von Kármán constant κ

In this section, the parameter κ is discussed in more detail, since it has the largest
influence on the drag coefficient Cd.

Figure 6.17 shows the results for the drag coefficient and the skinfriction coefficient
along the plate. The statistics are obtained from a second order Probabilistic Colloca-
tion approximation. First, figure 6.17(a) shows the probability distribution functions
of the drag coefficient. The almost linear response surface results in a distribution of
Cd which is very close to a truncated normal distribution (similar to the distribution
of κ). The uncertainty interval stretches over nearly 8 drag counts.

In figure 6.17(b), the statistics of the friction coefficient along the plate are shown. In
addition, the figure shows the experimental results of Wieghardt and Tillman (1951)
and the deterministic k-ǫ results. The stochastic results are shown as the mean and
the 100% uncertainty interval. A large spread is present in Cf , and all experimental
values fall well within the uncertainty region. Interesting is the fact that the mean
curve is closer to the experimental values than the deterministic k-ǫ solution.

Wall function parameter C

The second parameter that has a significant influence on the drag coefficient Cd is the
wall function parameter C, which has a Weibull distribution. The convergence of the
Probabilistic Collocation method for C is similar to the convergence for κ. A second
order Probabilistic Collocation approximation is used for further results. Like for κ,
the response surface is smooth and almost linear, see figure C.1(e) in appendix C.

Figure 6.18(a) shows the probability distributions functions of the drag coefficient
resulting from uncertain C. The uncertainty interval stretches over approximately 2
drag counts. Since the response surface is almost linear, the probability density and
cumulative distribution function are very close to a Weibull distribution.

The statistics for the skinfriction coefficient are given in figure 6.18(b). The uncer-
tainty interval along the complete length of the plate covers all experimental values.
Again, the mean curve is closer to experimental values than the standard k-ǫ result.
For this case it is clear that the 100% interval obtained from the cumulative distribu-
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Figure 6.17: Results for an uncertain von Kármán constant κ, with (a) the probability
density (–) and the cumulative distribution (–) function of the drag coefficient Cd and
(b) skinfriction coefficient Cf along the plate, obtained with a second order Probabilistic
Collocation approximation.

tion function provides valuable information. The uncertainty interval is asymmetric,
with a larger spread below the mean. By plotting just µ ± σ this effect would be
missed and the interval would be too large above the mean.
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Figure 6.18: Results for an uncertain wall function parameter C, with (a) the prob-
ability density (–) and the cumulative distribution (–) function of the drag coefficient
Cd and (b) skinfriction coefficient Cf along the plate, obtained with a second order
Probabilistic Collocation approximation.
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Model parameter Cµ

Due to the large coefficient of variation of Cµ, the effect on the drag coefficient is
significant. Even though the drag coefficient is not very sensitive to changes in Cµ.

Figure 6.19(a) shows the probability distributions functions of the drag coefficient
resulting from uncertain Cµ. The uncertainty interval stretches over approximately
1 drag count. Due to the nonlinear response surface, the distribution function is not
close to the logistic distribution anymore.

The skinfriction coefficient is shown in figure 6.19(b). The figure shows the mean
and 100% interval obtained from the Probabilistic Collocation approximation, the
deterministic results and the experimental data of Wieghardt and Tillman (1951).
The mean of Cµ is lower than the deterministic value. For the flat plate case, the
lower value results in a better approximation of the skinfriction coefficient. The mean
skinfriction coefficient µCf

is closer to the experimental data than the deterministic
curve. All experimental data points are within the interval.
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Figure 6.19: Results for an uncertain model parameter Cµ, with (a) the probability
density (–) and the cumulative distribution (–) function of the drag coefficient Cd and
(b) skinfriction coefficient Cf along the plate, obtained with a fourth order Probabilistic
Collocation approximation.

6.4 Flow around a NACA0012 airfoil

This section presents the influence of the uncertain k-ǫ model parameters on flow
around a NACA0012 airfoil. First, a general description of the deterministic test case
is given. Secondly, the influence of all uncertain parameters is investigated. The final
section shows the results for Cµ and κ in more detail, since these parameters have the
largest influence on the solution.

101



Chapter 6: Uncertainty analysis of the k-ǫ turbulence model parameters

6.4.1 Deterministic test case description

The case settings are equal to those of Gregory and O’Reilly (1973) and Zingg (1991).
The Mach number is set to M = 0.16 and the Reynolds number is 2.88 × 106. The
airfoil is put under an angle of attack of 6◦.

The turbulence intensity at the test section was measured by Gregory and O’Reilly
(1973) to be I ≈ 0.25%. The boundary conditions for k and ǫ are set such that the
turbulence intensity at the airfoil matches the experimental turbulence intensity.

Table 6.3: Properties of various grids
for the grid convergence study of the
NACA0012 test case.

Grid # Cells Cl Cd

1 30,792 0.63696 0.014793
2 32,600 0.63670 0.014734
3 39,129 0.63641 0.014754
4 53,203 0.63660 0.014628
5 88,036 0.63680 0.014452
6 131,265 0.63756 0.014176
7 188,988 0.63756 0.014181
8 330,272 0.63756 0.014179
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Figure 6.20: Typical convergence his-
tory for all state variables.

The solution is evaluated on a structured grid with C-topology created using GridPro.
The computational grid is refined near and behind the airfoil to capture the boundary
layer and the wake. OpenFOAM® (2009) is used to solve the incompressible Reynolds
averaged Navier-Stokes equations numerically. The steady-state convergence criteria
is set to an absolute residual lower than 10-7 for all state variables. Figure 6.20 shows
a convergence history for a typical solve. One sees that convergence is reached within
6,000 iterations, this takes about 6 hours on a single AMD Opteron 2220 processor
for a grid of 131,265 cells.

A grid convergence study on 8 grids has been performed, all having the same settings
for the boundary layer to assure the right y+ value. The lift and drag coefficient for
all grids are listed in table 6.3. From grid 6 onwards, the absolute variation in the
lift coefficient is below 10-5. The drag coefficient variation is less than a drag count.
Compared to Zingg (1991), this variation is acceptable and grid 6 is chosen to be used
for the simulations in the remainder of this section.

The variation in y+ of the cells adjacent to the airfoil is within the limits of the log-law
region: 20.36 ≤ y+ ≤ 76.85 and a mean value of 39.40. The final grid is depicted in
figure 6.21.

Figure 6.22 shows the deterministic velocity and pressure field. Note that the in-
compressibility assumption still holds since the maximum Mach number is Mmax ≈

102



6.4 Flow around a NACA0012 airfoil

Figure 6.21: Final C-grid with 131,265 cells used for flow around the NACA0012
airfoil.

86/340 ≈ 0.25, well below the generally taken incompressibility limit of M < 0.3.
The pressure (see figure 6.22(b)) shows a high pressure at the stagnation point and a
low pressure at the suction peak. In contrast with the turbulent flat plate test case,
a pressure gradient is present along the airfoil.
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Figure 6.22: Velocity and pressure fields obtained with the standard k-ǫ model for
the NACA0012 at 6◦ angle of attack.

The numerical solution is compared to a roughened airfoil, since the simulations
involve fully turbulent flow. In Abbott and Doenhoff (1959), the section properties
of a roughened NACA0012 profile are listed. In the experimental set-up, the leading-
edge roughness consists of 0.011 inch carborundum grains applied over a surface length
of 0.08c̄ and on both sides of the model. For a 6◦ angle of attack, the lift coefficient is
∼ 0.63 and the drag coefficient ∼ 0.0145. When compared to the values in table 6.3,
the lift and drag coefficient are within 1% and 3%, respectively, of the experimental
results.

The pressure coefficient is defined as Cp = (p − p∞) /
(

1
2ρU2

∞

)

, where p is the pressure
at which Cp is evaluated. In Gregory and O’Reilly (1973), the pressure coefficient is
measured. Figure 6.23 shows the numerical and experimental results, where good
agreement can be seen. It is concluded that the numerical simulation yields satisfac-
tory results.
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Figure 6.23: Comparison of numerical and experimental pressure coefficient along the
airfoil at 6◦ angle of attack.

6.4.2 Influence of each individual parameter

In this section, the five uncertain parameters as given in section 6.2 will separately be
assumed uncertain. Convergence of the Probabilistic Collocation method is monitored
by evaluating the estimated error of the lift and drag coefficient using an approxima-
tion of one order higher (see equation (2.21)).

Figure 6.24 shows the convergence of the estimated error with respect to the poly-
nomial chaos order. For Cµ the response surface is curved as it is the case for the
turbulent flat plate test case. The convergence is shown in figure 6.24(a). A fourth
order approximation is used to propagate Cµ. The responses of the other parameters
are smooth, almost linear, so a second order approximation is sufficient (see e.g. the
convergence for κ in figure 6.24(b)).
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Figure 6.24: Convergence of the Probabilistic Collocation for the lift Cl and drag
coefficient Cd with respect to the polynomial chaos order p for uncertain (a) model
parameter Cµ and (b) the von Kármán constant κ.

Table 6.4 summarizes the results for all uncertain parameters. Looking at the coeffi-
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6.4 Flow around a NACA0012 airfoil

cients of variation of the lift and drag coefficient, it can be concluded that the effect
of most uncertain parameters is small. Only Cµ has a significant effect on the drag
coefficient with a coefficient of variation of 2.967%. As for the flat plate, the solution
is not sensitive to variation in model parameter Cµ, but due to the large variation of
Cµ the lift and drag coefficients shows a significant variation. The second parameter
that has some influence is κ, which results in the second largest coefficient of variation
for the drag coefficient of 0.881%. For the lift coefficient, κ results in a small coeffi-
cient of variation of 0.188%, while all other parameters have a negligible effect. The
largest amplification factor is, however, obtained for C2,ǫ for both Cl and Cd. Due to
the small coefficient of variation of C2,ǫ, the influence on Cl and Cd is negligible.

The mean values of Cl and Cd, are lower than the deterministic values of 0.6376 and
0.01418 respectively. In addition, the mean values of Cl are slightly closer to the
experimental value of 0.63, while the mean values of Cd are up to 3.6 counts further
away from the experimental value of 0.0145. The conclusion of the sensitivity study
of Turgeon et al. (2002) is confirmed: the solution is least influenced by variations in
σk.

Below the results for Cµ and κ are discussed in more detail. A more detailed discus-
sion of the other parameters can be found in the master thesis of Platteeuw (2008).
Combined effects by propagating all parameters simultaneously are not investigated
here.

Table 6.4: Statistics of the lift coefficient Cl and drag coefficient Cd of the
NACA0012 airfoil obtained from the Probabilistic Collocation method in combination
with OpenFOAM® (2009).

Parameter
Cl

µ σ × 10-3 CV Υ
Cµ 0.6371 0.3121 0.049 0.0021
C2,ǫ 0.6372 0.2725 0.043 0.0899
σk 0.6376 0.1194 0.019 0.0112
κ 0.6374 1.1980 0.188 0.0626
C 0.6374 0.5857 0.092 0.0256

Parameter
Cd

µ × 10-2 σ × 10-4 CV Υ
Cµ 1.382 4.1000 2.967 0.1279
C2,ǫ 1.399 0.2775 0.198 0.4174
σk 1.418 0.1034 0.073 0.0438
κ 1.398 1.2320 0.881 0.2934
C 1.417 0.3967 0.280 0.0783
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Chapter 6: Uncertainty analysis of the k-ǫ turbulence model parameters

Parameter Cµ

Figure 6.25 shows the standard deviation of the skinfriction and pressure coefficient
along the surface of the airfoil. The largest standard deviation of Cf is located at the
upper side of the airfoil, see figure 6.25(a). The irregular behavior at the trailing edge
is numerical noise, also found in the mean Cf solution. The maximum value is found
at the suction peak near the leading edge. Proceeding in streamwise direction along
the upper surface, a dip centered at 0.06c̄ is encountered. After that, the standard
deviation for Cf is more or less constant. At the lower surface, the Cf uncertainty is
increasing slightly towards the trailing edge.

Figure 6.25(b) shows that the largest standard deviation of Cp is located near the
suction peak. Considering the adverse pressure gradient region at the upper surface,
one sees that the standard deviation in Cp is increasing near the aft of the airfoil. At
the lower surface, the adverse pressure gradient region is more aft, and the standard
deviation increases from x/c̄ > 0.8.
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Figure 6.25: Standard deviation of (a) the skinfriction coefficient σCf and (b) the
pressure coefficient σCp along the airfoil surface resulting from the uncertain parameter
Cµ obtained with a fourth order Probabilistic Collocation approximation.

Figure 6.26 shows the probability distribution functions of the lift and drag coefficient
of the airfoil. As the response surface of Cl is curved, the shape of the distribution
functions (see figure 6.26(a)) are, therefore, a non-linear transformation of the input
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6.4 Flow around a NACA0012 airfoil

distribution. The distribution functions of Cl cover about 2 liftcounts and high values
of Cl are most likely to occur. Figure 6.26(b) shows the distribution functions of Cd.
The response surface is close to linear, therefore, the distribution of Cd is close to
a logistic distribution (similar to Cµ). The probability distribution functions of Cd

stretches over 23 drag counts.
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Figure 6.26: Probability distribution functions of (a) Cl and (b) Cd resulting from
uncertain parameter Cµ, obtained using a fourth order Probabilistic Collocation ap-
proximation.

Figure 6.27 depicts the standard deviation of the velocity and eddy viscosity in the
flow field. In figure 6.27(a), the largest standard deviation is present in the upper
part of the boundary layer, with a maximum near the trailing edge. In the wake,
the standard deviation is decaying. For the eddy viscosity (see figure 6.27(b)), the
standard deviation is mainly located at the upper boundary layer and the region
above, with a maximum found near the leading edge. In the wake, the standard
deviation is increasing downstream.

Von Kármán constant κ

The standard deviation of the pressure and eddy viscosity resulting from an uncertain
κ is very small. Integrating these quantities, however, shows a noticeable effect in
the probability distributions of the lift and drag coefficient (see figure 6.28). Both
responses are smooth and almost linear and cover almost 7 counts. Therefore, the
distribution are close to a truncated normal distribution, similar to the distribution
of κ.

Figure 6.29 displays the standard deviation field of the velocity and eddy viscosity.
The largest standard deviation of U is found in the upper part of the boundary layer.
The standard deviation of the velocity attains a peak in the wake originating from
the upper surface. Behind the airfoil, the standard deviation of U is decaying. The
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Figure 6.27: Standard deviation of (a) the velocity σU and (b) the eddy viscosity σνT

resulting from an uncertain parameter Cµ obtained with a fourth order Probabilistic
Collocation approximation.
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Figure 6.28: Probability distribution functions of (a) Cl and (b) Cd resulting from an
uncertain von Kármán constant κ, obtained using a fourth order Probabilistic Colloca-
tion approximation.
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standard deviation of νT is largest inside the boundary layer and wake.
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Figure 6.29: Standard deviation of (a) the velocity σU and (b) the eddy viscosity
σνT resulting from an uncertain von Kármán constant κ obtained with a second order
Probabilistic Collocation approximation.

6.5 Summary

The k-ǫ turbulence model and the standard wall functions contain several parameters
that are tuned to computed or measured simplified flow problems. Some parameters
are related to each other to assure physical laws are maintained. Finally, 5 parameters
were left over to be analysed as uncertainties in the model, i.e. Cµ, C2,ǫ, σk, κ, and C.
Two test cases were performed. Firstly, a fully developed turbulent boundary layer
on a flat plate and secondly, turbulent flow around a NACA0012 airfoil.

As a general conclusion, the effect of uncertainties in the parameters on the flow
solution is case dependent. For both performed test cases, different effects were shown.
In case of the turbulent flat plat, the wall function parameter κ was dominant with a
coefficient of variation of 4.3% for the drag coefficient. Although the drag coefficient
was not much affected, C and Cµ had a significant contribution to the standard
deviation of the skinfriction coefficient along the plate. The introduction of different
flow topologies such as a stagnation point, a suction peak, and a wake lead to different
conclusions about the relative importance of coefficients for the airfoil test case. Only
Cµ and κ resulted in maximum 0.2% and 3% coefficient of variation for the lift and
drag coefficient respectively.
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CHAPTER 7

Operational uncertainties for a
transonic compressor rotor

The compressor is one of the most sensitive components of a gas turbine. The perfor-
mance is sensitive to variability in geometry and operating conditions. Uncertainty
analysis is, therefore, of great importance to assure robustness of the design. The goal
of this chapter is to demonstrate the use of the Probabilistic Collocation method for a
turbomachinery case. Furthermore, the effect of operational uncertainties on the per-
formance of the rotor is investigated. Recently, uncertainty quantification has been ap-
plied to CFD computations in turbomachinery [Gopinathrao, Mabilat and Alizadeh
(2009); Gopinathrao, Bagshaw, Mabilat and Alizadeh (2009); Loeven and Bijl (2010)].
A commonly used test case for turbomachinery is the NASA Rotor 37 test case
[Reid and Moore (1978); Dunham (1998)].

In 1993, a large group of researchers computed the NASA Rotor 37 test case on invi-
tation of the ASME Turbomachinery Committee using RANS codes [Wisler (1993)].
These were blind simulations, only the geometric data were provided. The con-
tributers to the study of Dunham (1998) had access to the experimental data when
the computations were performed. The comparison between the experiments and
CFD computations showed quite some differences. For example the efficiency was
almost always underpredicted, possibly due to the treatment of the tip clearance in
the simulations. Furthermore, the shock wave is stronger and more upstream in the
computations than in the experiments. Dunham (1998) states that the main con-
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Chapter 7: Operational uncertainties for a transonic compressor rotor

tribution to the differences lies in the assumption of steady flow and the choice of
turbulence model.

Gopinathrao, Bagshaw, Mabilat and Alizadeh (2009) have successfully applied the
Probabilistic Collocation method to NASA Rotor 37 using Fluent and investigated
how the choice of probability distribution for the uncertain parameters affects the
solution. In this chapter, a quasi-3D study is used to validate the applicability of
the Probabilistic Collocation method to a turbomachinery test case against a Monte
Carlo simulation. Furthermore, standard deviation plots of flow quantities are shown
to reveal areas in the flow field that are sensitive to operational uncertainties.

The rotor of a gas turbine is subject to several sources of uncertainty. One of them is
operational uncertainty. It is always present when the rotor is operated in an environ-
ment that is different from the design conditions. Two operational uncertainties are
considered. First the static outlet pressure in the validation test case and secondly, the
total pressure profile at the inlet of the rotor for the 3D simulation. Another source
of uncertainty is geometrical imperfection. Due to manufacturing tolerances or wear,
the actual geometry might be different from the designed geometry. Especially, the
effect of the tip clearance is known to have a significant effect on the efficiency of the
rotor [Chima (1998); Gerolymos and Vallet (1999); Beheshti et al. (2004)]. In this
chapter operational uncertainties are considered.

The effect of uncertainties on NASA Rotor 37 is investigated using the Probabilis-
tic Collocation method with the FINE�/Hexa solver of Numeca International as a
deterministic flow solver. First a quasi-3D computation, which represents a slice at
50% blade height, is performed to validate the applicability of the Probabilistic Col-
location to the NASA Rotor 37 test case. A Monte Carlo simulation of 10,000 Latin
Hypercube samples has been performed to obtain a stochastic reference solution. The
quasi-3D case contains all features that characterize the flow through the compressor
rotor. One important feature is the bow shock in front of the leading edge of the
blade. The shock wave impinges on the boundary layer on the next blade. The static
outlet pressure is assumed to be uncertain and to have a symmetric beta probability
distribution. A symmetric beta distribution has the property that the mean value is
most probable to occur. Furthermore, it is limited to an interval, where the prob-
ability smoothly decreases to zero near the edges of the interval. The Probabilistic
Collocation method shows with 5 deterministic solves good correspondence with the
Monte Carlo simulation.

After validating the Probabilistic Collocation method, it is applied to a 3D simula-
tion of the rotor. Uncertainties are present in the total pressure profile at the inlet
of the rotor. A symmetric beta distribution is assumed, with the interval chosen
such that the standard deviation is in the order of the accuracy of the experiments
of Reid and Moore (1978). The effect on the efficiency, total pressure ratio, mass flow,
and the compressor map are shown. Furthermore, the mean and standard deviation
of the static pressure in the flow field are visualized to show areas in the flow field
that are sensitive to the uncertainties in the total pressure profile at the inlet of the
rotor.
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7.1 Deterministic test case description

NASA Rotor 37 was originally designed and tested as part of a research program
involving four related axial-flow compressor stages [Reid and Moore (1978)] typical
for aircraft turbine engines. It is shown in figure 7.1(a). The rotor has 36 blades with
an aspect ratio of 1.19. The designed efficiency is ηdesign = 0.877 with a total pressure
ratio of p2/p1design = 2.106. The measured peak efficiency by Reid and Moore (1978)
was ηmeasured = 0.876 with a total pressure ratio of p2/p1measured = 2.056. The
maximum attained mass flow is ṁchoke = 20.93 kg/s [Dunham (1998)].

7.1.1 Computational settings

The flow through NASA Rotor 37 is simulated by the Reynolds averaged Navier-
Stokes equations in combination with the Spalart-Allmaras turbulence model. The
equations are solved on a computational grid, which is described in the next section.
The boundary conditions are treated at the end of this section.

The computational model and grid

The computational model of the NASA Rotor 37 consists of one blade with periodic
boundary conditions, as shown in figure 7.1(d). The model of the complete rotor, i.e.
36 repeated blades, is shown in front view in figure 7.1(b) and from the side in 7.1(c).

The blade geometry can be found in the work of Reid and Moore (1978). Appendix D
shows sections of the blade near the hub, at midspan and near the tip. Between the
blade and the shroud a small gap is present, known as the tip clearance. The tip
clearance is 0.356 mm. It is important to model the tip clearance correctly, since
it has a significant influence on the results. Extensive research has been performed
to the effect of the tip clearance by Gerolymos and Vallet (1999) and Beheshti et al.
(2004).

The influence of the 3D computational grid was investigated by Tartinville and Hirsch
(2006). The grid that is used, contains approximately 600,000 cells. Parts of the grid
are shown in figure 7.2. A top view of the surface grid on the hub is displayed in
figure 7.2(a). Figure 7.2(b) shows a close view of the blade near the hub. It is assured
that along the surface y+ = 1-2, to comply with the Spalart-Allmaras turbulence
model. Furthermore, the grid is refined near the tip to capture the flow phenomena
around the tip clearance. 37 cells are present in the tip gap in radial direction.

Boundary conditions

The rotational speed of the rotor is 17188.7 rpm (1800 rad/s), leading to a tip-speed
of 454 m/s (1500 ft/s). The hub and blade in the computational model are rotating,
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(a) (b)

(c) (d)

Figure 7.1: NASA Rotor 37, (a) real model front [Source: http://www.grc.nasa.gov]
and (b) computational model front, (c) model side, (d) single blade.
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(a) (b)

Figure 7.2: 3D computational grid for NASA Rotor 37, (a) a top view of the grid on
the hub and (b) a close view of the blade near the hub.

while the shroud is kept fixed. At the inlet, a total pressure pt,in and total temperature
Tt,in profile are specified, which are experimentally determined and can be found in
the work of Dunham (1998). The static outlet pressure is varied to change the mass
flow and construct the compressor maps. At maximal efficiency, the static outlet
pressure 1.175 bar.

7.1.2 Deterministic solution

The maximum adiabatic efficiency of the rotor is found to be η = 0.867. At the
maximum efficiency, the mass flow is ṁ = 20.737 kg/s and the total pressure ratio is
p2/p1 = 2.077. The maximum mass flow is found to be ṁchoke = 20.903 kg/s. The
results are summarized in table 7.1 together with the experimental values measured
by Reid and Moore (1978). All values are within 1.03% of the measured data.

Table 7.1: Numerical simulation and experimental results [Reid and Moore (1978)]
for NASA Rotor 37.

Quantity Experimental Numerical
Maximum adiabatic efficiency η [-] 0.876 0.867 (−1.03%)

Pressure ratio at max. efficiency p2/p1 [-] 2.056 2.077 (+1.02%)
Massflow at max. efficiency ṁ [kg/s] 20.74 20.737(−0.014%)
Maximum mass flow ṁchoke [kg/s] 20.93 20.903(−0.129%)

Figure 7.3 shows the compressor maps. The figure includes the numerical results and
the experimental results from Reid and Moore (1978). A good agreement between
the results is obtained. The only major difference between the numerical simulations
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and the experiments is the rotor stall (the most left data point in figure 7.3). At stall
the mass flow differs 0.8 kg/s (≈ 4%), which is a large difference. For the main goal,
performing an uncertainty analysis for NASA Rotor 37, it is no problem.
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Figure 7.3: Compressor maps of NASA Rotor 37, with (a) the adiabatic efficiency
ηadiabatic and (b) the total pressure ratio p2/p1 against the mass flow ṁ. The figure
shows the numerical results, the numerically determined maximum adiabatic efficiency
and the experimental results from Reid and Moore (1978).

Flow field

Figure 7.4 shows the static pressure on the surface of the hub and upper (a) and lower
(b) side of the blade. Since the tip velocity is much higher than the root velocity, the
shock angle and strength vary along the blade. The static pressure on both sides of
the blade shows that the flow has a complex three dimensional structure.

To obtain a better understanding of the shock wave, flow properties on a slice at 50%
blade height are shown in figure 7.5. The static pressure is depicted in figure 7.5(a),
which clearly shows the shock wave. A bow shock is present at the leading edge of
the blade. The shock wave impinges on the boundary layer on the suction side of
the next blade. This causes flow separation, resulting in a low velocity area behind
the shock. This is depicted in figure 7.5(b), which shows the relative Mach number.
Figure 7.5(c) shows that the shock results in a sudden increase of eddy viscosity. This
has a large influence on the drag of the blade.
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(a) (b)

Figure 7.4: Static pressure on the surface of the hub at the (a) suction and (b) pressure
side of the blade.

7.2 Validation using a quasi-3D simulation

To validate the Probabilistic Collocation method for NASA Rotor 37, a quasi-3D
model is used. The flow contains the characteristics of transonic flow, e.g. a shock
wave originating from the leading edge impinging the boundary layer of the next blade.
The quasi-3D computation takes about 15 minutes computing time, which enables
validation using a Monte Carlo simulation. Based on the Monte Carlo simulation
it is concluded that the Probabilistic Collocation method is capable of efficiently
propagating the uncertainties to obtain the statistics of the output of interest, like
the efficiency of the rotor.

Quasi-3D model

The quasi-3D model represents a slice at 50% of the blade height. A block structured
grid of 5120 cells is used, as shown in figure 7.6(a). It is quasi-3D since it is curved
(see figure 7.6(b)) such that 36 blades fill up a cylinder.

The deterministic static pressure and relative Mach number are shown in figure 7.7.
Several flow passages are shown to make the shock structure more clear. The static
pressure (see figure 7.7(a)) and relative Mach number (see figure 7.7(b)) compare very
well with the true 3D results depicted in figure 7.5. The shock wave originates from
the leading edge and causes a low speed region behind the shock on the suction side
of the next blade.
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(a) (b)

(c)

Figure 7.5: The static pressure (a), the relative Mach number (b) and the eddy
viscosity (c) at 50% blade height.
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(a) (b)

Figure 7.6: Quasi-3D computational grid shown in (a) a top view and (b) a 3D view.

(a) (b)

Figure 7.7: Quasi-3D flow field around the blades, with (a) the static pressure and
(b) the relative Mach number.
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7.2.1 Uncertain static pressure at the outlet

For the quasi-3D case, an uncertain static outlet pressure pout is used for validation
of the Probabilistic Collocation method. A symmetric beta distribution is used for
pout, with parameter settings α = β = 4. This results in a distribution on the interval
[a, b] with the maximum probability at the mean/median, i.e. the deterministic value
in this case pout=1.1 bar. The interval is chosen to be µpout

± 4%. The distribution
is shown in figure 7.8, more information on the beta distribution can be found in
appendix A.

Convergence of the Probabilistic Collocation method

The convergence of the estimated error of the adiabatic efficiency η, total pressure
ratio p2/p1, and mass flow ṁ with respect to the polynomial order p are shown
in figure 7.9. The error is estimated using the approximation of one order higher,
according equation (2.21). For p=4, the estimated error has dropped over 2 orders
of magnitude compared to p=1. Therefore, a fourth order Probabilistic Collocation
approximation is used for further results in this section.
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Figure 7.8: The probability density
function (—) and the cumulative distri-
bution function (—) of the static outlet
pressure pout.

Figure 7.9: Convergence of the Prob-
abilistic Collocation method for the
adiabatic efficiency η, total pressure ra-
tio p2/p1, and mass flow ṁ with respect
to the polynomial chaos order p.

7.2.2 Stochastic results for the quasi-3D rotor

First the validation of the Probabilistic Collocation method with a Monte Carlo simu-
lation is shown for an uncertain static outlet pressure pout. This is done by comparing
the distribution functions of η, p2/p1, and ṁ, respectively. Secondly, the mean and
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standard deviation of the pressure and relative Mach number in the flow field are
shown.

Comparison with Monte Carlo simulation

Figures 7.10-7.12 show the probability density function as a histogram and the cumu-
lative distribution function of η, p2/p1, and ṁ. For the Monte Carlo simulation 10,000
Latin Hypercube samples were used, whereas the Probabilistic Collocation approxi-
mation is constructed using 5 deterministic solves (fourth order). The total pressure
ratio (figure 7.10) is almost linearly dependent on the uncertain pout. Therefore, the
distribution is close to a beta distribution, similar to the distribution of pout. The
efficiency and the mass flow, however, depend nonlinearly on the uncertain pout, as
can be seen in figures 7.11 and 7.12 respectively. Both quantities obtain a maximum
for a certain pout. This results in a distribution with the largest probability near the
maximum value. The results show good correspondence between the Monte Carlo
simulation and the Probabilistic Collocation results.
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Figure 7.10: Probability density function (histogram) and cumulative distribution
function of the total pressure ratio p2/p1 obtained from Monte Carlo simulation (–)
using 10,000 Latin Hypercube samples and a fourth order Probabilistic Collocation
approximation (- -) using 5 deterministic solves.

Statistics of the flow field

Figure 7.13 shows the mean (a) and the standard deviation (b) of the static pressure
field close to the blades. The mean is similar to the deterministic solution shown in
figure 7.7(a). The standard deviation (figure 7.13(b)) shows that due to the uncertain
static outlet pressure, largest standard deviation is present inside the shock wave due
to a change in shock position. The largest standard deviation is 26,000 Pa, which
corresponds to a local coefficient of variation in the order of 25%.
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Figure 7.11: Probability density function (histogram) and cumulative distribution
function of the adiabatic efficiency η obtained from Monte Carlo simulation (–) using
10,000 Latin Hypercube samples and a fourth order Probabilistic Collocation approxi-
mation (- -) using 5 deterministic solves.
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Figure 7.12: Probability density function (histogram) and cumulative distribution
function of the mass flow ṁ obtained from Monte Carlo simulation (–) using 10,000
Latin Hypercube samples and a fourth order Probabilistic Collocation approximation
(- -) using 5 deterministic solves.
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7.2 Validation using a quasi-3D simulation

(a) (b)

Figure 7.13: Quasi-3D static pressure fields around the rotor blades, with (a) the mean
and (b) the standard deviation obtained from a fourth order Probabilistic Collocation
approximation, based on an uncertain static outlet pressure.

Figure 7.14 depicts the mean and standard deviation of the relative Mach number,
which shows a similar picture as the static pressure. Again a local coefficient of
variation in the order of 25% is obtained near the shock wave. The difference is near
the location where the shock wave interacts with the boundary layer on the suction
side of the blade. Here the standard deviation has a peak of 0.26.

7.2.3 Conclusions of the validation

Based on the presented results, it can be concluded that the Probabilistic Collocation
method is capable of propagating an uncertainty accurately and efficiently. Quan-
tities of interest like adiabatic efficiency, total pressure ratio, and mass flow show
good correspondence with a Monte Carlo simulation using 10,000 Latin hypercube
samples using a fourth order Probabilistic Collocation approximation (requiring only
5 deterministic solves).

The flow fields show that the mean solutions are similar to the deterministic solution.
The standard deviation indicates that the solutions are sensitive near the shock wave
and the shock wave boundary layer interaction on the suction side of the blades.
Local coefficients of variation in the order of 25% are observed while the coefficient
of variation of the uncertain static outlet pressure was only 4%.
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Chapter 7: Operational uncertainties for a transonic compressor rotor

(a) (b)

Figure 7.14: Quasi-3D relative Mach number fields around the rotor blades, with (a)
the mean and (b) the standard deviation obtained from a fourth order Probabilistic
Collocation approximation, based on an uncertain static outlet pressure.

7.3 NASA Rotor 37, 3D simulations

After the successful validation of the Probabilistic Collocation method using a quasi-
2D setup, it is applied to the 3D simulations of NASA Rotor 37 at maximum efficiency.

7.3.1 Uncertain total pressure profile at the inlet

The second source of uncertainty is the total pressure profile at the inlet of the rotor.
According to Reid and Moore (1978), the uncertainty of the measurements of the
profile is ±100 Pa. Figure 7.15 shows the total pressure profile at the inlet, where
the blue line indicates the mean/deterministic profile. The profile is assumed to vary
±1% around the deterministic value, the minimum and maximum pressure profiles
are indicated by the red lines in figure 7.15. This corresponds to a standard deviation
of approximately σp ≈ 300 Pa, which is in the same order of the uncertainty of the
measurement. The green lines in figure 7.15 show the profile one standard deviation
away from the mean. Again a beta distribution is used with parameter α = β = 4.
This results in a symmetric distribution with the mean value as the most probable
value (see Appendix A). The interval is fixed to µ ± 1%, the coefficient of variation
is CVptotal,in

= 0.33%.

7.3.2 Stochastic results for the 3D simulations

Figure 7.16 shows the convergence of the Probabilistic Collocation method for the 3D
simulations of NASA rotor 37 with uncertain total pressure profile at the inlet. The
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Figure 7.15: Total pressure profile at
the inlet of the rotor. Shown are the
mean profile (µ), ± one standard devi-
ation (±σ) and the boundaries of the
interval of ±1% (min/max).

Figure 7.16: Convergence of the
Probabilistic Collocation method for
the adiabatic efficiency η, total pressure
ratio p2/p1, and mass flow ṁ with re-
spect to the polynomial chaos order p.

convergence is shown for the adiabatic efficiency, total pressure ratio, and mass flow.
Due to numerical noise, the stochastic approximation does not converge below approx-
imately 10-7. A second order approximation results in a decrease of the estimated
error of more than 2 orders of magnitude. The mean and variance are converged to 8
and 4 significant digits respectively. The probability distribution functions show no
difference between the second and higher orders, therefore the second order is used in
the remainder of this chapter.

Table 7.2 summarizes the statistics of η, p2/p1, and ṁ at maximum efficiency. The
table shows the mean, standard deviation, the coefficient of variation, and the amplifi-
cation factor. The amplification factor was defined as Υ = CVsolution/CVunc. parameter,
the ratio between the CV of the solution and the CV of the uncertain parameter.
It is an indication of the sensitivity of the solution with respect to the uncertain pa-
rameter. The mean values of the solution are the same as the deterministically found
values in table 7.1. The coefficients of variation are significantly different for each
parameter. The adiabatic efficiency shows almost no variation, only 0.008% and is
therefore not sensitive to variations in the total pressure profile at the inlet of the
rotor. The amplification factor Υη is 0.024, which indicates that the uncertainty in
the total pressure profile is strongly damped for the efficiency. Secondly, p2/p1 shows
more variability with a CVp2/p1

of 0.158%. The coefficient of variation of the input
uncertainty is, however, still damped since the amplification factor Υp2/p1

= 0.48 is
less than 1. The third parameter of interest, ṁ, shows a CVṁ of 0.386%, which cor-
responds with an Υṁ of 1.16. This means the uncertainty of the total pressure profile
is amplified for the mass flow. The mass flow is the most sensitive to uncertainties
in the total pressure profile at the inlet for this case. This observation agrees with
results of Gopinathrao, Bagshaw, Mabilat and Alizadeh (2009).
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Chapter 7: Operational uncertainties for a transonic compressor rotor

Figure 7.17 shows the probability density and cumulative distribution function of η,
p2/p1, and ṁ. For the current case settings, the solution is not showing strong non-
linear behavior for p2/p1 and ṁ. The rotor is near maximum efficiency. This results
in a nonlinear propagation of the uncertain total pressure profile to the adiabatic effi-
ciency. The distribution of η shows the highest probability at the maximum value of
η. The distributions of p2/p1 and ṁ are close to the beta distribution with α = β = 4,
which was the type of distribution of the uncertain total pressure profile at the inlet.
It can be seen that, although the standard deviations are small, the intervals of p2/p1

and ṁ are worth to be taken into account. They cover a range of about 6σ, which
corresponds with 0.95% and 2.3% of the mean for p2/p1 and ṁ, respectively.

cu
m

u
la

ti
v
e

d
is
tr

ib
u
ti
o
n

p
ro

b
a
b
il
it
y

d
en

si
ty

η [-]
0.8669 0.8671 0.8673

0

0.54

1.08

1.62

2.16

2.7×104

0

0.2

0.4

0.6

0.8

1

(a)

cu
m

u
la

ti
v
e

d
is
tr

ib
u
ti
o
n

p
ro

b
a
b
il
it
y

d
en

si
ty

p2/p1 [-]
2.07 2.074 2.078 2.082 2.086

0

24

48

72

96

120

0

0.2

0.4

0.6

0.8

1

(b)

cu
m

u
la

ti
v
e

d
is
tr

ib
u
ti
o
n

p
ro

b
a
b
il
it
y

d
en

si
ty

ṁ [kg/s]
20.5 20.6 20.7 20.8 20.9

0

0.95

1.9

2.85

3.8

4.75

0

0.2

0.4

0.6

0.8

1

(c)

Figure 7.17: The probability density function (—) and the cumulative distribution
function (—) of the adiabatic efficiency η, total pressure ratio p2/p1 and the mass
flow ṁ, obtained from a second order Probabilistic Collocation approximation for an
uncertain total pressure profile at the inlet of the rotor.

Figure 7.18 shows the compressor maps for the mean values of ṁ, η and p2/p1 with
uncertainty bars indicating ±σ. Table 7.2 indicated that ṁ shows the largest CV .
This can be seen in the compressor maps, since the uncertainty bars on η and p2/p1
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7.3 NASA Rotor 37, 3D simulations

Table 7.2: Statistics of the adiabatic efficiency η, total pressure ratio p2/p1 and mass
flow ṁ at maximum efficiency of NASA Rotor 37 obtained from a second order Proba-
bilistic Collocation approximation for an uncertain total pressure profile at the inlet of
the rotor.

Quantity
Mean Standard Coefficient of Amplification

µ deviation σ variation CV factor Υ
η 0.867 0.000069 0.008% 0.024

p2/p1 2.077 0.003293 0.158% 0.48
ṁ 20.737 0.08004 0.386% 1.16

are barely visible. The bars indicating the standard deviation of ṁ are significant.
Clearly, it is important to take the uncertainty in the total pressure profile at the
inlet into account when compressor maps are computed.
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Figure 7.18: Compressor maps of NASA Rotor 37, with (a) the adiabatic efficiency
ηadiabatic and (b) the total pressure ratio p2/p1 against the mass flow ṁ. The figure
shows the stochastic results as the mean µ and uncertainty bars indicating ±σ, and
the experimental results from Reid and Moore (1978). Obtained from a second order
Probabilistic Collocation approximation for an uncertain total pressure profile at the
inlet of the rotor.

Figure 7.19 shows the mean and standard deviation of the static pressure in the
flow field. Horizontal slices at 25%, 50% and 75% of the blade height are shown in
figure 7.19(a) and vertical slices at different locations along the hub in figure 7.19(b)
to obtain a picture of the three dimensional features of the flow. The mean static
pressure field around the blade is similar to the deterministic simulation. The shock
wave becomes stronger near the tip of the blade, due to the higher relative velocity.
The largest variation is present in the shock region, as can be seen in figures 7.19(c)
and 7.19(d).
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Chapter 7: Operational uncertainties for a transonic compressor rotor

(a) (b)

(c) (d)

Figure 7.19: Static pressure fields, with the mean depicted in (a) and (b) and the
standard deviation in (c) and (d). The horizontal slices are at 0%, 25%, 50%, and 75% of
the blade height, obtained from a second order Probabilistic Collocation approximation
for an uncertain total pressure profile at the inlet of the rotor.
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7.4 Summary

7.4 Summary

Compressor rotors are components of a gas turbine that are highly sensitive to op-
erational and geometrical uncertainties. The Probabilistic Collocation method was
used to propagate operational uncertainties through simulations of NASA Rotor 37.
Validation of the Probabilistic Collocation method with a Monte Carlo simulation us-
ing 10,000 Latin Hypercube samples demonstrated that the Probabilistic Collocation
method can successfully be applied to a turbomachinery case. NASA Rotor 37 is a
transonic axial flow compressor rotor. The flow is characterized by a bow shock in
front of the leading edge. The shock wave impinges on the boundary layer of the next
blade, causing separation and transition instantaneously.

The total pressure profile at the inlet of the rotor is assumed to be uncertain. A
symmetric beta distribution was used for the pressure profile, with the standard
deviation such that the uncertainty is in the same order of the measurement accuracy
reported in literature. In the point of maximum efficiency, the mass flow was shown
to be the most sensitive to the uncertainty, while the efficiency is least affected. The
compressor maps are constructed as functions of the mass flow. It was shown to
be important to take the uncertainty in the total pressure profile at the inlet into
account. The mean static pressure field around the blade does not differ much from
the deterministic simulation. The standard deviation of the static pressure showed
that the largest variation is present near the shock wave and mainly in the region of
the strongest shock, which is near the tip of the blade.
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CHAPTER 8

Two-step approach for multiple
uncertain parameters

A disadvantage of the standard Probabilistic Collocation method is the curse of dimen-
sionality. For multiple uncertain parameters, even low order approximations cannot be
computed within reasonable time. Table 8.1 summarizes the amount of deterministic
simulations required for a certain polynomial chaos order and the number of uncertain
parameters. Suppose 100 deterministic simulations are affordable, then a first order
approximation is possible for 5 or 6 uncertain parameters. A first order approximation
for 7 uncertain parameters requires 128 deterministic simulations. If the test case re-
quires a second order propagation, 4 uncertain parameters is the maximum. A solution
to this problem can be sparse grid approaches [Ganapathysubramanian and Zabaras
(2007); Xiu and Hesthaven (2005)]. Advantages of sparse grid approaches are the fact
that all uncertain parameters can be propagated efficiently and combined effects of
the parameters are computed. However, some uncertain parameters may not affect
the solution much, so taking them into account results in (unnecessary) additional
computational effort. If this additional work hardly results in a better approxima-
tion of the statistics of the solution, these uncertain parameters can be treated as
deterministic values.

This chapter provides details of the Probabilistic Collocation method in a two-step ap-
proach, it is based on results from Loeven et al. (2006a) and Loeven and Bijl (2008b,
2009b). The two-step approach starts by first performing a sensitivity analysis and
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Chapter 8: Two-step approach for multiple uncertain parameters

Table 8.1: The amount of work (i.e. the number of collocation points) of the standard
Probabilistic Collocation method. The number of collocation points is given by Np =
(p + 1)d, where p is the polynomial chaos order and d is the number of uncertain
parameters.

Polynomial Number of uncertain parameters d

chaos order p 2 3 4 5 6 7 8
1 4 8 16 32 64 128 256
2 9 27 81 243 729 2,187 6,561
3 16 64 256 1,024 4,096 16,384 65,533
4 25 125 625 3,125 15,625 78,125 390,625

secondly propagating the statistics of the most important parameter(s) in the next
step. For both steps the Probabilistic Collocation method is used, as described in
chapter 2. The sensitivity analysis is based on the scaled sensitivity derivatives
[Turgeon et al. (2003)]. The sensitivity derivatives are obtained from a first or sec-
ond order Probabilistic Collocation approximation, depending on the distribution of
the uncertain parameters. For each output of interest, the scaled sensitivity deriva-
tives are compared, yielding the most important parameters. Next the probability
distribution functions are propagated using higher order Probabilistic Collocation
approximations. The two-step approach starts with a sensitivity analysis based on
separate effects of the uncertain parameters, so interactions between parameters are
not taken into account in this step. The second step is performed using a multi-
dimensional Probabilistic Collocation expansion to include interactions between the
parameters. By taking into account only the most important parameters, the number
of deterministic computations is reduced significantly.

8.1 Sensitivity analysis using the Probabilistic Colloca-

tion method

Sensitivity analysis is used here as an efficient way of reducing the number of un-
certain parameters. It is based on the scaled sensitivity derivatives [Turgeon et al.
(2003)]. The sensitivity derivatives are used to identify the most important uncertain
parameters in a particular physical system. A reduction of the amount of uncertain
parameters results directly in less deterministic solves for uncertainty propagation
(see table 8.1). This reduces the total computational time of the stochastic simula-
tion considerably.

The sensitivity derivative is defined as the partial derivative of the solution u(x, t, ω)
or any output of interest with respect to the uncertain parameter a(ω). The sensitivity
derivatives are computed by differentiating a first or second order PC approximation.
One can also use a finite difference approach, but then the size of the difference should
be carefully chosen. A smaller difference leads to more accurate sensitivity deriva-
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8.1 Sensitivity analysis using the Probabilistic Collocation method

tives. However, numerical noise of the deterministic CFD solver may produce wrong
sensitivity derivatives. For symmetric distributions, like the normal distribution, the
second collocation point with corresponding solution u2(x, t) is equal to the colloca-
tion point with mean settings. All uncertain parameters share this point, so it only
has to be computed once. For this case two solves for each parameter are required to
obtain the sensitivity derivative, with a total of 2d+1 solves for the complete sensitiv-
ity analysis, with d the number of uncertain parameters. For asymmetric distributions
3d deterministic solves would be required. Therefore, to save computational costs,
a first order Probabilistic Collocation expansion is used for cases with asymmetric
distributions, requiring 2d solves. In this paper truncated normal distributions are
used, which are symmetric. The approximation of the derivative is then obtained by
first differentiating equation (2.10) for Np = 3 with respect to ξ(ω):

∂u

∂ξ

∣

∣
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∣

a
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[
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, (8.1)

where ui,a(x, t) indicates the ith collocation point for uncertain parameter a(ω). The
parameter a(ω) is a linear combination of the random variable ξ(ω), so a(ω) =
Aaξ(ω) + Ba, with constants Aa and Ba. The sensitivity derivative of the solution
with respect to parameter a(ω) is given by
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When more parameters are involved in the problem the scaled sensitivity derivative
with respect to each parameter is calculated. One has to take into account that
this procedure provides the sensitivity information for each parameter separately, so
no combined effects are taken into account in this step. Multiplying the sensitivity
derivatives with the standard deviation σai of the parameters a good estimate of
the effect of the uncertain parameter on the solution is obtained. Furthermore, the
dimension of the scaled sensitivity derivatives is the same as the dimension of the
solution. If the solution depends on N parameters, the most important parameter is

max

{

σa1

∂u

∂a1
, σa2

∂u

∂a2
, . . . , σad

∂u

∂ad

}

. (8.3)

These scaled sensitivity derivatives are actually the estimation of the standard devia-
tion using a first order perturbation method [Kleiber and Hien (1992),Borggaard et al.
(2001)]. Once the most important parameters are obtained by equation (8.3), they
are propagated simultaneously through the system to include interaction between the
parameters.
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8.2 Subsonic flow around a NACA0012 airfoil with 8
uncertain parameters

In this section the two-step framework is applied to steady flow around a NACA0012
airfoil with 8 uncertain parameters. A commercial deterministic CFD code is used to
compute the deterministic solves for every collocation point. The deterministic case is
flow around a NACA0012 airfoil at an angle of attack α of 5◦ and a free stream velocity
U of 100m/s (M=0.29). The Reynolds number is equal to 3× 106. The deterministic
computations are performed using the FINE�/Hexa solver by Numeca International
on a grid of approximately 100,000 cells. 1600 cells are present on the surface of
the airfoil with y+ ≤ 1. A close-up of the grid layout is shown in figure 8.1(a).
A grid convergence study was performed to make sure the deterministic solutions
are grid independent. If the deterministic computations are not grid independent
or numerically not sufficiently converged, the induced errors may be larger than the
variations due to the uncertain parameter. For the grid convergence study grids
of 50, 75, 100, 125, and 150 thousand cells were used. The grid of 100,000 cells
showed no significant difference compared to the finer grids and was used for further
computations. To assure sufficiently converged deterministic simulations, a Jacobian-
free Newton-Krylov algorithm [Lucas et al. (2010)] is employed to efficiently converge
to a residual of 10-10.

(a) (b)

Figure 8.1: The mesh layout near the airfoil (a) and magnitude of velocity (b) of the
mean conditions.

The flow is modeled by the Reynolds-averaged Navier-Stokes (RANS) equations using
the Spalart-Allmaras turbulence model. Figure 8.1(b) shows the magnitude of velocity
of the mean conditions. The mean air properties are at 0m ISA. The uncertainties
are present in the free stream flow conditions, i.e. the velocity U , angle of attack α,
pressure p, temperature T , viscosity ν, and turbulence intensity I and in the geometry
by the thickness t and camber c. The free stream conditions are never constant in
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8.2 Flow around a NACA0012 airfoil with 8 uncertain parameters

real flight due to atmospheric irregularities. The geometric uncertainties result from
production tolerances in the fabrication process, as a result of which the actual airoil
slightly differs from the designed shape.

Input distributions

All uncertain parameters are assumed to have a truncated normal distribution and are
shown in figure 8.2; the specifications of the distributions are given in table 8.2. For
this case all parameters are considered as dimensional quantities, as is often the case in
engineering applications. Truncated normal distributions are used to avoid unphysical
settings and too large variations. The variations in the geometry are chosen such that
the parameters vary within a realistic interval. The parameters of the freestream are
based on variations that can occur in flight, due to uncertain height and atmospheric
conditions. The kinematic viscosity is varied to see the effect of the Reynolds number.
For real life applications the input distributions should be measured to be able to find
a realistic input distribution. One can think of measuring the shape of products after
production or measuring air properties and freestream velocity and angle of attack
during flight. Currently, these data are not available yet, so assumptions on the input
distributions have to be made. For the truncated normal distributions it is important
to use the orthogonalization procedure described in section 2.2. Only if the collocation
points and weights are computed weighted with the probability density function of
the uncertain parameters, spectral convergence is obtained. If one would use the
Hermite polynomials (corresponding to a normal distribution), the support is infinite
and collocation points will fall outside the truncation interval for higher orders of
approximation.

Table 8.2: Distribution description of the uncertain parameters. All parameters have
a truncated normal distributions, truncated on the µ ± 3σ interval.

Parameter Mean µ
Standard Minimal Maximal

CV
deviation σ value value

U 100 5 85 115 5 %
α 5 0.3333 4 6 6.67 %
t 12 0.3333 11 13 2.78 %
c 0 0.16667 -0.5 0.5 -
p 101325 1013.25 98285 104365 1 %
T 288.15 2.8815 279.5 296.8 1 %
ν 3.333 × 10-5 3.333× 10-7 3.233 × 10-5 3.433× 10-5 1 %
I 0.1 0.005 0.085 0.115 5 %

As was shown in table 8.1, 256 or 6561 deterministic computations are required in
order to propagate the distributions of all eight parameters for a first or second or-
der Probabilistic Collocation approximation respectively. The RANS computation
of the NACA0012 airfoil on the grid of 100,000 cells runs in the order of 10 CPU
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Chapter 8: Two-step approach for multiple uncertain parameters

hours on an AMD Opteron 2800 MHz processor. A first or second order Probabilistic
Collocation approximation is, therefore, not feasible for this problem for all param-
eters simultaneously. To be able to perform uncertainty quantification, the two-step
approach is employed. The sensitivity analysis only requires 17 deterministic solves
for all eight parameters. After that only the probability distributions of the most
important parameters are propagated.

8.2.1 Step I: Identifying the most important parameter

In this section the lift and drag forces and coefficients are considered as the main
output of interest. The scaled sensitivity derivatives (equation (8.3)) of the lift and
drag forces are shown in figure 8.3. Figure 8.4 shows the scaled sensitivity derivatives
for the lift and drag coefficients. The notation of the scaled sensitivities is for example
LŨ = σU∂L/∂U for the scaled sensitivity derivative of the lift force L with respect
to the free stream velocity. Clearly, the conclusions depend on the output of interest.
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(see figure caption on the next page)
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Figure 8.2: Uncertain input parameters (a) velocity, (b) angle of attack, (c) thickness,
(d) camber, (e) pressure, (f) temperature, (g) viscosity, and (h) turbulence intensity;
the cumulative distribution functions are shown by the blue line (–) and the probability
density functions are indicated by the green line (–).

The sensitivity derivatives show the effects of the parameters separately. The user
should, therefore, be careful when selecting the most important parameters, because
combined effects are not taken into account in this step.

Since the forces depend on the dynamic pressure, the velocity is most dominant in this
case. Also the angle of attack shows significant variation, as well as the camber for the
lift force. For the coefficients, however, figure 8.4 shows that the expected coefficient
of variation are differently distributed. The expected coefficient of variation of the lift
coefficient is up to 7%, mainly due to an uncertain angle of attack and camber. The
other parameters are not important for the lift coefficient. The maximum coefficient
of variation of the drag coefficient is about 2.5%, due to uncertain angle of attack. All
other parameters are shown to contribute less than 1% coefficient of variation in the
drag coefficient. Based on these observations, further computations are performed for
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Chapter 8: Two-step approach for multiple uncertain parameters

uncertain velocity, angle of attack, and camber.
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LŨ Lα̃ Lt̃ Lc̃ Lp̃ LT̃ Lν̃ LĨ
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Figure 8.3: Scaled sensitivity derivatives of the lift L (a) and drag D (b) forces.

8.2.2 Step II: Propagating the probability distributions

The probability distribution functions of the most influential parameters: free stream
velocity, angle of attack, and camber, are propagated using the Probabilistic Collo-
cation method for p =1, 2, and 3, requiring 8, 27, and 64 deterministic computations
respectively. The convergence of the Probabilistic Collocation method is checked
by estimating the error using an approximation of one order higher, given by equa-
tion (2.21). The resulting convergence of the Probabilistic Collocation method for
the lift and drag forces is shown in figure 8.5. In order to estimate the error of the
third order approximation a fourth order computation was performed (requiring 125
deterministic solves). Figure 8.5, A estimated error drop of more than two orders of
magnitude compared to the zeroth order is observed for a second order approximation.
Since it is known that the forces depend quadratically on the free stream velocity, a
second order approximation was expected to be appropriate here. Further results are,
therefore, obtained from a second order Probabilistic Collocation approximation. So
a total of 27 deterministic solves are required for the following results. Note that 7
computations were already performed for the sensitivity analysis in step I.
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Figure 8.4: Scaled sensitivity derivatives of the lift Cl (a) and drag Cd (b) coefficients.

The statistics of the lift and drag are summarized in table 8.3. The deterministic com-
putations with the mean values for all uncertain parameter result in: L = 3395.763
N, D = 79.41934 N, Cl = 0.5544, and Cd = 0.012966. The difference between deter-
ministic and mean values of the coefficients are less than one count (a lift count is
defined as 10-3, and a drag count as 10-4). This difference is negligible. On average
the performance of the airfoil remains the same with the assumed uncertainties. The
input uncertainties, however, result in possible variations of the output. A good in-
dication for the variability of the output is the coefficient of variation (CV ), defined
as CV = σ/µ. The lift and drag force show a coefficient of variation of 12.59% and
10.39% respectively. The coefficient of variation of the lift and drag coefficients of
7.24% and 2.56% is smaller. These variations correspond very well with expected
coefficients of variation based on the sensitivity analysis in section 8.2.1.

Figure 8.6 shows the distribution functions of the lift and drag forces, which look simi-
lar to the truncated normal input distribution. However, some skewness is introduced
since L and D ∼ U2. The mean values are the most probable points and points away
from the mean have less probability to occur. The distributions of the lift and drag
coefficients are shown in figure 8.7, which show no skewness. The drag coefficient has
a small variation. All possible values fall inside an interval of 24 dragcounts, whereas
the interval of all possible values of the lift coefficients covers about 300 liftcounts,
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Figure 8.5: Convergence of the Probabilistic Collocation method for the lift L and
drag D forces with respect to the polynomial chaos order p.

Table 8.3: Statistics of the solution resulting from uncertain free stream velocity U ,
angle of attack α and airfoil camber c using a second order Probabilistic Collocation
expansion.

Quantity Mean µ
Standard Minimal Maximal

CV
deviation σ value value

Lift force L [N] 3404.991 428.602 1923.069 5408.222 12.59%
Lift coefficient Cl 0.5543 0.0401 0.402108 0.7043135 7.24%
Drag force D [N] 79.86150 8.29917 53.74992 113.9887 10.39%

Drag coefficient Cd 0.013004 0.000333 0.012019 0.014354 2.56%

which is large.

The variations in lift and drag are a direct consequence of variations in the pressure
and skinfriction on the surface of the airfoil. Figure 8.8 shows the pressure distribution
on the surface of the airfoil. The dashed lines indicate the interval which contain 100%
of all possible outcomes. The shading presents the probability of the solution, dark
blue means a high probability, white is no probability. Firstly, figure 8.8(a) shows the
relative pressure P/P0, where P0 is the free stream pressure. Secondly, figure 8.8(b)
shows the pressure coefficient CP = (P − P0)/(1

2ρU2
0 ), which is much less affected

by the uncertain parameters. The figures show that a large contribution on the
uncertainty bounds of the relative pressure is due to the dynamic pressure.

Figure 8.9(a) shows the skinfriction on the surface of the airfoil. The variation of
the skinfriction is much less than the variation of the pressure. This results in less
variation in drag compared to lift. The skinfriction coefficient Cf = τw/(1

2ρU2
0 ) on

the surface is shown in Figure 8.9(b), which turns out to be insensitive to the input
uncertain parameters. As a result the drag coefficient shows a low coefficient of
variation.
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Figure 8.6: Distribution functions of the lift and drag forces resulting from uncertain
U , α, and c using a second order Probabilistic Collocation approximation.
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Figure 8.7: Distribution functions of the lift and drag coefficients resulting from
uncertain U , α, and c using a second order Probabilistic Collocation approximation.
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Chapter 8: Two-step approach for multiple uncertain parameters

(a) Relative pressure P/P0 [-] (b) Pressure coefficient CP [-]

Figure 8.8: Relative pressure P/P0 and pressure coefficient CP on the surface of the
airfoil. The dashed lines (- -) indicate the interval that covers all possible outcomes.
The shaded area indicates the probability of the solution.

(a) Skinfriction τw [N] (b) Skinfriction coefficient Cf [-]

Figure 8.9: Skinfriction τw and skinfriction coefficient Cf on the lower (- -) and upper
(- -) surface of the airfoil. The dashed lines indicate the interval that covers all possible
outcomes. The shaded area indicates the probability of the solution.
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8.3 Summary

8.3 Summary

In this chapter a two-step approach was adopted to efficiently treat multiple uncer-
tain parameters. The first step is a sensitivity analysis to find the most important
parameters. This was done by a first or second order Probabilistic Collocation ap-
proximation, depending on the input distribution of the uncertain parameters. The
sensitivity derivatives were scaled with the standard deviation of the uncertain pa-
rameters to get an estimation of the effect on the solution. No interactions between
parameter are taken into account in this step. For the second step, a higher order
Probabilistic Collocation approximation was used to propagate only the uncertainty
of the most important parameters.

This approach was demonstrated on a flow simulation around a NACA0012 airfoil
with 8 uncertain parameters. The senstivity analysis required 17 computations and
the second order propagation 27 of which 7 were already performed during the sen-
sitivity analysis. The total amount of computations adds up to 37, which is an ac-
ceptable amount for the additional information that is obtained. If all 8 parameters
would have been propagated simultaneously, a first or second order Probabilistic Col-
location approximation requires 256 or 6561 deterministic simulations, respectively.
Due to dependence on the dynamic pressure, and therefore quadratic dependence on
the uncertain free stream velocity, the dimensional quantities showed a much larger
variability than the dimensionless coefficients.
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CHAPTER 9

A Probabilistic Radial Basis Function
approach

In case of multiple uncertain parameters the amount of deterministic computations
grows rapidly. For the Probabilistic Collocation method the number of points is
equal to (p + 1)d, with p the order of the approximation and d the number of un-
certain parameters. As an alternative sparse grid approaches [Gerstner and Griebel
(1998); Xiu and Hesthaven (2005); Ganapathysubramanian and Zabaras (2007)] can
be used to increase the efficiency. Quadrature based methods, like the Probabilistic
Collocation method, rely on a fixed number of collocation points and cannot give
a result when one point is missing due to a deterministic solver that does not con-
verge. For non-intrusive Polynomial Chaos methods the number of coefficients is
M + 1 = (d + p)!/d!p!, see section B.2. Hosder et al. (2007) showed that for a ro-
bust non-intrusive Polynomial Chaos approximation the amount of sampling points
should be twice the number of coefficients that needs to be determined, i.e. 2×(M+1).
All polynomial chaos based methods use a global polynomial approximation of the
response surface.

A different approach was developed by Isukapalli et al. (1998). Their Stochastic Re-
sponse Surface Method is based on a gradient assisted polynomial approximation
of the stochastic response surface. Swiler et al. (2006) compared different response
surface approaches. Next to polynomial regression, Kriging [Jones et al. (1998);
Sacks et al. (1989)] and multivariate adaptive regression splines [Friedman (1991)]
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Chapter 9: A Probabilistic Radial Basis Function approach

have been investigated.

In this chapter the response surface is approximated using radial basis functions
(RBFs) [Buhmann (2000)] through a limited number of support points. The Prob-
abilistic Radial Basis Function (PRBF) approach for multiple uncertain parameters
is explained in the work of Loeven, Witteveen and Bijl (2007b) and Loeven and Bijl
(2008c). RBFs are used since they are known to be efficient interpolants in high
dimensional spaces. The support points can be chosen by an arbitrary sampling
strategy and, therefore, does not rely on quadrature rules. This is an advantage
for CFD applications, since it might happen that one sample does not converge.
Some quadrature rules fail if one point is missing. For the PRBF approach a new
point can be chosen close to the point that did not converge until the deterministic
solver converges. Here several combinations of different RBFs and sampling tech-
niques are investigated. Recently, RBFs [Buhmann (2000); McDonald et al. (2007);
Regis and Schoemaker (2007)] became more popular for response surface approxima-
tion in the field of optimization.

The PRBF approach is applied to three test cases. The first test case is the mass-
spring problem, with uncertain spring stiffness and mass. A comparison of several
commonly used RBFs and sampling techniques is made based on the convergence
of the mean and variance with respect to the number of samples. The second test
case is a turbulent Navier-Stokes simulation of flow around a NACA0012 airfoil with
four uncertain parameters. The free stream Mach number and angle of attack are
assumed to be uncertain, as well as the geometry of the airfoil. The NACA0012 airfoil
is parameterized by the maximum camber and the relative thickness, both treated as
an uncertainty. Thirdly, the PRBF approach is demonstrated for the RAE2822 test
case described in section 3.2. A Monte Carlo simulation using 10,000 Latin Hypercube
samples is performed to make a comparison between the Probabilistic Radial Basis
Function, Probabilistic Collocation and Monte Carlo results.

9.1 Probabilistic Radial Basis Function Approach

This section introduces the Probabilistic Radial Basis Function approach and some
commonly used RBFs. Furthermore, the sampling techniques used to obtain the
support points for the RBFs are discussed.

9.1.1 Radial Basis Functions in a probabilistic framework

Consider a problem with d uncertain parameters a1(ω), a2(ω), . . . , ad(ω). The ran-
domness of the parameters is indicated by ω ∈ Ω, which is a random event from
the set of outcomes Ω. The probability space is given by (Ω,F , P ), with F ⊂ 2Ω

the σ-algebra of events and P a probability measure. The parameter space is a d-
dimensional probability space a(ω) = {a1(ω), a2(ω), . . . , ad(ω)}. The response surface
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u(a(ω)) is approximated by:

u(a(ω)) ≈
N
∑

i=1

γiφ (ri(ω)) =

N
∑

i=1

γiφ (‖a(ω) − a(ωi)‖) , (9.1)

where N is the number of support points or centers a(ωi), and φ is the RBF, defined
as a function of the radius from the support point. Each support point corresponds
to a set of parameter values a(ωi) = {a1(ωi), a2(ωi), . . . , ad(ωi)}. The radius to the
support point a(ωi) is:

ri(ω) = ‖a(ω) − a(ωi)‖, (9.2)

where ‖ ‖ is the Euclidian norm. The support points are obtained by sampling,
which is treated in section 9.1.3. By sampling in Ω, the approximation is weighted.
For each sample ωi, the corresponding parameter values a(ωi) are computed using
the cumulative distribution functions of the uncertain parameters. The weighted
approximation results in more samples in areas of high probability. For each support
point, the problem is solved deterministically with the determined parameter settings.
Therefore, at the support points ai the solution fi is known:

u(a(ωi)) = fi, i = 1, . . . , N, (9.3)

The coefficients γi are obtained by solving the system:

Mγ = f , (9.4)

which is obtained from equations (9.1) and (9.3). The vector γ contains all coefficients
γ = (γ1, γ2, . . . , γN )T , the vector f consists of all solutions f = (f1, f2, . . . , fN )T ,
and M is the interpolation matrix with Mij = φ(‖a(ωi) − a(ωj)‖).
In this study globally supported RBFs are used, which means that each RBF influ-
ences the entire domain. The functions that are used are:� Gaussian (G): φ(r) = e−(cr)2 , positive definite� Thin plate spline (TPS): φ(r) = r2 log(r), second order conditionally positive

definite� Multiquadric biharmonic (MQB): φ(r) =
√

c2 + r2, positive definite� Inverse multiquadric biharmonic (IMQB): φ(r) =
1√

c2 + r2
, positive definite

The one-dimensional RBFs are shown in figure 9.1, for a shape parameter of c = 1.
Note that the TPS does not have a shape parameter.

If the interpolation matrix M is positive definite, the RBF is also called positive
definite. When an RBF is not positive definite a polynomial is added to the right
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Figure 9.1: The Gaussian (−), thin plate spline (- -), multiquadric biharmonic (-·-),
and the inverse multiquadric biharmonic (· · · ) RBFs, with shape parameter c = 1.

hand side of equation 9.1 to make the interpolation uniquely solvable:

u(a(ω)) ≈
N
∑

i=1

γiφ (‖a(ω) − a(ωi)‖) + p(a(ω)). (9.5)

For example, the thin plate spline RBF is second order conditionally positive defi-
nite. A kth order conditionally positive definite requires the addition of a polynomial
of order k − 1. Therefore, the thin plate spline RBF requires an additional linear
polynomial. For three uncertain parameters (d=3) this is equal to:

p(a(ω)) = β0 + β1a1(ω) + β2a2(ω) + β3a3(ω). (9.6)

The system that has to be solved to obtain the coefficients is:
[

M P
PT 0

] [

γ

β

]

=
[

f
]

, (9.7)

with Pi = [1 a1(ωi) a2(ωi) a3(ωi)] and i = 1, . . . , N is the i-th row of P for the three
dimensional case.

9.1.2 Error estimation

The error of the RBF is approximated by removing one sample from the sample set
and predicting the solution at that point using the remaining samples [Rippa (1999)].
This done for every sample and all errors are put into an error vector.

In the PRBF approach, a data set of N samples {ai} is available with known solutions
{fi} and the RBF approximation in equation (9.1):

u(a) ≈
N
∑

i=1

γiφ (ri) =
N
∑

i=1

γiφ (‖a − ai‖) , (9.1)
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where φ is the radial basis function and γi are the corresponding coefficients, the
random event ω is omitted in the notation for convenience.

Now a subset V (k) is taken, which is the RBF approximation without sample k. The
solution at sample k is approximated using the other samples by:

u(k)(ak) ≈
N
∑

i=1
i6=k

γ̄iφ (ri) =

N
∑

i=1
i6=k

γ̄iφ (‖ak − ai‖) . (9.8)

Note that for every k, a new set of coefficients γ̄i is computed. Equation (9.8) is
applied for k = 1, . . . , N and all errors are put into an error vector E, with elements:

Ek = fk − u(k)(xk), k = 1, . . . , N, (9.9)

where fk is the known solution at sample point k. A norm of E is taken to obtain
an error estimate of the approximation. Three vector norms have been explored by
Rippa (1999):

L1-norm: |E|1 =
N
∑

i=1

|Ei|, (9.10)

L2-norm: |E|2 =

√

√

√

√

N
∑

i=1

E2
i , (9.11)

L∞-norm: |E|∞ = max
i

|Ei|. (9.12)

Rippa (1999) showed that the L1 norm of the vector E resembles the RMS error of
the RBF approximation best.

Optimizing the shape parameter c

Three of the RBFs considered on page 147 contain a shape parameter c. The choice
of the value for c determines whether the function results in a more local or global
approximation near the support points. If the approximation becomes too local due
to the choice for c, the error becomes very large. On the other hand, if c is chosen
such that the approximation becomes too global, the system of equations (equation
(9.4) or (9.7)) becomes badly conditioned. So there exists an optimal value for c.
Improvements of 3 orders of magnitude of the error are observed between the optimal
c and c = 1 (see figure 9.2).

Rippa (1999) shows that the L1 norm of the vector E resembles the RMS error
of the approximated surface and shows good results for optimizing c. Tests show
indeed that minimizing the L1-norm produces slightly better values for c than the
L2-norm. The L∞-norm is not a good choice since it only takes the maximum into
account. Often this results in a value for c, which yields a worse approximation than
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Figure 9.2: L1 error for a range of values for the shape parameter c for the Gaussian
RBF (a) and the multiquadric biharmonic RBF (b).

the approximation with the non-optimized value for c. Using the L1-norm shows
improvement of the approximation in the entire domain.

Figure 9.2 shows typical graphs of the L1-norm with respect to c. Figure 9.2(a)
depicts the error norm for the Gaussian RBF. Here a smaller c leads to a more global
approximation, since the tails of the Gaussian basis function are wider than the tails
for a large c. Eventually this leads to an ill conditioned system of equations. For
the multiquadric biharmonic RBF (see figure 9.2(b)) it is the opposite. A smaller c
results in more local approximations and for larger c values the system becomes ill
conditioned. The part of the graph where the system is ill conditioned is recognized by
the large changes in error with only small variations in c. A brute force optimization
is used. This means taking a range of c values in a large interval and selecting the
c with the lowest L1 error. For single parameter cases, a brute force approach is
feasible..

9.1.3 Sampling of the support points

The following sampling techniques are considered [Swiler et al. (2006); Du et al. (1999);
Diwekar and Kalagnanam (1997); Metropolis and Ulam (1949)]:� Random sampling: N samples are taken randomly in Ω;� Latin Hypercube sampling (LHS): N samples are taken randomly in N volumes

in Ω of equal probability;
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Figure 9.3: Sampling techniques, 100 points for two random variables.� Centroidal Voronoi tessellation (CVT): The probability space is divided into
N volumes in Ω of equal probability. The N centroids of the volume are the
samples;� Halton sampling: the N samples are the first N values of the Halton sequence;� Hammersley sampling: the N samples are the first N values of the Hammersley
sequence.

Figure 9.3 shows 100 samples for two random variables using the mentioned sampling
techniques. It can be seen that the deterministic sampling techniques provide a more
homogeneous coverage than the random sampling and Latin Hypercube sampling.
The sampling of the support points is done in the domain Ω ∈ [0, 1]d, where d is
the number of uncertain parameters. The corresponding parameter values for each
support point a(ωi) = {a1(ωi), a2(ωi), . . . , ad(ωi)} are obtained by the probability
distribution functions of the uncertain parameters.

9.2 Evaluation of the radial basis functions and sam-
pling techniques

The PRBF approach using different combinations of RBFs and sampling techniques
is discussed in the next sections for the mass-spring problem with two uncertain pa-
rameters. The goal is to identify the most suitable sampling strategy and radial basis
function to be used for uncertainty quantification. A comparison between the PRBF
approach and the Probabilistic Collocation method is shown up to five uncertain
parameters for two analytic test functions.

151



Chapter 9: A Probabilistic Radial Basis Function approach

9.2.1 Mass-spring problem

The mass-spring configuration indicated by figure 9.4(a) is used to investigate the
convergence of the RBFs and sampling methods. Consider a mass m mounted on a
spring of length L in equilibrium with stiffness k. The base movement is prescribed by
the function xbase(t). The governing equations and initial conditions for this system
are:

mẍ + kx = kxbase t > 0 (9.13)

x(0) = x0 (9.14)

ẋ(0) = 0, (9.15)

where x0 is the initial position of the mass. It is assumed that the base is harmonically
excited by xbase(t) = A sin(ωt), with A = 0.1 m and ω = 0.5 s-1. For this excitation
the analytical solution is given by:

x(t) = x0 cos(ωnt) −
ωnωA

ω2
n − ω2

sin(ωnt) +
ω2

nA

ω2
n − ω2

sin(ωt), (9.16)

in which ωn =
√

k
m is the natural frequency of the system. Figure 9.4(b) shows

three deterministic solutions for ωn = 0.9, 1, and 1.1 s-1. It can be seen that a
variation in ωn leads to significant variations of the mass position x. The mass m and
spring stiffness k are assumed to be a uniformly distribution uncertain parameter,
with mean µk = 1 N/m and µm = 1 kg and both with a coefficient of variation of
CV = σ/µ = 0.1.
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Figure 9.4: The mass-spring test problem with (a) the configuration and (b) deter-
ministic solutions for values of ω2

n = 0.9, 1 and 1.1 s-1.

Comparison of radial basis functions

Figure 9.5(a) and 9.5(b) show the convergence of the relative error of the mean and
variance of the mass position at t = 10 s for uniformly distributed m and k using
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Figure 9.5: Error convergence of the different RBFs with optimized shape parameter
for the mean (a) and variance (b) of the mass position at t=10 s resulting from uncertain
mass m and spring stiffness k using CVT sampling and (c) the cumulative distribution
function of the mass position x at t=10 s obtained using the PRBF approach (–) using
16 CVT support points with the Gaussian RBF with optimized shape parameter c and
Monte Carlo simulation (- -) with 1,000,000 random samples.
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Figure 9.6: Error convergence of the mean of the mass position at t = 10 s resulting
from uncertain mass m and spring stiffness k using the Gaussian RBF with optimized
shape parameter c using random (a), Latin Hypercube (b), centroidal Voronoi tessella-
tion (c), Halton (d) and Hammersley (e) sampling.

CVT sampling. The relative error of the mean and variance are defined as
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with the reference solution xreference(t) obtained from a Monte Carlo simulation using
1,000,000 random samples. The only RBF that performs worse than the others is
the thin plate spline (TPS). The Gaussian RBF shows the smoothest decrease of
the error compared to the (inverse) multiquadric biharmonic RBFs. The cumulative
distribution function of the mass position x at t = 10 s is given in figure 9.5(c). The
distribution function is obtained using 16 CVT samples and the Gaussian RBF with
optimized shape parameter c, the result shows good correspondence with the Monte
Carlo simulation using 1,000,000 random samples.
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Chapter 9: A Probabilistic Radial Basis Function approach

Comparison of sampling techniques

The sampling techniques are judged on:� the convergence of the mean and variance of the solution;� the uniformity of the distribution of the support points in probability space Ω;� the ability to add extra support points for a higher accuracy.

Convergence of the mean and variance

The effect of the sampling of the support points on the convergence of the mean is
shown in figure 9.6. The Gaussian RBF is used for the response surface approxi-
mation. No significant difference exists between the sampling techniques, the error
convergence of the variance shows similar results. This is corresponds with obser-
vation of Swiler et al. (2006). Only the CVT and Halton sampling show a smooth
decrease of the error.

Uniformity of the support points

A uniform distribution of the samples in probability space is important for the sta-
bility of the RBFs. When two samples are close to each other, the resulting system
of equations for the coefficients of the RBFs becomes nearly singular. Figure 9.3
shows the distribution of 100 samples in a two-dimensional parameter space. The
most homogeneous distribution of the samples in probability space is obtained by the
CVT sampling, also in higher dimensions. Also the Halton and Hammersley sam-
pling result in a uniformly covered space. This depends, however, on the number of
stochastic dimensions and the number of samples. Random sampling result in a less
homogeneous distribution. Also the Latin Hypercube sampling, although less severe,
can result in samples that are close to each other.

Ability to add a support point

Two of the investigated sampling methods have the ability to add support points,
namely random and Halton sampling. The other three sampling methods, Hammer-
sley sampling, Latin Hypercube and centroidal Voronoi tessellations, recompute the
sampling grid when more samples are required. This means that either earlier com-
puted results cannot be reused or that the uniform distribution of the samples in
probability space is not maintained.
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Halton sampling for support point sampling and Gaussian RBF for response surface
reconstruction

There was no significant difference between the convergence of the different sampling
techniques, so no conclusion could be drawn based on this. The Halton sampling
is chosen, based on the property that samples can be added when the accuracy is
expected to be not sufficient. In this way, the convergence of the PRBF approach can
be tracked by monitoring the change in mean and variance when a sample is added.
The solution of the added sample can be predicted based on the RBF approxima-
tion of the previously computed samples. The difference between the prediction and
the computed solution is an indication for the accuracy of the response surface ap-
proximation. Clustering of samples occurs in high dimensions [Robinson and Atcitty
(1999)] when the Halton sequence is used. To avoid this, for example a leaped Halton
sequence can be used. Based on the performed computations, the Gaussian RBF is
preferred for further use. The RBF shows the smoothest convergence and is least
affected by stability problems when solving for the coefficients γ.

9.2.2 Comparison between the PRBF approach and Probabilistic
Collocation up to 5 uncertain parameters

In order to compare the Probabilistic Radial Basis Function approach with the Prob-
abilistic Collocation method an analytic test function is used. The function is the
oscillatory Genz function [Genz (1984); Schürer (2003)]:

f(x) = cos

(

2πβ1 +

d
∑

i=1

αixi

)

, ‖α‖1 =
110

20
√

d3
, (9.18)

where x is the d-dimensional surface spanned by vector xi. Note that here the dif-
ficulty ‖α‖1 is a factor 20 smaller than the original Genz function. This is done to
obtain a response that is more representative to CFD cases. The variables xi are
assumed to be uncertain with a uniform distribution on [0,1]. The output of interest
are the mean and variance of f .

Table 9.1 shows the number of function evaluations required to obtain the mean
and variance with an accuracy of 10-3. The table is constructed from the conver-
gence plots in appendix E. For 3 uncertain parameters, the PRBF approach shows
an improvement compared to the Probabilistic Collocation method. For 5 uncertain
parameters, the Probabilistic Collocation method is not even feasible for CFD appli-
cations anymore, assuming that about 100 deterministic solves are affordable. When
the convergence for the Probabilistic Collocation method is plotted against polyno-
mial order, spectral convergence is observed. Due to the curse of dimensionality, the
number of collocation points increases rapidly. The PRBF approach requires only a
small number of additional support points with increasing dimension.
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Table 9.1: Number of function evaluations to approximate the mean and variance
with an accuracy below 10-3.

Stochastic PC PRBF
dimension mean µf variance σ2

f mean µf variance σ2

f

2 9 16 10 15
3 27 64 20 35
4 81 256 30 60
5 243 1024 40 105

9.3 Flow around a NACA0012 airfoil with 4 uncertain

parameters

In order to demonstrate the PRBF approach for a more realistic test problem, it
is applied to steady flow around a NACA0012 airfoil with uncertain Mach number,
angle of attack, thickness and maximum camber using a commercial deterministic
CFD code. The deterministic case is at an angle of attack of 5◦ and a free stream
Mach number of M=0.3. The Reynolds number is equal to 3×106. The deterministic
computations are performed using the FINE�/Hexa solver by Numeca International
on a grid of approximately 76,919 cells. Approximately 1600 cells cover the surface
of the airfoil with y+ ≤ 1. The grid layout is shown in figure 9.7. The deterministic
settings are the same as for the test case in section 5.3.1.

(a) (b)

Figure 9.7: The computational mesh layout (a) and a detailed view of the airfoil (b).

The flow is modeled by the Reynolds-averaged Navier-Stokes equations using the
Spalart-Allmaras turbulence model. The air properties are at 0 m ISA. The uncer-
tainties are present in the free stream flow conditions, i.e. the Mach number and
angle of attack, and the geometry. All parameters are assumed to have a truncated
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Gaussian distribution. The geometry of the airfoil is parametrized according to the
NACA 4-digit airfoil series parameterization. Uncertain are the thickness and max-
imum camber. The free stream Mach number has a mean µM=0.3 and a standard
deviation σM=0.03, on the interval [0.23, 0.37]. The mean angle of attack is µα=5◦

with a standard deviation σα=0.50◦, in the interval [3.84◦, 6.16◦]. The geometric pa-
rameters that represent the uncertainty are the thickness of the airfoil in percents of
the chord with mean µt=12%, a standard deviation σt=0.425% and truncated to the
interval [11.02%,12.98%] and the maximum camber in percents of the chord, which
has mean µc=0%, standard deviation σc=0.4472% and is truncated in the interval
[-1.04%,1.04%]. The uncertainty is propagated using the Probabilistic Radial Basis
Function approach, with 35 support points obtained from Halton sampling. The flow
solver is run deterministically for every support point. Figure 9.8(a) shows the pres-
sure field with isolines of the mean conditions. Figures 9.8(b) till 9.8(d) show the
pressure fields with isolines of three samples.

Figure 9.9(a) shows the convergence of the lift-over-drag ratio with respect to the
number of samples for different values of the shape parameter c using the Gaussian
RBF. The shape parameter determines the width of the Guassian function. A large c
results in more localized RBFs, as a small c provides a more global RBF. Figure 9.9(b)
shows how the optimal c changes with the number of available support points. The
figure shows that with this low number of samples a more global RBF results in a
better approximation of the mean L/D. The mean L/D converges to 42.17, which
is 1% lower than the deterministic value of 42.59. The standard deviation becomes
σL/D = 4.051, which results in a coefficient of variation of CVL/D = (µ/σ)L/D = 9.6%.

The pressure on the airfoil surface is presented in figure 9.10. The mean pressure
is shown with uncertainty bars indicating the area of plus and minus one standard
deviation. It can be seen that the uncertain parameters result in the largest variation
in the pressure on the upper part of the airfoil, mainly near the leading edge.

9.4 Transonic flow around a RAE2822 airfoil with 3 un-
certain parameters

In this section, transonic flow around a RAE2822 airfoil is considered. The test
case is the same as discussed in section 3.2. The Probabilistic Radial Basis Func-
tion approach is applied to the same test case. The results are compared with the
Probabilistic Collocation results and a Monte Carlo simulation using 10,000 Latin
Hypercube samples.
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Chapter 9: A Probabilistic Radial Basis Function approach

(a) M=0.3, α=5◦, t=12%, c=0% (b) M=0.261, α=4.73◦, t=12.7%, c=-0.01%

(c) M=0.330, α=3.88◦, t=11.9%, c=0.62% (d) M=0.322, α=5.64◦, t=11.4%, c=-0.57%

Figure 9.8: Pressure field and isolines (same scale) of the mean conditions (a) and for
three samples (b), (c), and (d).
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Figure 9.9: The convergence of the mean lift-over-drag ratio with respect to the
number of samples for varying shape parameter c using the Gaussian RBF (a), the
green line with diamonds (—�) indicates the L/D for the optimal shape parameter copt

(b). The deterministic value is indicated by the dashed red line (- -).
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Figure 9.10: The mean pressure (–) along the surface of the airfoil with the bars
indicating the standard deviation of the pressure, obtained using the Gaussian RBF
with optimized shape parameter.
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9.4.1 Test case settings

The flow parameters are set according to Cook et al. (1979), i.e. the mean flow Mach
number is M∞ = 0.734, the angle of attack is α = 2.79◦, and the Reynolds number is
6.5× 106. The computations are performed on a grid of 76,063 cells. About 800 cells
are present on the surface of the airfoil with y+ ≤ 1. The computations are converged
to a relative residual of 10-10 to eliminate the iteration error.

Three uncertain parameters are considered simultaneously, which are the free stream
Mach number, the angle of attack and the relative thickness. The uncertain parame-
ters have normal distributions, as shown in figure 3.7. The free stream Mach number
has a mean of µM=0.734 and a standard deviation of σM=0.005. The angle of at-
tack has a mean and standard deviation of µα=2.79◦ and σα=0.1◦. For the relative
thickness, the mean and standard deviation are µt=1 and σt=0.005. This results in
coefficients of variation CV = σ/µ of 0.68%, 3.58%, and 0.5% respectively.

9.4.2 Results of the Probabilistic Radial Basis Function approach

Table 9.2 shows the mean and standard deviation of the lift and drag coefficient. The
results of the PRBF approach are well within 1 count (10-3 and 10-4 respectively).
With only 10 support points, the PRBF approach yields accurate results. Although
the Probabilistic Collocation method shows spectral convergence and matches the
Monte Carlo results with a low order approximation, the number of collocation points
has to be 8, 27, 64, or more. This shows the benefit of the free choice of the support
points in the PRBF approach. The numbers of table 9.2 are shown in figure E.2 in
appendix E. The figures show that the PRBF results quickly are within 1% or 1 count
from the mean and standard deviation.

Table 9.2: Results of the Probabilistic Radial Basis Function approach, the Probabilis-
tic Collocation method and a Monte Carlo simulation using 10,000 Latin Hypercube
samples.

Number of Cl Cd

support pts mean µ std σ mean µ std σ

5 0.7701 0.01814 0.01869 0.002305
10 0.7694 0.01635 0.01880 0.002257
15 0.7697 0.01656 0.01881 0.002247
20 0.7695 0.01643 0.01882 0.002265
30 0.7699 0.01651 0.01883 0.002263
40 0.7695 0.01652 0.01882 0.002235
50 0.7698 0.01657 0.01883 0.002245

PC p=2 (27 pts.) 0.7698 0.01652 0.01883 0.002252

MC 10,000 LHS 0.7698 0.01652 0.01883 0.002254
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Figure 9.11: Probability density function (histogram) and cumulative distribution
function of the lift coefficient Cl of the RAE2822 airfoil with uncertain free stream
Mach number, angle of attack, and relative thickness. The figures shows the result of a
Monte Carlo simulation using 10,000 Latin Hypercube samples, a Probabilistic Radial
Basis Function approximation using 15 support points and a second order Probabilistic
Collocation approximation using 27 deterministic solves.

Figures 9.11 and 9.12 show the probability density function as a histogram and the
cumulative distribution function of Cl and Cd. The figures include the results from
the Probabilistic Radial Basis Function approach using 15 support points, the Prob-
abilistic Collocation method using a second order approximation and a Monte Carlo
simulation with 10,000 Latin Hypercube samples. The Probabilistic Collocation re-
sults are discussed in more detail in section 3.2. Both distributions are close to a
normal distribution, which was the distribution of the uncertain input parameters.
The probability density function of Cd (figure 9.12) shows some skewness. A close
agreement between all methods is observed, where the PRBF uses the least amount
of CFD simulations.

9.5 Summary

The Probabilistic Radial Basis Function approach was shown to be a good uncertainty
quantification method for cases with multiple uncertain parameters. Although the
method does not show spectral convergence, the error of the mean and variance
quickly decreases till acceptable levels (0.1-1%) with a low amount of support points.

Five different sampling strategies have been evaluated, i.e. random, Latin Hypercube,
centroidal Voronoi tesselation, Halton, and Hammersley sampling. The convergence
of the PRBF was not afffected, so the choice of sampling strategy was made based
on other properties. Halton sampling was used for further computations, since it
allows the addition of new support points when a higher accuracy is required without
disregarding the previously performed simulations.
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Figure 9.12: Probability density function (histogram) and cumulative distribution
function of the drag coefficient Cd of the RAE2822 airfoil with uncertain free stream
Mach number, angle of attack, and relative thickness. The figures shows the result of a
Monte Carlo simulation using 10,000 Latin Hypercube samples, a Probabilistic Radial
Basis Function approximation using 15 support points and a second order Probabilistic
Collocation approximation using 27 deterministic solves.

Four RBFs have been used, i.e. the Gaussian, thin plate spline, multiquadric bi-
harmonic, and the inverse multiquadric biharmonic RBFs. The thin plate spline
performed worse than the other three. The Gaussian RBF is used for the reconstruc-
tion of the weighted response surface based on the smooth convergence and the RBF
showed no stability problems when solving for the coefficients. The shape parameter
is optimized to adapt the RBF optimally to the available support points and response.

The flow test cases demonstrate that the PRBF approach yields satisfactory results
using only 10-35 support points. A big advantages for CFD applications is the ability
to freely choose the support points, it does not rely on quadrature rules. If the flow
solver does not convergence, one can choose a new point in the neighborhood and still
maintain the ability to approximate the response correctly. Furthermore, the number
of support points can be chosen according the available computational resources and
required accuracy. A Monte Carlo simulation using 10,000 Latin Hypercube samples
was performed for the flow around a RAE2822 airfoil with 3 uncertain parameters.
Close agreement with the PRBF approach was shown, using only 15 support points.
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CHAPTER 10

Conclusions

The conclusions are divided into two parts. First some general conclusions regarding
the objectives of this thesis are presented. Secondly, conclusions on each chapter are
drawn.

10.1 General conclusions

The main objective of this research was to obtain efficient approaches for uncertainty
quantification in computational fluid dynamics (CFD) simulations, where the focus
is on practical application of the method to a wide range of test cases.

Based on the results in this thesis, it can be concluded that the use of the Probabilis-
tic Collocation method, and adapted versions, are capable of efficiently propagating
uncertainties in CFD simulations. The development of the Probabilistic Radial Basis
Function approach provided an efficient alternative for cases with multiple uncertain
parameters.

Based on the experience with the test cases, it can be concluded that there is not
a single method that is most efficient for all possible cases. However, by using the
knowledge from the case, it is still possible to efficiently propagate uncertainties.
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Efficient uncertainty propagation

In the search for an efficient uncertainty propagation method, the Probabilistic Collo-
cation method was developed. The Probabilistic Collocation method shows spectral
convergence with respect to the order of approximation for many test cases. How-
ever, there are cases where the method fails or becomes too computationally intensive.
These are cases where the response contains discontinuities, strong gradients or be-
comes more nonlinear in time (which can happen in unsteady simulations). For these
cases the global polynomial approximation of the response is not capable to capture
the features that are present. Modifications of the Probabilistic Collocation method
are able to solve some of the issues. For example a multi-element formulation can
adapt to discontinuities and a time-independent parameterization is able to maintain
a constant accuracy in time.

Geometric uncertainties

When geometric uncertainties, that affect the shape of the model, are present in a
CFD simulation, a new grid has to be constructed for every collocation point in the
Probabilistic Collocation method. A grid deformation routine was used to efficiently
compute a new computational grid for every collocation point. Since the deviations
from the base line configuration (mean) are in general small, the grid deformation
does not reduce the mesh quality significantly. Test cases show that geometrical
uncertainties have a significant influence on the performance, and should, therefore,
be taken into account in simulations.

Multiple uncertain parameters

When multiple uncertain parameters are present, the Probabilistic Collocation method
suffers from the curse of dimensionality. The number of collocation points that is re-
quired, even for low orders of approximation increases exponentially with the number
of uncertain parameters. For CFD simulations, this implies that if one is able to per-
form in the order of 100 deterministic computations, maximal 6 uncertain parameter
can be propagated linearly.

In order to efficiently propagate multiple uncertainties, two approaches have been fol-
lowed. First a Two-Step approach, where the uncertain parameters are first screened
using a sensitivity analysis. In the second step, the probability density functions
of the most important uncertain parameters are propagated using the Probabilistic
Collocation method.

The second approach was the Probabilistic Radial Basis Function approach, where
radial basis function were used to approximate the high-dimensional surface. For
some cases, screening might still result in many uncertain parameters that are equally
important. Radial basis functions are known for their good interpolation properties
in high-dimensional spaces. The test cases showed that for 3 or more uncertain
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parameters, the Probabilistic Radial Basis Function approach is a good alternative
approach for the Probabilistic Collocation method.

10.2 Conclusions based on each chapter

The Probabilistic Collocation method (chapter 2)

The Probabilistic Collocation method was developed, based on the polynomial chaos
framework. It shows spectral convergence with respect to the polynomial chaos or-
der for arbitrarily distributed uncertain parameters. The Probabilistic Collocation
method is non-intrusive, enabling the use of existing (commercial) CFD solvers. A
big advantage with respect to the intrusive Galerkin Polynomial Chaos method is the
fact that propagation through nonlinear models do not result in an increase of com-
putational effort. Furthermore, the uncertainty is trivially propagated to functionals
of the solution like integral quantities. This was made clear in the performed test
cases, where the output of interest was for example the lift and drag of an airfoil, the
minimum and maximum pitch angle or the efficiency of a compressor rotor.

A comparison of the Probabilistic Collocation method with some existing methods
for one uncertain parameter demonstrated the spectral convergence with respect to
the polynomial chaos order. It was shown that the Probabilistic Collocation method
was more efficient (more accurate with respect to the amount of computational work)
than the intrusive Galerkin Polynomial Chaos method, the Non-Intrusive Polyno-
mial Chaos method, and the Stochastic Collocation (MH) method for arbitrarily
distributed uncertain parameters.

Flow applications of the Probabilistic Collocation method (chapter 3)

The Probabilistic Collocation method was applied successfully to two flow applica-
tions. Since the method is non-intrusive, a commercial CFD solver could be employed.
Subsonic and transonic flow around an airfoil have been considered.

The first test case is a simulation of subsonic turbulent flow around a NACA0012
airfoil where the free stream Mach number was assumed to be uncertain with a coef-
ficient of variation of 5%. A Monte Carlo simulation using 10,000 Latin Hypercube
samples has been performed to validate the Probabilistic Collocation method. Good
agreement has been found between the Monte Carlo simulation and a second order
Probabilistic Collocation approximation, requiring three deterministic solves. The
coefficients of variation of the lift and drag are 10.5% and 9.45% respectively. This
is an amplification of a factor 2 of the coefficient of variation of the uncertain free
stream Mach number. The mean and standard deviation field of the static pressure
showed that the flow is most sensitive to the uncertain freestream Mach number near
the suction peak at the leading edge.

The second test case was transonic turbulent flow around a RAE2822 airfoil. Uncer-
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tainties were present in the free stream Mach number, angle of attack and relative
thickness of the airfoil. The uncertainties were propagated first separately to see the
effect of each parameter on the solution. After that, all three uncertainties are prop-
agated simultaneously to include interactions between the parameters. The results
show that the flow is most sensitive to uncertainties near the shock wave. Especially
the drag coefficient turns out to be sensitive, since the coefficients of variation of the
uncertain parameters were significantly amplified. A second order Probabilistic Collo-
cation approximation was used to propagate the uncertain parameters. This required
3 computations for the separate cases and 27 for the simultaneous case.

Modifications of the Probabilistic Collocation method (chapter 4)

For test cases with a discontinuous response or time dependent test cases for which the
response changes with time, the standard Probabilistic Collocation method cannot
readily be applied. With some modifications, it is possible to efficiently propagate
uncertainties in such cases.

First a stall flutter model was shown where the model contains a nonlinearity in
the form of a step function. Furthermore, the output of interest is the minimum
and maximum pitch angle of the airfoil in the limit state. For both reasons the
intrusive Galerkin Polynomial Chaos method cannot be applied efficiently to this
test case. The response of the model can contain a bifurcation point. In that case,
some solutions are damped, while other show a limit cycle oscillation. When the
bifurcation is present, the standard Probabilistic Collocation approximation fails.
For this case a multi-element formulation in combination with search samples was
successfully applied to uncertainty analysis of the stall flutter model. The result was
a stochastic bifurcation plot, which showed the mean of the minimum and maximum
pitch angle with uncertainty bars indication 99.8% of all possible values. Furthermore,
the probability distribution of the bifurcation point was computed.

The second test case was a low Reynolds number flow around a static cylinder. The
Reynolds number is assumed to be uncertain, to investigate the effect on the response
of the lift and drag coefficient. In this case the response surface becomes more non-
linear in time. This is caused by a frequency difference in the solution due to the
presence of the uncertain parameter. This requires an increasing polynomial chaos
order to maintain the same accuracy. The Probabilistic Collocation method was ap-
plied to time independent parameters that describe the oscillatory response. These
parameters are the amplitude, mean value, period and phase. The result is a time
independent accuracy, so a constant polynomial chaos order can be used regardless of
the simulation time. The period-1 Probabilistic Collocation approach was successfully
applied to vortex shedding from a circular cylinder. It was shown that the frequency
and mean value are not sensitive to variation of the Reynolds number. On the other
hand, the amplitude and the phase are highly sensitive to the Reynolds number, the
input uncertainty of 5% was amplified to an output uncertainty in the order of 10%.
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Geometric uncertainties (chapter 5)

Imperfections and wear are inherently present in real life, and can be treated as
uncertainties in simulations. These uncertainties can have a significant effect on
the performance and have, therefore, been investigated in this chapter. In order
to propagate the probability density functions of the uncertain geometric parameters
to the performance parameters of the model, the Probabilistic Collocation method
was used.

First a low fidelity flow model was used to asses the effect of uncertainties in three
geometrical parameters on the performance of a NACA5412 airfoil. A coefficient of
variation of 10% was assumed for the maximum camber, maximum camber location,
and relative thickness, with a truncated normal distribution. The maximum camber
affected the polar in the complete range from α=0 to 15◦. The maximum camber
location showed no effect on the performance of the airfoil. The tickness mainly
results in large standard deviations at higher angles of attack.

Secondly, a CFD test case was shown with two uncertain geometrical parameters (i.e.
maximum camber and thickness) for subsonic and transonic flow around a NACA0012
airfoil. To efficiently propagate the uncertainties, a grid deformation technique is used
to deform the grid of the case with the mean values of the geometric parameters to the
grid required for each collocation point. For the subsonic case, the lift coefficient was
shown to be most sensitive to the geometric variations. The transonic case results in a
shock wave at the upper surface of the airfoil. The standard Probabilistic Collocation
approximation fails near the shock due to the discontinuity in the response. To be able
to accurately approximate the uncertainty bars of the pressure, a linear approximation
is used in the area where the discontinuity is present. This area was obtained from
the probability density function of the shock location. The discontinuity was treated
successfully in this way and required no additions deterministic solves.

Uncertainty analysis of turbulence model parameters (chapter 6)

The k-ǫ turbulence model and the standard wall functions contain several parameters
that are tuned to computed or measured simplified flow problems. Some parameters
are related to each other to assure physical laws are maintained. Finally, 5 parameters
were analyzed as uncertainties in the model, i.e. Cµ, C2,ǫ, σk, κ, and C. Two test
cases have been performed, first a fully developed turbulent boundary layer on a flat
plate and turbulent flow around a NACA0012 airfoil.

As a general conclusion, the effect of uncertainties in the parameters on the flow
solution is case dependent. For both performed test cases, different effects were shown.
In case of the turbulent flat plat, the wall function parameter κ was dominant with a
coefficient of variation of 4.3% for the drag coefficient. Although the drag coefficient
was not much affected, C and Cµ had a significant contribution to the standard
deviation of the skinfriction coefficient along the plate. The introduction of different
flow topologies such as a stagnation point, a suction peak, and a wake lead to different
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conclusions about the relative importance of coefficients for the airfoil test case. Only
Cµ and κ resulted in maximum 0.2% and 3% coefficient of variation for the lift and
drag coefficient respectively.

Analysis of operational uncertainties for a transonic axial flow compressor
(chapter 7)

Compressor rotors are components of a gasturbine that are highly sensitive to op-
erational and geometrical uncertainties. The Probabilistic Collocation method was
used to propagate operational uncertainties through simulations of NASA Rotor 37.
Validation of the Probabilistic Collocation method with a Monte Carlo simulation us-
ing 10,000 Latin Hypercube samples demonstrated that the Probabilistic Collocation
method can successfully be applied to a turbomachinery case.

The total pressure profile at the inlet of the rotor is assumed to be uncertain. A
symmetric beta distribution was used for the pressure profile, with the standard de-
viation such that the uncertainty is in the same order of the measurement accuracy
reported in literature. The mass flow was shown to be the most sensitive to the un-
certainty, while the efficiency is least affected. The compressor maps are constructed
as functions of the mass flow. It was shown to be important to take the uncertainty
in the total pressure profile at the inlet into account. The standard deviation of the
static pressure in the flow field around the blade showed that the largest variation is
present near the shock wave and mainly in the region of the strongest shock, which
is near the tip of the blade.

Two-Step approach for multiple uncertain parameters (chapter 8)

To reduce the number of deterministic computations in case of multiple uncertain
parameters, a two-step approach was employed. The first step is a sensitivity analysis
to find the most important parameters. This was done by a first or second order
Probabilistic Collocation approximation, depending on the input distribution of the
uncertain parameters. The sensitivity derivatives were scaled with the standard de-
viation of the uncertain parameters to get an estimation of the effect on the solution.
No interactions between parameter are taken into account in this step. For the second
step, a higher order Probabilistic Collocation approximation was used to propagate
only the uncertainty of the most important parameters.

This approach was demonstrated on a flow simulation around a NACA0012 airfoil with
8 uncertain parameters. The sensitivity analysis required 17 computations and the
second order propagation 27 of which 7 were already performed during the sensitivity
analysis. The total amount of computations adds up to 37, which is an acceptable
amount for the additional information that is obtained. If all 8 parameters would
have been propagated simultaneously, a first or second order Probabilistic Collocation
approximation requires 256 or 6561 respectively. Due to dependence on the dynamic
pressure, and therefore quadratic dependence on the uncertain free stream velocity,

168



10.2 Conclusions based on each chapter

the dimensional quantities showed a much larger variability than the dimensionless
coefficients.

A Probabilistic Radial Basis Function approach (chapter 9)

If a sensitivity analysis still results in many uncertain parameters, one has to prop-
agate all of them simultaneously. The Probabilistic Radial Basis Function (PRBF)
approach was shown to be a good uncertainty quantification method for cases with
multiple uncertain parameters. Although the method does not show spectral con-
vergence, the error of the mean and variance quickly decreases till acceptable levels
(0.1-1%) with a low amount of support points.

Five different sampling strategies have been evaluated, i.e. random, Latin Hypercube,
centroidal Voronoi tessellation, Halton, and Hammersley sampling. The convergence
of the PRBF was not affected, so the choice of sampling strategy was made based
on other properties. Halton sampling was used for further computations, since it
allows the addition of new support points when a higher accuracy is required without
disregarding the previously performed simulations.

Four radial basis functions (RBFs) have been used, i.e. the Gaussian, thin plate spline,
multiquadric biharmonic, and the inverse multiquadric biharmonic RBFs. The thin
plate spline performed worse than the other three. The Gaussian RBF is used for the
reconstruction of the weighted response surface based on the smooth convergence and
the RBF showed no stability problems when solving for the coefficients. The shape
parameter is optimized to adapt the RBF optimally to the available support points
and response.

The flow test cases demonstrate that the PRBF approach yields satisfactory results
using only 10-35 support points. A big advantage for CFD applications is the ability
to freely choose the support points, the PRBF approach does not rely on quadrature
rules. If the flow solver does not convergence, one can choose a new point in the
neighborhood and still maintain the ability to approximate the response correctly. A
Monte Carlo simulation using 10,000 Latin Hypercube samples was performed for the
flow around a RAE2822 airfoil with 3 uncertain parameters. Close agreement with
the PRBF approach was shown, using only 15 support points.
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CHAPTER 11

Recommendations

This chapter presents recommendations based on the chapters of this thesis and the
observations and experiences of the performed work. Many has been done on efficient
uncertainty quantification in computational fluid dynamics (CFD). The development
of the presented approaches and performed test cases gained a lot of insight in uncer-
tainty propagation and the application to CFD simulations. Some recommendations
directly relate to a chapter of the thesis, others provide ideas for future research and
new applications.

Efficient uncertainty propagation

The Probabilistic Collocation method is based on Gauss quadrature. Other quadra-
ture schemes may provide a good alternative for certain test cases. One can think
of sparse grid schemes or nested quadrature rules. Nested quadrature like Clenshaw-
Curtis or Gauss-Kronrod quadrature, have the advantage that a higher order approx-
imation reuses previously computed solutions. It should be investigated how they can
be used in a polynomial chaos framework, such that the convergence properties are
independent of the probability distribution of the uncertain parameters.

Furthermore, computational time can be saved by setting up the complete uncertainty
propagation cycle efficiently. This includes managing the performed deterministic
computations in such a way that computations that have to be performed due to an
increase of approximation order or due the additions of new support points can use
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the result of a computation with similar settings as an initial condition. Savings of
computational time over 50% have been observed.

Uncertainty analysis of turbulence model parameters

Turbulence models often work very well for a range of test cases and fail for others.
Therefore, to obtain a better picture of the effect of uncertainties in the turbulence
model parameters, more test cases should be performed. A good place to start are
commonly used test cases like a shear layer, an expanding jet, a bump in a channel,
etc.

Next to the k-ǫ turbulence model, it would be interesting to see the effect of uncer-
tainties of the parameters of other turbulence models, like the SST k-ω model or the
Spalart-Allmaras model. Finding suitable probability distributions for the parameters
might be a difficult task.

Analysis of operational uncertainties for a transonic axial flow compressor

For NASA Rotor 37 operational uncertainties have been investigated in this thesis.
A significant influence on the performance was found. However, geometrical uncer-
tainties will be another source of uncertainty that might have a significant influence
on the performance. For example the tip clearance and surface roughness are known
to affect the performance of the rotor [Chima (1998); Gerolymos and Vallet (1999);
Beheshti et al. (2004)].

Two-Step approach for multiple uncertain parameters

The two-step approach as presented in this thesis used the Probabilistic Collocation
method to compute sensitivity derivatives for each uncertain parameter separately. It
was assumed that the parameters are independent and have no interactions. Whether
this assumption is valid or not and the effect on the choice of important parame-
ters should be investigated in more detail. Another approach to take into account
interactions between parameters is the Elementary Effects method [Morris (1991);
Campolongo et al. (2007); Saltelli et al. (2008)].

A Probabilistic Radial Basis Function approach

The Probabilistic Radial Basis Function approach was shown to be promising method
for efficient uncertainty propgation for cases with multiple uncertain parameters. To
increase the robustness of the radial basis function approximation, a filtering technique
can be applied. This is common practice in deterministic simulations where radial
basis functions are used to approximate discontinuous functions or functions with
strong gradients.
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Robustness of uncertainty propagation methods

Many uncertainty propagation methods assume that the deterministic solutions (at
a collocation point or support point) are exact. In practice, there is numerical noise
on the solution for example due to insufficient convergence of the iterative solver or
insufficient grid quality. Noise on the deterministic solves can cause the Probabilistic
Collocation approximation to fail. Especially if this noise has the same order of
magnitude as the effect of the uncertainty. This can handle by incorporating some
regression methodology to make the method more robust. This comes at the cost of
efficiency, but for practical problems it might be worth the effort.

Accuracy of the stochastic simulation

A stochastic simulation starts from the same errors as the deterministic simulations,
like iteration and discretization error. But on top of that comes the uncertainty
propagation error. It does not make sense to propagate uncertainties at a very high
order of approximation when the deterministic solver is erroneous. Both the error of
the deterministic solver and the uncertainty propagation error should be synchronized.

Robust design optimization

The uncertainty propagation methods used in this thesis provide a good approxima-
tion of the global probability distribution of the solution. The mean and variance
are accurately determined. The next step will be to combine uncertainty propagation
with optimization to obtain a robust optimization method, i.e. optimize the mean and
minimize the variance. Both approaches utilize the response surface, so an efficient
response surface approximation benefits both the optimization and the uncertainty
propagation.

Test suite for uncertainty propagation methods

It has become clear that for uncertainty quantification there is no single method that
performs best in all cases. Just as is the case in optimization. A valuable addition
to the current work is to compare the existing methods on analytic test function
respresenting different possible responses. These tests should be done from 1 to many
uncertain parameters, where many can be defined based on a study of representative
test cases. A matrix similar to the work of Schürer (2003) should be constructed. The
matrix of Schürer (2003) shows for several test functions, which numerical integration
method performs best for a certain dimension. The test functions for the evaluation
of integration methods, however, do not represent the response surfaces observed
in the test cases performed in this thesis. For uncertainty propagation methods a
suite containing test functions should be constructed that represent response surfaces
commonly faced in practical problems.
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APPENDIX A

Commonly used probability
distributions

This appendix provides the probability density functions, cumulative distribution
functions, and relations for the mean and variance of some commenly used probability
distributions.

Normal distribution

A Normal distribution is specified by two parameters: the mean µ and the variance
σ2. The probability density function fx(x) is given by:

fx(x) =
1

σ
√

2π
exp

(−(x − µ)2

2σ2

)

, x ∈ R.

The cumulative distribution function Fx(x) is:

Fx(x) =
1

2

(

1 + erf

(

x − µ

σ
√

2

))

, x ∈ R.
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Truncated Normal distribution

A Truncated Normal distribution is a Normal distribution N(µ, σ2), which is trun-
cated on [a,b], φ(x) is the probability density function and Φ(x) is the cumulative
distribution function of the standard Normal distribution N(0, 1). The probability
density function fx(x) of the Truncated Normal distrubtion on [a,b] is given by:

fx(x) =



















0 x < a
1
σφ
(

x−µ
σ

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)

a ≤ x ≤ b

0 x > b

.

The cumulative distribution function Fx(x) is:

Fx(x) =



















0 x < a
1
σ φ
(

x−µ
σ

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)

a ≤ x ≤ b

0 x > b

.

The mean µT and variance σ2
T are:

µT = µ +

a−µ
σ φ

(

a−µ
σ

)

− b−µ
σ φ

(

b−µ
σ

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)

σ,

σ2
T = σ2






1 +

a−µ
σ φ

(

a−µ
σ

)

− b−µ
σ φ

(

b−µ
σ

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ
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φ
(

a−µ
σ

)

− φ
(

b−µ
σ

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)





2





.

Log Normal distribution

The Log Normal distribution is specified by two parameters M and S. The probability
density function fx(x) is given by:

fx(x) =
1

S
√

2πx
exp

(−(ln(x) − M)2

2S2

)

, x ∈ R
+.

The cumulative distribution function Fx(x) is:

Fx(x) =
1

2

(

1 + erf

(

ln(x) − M

S
√

2

))

, x ∈ R
+.

The mean and variance are:

µ = exp
(

M + S2/2
)

,

σ2 = exp
(

S2 + 2M
) (

exp
(

S2
)

− 1
)

.
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Uniform distribution

The Uniform distribution has a constant probability density on the interval [a,b]. The
probability density function fx(x) is given by:

fx(x) =







0 x < a
(b − a)−1 a ≤ x ≤ b
0 x > b

.

The cumulative distribution function Fx(x) is given by:

fx(x) =







0 x < a
(x − a)(b − a)−1 a ≤ x ≤ b
1 x > b

.

The mean and variance are:

µ =
1

2
(a + b),

σ2 =
1

12
(b − a)2.

Beta distribution

The Beta distribution defined on [0,1] is specified by two parameters α and β. The
Beta distribution can be translated to the arbitrary interval [a,b]. The probability
density function fx(x) is given by:

fx(x) =
(1 − x)β−1 xα−1

B(α, β)
,

=
Γ(α + β)

Γ(α)Γ(β)
(1 − x)

β−1
xα−1, x ∈ [0, 1],

where B is the beta function and Γ is the gamma function. The cumulative distribu-
tion function Fx(x) is:

Fx(x) =
Bx(α, β)

B(α, β)
= Ix(α, β), x ∈ [0, 1],

where Bx is the incomplete beta function and Ix is the regularized incomplete beta
function. The mean and variance are:

µ =
α

α + β

σ2 =
αβ

(α + β)2 (α + β + 1)
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Logistic distribution

The Logistic distribution is specified by two parameters m and b. The probability
density function fx(x) is given by:

fx(x) =
exp−(x−m)/b

b
(

1 + exp−(x−m)/b
)2 , x ∈ R.

The cumulative distribution function Fx(x) is:

Fx(x) =
1

1 + exp−(x−m)/b
, x ∈ R.

The mean and variance are:

µ = m,

σ2 = 1
3π2b2.

Weibull distribution

The Weibull distribution is specified by two parameters α and β. The probability
density function fx(x) is given by:

fx(x) = αβ−αxα−1 exp (− (x/β)
α
) , x ∈ R

+.

The cumulative distribution function Fx(x) is:

Fx(x) = 1 − exp (− (x/β)
α
) , x ∈ R

+.

The mean and variance are:

µ = βΓ
(

1 + α−1
)

σ2 = β2
[

Γ
(

1 + 2α−1
)

− Γ2
(

1 + α−1
)]

,

where Γ is the Gamma function.
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APPENDIX B

Uncertainty propagation methods

This appendix shows the implementation of the Polynomial Chaos methods for the
piston problem. The governing deterministic equations can be found in section 2.3.
Here the implementation for an uncertain spring stiffness k is shown for the Galerkin
Polynomial Chaos method [Ghanem and Spanos (1991); Xiu and Karniadakis (2002);
Witteveen and Bijl (2006a)], the Non-Intrusive Polynomial Chaos method (Hosder et al.
(2006); Walters (2003); Reagan et al. (2003)), the Probabilistic Collocation method
[Babuška et al. (2007); Loeven, Witteveen and Bijl (2007a)], the Probabilistic Collo-
cation (Tatang) method [Tatang et al. (1997)] and the Stochastic Collocation (Math-
elin) method [Mathelin and Hussaini (2003)].

B.1 Galerkin Polynomial Chaos method

The theory of the Galerkin Polynomial Chaos method is described in section 2.2.1.
The polynomial chaos expansion for the uncertain parameter k is given by:

k(ω) =

M
∑

j=0

kjΨj (ξ(ω)) , (B.1)

where Ψj are chosen to be the polynomials that are orthogonal with respect to the
probability density function of k; M + 1 is the number of polynomial coefficients.
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Since only one uncertain parameter is considered (n = 1), M +1 is equal to p +1 the
highest order polynomial. In case of a normal distribution, the cumulative distribution
function is:

Fk(k) =
1

2

(

1 + erf

(

k − µk

σk

√
2

))

. (B.2)

Rewriting this yield for k(ω) and ξ(ω):

k(ω) =
√

2σk erf−1 (2ω − 1) + µk, (B.3)

ξ(ω) =
√

2 erf−1 (2ω − 1) . (B.4)

The expansion coefficients kj in (B.1) are obtained by applying a Galerkin projection
on each polynomial basis Ψi. This yields for the coefficients:

kj = µk j = 0,

= ςµk j = 1,

= 0 j > 1.

Now all terms in the governing equations (2.31) that depend on k have to be expanded
in the polynomials Ψ as well. The following expansions are substituted into (2.31):

ρ(x, t, ω) =

M
∑

i=0

ρi(x, t)Ψi (ξ(ω)) , ρu(x, t, ω) =

M
∑

i=0

ρui(x, t)Ψi (ξ(ω)) ,

q(t, ω) =

M
∑

i=0

qi(t)Ψi (ξ(ω)) , q̇(t, ω) =

M
∑

i=0

q̇i(t)Ψi (ξ(ω)) .

Substituting this into (2.28) and (2.30) and applying a Galerkin projection on {Ψl}
results in the following set of coupled equations:

dρil

dt
=

1

2∆x
(ρui−1l − ρui+1l) , (B.5)

dρuil

dt
=

1

2∆x
(ρi−1l − ρi+1l) , i = 1, . . . , N, (B.6)

for l = 0, . . . , M , with the properties for the ghost cells at the boundaries:
[

ρ0l

ρu0l

]

=

[

ρ1l

−ρu1l

]

and

[

ρN+1l

ρuN+1l

]

=

[

ρN l

2q̇l − ρuNl

]

. (B.7)

Doing the same for the structure yields:

dql

dt
= q̇l, (B.8)

dq̇l

dt
=

−1

m (Ψ2
l )

M
∑

i=0

qi (k0ei0l + k1ei1l) +
ρN l

m
, (B.9)
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with ei0l = (Ψi, Ψl) and ei1l = (ξ(ω), Ψi, Ψl) for l = 0, . . . , M , here (·, ·) denotes
the inner product defined in equation (2.6). From these equations it is clear that
the coupling between the equations is only present in (B.9). Putting all equations
together results in a large coupled system which has the size (M + 1)2 times the
deterministic problem. The system is written as:

dx

dt
= AGPCx, (B.10)

where the system matrix AGPC has a sparse block form, which can efficiently be solved
using the Block-Gauss-Seidel algorithm (see Loeven (2005)).

B.2 Non-Intrusive Polynomial Chaos/Spectral Projec-

tion

The idea of these non-intrusive approaches (Hosder et al. (2006); Walters (2003);
Reagan et al. (2003)) is to estimate the coefficients of the polynomial chaos expansion
based on a low number of deterministic solves. The Non-Intrusive Polynomial Chaos
developed by Hosder et al. (2006); Walters (2003) takes for a polynomial chaos of
order M a set of M + 1 vectors ξi for i = 0, 1, 2, . . . , M in the random space. For one
normally distributed parameter (n = 1) the vector of a 4th order approximation is
given by ξ = {0, 1,−1, 2,−2}. The Non-Intrusive Spectral Projection of Reagan et al.
(2003) uses Latin Hypercube sampling to estimate the coefficients ūi(x, t). For each
of these samples the deterministic code is run. The polynomial coefficients of expan-
sion (2.2) are obtained by solving the following linear system:










Ψ0(ξ0) Ψ1(ξ0) . . . ΨM (ξ0)
Ψ0(ξ1) Ψ0(ξ1) . . . ΨM (ξ1)

...
...

. . .
...

Ψ0(ξM ) Ψ0(ξM ) . . . ΨM (ξM )





















ū0(x, t)
ū1(x, t)

...
ūM (x, t)











=











u(x, t, ξ0)
u(x, t, ξ1)

...
u(x, t, ξM )











. (B.11)

The intrusive Galerkin approach results in the exact polynomial coefficients ui(x, t),
while the non-intrusive approach yields approximations of the polynomial coefficients
ui(x, t). The stochastic solution u(x, t, ω) is reconstructed using equation (2.2). The
mean µu and the variance σ2

u of the solution are determined using:

µu = u0, (B.12)

σ2
u =

M
∑

i=1

ui(x, t)2
(

Ψ2
i

)

. (B.13)

These expressions follow from the definition of the mean and variance.

For the piston problem with uncertain k, this means that for k expansion (B.1) is
used. The piston problem is solved deterministically for the values of k that corre-
spond with ξ = {0, 1,−1, 2,−2}. The polynomial chaos coefficients of the solution are
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obtained by solving equation (B.11). Later, Hosder et al. (2007) found that taking
2 × (M + 1) Latin Hypercube samples results in a better approximation of the poly-
nomial chaos coefficients with less sensitivity to the samples. System (B.11) becomes
overdetermined and is solved using a least squares approach.

B.3 Probabilistic Collocation

The theory of the Probabilistic Collocation method is explained in section 2.2.2. The
uncertain spring stiffness k is expanded as:

k (ω) =

Np
∑

i=1

kihi (ω) .

The coefficients ki are calculated by mapping the collocation points ωi from the
stochastic space into the parameter space by the cumulative distribution function of
k. The collocation points ω are computed based on the probability density function
of k. The dependent parameters in the piston problem are expanded as follows:

ρ (ω) =

Np
∑

i=1

ρihi (ω) , ρu (ω) =

Np
∑

i=1

ρuihi (ω) ,

q (ω) =

Np
∑

i=1

qihi (ω) , q̇ (ω) =

Np
∑

i=1

q̇ihi (ω) .

Substituting this in (2.28) and (2.30) and applying the quadrature rule to approximate
the Galerkin projection on each basis {hl}, results in the following set of equations:

dρil

dt
=

1

2∆x
(ρui−1l − ρui+1l) , (B.14)

dρuil

dt
=

1

2∆x
(ρi−1l − ρi+1l) , i = 1, . . . , N, (B.15)

with the properties for the ghost cells at the boundaries:

[

ρ0l

ρu0l

]

=

[

ρ1l

−ρu1l

]

and

[

ρN+1l

ρuN+1l

]

=

[

ρN l

2q̇l − ρuNl

]

. (B.16)

and the structure:

dql

dt
= q̇l, (B.17)

dq̇l

dt
=

−kl

m
ql +

ρNl

m
, (B.18)

182



B.4 Probabilistic Collocation (T)

for l = 1, . . . , Np. As can be seen, this set of equations is exactly the set of determin-
istic equations:

dxi

dt
= Aixi for i = 1, . . . , Np, (B.19)

in which:

xi =

[

xf i

xsi

]

and Ai =

[

Af i Afsi

Asf i Asi

]

,

where xf i contains the fluid properties ρi and ρui and xsi the position qi and velocity
q̇i of the piston corresponding to collocation point ωi.

As can be seen this set of equations is fully decoupled and therefore trivially paral-
lelizable. The deterministic piston problem is solved for every ki, this results in Np

values for the piston position qi. Through these points the Lagrange interpolating
polynomial chaoses of order Np − 1 are constructed.

B.4 Probabilistic Collocation (T)

This section explains the Probabilistic Collocation method of Tatang et al. (1997),
indicated by (T). Consider the general model equation (2.1):

L (x, t, ω; u (x, t, ω)) = S(x, t, ω), (B.20)

where the random event ω is introduced through an uncertain parameter a(ω), which
can be present in the operator L, the source term S or the initial or boundary condi-
tions. For convenience of notation, the space and time dependence have been ommited
from here on. The Probabilistic Collocation (T) method starts from the polynomial
chaos expansion (2.2) of the solution u for one uncertain parameter:

û ≈
M
∑

i=0

ui(Ψi(ξ(ω)), (B.21)

where û indicates that the expansion is an approximation of u. Note that ξ(ω) is a
linear transformation of the uncertain parameter a(ω), so the model (B.20) can be
written as:

u = f(ξ(ω)), (B.22)

where f represents the response surface of u with respect to ξ. A residual of the
model is defined as:

R (ui, ξ(ω)) = û(ξ(ω)) − u(ξ(ω)). (B.23)
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The coefficients ui can be determined by requiring that the residual and each poly-
nomial Ψi are orthogonal to each other:

∫

ξ

R ({ui}, ξ(ω))Ψi(ξ(ω))dξ = 0 i = 0, . . . , M. (B.24)

This integral can be approximated using Gaussian quadrature, which results in:

R (ui, ξ(ωj)) = 0 i = 0, . . . , M, (B.25)

where ωj are the collocation points. Combining equation (B.25) with equation (B.23)
yields after filling in the expansion (B.21) the same set of equation as the Non-Intrusive
Polynomial Chaos method (B.11).

The mean and variance are computed using equations (2.8) and (2.9).

µu = u0, (B.26)

σ2
u =

M
∑

i=1

u2
i

(

Ψ2
i

)

. (B.27)

The difference between the Non-Intrusive Polynomial Chaos method and the Prob-
abilistic Collocation (T) method is the choice of collocation or sampling points.
Tatang et al. (1997) uses collocation points that are equal to the Gauss quadrature
points weighted with the probability density function of the uncertain parameter, like
is done in the Probabilistic Collocation method explained in chapter 2.

For one uncertain parameter the results of the Probabilistic Collocation (T) method
are exactly the same as for the Probabilistic Collocation method as used in this the-
sis. For multiple uncertain parameter it is unclear from the work of Tatang et al.
(1997) how the collocation points are chosen. They present results for multiple un-
certain parameters, where the number of collocation points is given by (2.3), i.e.
M + 1 = (d + p)!/d!p!, where M + 1 is the number of polynomial chaos coefficients,
d the number of uncertain parameters,and p the polynomial chaos order. When
constructing quadrature rules for multiple uncertain parameters, typically a tensor
product is used. This results in Np = (p + 1)d collocation points, which results in
much more points.

B.5 Stochastic Collocation (MH)

A different spectral approach is the Stochastic Collocation (MH) method, developed
by Mathelin and Hussaini (2003). In the Stochastic Collocation (MH) method for
each collocation point the problem is solved deterministically. The Stochastic collo-
cation (MH) method is here explained for the general differential equation.

In case of the Stochastic Collocation method the distribution function of the random
variable is projected from [0, 1] on the domain [−1, 1], which is called the α domain,
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by the linear transformation

Fu (u) = 2Fu (u) − 1, (B.28)

where Fu (u) is the projected distribution function on the α domain [−1, 1] and Fu (u)
the distribution function on [0, 1]. The solution in the α domain is u(x, t, α). The α do-
main is a stochastic space which is defined according to a standard domain of orthog-
onal polynomials [−1, 1]. From the α domain Np collocation points αi are taken. The
method proposed by Mathelin and Hussaini (2003) uses Np Gauss-Legendre quadra-
ture points and Lagrange interpolating polynomials of order Np − 1 for the function
approximation. The solution u(x, t, α) is approximated by the following expansion

u(x, t, α) ≈
Np
∑

i=1

ui(x, t)hi (α) , (B.29)

with ui(x, t) the values of u(x, t, α) at the collocation points αi and hi (α) interpolating
polynomials of degree Np − 1, with hi(αj) = δij . Transformation (B.28) is applied
to the general differential equation, after which expansion (B.29) is substituted. A
Galerkin projection on each basis {hl} is applied to make the error orthogonal to the
functional space spanned by {hi}:



L (a (ω))

Np
∑

i=1

ui(x, t)hi, hl



 = (S, hl) , l = 1, . . . , Np. (B.30)

The Galerkin projection (B.30) is approximated using Gauss-Legendre quadrature.
For a general inner product (f(α), g(α)) of two functions f(α) and g(α) Gauss-
Legendre quadrature results in:

〈f(α), g(α)〉 =

Np
∑

i=1

Np
∑

j=1

Np
∑

l=1

figjhi(αk)hj(αk)wk,

=

Np
∑

i=1

Np
∑

j=1

Np
∑

k=1

figjδikδjkwk,

=

Np
∑

k=1

fkgkwk, (B.31)

where wk are the quadrature weights corresponding to the collocation points αk. The
resulting set of equations is fully decoupled. The mean µu and the variance σ2

u of the
stochastic solution can be determined using:

µu =

Np
∑

i=1

1
2ui(x, t)wi, (B.32)

σ2
u =

Np
∑

i=1

1
2 (ui(x, t))2 wi −





Np
∑

i=1

1
2ui(x, t)wi





2

, (B.33)
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where wi are the weights corresponding to the collocation points αi. These relations
are derived from the definition of the mean and variance. The most important differ-
ence of the Stochastic Collocation (MH) method with the other collocation methods
is the transformation to the artificial space α. The polynomial expansion exists in
the α space and is, therefore, not a polynomial chaos expansion.

Stochatic Collocation (MH) for the piston problem

The uncertain spring stiffness k is expanded as:

k (α) =

Np
∑

i=1

kihi (α) .

The coefficients ki are calculated by mapping the Gauss-Legendre collocation points
onto the physical domain of k using the inverse of the projected distribution func-
tion (B.28). The dependent parameters in the piston problem are expanded as follows:

ρ (α) =

Np
∑

i=1

ρihi (α) , ρu (α) =

Np
∑

i=1

ρuihi (α) ,

q (α) =

Np
∑

i=1

qihi (α) , q̇ (α) =

Np
∑

i=1

q̇ihi (α) .

Substituting this in (2.28) and (2.30) and applying the quadrature rule to approximate
the Galerkin projection on each basis {hl}, results in the same set of equations as
the Probabilistic Collocation method (equations (B.14)–(B.19)) only now for each
collocation point αl.

The deterministic piston problem is solved for every ki, this results in Np values
for the piston position qi. Through these points Lagrange interpolating polynomials
of order Np − 1 are constructed and by using the expansion of q (α) the projected
distribution function Fq (q) is reconstructed. After mapping it back to the physical
domain by (B.28) this results in the cumulative distribution function Fq (q).
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APPENDIX C

Figures turbulent flate plate

This appendix provides the results for uncertainty quantification of the k − ǫ model
parameter applied to the turbulent flat plate test case (see section 6.3).
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Figure C.1: Response surfaces of Cd with respect to the uncertain parameter. The
solid blue line (–) shows the approximated response surface and the blue diamonds (⋄)
show the collocation points for the final approximation.
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Figure C.2: The figures show the mean of the velocity profile u+ against the wall
coordinate y+ by the solid blue line (–), the interval containing 100% of all possible
values by the blue dashed line (- -) and the theoretical log law by the red line (–).
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Figure C.3: The figures show the mean of the skinfriction Cf by the solid blue line
(–), the interval containing 100% of all possible values by the blue dashed line (- -) and
the experimental data of Wieghardt and Tillman (1951) by the red squares (�).
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Figure C.4: Distribution functions of Cd for each uncertain parameter. The blue
line (–) shows the cumulative distribution function and the green line (–) shows the
probability density function.
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APPENDIX D

NASA Rotor 37 blade sections

Figure D.1: Sections of the NASA Rotor 37 blade at different possitions, taken from
Reid and Moore (1978).
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APPENDIX E

Convergence plots PRBF and PC

This appendix shows figures which are used to illustrate results in chapter 9.

Figure E.1 is used to obtain the values of table 9.1 in section 9.2.2. The figure shows
the convergence of the mean and variance for a modified version of Genz function 1 for
the Probabilistic Radial Basis Function approach and the Probabilistic Collocation
method. The black line shows the relative error of 10-3 (0.1%).

Figure E.2 shows the mean and standard deviation of the lift and drag coefficient of the
RAE2822 airfoil with uncertain Mach number, angle of attack and relative thickness.
The test case is treated in section 9.4. The black line indicates the mean/standard
deviation obtained from a Monte Carlo simulation using 10,000 Latin Hypercube
samples. The red and green lines indicate the difference with the mean/standard
deviation of 1 count and 1 percent respectively.
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Figure E.1: Convergence of the mean and variance of a modified version of Genz
function 1 with respect to the number of deterministic solves for the Probabilistic Ra-
dial Basis Function approach and the Probabilistic Collocation method for increasing
stochastic dimension (i.e. the number of uncertain parameters).
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Figure E.2: Mean and standard deviation of the lift and drag coefficient of the
RAE2822 airfoil with uncertain Mach number, angle of attack, and relative thickness.
The black line indicates the mean/standard deviation obtained from a Monte Carlo
simulation using 10,000 Latin Hypercube samples. The red and green lines indicate the
difference with the mean/standard deviation of 1 count and 1 percent respectively.
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Samenvatting

Bij het modelleren van fysische systemen zijn er vele bronnen van onzekerheid aan-
wezig. Variabiliteit in randvoorwaarden zoals de snelheid of luchtdruk zijn altijd
aanwezig. Verder spelen onzekerheden in geometrie een grote rol. Deze zijn het resul-
taat van bijvoorbeeld productietoleranties, slijtage of onbekende deformaties tijdens
de belasting. Onzekerheid hebben in de numerieke stromingsleer (Computational
Fluid Dynamics, CFD) een significante invloed op de aerodynamische prestaties die
uitgerekend worden. Omdat CFD simulaties erg veel rekencapaciteit vragen, is het
belangrijk de onzekerheden op een efficiënte manier aan te pakken.

Het hoofddoel van dit onderzoek is het ontwikkelen en onderzoeken van een efficiënte
aanpak voor het kwantificeren van onzekerheden in CFD simulaties. Er is gefocust
op het efficiënt propageren van onzekerheden door de CFD modellen en de praktische
toepassing op een breed scala aan testproblemen.

De Probabilistische Collocatie methode is ontwikkeld als een efficiënte, niet-intrusie-
ve methode voor het propageren van onzekerheden. De methode is gebaseerd op het
polynomische chaos principe en laat spectrale convergentie zien ten opzichte van de
orde van de benadering. De effectiviteit is aangetoond voor diverse CFD simulaties
waarbij gebruik is gemaakt van een commerciëel CFD programma.

Voor gevallen met een discontinüıteit in de respons of in instationaire gevallen, dient
de methode te worden aangepast om de onzekerheden efficiënt te kunnen propageren.
Een multi-element formulering is succesvol toegepast op een stall flutter model. Verder
is een tijdsonafhankelijke parametrisatie van de oplossing gebruikt om onzekerheden
efficiënt te propageren in het geval van wervelafschudding achter een ronde cilinder.

Uit de resultaten is gebleken dat geometrische onzekerheden een grote invloed kunnen
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hebben op de aerodynamische prestaties. Omdat geometrische onzekerheden de vorm
van het model bëınvloeden, is er een nieuw rekenrooster voor elk collocatie punt in de
Probabilistische Collocatie methode nodig. Om geometrische onzekerheden efficiënt
mee te nemen in CFD simulaties, is een roosterdeformatietechniek toegepast.

Bij het oplossen van de Reynolds-averaged Navier-Stokes vergelijkingen in CFD simu-
laties, is een turbulentiemodel vereist om het systeem van vergelijkingen te sluiten.
Parameters van een turbulentiemodel worden gevonden aan de hand van experimenten
of berekeningen aan versimpelde stromingsproblemen, wat een bron van onzekerheden
in het model introduceert. Onzekerheidskwantificatie is toegepast op de parameters
van het k-ǫ model inclusief wandfuncties voor stroming over een vlakke plaat en om
een NACA0012 profiel. De wandfunctieparameters κ en C en de modelparameter
Cµ hebben de grootste invloed op de oplossing, met een variatie van 3-4% van de
weerstand. Algemene conclusies vereisen echter meer onderzoek naar bijvoorbeeld
een schuiflaag of vrije straal.

Compressorrotors zijn componenten van een gasturbine die erg gevoelig zijn voor
operationele en geometrische onzekerheden. Operationele onzekerheden zoals de sta-
tische druk bij de uitlaat en het totale druk profiel aan de inlaat zijn in beschouwing
genomen. De massastroom door de turbine is het meest gevoelig voor operationele
onzekerheden gebleken.

Indien er meerdere onzekere parameters in het probleem aanwezig zijn, is een twee-
stappen aanpak een goede manier om het effect van onzekerheden te kwantificeren.
De eerste stap bestaat uit het filteren van de parameters met behulp van een gevoe-
ligheidsstudie. In de tweede stap worden alleen de effecten van de meest belangrijke
parameters meegenomen.

De Probabilistische Radiale Basis Functie methode is ontwikkeld voor gevallen waarbij
veel onzekere parameters tegelijkertijd gepropageerd moeten worden. Radiale basis
functies staan bekend om de goede eigenschappen in het benaderen van functies in
hoge dimensies. Voor de CFD simulaties blijken voor een nauwkeurigheid van 0.1 tot
1%, slechts 10 tot 35 ondersteuningspunten voldoende te zijn. Er is een goede over-
eenkomst tussen de resultaten van de Probabilistische Radiale Basis functie methode
en een Monte Carlo simulatie met 10,000 Latin Hypercube samples, voor turbulente
transone stroming rond een RAE2822 profiel met 3 onzekere parameters.

Er kan worden geconcludeerd dat de Probabilistische Collocatie methode en aangepas-
te versies efficiënt onzekerheden propageren in CFD simulaties. De ontwikkeling van
de Probabilistische Radiale Basis Functie methode geeft een efficiënt alternatief voor
gevallen met meerdere onzekere parameters. Gebaseerd op de uitgevoerde simulaties
blijkt dat de meest efficiënte methode af hangt van het testprobleem.

Onzekerheidskwantificatie verhoogt de betrouwbaarheid van CFD simulaties, omdat
de invloed van onzekerheden op de oplossing gekwantificeerd worden. In sommige
gevallen was er zelfs sprake van een grote variabiliteit van de oplossing, terwijl er kleine
onzekerheden aanwezig waren. Het meenemen van onzekerheden in CFD simulaties
is daarom van groot belang en met de huidige middelen haalbaar voor veel gevallen.
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