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Optimizing a biopharmaceutical chromatographic purification process is currently the

. . for extensive experimental efforts in pursuit of an optimal process. In silico tech-
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GlaxoSmithKline Biologicals allowing more cost-effective and time efficient process optimization. This work pre-
sents a modeling strategy integrating quantitative structure property relationship
(QSPR) models and chromatographic mechanistic models (MM) to optimize a cation
exchange (CEX) capture step, limiting experiments. In QSPR, structural characteristics
obtained from the protein structure are used to describe physicochemical behavior.
This QSPR information can be applied in MM to predict the chromatogram and opti-
mize the entire process. To validate this approach, retention profiles of six proteins
were determined experimentally from mixtures, at different pH (3.5, 4.3, 5.0, and
7.0). Four proteins at different pH's were used to train QSPR models predicting the
retention volumes and characteristic charge, subsequently the equilibrium constant
was determined. For an unseen protein knowing only the protein structure, the reten-
tion peak difference between the modeled and experimental peaks was 0.2% relative
to the gradient length (60 column volume). Next, the CEX capture step was opti-
mized, demonstrating a consistent result in both the experimental and QSPR-based
methods. The impact of model parameter confidence on the final optimization
revealed two viable process conditions, one of which is similar to the optimization
achieved using experimentally obtained parameters. The multiscale modeling
approach reduces the required experimental effort by identification of initial process

conditions, which can be optimized.
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1 | INTRODUCTION

Over the past years, the biopharmaceutical industry has experienced
substantial  growth, with  protein-based  biopharmaceuticals
(e.g., monoclonal antibodies (mAbs) and protein subunit vaccines)
being a significant part of the industry.! As a consequence, the bio-
pharmaceutical industry endeavors to accelerate process development
with the primary goal to deliver biopharmaceuticals at the earliest
possible time, pushing the competitive market.2 Moreover, the com-
petition even intensified more due to the emerging field of biosimi-
lars.>* The biopharmaceutical sector requires therefore innovative
approaches to advance process development, while ensuring product
quality and stability.> Especially the downstream process is the major
cost driver of the overall manufacturing costs, demanding an efficient
and cost-effective process. To achieve very high product purities,
chromatography is currently the most essential but also the most
costly technique.®

In silico techniques, such as mechanistic or data-driven modeling,
can be of great merit for process development. These methods allow
for increased process understanding while reducing experimental
effort and/or use of critical sample material, and decreasing process
development times.”® Within the next years, modeling techniques will
become more essential for biopharmaceutical industry. Specifically for
Industry 4.0 that aims to digitalize the entire manufacturing
process.” 2 Moreover, increased process understanding and process
and product quality control are in agreement with the quality-
by-design (QbD) guidelines.' ¢ Identifying the operating window of
the critical process parameters (CPP) is an essential part to guarantee
process' stability. Currently, these operating windows are determined
with expensive and time-consuming wet-lab design-of-experiments
(DoE). Chromatographic mechanistic models (MM) attempt to
describe the chromatographic process in silico and could be an inex-
pensive and fast alternative to determine the CPP operating window.
Over the past years, the industry has been gradually adopting chro-
matographic MM, with ongoing advancement being made in deter-
mining the essential input parameters.x”=2° In the future, the ultimate
objective is to determine adsorption isotherm for complex mixtures
more easily.??? Progress in utilizing mass spectrometry data could

1.2% However, at this moment

play a crucial role in achieving this goa
determining adsorption isotherm parameters for the MM remains a
bottleneck for industrial application, mainly due to time and material
limitations especially in the early phase of downstream process devel-
opment.?* Quantitative structure property relationships (QSPR)
modeling could be an in silico alternative to experimentally determin-
ing the adsorption isotherm parameters. QSPR aims to correlate phys-
icochemical properties with specific behavior, such as
chromatographic retention time.2> These physicochemical properties

are calculated from protein structure models that describe the

position of each atom. Combining MM with QSPR and optimization
tools could pave the way for a holistic modeling approach/workflow.

In 2001, Mazza et al. introduced a QSPR model for predicting
protein retention times for ion exchange chromatography.?® Their
approach involved feature calculation using the proprietary software
platform Molecular Operating Environment (MOE), followed by a
genetic algorithm for feature selection for the training of a partial least
squares model.?4?” As a result, several follow-up studies applied
QSPR models to different modes of chromatography/type of chroma-
tography resins, using support vector machine regression methods,
and including pH effects.?6-3% Malmquist et al. developed an addi-
tional set of protein descriptors that are pH-dependent and based on
electrostatic and hydrophobic properties.>* Moreover, several studies
considered the crucial binding orientations within protein-resin bind-
ing affinities in their QSPR models.>*~%" In recent years, QSPR has
been applied to more complex proteins, such as Fabs and mAbs,
showing the growing interest from industry and the added value of
these models.?*3%3? Robinson et al. showed the potential of QSPR
models for in silico resin screening of six chromatographic systems
applied to Fabs.®® While Saleh et al. built QSPR models using 21 mAbs
variants to predict the adsorption isotherm parameters, the equilib-
rium constant and the characteristic charge, which were subsequently
applied to the MM and able to predict the cation exchange chroma-
tography (CEX) step.?* Their study shows promising capabilities of a
multiscale model to simulate different process conditions without the
need for wet-lab experiments. Several software packages are available
to calculate the protein descriptors that are needed for QSPR model-
ing, an overview of these software packages has been provided else-
where.*>*! Most software tools are only available via webservers or
commercially, lacking source code availability. Therefore, Neijenhuis
et al. have recently published an open-source QSPR software tool,
which has also been used in this work.*2

Most research on QSPR modeling either developed protein
descriptors or applied existing protein descriptors for their QSPR
model with the aim to increase the protein-behavior understanding
via retention prediction.®%*#383%43 Additionally, other research also
applied the predicted QSPR parameters to MM and validated the pre-
dicted chromatographic process from a protein structure/
sequence.2*2%32 So far, no research has shown the ability of QSPR
models in combination with MM to optimize a chromatographic pro-
cess step without any need for protein material. Moreover, the influ-
ence of the accuracy of the predicted QSPR-parameters on an
optimized process has not yet been evaluated.

This article presents a general multiscale modeling strategy that
integrates QSPR and chromatographic MM to optimize a CEX capture
step. We were able to simulate and validate a CEX step only using the
protein structure. Subsequently, we compared the uncertainty of the

experimentally determined and predicted parameters on the final
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FIGURE 1 Overview of the experimental-based method and the
QSPR-based method. Both methods can be used to determine the
adsorption isotherm parameters that can be used in the mechanistic
model for process optimization purposes. The equilibrium constant is
denoted by Keq and the stoichiometric coefficient of salt counter ions
with v.

optimization outcome. An overview of the experimental-based and
QSPR-based strategy is shown in Figure 1. This strategy can be used
to determine the operating window of CPPs in early stage process
development, showing the potential applicability for industry. Com-
bining these modeling techniques together with an optimization soft-
ware reduces the experimental effort for overall process development
time significantly. Previous research mostly used pure components to
perform the linear gradient experiments (LGE), however the availabil-
ity of pure components is limited in biopharmaceutical industry.
Therefore, performing LGE with complex protein mixtures would offer
significant advantages. So far, only Buyel et al. applied QSPR modeling
to a crude mixture of plant extracts to predict elution conditions for
jon exchange and mixed mode chromatography separations.>® Here,
we performed LGE for five different gradient lengths and four pHs
applied to two mixtures of each three proteins. Performing the experi-
ments with protein mixtures instead of each protein individually,
reduces the total LGE from 30 to 10 experiments. We developed
QSPR models for predicting the retention volumes and characteristic
charges. These predicted QSPR parameters were used to obtain the

equilibrium constants. The multiscale model was validated for an

PROGRESS

unseen protein, which was excluded from the QSPR training and
testing data. Finally, we compared the influence of parameter uncer-
tainties on the optimization outcome by using experimental and QSPR

predicted parameters.

2 | MATERIALS AND METHODS

21 | Experimental part

211 | Materials and equipment

A 1-mL CEX column of HiTrap SP FF (Cytiva Life Sciences, USA) was
used for the preparative column experiments. For the analytical size
exclusion chromatography-ultra performance liquid chromatography
(SEC-UPLC), an ACQUITY UPLC Protein BEH SEC 200 A column
(Waters Corporation, USA) was used, protected with a prior/foregoing
ACQUITY UPLC Protein BEH SEC guard 200 A column (Waters
Corporation, USA).

The following proteins were purchased from Sigma-Aldrich, USA:
bovine serum albumin (BSA), lysozyme, cytochrome c, chymotrypsino-
gen A from bovine pancreas, and conalbumin. Ribonuclease pancreatic
(RNase) was purchased from Roche Diagnostics GmbH, Germany.
Dextran (DXT1740K) (American Polymer Standards Corporation,
USA) was used for column characterization.

The buffers were prepared with Milli-Q water and adjusted to the
desired pH using either 0.5 M sodium hydroxide or 1 M hydrochloric
acid. The buffers were filtered to remove undissolved salts, 0.2 um
pore-size hollow fiber MediaKap (Repligen, USA) filter for UPLC
buffers and a 0.2 um Membrane Disc Filter (Pall corporation, USA) for
AKTA buffers. Moreover, all buffers were degassed for 20 minutes
using an ultrasonic bath (Branson Ultrasonics, USA) to prevent intro-
ducing air bubbles into the column. The protein mixture was filtered
using a 0.2 um Whatman Puradisc FP 30 mm (GE Healthcare Life
Sciences, USA).

2.1.2 | Linear gradient column experiments

LGE were conducted at various pH values (pH 3.5, 4.3, 5.0, and 7.0)
for five gradient lengths: 20, 30, 40, 60, and 80 column volumes (CV).
For every pH a different running buffer was needed, citric acid mono-
hydrate (pH 3.5, 20 mM), sodium acetate trihydrate (pH 4.3 and 5.0,
50 mM), and sodium phosphate monobasic dihydrate (pH 7.0,
50 mM). The elution buffer is the same as the running buffer for that
respective pH with the addition of 1 M sodium chloride. The pH-
values were selected to theoretically favor a positive net charge for
most proteins, and therefore anticipating their binding to the CEX
resin. The chromatographic column experiments were performed on
an AKTA pure system (Cytiva Life Sciences, USA) with UNICORN ver-
sion 7.5 software, with a flowrate of 1 mL/min, and measuring UV
absorbance at 230, 280, and 400 nm wavelength. The column charac-

teristics are given in Table 1, more information on the characterization

B5US017 SUOLULUOD dAIIEB.ID) 3{ced!|ddde 8y Aq pausenob ake sap e VO ‘88N JO s3I 40y Afeid8UIIUO AB]1M UO (SUONIPUOD-PUR-SLLBYWI0D" AS 1M AseIq 1 BUT[UO//SNY) SUONIPUOD PUe SWid 1 31 88S * [202/0T/80] Lo Akeiqiauliuo AB1im 1ea AiseAiun eaiuys L Ag Sose idia/zo0T 0T/10p/uod Aa| i Akeid 1 Bul|uo o fe//:Sany WO14 papeo|uMod ‘0 ‘EE0902ST



KEULEN ET AL

40f26 BIOTECHNOLOGY
—I—I PROGRESS

TABLE 1  Column characteristics for HiTrap SP FF column.
Parameter Value Unit
Column volume 0.97 mL
Column diameter® 0.70 cm
Bed height® 2.50 cm
Maximum pressure® 2.0 MPa
lonic capacity** 800 mM
Particle size® 90 um
Pore diameter*® 54 nm
Cross sectional area 0.39 cm?
System dead volume (Vgead) 0.34 mL
Total porosity (&t) 0.918 -
Extraparticle porosity (ep) 0.298 -
Intraparticle porosity (&) 0.887 -
System dwell volume (Vgyen) 1.09 mL

“Manufacturer.

methods can be found in Appendix A. During the chromatography
runs, 1 mL samples were collected using a fraction collector. These
samples were additionally analyzed with a Dionex UPLC system using
Chromeleon Chromatography Data System version 7 software, mea-
suring UV absorbance at 230, 280, and 400 nm wavelength. The
UPLC-running buffer was a 100 mM sodium phosphate monobasic
dihydrate with a pH of 6.8. A flowrate of 0.1 mL/min and analysis
time of 40 min was applied. The SEC-UPLC analysis enabled the iden-
tification of the peaks obtained during the LGE's with their corre-
sponding proteins. However, the protein mixture was divided into
two groups, as some proteins with similar characteristics were indis-
tinguishable in the SEC-UPLC analysis. Group 1 consisted of RNase,
cytochrome ¢, conalbumin, and group 2 of chymotrypsinogen, lyso-
zyme, and albumin. Both multi-component mixtures contained
0.8 mg/mL of each protein.

First, the column was equilibrated with 5 CV running buffer, fol-
lowed by a 300 pL sample injection using a 10 mL Superloop (Cytiva
Life Sciences, USA). After the sample injection, unretained proteins
were removed by washing the column for 5 CV using the running
buffer. Subsequently, a gradient elution was performed from O (run-
ning buffer) to 1 M sodium chloride (elution buffer). The proteins in
the collected fractions were identified with the SEC-UPLC analytical
method. Though, it is expected that the elution order of the proteins
remains the same and therefore, only the fractions of two gradients
for each pH were analyzed with SEC-UPLC. For each fraction analysis,

5 uL sample was injected.

2.2 | Chromatographic MM
The chromatographic MM from previous work was used to describe
the dynamic adsorption behavior during the chromatographic separa-

tion process.*® This employed MM is a combination of the equilibrium

transport dispersive model combined with the linear driving force

model as

aC  daq;  IC J%Ci

TR R 1)

q; §
(;?Zkovv(Ci Céq,,‘); (2)

-1

d d?
Kovi = |2+ =2 . 3
ovi |:6kf’; 606pry;:| ( )

where the concentration in the liquid phase is represented by C; and
in the solid phase with g;, in which subscript i denotes the protein
component (Equation 1 and 2). The liquid phase concentration at
equilibrium is denoted by C;qv,-. The phase ratio is equal to
F=(1—e&p)/ep, Where ¢, is the bed porosity. Time and space are indi-
cated by t and x respectively. u is the mobile phase interstitial velocity
and D, is the axial dispersion coefficient. The overall mass transfer
coefficient, k,y, is defined as the combined result of both the separate
film mass transfer resistance and the mass transfer resistance within
the pores.*” In Equation 3, the particle diameter is denoted by dp, the
intraparticle porosity by ¢,, and the effective pore diffusivity coeffi-
cient by D,. The effective pore diffusivity (Equation 4) is described
according to Fick's law and calculated as

D, =221y, )

T

where 7 is the tortuosity and y the diffusional hindrance parameter
determined by Brenner and Gaydos.*® The free diffusivity (Df) has
been calculated using the Young correlation for globular proteins.*’
The film mass transfer resistance is k= D¢Sh/d,, in which Sh is the
Sherwood number. The Method of Lines was applied using a fourth-
order central difference scheme for both first and second-order deriv-
atives to spatially discretize the partial differential equation into a set
of ordinary differential equations (ODEs). The Livermore Solver for
Ordinary Differential Equations (LSODA) algorithm, part of the scipy.
integrate package, is employed to solve the ODEs, automatically tran-
sitioning between the nonstiff Adams method and the stiff Backward
Differentiation Formula (BDF) method.>® Additional details regarding
the MM can be found in a prior study.>*

We employed the linear multicomponent mixed-mode isotherm
(Equation 5), developed by Nfor et al., to determine the equilibrium
liquid phase concentration as>?

# = Keq,iA(vﬁni) (ZSCS)7Vin7ni Yi, (5)

eq,i

where the equilibrium constant, K4, quantifies the strength of the
interaction between the protein and the stationary phase. A is
the ligand density or ionic capacity of the concerned resin, z; is the

charge of the salt counter ion, ¢; is the salt concentration in the liquid
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phase, and ¢, is the molarity of the solution in the pore volume. The
stoichiometric coefficient of salt counter ions is denoted by v;, deter-
mined by v; =2z,/z,, in which z, is the effective binding charge of the
protein. For monovalent counter-ions, the charge equals one (z; = 1),
for example Na™ in the sodium chloride elution buffer. In this work,
only the ion-exchange part of the mixed-mode isotherm is used,
therefore hydrophobic interaction stoichiometric coefficient (n;) will
be equal to zero. The activity coefficient (y) of the protein solution
can be calculated via Equation 6 as

vi= e’<s,sz+Kp,iC:7 (6)

where K; is the salt-protein interaction constant and K|, the protein-
protein interaction constant. In the linear range of adsorption, the pro-
tein concentrations are low and protein-protein interactions are
expected to be minimal, therefore K, becomes insignificant and can
be neglected.’®>* Because of the low salting-out effects, the K; also
becomes negligible.®® Subsequently, incorporating the assumptions
for this work, the linear multicomponent mixed-mode isotherm is
reformulated in Equation 7 as

I KoM (zes) ™. 7)

eq,i

2.3 | Procedure to determine adsorption isotherm
parameters

The peak retention volumes were obtained from the LGE's for each
gradient length and at each pH. The initial retention volumes (Vgo)
were corrected to be aligned with the elution gradients as follows:

Vinj

VR:VR,O*Vm*VD*Ty (8)

where Vy is the peak retention volume, V,, is the column void volume,
determined by dextran pulse, and Vp is the system's dwell and dead
volume (Equation 8), details can be found in Appendix A. The injection
volume is denoted by Vj,, half of this volume needs to be
subtracted.>®

The regression formula of Shukla et al.>® (Equation 9) adapted

7

from Parente and Wetlaufer,”” was used to obtain the equilibrium

TABLE 2 Overview of the protein

T . Protein
characteristics and the protein data bank
(PDB) entry used for calculations. Conalbumin
Albumin

Chymotrypsinogen
Lysozyme
Ribonuclease

Cytochrome c

PROGRESS

constant (K¢q) and the characteristic charge (v) for each protein as
follows:

v _ w1
Ve= <Csvgl 4 VinKegFAY(v+1) % (Csf — Cs0) ) ~Cyo | x Ve ‘
Ve Csr—Cso

9)

where Vg is the gradient length. Cso and Cg¢ are the initial and final
salt concentration during the elution respectively. As no separate pore
balance is considered in the chromatographic MM, the column phase
ratio is considered the same F = (1 —¢)/e,. To validate the regression
and accordingly the MM, the experimental data of 60CV is left out
during the regression.

The initial peak retention volumes (Vgp) were determined using
the function find_peaks of the signal module from the SciPy library.
The regression was performed using the curve_fit function of the
optimize module from the SciPy library.

Specifically at pH 5.0, Cytochrome ¢ and RNase co-eluted. The absor-
bance and respective calibration lines of cytochrome c at 400 and 280 nm
were used to trace back the RNase peak. Moreover, at pH 4.3, albumin
and chymotrypsinogen co-eluted. However, from the SEC-UPLC analysis
it was observed that albumin eluted later compared to the UV peak
detected by the UNICORN software. Therefore, the peak retention vol-
umes for albumin at pH 4.3 were determined by analyzing the concentra-
tions by SEC-UPLC in the 1 mL fractions obtained from the LGE. Albumin
peak areas obtained from the SEC-UPLC were used to fit a third degree

polynomial function representing the retention volume as the maximum.

24 | QSPR model
2.4.1 | Structure preparation and descriptor
calculation

For each protein, the respective models, listed in Table 2, were
obtained from the protein data bank,>® specific entry selection was
performed based on resolution and coverage. Duplicate chains were
removed from each structural model using pdb-tools®’ to yield mono-
mer representations. The side chain pKa of titratable residues were
predicted using PROPKA3.0° allowing for more accurate charge cal-
culations with respect to pH. Protein features at pH 3.5, 4.3, 5.0, and
7.0 were calculated using our open-source software package prodes,

PDB names Mass (kDa) Estimated isoelectric point®
10VT 75.83 6.62
6QS9 66.43 5.49
2CGA 25.67 8.13
1GWD 14.31 9.20
1RNC 13.69 8.29
6FF5 12.33 9.60

?Estimations were performed using the open-source QSPR tool.
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available at https://doi.org/10.5281/zenodo.10369949, using the

default settings, only supplying the pKa estimations.*? Visualization of

protein structures was performed using UCSF-Chimera.®!

242 | QSPR model training

For predicting the protein retention volumes and adsorption isotherm
parameters, multi linear regression (MLR) models were trained. The
prediction of conalbumin was removed from the dataset prior to
train-test splitting to eliminate all bias. To find an accurate predictive
MLR model, series of filter thresholds were screened by testing a
range of feature-feature correlation filters (Pearson correlations of
0.8,0.9, and 0.99). Followed by feature-observation correlations filter-
ing, maintaining a predefined percentage of features (10% to 100% in
10% increments). Feature selection was performed by sequential for-
ward selection. Final models were selected based on the cross-
validated R? and test set Root Mean Square Error (RMSE), which
should be close to the cross-validation RMSE to ensure model robust-
ness. Feature importance was assessed by analysis of the regression
coefficient and the influence of feature permutation. For the predic-
tion of the unknown conalbumin, the confidence interval was calcu-

lated via Equation 10 as

Tntt(s g p) \/MSE (1 X7 (XTX) "X ). (10)

where ¥, is the predicted value, t( ) is the “t-multiplier,” X and

1-4n-p
Xp are the feature matrices of the training set and the value to be pre-

dicted. The mean squared error (MSE) is calculated via Equation 11 as

n

1 ~\2
MSE:;Z(Y:‘*Y:’) . (11)

i

2.5 | Optimization

We evaluated the uncertainty-influence of the regressed and predicted
QSPR adsorption isotherm parameters on the final optimization outcome.
The equilibrium constant and characteristic charge values were varied
between their standard deviation values for 100 samples. These samples
were used in the optimization. First, the optimization was formulated and
evaluated to be consistent when performing the same optimization multi-

ple times. The global and local objectives were formulated as follows:
minf(x) =2 x (100 — yield(x)) + 1 x (100 — purity(x)). (12)
s.t. h(x)=0, (13)

0sx<1, (14)

where the objective function, f(x), is minimized (Equation 12). The
equality equations, such as the mass balances and equilibrium rela-

tions, need to be satisfied (Equation 13). Moreover, variables (x) were

normalized for more efficient optimization purposes (Equation 14).
Four variables were chosen namely, the initial and final salt concentra-
tions, and the lower and upper cut points. The weights of the objec-
tive function were chosen to reflect a capture step to be optimized,
hence removing most of the bulk impurities and preventing losing
product material.

For the global optimization, the differential_evolution algorithm
from the scipy. Optimize package was employed, using the Latin
hypercube sampling to initialize the population and the maximum
number of iterations was 10 with a population size of 23. For the local
optimization the Nelder-Mead algorithm was used, with a maximum
of 100 iterations. The relative and function tolerances for both global
and local optimizations were set to 1le-2. The lower cut point ranges
from 1% to 80% on the left of the peak maximum, and the upper cut
point from 20% to 99% on the right of the peak maximum. The initial
salt concentration varies between 1 and 150 mM, and the final salt

concentration between 320 and 800 mM.

3 | RESULTS AND DISCUSSION

3.1 | Linear gradient experiments

3.1.1 | Determining the retention volume

LGE's were conducted for two protein mixtures at four pH values
(pH 3.5, 4.3, 5.0, and 7.0) and various gradient lengths (20, 30, 40, 60,
and 80 CV), as described in the experimental Section 2.1. The elution
order of the proteins was identified by SEC-UPLC analysis for each
pH, to determine single peak retention volumes. The results for the
20 CV LGE are shown in Figure 2. As expected, a downward trend for

pH mmm 35 mm 43 5 7
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FIGURE 2 Peak retention volumes (mL, y-axis) given for each

protein (x-axis) at each pH (bars). These retention volumes are from
the 20 CV gradient length using a HiTrap SP FF column, 1 CV is equal
t0 0.97 mL.
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TABLE 3 Regressed adsorption isotherm parameters, the characteristic
standard deviation is indicated with number after + sign.

Characteristic charge (v)

PROGRESS

charge and the equilibrium constant, for each protein at each pH. The

Equilibrium constant (K.,)

Protein pH 3.5 pH 4.3 pH 5.0 pH 7.0 pH 3.5 pH 4.3 pH 5.0 pH 7.0
Conalbumin 2.37 £0.12 0.071 £ 0.02
Albumin 3.88 £ 0.66 1.46 + 0.04 0.05 +0.04 0.051 + 0.01
Chymotrypsinogen 421 +£022 2.68 £0.14 2.36 £0.11 1.09 + 0.003 0.13 £ 0.03 0.14 £ 0.03 0.14 £ 0.03 0.44 + 0.003
Ribonuclease 5.88 £ 0.27 420 £0.26 3.30£0.15 0.23 £ 0.05 0.42 +0.07 0.16 £ 0.04 0.11 £ 0.02 1.26 +0.21
Cytochrome ¢ 7.16 +0.34 444 +0.21 3.16 £ 0.14 1.78 £ 0.04 3.68 +0.28 0.39 £ 0.07 0.21 £0.04 0.37 £ 0.03
Lysozyme 5.85+0.28 4.09 £0.21 3.54 +£0.15 2.22 +0.06 1.30+0.16 0.36 £ 0.07 0.30 + 0.05 0.37 £ 0.04
(a)7 ] protein (b) 4 protein
Ribonuclease A 354 A ® Ribonuclease A
# Cytochrome C \ # Cytochrome C
6 = Chymotrypsinogen \ = Chymotrypsinogen
Lysozyme 3.01 \ Lysozyme

3 Albumin 3 \ Albumin
< 31 Conalbumin ¥, \ Conalbumin
o - \
ﬁ § \
M 4 f; 2.01 \
8 E
g 3 3
g 3 é 1.5 A
S 24 ug". 1.0

14 0.54

04 0.0 1

35 40 45 5.0 55 6.0 6.5 70 35 4.0 45 5.0 5.5 6.0 6.5 7.0
pH pH

FIGURE 3 Trendlines between the (a) characteristic charge (y-axis) and
protein.

the retention is observed when increasing the pH. No correlation
between isoelectric point (Pl) and retention was observed. Although
cytochrome c, lysozyme, RNase, and chymotrypsinogen elute in the
order of descending pl (9.60, 9.20, 8.29, and 8.13, respectively) at
pH 3.5. No retention volume for albumin and conalbumin (pl of 5.49
and 6.62, respectively) was determined as these proteins did not elute
during the salt gradient, showing greater affinity for the column,

which is in accordance with Yang et al.3?

312 |
parameters

Regression of adsorption isotherm

The corrected retention volumes, according to Equation 8, were used
to regress Keq and v using Equation 9. The regression parameters for
each protein at each pH are shown in Table 3. The regression plots of
each protein at each pH are provided in Appendix B, all fits achieved
an R? close to one and RMSE values varied between 0.002 and 0.22.
From Table 3 it can observed that the characteristic charge, v,
varied between 1% and 6% of the regressed parameter value and the
standard deviation values of the equilibrium constant, K, varied
between 7% and 25%. Figure 3a shows that the characteristic charge

(b) the equilibrium constant (y-axis), and the pH value (x-axis) for each

decreases with increasing pH for all proteins with multiple data points.
This is due to the protonation of amino acids, which results in a higher
net protein charge at lower pH values. A higher net charge results in
more available binding sites to interact with the resin. However, no
general trend can be observed between the equilibrium constant and
the pH (Figure 3b). The equilibrium constant of cytochrome c
and lysozyme decreases rapidly from pH 3.5 to pH4.3. However, at
pH7.0 K¢ increases again for RNase, chymotrypsinogen, lysozyme,
and cytochome c (increase of 1.19, 0.26, 0.23, and 0.23, respectively).
Similar findings were reported by Yang et al.%? and the regressed
parameters are in the same order of magnitude as reported in litera-
ture.324% |n general, a higher equilibrium constant indicates a stronger
binding affinity towards the resin, and therefore eluting later during
the salt gradient. The same trend can be observed for the majority of
proteins, see Table 3 and Figure 3. Not all proteins follow this trend,
such as chymotrypsinogen, cytochrome c, and lysozyme relative to
RNase (pH 7.0), and albumin relative to chymotrypsinogen (pH 4.3).
These proteins elute at a later moment while having a lower equilib-
rium constant than the proteins eluting at an earlier moment. Though,
the characteristic charge value is higher for these proteins with a
lower equilibrium constant. Eventually, it is the combination of these

two parameter values that determines the protein's elution moment.
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FIGURE 4 Chromatographic mechanistic model validation for gradient length of 60 CV, equal to 58.2 mL, at a pH of 5.0. The blue line
indicates the MM predicted concentration of the protein, while the red dotted line indicates the experimental concentration. The black dotted
line indicates the salt concentration. The initial concentrations are albumin: 0.24 mg/mL, chymotrypsinogen: 0.80 mg/mL, conalbumin: 0.31 mg/
mL, cytochrome c: 0.41 mg/mL, lysozyme: 0.55 mg/mL, and RNase: 0.56 mg/mL.

3.1.3 | Chromatographic MM validation

The chromatographic MM was validated for the gradient length of
60 CV, for pH 5.0 and 7.0. The results of pH 5.0 are shown in
Figure 4, and of pH 7.0 in Appendix C. The calibration lines convert
the UV absorbance to concentration, these can be found in
Appendix D. As the experiments were performed in two mixtures of
each three proteins, only parts of the peaks corresponding to a certain
protein were used to avoid pollution of the peak by another compo-
nent. In this way, the validation of each protein with the MM could be
clearly evaluated.

For all proteins at pH 5.0, the maximum retention peak difference
is 1.04 CV and the average retention peak difference is 0.92 CV,
which is 1.73% and 1.53% with respect to the gradient length
(60 CV). In all cases, except for RNase, the model predicts the start of
the elution and the peak maximum earlier than the experimental
results. Even though it was not be feasible to extract the entire exper-
imental peak in all cases, it was observed that for conalbumin, cyto-
chrome ¢, and lysozyme the experimental peak seems sharper than
the modeled peak. To assess the concentration agreement between
the modeled and experimental results, we compared the difference
between the peak width at half of the peak maximum and the peak
concentration. The maximum peak width difference is 1.14 CV, equal
to 1.89% relative to the gradient length (60 CV). The average peak
width difference is 0.81 CV, equal to 1.35% relative to the gradient

length (60 CV). The average difference in the peak concentration is
0.04 mg/mL, equal to 7.36% relative to the initial concentration.
Overall, the MM, using the regressed adsorption isotherm parameters,
can predict the experimental data sufficiently accurate with a maxi-

mum retention peak difference of 1.73%.

3.2 | Quantitative structure property relationship
modeling

QSPR models relate specific descriptors, calculated from the protein
structure, to behavior (e.g., retention). Prediction of the MM parame-
ters, needed for simulation, starting from the protein structure allows
for a full in silico optimization framework. From the dataset composed
of the six different proteins, conalbumin at pH 5.0 was removed to be
used for model verification. This protein and pH was selected because
retention volumes for this protein were not obtained for any other pH
value. This means, that conalbumin at pH 5.0 would be truly unknown
for the final predictive model. The remaining 18 datapoints were split
into a train and test set, where the test set was comprised of albumin
measured at pH 4.3 and 5.0. As retention volumes for albumin were
only obtained for pH 4.3 and 5.0, these two data points will validate
the models' ability to predict the effect of differences in pH and to
predict unseen proteins. The features considered during the QSPR
model

training, ranging from protein shape to charge and
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FIGURE 5

Prediction of characteristic charge. (a) Model validation of the regression model trained to predict v where the circles represent

the leave-one-out cross-validation and the triangles the test set. (b) Overview of the selected features with the regression coefficient and the

cross-validated R? after feature permutation.

hydrophobicity projections, were calculated using the open source
software prodes.*?

3.2.1 | Characteristic charge
For the prediction of the characteristic charge, a MLR was trained. To
avoid overfitting, a ratio of five observations to one feature should be
maintained.®> Meaning only a maximum of three features should
be used in the model. To select the specific features, a redundancy fil-
ter, removing features with a Pearson correlation of >0.99 to other
features, was applied. A second filter step was performed removing
40% of the features with lowest correlation to the characteristic
charge. From the remaining features, sequential forward selection was
performed to select the best features. A model with high accuracy
(cross-validated R? of 0.86 and RMSE of 0.67) was obtained using
only two features (Figure 5). As would be expected, the most impor-
tant feature was related to the electrostatic potential (EP) of the pro-
tein surface. More specifically, the maximal found surface EP. The
regression coefficient of this feature was found to be 8 and permuta-
tion of the feature would result in a model not capable of predicting v
(Figure 5b). The second feature that was selected is the trimean of the
negative hydrophobicity potential. This feature is less important as
the regression coefficient is 1.5 and permutation results in a model
with a cross-validated R? of 0.8. The positive regression coefficient
for the second feature suggests that increasing the hydrophilicity
reduces the characteristic charge. There is the possibility however,
that this feature captures the titratable amino acid content on the sur-
face, as amino acids contributing to a negative hydrophobicity are pre-
dominantly titratable. At this point, we have been unable to
confirm this.

Applying the same approach to build a QSPR model for K4 did
not yield sufficiently accurate models. With the current dataset, the
best performing models yielded only a R? of 0.58 (data not shown).

While v has direct physical implications, by representing the number

of charge interactions between the resin and protein, Keq is lacking
this.**%3 The equilibrium constant represents all phenomena contrib-
uting to adsorption. As observed in Figure 3, v shows a clear negative
trend with increasing pH, this trend is lacking for K. It is thought that
the current dataset-size is the main limitation as more features might
be required to capture the complex relation. To overcome this chal-
lenge, increasing the dataset-size would result in a model trained over
a greater range of property values, while also allowing an increase of

the number of used features without loss of robustness.2432

3.22 | Retention volumes

Alternatively, the Keq can be obtained from the regression as per-
formed in 3.1.2 for experimental data. To achieve this, a MLR model
for each LGE was trained (Figure 6). The best performing models
were obtained using a feature-property correlation filter, removing
40% of the features with the lowest correlation, prior to the feature
selection. The trained MLR models, for each LGE, all achieved a
cross-validated R? of at least 0.88. For all models, the most impor-
tant feature relates to the EP. More specifically, the median shell
positive EP was most important for the four lower gradient lengths
(20, 30, 40, and 60 CV). This feature describes the positive EP on the
exterior of the protein by projecting each charge onto a plane that
represents the resin. For the calculation of the shell, a total of
120 planes surround the protein, in this way representing different
binding orientations. Opposed to mapping the EP onto solvent
accessible surface, this method considers the distance through the
solvent, penalizing protein surface within pockets. The surface frac-
tion of alanine was the second feature selected. Alanine is a small
hydrophobic amino acid, therefore this feature implicitly describes
the surface hydrophobicity. The positive regression coefficient fitted
for this feature indicates that a greater alanine content, and thus
higher surface hydrophobicity, results in a higher retention volume.

This can be explained by the salting-out effect of the Na™ ions used
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Serine surface fraction 12.76 0.83
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TABLE 4 Predicted properties for conalbumin at pH 5.0.
Property Experimental value (mL)
Retention volume 20 CV 11.66
Retention volume 30 CV 12.89
Retention volume 40 CV 14.02
Retention volume 60 CV 16.20
Retention volume 80 CV 18.19
Characteristic charge (v) 2.36

during the gradient elution, resulting in hydrophobic interactions
with the resin material.*3

For the 80 CV retention MLR model, the following features were
selected: shell positive EP mean, solvent accessible surface positive
EP mean, and the serine surface fraction. The feature combination
yielded an accurate model with a cross-validated R? of 0.91 and a
RMSE of 3.9 (Figure 6e). For the prediction of the test set, it is
observed that the point at the lower end of the retention data
is under predicted, compared with being over predicted in all other
models. While the EP remains the most important in the model, differ-
ent features were selected during the sequential feature selection.
This is due to the fact that there is no exact linear relationship
between gradient length and retention, as can be most notably
observed at pH 7.0 in Appendix B. While the Mean and Median of the
shell EP are similar, the slight differences in the features resulted in
the selection of the mean. Both the mean of surface positive EP and
mean of shell positive EP are important features, with regression coef-
ficients of 37.73 and 26.28, respectively. This importance is not
reflected by the permutation models, as both features describe the
positive EP, collinearity allows for compensation for a loss of one of
the features. However, it is essential to maintain both features to
accurately predict the test set, as removing one of them results in less
accurate retention estimates (data not shown). Surprisingly, the sur-
face area fraction of serine has a positive regression coefficient, like
the alanine surface fraction in the other four models. In contrast to
alanine, serine is a hydrophilic residue. However, the positive regres-
sion coefficient indicates increasing retention with higher serine con-
tent on the surface, which contradicts the hypothesis for alanine
selection for the previous four models. The reason behind the selec-
tion of serine in this model is currently unknown. While the models
show difficulty in predicting the change of elution order switch of
lysozyme and cytochrome c for pH 4.3 and 5, a sharper decrease in
retention for cytochrome ¢ compared with lysozyme is predicted (data
not shown). Still all models show good accuracy during both cross-
validation and model testing, providing high confidence in model

robustness.

PROGRESS

Predicted value (mL) 95% Confidence interval

11.89 2.56
12.92 3.69
13.76 4.80
15.21 7.02
20.23 8.98

3.05 1.40

3.2.3 | Property prediction of conalbumin at pH 5
To demonstrate the true predictive capabilities of the trained QSPR
models for the prediction of retention volumes and isotherm parame-
ters, conalbumin was completely removed from the dataset prior to
the train test splitting. This allowed to minimize the bias applied on
the model selection. For the prediction of the retention volumes, the
error of prediction increased with increasing gradient lengths
(Table 4). The range of observed retention volumes rises along with
the gradient lengths, likewise, the 95% confidence interval increases.
Nevertheless, the effect of increasing the gradient length was cap-
tured correctly, having a maximal error of about 2 mL in retention vol-
ume, which falls within the 95% confidence interval. The
characteristic charge was predicted with an error of 0.5, complying
with the 95% confidence interval. Unfortunately, as no robust and
accurate QSPR model for the K¢q could be trained with the current
dataset, no direct prediction could be made. Therefore, we applied an
alternative method, the predicted retention volumes and characteris-
tic charge were used to regress the K¢, using the regression formula,
similar to the experimental data method as shown in 3.1.2. regression
of adsorption isotherm parameters. The K., obtained was 0.028
+0.006, which is lower than the K, of 0.078+0.012 obtained by
regression of the experimental data. This is due to the higher pre-
dicted v by the QSPR model. Validation of the predicted parameters
showed an accurate prediction of the conalbumin elution using a
60 CV gradient length (Figure 7). Both peak maximum and peak shape
are simulated accurately. The difference in the peak retention volume
is very small, 0.12 CV, which is 0.2% difference relative to the gradi-
ent length (60 CV). The peak concentration differs by 0.009 g/L, which
is 2.85% relative to the initial concentration, and the difference in the
peak width at half of the peak maximum is only 1.0% relative to
the gradient length (60 CV). Interestingly, the predicted parameters
seem to better describe the retention profile compared to the param-
eters obtained from the experimental LGE, which was an average
peak retention difference of 1.53% and an average peak width differ-
ence of 1.35% with respect to the gradient length (60 CV).

FIGURE 6 Prediction of protein retention at different salt gradient lengths where the circles represent the leave-one-out cross-validation and
the triangles the test set. (a-e) show the validation and test of the prediction of the retention volume while applying a salt gradient of 20, 30,
40, 60, and 80 column volumes (CVs), respectively. One CV equals 0.97 mL (Table 1). The tables right of the plots show the feature coefficients

and the effect of feature permutation on the cross validated R2.
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3.3 | Comparing optimization results between
experimentally and QSPR-based methods

For the test protein, conalbumin at pH 5.0, both adsorption isotherm

parameters, Kqq and v, were determined via two methods. The first
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FIGURE 7 Chromatographic mechanistic model validation of
conalbumin for gradient length of 60 CV, equal to 58.2 mL, at a pH of
5.0 using the predicted isotherm parameters. Blue line indicates the
MM predicted concentration of the protein, while the red dotted line
indicates the experimental concentration. The black dotted line
indicates the salt concentration.

Experimental

Purity = 74.6%
Yield = 96.3%

1.0

method regressed the adsorption isotherm parameters from the LGE
data directly, hence LGE are needed to perform this method. While
the second method involved the QSPR approach, which, after being
properly trained, requires the protein-structure to determine the v
and the retention volumes. These two QSPR models were then used
to regress the K4 using the regression formula (Equation 9).

The capture step was optimized to separate conalbumin from the
other proteins, prioritizing yield over purity, utilizing the adsorption
isotherm parameters determined from both methods. This optimiza-
tion aimed to assess the agreement between the optimized capture
step and the parameters obtained from both methods. The resulting
capture steps for both methods are depicted in Figure 8.
The optimized variables (e.g., lower and uppercut points and the initial
and final salt concentration) show comparability. The differences in
both cut points are within 3.3%, and the deviation for both initial and
final salt concentration is around 10 mM, approximately 3% relative
to the final salt concentration (330 mM). The obtained purity only dif-
fers 0.3% and the yield 1.2% between both methods. These results
demonstrate that, in this case study, it was viable to optimize the CEX
capture step based solely on knowledge of the protein structure.

In the next part, we assessed the effect of the adsorption iso-
therm parameter uncertainties on the optimization outcome. We
aimed to determine if variations within the standard deviation of the
parameters would result in different optimal values. For both
methods, numerous sample points were generated for each isotherm
parameter, covering a range within their respective standard devia-
tion. Subsequently, these sample points were used in the optimization

case study. First, the consistency of the optimization case study was
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salt concentration are 14.8 and 330.4 mM, respectively.
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evaluated by running the same optimization five times, these results
for both methods can be found in Appendix E. This consistency evalu-
ation aimed to ensure there were no major deviations in results within
the same optimization using identical parameters. Additionally, the
minor deviations could be attributed to the optimization process itself.
The optimized results for various combinations of K¢, and v, ranging
within their respective standard deviation, are shown in Figure 9 for
both methods. This includes the optimized variables, such as the lower
and uppercut points and the initial and final salt concentrations, as
well as the purity, and the yield.

In the experimental-based method, the standard deviations for
both Keq (0.071£0.012) and v (2.37 £0.12) are relatively small, result-
ing in minimal variance in the optimized variables (Figure 9a1-f1,a2-
f2, for variations in Keq and v, respectively). The lower and upper cut
points have a maximum difference of 7% (Figure 9a,b). The initial salt
concentration varies between 15 and 40 mM (Figure 9c1,c2), and the
final salt concentration is found between 320 and 327 mM
(Figure 9d1,d2). These results suggest that despite variations in the
isotherm parameters, a consistent optimum is identified, and the opti-
mized variables exhibit only minor variations. The impact on the yield
is minimal, with only a 2% variation (Figure 9f1,f2). On the contrary,
the effect on purity is more pronounced, fluctuating between 70%
and 81%. The decrease in purity is primarily attributed to an increase
in the K4 (Figure 9e1), which is due to the greater relative standard
deviation compared to v.

For the QSPR-based method, the standard deviation of K, is
small (0.028 +0.006). The randomly spread data indicates that there
is no clear correlation between K., and the optimized variables
(Figure 9a3-f3). However, the standard deviation of v is significantly
larger (3.05+1.4), this standard deviation was defined by the 95%
confidence interval calculated by Equation 9. The large variation in v
resulted in two identified optima, which is clearly observed in the shift
of the final salt concentration (Figure 6d4). The first solution finds an
optimal final salt concentration between 320 and 400 mM. The shift
to the second optimal solution occurs when v is greater than 3.6, find-
ing the final salt concentration at around 800 mM. Remarkably, both
optimal final salt concentrations are close to the set boundaries. As
the characteristic charge increases, the component is expected to
elute at a higher salt concentration and thus at a later moment during
the gradient. This results in a greater overlap between conalbumin
and the other impurities. Such a shift was not observed for the initial
salt concentration, where most optimal conditions were found
between 10 and 30 mM (Figure 9c4). The effect of v is also reflected
in the purity and the yield (Figure 9e4 and 9f4 respectively). Until v is
2.2, the purity is around 75% and the yield almost 100%, while above
this value of v, the purity increases rapidly and the yield drops to
about 95%. From this point, increasing v results in a decreasing purity
and increasing yield. However, the range of the purity is broader,
50%-85% than that of the yield, which only fluctuates between 95%
and 99%. This broader range in the purity is probably due to a combi-
nation of the shift in retention volume resulting from variation of v,
and the optimization function Equation 11. In the function, the yield is

prioritized, representing a capture step optimization. Therefore, during
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challenging separation processes, the compromise on the yield is
always less compared with purity. Changes in the optimization
weights would result in a shift in priority between purity and yield that
would translate to the selection of different cut points rather than ini-
tial and final salt concentrations. Despite the greater uncertainty in
the determined v in the QSPR-method, only two optima were identi-
fied, and one of them corresponds to the optimum found in the
experimental-based method.

Furthermore, this optimization approach is applicable for defining
the operating window of certain variables. The method employed for
varying the adsorption isotherm parameters can also be used to vary
other variables and assess the optimized result. In this way, the initial
process design space for CPP can be defined, which is part of the
QbD concept.®* The mechanistic modeling outcomes provide knowl-
edge on the process, therefore the number of wet-lab experiments to
define the real process design space can be reduced in comparison to
performing a wet-lab DoE from scratch. For the QSPR-based method,
no wet-lab experiments are needed to determine the adsorption iso-
therm parameters and therefore the total number of experiments are
even more reduced compared to the experimental-based method. For
a new protein, only the protein-structure is needed to perform this
optimization and make an estimation of the operating window for
each optimizing variable. To illustrate, using the results from the
QSPR-based method in this study, we can already narrow down
the number of wet-lab DoE required to define the process design
space. The final salt concentration only has to be evaluated around
two main values (e.g., around 320 mM and 800 mM, see Figure 9d4),
while only one point of the initial salt concentration has to be
assessed (e.g., 20 mM). Ultimately, the QSPR-based method offers an
added advantage by allowing the incorporation of additional data over
time. This not only enhances the model's accuracy, but also enables
the application to other process designs, provided that the same con-
ditions are used.

Currently, only the linear part of the isotherm is considered as
only low loading conditions are investigated. Prediction of the param-
eters describing the non-linear part of the isotherm as well as compet-
itive behavior would make the method more complete. Nevertheless,
for the purpose of preselection of conditions for early stage process
design, considering only the linear behavior should be sufficient. Addi-
tionally, the amount of available training data might pose a bottleneck,
like the prediction of the K¢, presented in this work. Even though the
predictions of the retention volumes and characteristic charge
showed high accuracy, increasing the variety of proteins would make
the models more robust. To extend this method to more complex mix-
tures, such as host cell lysates, several challenges should be overcome.
While a similar fractionation approach to convolute single peaks can
be used for a complex mixture, more accurate analytical methods are
required for protein identification. Potentially, mass spectrometry
methods allow the required resolution providing relative protein abun-
dances. Additionally, protein interactions and complex formation
should be taken into account during the QSPR modeling. Co-elution
has already been studied extensively, and recently Panikulam et al.,

published a novel method to describe co-elution mechanisms for
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protein A chromatography.®® Further maturation and combination of
these methods would allow better integration and application for

complex mixtures.

4 | CONCLUSION

In this work, we demonstrated a holistic modeling approach, where
we combined QSPR and chromatographic MM to optimize a CEX cap-
ture step. For an unseen protein, only the protein structure was
needed to determine the adsorption isotherm parameters and predict
the chromatographic retention behavior with MM. We assessed that
the uncertainties in the determined adsorption isotherm parameters
have a minimal and nearly equal impact for both the experimental-
based and QSPR-based method.

For the experimental-based method, we successfully regressed
the adsorption isotherm parameters with an R? minimum of 0.95. The
standard deviation for the characteristic charge is within 1%-6% of
the corresponding regressed parameter value, and for the equilibrium
constant, it ranges between 7% and 25% of the regressed parameter
value. Moreover, the MM validation showed to be accurate with an
average retention peak difference of 1.53% with respect to the gradi-
ent length.

We successfully trained MLR-QSPR models with a minimum
cross-validated R? of 0.88, even with a limited dataset composed of
only five different proteins measured at four pH values. The MLR-
QSPR models for predicting the characteristic charge and the reten-
tion volumes can be used to regress the equilibrium constant using
the regression formula. A good agreement was obtained for the MM
validation for an unseen protein, conalbumin, showing only 0.2%
retention peak difference with respect to the gradient length.

Both the experimental-based and the QSPR-based methods dem-
onstrated a consistent optimized CEX capture step. The same opti-
mum was found by both methods and an additional optimum was
identified using the QSPR-based method, due to the larger standard
deviation in v (3.05 + 1.4) compared with the experimentally predicted
v (2.37 £0.12). Using in silico optimization results as a guide can sub-
stantially reduce experimental effort, requiring experimental validation
only for promising conditions. Moreover, increasing dataset sizes
enhances the QSPR model accuracy, diminishing uncertainty in
adsorption isotherm parameters and therefore minimizing the vari-
ance in the identified operating window.

This work highlights the value and applicability of multiscale
modeling, capable to optimize a CEX capture step with only knowing
the protein structure. Integrating QSPR, chromatographic MM, and
optimization tools creates a versatile workflow relevant to industrial
case studies. The specific case study presented aims to provide a
workflow, which should be expanded using larger datasets to enable
more accurate predictions. This approach ultimately enables determin-
ing initial optimal process conditions without preliminary experiments
which is especially beneficial for early phase process development
when limited material and resources are available. Future applications

involve extending this strategy to complex protein mixtures and

PROGRESS

broader type of chromatographic resins, offering a cost-effective
and time-saving alternative that enhances overall process understand-

ing and efficiency.
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A.1 | Dead volume and dwell volume
The volume of the tubing was determined by excluding the column
and using 1 M sodium chloride with a 100 puL sample loop. A sche-
matic overview of the tubing in the Akta system is shown in
Figure A1, in which the dead volume is indicated from the numbers
2 to 4 and the dwell volume from 1 to 3.

The dead volume (Vgead), tubing 3 and 4, is calculated according
to Schmidt-Traub et al. (2012) (Equation A1) as follows®:

V.
Vdead = VR0 — % - Vs, (A1)

where Vg is the retention volume measured including the injection
volume (V;nj), which is therefore subtracted to only obtain the dead
volume. Vs is the tubing between the UV-detector and the conductiv-
ity (indicated with number 5), from the internal diameter, 0.50 mm,
and the length, 170 mm, it was calculated to be 0.033 mL.

The dwell volume is needed for the calculations in the regression
formula and is equal to the volume from point 1 to 3 (Figure Al).
The tubing before point 1 is already filled prior to elution. The dwell
volume was determined by introducing buffer B, containing 1 M
sodium chloride as a pulse for 5 CV, followed by subtracting the
Vgead and Vs.

A.2 | Porosity calculations
The total porosity (e;) was determined using 1 M sodium chloride, as

salt can enter the pores, and calculated using Equation A2 as follows

= Vim+ Viore. (A2)
Ve
Vi + Vpore = Vo et — Vdead (A3)

where V,, is the interstitial volume of the fluid phase also known as

the column void volume, Ve is the volume of the pore system, and

|3

, (i
5 o Column
Mixer N Injection valve _
1~
& @ 4
Pumps ®
‘ ‘ uv
Conductivity

Buffers

FIGURE A1 Schematic representation of the Akta system, the
dead volume is defined from point 2 to 4 and the dwell volume from
point 1 to 3. The injection valve is indicated with the dashed line and
not considered in the dead volume and dwell volume. Created with
biorender.com.

V¢ is the total volume of the packed column. Vet is the measured
retention volume from which the dead volume is subtracted to only
consider the retention volume in the column. The external porosity,
ep=Vm/Vc, was determined using a solution of 10 mg/mL Dextran
(DXT1740K, American Polymer Standards Corporation, USA) with a
volume of 250uL. V., was determined using Equation A3. Subse-
quently, the total and external porosity are used to determine the
internal porosity (e,) via Equation A4 as

Et —&p
Ep =

1 o (A4)

1. Schmidt-Traub H, Schulte M, Seidel-Morgenstern A, Schmidt-
Traub H. Preparative chromatography. Wiley Online Library; 2012.

85U80|7 SUOWIWOD aA1e81D 3[cedljdde au Aq pausenob ae Saofe VO ‘@S JO Sa|NJ 10j A% 18Ul U 431\ UO (SUORIPUCO-PUB-SWLR/LI0O" A3 1M AfeIq U1 |UO//:SANY) SUORIPUOD pue Swid | 841 88S *[Z0z/0T/80] Lo AriqiTauljuo fe|Im ‘Hea AISRAIUN [eoIYoe L A S0SE1did/Z00T OT/I0P/W00™ A 1M Akeid [l juoayoe//Sdny Wouy papeo|umod ‘0 ‘€€09025T


https://www.biorender.com

KEULEN ET AL. I E}{%TGE%E@EIOLOGY 19 of 26

APPENDIX B

Regression plots of each protein at each pH, 3.5, 4.3, 5.0, and 7.0 cor-
responding to the Figures A2-A5, respectively.

Chymotrypsinogen - Cytochrome ¢
241 —— Modelled data —— Modelled data
221 @ Experimental data 501 @ Experimental data
gzo Test data 345 Test data
] [9]
£ 18 £ 40
3 3
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10 20
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20 30 40 50 60 70 20 30 40 50 60 70
Gradient Length (mL) Gradient Length (mL)
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Gradient Length (mL) Gradient Length (mL)

FIGURE A2 Fitted regression curves at pH 3.5 (gray line) of the experimental data (dark blue dots) and the test data point (light blue dot) at
58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R? of 0.999 and an RMSE of 0.08, 0.11, 0.11, and 0.09 for chymtrypsinogen,
cytochrome C, lysozyme, and RNase, respectively.
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FIGURE A3 Fitted regression curves at pH 4.3 (gray line) of the experimental data (dark blue dots) and the test data point (light blue dot) at

58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R? of 0.999 and an RMSE of 0.07, 0.22, 0.10, 0.10, and 0.09 for albumin,
chymtrypsinogen, cytochrome ¢, lysozyme, and RNase, respectively.
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FIGURE A4 Fitted regression curves at pH 5.0 (gray line) of the experimental data (dark blue dots) and the test data point (light blue dot) at
58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R? of 0.999 and an RMSE of 0.01, 0.05, 0.06, 0.06, 0.07, and 0.08 for albumin,

chymotrypsinogen, cytochrome c, lysozyme, RNase, and conalbumin, respectively.
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FIGURE A5 Fitted regression curves at pH 7.0 (gray line) of the experimental data (dark blue dots) and the test data point (ligth blue dot) at
58.2 mL, equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R? of 0.999, except for RNAse that has an R? of 0.95. The RMSE values are 0.03,
0.002, 0.04, and 0.04 for cytochrome c, chymtrypsinogen, RNAse, and lysozyme, respectively.
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APPENDIX C

Additional data for the mechanistic model validated at pH 7.0. For all
proteins at pH 7.0, the maximum retention peak difference is 1.01 CV
and the average difference is 0.86 CV, which is 1.68% and 1.43% with
respect to the gradient length (60 CV). To assess the concentration
agreement between the modeled and experimental results, we com-
pared the difference between the peak width at half of the peak maxi-

mum and the peak concentration. RNAse was left out of this
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0.12| —— Model 11000
—-—- Experimental
----- Salt
0.10 o o~
800 <
3 E
2 0.08 <
5 600 =
}‘3 s
‘2 0.06 §
8 400 S
< S
S 0.04 e
©
(V2]
200
0.02
0‘000 0
Column volume (CV)
RNAse
— .11000
0.12 ModeI.
—=—- Experimental
..... Salt ...'

0.10 800 <
o E
=) -
= 0.08 S
o . 600 =
£ 0.06 o
3 400 §
f ..' (V]
S 0.04 =

o ©
'.' (V2]
A 200
0.02 §
I
0.00 ~. 0

0 10 20 30 40 50 60
Column volume (CV)

PROGRESS

comparison for the peak width difference, as determining half of the
peak maximum is not possible for the experimental data. The maxi-
mum peak width difference is 2.07 CV, equal to 2.23% relative to the
gradient length (60 CV). The average peak width difference is
0.81 CV, equal to 1.35% relative to the gradient length (60 CV). The
peak concentration differs maximally by 0.04 mg/mL, which deviates
about 7.8% to the initial concentration. The average difference in the
peak concentration is 0.01 mg/mL, equal to 3.1% relative to the initial

concentration (Figure A6).
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FIGURE A6 Chromatographic mechanistic model validation for gradient length of 60 CV, equal to 58.2 mL, at a pH of 7.0. Blue line indicate
the MM predicted concentration of the protein, while the red dotted line indicates the experimental concentration. The black dotted line
indicates the salt concentration. The initial concentrations are Chymotrypsinogen: 0.46 mg/mL, Cytochrome c: 0.80 mg/mL, Lysozyme: 0.55 mg/

mL, and RNAse: 0.39 mg/mL.
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APPENDIX D

Calibration lines for each protein at pH 5.0 and 7.0, shown in Figures

A7 and A8, respectively.
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FIGURE A7 Calibration lines (blue dotted line) for each protein at pH = 5, the blue dots indicate the experimental data. The concentrations
are measured at an Absorbance of 280 and 400 nm. 400 nm absorbance is specifically needed to quantify cytochrome C.
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FIGURE A8 Calibration lines (blue dotted line) for each protein at pH = 7.0, the blue dots indicate the experimental data. The concentrations
are measured at an Absorbance of 280 and 400 nm. 400 nm absorbance is specifically needed to quantify cytochrome C.
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APPENDIX E

The consistency of the optimization case study was evaluated by run-

ning the same optimization five times. The QSPR-based and

TABLE A1l

Keq =0.028 and v = 3.05.

1
2
3
4
5

Maximum
difference

TABLE A2

variables. Keq=0.071 and v =2.37.

1
2
3
4
5

Maximum
difference

KEULEN ET AL

experimental-based method results are shown in Tables A1 and A2

respectively.

Optimization results using the QSPR-based method, showing the performance measurements and obtained optimized variables.

Purity
(%)

74.33
73.66
73.91
74.23
74.44

0.78

Yield
(%)

97.50
97.81
97.68
97.48
97.40

041

HCP
clearance
(%)

79.79
79.01
79.31
79.69
79.93

0.92

Product
concentration
(g/L)

0.32
0.30
0.30
0.34
0.31
0.03

Lower cut
point (%)

44
3.7
4.2
4.7
4.4
0.9

Upper cut
point (%)

91.7
92.8
93.0
92.3
90.9

21

Initial salt
concentration (mM)

14.8
19.8
24.4
17.7
18.0

9.6

Final salt
concentration (mM)

330.4
324.5
327.9
354.7
325.9

30.2

Optimization results using the experimental-based method, showing the performance measurements and obtained optimized

Purity
(%)

74.63
74.09
74.22
74.45
74.59

0.50

Yield
(%)

96.30
96.62
96.50
96.44
96.38

0.23

HCP
clearance
(%)

80.36
79.72
79.88
80.15
80.30

0.58

Product
concentration
(/L)

0.30
0.29
0.29
0.30
0.30
0.005

Lower cut
point (%)

7.69
8.54
8.32
8.54
7.99
0.85

Upper cut
point (%)

91.21
91.78
91.91
90.80
91.94

1.14

Initial salt
concentration (mM)

24.54
22.14
36.47
23.90
28.55
14.33

Final salt
concentration (mM)

320.58
320.00
321.72
320.85
320.13

1.72
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