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Abstract: Bessel-Gauss beams are known as non-diffracting beams. They 
can be obtained by focusing an annularly shaped collimated laser beam. 
Here, we report for the first time on the direct measurement of the phase 
evolution of such beams by relying on longitudinal-differential 
interferometry. We found that the characteristics of Bessel-Gauss beams 
cause a continuously increasing phase anomaly in the spatial domain where 
such beams do not diverge, i.e. there is a larger phase advance of the beam 
when compared to a referential plane wave. Simulations are in excellent 
agreement with measurements. We also provide an analytical treatment of 
the problem that matches both experimental and numerical results and 
provides an intuitive explanation. 
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1. Introduction 

Anomalous axial phase behavior of optical beams has been drawing attention since Gouy’s 
discovery in 1890 [1] and is called after him Gouy phase or phase anomaly. This peculiar 
phase behavior plays an essential role in various physical problems and applications thereof. 
For fundamental physics, first, it intuitively explains the π/2 phase shift of the secondary 
Huygens’ wavelets emerging from a primary wavefront [2, 3]. Second, in laser cavities the 
resonance frequencies of different transverse modes are determined by the Gouy phase [2, 3]. 
Applied physics problems also rely on it. A prime example are optical trapping schemes 
where the Gouy phase is at the origin of a lateral trapping force [4] and where it can provide a 
tracking mechanism of trapped particles [5,6]. Moreover, the generation of higher harmonics 
employs phase-matching techniques by considering this phase anomaly; not only in nonlinear 
optics [7–9] but also in attosecond science [10]. 

Although, Gouy’s discovery took place more than hundred years ago, curiosity about the 
origin and physical meanings of this phenomenon continually induces discussions which are 
developed from different theoretical perspectives. The wavefront spacing, which is defined as 
the smallest distance between surfaces of constant phase on which the values differ by 2π 
[11], can demonstrate how such on-axis phase shifts occur in focused waves compared to the 
plane wave. Note that for monochromatic plane wave fields this wavefront spacing equals the 
wavelength but it may differ significantly for spatially inhomogeneous wave fields. In this 
context, both analytical and numerical studies for radially polarized beams have been reported 
[12]. The 2D and 3D focusing cases have been analyzed applying mathematical techniques 
that directly demonstrate irregular wavefront spacing [13]. Other theories were considered as 
well. For example, the geometric properties of Gaussian beams [14], Berry’s geometrical 
phase [15–18], and even quantum mechanics [19–21] have been considered to give more 
insights. Recently, it has also been explored in the context of deviating wave fields, i.e. 
astigmatic wave fields [22, 23]. 

The aim of this study is to investigate the Gouy phase anomaly in non-diffracting Bessel-
Gauss beam, where the quantity of the axial phase shift is expected to be distinct from that of 
the focused fundamental Gaussian beam. We apply experimental and numerical methods, and 
then an analytical treatment is provided for an intuitive explanation. The remainder of this 
work is organized as follows. We start with the varieties of occurrences and quantities of the 
Gouy phase anomalies (section 2) and discuss the non-diffracting Bessel beam and its 
generation (section 3). In section 4, the details of the experimental theoretical backgrounds 
are explained. Next, in sections 5 and 6, the intensity and phase distributions of the focused 
Bessel-Gauss beam are presented, respectively. In section 7, the overall discussions for the 
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Gouy phase anomalies in the Bessel-Gauss beam follow. The conclusions of this study are 
given in section 8. 

2. Various occurrences and quantities of Gouy phase anomalies 

In Gouy’s original experiment [1], a light diverging from a point source was reflected from a 
planar and a concave mirror. These two light beams were overlapped to cause circular 
interference fringes in a plane of observation. The appearance of the central fringe was shifted 
from dark to bright, or vice versa, at observation planes just before or after the focus [see 
Chapter 17 in Ref. 2]. This change of intensity, demonstrating destructive and constructive 
interferences, indicates a π shift of the converging wave with respect to the phase of the on-
axis plane wave. Gouy’s prediction, such as, the occurrence of the effect in any kind of 
waves, was straightforward and intuitive. As a proof, such phase anomalies have been 
demonstrated not only in optical waves but also in acoustic waves [24], microwaves [18, 25], 
and terahertz waves [26–28]. In optical waves, various classes of beams exhibit the Gouy 
phase, e.g., general higher Gaussian modes like Hermite-Gaussian and Laguerre-Gaussian 
beams [2, 29–32], more specifically a vortex beam [33, 34], a radially polarized beam [12], 
the Airy beam [35], and the Bessel beam [36, 37]. In addition to such optical beams, surface 
plasmon-polaritons [38], matter waves [21], scattered hotspots (i.e. a photonic nanojet) [39], 
and diffracted hotspots (i.e. the spot of Arago) [40–42] also exhibit axial phase shifts. The 
amount of such axial phase shifts differs depending on the type of beams and the confinement 
situations. The exact determination of this amount is of major importance. 

In general, the Gouy phase is characterized by α·π/2 axial phase shift for a converging 
light wave passing through its focus upon propagation from −∞ to + ∞. The factor α is a 
dimension-related value, which equals 1 for a line focus representing the two-dimensional 
(2D) case (i.e. cylindrical wave) and equals 2 for a point focus representing the three-
dimensional (3D) case (i.e. spherical wave). By dividing an aberration-free point focus into 
two regions, i.e. a converging part and a diverging part, the Gouy phase is defined as a 
cumulative phase shift of π/2 on either side of the focus. In other words, one half of the 
overall phase shift is acquired while passing each spatial domain. This intuitively explains the 
imaginary factor i in the Huygens’ integral corresponding to a π/2 phase shift acquired by the 
secondary wavelets diverging from each point of the primary incident wavefront [2, 3], in 
Huygens-Fresnel, Kirchhoff, and Rayleigh-Sommerfeld diffraction integrals as well. When 
the secondary wavelets emerge from the primary wavefront, they experience only the 
diverging part. This situation corresponds to only one half of the focusing situation. 
Consequently, the amount of the phase shift of these secondary wavelets equals half the Gouy 
phase of a point focus. Another interesting example for the only diverging case is the spot of 
Arago. In this case the axial phase shift starts with an initial phase lag and decreases 
proportional to the optical path difference (ΔOPD) between an incident on-axis plane wave 
and the diffracted wave emerging from the rim of the circular obstacle [40]. This diffracted 
wave travels (z2 + r2)1/2, where z is the distance along the optical axis and r is the radius of the 
obstacle. It leads to ΔOPD = (z2 + r2)1/2-z and the axial phase shift is Δφ = -ΔOPD·2π/λ. Here, 
the maximum phase difference occurs just behind the obstacle, at z = 0. It equals -r·2π/λ that 
is in fact the initial phase lag of an on-axis point in the plane of z = 0. Upon the diffracted 
wave propagating to the far field, Δφ decreases and vanishes for an infinite distance, i.e. 
ΔOPD = 0 → Δφ = 0. An analogy of a focusing situation is the fundamental Gaussian mode, 
i.e. TEM00. The phase shift is given by ΔφG = -tan−1(z/ZR) with ZR = the Rayleigh range, and 
the maximum amount is π for the case of propagation from −∞ to + ∞. The shift within ± ZR 
is the most prominent and the amount is found to be π/2. Higher modes, i.e. the Hermite-
Gaussian and Laguerre-Gaussian modes, demonstrate a larger shift compared to the 
fundamental mode due to their different resonance frequencies. The Hermite-Gaussian modes 
exceed the fundamental Gouy phase (ΔφG) by a factor of m + n + 1 (m and n are the 
transverse mode numbers) and the Laguerre-Gaussian modes by a factor of 2p + l + 1 (p and l 
are the radial and angular mode numbers) [2, 29]. This is the reason why the Gouy effect 
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plays a fundamental role in determining the resonant frequencies of the laser cavities [29]. In 
the case of a photonic nanojet a π phase shift is found due to the 3D light confinement that 
imitates a focusing mechanism [39]. The amount of the phase shift of a non-diffracting Bessel 
beam is somewhat different from the general Gouy phase, i.e. π shift. It can be understood by 
using the tilted wave concept [43], where the phase shift originates from the difference 
between the original wave vector and its on-axis longitudinal projection. 

3. Bessel beam and its generation 

Bessel beams itself are of major importance. The remarkable features of the Bessel beam are 
of great interest in applications requiring a large depth of focus and a self-healing capacity, 
especially for imaging microscopy [44–47], optical manipulations [48–51] or micro- and 
nano-fabrication [49, 52, 53]. Moreover, increasing demands of the resolution in nano-science 
pushes the size of Bessel beams down to sub-wavelength range and the combination with the 
radially polarized light is a great attraction for Raman spectroscopy, fluorescent imaging, 
particle acceleration, and second harmonic generation [54 and the references therein]. 

To shed new light on the peculiarities of Bessel beams while concentrating on phase 
phenomena, we investigate here the field behavior of a submicron-size non-diffracting beam 
by experimental and theoretical means. We use a highly confined Bessel-Gauss beam that is 
generated by focusing an annular shaped collimated illumination using a high NA objective. 
Specifically, the longitudinal phase field of such a beam is investigated to demonstrate the 
Gouy phase and the emergence of phase singularities. A method developed by Richards and 
Wolf [55] allows us to calculate the vector light fields near the focus of an aplanatic lens with 
a high NA. Filtering out the inner NA of the illuminating beam simulates the experimental 
situations. This allows us to simulate in an elegant way the light propagation in agreement to 
the experimental situation. Therefore, simulation results can be compared to our 
measurements. 

Generally, the non-diffracting Bessel beam [56] is an exact solution to Maxwell’s 
equations where the radial amplitude distribution corresponds to a Bessel function. The 
complex field amplitude is denoted as exp(ikzz)·J0(krr), where kr and kz are wave vectors in the 
radial and longitudinal directions, respectively, and J0 is the zeroth order Bessel function of 
the first kind. Physically, these beams are slightly pathologic since they are infinitely 
extended in space, each ring of the Bessel beam carries the same amount of energy which 
adds up to infinity, the phase among adjacent rings differs exactly by π, and the Fourier 
spectrum of such Bessel beam is an infinitely thin ring. In other words, perfect Bessel beams 
are inaccessible in real world experiments but can only be approximated. However, nearly 
non-diffracting beams, so-called Bessel-Gauss beams [57], with finite power can be realized 
that propagate over a comparably long distance without significant divergence. This kind of 
quasi-Bessel beams, whose transverse field distribution imitates the Bessel function and the 
non-diverging distance is significantly extended compared to that of the focused Gaussian 
beam, can be generated by using an axicon lens [58, 59], an annular slit at the back focal 
plane of the focusing lens [56, 59], computer generated holograms [60], and diffraction of 
Gaussian beam by an opaque disk [61]. Another practical way is to focus an annularly shaped 
parallel illumination [3, 43, 62]. This method allows an easy adjustment of the beam size 
along the radial and longitudinal directions by changing the numerical aperture (NA) of the 
focusing lens. Moreover, the size of the inner blocking disc of the annularly incident beam 
can be used to vary the amount of the axial phase shift that find important roles in third 
harmonic generation microscopy and coherent anti-Stokes Raman scattering microscopy [43 
and the references therein]. 

4. Experimental and theoretical backgrounds 

To study experimentally the complex field distribution in space, we employ a high-resolution 
interference microscope (HRIM) to measure amplitude and phase in the entire 3D space. 
Details of the experimental setup are reported elsewhere [63, 64]. Longitudinal-differential 
(LD) interferometry [40], which is a particular measurement mode of the HRIM, allows to 
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directly measure the axial phase shift of a beam of interest with reference to a plane wave. All 
experimental and theoretical investigations were performed at a single wavelength of 642 nm 
(CrystaLaser: DL640-050-3). The achievable spatial resolution for the amplitude field is 
subject to the diffraction limit of the observing objective, a 100X/NA0.9 HC PL FLUOTAR 
from Leica Microsystems. The Richards and Wolf method [55] was employed to rigorously 
simulate the field distributions near the focus of an NA = 0.9 aplanatic lens in air from a 
linearly polarized (along the x-axis) plane wave. The computational domain is set to be 5 x 5 
x 5 μm3 in the xyz-axes. This is sufficiently large and matched the experiments. 

The Bessel-Gauss beam is generated by focusing an annular shaped collimated beam, 
whose inner NA corresponds to 0.72 (half angle = 45.7°). In practice, an annular central disc 
blocks approximately 50% of the entrance pupil of the focusing objective (Leica 
Microsystem, 50X/NA0.9 HXC PL APO) on which a linearly polarized (in the x-axis) 
collimated beam is incident. In such configuration, the Fourier spectrum at tangential wave 
vectors smaller than the tangential wave vector corresponding to the inner NA (NA < 0.72, 
i.e. < 45.7° in air) is blocked and set to zero. As a consequence, the amplitude distribution in 
the focal plane resembles a zeroth-order Bessel function of the first kind in the radial 
direction within a finite extent. The focusing causes a Gaussian apodization in the amplitude 
distribution that can be represented as a product of a Bessel function and a Gaussian profile in 
real space. Therefore, this type of experimental Bessel beam is known as Bessel-Gauss beam 
[57, 62]. 

Figure 1 shows the schematic of the experimental arrangement and the wave vector 
representation for the angular spectrum of the Bessel beam. The half angle of the inner focal 
cone θ corresponds to the inner NA of the annular illumination. For simplicity, the focused 
annular beam is illustrated as two parallel beams overlapping near the focal point of the 
focusing lens. It will be shown that this basic concept of two interfering plane waves properly 
describes all the phenomena that will be observed. The propagation distance zprop is defined to 
be the axial diagonal of the diamond-shaped overlapping region in Fig. 1(b). The wave vector 
representation in Fig. 1(c) facilitates the derivation of the Gouy phase using the tilted wave 
concept from Ref. 43. When a tilted plane wave propagates at a direction that has an angle θ 
with respect to the optical axis, in our case the z-direction, the phase retardation along this 
axis compared to the on-axis plane wave is given by 

 zz(k - k),φΔ =  (1) 

with z as the axial distance, the wave number k, and the z component of k as kz in Fig. 1(c). 
The term containing the difference of wave vectors can be more generally written with 
respect to the transverse component of kt as 

 2 2
z t .k k k k k− = − −  (2) 

Since Eq. (2) does not yield analytical expression in most cases, certain approximations are 
required. While Eq. (2) approximates to -kt

2/(2k) for the paraxial case, the high NA focusing 
case (i.e., non-paraxial case) requires higher order approximation and Eq. (2) can be extended 
up to the second order [43] as 

 
2 4

2 2 t t
t 3

.
2 8

k k
k k k

k k
− − ≈ − −  (3) 

In our scenario the inner NA of 0.72 would usually suggest the consideration of such higher 
order approximation. However, it will be shown that such higher orders do not need to be 
taken into account and Eq. (1) will be shown to provide an adequate measure for the Gouy 
phase of the Bessel beam [37]. We approximate the tilt angle θ as the average value of the 
inner and outer NAs. In our example with NAinner = 0.72 and NAouter = 0.9, the angle θ equals 
55.1°. Using kz = k·cosθ and z = zprop Eq. (1) can be re-written as 
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 (cos 1).propz kφ θΔ = −  (4) 
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Fig. 1. (a) Schematic of the generation of the Bessel-Gauss beam by focusing the annular 
shaped collimated incidence. (b) Magnified view of the central spatial domain with a diamond 
shape: the overlapping region that corresponds to the propagation distance (zprop). (c) The wave 
vector representation of the Bessel beam: k is the incident wave vector, kz = k·cosθ the 
longitudinal component of k, and kt = k·sinθ the transverse component of k. 

5. Intensity distributions 

The measured and simulated intensity distributions of the generated Bessel-Gauss beam in the 
x-z plane are shown in Fig. 2, where the incident light propagates along the positive z-axis. 
The high NA focusing leads to a strong confinement of such a non-diffracting beam in all 
directions. The typical features, such as relatively strong intensity in the side lobes and the 
elongated focal spot along the z-axis, are clearly observed in both experiment and simulation. 
Note that the intensity distribution in the x-z plane, in general, represents the normalized 
energy density of the total electric field, i.e. |Et|

2 = |Ex|
2 + |Ey|

2 + |Ez|
2. Here, Ex, Ey, and Ez 

are the complex electric field components and |Et|
2 is usually referred to as the total electric 

field or the field intensity I. However, Fig. 2(b) shows only |Ex|
2 because Ey is naturally zero 

at the y = 0 plane and the longitudinal electric field component Ez is not measurable with a 
far-field measurement system, such as conventional optical microscopes. Since the focusing 
NA is high, rigorous simulations of the vectorial diffraction problem are necessary to provide 
correct information of light fields near the focus. 
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Fig. 2. The measured and simulated amplitude distributions in the x-z plane: (a) experimental 
and (b) numerical results (only Ex is accounted). The intensities are normalized. The image 
size is 5 x 5 μm2. 

6. Phase distributions 

The LD phase mode of the HRIM directly obtains the phase difference between the object 
wave and a reference plane wave in each measurement plane. The longitudinal slice, crossing 
the optical axis, of such a phase map is called the LD phase distribution and visualizes 
directly the phase anomaly. Furthermore, a 2D propagating phase map, which provides a 
glimpse on the actual phase evolution in space, can be easily reconstructed by wrapping the 
LD phase with a known value, for instance, the effective wavelength (λeff) along the z-axis of 
the tilted wave, which is given as 

 eff

λ
λ .

cosθ
=  (5) 

Note that this is valid within a simplified 2D (x-z plane) model of the annular geometry of the 
angular spectrum of the Bessel-Gauss beam. In our case, the tilt angle of the focal cone θ = 
55.1° leads to an effective wavelength of approximately 1.1 μm. Due to the abovementioned 
reasons for non-measurability of Ez and the vanishing of the y-component of electric field in 
the plane of interest, the phase as shown corresponds to the phase of the x component of the 
electric field. In general, the Gouy phase of a focused, monochromatic field at an axial point 
is defined as the difference between the argument (or “phase”) of the object field and that of a 
referential plane wave of the same frequency [65]. We would like to stress that the term Guoy 
phase in a strict sense is used to assess the phase evolution of a wave near its focus. There, the 
Guoy phase describes the deviation of the phase relative to that of a plane wave. Although we 
investigate here the phase evolution of a Bessel-Gauss beam and discuss its inherent 
properties along the entire propagation direction and not just in a spatial region that can be 
understood as the focus, we would like to interpret this here as a Guoy phase for simplicity as 
well. We understand this as a reasonable nomenclature since, at least for the ideal Bessel 
beam, a focus cannot be identified since the beam is non-diffracting, i.e., it entirely preserves 
its shape everywhere in space. 

In our study, the difference of the phase of the plane wave from that of the object wave is 
directly provided by the LD phase distribution. Figure 3(a) shows the measured LD phase 
distribution of the Bessel-Gauss beam. The propagating phase map is reconstructed by 
wrapping the LD phase map with λeff = 1.1 μm as shown in Fig. 3(b). The planar wavefronts 
emerging from the left and right hand side corners in the bottom of the Fig. 3(b) perfectly 
corresponds to the proposed 2D model where two tilted plane waves propagate towards each 
other. They are characterized by a tangential wave vector component with opposite sign but 
they do share the same longitudinal wave vector component. Here, the tilt angle of these 

#178006 - $15.00 USD Received 16 Oct 2012; revised 30 Nov 2012; accepted 30 Nov 2012; published 12 Dec 2012
(C) 2012 OSA 17 December 2012 / Vol. 20,  No. 27 / OPTICS EXPRESS  28936



planar wavefront is the same (55.1°) with respect to the positive z-axis. When two planar 
wavefronts overlap, as shown in the diamond shaped region of Fig. 1(b), the resulting field 
pattern corresponds to that of a two-beam interference pattern. Such a diamond shaped 
overlapping region can also be found in the measurement in Fig. 3(b). 

The results of numerical simulations by the Richards and Wolf method are shown in Figs. 
4(a) and 4(b) for the LD phase and the propagating phase, respectively. Note that the natural 
outcome from the simulation is the propagating phase (i.e. absolute phase) as shown in Fig. 
4(b). The LD phase as shown in Fig. 4(a) is reconstructed by subtracting the calculated phase 
in Fig. 4(b) from the phase of a referential plane wave of the same frequency in each 
transverse plane. The construction in simulation, therefore, is exactly opposite as in the 
measurements. Nonetheless, the simulation is in perfect agreement with the experiments, 
which are shown in Fig. 3. 

0

π

-π

0

π

-π

 x−axis (µm)

 z
−a

xi
s 

(µ
m

)
−2 −1 0 1 2

−2
−1

0
1
2

 x−axis (µm)

 z
−a

xi
s 

(µ
m

)

−2 −1 0 1 2
−2
−1

0
1
2

 

 

 

 

(b)(a)

 

Fig. 3. (Color online) The measured phase distributions in the x-z plane: (a) the longitudinal-
differential phase and (b) the propagating phase. The phase is displayed in radian [from -π to 
π]. The image size is 5 x 5 μm2. 
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Fig. 4. The simulated phase distributions in the x-z plane: (a) the longitudinal-differential 
phase and (b) the propagating phase. The phase is displayed in radian [from -π to π]. The 
image size is 5 x 5 μm2. 

As observed in Figs. 3 and 4, the non-diffracting character of the Bessel beam causes the 
Gouy phase to grow along the propagation direction [see Eq. (4)]. In other words, the phase 
anomaly exceeds the ordinary Gouy phase of π and it continues to grow across the spatial 
domain where the Bessel-Gauss beam possesses a non-diffracting shape, i.e. within the spatial 
domain that was called the overlap region. In Fig. 3(b), the propagation distance of the non-
diffracting Bessel-Gauss beam zprop is found to be approximately 5 μm, which corresponds to 
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the axial diagonal of the diamond-shape region. The on-axis axial phase shift, i.e. the phase 
anomaly, is calculated to be 6.7 π using Eq. (4) with λ = 642 nm and θ = 55.1°. The 
experimental result is found by unwrapping the on-axis LD phase profile of Fig. 3(a). We 
found experimentally a value of 6.63 π, being in excellent agreement with the analytical 
estimation. The derived analytical solution Eq. (4) has been obtained without any higher order 
approximations as given in Eq. (3) [43]. Therefore, to neglect higher order approximations 
seems to be justified by the experimental results on both a quantitative and qualitative level. 

We further note from Figs. 3 and 4 that in the focused light a phase singularity is located 
in the dark ring of zero amplitude that surrounds the central bright focal spot [3, 66]. Another 
consequence of the non-diffracting feature is the propagation of the phase singularity in space 
along straight trajectories. For the Bessel beam, the transverse field distribution exhibits such 
dark (i.e. amplitude = 0) rings between the bright intensity lobes. The amplitude node, which 
is the closest to the optical axis with the longest extend in propagation direction, is less 
vulnerable against perturbation. This node is located between the central and the 1st side lobe. 
Since the transverse field distribution does not vary upon propagation, the phase singularity 
appears in any transverse planes within zprop. This phenomenon can be clearly seen in both 
experiments and simulations, shown in Figs. 3(b) and 4(b), respectively. There, the phase 
singularities next to both sides of the optical axes follow linear trajectories. In the entire three-
dimensional phase distribution in theory the geometry defined by the trajectories of the phase 
singularities would correspond to an elliptic cylinder which is a consequence of the vectorial 
nature of light (it would be a circular cylinder for linearly polarized light in the paraxial and 
scalar approximation). As the amplitude of the side lobes is relatively strong, the phase 
singularities between each side lobe are also prominently visible. 

7. Phase anomalies in Bessel-Gauss beam 

To quantify the results to an even larger extent, we concentrate on the axial phase not only for 
the center of the beam (the optical axis) but also for the side lobes. For such non-diffracting 
beams the on-axis fields within the central lobe are of utmost importance since many 
applications exploit it. In Fig. 5 we provide a comparison of the on-axis propagating phase 
profiles obtained from Figs. 3(b) and 4(b): the solid line for the experiment and the dashed 
line for the simulation. As expected, the larger effective wavelength λeff due to the tilt angle θ 
[see Eq. (5)] is clearly visible as the period of the 2π modulation and equals approximately 
1.1 μm. 
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Fig. 5. On-axis phase profiles from Figs. 3(b) and 4(b). The solid line represents the 
experiment. The dashed line represents the simulation. The period of 2π modulation defines 
the effective wavelength, here λeff = 1.1 μm [see Eq. (5)]. 

The overall axial phase shift is obtained by unwrapping the extracted longitudinal-
differential phase data from Figs. 3(a) and 4(a). Since the non-diffracting transverse field 
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distribution influences fields not only in the central lobe but also in the side lobes, it is 
interesting to compare the phase anomalies in the central, 1st, and 2nd side lobes. Figure 6 
plots the Gouy phase of each lobe obtained from experiment and simulation together with the 
analytical result. For convenience, the initial axial phase shifts of the central and the 2nd 
lobes are set to be zero. The solid line represents the analytical result, the dashed lines the 
simulations, and the markers the experiments. As it can be anticipated by Eq. (4), the 
anomalous axial phase shift grows linearly with the propagation distance zprop and with a 
factor of (cosθ – 1). The phase anomaly of each lobe can be calculated by Eq. (4), but the π-
jump originating from the phase singularity should be considered for each side lobe 
separately. While the central lobe and the even number of lobes have exactly the same Gouy 
phase, the odd number of lobes exhibits a Gouy phase with an offset of π [i.e., the result of 
Eq. (4) + π]. This is due to the nature of the Bessel function in the transverse direction, where 
each lobe has a π phase difference with respect to its neighboring lobe due to the phase 
singularity. The cylindrical form of the phase singularity separates each bright lobe within in 
the non-diffracting region as it propagates. The experimental and numerical data for the 
central, 1st, and 2nd lobes are extracted from Figs. 3(a) and 4(a). The phase anomalies for the 
central and 2nd lobes are perfectly overlapping with the analytical result. The phase shift for 
the 1st lobe has the same slope with the π offset as expected. Analytical and numerical 
calculations show an excellent agreement with our experimental findings. 
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Fig. 6. The overall phase anomalies within the propagation distance (zprop): the solid line 
represents for the analytical solutions, Eq. (4) for the central and 2nd lobes and its π offset of 
for the 1st lobe, the dashed lines for the simulations, and the markers for the experiments. 
Experimental and numerical data are obtained by unwrapping the LD phase profiles from Figs. 
3(a) and 4(a). The odd number side lobes have the same Gouy phase with a π offset due to the 
phase singularity. The initial axial phase shifts for the central and the 2nd lobes are set to be 
zero for the easy comparison. 

The non-diffracting character of Bessel Gauss beams causes two prominent features in the 
phase distributions. First, the amount of the phase shift continuously grows with respect to the 
propagation distance and eventually becomes larger than π (i.e. general Gouy phase for a 3D 
converging wave). Second, the phase singularity that surrounds the central bright spot with a 
dark ring (i.e. zero amplitude) extends along the entire spatial domain where diffraction is 
suppressed. Both aspects are shown in the experiments. The rigorous simulations using the 
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Richards and Wolf method [55] allow verifying the experimental situation by filtering out the 
inner NA of the annular beam and the numerical results confirm our experimental findings. 

8. Conclusions 

We experimentally and theoretically investigated the Gouy phase anomaly in a Bessel-Gauss 
beam generated by focusing an annular collimated beam with a high NA objective. The 
generated beam shows typical features of a Bessel beam, such as relatively strong side lobes 
and a long propagation distance without a significant divergence. The non-diffracting 
character makes the Gouy phase to grow proportionally to the propagation distance (zprop) 
with a factor of (cosθ – 1). The transverse field distribution does not vary within zprop and a 
phase singularity appears in a cylindrical form. It can be found in the region where the beam 
does not diverge. The longitudinal-differential phase measurement nicely demonstrates all of 
the abovementioned phase features of the Bessel-Gauss beam. The numerical simulation 
using the Richards and Wolf method verifies the measurements and moreover the analytical 
model [see Eq. (4)]. Such a non-diffracting character influences not only the central lobe but 
also the side lobes. The growing phase anomalies of each lobe of the Bessel beam up to the 
2nd side lobe have been discussed. The Gouy phase of the odd number side lobes is found to 
have the same amount and slope as the central spot but with an offset of π. Such highly 
confined Bessel beams are now essential tool for microscopy, meteorology, optical trapping, 
and micro- and nano-fabrications. Our study provides deeper insight of light fields behavior 
in such beams. 
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