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Abstract - In finite-element methods for solving 
electromagnetic field problems, the use of edge el- 
ements has become very popular. In fact, edge 
elements are often said to be a cure for many diffi- 
culties that are encountered and they are claimed 
to yield accurate results. In the present paper we 
analyse these claims for tetrahedral elements. In 
particular we compare two different types of "lin- 
ear" edge elements and the classical linear nodal 
element. Comparisons for higher-order elements 
and elements defined on other elementary subdo- 
mains, for instance on hexahedra, run along the 
same lines and yield similar conclusions. 

I. INTRODUCTION 

In the finite-element modeling of electromagnetic fields 
both edge and nodal elements play an important role. Re- 
cently edge elements have gained an increase in popularity 
because they are believed to be a cure for many difficul- 
ties that are encountered when attempting to solve elec- 
tromagnetic field problems using finite elements. In this 
paper we analyse and compare both edge and nodal ele- 
ments. For topological reasons [l] we prefer to carry out 
this analysis for elements defined on tetrahedra (simplices 
in 3D). Comparisons for elements defined on other elemen- 
tary subdomains, for instance on hexahedra, run along the 
same lines and yield similar conclusions. Another assump- 
tion we make in the main text of this paper is that the 
fields to be modeled are free of divergence. The more gen- 
eral case where divergent fields are included is discussed 
in a separate section. 

In our analysis we ignore a third type of finite element 
that is encountered in electromagnetic field computations, 
the face (or facet) element. Face elements are especially 
suited to modeling electric or magnetic fluxes. Their rel- 
ative unpopularity may be due to their inefficiency, each 
expansion function having a support of only two elemen- 
tary subdomains. 

11. NODAL ELEMENTS AND EDGE ELEMENTS 

In this section we discuss some accuracy-related prop- 
erties of nodal and edge elements. As regards the degree 
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of approximation, we confine ourselves to elements that 
yield "linear" polynomial expansions. The meaning of the 
double quote symbols will become clear in the course of 
our discussion. 

A .  Nodal elements 

Early finite-element methods for solving electromagnetic 
field problems [2, 3, 41 used linear nodal elements with 
three unknowns in each node (Fig. I),  either for approxi- 
mating a vector potential or for approximating the electric 
and/or the magnetic field strength directly. For approxi- 
mating electric and/or the magnetic field strengths, nodal 
elements have the disadvantage that, when using them, all 
components are automatically continuous functions of the 
spatial variables, thus preventing the modeling of the field 

J 
Fig. 1. Linear nodal element 

when the properties of the media, and consequently 
(some components of) the electric and/or magnetic field 
strengths are discontinuous functions of the spatial coor- 
dinates. Trying to overcome this difficulty by introducing 
multiple nodes at the interfaces [5, 61 between different me- 
dia causes difficulties at points where those interfaces are 
not locally flat. Nodal elements also cause difficulties near 
reentrant corners in the outer boundary of the domain of 
computation. 

As regards their accuracy, nodal elements are consis- 
tently linear, i.e. each component of the vector field is rep- 
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resented as a linear function of each coordinate direction. 
They yield local approximation errors of the order O(h2) 
[7], where h denotes the largest dimension of the tetra- 
hedron. Nodal elements have twelve unknowns in each 
tetrahedron. 

B. Edge elements 

The difficulty in the modeling of field strengths that is 
caused by discontinuities in the properties of the media can 
be overcome by using edge elements. Edge elements have 
the property that they ensure the continuity of tangen- 
tial field components across an interface between different 
media, while leaving the normal field components free to 
jump across such interfaces. Because of this, edge elements 
can be used for modeling an electromagnetic field along in- 
terfaces between two different media. In our discussion of 
"linear7' edge elements we investigate both Whitney 1 ele- 
ments, which are of the mixed type, and consistently linear 
edge elements. 

1) Edge elements (mized type): The simplest elements of 
this type, and still the most popular ones, were proposed 
by Nkdklec [8] (Fig.2). They have six unknowns in each 
tetrahedron, one attached to each edge. Nidklec's 'first- 
order' edge elements, also called Whitney 1 elements, are 
mixed finite elements that have the additional property of 
being free of divergence. 

Fig. 2. Mixed "linear" edge element (Whitney 1) 

Because of the fact that (surface) divergences may occur 
a t  the interfaces between adjoining elements (the normal 
component of the field is free to jump at  each of the faces 
of the element), this freedom of divergence of the elements 
does not imply that fields computed using them are free of 
divergence. Therefore the continuity condition to be sat- 
isfied by the normal component of the field a t  the faces of 
edge elements should be made a part of the formulation of 
the problem. An additional disadvantage of these elements 
is that they are not consistently linear, they are constant 
in a certain spatial direction that follows from the gener- 
ating edge and the geometry of the relevant tetrahedron 

while in other spatial directions they are linear functions. 
Because of being constant in a certain spatial direction, 
they yield local approximation errors of the order O(h).  
For an experimental numerical verification of the fact that 
correspondingly large errors are found in global solutions 

As regards the economy (numerical efficiency), the large 
local errors are not counterbalanced by the fact that only 
six unknowns are required for each tetrahedron. Note that 
the low degree of approximation is related to the fact that 
the element carries only six unknowns, one on each edge. 
The linear vectorial nodal element, or any other consis- 
tently linear 3D-vector function over a tetrahedron, carries 
twelve unknowns, three at  each of its four vertices. 

[9, 10, 111. 

Fig. 3. Consistently linear edge element 

2) Consistently linear edge elements: Edge elements 
that do not suffer from large local approximation errors 
are consistently linear edge elements (Fig. 3). These edge 
elements are linear vector functions of the position in all 
spatial directions and were first introduced in [9]. Consis- 
tently linear edge elements have twelve unknowns, two on 
each of their six edges. Like linear nodal elements they 
yield local approximation errors of the order O(h2) .  Com- 
putationally they are, however, less efficient than linear 
nodal elements because of the fact that the span of global 
edge expansion functions is smaller than the span of global 
nodal expansion functions, which causes the edge elements 
to generate more unknowns for the same mesh. 

3) Fields near objects with edges: Finally we mention 
that an additional advantage of edge elements, as com- 
pared with nodal elements, is provided by the fact that, 
when modeling the electric and/or magnetic field strength, 
they do not yield conflicting conditions a t  points where 
the interface between two different media is not locally 
flat. The use of edge elements near sharp edges of sub- 
domains in the configuration, or near re-entrant corners 
in the outer boundary of the domain of computation, "re- 
laxes" the continuity requirements of the fields near those 
edges. In fact, the difficulty caused by the attempt to 
model the field near a singularity by using linear elements 
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is softened by the absence of strict normal continuity re- 
quirements at the interfaces between edge elements. Obvi- 
ously this does not automatically imply that edge elements 
generate accurate results near singularities like edges in in- 
terfaces or re-entrant corners. 

4) In summary: Consistently linear edge and nodal ele- 
ments are more accurate (O(h2))  than (mixed) Whitney 1 
elements (O(h)) .  As regards to applicability, we conclude 
that when using linear elements on tetrahedra, linear nodal 
elements can be used in homogeneous domains, edge ele- 
ments, preferably consistently linear ones, should be used 
when discontinuities are encountered. Spurious solutions 
cannot, generally, be avoided by choosing (mixed) edge el- 
ements, they can only be precluded by choosing a proper 
formulation of the problem to  be solved. 

A detailed description the electromagnetic compatibility 
relations, which are the necessary conditions to be satisfied 
in the formulation, is given in [12]. 

111. THE COMPUTATIONAL COSTS 

When judging the relative numerical efficiency of edge 
elements versus nodal elements, it is not sufficient to com- 
pare their asymptotic rate of convergence. We also need 
to compare the number of free parameters and the spar- 
sity of the system matrices. Kotiuga [13] presented an 
analysis of the the number of degrees of freedom and the 
number of nonzero entries in the matrices as a function 
of the number of nodes in the mesh. Using these results, 
explicit formulae for the number of FLOPS (floating point 
operations) per CG (conjugent gradient) iteration can be 
given. Kotiuga’s results seem to indicate that, as regards 
computational efficiency, an edge based interpolation is to 
be preferred to a nodal interpolation. 

Unfortunately, Kotiuga compares nodal elements, hav- 
ing a local approximation error of the order O ( h Z ) ,  with 
mixed edge elements (Whitney 1) having a local approx- 
imation error of the order O(h).  Carrying out the same 
analysis for edge elements having a local approximation er- 
rors of the order O(h2),  which seems to be the proper thing 
to do, we find that the number of degrees of freedom dou- 
bles in comparison with Whitney 1 edge elements (com- 
pare Figs. 2 and 3). As regards the number of nonzero 
entries on a row of the matrices, we also find a doubling 
in comparison with Whitney 1 elements. Taking these two 
factors together, we conclude that matrices based on con- 
sistently linear edge elements contain four times as many 
nonzero entries as matrices based on Whitney 1 elements. 
Since the same factor four applies to  the number of FLOPS 
per CG iteration, we find, using Kotiuga’s notation as well 
as his analysis as regards the topology, the following num- 
bers for a large mesh (i.e. a mesh large enough to neglect 
the effect of the boundaries in our analysis) with simple 
boundaries and having MO nodes. 

1. 

2. 

3. 

4. 

5. 

Ff = 256M0 for linear nodal interpolation on tetra- 
hedra or hexahedra (local error O(hZ) ) ,  
FT16 = 150Mo for edge interpolation using Whitney 
1 elements with each hexahedron divided into 6 tetra- 
hedra (local error O(h)) ,  
ETv5 = 126M0 for edge interpolation using Whitney 
1 elements with each hexahedron divided into 5 tetra- 
hedra (local error O(h)) ,  
F;d6 = 6OoMo for edge interpolation using consis- 
tently linear edge elements with each hexahedron di- 
vided into 6 tetrahedra (local error O(h2)) ,  
F;d5 = 504Mo for edge interpolation using consis- 
tently linear edge elements with each hexahedron di- 
vided into 5 tetrahedra (local error O(h2)).  

Now, comparing the options that yield a local error 
O(h2) ,  nodal elements are more efficient than edge ele- 
ments by a factor of 2 or more. In many practical cases, 
the advantage of nodal elements over edge elements is even 
larger than the one following from the above analysis. This 
is for two reasons. The first is that because of the orthog- 
onality of the Cartesian directions used in nodal elements, 
many nonzero matrix entries turn out to be iero, which 
can be used to optimize a node based code. The second 
is that imposing the continuity conditions at the inter- 
faces between edge elements (the importance of which will 
become evident in the next section) increases the connec- 
tivity of the matrices significantly. 

One of the reviewers suggested that, for obtaining a 
complete picture of the computational costs, the conver- 
gence characteristics of the CG iterations for nodal and 
edge elements should be included in the present analysis. 
Convergence of a CG method, however, strongly depends 
on the formulation of the problem and on the resulting con- 
dition of the system of equations to be solved. Provided 
that no extremely flat or elongated tetrahedra are used 
(see the next section) it does not, or much less, depend 
on the type of element used. Because of this, convergence 
characteristics of the CG iterations were not taken into 
account in our analysis. 

As regards the storage requirements, we observe that 
they are, for all types of element included in the present 
analysis, proportional to the number of FLOPS per CG 
operation. Consequently, the conclusions based on stor- 
age requirements are identical to, and strengthen, those 
based on FLOPS per CG. Finally we note that the lower 
number of FLOPS per CG iteration step and the lower 
storage requirements for Whitney 1 elements do not coun- 
terbalance their poor asymptotic rate of convergence. 

In summary: Linear edge elements are, both as regards 
the required number of FLOPS per CG operation and as 
regards the storage requirements, more than twice as ex- 
pensive as linear nodal elements. Mixed edge elements 
are cheaper but cannot be compared because of their poor 
asymptotic rate of convergence. 

. . 
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Iv .  THE CONDITION OF THE FIELD REPRESENTATION 

In a further comparison of nodal and edge elements we 
can observe the following. When representing a vector field 
with respect to a certain coordinate system it is advanta- 
geous, as regards the condition of the representation, to 
use a coordinate system with mutually perpendicular co- 
ordinate directions. Nodal elements use a Cartesian frame 
of reference and are therefore optimum in this respect. 
Edge elements use base vectors that follow from the orien- 
tation of the faces of the relevant tetrahedron. When the 
tetrahedron deviates strongly from the optimum one with 
equal edge lengths, these orientations are not mutually 
perpendicular. In fact, the base can be almost degenerate 
either because the base vectors are almost in one plane, or 
because (some of) the base vectors are almost in the same 
direction. In those cases large errors should be expected 
due to the ill condition of the representation of the vector 
field inside the tetrahedron and the resulting ill condition 
of the system matrices. These errors add to ill condition- 
ing due to the use of extremely flat or elongated (slender) 
elements [14]. 

t t  

I Edge element 

t 

tion deteriorates strongly when edge elements are used 
on tetrahedra that do not have approximately equal side- 
lengths. Nodal elements suffer less fkom these difficulties. 

V. EDGE ELEMENTS AND SPURIOUS SOLUTIONS 

A number of authors claim that edge elements have the 
advantage of not generating "spurious solutions" or "vec- 
tor parasites" (in their type of problem) [17, 18, 19, 20, 21, 
22, 231. There is no doubt that these authors did not find 
any spurious solutions. The reason for that may be the 
formulation they used, the problem(s) they applied their 
elements to, or a combination of both. In our opinion, 
edge elements cannot be used to ensure the elimination of 
unwanted "solutions", they can only be used to eliminate 
one of their causes. 

One reason why edge elements cannot be used for this 
purpose is related to one of their most important p r o p  
erties, the fact that they allow the normal component of 
the field that is represented to jump across the interface 
between adjacent elements. Edge elements do not in any 
way restrict the magnitude of the jump in the normal com- 
ponent and therefore this jump does not have to be in ac- 
cordance with the local physical conditions. For instance, 
edge elements do not impose flux continuity if no surface 
charge is present a t  the inter element boundary. Conse- 
quently, when using them, the proper jump can only be 
obtained by making the relevant condition a part of the 
formulation of the problem. 

An example: In this section we give an example demon- 
strating the fact that edge elements cannot be used for the 
elimination of unwanted "solutions". 

+ I t t" 

Nodal element 

Fig. 4. Extremely flat triangular elements (2D) 
with bases of local coordinate systems 

In Fig. 4 we have depicted two-dimensional examples of 
extremely flat triangular edge and nodal elements together 
with the local bases they employ. For the edge element, 
the consistently linear element is shown. Note the near- 
degenerate bases in each of its vertices and the orthogonal 
bases in the nodal element of the same shape. In linear 
edge elements the base vectors for the local coordinate sys- 
tems in a given vertex of the tetrahedron are the outward 
normals to the faces that have that vertex in common. 
These base vectors constitute the base reciprocal to the 
base consisting of the directions of the edges having this 
vertex in common [15, 161, the latter base is used in face 
elements. 

a?)E 

laonr_. 0 

Fig. 5. Cube subdivided in tetrahedra, side view 

In this example we assume a computational domain 2, 
with outer boundary a?;, in which we have a transient In summary: The condition of the field representa- 
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electromagnetic field { E ( + , t ) ,  W ( r ,  t ) } .  For the three- 
dimensional domain D, with a two-dimensional illustration 
as in Fig. 5, we choose the cube 0 5 z 5 1, 0 5 y 5 1, 
-0.5 5 z 5 0.5. The lossy medium in this cube is assumed 
to be homogeneous with permittivity c = ccc0, permeabd- 
ity p = p r h  and conductivity U ,  with E,  2 1, pr 2 1 
and U > 0. We assume the outer boundary dz) to be di- 
vided into two parts (that may themselves be subdivided 
in a number of subdomains) v i .  d z ) ~  and d z ) ~ ,  where 
dz) = d z ) ~  U d z ) ~ .  d z ) ~  consists of those parts of dz) that 
are located in one of the planes z = -0.5 or z = 0.5, d z ) ~  is 
defined as the remaining part of dz) i.e. XUH = XU\XUE. 

We now assume that the tangential components of the 
electric field strength E ( r , t )  are are known functions of 
space and time on &VE, and that the tangential compo- 
nents of the magnetic field strength H ( r ,  t )  are are known 
functions of space and time on d z ) ~ .  In addition to this we 
assume that the source distributions and the initial condi- 
tions E(r , to )  and W ( r , t o )  are known functions of space 
(and time) in D. With these data we have defined an 
electromagnetic field problem with a unique solution [16]. 
For generating a finite-element solution to this problem 
we assume the domain of computation to be covered by 
a uniform mesh consisting of identical cubes of sidelength 
0.25m (Fig. 5), each being subdivided into tetrahedra. 

As regards the problem to be solved, we assume that, 
after a transient in time ending at t = tend > t o ,  the exact 
solution for the electric field strength has converged to 

the problem could have prevented the unwanted discon- 
tinuity in the normal components from entering into the 
"solution". 

Finally note that the fact that our example discusses a 
transient to a static solution is immaterial. The example 
was chosen for the sake of clarity and simplicity. Any other 
behavior in time could have been chosen instead in (1) and 
(2). Accurate, non-spurious, solutions can only be guaran- 
teed by making the continuity of the normal component of 
the flux between edge elements a part of the formulation 
of the finite-element method. 

In summary: We have presented an example illustrating 
the fact that spurious solutions cannot be made impossible 
by using edge elements. 

VI. NONZERO DIVERGENCES 

In some cases, for instance when the sources of the elec- 
tromagnetic field or the initial conditions are not free of 
divergence, the exact solution of an  electromagnetic field 
problem is not free of divergence. Obviously, Whitney 1 
elements cannot be used in those cases. They would force 
the divergence of solution to be zero inside each tetrahe- 
dron, and a choice has to be made between nodal elements 
and consistently linear edge elements. When making a 
choice between them, the conclusions of the earlier sec- 
tions of this paper for solutions having zero divergence 
remain valid. Of course the finite-element formulation of 
the problem has to be such that the proper divergence 
conditions are included in it [12]. 

VII. EDGE ELEMENTS AND VECTOR POTENTIALS 
within an acceptable degree of accuracy. Since this solu- 
tion is constant in both the spatial and the time coordi- 
nates, it can be represented exactly using edge elements 
of any degree, and there is no doubt that many methods 
using edge expansions will find this solution. The point 
we want to stress here is that when a correct solution is 
found its correctness can only be attributable to the finite- 
element formulation used and not to the use of edge ele- 
ments. This is most easily understood by verifying that 
the "solution" 

= Eo;,, for - 0.50 < z < -0.25, 
E ( r , t )  = Oi,, for - 0.25 < z < 0.25, (2) 

= Eo;,, for 0.25 < C 0.50, 

for t 2 tend, is wrong or "spurious". However, since the 
errors in the above wrong solution consist of jumps in its 
normal component across the inter element boundaries a t  
the planes IzI = 0.25 it is an admissable solution when 
judging this E.om the properties of the edge elements. At 
the inter-element planes the normal component of the ex- 
act solution is continuous. Only a correct formulation of 

Edge and nodal elements are frequently used in finite 
element methods for solving (e1ectro)magnetic field prob- 
lems using vector potentials [24]. The results of our analy- 
sis regarding the comparison of these types of element can 
be applied directly to vector potential methods for solving 
field problems. Note that, when doing so, the asymptotic 
estimates of the local error apply to the vector potential 
only and not to the electric and/or magnetic fields derived 
from those potentials because the evaluation of the latter 
quantities usually requires a numerical differentiation with 
an accompanying loss in the asymptotic order of accuracy. 
N o  convergence studies for vector potential methods in- 
volving problems with analytic solutions and comparing 
edge and nodal elements are known to the author. There 
is no reason to assume that the rates of convergence in 
terms of vector potentials would differ significantly from 
those obtained earlier for field strengths [9, lo]. 

VIII. CONCLUSIONS 

Edge elements can be used for computing electromag- 
netic fields in both homogeneous and inhomogeneous do- 
mains. They are an indispensable tool for the modeling 
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of electromagnetic fields along interfaces between regions 
with different medium properties. Nodal elements can be 
used in homogeneous (sub)domains only. Neither nodal 
elements nor edge elements cause the solution to satisfy 
the correct divergence condition, or putting this in more 
general terms, to  satisfy the electromagnetic compatibility 
relations [12]. In other words, none of these elements guar- 
antees that the solution obtained will be free of “spurious 
solutions” and ” vector parasites”. Consequently, numer- 
ical errors of this type can only be eliminated by choos- 
ing a problem formulation that includes Maxwell’s equa- 
tions together with its compatibility relations. As regards 
the accuracy, consistently linear (edge or nodal) elements 
are preferable because of the fact that they have a higher 
asymptotic rate of convergence than (mixed) Whitney 1 
elements. 

The main advantages of edge elements are that they fa- 
cilitate the modeling of the field near a ”singularity”, i.e. 
they allow normal field components to  jump across inter- 
faces and that they do not yield conflicting conditions near 
edges of subdomains with contrasting medium properties 
and near re-entrant corners. Away from those ”singulari- 
ties” nodal elements are always preferable because of their 
higher eficiency. 
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