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Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study
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In order to account explicitly for the existence of long-periodic layered structures and the strong structural
relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a
one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts
for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density
functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description
of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio
calculated structures unreasonably large. For the binary alloys A1−xQx (A = Sb, Bi; Q = Te, Se), a ternary
CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to
consecutive A2Q3 for 0 < x < 0.6. For x > 0.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb
system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects
at T �= 0 K but with an ordered structure of alternating Bi and Sb layers for x = 0.5 at T = 0 K. A quintuple
CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking
of Sb2Te3, Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers.
Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.
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I. INTRODUCTION

Bi-Sb-Te-Se alloys have been intensively studied during the
last decades because of their interesting and technological im-
portant properties. They are not only excellent thermoelectric
materials [1,2] but Sb-Te alloys have also attracted attention
as a phase change material for the new generation of optical
disks and nonvolatile random access memory [3]. More-
over, Bi2Te3, Bi2Se3, Sb2Te3, and (BixSb1−x)2Te3 have been
demonstrated to be topological insulators [4–7] and recently
Bi2−xSbxTe3−ySey solid solutions have been synthesized at
various compositions to optimize the bulk-insulating behavior
in topological insulators [8]. The best known and most studied
compounds are A2Q3 (with A = Bi, Sb and Q = Te, Se), but
varying the composition shows that the binary alloys (A1−xQx)
exhibit a rich phase diagram with many stable structures in the
range between x = 0 (elemental A) and x = 0.60 (A2Q3) [9].
A2Q3 (excluding Sb2Se3) crystallizes in a layered structure
with rhombohedral lattice symmetry (space group R3̄m). The
hexagonal unit cell consists of three quintuple units with the
sequence Q-A-Q-A-Q as illustrated in Fig. 1. The bonding
between adjacent quintuple units is rather weak and of the
van der Waals (vdW) type, whereas the bonding within the
layers is of a covalent/ionic nature. All experimentally known
A-rich phases (i.e., with more than 40% of A) can be classified
according to the homologous series (A2)n(A2Q3)m with a
stacking of A bilayers and A2Q3 units [10–16]. The hexagonal
unit cells of the three most-widely known structures of this
homologous series are shown in Fig. 1. The (A2)n(A2Q3)m
compounds crystallize according to the rhombohedral (space
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group R3̄m) or hexagonal lattice (space group P 3̄m1). First-
principles electronic structure calculations within the density
functional theory (DFT) formalism have been used to study the
chemical bonding and electronic properties of several Bi-Se
compounds demonstrating the small formation energy with
respect to elemental A and A2Q3 [17].

In previous work, we have investigated systematically the
phase stability at T = 0 K of the binary alloy Sb1−xTex for
arbitrary composition x by means of DFT calculations and
the cluster expansion (CE) technique thereby showing that
a continuous series of (meta)stable ordered structures exists,
a situation which is reminiscent of the infinitely adaptive
structures introduced by Anderson [18]. The obtained struc-
tures consist of consecutive Sb bilayers next to consecutive
Sb2Te3 units, with the general formula (Sb2)n(Sb2Te3)m with
n and m = 0,1,2, . . . [19]. Since thermoelectric materials are
often based on solid solutions [1,20], superstructures [21], or
nanostructures [22] of Sb2Te3 and Bi2Te3 or of Bi and Sb
[23,24], we will now look for the stable layered phases within
the ternary Bi-Sb-Te system for an arbitrary composition by
extending the methods used in Ref. [19]. The present method
provides insight into the actual ground and metastable states,
though it does not yield complete information on the finite
temperature stability.

The CE technique [25] based on DFT calculations is used to
study the energetics of arbitrary stackings of Bi, Sb, and Te lay-
ers. In order to account for the weak vdW interaction between
the A2Q3 quintuple units, all calculations include the vdW
functional proposed by Dion et al. [26]. An efficient implemen-
tation of this nonlocal correlation functional makes the calcu-
lations only slightly harder than traditional local or semilocal
exchange and correlation (xc) functionals [27]. Both structural
and electronic properties of (meta)stable phases are further
analyzed by considering some of the representative structures.
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FIG. 1. (Color online) (a) Hexagonal unit cell of the stable A2Q3

structure. (b) Other experimentally observed structures A4A2Q3,
A2(A2Q3)2, and A10A2Q3, respectively.

The paper is organized as follows. In Sec. II, we explain
in more detail the implementation of the CE method used in
this paper, and in Sec. III, we provide some technical details
of the DFT calculations. In Sec. IV A, the results on the binary
systems Bi-Te, Bi-Se, and Sb-Te are discussed, whereas in
Sec. IV B, we address Bi-Sb. The ternary system Bi-Sb-Te is
considered in Sec. IV C. Finally, we summarize our results in
Sec. V.

II. METHODOLOGY

The main goal of this work is to understand and predict
the most stable layered structures of the binary and ternary
systems (at T = 0 K) consisting of Bi, Sb, Te, or Se. Since it
is computationally very demanding to calculate the formation
energy of all possible configurations with ab initio techniques,
the CE method is used to find ground-state structures. Here,
one only needs the accurately calculated energies of a relatively
small number of structures in order to obtain the approximate
energies of all possible configurations. The hexagonal struc-
tures investigated in this work have a fixed underlying fcc
lattice with an ABCABC . . . stacking of the [111] planes, each
plane containing only one type of atom. In the CE method,
one starts from a one-to-one correspondence between the
configuration of a compound and this fixed underlying lattice.
Since we only consider the ordering of Bi, Sb, Te, and Se
layers, a structure s is completely defined by a certain sequence
of layers, so we can refer to a one-dimensional CE. The distinct
layers are represented by occupation variables �P

i , where i and
P represents the layer and the atomic species, respectively, and
which are defined by [25,28]

�P
i =

{
1 if layer i is occupied by atomic type P ,
0 otherwise.

This definition is not the usual Ising selection, but as
explained in Ref. [29], there is a straightforward conversion
of cluster expansion coefficients between cluster expansions
obtained with different choices for the occupation variables.

In Ref. [19], we showed that for the binary Sb-Te system,
a converged binary CE of the formation energy cannot be
realized with a dichotomous occupation variable �P

i since no
discrimination is made between an odd or an even number of
adjacent Sb layers. The energetic difference between structures
with an even or odd succession of Sb layers is a consequence
of the strong structural relaxations accompanying a Peierls
transition leading to the formation of Sb bilayers. Instead of
further increasing the number of input structures, or making
use of more elaborate techniques (e.g., the mixed-basis CE) to
account for the strong relaxations [30,31], we implemented a
ternary CE. The Sb atom is then given a different occupation
variable depending on whether it is part of an even or an odd
sequence of Sb layers, and another distinct occupation variable
for Te. This ternary CE accounts explicitly for the bilayer
formation and is able to discriminate between structures with
an even or odd number of successive Sb layers, which was not
the case for the binary CE. Since Bi and Se are expected to
behave in a similar way to Sb and Te, respectively, a ternary
CE will also be used for the Bi-Te and Bi-Se alloys. In order
to account for the possible bilayer formation in the Bi-Sb
and the Bi-Sb-Te system a quaternary and quintuple CE were
developed, respectively. Two distinct occupation variables for
both Bi and Sb are introduced, depending on whether they are
part of an odd or even number of adjacent Bi and Sb layers
together, and a fifth variable is used for Te.

The formation energy for a given structure s—or in fact any
material property depending on the atomic configuration—can
be written as an expansion of these occupation variables [25]

Es
form = V0 +

∑
P

∑
i

V P
i �P

i +
∑
P,P ′

∑
i,j

V
P,P ′
ij �P

i �P ′
j + · · · ,

(1)

where the atomic type P now not only represents the atomic
species, but is also different for Bi and Sb, depending on
whether they are part of an odd or an even sequence of layers.
The formation energy of a certain alloy is defined by

Es
form = Es −

∑
A

cs
AEA,

where Es is the total energy per atom of configuration s and
the sum runs over all different elements A of the compound,
with EA the energy of elemental A, and cA the concentration
of the element A in the specific configuration s.

The expansion coefficients V P...
ij ... of Eq. (1) are the so-called

effective cluster interactions (ECIs) and represent the relative
importance of a specific grouping of layers, which can be
nearest-neighbor layers, next nearest neighbor layers, but
also one and no layer. These groupings of layers are called
“clusters.” A cluster α is not only characterized by its layers
i,j, . . . , but also by the atomic type P,P ′, . . . occupying these
layers. Equation (1) can now be written as an expansion in
terms of clusters α

Es
form =

∑
α

V α
∏
i ∈ α

P on i

�P
i . (2)

The CE of Eq. (2) is, in principle, exact when all clusters are
considered, but in practice, often only a limited number of
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clusters is necessary to adequately represent the energy. When
the CE is truncated by selecting only a few clusters, one can
find the ECIs by solving Eq. (2) with a least-squares procedure
(a generalization of the Connolly-Williams approach [32]),
hereby using the energies calculated from first-principles for
a relatively small number of configurations S,

S∑
s=1

ws

[
Es

form,DFT −
∑

α

V α
∏
i ∈ α

P on i

�P
i

]2

= min,

with Es
form,DFT the ab initio computed formation energy of

configuration s. Once the ECIs are known, Eq. (2) can be used
to predict the formation energy of an arbitrary configuration at
any concentration.

A weight factor is assigned to every structure, defined by
[28]

ws = 1

1 + ω
(

ds

〈d〉
) ,

where ds is the formation energy difference between structure
s and the convex hull (which connects the energy values of
the most stable, i.e., lowest energy, structures) for a given
composition, 〈d〉 is the mean value of these energy differences
taken from all structures. Here, we have chosen ω = 1. This
weight factor attributes a larger weight to the structures on
or near the convex hull and a smaller weight to structures far
away from the convex hull, which are less stable.

To determine the clusters that should be included in the
CE, we took into account the results of Ref. [29], where it
was shown that all subclusters of a considered cluster must
be included in order to make the CE invariant with regard to
the definition of the occupation variable. Since the CE is a
tool to predict energies of new configurations, a measure for
the accuracy of the CE prediction is needed. This measure is
given by the leave-one-out-cross validation (LOOCV) [33,34],
which is defined by

LOOCV =
√√√√ 1

S

S∑
s=1

(
Es

form,DFT − Es∗
form,CE

)2

with S the number of structures, Es
form,DFT the ab initio

computed formation energy of configuration s and Es∗
form,CE

the CE-predicted formation energy, where the ECIs of this CE
are calculated from a least-squares fit based on the initial input
data set with the exclusion of the sth structure. Optimization
of the LOOCV over all permutations of cluster combinations
yields a “best” CE.

When the CE predicts a new ground-state structure, its
formation energy will be situated below the convex hull. To
find out whether this is really a ground-state structure, the
formation energy has to be calculated with ab initio techniques
and added to the initial data set of structures. A new CE has to
be generated and the whole procedure starts over again. When
no new ground states are found and the LOOCV has reached
an acceptably small value (<20 meV/atom), convergence of
the CE is reached. The weight factors ws discussed above are
introduced to accelerate this convergence.

III. COMPUTATIONAL DETAILS

Lattice parameters and atomic positions were optimized
by relaxing the hexagonal Bi-Sb-Se-Te structures using first-
principles calculations performed within the DFT formalism
as implemented in the Vienna ab initio simulation package
VASP [35,36]. We used the all-electron projector augmented
wave (PAW) method with the Bi (6s26p3), Sb (5s25p3),
Te (5s25p4), and Se (4s24p4) electrons treated as valence
electrons. For the exchange and correlation functional, we
considered the generalized gradient approximation of Perdew-
Burke-Ernzerhof (PBE) [37] and took into account the vdW
effect by using the vdW density functional (vdW-DF) as
implemented in the VASP code [38]. In particular, we have
used the so-called optB86b-vdW functional, which provides
superior values for the lattice constants in comparison with
other vdW-DF functionals (for a detailed discussion on
the performance of the different functionals we refer to
Refs. [38,39]).

For total energy calculations and structure optimization, a
plane-wave cutoff value of 250 eV was chosen and a 16 × 16×
� grid [40] for the Brillouin zone integration, with � depending
on the c lattice parameter of the hexagonal unit cell; for
three monolayers � = 8, for six monolayers � = 4, for nine
monolayers � = 3, etc. With these settings, our results are
converged within 10−4 eV/atom. For the electronic structure
calculation we considered the results as converged when the
energy difference between two successive steps was smaller
than 10−5 eV and for the geometry optimization we considered
a convergence criterium for the forces on the atoms of less
than 10−3 eV/Å. To avoid that the atoms get trapped in
local minima, all atoms were subjected to small random
displacements from their initial fcc-lattice sites. Since for
heavier elements the spin-orbit coupling (SOC) becomes
important, all band structure calculations include this coupling.

IV. RESULTS AND DISCUSSION

As mentioned in Sec. II, fast convergence of the CE for
the Sb-Te system can be achieved by considering a ternary
CE where Sb atoms are given a different occupation variable
depending on whether they are part of an even or odd number
of adjacent Sb layers. In this way, the CE method takes into
account the favoring of Sb bilayer formation [19]. Since Bi
and Se are expected to behave in a similar way to Sb and
Te, respectively, a ternary CE was used for the Bi-Te and
Bi-Se alloys (Sec. IV A), while a quaternary and quintuple CE
was used for the Bi-Sb (Sec. IV B) and Bi-Sb-Te (Sec. IV C)
systems, respectively.

A. Binary systems Bi-Te, Bi-Se and Sb-Te

For the three systems Sb-Te, Bi-Te, and Bi-Se, a converged
CE with only pair interactions was found with a data set of
72, 79, and 77 structures, respectively, and including not more
than seven distinct (i.e., symmetrically nonequivalent and not
depending on atom type) clusters with atom distances up to
seven interplanar distances. In contrast to our previous work
[19] where we used three-site clusters, we have shown in the
present work that a CE solely based on pair interactions yield
a converged CE. For details on this CE, see Ref. [41].
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FIG. 2. (Color online) Formation energies of a data set of 79 Bi-
Te layered structures, calculated by ab initio techniques (red circles)
and predicted by the CE (blue stars). The convex hull is indicated by
the full black lines.

In Fig. 2, the final ab initio data set for the Bi-Te system
(79 structures) is shown together with the predicted values for
the formation energies by the converged CE. In Fig. 3, we
used this CE to generate the formation energy of ∼104 Bi-Te
layered structures.

For all three systems, a series of multilayered structures
with an even number of successive Bi or Sb layers adjacent to
successive units of Sb2Te3, Bi2Te3, and Bi2Se3 are found to
be new groundstates in the region with 0 � x � 0.6 (with
x being the Te concentration). The general composition
can therefore be written as (A2)n(A2Q3)m, in line with the
existing experimental [11–13,15,42] and computational data
[17,19]. This does not exclude, however, that other layered
structures with higher formation energy are observed at higher
temperatures [16]. For x > 0.6, no stable compounds are found
and the alloy segregates into A2Q3 and pure Q.

FIG. 3. (Color online) Predicted energies by the CE of ∼104

layered structures (blue stars).

TABLE I. Interlayer distances and lattice parameters for the
ground-state structures (A2)4(A2Q3)2. The first four columns show
the distance between two A layers in a bilayer, between two bilayers,
between a bilayer and a quintuple unit and between two quintuple
units respectively. The fifth column represents the size of a quintuple
unit, i.e., the interplanar distance between the first and the last Q

layers. Lattice parameters a and c/n (with n being the number of
monolayers) can be found in the last two columns. All values are
given in angstroms.

A-A A2-A2 A2-A2Q3 A2Q3-A2Q3 A2Q3 a c/n

Sb-Te 1.54 2.36 2.54 2.86 7.34 4.36 1.99
Bi-Te 1.67 2.39 2.40 2.64 7.40 4.49 2.01
Bi-Se 1.74 2.51 2.27 2.44 6.62 4.35 1.93

We have investigated interlayer distances and lattice pa-
rameters of a large number of stable compounds and on
comparing the three binary systems Sb-Te, Bi-Te, and Bi-Se,
we observe some obvious trends. As an example we give some
specific distances for the optimized structures (A2)4(A2Q3)2 in
Table I. As expected for larger atoms, the distances between Bi
(Te) layers are larger than those between Sb (Se) layers. Also
the size of the quintuple units containing Te atoms is larger
than that of the Bi2Se3 quintuple unit.

Since the vdW interaction is known to be important in
the investigated systems, all structures were optimized with
a vdW-DF for obtaining lattice parameters and interlayer
distances in close agreement with experiment. In particular,
this functional reduces the interlayer distance between two
quintuple units with 4% to 12% in comparison with the
results from a standard calculation with the semilocal PBE xc
functional. This can be clearly seen in Table II where we show
the optimized lattice parameters of A2Q3 structures with the
regular PBE xc functional and with the vdW-DF, and compare
them with the experimental results.

In order to illustrate the interaction of the vdW-DF on the
electronic charge distribution, Fig. 4 shows an isosurface of
the difference in charge density of (Sb2)4(Sb2Te3)2, calculated
with and without the vdW-DF. This structure is optimized
using the vdW-DF, and a self-consistent calculation (with and
without vdW-DF, respectively) was performed on this structure
with fixed lattice parameters and atom positions. A small and
spherically symmetric depletion of electrons occurs around
all the atoms when including the vdW contribution. Between
the quintuple units, the vdW contribution leads to a large
nonspherical excess of electrons indicating its importance
between these layers. We also observe a smaller excess of
electrons between the bilayers and between a bilayer and a
quintuple unit due to the vdW functional, as shown in Fig. 4.
This increase indicates that the bonding between two bilayers,
and between a bilayer and a quintuple unit is also of the weak
vdW type.

Taking into account SOC, the band structure calcula-
tion shows that all structures of the homologous series
(A2)n(A2Q3)m are semimetals (but with a small band overlap,
ranging from 10 to 170 meV), except for A2Q3, which are
semiconducting [44]. The electronic structure of A2Q3 has
been intensively investigated in the (recent) past both because
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TABLE II. Lattice parameters and interlayer distance between two quintuple units A2Q3 for the stable compounds A2Q3 for the three
systems. A comparison between the relaxed structural parameters, with the PBE functional, the vdW functional, and the experimental values.
All values are given in angstroms.

PBE vdW exp [43]

a c A2Q3-A2Q3 a c A2Q3-A2Q3 a c A2Q3-A2Q3

Sb2Te3 4.335 31.398 3.074 4.312 30.351 2.709 4.264 30.458 2.829
Bi2Te3 4.446 32.023 3.128 4.413 30.823 2.720 4.386 30.497 2.625
Bi2Se3 4.187 30.893 3.270 4.162 28.884 2.595 4.143 28.636 2.579

of its thermoelectric properties [21] and its behavior as a
topological insulator [45]. Since for heavier elements, SOC
can significantly alter the band structure, we calculated the
fundamental band gap for A2Q3 (after structural optimization)
both with and without SOC and compared our results with
the experimental values. This is shown in Table III. While
the band-structure calculation without SOC gives direct
fundamental band gaps at the � point, the fundamental band
gaps calculated with SOC are indirect. For Sb2Te3, the SOC
leads to a significant increase of the band gap, whereas in
Bi2Te3 it is reduced by 50%. The band gap of 0.23 eV for
Bi2Se3 remains unaltered by the inclusion of the SOC, which
is in line with a previous calculation [46]. Since experimental
band gaps often refer to the optical gap we include in Table III
the direct gap values. Our result for Bi2Te3 is in excellent
agreement with experiment [47,48], which might be fortuitous
in view of the well-known underestimation of the band gap by
DFT. The indirect nature of the calculated band gap seems
to agree with experiment for Bi2Te3 [45] and Sb2Te3 [49],
but there is recent experimental and theoretical evidence that
Bi2Se3 has a direct band gap at the � point [50].

FIG. 4. (Color online) An isosurface of the small excess
(0.0061 electrons/Å) of charge density between the calculations done
with and without vdW-DF of the structure (Sb2)4(Sb2Te3)2.

B. Binary system Bi-Sb

Bi1−xSbx alloys are known to form a solid solution over
the entire composition range with a rhombohedral unit cell
[52,53]. They are in general semimetallic with the exception
of the range 0.07 < x < 0.22 where they are semiconducting
with a narrow band gap. The maximum band gap is approx-
imately 20 meV and is reached for x ∼ 0.15 [54]. In this
section, we investigate the stability of layered structures at
T = 0 K. In analogy with the previous binary systems, the
occupation variable accounts for the fact that Bi or Sb belongs
to an odd or even number of layers (irrespective of whether
this is a Bi or Sb layer). A converged quaternary CE based on
only pair interactions was found with a data set of 69 structures
and which includes six distinct clusters with atom distances
up to 4 interplanar distances. For details on this CE, see
Ref. [41]. Figures 5 and 6 show the convex hull for the initial
data set and the prediction for ∼104 structures, respectively.
From these results, it is clear that structures with an odd number
of layers are less stable than structures with an even number
of layers. This is again a consequence of the tendency to form
bilayers due to the Peierls transition.

This convex hull shows that the formation energy of the
Bi-Sb structures with an even number of layers is very
small (<10 meV/atom). For completeness we compare the
formation energy of the generated ordered structures with that
of their disordered counterparts. To model the solid solution
we created a 3 × 3 × 1 supercell with six layers in the unit
cell. Each layer contains nine lattice sites that are randomly
occupied by Bi or Sb atoms. In total, we optimized 25
random structures for which the formation energy is added to
Fig. 5. The considered structures still form bilayers and their
formation energy is comparable to that of the fully ordered
structures. At finite temperatures, the configurational entropy

TABLE III. Calculated band gaps (in eV) of the three stable
compounds Sb2Te3, Bi2Te3, and Bi2Se3, without and with SOC taken
into account, compared with the experimental values. For calculations
without SOC, the band gap is direct, while for calculations with SOC,
the fundamental band gap is indirect.

With SOC

Without SOC Indirect Direct Exp

Sb2Te3 0.01 0.12 0.14 0.15–0.28 [47,51]
Bi2Te3 0.31 0.16 0.16 0.16 [47,48]
Bi2Se3 0.23 0.23 0.27 0.33 [47,48]

054106-5



GOVAERTS, SLUITER, PARTOENS, AND LAMOEN PHYSICAL REVIEW B 89, 054106 (2014)

FIG. 5. (Color online) Formation energies of a data set of 69 Bi-
Sb layered structures, calculated by ab initio techniques (red circles)
and predicted by the CE (blue stars). Formation energies of structures
with Bi and Sb atoms randomly distributed over the lattice sites, are
denoted by green triangles. The convex hull is indicated by the full
black lines.

will dominate and the Bi-Sb alloys can be considered as almost
ideal solutions, which is in line with the experimental results
[52,53]. However, at T = 0 K, a stable structure at 50 at.%
is found, consisting of alternating Bi and Sb layers. This
structure has lattice parameters a = 4.46 Å and c = 11.57 Å.
The distance between two layers within the bilayer is 1.60 Å,
while the distance between two bilayers is 2.26 Å. We notice
that the lattice parameters of the stable Bi-Sb compound at
50 at.% obey Vegard’s law, as shown in Table IV.

Our calculations were not able to reproduce the small band
gap experimentally found for the composition range 0.07 <

x < 0.22 [54]. In fact all investigated structures (ordered
and disordered), apart from the ordered structure at 50 at.%,
were found to be semimetallic. This might be due to the
fact that the observed band gap is small (∼20 meV) and
therefore sensitive to small deviations in lattice parameters
and the approximate nature of the xc functional in general
(e.g., underestimation of the band gap). In Fig. 7, the band
structure (including SOC) of the stable compound Bi0.5Sb0.5

is shown. This specific configuration shows semiconducting
behavior with a band gap of 0.104 eV, which is significantly
larger than the experimentally observed band gap of ∼20 meV
in Bi1−xSbx solid solutions with 0.07 < x < 0.22.

FIG. 6. (Color online) Predicted energies by the CE of ∼104

layered structures (blue stars).

TABLE IV. Lattice parameters, intra- and interbilayers distances
for the optimized structures of elemental Bi, Sb, and for the stable
structure Bi0.5Sb0.5, with alternating Bi and Sb layers. All values are
given in angstroms.

a c Intrabilayer Interbilayer

Bi 4.55 11.83 1.65 2.30
Sb 4.36 11.29 1.54 2.22

Mean value 4.46 11.56 1.60 2.26

BiSb 4.46 11.57 1.60 2.26

C. Ternary system Bi-Sb-Te

Since thermoelectric materials often consist of more than
just two elements from the series Bi, Sb, Te, Se, we apply in this
section the CE technique to investigate the ternary Bi-Sb-Te
system (the ternary Bi-Sb-Se system is expected to behave
similarly). The formation of homologous series consisting of
layered structures for the binary subsystems A-Q (A = Bi, Sb;
Q = Te, Se) suggests that stable layered ternary compounds
may be formed. To anticipate on the formation of bilayers we
introduce a CE with five occupation variables: two for both Bi
and Sb, depending on whether they are part of an odd or an
even number of adjacent Bi and/or Sb layers, and a fifth for
Te. To obtain a converged CE, more than 400 structures were
needed, seven distinct clusters were included, with interlayer
distances up to six. For details on this CE, see Ref. [41]. Again,
we remark that the CE only uses pair interactions to describe
accurately the formation energies of the layered ternary alloys.
The formation energy for ∼107 structures as a function of the
Bi and Sb concentration is shown in Fig. 8 with the 3D convex
hull. As expected, the quintuple CE reproduces the results for
the binary subsystems discussed in Secs. IV A and IV B with
the homologous series (Sb2)n(Sb2Te3)m and (Bi2)n(Bi2Te3)m
and the stable BiSb compound.

Genuine ternary ground-state structures are obtained for
unit cells built up from an arbitrary stacking of the three
quintuple units Sb2Te3, Bi2Te3, and Te-Bi-Te-Sb-Te. For a
specific concentration, different stackings of these quintuple
units are possible, but their energies differ by no more
than 0.5 meV/atom and should therefore be considered as
degenerate. This result and the results of Sec. IV B on random
Bi-Sb structures suggest that Bi and Sb can be randomly
interchanged. To investigate the stability of structures with

FIG. 7. The band structure of Bi0.5Sb0.5 with alternating Bi and
Sb layers. Energy values are with respect to the top of the valence
band.
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FIG. 8. (Color online) Predicted energies by the CE of ∼107

layered structures (blue stars). Red circles denote the initial input
data set of 432 ab initio calculated energies.

Bi and Sb at random positions in the quintuple units, we
created a 3 × 3 × 1 supercell with 15 atoms in the unit cell.
This supercell contains three quintuple units, and each layer
contains nine lattice sites, which are fully occupied by Te
or randomly occupied by Bi or Sb. With energy differences
of no more than 0.5 meV/atom, we conclude that structures
with a random composition of Bi and Sb within a monolayer
should also be considered as structures degenerate with the
corresponding (i.e., for the same concentration of Bi and Sb)
stacking of monolayers.

In Table V, we show the band gaps (including SOC) of some
of these groundstate structures, for different concentrations of
Bi. Degenerate structures for a given concentration yield the
same band gap.

Other stable (or slightly metastable) compounds are found
when an excess of Bi and/or Sb is present. These structures
consist of an even number of Bi and/or Sb layers, next
to quintuple units of Bi2Te3 and have formation energies
ranging from 0 to 13 meV/atom above the convex hull. Again,
we compared these energies with the formation energies of
their random counterparts. Therefore we created a 3 × 3 × 1
supercell with 15 layers in the unit cell: five for the quintuple
unit and ten for the bilayers. In a first case, Bi and Sb are
randomly distributed in the bilayers, while the quintuple unit
Bi2Te3 remains unaltered. These structures have formation
energies in the above mentioned interval of 0 to 13 meV/atom
above the convex hull, which implies that the Bi and Sb atoms
are interchangeable in the bilayers, in line with the conclusions

TABLE V. Band gaps of several ternary ground-state structures
consisting of adjacent quintuple units, for different concentrations
of Bi.

0.4 0
Bi concentration (Bi2Te3) 0.333 0.267 0.2 0.133 0.067 (Sb2Te3)

band gap (eV) 0.16 0.12 0.11 0.09 0.10 0.08 0.12

FIG. 9. The band structure of Bi-Sb-Sb-Bi(Bi2Te3).

of Sec. IV B. In a second case, the Bi layers in the quintuple
unit are replaced by layers where Bi and Sb atoms are randomly
interchanged, while the bilayers are entirely monoatomic. The
formation energies of these structures can be found at 20 to
43 meV/atom above the convex hull. The structures consisting
of other quintuple units with monoatomic layers (Sb2Te3 and
Te-Sb-Te-Bi-Te) next to Bi and/or Sb bilayers can also be
found in this range. These results suggest that structures with
Bi2Te3 quintuple units are more likely to form. Furthermore,
we created supercells where bilayers and Bi layers in the
quintuple unit are now replaced by layers with randomly
organized Bi and/or Sb atoms. These structures have energies
again in the range of 20 to 43 meV/atom above the convex
hull. For completeness, we also compared these energies with
the energies of fully random structures, where the Te atoms
are also replaced randomly. These structures are far less stable
with formation energies of 100 meV/atom and more above the
convex hull.

We examined the electronic structure (including SOC) of
several (∼20) stable or metastable compounds with an even
number of Bi and/or Sb layers (ordered or disordered) next
to Bi2Te3. Our results suggest that all compounds exhibit
semimetallic behavior over the whole Sb concentration range,
apart from some specific structures with an equal number of
Sb and Bi atoms in the bilayers. Two illustrative examples are
given by the layer sequences Bi-Sb-Sb-Bi(Bi2Te3) and (Bi-
Sb)5(Bi2Te3), which are semiconductors with a fundamental
band gaps of 0.11 and 0.004 eV, respectively (both indirect).
In Fig. 9, we give the full band structure of the former
structure.

V. CONCLUSION

We have presented a systematic study of the stable layered
structures at T = 0 K for the binary systems Bi-Te, Bi-Se
(and Sb-Te) and Bi-Sb, and for the ternary alloy Bi-Sb-Te by
means of a combination of the CE method and first-principles
electronic structure calculations. In order to account for the
existence of long-periodic layered structures and the strong
structural relaxations, we developed a one-dimensional CE
with occupation variables explicitly accounting for the fact
that Sb or Bi atoms are part of an even or odd number of layers.
Moreover, the use of a vdw-DF assures interlayer distances in
excellent agreement with experiment are obtained. Accurate
formation energies of binary and ternary layered alloys are
obtained with CEs taking into account only a limited number
of pair interactions.
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For the binary systems A1−xQx (A = Sb, Bi; Q = Te, Se)
the resulting stable structures for x � 0.6 are the homologous
series (A2)n(A2Q3)m built up from successive bilayers A2 and
quintuple units A2Q3. For x > 0.6, the binary alloy segregates
into pure Q and A2Q3. Apart from A2Q3, which is a semi-
conductor, all members of the homologous series turned out to
be semimetallic in our SOC band structure calculation, though
the band overlap is small for some of the studied compounds.

The Bi1−xSbx system is found to be an almost ideal
solution, thermodynamically completely determined by the
configurational entropy. At T = 0 K, however, a stable long-
ranged ordered structure with a small negative formation
energy is found at x = 0.5 at.% with alternating Sb and Bi
layers. A band-structure calculation (with SOC) shows that
this compound is a semiconductor with a band gap of 0.104 eV.

Finally, we have addressed the ternary Sb-Bi-Te system.
The CE (based on ∼400 ab initio results) not only reproduces

the binary stable structures but also found stable ternary lay-
ered compounds with an arbitrary stacking of Sb2Te3, Bi2Te3,
and Te-Bi-Te-Sb-Te quintuple units, optionally separated by
mixed Bi/Sb bilayers. Our results allow for a direct link
between composition and (electronic) structure for the binary
and ternary Bi-Sb-Te systems and provide a starting point for
the investigation of the phase stability at T �= 0 K.
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Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
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