
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Proceedings
First International Workshop

Towards Evaluation of Aspect Mining
— TEAM 2006 —

July 4, 2006, Nantes, France
co-located with 20th European Conference on

Object-Oriented Programming (ECOOP 2006)

Organized by
Silvia Breu, Leon Moonen,

Magiel Bruntink and Jens Krinke

Report TUD-SERG-2006-012

SERG

TUD-SERG-2006-012

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

All papers are copyright c© 2006 by their respective authors.

This collection was edited by Leon Moonen <Leon.Moonen@computer.org>
Copyright c© 2006, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology.

All rights reserved. No part of this series may be reproduced in any form or by any means without prior
written permission of the publisher.

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

Table of Contents

Introduction 1
Workshop Background . 1
Motivation, Topics, and Goals . 1
Organizers . 1
Program Committee . 2

Technical Papers 5

Evaluating EA-Miner: Are Early Aspect Mining Techniques Effective?
Ruzanna Chitchyan, Américo Sampaio, Awais Rashid and Paul Rayson 5

Automatic Mining Of Context Passing In Java Programs
Linda M. Seiter 9

Quality-Driven Conformance Checking in Product Line Architectures
Grigoreta Sofia Moldovan and Gabriela Şerban 13

Aspect Mining for Aspect Refactoring: An Experience Report
Maximilian Störzer, Uli Eibauer and Stefan Schoeffmann 17

TUD-SERG-2006-012 i

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

ii TUD-SERG-2006-012

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

Introduction

Workshop Background

Aspect-oriented software development (AOSD) has emerged over the last decade as a paradigm for sepa-
ration of concerns, especially those crosscutting concerns that were difficult to decompose and isolate with
earlier programming methodologies and resulted in scattered and tangled implementation of functionality.
As such, AOSD promises significant benefits in the areas of software comprehension, maintenance and
evolution and could play an important role in the revitalization of existing (legacy) systems.

This promise has driven an increasing number of researchers to investigate the challenge of identifying
crosscutting concerns in existing systems (also known as aspect mining) using various forms of program
analysis. However, despite initial efforts to define a common benchmark, the community is still lacking an
evaluative framework that can be used to compare and evaluate the quality of various approaches to aspect
mining.

This workshop aims at developing such a framework, which consists amongst others of a clear classi-
fication of different types of crosscutting concerns (including a description of their distinguishing features)
as well as well-defined methods to assess different analysis approaches with respect to established quality
criteria such as precision, recall, scalability, usability, etc.

Motivation, Topics, and Goals

The motivation for the workshop lies in the emerging number of approaches to (semi-)automatically identify
crosscutting concerns in existing software systems. As the community and approaches mature, the desire
grows to systematically compare and assess the various approaches to identify strengths, weaknesses, com-
monalities and differences and discover open issues for future investigation.

The goal of this workshop is to advance the state-of-the-art in evaluation and comparison of aspect min-
ing techniques. To achieve this goal, we bring together practitioners, researchers, academics, and students
working in the area of aspect mining, and more generally in the area of aspect oriented software develop-
ment, to share experiences, consolidate successful techniques, collect guidelines, and identify open issues
for future work.

One of the first requirements for evaluation is a proper classification of kinds of crosscutting concerns
and their distinguishing features. Without such classification, detection results can hardly be compared
between various approaches. In addition, we need well-defined methods to objectively compare aspect
mining techniques and assess their quality attributes such as precision, recall, scalability, etc. We aim to
work towards two main results, the first being a prerequisite for the latter:

1. to establish a (more complete) classification of (kinds of) crosscutting concerns, including a descrip-
tion of their distinguishing features.

2. to develop an evaluative framework to assess and compare aspect mining techniques.

TUD-SERG-2006-012 1

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

Organizers
Silvia Breu University of Cambridge, UK
Leon Moonen Delft University of Technology & CWI, The Netherlands
Magiel Bruntink CWI, The Netherlands
Jens Krinke Fernuniversität in Hagen, Germany

Program Committee
Elisa Baniassad Chinese University of Hongkong, China
Silvia Breu University of Cambridge, UK
Magiel Bruntink CWI, The Netherlands
Yvonne Coady University of Victoria, Canada
Jens Krinke Fernuniversität in Hagen, Germany
Christian Lindig Saarland University, Germany
Marius Marin Delft University of Technology, The Netherlands
Kim Mens Université catholique de Louvain, Belgium
Leon Moonen Delft University of Technology & CWI, The Netherlands
Lori Pollock University of Delaware, USA
Awais Rashid Lancaster University, UK
Martin Robillard McGill University, Canada
Paolo Tonella ITC-irst, Italy
Tom Tourwé CWI, The Netherlands

2 TUD-SERG-2006-012

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

Technical Papers

TUD-SERG-2006-012 3

Evaluating EA-Miner: Are Early Aspect Mining Techniques
Effective?

Ruzanna Chitchyan
Computing Department

Lancaster University
Lancaster, LA1 4WA, UK

rouza@comp.lancs.ac.uk

Américo Sampaio
Computing Department

Lancaster University
Lancaster, LA1 4WA, UK

a.sampaio@comp.lancs.ac.uk

Awais Rashid, Paul Rayson
Computing Department

Lancaster University
Lancaster, LA1 4WA, UK

awais/paul @comp.lancs.ac.uk

ABSTRACT
Identifying and analyzing aspectual requirements manually is very
resource intensive due to the broadly scoped nature of aspects and
the large volumes and ambiguity of requirements elicitation data.

In this paper we present an evaluation of EA-Miner – a
requirements-level aspect identification tool. The tool is evaluated
by comparing the performance of an analyst using the tool with
that of carrying out the same tasks manually. To obtain objective
results, the evaluation is repeated for three case studies of various
sizes. Our evaluation demonstrates the high degree of accuracy
provided by EA-Miner and the considerable reduction in time and
effort afforded by it.

Keywords
aspect-oriented requirements engineering, aspect mining, aspect
identification, requirements elicitation, tools, evaluation.

1. INTRODUCTION
Aspect-Oriented Requirements Engineering (AORE) [1] [2] [3]
[4] has emerged as a new way to modularize and reason about
crosscutting concerns during requirements engineering. AORE
extends the notion of separation of concerns in RE (e.g.,
viewpoints, use cases, goals, etc.) with that of requirements-level
aspects. Such aspects modularize requirements that affect and
constrain other requirements; examples of requirements-level
aspects are: security, availability, distribution, etc. Requirements
pertaining to these concerns are often (fully or partially) scattered
in the statements of other requirements. By explicitly
modularizing crosscutting concerns at the requirements-level,
AORE makes it possible to reason about such concerns from early
on in the software lifecycle.
Identification of aspectual requirements is, however, a non-trivial
task. Firstly, as is the case for identifying relevant concerns using
any RE technique, one often has to mine for aspects in large
volumes of input documents. Documents, such as interview
transcripts, are frequently imprecise, full of apparent
contradictions and missing essential information. Secondly, parts
of aspectual concerns can often be scattered across a document or
even across documents making their identification difficult. This
is further compounded by factors such as the occurrence of
similar, often incomplete requirements in several places, mutual
influence of requirements, difference of language (user
vocabulary) used to express same or similar requirements and
implicit requirement implication.
Undertaking such identification tasks manually is often very time-
consuming and costly. For instance, for an analyst with an average

reading speed, it would take 1.5-2 minutes (at the rate of 250-350
words per minute) to read a 500-word-long problem for
comprehension. Identifying key concepts, concerns and
crosscutting relationships requires even more time and effort.
When we extrapolate this data to manual processing of large
documents, the average personnel effort required is substantial.
Therefore, like other RE techniques, AORE requires effective and
scalable tool support in order for its benefits to be fully exploited
in analyzing large scale problems.
In this paper we evaluate the effectiveness of our EA-Miner tool
that automates identification1 of aspectual (i.e. crosscutting) and
non-aspectual concerns (i.e. base concerns), as well as structuring
of requirements according to the identified concerns. The tool
employs Natural Language Processing (NLP) techniques and has
been previously reported in detail in [1, 5, 6].
In this paper we do not propose any “new evaluation frameworks”
for aspect mining, but instead demonstrate the merits of our
aspect-mining approach and how we evaluate it.
In section 2 we present an overview of the tool for readers not
familiar with it. In section 3 we evaluate the tool2, based on our
experiences with analysis of three problem descriptions of varying
sizes. Section 4 presents some related work while section 5
concludes the paper.

2. EA-Miner
EA-Miner is layered on top of our existing WMATRIX suite of
natural language tools [6, 7] to support the requirements engineer
in identification of both aspectual and non-aspectual concerns [1,
5].
WMATRIX is a web-based collection of corpus-based NLP tools.
It uses a combination of part-of-speech and semantic tagging,
frequency analysis and concordances (i.e. words in context) to
identify concepts of potential significance in a given text.
WMATRIX assigns part-of-speech tags for each word in the text
(98% precision), then uses semantic analysis to group related
words and multi-word expressions into conceptual categories. If a
word has several meanings and can be assigned to more than one
semantic category, the analyses helps to identify the most likely
category for each word in a given text, taking into account the
context where the word occurs.

1 As discussed in the related work section, several other tools for

AORE exist, but all of them require initial manual input for
concerns.

2 This evaluation is briefly mentioned in [6]. This paper presents
more detailed discussion.

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 5

EA-Miner utilizes the part-of-speech tagging and semantic
analysis produced by WMATRIX and complements it with its
own lexicon for crosscutting concerns and requirement document
representation models (e.g., viewpoints model, use cases model,
etc.).
For identification of non-functional crosscutting concerns (which
are often strong candidates for aspects), the EA-Miner lexicon
builds on top of (and extends) non-functional requirement trees of
the NFR framework [8]. Non-functional aspects are identified by
assigning semantically close words to the sub-groups for each
NFR category, thus all NFR-related aspects are identified.
Additionally, a lexicon for any new non-functional aspects that
are not included into NFR, but are deemed to be useful can be
incorporated into the tool lexicon.
For identification of functional crosscutting concerns, EA-Miner
uses a Theme/Doc-like [2] strategy, detecting the repeated
occurrences of action words, which may suggest presence of a
functional aspect. For instance consider the scenario in Figure 1
which shows the EA-Miner output pertaining to the description of
an online auction system. EA-Miner lexicon helps to identify the
words authorised and logging as semantically related to the
security concern and suggests security as a non-functional aspect.
It also alerts the requirements engineer (not shown in Figure 1)
that the bid functionality is mentioned in many requirements,
which may indicate some crosscutting association of bidding.

Figure 1: EA-Miner tool
EA-Miner also facilitates the production of the aspect model and
requirements document representation with chosen structures. For
instance (cf. Figure 1), EA-Miner helps to automatically identify
viewpoints (e.g., buyers, customers, etc.), using the WMATRIX
part-of-speech annotation – all nouns are identified as potential
viewpoints. Since the list of nouns for large documents can be
very long, EA-Miner applies several reduction strategies by:

1. using lemmatization to recognize words that have the
same root (e.g. customer and customers) and treating
these as one viewpoint;

2. using dictionaries of synonyms to amalgamate words
with the same meaning (e.g. client and customer);

3. using WMATRIX frequency norms to consider as
suggested viewpoints only significantly overused nouns.

EA-Miner then provides the list of requirements related to each
viewpoint and its related aspects. Note that EA-Miner is not
limited to viewpoint-based structuring of requirements. Other
requirements models can be plugged into the tool. For instance, it
can be applied to develop use cases style requirements
documentation by identifying possible use cases from the action
verbs (e.g., sell, buy, bid, etc.) and relating corresponding
requirements to them. Similar reduction strategies to those
outlined above are also usable in such instances.

3. EVALUATION OF EA-MINER
The most time consuming activities in AORE pertain to the
identification of the crosscutting (aspects) and non-crosscutting
(i.e., viewpoints in our experiment) concerns and to structuring of
the requirements according to these concerns. Our evaluation of
EA-Miner helps us to compare its performance with regards to
these activities with a corresponding manual analysis.

3.1 The Evaluation Framework
We have compared results of EA-Miner with the manual analysis
of three problem descriptions of varying sizes and document
structures.
The first problem description used was the auction system
described in [9]. This is a simple example, considering the size of
the input document (443 words, 1 page). The second problem
description was the light control system [10]. The size of this file
is significantly larger than the previous example (3671 words, 11
pages). The third problem description was that of a library system
used in Lancaster University. The document used as input to the
tool is part of the requirements specification documentation of the
system. The size of this file is larger than the previous two (6504
words, 29 pages).
The execution of both methods (tool-based and manual) was
carried out independently by three different requirements
engineers (two with similar level of expertise and one expert) in
order to avoid biased results. We collected data on the time
required in each case as well as data on the quality of the output.
To measure the required time, in the tool-based approach, the tool
logged the time for concern identification while the requirements
engineer used a chronometer to log the time for structuring the
requirements into the concerns and screening out the impertinent
ones. In the manual approach the requirements engineer used a
chronometer to measure the time spent on the same set of
activities.
The quality of the outcome was measured as the number of
correctly identified concerns, and the number of false positives.
The number of correctly identified concerns (i.e., viewpoints and
aspects) can alternatively be expressed as a ratio (or percentage)
of the correctly identified concerns against the total number of
correct concerns present in the problem description. The concerns
were deemed correctly identified if they corresponded to those
manually identified by an independent senior requirements
engineer. The senior requirements engineer (who independently
identified the relevant viewpoints and aspects) also normalized the
results from the other two analysts by equating relevant
abstractions where different names or granularities were used by
the two participating engineers.
The metric for false positive abstractions (viewpoints and aspects)
shows the number of concerns identified by the tool, but

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

6 TUD-SERG-2006-012

considered wrongly identified by the senior requirements
engineer. Similar to the number of correctly identified concerns,
this metric can also be expressed as rate, i.e., the number of false
positives/ total number of identified concerns.
It is evident, that in this work we have opted not to develop any
dedicated aspectual evaluation framework, instead we rely on
simple evaluation criteria of efficiency and quality that can clearly
demonstrate the utility of our approach. We also believe that these
simple criteria should act as starting point of evaluation for any
requirements-level aspect mining approaches.

3.2 Results of Evaluation
As illustrated in Figure 2, the EA-Miner-based analysis
consistently outperformed the manual one. In terms of required
time, for the smaller auction system description it was
approximately 20 times faster (4 minutes 45 seconds vs. 90
minutes). For the larger documents the performance of the tool
was even better: approximately 125 and 120 times faster for the
light control and library systems respectively.
It is important to note that in both the tool-based and manual
analysis the largest part of time was expended not on reading and
analysis, but on structuring the requirements per viewpoints and
aspects. However, the time taken for structuring was much
smaller for the tool-based approach as EA-Miner suggests the
possible structuring of requirements into viewpoints and aspects.

Time taken (in minutes)

0

200

400

600

800

1000

1200

1400

1600

Structuring
Identification

Structuring 80 4.5 833 6 1377 10.67

Identification 10 0.25 49 1.03 81 1.48

Manual Tool-based Manual Tool-based Manual Tool-based

Auction System Light Control System Library System

Figure 2: Comparison of Time Spent
In terms of correctness of viewpoints identified (Figure 3), the
output of the two analyses was the same for the smaller (auction
system) problem. However, the tool-based analysis was more
accurate than the manual analysis for the two larger problem
descriptions (with a 100% match with the senior engineer’s
analysis for the library system). This shows that the tool suite can
significantly aid the requirements engineer in identifying a good
set of viewpoints.

Number of Viewpoints Identified

4

11

8

4

6

7

4

9

8

0

2

4

6

8

10

12

Auction System Light Control System Library System

Senior Requirements Engineer
Manual
Tool-based

Figure 3: Comparison of Correct Viewpoints Identified

The comparison of the number of aspects identified by the two
analyses is shown in Figure 4. Both sets of results are comparable
for the light control system. For the auction system, the manual
analysis missed one aspect (persistence).
Interesting results were observed for the library system where the
manual analysis identified 7 out of the 8 aspects independently
identified by the senior engineer, while the tool-based analysis
identified only 4. This was due to the fact that vocabulary for such
aspects as standards and protocols (mentioned in the library
system) was not part of the EA-Miner lexicon. The lexicon is
continuously refined and extended based on new vocabulary for
aspects identified by the requirements engineers. Relevant
vocabulary has, therefore, now been added to the lexicon. As
more analyses are performed in other case studies, and the tool
lexicon is populated with more aspect-related vocabulary, the
performance of the tool on this criterion will improve further.

Number of Early Aspects Identified

3

7

8

2

6

7

3

6

4

0

1

2

3

4

5

6

7

8

9

Auction System Light Control System Library System

Senior Requirements Engineer
Manual
Tool-based

Figure 4: Comparison of Correct Aspects Identified
The differences in the two evaluation methods in terms of false
positives became noticeable in evaluation of the two larger
problem descriptions. The rate of false positives for viewpoints
was approximately 0.1 for the tool suit and zero for the manual
analysis. On the other hand, for the tool suite, the rate of false
positive aspects was zero compared to 0.3 for the manual analyst.
The subsequent interviews with the analysts helped explain these
contrasts. For viewpoint identification, the tool considers all
nouns as potential candidates. However, usually subjects in a
sentence tend to make stronger candidates for the purpose. As
viewpoints are well understood, the analyst working manually
placed a stronger emphasis on subjects as viewpoints. Conversely,
aspects at the requirements-level are not as well-understood
abstractions. Thus, the manual analyst preferred to err on the side
of caution identifying more aspects than needed. In contrast, the
analyst working with the tools was more clearly guided with
regards to potential aspects, hence resulting in no false positives.
Thus, in our experiment the tool proved to be useful and effective.
In our view, this experiment demonstrates the value of the tool
suite in helping with the adoption of aspect-oriented requirements
engineering techniques, especially when extending existing
viewpoints- or use case-based approaches with the notion of
aspects.

4. RELATED WORK
Aspect identification at requirements level is still a research
problem. Presently most work focuses on studying the
crosscutting characteristics of known non-functional concerns.
The only notable exception to this is the Theme/Doc [2] approach
which allows to visually identify the crosscutting functional
relationships between a set of (manually supplied) pre-defined

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 7

concerns in requirements. While EA-Miner was initially inspired
by Theme/Doc idea, we based our approach on corpus-based NLP
work and automation, thus addressing the issues of efficiency and
scalability.
Another approach that uses NLP for aspect identification is
presented in [11]. This work is motivated by a view that
crosscutting concerns in OO code are often caused due to
scattering of actions. NLP is used to identify such actions in
method names and method related comments. These actions then
can be viewed as a separate virtual concern to reduce program
navigation and search costs.
Code level aspect mining is also addressed in [12][13]. [12]
focuses on studying the relationships between the execution traces
of the functionalities and the computational units (class methods)
invoked during each execution. Crosscutting is suggested when
features are made up by methods that belong to more than one
class and each class contributes to more than one feature.
The Aspect Mining Tool (AMT) [13] is based on a combination
of text based (pattern matching) and type-based search to identify
aspect candidates in source code. The tool helps to provide
visualizations showing in which classes a given pattern and/or
type occurs.

5. CONCLUSION
In order to facilitate a wide adoption of aspect-oriented software
development, it is necessary to offset the complexity and effort
involved in aspect identification. Aspects manifest themselves
first in the initial system requirements. Therefore, this is the point
where we must address the associated complexity and effort by
means of scalable tools that have a high degree of accuracy. Once
the aspects have been identified, they can be traced, through
refinements, into the solution space, i.e. the architecture, design
and implementation. Therefore, automation of aspect
identification and structuring is an area of key importance in
aspect-oriented requirements engineering.
Our tool, EA-Miner, is aimed at providing effective and scalable
support for concern identification and structuring. While we are
still working on further development and improvement of the tool
our first evaluation, presented in this paper, shows significant
results in terms of time-efficiency and output quality for the
AORE process.
We do not propose any new evaluation framework as first and
foremost aspect mining tools and techniques must demonstrate
their effectiveness in comparison with non-aspect-oriented or
manual approaches. In our view, this is the first stepping stone
towards a more extensive evaluation framework – such
comparative studies are critical for Aspect-Oriented Software
Development. They will also provide an adequate means of
comparison of different AO approaches against each other, when
these approaches peruse the same goals (e.g. identification of
aspects in requirements, etc.).
A second step for such a framework should be the incorporation
of existing work on metrics designed to evaluate aspect-oriented
modularity, e.g., [14-16]. Such metrics not only provide a testbed
to compare different approaches but also help analyze the results
with regards to relevant quality criteria such as coupling, cohesion
and separation of concerns.

6. ACKNOWLEDGMENTS
This work is supported by European Commission grant IST-2-
004349: European Network of Excellence on Aspect-Oriented
Software Development (AOSD-Europe), 2004-2008.

7. REFERENCES
[1] A. Sampaio et. al, "EA-Miner: a Tool for Automating

Aspect-Oriented Requirements Identification," Automated
Software Engineering (ASE 2005), Long Beach,
California, USA, 2005.

[2] E. Baniassad and S. Clarke, "Theme: An Approach for
Aspect-Oriented Analysis and Design," Int'l Conference
on Software Engineering, Edinburgh, Scotland, UK, 2004.

[3] V. Ambriola and V. Gervasi, "Processing natural language
requirements," presented at International Conference on
Automated Software Engineering, Los Alamitos, 1997.

[4] I. Sommerville et. al, "Viewpoints for requirements
elicitation: a practical approach," Int'l Conf. of Software
Eng. (ICRE'98), Colorado Springs, Colorado, USA, 1998.

[5] A. Sampaio et. al, "Mining Aspects in Requirements,"
Workshop on Early Aspects held with AOSD 2005,
Chicago, Illinois, USA, 2005.

[6] R. Chitchyan et. al, "A Tool Suit for Aspect-Oriented
Requirements Engineering," Workshop on Early Aspects
(held at ICSE 2006), Shanghai, China, 2006.

[7] P. Rayson, WMATRIX software, Lancaster University,
URL: http://www.comp.lancs.ac.uk/ucrel/wmatrix/, 2005.

[8] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering:
Kluwer Academic Publishers, 2000.

[9] Web Site: Auction System Problem Description,
http://lgl.epfl.ch/research/fondue/case-
studies/auction/problem-description.html, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland, 2005.

[10] G. University of Kaiserslautern, "Web Site: The Light
Control Case Study: Problem Description."

[11] D. Shepherd et. al, "Towards Supporting On-Demand
Virtual Remodularization Using Program Graphs," Aspect
-Oriented Software Development, Bonn, Germany, 2006.

[12] P. Tonella and M. Ceccato, "Aspect Mining through the
Formal Concept Analysis of Execution Traces," 11th
Working Conference on Reverse Engineering (WCRE’04),
Delft University of Technology, the Netherlands, 2004.

[13] J. Hannemann and G. Kiczales, "Overcoming the
Prevalent Decomposition in Legacy Code," in Workshop
on Advanced Separation of Concerns in Software
Engineering (ICSE 2001), 2001.

[14] A. Garcia et. al, "Modularizing Design Patterns with
Aspects: A Quantitative Study," Aspect-Oriented Software
Development (AOSD'05), Chicago, USA, 2005.

[15] N. Cacho et. al, "Composing Design Patterns: A Scala-
bility Study of Aspect-Oriented Programming," Aspect-
Oriented Software Development, Bonn, Germany, 2006.

[16] A. F. Garcia et. al, "Modularizing Design Patterns with
Aspects: A Quantitative Study," Transactions on Aspect-
Oriented Software Development, pp. 36-74, 2006.

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

8 TUD-SERG-2006-012

Automatic Mining Of Context Passing In Java Programs
Linda M. Seiter

John Carroll University
20700 North Park Boulevard
University Heights, OH USA

011-216-397-1948

lseiter@jcu.edu

ABSTRACT
Context-dependent computing is becoming increasingly necessary
within the growing fields of distributed, service-oriented,
ubiquitous, and autonomic computing. Context awareness
involves the ability of a program to customize its behavior based
on the context in which it is executing. This presents a challenge
in statically scoped languages like Java, as it may require
information available in one scope to be made available at
another. In this paper, we investigate several AOP solutions that
have been proposed for addressing different notions of context-
dependent computation. We then discuss a potential framework
for assessing tools that might be developed for mining and
visualizing evidence of context-dependent computation within
Java programs, the goal being the automatic refactoring into AOP
solutions. Finally, we present an Eclipse plugin that has been
developed to automatically mine and visualize context-dependent
control flow in the form of parameter passing within Java
programs.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures

General Terms
Design, Languages, Verification.

1. INTRODUCTION
Before discussing how to evaluate and compare aspect mining
tools, we first present an overview of several AOP techniques
have been proposed for modularizing the cross-cutting concern of
context-aware computation. Each attempts to encapsulate a
different notion of context-based behavior composition. One of
the simplest notions of context-dependent computation involves
calling-context. For example, a method may decide how to
proceed based on information about the object that invoked the
method (i.e. the calling context). In a statically scoped language
like Java, the calling context is not available within the scope of
the called method, thus context passing is traditionally achieved
by the propagation of the caller’s identity as a parameter along

sequences of method invocations. This often results in API
pollution as well as loss of modularity. Figure 1 shows an
example in which the Service class implements its functionality
by delegating to a Worker object, (possibly by routing through an
intermediary object). The Worker object requires information
concerning the object that requests the service in order to decide
how to perform its work. The Caller context is passed as a
parameter from Service.doService to Worker.doWork. There exist
several non-AOP solutions to context passing, including
techniques that provide reflective access to call histories [9],
programming language support for dynamic context [10],
dynamic variables [14], as well as declarative mechanisms for
defining transportation graphs [5].

public class Caller {

 public void requestService(Service service) {

 service.doService(this,…);

 }

}

public class Service {

 Worker worker;

 public void doService(Object context, …) {

 worker.doWork (context, …);

 }

}

public class Worker {

 public void doWork(Object context,…) {

 //test context to determine behavior

 if (context. …….) …..

 }

}

FIGURE 1: Context passing through method parameter

Coady et al [1] proposed an initial AOP solution to context
passing that used the cflow primitive to capture the calling
context. A similar technique has been suggested by Laddad,
which he refers to as the wormhole design pattern [4]. A
wormhole involves the declaration of three pointcuts: (1) a source
pointcut callercontext on the calling method of a client/service
class, (2) a target pointcut workercontext on the called method of
the worker class that requires access to the calling context, and (3)
a wormhole pointcut that uses cflow to restrict the call path to
joinpoints matched by the source pointcut that occur within the
control flow of the target pointcut. Figure 2 contains a template
of the wormhole pattern.

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 9

public aspect ContextPassing {

 pointcut callercontext(Caller c) :

 this (c) && call (void Service.doService(…) ;

 pointcut workercontext(Worker w):

 target(w) && call(void Worker.doWork(…);

 pointcut wormhole(Caller c, Worker w):

 cflow(callercontext(c) && workercontext(w));

 around(Caller c, Worker w):

 wormhole(c,w) { advice body }

}

FIGURE 2: Wormhole Template

The use of the cflow pointcut expression restricts the context
information that is available at runtime to the current contents of
the call stack. In particular, the most recent client context
encountered on the call stack is available at the target joinpoint.
Cottenier and Elrad propose contextual pointcut expressions [2] as
a mechanism for collecting information about the context in
which a target joinpoint is executed, including context
information about all client contexts that have been encountered
along the call path, not just the most recent. This allows more
accessibility to the life-cycle of a joinpoint, rather than simply its
most recent occurrence. They implement a visitor that
accumulates information about each dynamic joinpoint that
matches a pointcut. Thus, path-specific customizations may be
made using a greater historical record of context.

Herzeel et al propose temporal-based context awareness using
HALO, a pointcut language designed to encapsulate context-
awareness across an application’s lifetime [15]. HALO is built
upon an underlying system that snapshots context state
throughout an application based on triggers defined by temporal
pointcuts. The pointcut mechanism allows reference to past join
points and the context in which they occurred, including reference
to time intervals.

The dflow pointcut proposed by Masuhara and Kawauchi serves
to trigger advice based on whether a value of an object at a target
joinpoint originates from a value that was computed at some
source joinpoint preceding it on the call stack [7]. The dflow
pointcut relies on the history of where a value originates along the
call stack.

Context-Aware Aspects proposed by Tanter et al [12] takes a
unique approach of separating the definition of a context from its
use within an aspect. They propose a framework to support
context definitions as objects which are stateful, composable and
potentially parameterized. A context-aware aspect is an aspect
whose behavior depends on the context, perhaps in defining a
pointcut or when applying advice. The framework supports
contexts that may exist over time, thus it does not limit aspects to
access only the most recent contexts.

2. ASSESSING ASPECT MINING
TECHNIQUES
We summarize these varying AOP approaches to modularizing
the context passing concern based on their pointcut definitions:

cflow –recent client joinpoint context available to target
joinpoint

contextual, temporal – historical record of client
joinpoint contexts available to target joinpoint

dflow – historical record of dataflow along call stack
available at target joinpoint

context aware – better separation of concern between
context and aspect that uses it

An existing Java program may contain numerous occurrences of
the different types of context-dependent computation that each of
these techniques propose to modularize. The goal of an aspect-
mining tool would be to detect such occurrences, present them in
a useful manner to a programmer, and support the eventual
refactoring of such occurrences into an AOP solution. We
propose several questions to be used in assessing the value of a
particular mining approach.

How do we detect context-aware computation?

How do we visually represent context-aware
computation?

Can we support automatic refactoring to AOP?

A given technique for mining context-awareness must define and
then detect the following:

Context perception: what contexts are of interest?
where are they defined (source), where are they used
(target)?

Context acquisition: what is the existing program
mechanism for enabling source contexts to be available
at targets?

Context-dependent computation: how is the source
context used at the target?

Once an occurrence of a context-aware computation is found in
an existing program, the question arises as to whether the code
can or should be refactored into an AOP solution. If so, can the
refactoring be automated or is manual intervention required.
Visual depiction of the context-dependent computation, for
example depiction of a path or flow along which the context is
passed, along with potential refactoring implications, is extremely
valuable in facilitating program evolution.

3. AN ECLIPSE PLUGIN FOR MINING
CONTEXT PASSING
We have developed an Eclipse plug-in called ContextFlowMiner
that searches Java programs for parameter passing over a
sequence of method calls. Presently the plugin focuses on
patterns of context passing that could be refactored into the
wormhole design pattern. It detects the propagation of an object
along a sequence of method calls as a parameter. In this section,
we briefly discuss some of the issues involved in mining such
context passing flows in order to support the programmer toward
proper refactoring to an AOP solution.
The primary goal of the ContextFlowMiner plugin is to search
through the Java files within an Eclipse project in order to detect
occurrences of parameter passing mi nj, in which an object that
is passed into a method m as the ith parameter is subsequently
passed as the jth parameter to method n that is called within the

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

10 TUD-SERG-2006-012

method body of m. The plugin detects both general parameter
passing paths (object passed into a method through any variable
reference) as well as context passing paths (object passed into
method through “this” variable reference). A summarized listing
of all detected parameter passing paths is presented to the
programmer; the programmer may then select a parameter passing
path to view graphically.
The ultimate benefit of using such a tool would be to facilitate the
programmer in making an informed decision as to which
occurrences of context passing can be automatically refactored to
the wormhole design pattern. To date, we have not implemented
automatic refactoring of detected context passing patterns, we
simply present a visual representation of the context passing
flows. However, the desire to facilitate refactoring to the
wormhole pattern as the next step in the software engineering
process led to several design restrictions when deciding how to
implement the mining software. ContextFlowMiner detects the
following:

context perception:

o source contexts : a method that passes a
variable that is not a parameter as an
argument to another method.

o target contexts : a method that uses a
parameter in an expression that is not a call to
another method.

context acquisition

o parameter flow : mi nj, object that is passed
into a method m as the ith parameter is
subsequently passed as the jth parameter to
method n that is called within the method
body of m. Method m does not use ith

parameter in any statements except as an
argument to another method call. (this will
allow refactoring to the wormhole, where the
parameter is removed entirely)

context-dependent computation

o abstract portion of target method body
containing context-dependent computation

The ContextFlowMiner is implemented to mine an entire Java
project for context passing as implemented by parameter passing.
A limit may be set to denote the minimum length path of a flow in
order to avoid trivially short parameter passing sequences. The
Java Development Tools (JDT) provided by Eclipse contain
perspectives involved in code merging and refactoring. In
addition the JDT Core provides a model that allows navigation of
the Java source code as an Abstract Syntax Tree. The JDT Core
provides an IMethod class which represents a method declared in
a class or interface. The IMethod will allow access to information
about each method, such as its name, its qualified name, its
parameters names and types, its return type and any exceptions it
may throw. We present a brief list of the steps taken during
mining:
1. Create abstract syntax tree (AST) per class.
2. Create Visitor to traverse AST, visit each node to look for

parameter passing.
3. Detect parameter flow: Current method passes one of its

parameters as an argument to another method. The parameter
is not used in other statements in the method body, except as
an argument to a method call (strictly context passing).

4. Create object to represent a parameter flow between
methods.

5. Compute chains of parameter flow sequences, factoring in
interface implementations and subclass overriding for each
method invocation in the chain.

6. Compute callers of source of parameter flow sequences
7. Aggregate groups of parameter flow paths.

We aggregate groups of parameter passing paths that overlap to
form a graph. Thus, if there is fan-in or fan-out (i.e. a context is
passed into or out of a method parameter along more than one call
path), the programmer may view as a group all paths that provide
context at some target joinpoint. When refactoring to the
wormhole pattern, it is necessary to remove the explicit context
parameter from a method parameter list. It is also necessary to
refactor the target method body of all references to the context
object. Such references must now exist instead in the wormhole
advice. Note that we can not remove a parameter from a method
unless all callers of the method are refactored. Additionally, we
can not remove a parameter along the context passing path if it is
used in any statement within a method body (for example,
aliasing) other than parameter passing (see step 3 above). Thus,
we specifically are mining for parameter passing flows that will
allow automated refactoring to the wormhole pattern.
Once the context passing information is mined, we display the
information visually to the programmer in a new Eclipse view.
For example, Figure 3 shows two overlapping parameter passing
flows detected when the plugin was used on the JHotDraw project
[11], which has been proposed as a testbed for aspect mining [13].
Figure 3 shows the flow of an object through the sequence:
DrawApplication.createDefaultTool
DrawApplication.setDefaultTool0
DrawApplication.createToolButton2
ToolButton.ToolButton3.
The subscript on each method indicates the index (0 based) of the
method parameter. The view also shows another caller of the
ToolButton constructor, DrawApplet.createToolButton. Note that
if the programmer wished to refactor only the parameter passing
along the first path DrawApplication.createDefaultTool …
ToolButton.ToolButton using the WormHole pattern, the path
DrawApplet.createToolButton ToolButton.ToolButton would
no longer compile since the wormhole refactoring would have
removed the explicit parameter from the ToolButton constructor.
Thus, one benefit of the ContextFlowMiner tool is to show the
programmer all of the incoming callers of a method involved in a
parameter passing flow, allowing an informed decision to be
made prior to refactoring.

4. CONCLUSION
Numerous types of cross-cutting concerns involve the
modularization of a subset of joinpoints that are available along
an execution path. There have been techniques proposed that
suggest the use of program slicing [2] as well as fan-in [6][8]. In
this paper, we focus on a variation of slicing and fan-in that
involves data flow through simple parameter passing along the
call path. The current implementation of ContextFlowMiner is
restricted to context passing that could be replaced with the

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 11

wormhole design pattern, thus it is based on evolving Java code to
use the cflow pointcut expression. We are investigating how to
extend the tool to mine for context passing that can be refactored
by the contextual and dflow pointcut expressions.

5. REFERENCES
[1] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using

AspectC to Improve the Modularity of Path-Specific
Customization in Operating System Code. In Proceedings of
the Joint European Software Engineering Conference
(ESEC) and 9th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE-9), pages
88-98. ACM Press, 2001.

[2] T. Cottenier and T. Elrad. Contextual Pointcut Expressions
for Dynamic Service Customization. In Dynamic Aspects
Workshop (DAW), pages 95—99, ACM Press, Mar 2005.

[3] T. Ishio, S. Kusumoto, K. Inoue. Debugging Support for
Aspect-Oriented Program Based on Program Slicing and
Call Graph, In Proceedings of 20th International Conference
on Software Maintenance (ICSM2004), pp.178-187, 2004.

[4] R. Laddad. AspectJ In Action, Manning Press, 2003.
[5] K. Lieberherr, Adaptive Object-Oriented Software: The

Demeter Method With Propagation Patterns. PWS, 1996.
[6] M. Marin, A. van Deursen, and L. Moonen. Identifying

Aspects Using Fan-in Analysis. In Proceedings of the 11th

Working Conference on Reverse Engineering (WCRE),
IEEE Computer Society, 2004.

[7] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-
oriented programming. In Proceedings of The First Asian
Symposium on Programming Languages and Systems

(APLAS'03), volume 2895 of Lecture Notes in Computer
Science, pages 105--121, Beijing, China, Nov. 2003

[8] D. Shepherd, J. Palm, L. Pollack. Fast Prototyping and
Evaluation of Aspect Mining Analyses via Timna. Workshop
on Aspect Reverse Engineering at the Working Conference
on Reverse Engineering 2004.

[9] R. Walker and G. Murphy. Implicit context: Easing software
evolution and reuse. In Proceedings of the Eighth
International Symposium on the Foundations of Software
Engineering (FSE-8), 2000.

[10] L. Wall, T. Christiansen and R. Schwatz. Programming Perl.
O’Reilly and Associates, 2nd edition, 1996.

[11] http://www.jhotdraw.org/
[12] E. Tanter, K.Gybels, M. Denker and A. Bergel, Context-

Aware Aspects, In Proceedings of the 5th International
Symposium on Software Composition (SC 2006), Vienna,
Austria, March, LNCS, 2006.

[13] A. van Deursen, M. Marin, L. Moonen. A Systematic Aspect-
Oriented Refactoring and Testing Strategy, and its
Application to JHotDraw. Proceedings of the 2005
Workshop on Modeling and Analysis of Concerns in
Software.

[14] D. Hansen and T. Proebsting. Dynamic Variables.
Proceedings of the ACM SIGPLAN ’01 Conference on
Programming Language Design and Implementation,
Snowbird, Utah, June 2001, 264-273

[15] C. Herzeel, K. Gybels, P. Costanza. A Temporal Logic
Language for Context Awareness in Pointcuts. In Revival of
Dynamic Languages Workshop, ECOOP, 2006.

FIGURE 3: JHotDraw parameter passing flow

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

12 TUD-SERG-2006-012

Quality Measures for Evaluating the Results of Clustering
Based Aspect Mining Techniques

Grigoreta Sofia Moldovan
Department of Computer Science

Babeş-Bolyai University
1, Mihail Kogălniceanu Street

Cluj-Napoca, Romania

grigo@cs.ubbcluj.ro

Gabriela Şerban
Department of Computer Science

Babeş-Bolyai University
1, Mihail Kogălniceanu Street

Cluj-Napoca, Romania

gabis@cs.ubbcluj.ro

ABSTRACT
The aim of this paper is to propose a set of new quality mea-
sures for evaluating the results of clustering based aspect
mining techniques. We have focused on identifying the fea-
tures that influence the time required by the manual analysis
of the results. For aspect mining techniques that use clus-
tering to identify crosscutting concerns, we propose a set of
new quality measures for these features. Then, we use these
measures to evaluate the results of a clustering based aspect
mining technique in two case studies.

1. INTRODUCTION
The identification of crosscutting concerns in legacy systems,
or aspect mining, is a relatively new research area. Many
aspect mining techniques have been proposed so far ([1], [2],
[6], [7], [8], [9], [10]). Some of them are dynamic ([1], [2],
[10]), some of them are static ([6], [7], [9]), some of them
use formal concept analysis ([10]), some of them use fan-in
analysis ([6], [7]), some of them use clustering ([2], [7], [9])
and some use clone detection techniques ([8]).

We need to identify some measures in order to compare these
techniques. So far, the only thing that these techniques
have in common, is that the last step of the technique is the
manual analysis of the obtained results.

The new quality measures proposed in this paper reflect the
time needed for the manual analysis of the results, which
should be minimized. In our opinion, from the user’s point
of view, an aspect mining technique is adequate if:

R1 it discovers all (or almost all) the crosscutting concerns
that exist in the analyzed system;

R2 all the component parts of a crosscutting concern are
grouped together;

R3 in such a group there are no parts from other (cross-
cutting) concerns;

R4 the user has to manually analyze as little as possible
of the system source code to discover all crosscutting
concerns and the component parts of each crosscutting
concern.

The first requirement (R1) is self-explanatory. If the results
of the technique are later used for refactoring into aspects,
then the user would like to know all the parts that need to be
modified (R2). If R2 is satisfied and this group also contains
parts from other concerns, and then some refactorings are
applied, the behaviour of the new system might change. The
third requirement restricts the number of parts that might
be modified. The last requirement(R4) is to reduce the time
the user needs to analyze the system source code and to
ease the integration of the technique with automated AO
refactoring tools.

In the clustering-based aspect mining techniques proposed
so far ([2], [7], [9]) a software system is considered as a set
of methods that are grouped in classes (clusters) using clus-
tering techniques ([3]). A part of these clusters are then
analyzed to discover crosscutting concerns.

So far, there were not reported in the literature, quality
measures for evaluating the results of clustering based aspect
mining techniques. The main contribution of this paper is
the definition of a set of new quality measures, in order to
evaluate the time required to manually analyze the results
obtained by clustering based aspect mining techniques.

The paper is structured as follows. In Section 2 we present
the context on which the quality measures are defined. The
new quality measures and a small example on how to com-
pute them are presented in Section 3. Section 4 reports
some experimental results and Section 5 presents some con-
clusions and further work.

2. THEORETICAL MODEL
Let M = {m1, m2, ..., mn} be the software system, where
mi, 1 ≤ i ≤ n is a method of the system. We denote by n
(|M |) the number of methods in the system.

As all existing clustering based aspect mining techniques, we
consider in this model the method as the smallest quantity
of a crosscutting concern.

Consequently, we consider a crosscutting concern as a set

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 13

of methods C = {c1, c2, ..., ccn}, methods that implement
this concern. The number of methods in the crosscutting
concern C is cn = |C|. Let CCC = {C1, C2, ..., Cq} be the
set of all crosscutting concerns that exist in the system M .
The number of crosscutting concerns in the system M is
q = |CCC|. We mention that in our approach we consider
the set CCC known a-priori, meaning that we are interested
only in evaluating the results, not in the way the crosscutting

concerns were discovered. Let NCCC = M − (

q

i=1

Ci) be

the set of methods from the system M , methods that do
not implement any crosscutting concern.

Definition 1. (Partition of a system M .)
The set K = {K1, K2, ..., Kp} is called a partition of the
system M iff 1 ≤ p ≤ n, Ki ⊆ M, Ki �= ∅, ∀i ∈ {1, 2, ..., p},

M =

p

i=1

Ki and Kj ∩Ki = ∅, ∀i, j ∈ {1, 2, ..., p}, i �= j.

In the following we will refer to Ki as the i-th cluster of K
and to K as a set of clusters.

Definition 2. (Optimal partition of a system M .)
Being given a partition K = {K1, K2, ..., Kp} of the system
M , K is called an optimal partition of the system M with
respect to the set CCC = {C1, C2, ..., Cq} of all crosscutting
concerns, iff:
(1) p > q
(2) there exists a permutation {σ(1), σ(2), ..., σ(q)} of the
set {1,2, ..., q} such that Ki = Cσ(i), ∀i ∈ {1, 2, ..., q}.

Intuitively, K is an optimal partition of the system M if all
the methods implementing a crosscuting concern Ci (∀ 1 ≤
i ≤ q) are in the same cluster Kj (j ∈ {1, 2, ..., p}) and they
are the only methods in Kj .

Remark 1. If condition (2) in Definition 2 is replaced with
a less restrictive one:
(2) there exists a permutation {σ(1), σ(2), ..., σ(q)} of the
set {1,2, ..., q} such that Cσ(i) ⊆ Ki, ∀i ∈ {1, 2, ..., q},
then we will call such a partition a “good” partition,
meaning that for each crosscutting concern, all the meth-
ods implementing it are in the same cluster.

3. QUALITY MEASURES
In the following, we propose a set of new quality measures
for evaluating the results of clustering based aspect mining
techniques.

The first four measures (DISP , DIV , PAM and PREC)
are original quality measures proposed in order to evaluate
the results from the aspect mining point of view. The last
measure (SSE) is a well-known measure for evaluating the
results from the clustering point of view [3]. We intend to
find a correlation between the results from the aspect mining
and clustering points of view.

We will use the notations described in Section 2. As the
result of any clustering technique is a partition K of the
system M and as the result of most aspect mining techniques
is a set of methods used to implement crosscutting concerns
from the set CCC, all the quality measures will be defined

with respect to K and CCC.

In the following definitions, we will denote by |A| the number
of elements (cardinality) of the set A.

3.1 Definitions
Definition 3. (Dispersion of crosscutting concerns -
DISP)
The dispersion of the set CCC in the partition K, denoted
by DISP (CCC,K), is defined as

DISP (CCC,K) =
1

|CCC|

|CCC|

i=1

disp(Ci,K).

disp(C,K) is the dispersion of a crosscutting concern C and
is defined as:

disp(C,K) =
1

|DC |
,

where DC = {k|k ∈ K and k ∩ C �= ∅}. DC is the set of
clusters that contain methods which are also in C.

In our view, DISP (CCC,K) defines the dispersion degree of
crosscutting concerns in clusters. For a crosscutting concern
C, disp(C,K) indicates the number of clusters that contain
methods belonging to C.

Based on Definition 3, DISP (CCC,K) ∈ (0, 1]. If disp(C,K) =
1, for each C ∈ CCC, meaning that all the methods of C
are in the same cluster, then DISP (CCC,K) = 1, otherwise
DISP (CCC,K) < 1.

Larger values for DISP indicate better partitions with re-
spect to CCC, meaning that DISP has to be maximized.

Definition 4. (Diversity of a partition - DIV)
The diversity of a partition K with respect to the set CCC,
denoted by DIV (CCC,K), is defined as

DIV (CCC,K) =
1

|K|

|K|

i=1

div(CCC, Ki).

div(CCC, k) is the diversity of a cluster k ∈ K and is defined
as:

div(CCC, k) =
1

|Vk|+ τ(k)

where Vk = {C|C ∈ CCC and k ∩ C �= ∅} is the set of
crosscutting concerns that have methods in k,

and τ(k) =
1 if k ∩NCCC �= ∅
0 if k ∩NCCC = ∅ .

τ(k) is 1 if the cluster k contains methods that do not im-
plement any crosscutting concern, and 0 otherwise.

DIV (CCC,K) defines the degree to which each cluster con-
tains methods from different crosscutting concerns or meth-
ods from other concerns.

Based on Definition 4, DIV (CCC,K) ∈ (0, 1]. If for each
k ∈ K, div(CCC, k) is 1, meaning that each cluster con-
tains methods from a single crosscutting concern and no

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

14 TUD-SERG-2006-012

methods from NCCC, or only methods from NCCC, then
DIV (CCC,K) = 1, otherwise DIV (CCC,K) < 1.

Larger values for DIV indicate better partitions with re-
spect to CCC, meaning that DIV has to be maximized.

Definition 5. (Percentage of analyzed methods for a
partition - PAM)
Let us consider that the partition K is analyzed in the fol-
lowing order: K1, K2, ..., Kp.

The percentage of analyzed methods for a partition K with
respect to the set CCC, denoted by PAM(CCC,K), is de-
fined as:

PAM(CCC,K) =
1

|CCC|

|CCC|

i=1

pam(Ci,K).

pam(C,K) is the minimum percentage of the methods that
need to be analyzed in the partition K in order to discover
the crosscutting concern C, and is defined as:

pam(C,K) =
1

|M |

i

j=1

|Kj |

where i = min{t | 1 ≤ t ≤ p and Kt ∩ C �= ∅} is the index
of the first cluster in the partition K that contains methods
from C.

PAM(CCC,K) defines the percentage of the minimum num-
ber of methods that need to be analyzed in the partition in
order to discover all crosscutting concern that are in the
system M . We consider that a crosscutting concern was
discovered the first time a method that implements it was
analyzed.

Based on Definition 5, PAM(CCC,K) ∈ (0, 1]. If each
C ∈ CCC has one method in the first analyzed cluster K1

of the partition K, then PAM(CCC,K) = |K1|
|M| , otherwise

PAM(CCC,K) > |K1|
|M| .

Smaller values for PAM indicate short time for analysis,
meaning that PAM has to be minimized.

Definition 6. (Precision of a clustering based aspect
mining technique - PREC)
Let T be a clustering based aspect mining technique.

The precision of T with respect to a partition K and the set
CCC, denoted by PREC(CCC,K, T), is defined as:

PREC(CCC,K, T) =
1

|CCC|

|CCC|

i=1

prec(Ci,K, T).

prec(C,K, T) =
1 if C was discovered by T
0 otherwise

is the pre-

cision of T with respect to the crosscutting concern C.

PREC(CCC,K, T) defines the percentage of crosscutting
concerns that are discovered by T . In all clustering based
aspect mining techniques, only a part of the clusters are
analyzed, meaning that some crosscutting concerns may be
missed.

Based on Definition 6, PREC(CCC,K, T) ∈ [0, 1]. If all
crosscutting concerns are discovered by T , then PREC(CCC,
K, T) = 1, otherwise PREC(CCC,K, T) < 1.

Larger values for PREC indicate better partitions with re-
spect to CCC, meaning that PREC has to be maximized.

Definition 7. (Squared sum error of a partition - SSE)
The squared sum error of a partition K, denoted by SSE(K),
is defined as:

SSE(K) =

p

j=1

nj

i=1

d2(mj
i , fj)

where the cluster Kj is a set of methods {mj
1, m

j
2, ..., m

j
nj
}

and fj is the centroid (mean) of Kj .

From the point of view of a clustering technique, smaller val-
ues for SSE indicate better partitions, meaning that SSE
has to be minimized.

Note. We have to make the following remarks:

• It can be proved that K is an optimal partition with
respect to CCC iff DISP (CCC,K) = 1 and
DIV (CCC,K) = 1.

• An ideal partition is an optimal partition with PREC
equal to 1 and a minimum value for PAM .

• An “almost ideal” partition is a “good” partition
(Remark 1), with PREC equal to 1 and a minimum
value for PAM .

• In order to decide if a clustering technique is efficient
in aspect mining, we would expect that a good par-
tition from the clustering point of view (considering
the SSE measure) would also be adequate from the
aspect mining point of view (considering the DISP ,
DIV , PAM and PREC measures).

3.2 Example
In the following, a small example showing how to compute
the measures DISP , DIV and PAM , is presented. PREC
and SSE are not discussed because they depend on the clus-
tering based aspect mining technique or on the clustering
technique used.

Let M = {m1, m2, ..., m15} be a software system with 15
methods, and let C1 = {m2, m3} and C2 = {m1, m4, m8}
be the crosscutting concerns that exist in the system M
(CCC = {C1, C2}).

Let K = {K1, K2, K3, K4, K5} be a partition of the system
M , where:

K1 = {m2}
K2 = {m3, m7, m8, m9}
K3 = {m1, m4, m5, m12}
K4 = {m6, m10, m13}
K5 = {m11, m14, m15}

DISP
Using Definition 3, we have to compute disp(C,K) for each
C ∈ CCC. The obtained values are shown below.

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 15

Crosscutting concern The set D disp
C1 {K1, K2} 0.5
C2 {K2, K3} 0.5

Based on the definition, DISP (CCC,K) = 0.5.

DIV
Using Definition 4, we have to compute div(CCC, k) for each
k ∈ K. The obtained values are shown below.

Cluster The set V τ div
K1 {C1} 0 1
K2 {C1, C2} 1 0.33
K3 {C2} 1 0.5
K4 ∅ 1 1
K5 ∅ 1 1

Based on the definition, DIV (CCC,K) = 0.76.

PAM
Using Definition 5, we have to compute pam(C,K) for each
C ∈ CCC. For that we have to determine the index of the
first analyzed cluster that contains method(s) from C. The
obtained values are shown below.

Crosscutting concern # first cluster pam
C1 1 0.06
C2 2 0.33

Based on the definition, PAM(CCC,K) = 0.19.

4. EXPERIMENTAL RESULTS
In [7] we have proposed a clustering based aspect mining
approach that uses k-means and hierarchical agglomerative
clustering techniques [3]. In order to group the methods in
clusters, we have used the vector space model approach and
we have defined two models(M1, M2). We also reported the
obtained results in two case studies: Carla Laffra’s imple-
mentation of Dijsktra’s algorithm [5] and JHotDraw version
5.2 [4].

The results obtained using these techniques were evaluated
based on the measures proposed in Section 3.

For lack of space we present in Table 1 the values of the
quality measures of the results obtained when only k-means
was used.

Case study Model DISP DIV PAM PREC SSE
Laffra M1 0.75 0.79 0.06 1 3.39
Laffra M2 0.75 0.89 0.04 1 4.27

JHotDraw M1 0.43 0.82 0.07 0.87 11.96
JHotDraw M2 0.42 0.95 0.06 0.87 55.26

Table 1: The values of the quality measures for the
two case studies.

After analyzing the obtained results, we have noticed the
following:

• In almost all cases there is a correlation between good
partitions from the clustering point of view and from
the aspect mining point of view.

• The values of DISP , DIV and PREC indicate that
the vector space models used in our approach should
be improved.

5. CONCLUSIONS AND FURTHER WORK
In this paper we have proposed a set of new quality mea-
sures for evaluating the results of clustering based aspect
mining techniques. We have computed these measures in
order to determine the quality of the results obtained by
applying the techniques we have proposed in [7]. By ana-
lyzing the results, we have identified the possible drawbacks
of our clustering approach. The results also indicate that
clustering techniques, properly applied, are useful in aspect
mining.

Further work can be done in the following directions:

• To evaluate other clustering based aspect mining tech-
niques using the proposed measures.

• To generalize these measures for other aspect mining
techniques (like [1], [6], [10]).

• To identify other possible measures for evaluating clus-
tering approaches in aspect mining.

• To improve our approach ([7]) using the quality mea-
sures described in this paper.

6. REFERENCES
[1] S. Breu and J. Krinke. Aspect Mining Using Event

Traces. In Proc. International Conference on
Automated Software Engineering (ASE), pages
310–315, 2004.

[2] L. He and H. Bai. Aspect Mining using Clustering and
Association Rule Method. International Journal of
Computer Science and Network Security,
6(2A):247–251, February 2006.

[3] A. Jain, M. N. Murty, and P. Flynn. Data clustering:
A review. ACM Computing Surveys, 31(3):264–323,
1999.

[4] JHotDraw Project.
http://sourceforge.net/projects/jhotdraw.

[5] C. Laffra. Dijkstra’s Shortest Path Algorithm.
http://carbon.cudenver.edu/ hgreenbe/courses/dijkstra/
DijkstraApplet.html.

[6] M. Marin, A. van, Deursen, and L. Moonen.
Identifying Aspects Using Fan-in Analysis. In
Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE2004), pages 132–141.
IEEE Computer Society, 2004.

[7] G. S. Moldovan and G. Serban. Aspect Mining using a
Vector-Space Model Based Clustering Approach. In
Proceedings of Linking Aspect Technology and
Evolution Workshop(LATE 2006), March 2006.

[8] O. A. M. Morales. Aspect Mining Using Clone
Detection. Master’s thesis, Delft University of
Technology, The Netherlands, August 2004.

[9] D. Shepherd and L. Pollock. Interfaces, Aspects, and
Views. In Proceedings of Linking Aspect Technology
and Evolution Workshop(LATE 2005), March 2005.

[10] P. Tonella and M. Ceccato. Aspect Mining through
the Formal Concept Analysis of Execution Traces. In
Proceedings of the IEEE Eleventh Working Conference
on Reverse Engineering (WCRE 2004), pages
112–121, November 2004.

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

16 TUD-SERG-2006-012

Aspect Mining for Aspect Refactoring: An Experience
Report

Maximilian Störzer, Uli Eibauer and Stefan Schoeffmann
Universität Passau, Passau, Germany

{stoerzer, eibauer}@fmi.uni-passau.de, stefan.schoeffmann@sdm.de

ABSTRACT
Aspect-Oriented programming currently suffers from one increas-
ingly important problem–while there is an abundance of aspect-
oriented languages and systems, only few example programs are
publicly available. To lighten this situation, we set out to refactor
crosscutting concerns into aspects for Open Source Java systems.

Aspect Mining (AM) is an important enabler of Aspect-Oriented
Refactoring (AOR), and this paper reports about our preliminary
experience with automatic and manual aspect refactoring. From
this experience we formulate interesting research questions for fur-
ther research.

1. MOTIVATION
Aspect-Oriented Programming has been proposed to address lim-

itations in current programming paradigms called the tyranny of the
dominant decomposition in literature [8]. While there is an abun-
dance of available languages, currently only few non-trivial exam-
ples programs are publicly available.

To address this lack of code we started two projects related
to aspect-oriented refactoring in the spirit of related work on
(A)JHotDraw [9, 1]. Our projects were originally independent
of each other: first, we designed an automatic refactoring tool[7]
for Eclipse based on fully automatic aspect mining1 using Dy-
nAMiT[3] and conducted three case studies with this tool. Sec-
ond we are currently working on a project targeted to refactor the
open source Java application HSQLDB (http://hsqldb.org/) using
a semantics-guided approach. Both our tool and the refactoring
project use AspectJ as target language.

The purpose of our refactoring tool was to easily generate As-
pectJ programs out of Open Source Java applications. However,
this goal turned out to be very ambitious. Nevertheless we learned
some important lessons for usability of aspect mining results for
automatic refactoring which we report in this paper.

HSQLDB is a medium-size open source project (65 kLoC), im-
plementing an relational database system. HSQLDB comes with a
JUnit test suite which we use to guarantee functional equivalence
of our system. Clearly the first step for an aspect-oriented refac-
toring is to find relevant crosscutting concerns which actually can
be refactored as aspects. We used manual semantics-guided code
inspection supported by FEAT[6] to find relevant crosscutting code.

As we originally did not intend to use these two projects to eval-
uate aspect mining techniques, we did not perform our case studies
using the same projects. However, we argue that the basic obser-
vations and results we report here are inherent to the underlying

1DynAMiT analyzes call relations without human interaction to
derive candidates for crosscutting concerns. We use the term auto-
matic aspect mining for comparable non-interactive techniques.

techniques—automatic versus manual aspect refactoring—and are
thus an interesting contribution, even if we agree that a more thor-
ough case study on one subject to verify these results is needed.

The contributions of this paper are twofold. First we report
our experience from two aspect-refactoring projects–one conducted
with automatic, one with manual aspect mining–and derive inter-
esting research questions for aspect mining tools from a compari-
son of this experience. Second, as for HSQLDB both the Java and
the AspectJ version will be available once our project is finished,
our effort will also result in an interesting evaluation test case for
(new) aspect mining tools. Comparing results of AM tools to the
aspects we found by manually analyzing the system might be an
interesting benchmark.

2. AUTOMATIC AOR WITH DYNAMIT
DynAMiT is an automatic aspect mining tool based on dynamic

program analysis. The tool evaluates traced call sequences to dis-
cover repeated patterns, which are then–if certain thresholds in rep-
etition are reached–reported as aspect candidates.

DynAMiT discovers candidates for before and after-advice
for call and execution joinpoints. For example DynAMiT
discovers that each time f() is called, g() is called immediately
after and then suggests that the call to g() should be embedded in
an after-advice to the call to f() or, symmetrically, the call to
f() should be embedded in a before-advice to the call to g().

Our automatic aspect refactoring tool uses DynAMiT to find as-
pect candidates, analyzes its results to figure out if a refactoring is
feasible, and, if so, allows to automatically refactor aspect candi-
dates. For our analysis we check if candidates identified by DynA-
MiT can be moved to an aspect (using AspectJ) without changing
program semantics. Therefore, context at the joinpoint has to be
available for AspectJ, and values (after the joinpoint and attached
advice have been executed in the refactored program version) must
be equal to the original values. To implement our analysis, we built
our system on the Java refactoring framework available in Eclipse,
and used human interaction if we could not derive a result.

We conducted three case studies to evaluate our tool, one based
on the source code of DynAMiT itself, one by analyzing the
Jakarta Commons Codecs project, and finally one by analyzing the
ANTLR parser generator framework. For each system, we ana-
lyzed if it is possible to semi-automatically refactor aspects from
the automatically derived results presented by DynAMiT.

We soon discovered that DynAMiT–as a dynamic analysis tool–
has two important disadvantage for automatic refactoring. Re-
peated call sequences are analyzed without any structural informa-
tion about the underlying calls. This means that DynAMiT also
reports repeated patterns if a call is governed by an if-statement
or part of a loop, i.e. the found patterns strongly depend on the

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 17

Case Study DynAMiT CommonCodecs ANTLR
Algorithm Crosscutting Basic Crosscutting Basic Crosscutting Basic

Refactorizability
√

? × √
? × √

? × √
? × √

? × √
? ×

before call 0 0 2 0 0 3 0 0 0 0 0 2 2 0 6 1 0 43
after call 0 0 1 0 0 4 0 0 0 0 0 3 0 0 11 0 1 49

before execution 0 0 2 1 0 4 2 0 0 4 0 2 4 1 5 22 1 44
after execution 0 1 2 1 2 3 0 2 0 1 4 0 3 7 16 12 9 118

Coverage (statement) 56,9 % 96,8 % 25,7 %√
Semantics Preserving Refactoring feasible, × Refactoring failed due to Dependences, ? Semantical Change depends on Method Call

Table 1: Some Numbers: Candidates discovered by DynAMiT and their Refactorizability using our Tool

test suite used to generate the traces. If a insufficient test suite is
used2, extraction in an aspect is only possible and meaningful in
the traces cases, and will produce different system semantics oth-
erwise. This could be prevented if complicated pointcut expres-
sions using the if-designator are generated to create functionally
equivalent aspects. Consequently analysis of control dependences
is important to check if an aspect candidate can be automatically
refactored. However, we refrained from extracting such aspect can-
didates as such complex conditions more likely are an indicator for
false positives (no quantified statement).

Second, method calls are not the only statements. We often expe-
rienced situations, where several assignments preceded the first call
in a method. In these cases, the first call can only be extracted in a
before execution advice if it is guaranteed that the joinpoint
context is not modified by the above assignments, i.e. program se-
mantics have to be equivalent if the call is moved to the method
entry (code motion problem). That means data-flow constraints
can considerably restrict refactorizability of crosscutting code.

Third, necessary joinpoint context sometimes is simply not avail-
able as no respective joinpoint exists in the target language (e.g. lo-
cal variables or literals used in a call we want to extract in an aspect
are not available for AspectJ). This means that language limitations
also hinder aspect-oriented refactoring.

Please note that we did not examine the results of DynAMiT for
semantical soundness, but only examined if they allow automatic
refactoring resulting in a semantically equivalent program. For our
case studies, most results had to be discarded. Table 1 gives some
details on the case studies we performed. Consider for example the
first column group labeled DynAMiT. Here, we got 8 aspect candi-
dates in total when using the more strict “Crosscutting” algorithm
(some of them symmetric). From these, only 1 candidate could be
semi-automatically refactored. Our system has no pointer-analysis
to safely approximate the effects of method calls, and thus does
not allow us to automatically decide about refactorizability in all
cases. We thus ask the user in such cases, using the refactoring
view known from the Eclipse Java refactorings. These cases are
counted in the ’?’ column. For the other 7 cases our tool found di-
rect control and data flow dependences or was not able to access the
context, all of which prevented refactoring. Note that DynAMiT is
based on dynamic analysis, and thus the test coverage of the suite
the analysis is based on is a very important issue in this context.
The last line thus reports the coverage of the test suites we used for
our case studies.

The Commons Codes system produced similar results. For
ANTLR we got 55 advice candidates, and could only refactor 9
of these results. However, in 8 other cases a refactoring might have
been possible, although our limited analysis could not decide this

2Note that for semantics-preservation, even a statement coverage
of 100 % is not sufficient.

automatically. To summarize the above observation, control and
data flow properties as well as language limitations are very impor-
tant to decide if automatic refactoring of a crosscutting concern is
possible. Recent work [2] of the author of DynAMiT also recog-
nized these problems and added additional static analysis support.

To connect this observation with aspect-mining tools used for
refactoring, analyzing and reporting data and control dependences
can be used to (i) reduce the false positive rate and (ii) give ad-
ditional information useful for programmers when they actually
refactor code. Hence, analyzing refactorizability of candidates
could be an additional criterion for the quality of an aspect-mining
tool and might serve to give additional feedback to the user.

A second observation is that automatic syntax-based aspect min-
ing tends to produce many false positives. Such tools identify cross-
cutting code–but crosscutting code not necessarily is due to a cross-
cutting concern. Crosscutting code is an indication for a crosscut-
ting concern, but not a sufficient criterion; the decisive criterion is
the actual semantics of the crosscutting code. Additionally the user
still has to figure out all those identified patterns that actually be-
long to the same concern manually and thus should be encapsulated
in the same aspect. So there is also a mismatch in granularity for
purely syntax-based automatic techniques.

DynAMiT reported several candidates where we could not iden-
tify an semantical concern inducing the crosscutting code. From
our perspective it is very hard if not impossible to distinguish be-
tween “accidentally” crosscutting code and crosscutting code due
to an actual crosscutting concern without additional semantical in-
formation. This seems to be a general restriction of automatic
syntax-based mining approaches.

3. MANUAL AM USING FEAT
Compared to the above study with automatic aspect-mining

based on DynAMiT, we used a semantics-driven manual approach
for HSQLDB. To find aspects here we based our analysis on the list
of ‘standard aspects’ introduced in Laddad’s book “AspectJ in Ac-
tion” [5] and then used FEAT to discover relevant code locations.
When becoming familiar with the source code we also found some
application specific aspects, for example trigger firing or checking
constraints before certain operations are performed.

To support manual system analysis, FEAT proved to be very ef-
fective. FEAT is a user guided cross referencing tool and allows to
quickly discover code locations referencing some method or field.
What we basically did–slightly simplified–was to discover poten-
tially interesting classes–like e.g. Tracing or Cache–and then
to use FEAT to discover where these classes are referenced. These
references then have to be eliminated and replaced with an aspect
to conduct the aspect-oriented refactoring.

We have finished the aspect mining phase and begun to actu-
ally implement the aspect-oriented refactoring. Our observations

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

18 TUD-SERG-2006-012

reported here are thus based on the aspects we identified, but we
can not yet report if the aspect-oriented refactoring will actually be
successful3 in all cases. Refactoring in this case is manual, not au-
tomatic. Thus we are not as restricted in the ways we can refactor
a system as in the above tool project.

For our analysis we manually discovered the starting point for
a search, but this manual analysis was guided by our aspect cata-
log. We then used FEAT to find the locations where a crosscutting
concern is tangled with other modules. Thus instead of using syn-
tactical or low level properties of the system, we used a semantical
approach. We started with a certain concern we expected to find in
the system in mind, and tried to retrieve the code locations for its
implementation. Compared to the above automatic study per def-
inition no semantically questionable aspect candidates can occur.
While this reduces the false positive rate, a considerable amount
of manual code inspection and analysis (although supported by
FEAT) was necessary to fulfill this task.

However, even for these manually identified crosscutting con-
cerns, refactoring in general is not straightforward. Some of the
problems we encountered are similar to the problems we discov-
ered in the DynAMiT case study. FEAT also discovers calls to be
extracted within a loop, or governed by an if-statement. Although
this crosscutting code results from an actual crosscutting concern,
refactoring these calls is nevertheless problematic. One strategy we
use in this case is to pre-process the code (i.e. extract some code in
methods if this is adequate) to allow a subsequent aspect-oriented
refactoring. From a software engineering point of view, this cannot
be a general solution as it easily jeopardizes system structure.

Our semantic catalog-guided approach was successful in discov-
ering many standard aspects in the HSQLDB code base, including
Tracing, Caching and Authentication/Authorization. To summa-
rize, we think that augmenting aspect-mining tools with semantical
information might be a fruitful approach for aspect mining. For
example one might identify a set of classes related to a semanti-
cal concern–like e.g. a Logger class–and then demand that all
reported candidates have to be related to one of these classes.

We will also illustrate these observations—both for aspect min-
ing and refactoring—with an example. For HSQLDB, we identified
the tracing concern as a crosscutting concern and its implementing
crosscutting code. Tracing has been considered a standard cross-
cutting concern since the invention of AOP, so the aspect mining
for this specific concern was relatively easy and straightforward
following the strategy described above. Refactoring this concern
and extracting its code into an aspect however was far from trivial.
The problem is that custom tracing in an existing system cannot be
formulated with a quantified statement like “On each method entry,
log the method name and the parameter values.”. The implemen-
tation is rather considerably more customized for each method to
capture the values of interest within this method—including local
variables and their changes e.g. within loops. Such customized
tracing policies are very hard to capture in an aspect. We did this
as an example for some classes, and to succeed we had to: create
a common trace format (i.e. the system now produces a different
output!), refactor loop bodies to helper methods (arranged pattern
problem!), or “promote” local variables to fields (locality?). To
make a long story short: the resulting implementation is—from a
software engineering point-of-view—at least questionable.

However there are also positive examples. We identified pool-
ing, also a standard crosscutting concern according to Laddad, as
an aspect that can be refactored easily without the problems men-
tioned above. The source of HSQLDB contains a class Value-

3I.e. if it is possible to refactor an identified concern or if the con-
cern is too tightly coupled thus preventing refactoring.

Pool which contains relevant pooling logic. When an Integer,
a Long, String, Double, Date, or BigDecimal-object is
needed, the corresponding access method in the pool is explicitly
invoked. Calls to these accessors occured at approximately 250 lo-
cations in the source code. As a result of these scattered calls we
observed a high coupling between the classes containing these calls
and class ValuePool.

For refactoring, these explicit calls to the value pool were re-
placed by the corresponding constructor calls (e.g. new Inte-
ger()). We then advised the constructors with around-advice
which invokes the appropriate pool methods without calling pro-
ceed. This approach has several advantages compared to the
purely object-oriented variant: As the pooling aspect is imple-
mented as a separate aspect, the coupling due to the explicit pool
invocations has disappeared (only the pooling aspect knows about
the relation between class ValuePool and the remaining system).
Second, the aspect now can be removed from the core program
without any additional base changes. Finally, the aspect captures
additional 190 code locations that failed to invoke the value pool
before, as we used wildcards for the respective constructors to spec-
ify the pointcuts. To summarize, the aspect-oriented implementa-
tion in this case is clearly superior compared to the original version.

Although not all refactorings were successful, our seman-
tic catalog-guided mining approach was nevertheless very suc-
cessful in discovering many standard aspects in the HSQLDB
code base, including Tracing, Caching, Pooling and Authenti-
cation/Authorization. To summarize, we think that augmenting
aspect-mining tools with semantical information might be a fruitful
approach for aspect mining.

4. LESSONS LEARNED
Most automatic aspect-mining approaches we are aware of

are either based on finding repeated patterns in call se-
quences/traces/etc. or on finding duplicated code.

From our experience, actually refactoring advice candidates
found by such tools has to deal with several important problems.

Control Dependences: Control dependences can easily lead to
false positives, for example if a method call is always triggered in
an available test suite used for analysis, but not necessarily trig-
gered every time. While in some cases candidate code governed by
an if-statement can be refactored to advice using an equivalent if
pointcut designator, this is not true in general. Loops are an even
more important problem.

Data Flow Restrictions: Advice cannot be attached to arbitrary
code positions. If code should be moved to an aspect, it is possible
that this code has to be moved e.g. to the beginning or the end of a
method. This is of course not possible in general.

Arranged Pattern Problem: The code to be refactored in gen-
eral uses some values from its context. These values thus always
have to be accessible for the aspect language in order to allow a
refactoring. Especially for AspectJ this is often problematic.

It is tempting to argue that any refactoring is possible, if we only
use enough purely object-oriented refactorings to remove problem-
atic control and data-flow dependences and make necessary join-
point context available to our aspect language. However, this will
result in another problem called the arranged pattern problem in
[4]. Code is transformed only to allow advice application, but not
to create well-defined, easy to understand, reusable, and evolvable
methods. As a consequence, software quality degrades. This might
be a language problem rather than an aspect mining issue, however
suggesting such refactorings is problematic nonetheless.

Semantics vs. Syntactical Properties: The most important
question: Did we really find a crosscutting concern? Even if

SERG Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006)

TUD-SERG-2006-012 19

syntactically a tool can derive an aspect candidate, is this candi-
date also semantically a valid concern? The use of utility classes
is a good example. In general functionality of such classes is
called from several parts of the system, however the modularity
of the system is fine and nobody would argue that references to
java.lang.Math show a crosscutting concern.

When looking at aspect mining results it is tempting to dismiss
non-refactorizable candidates as false positives, although this is not
true in general. However, if a crosscutting concern has an imple-
mentation too tightly coupled with the system, refactoring may not
be a valid option anyway.

So is a purely semantic approach as we used for HSQLDB the
method of choice? This method clearly has the advantage that we
do not have to deal with many false positives. However, refactor-
ing the code to advice faces the same problems as the automatic
syntax-based aspect mining tools before. This justifies that simply
removing non-refactorizable candidates from a result set is not a
valid option, i.e. ’refactorizability’ is no criterion to rule out candi-
dates—but it might help to order them by relevance for refactoring.

Semantic-based aspect mining also has another important dis-
advantage: We started our analysis based on the standard aspects
catalog provided by Laddad. By only following this technique we
will per definition only find aspects we know about–but never new
ones. This is clearly a strength of syntax-based mining tools.

As a challenge to the aspect-mining community it might be in-
teresting to create aspect mining tools which help programmers
to identify standard crosscutting concerns in a given system. Of
course such a tool could not be automatic, but compared to FEAT
more automation might considerably help programmers trying to
refactor standard crosscutting concerns. The main improvement we
suggest is to also use semantical information to guide automatic
tools when retrieving aspect candidates. Not all repeated method
call sequences are advice candidates, but maybe those referenc-
ing a certain class are. Not each piece of duplicated code is a un-
refactored advice, but maybe code referencing certain fields. This
approach would combine automatic support from automatic aspect
mining with the semantic guidance useful to avoid false positives.

While such a tool is interesting for a practitioner in the field try-
ing to refactor an existing application based on a catalog of known
aspects, it might also be interesting to develop tools designed to
identify new aspects. Theses tools however are designed for re-
searchers, who set out to better understand the nature of aspects in
general, and also to extend the aspect catalog.

For evaluation of aspect-mining, both suggested tool categories
have a considerably different profile and need different evaluation
strategies. Tools targeted to discover standard aspects need appro-
priate systems where a refactored aspect-oriented and an original
version exist. Based on these two versions, quality of the results
is accessible. Evaluating tools designed to discover new aspects is
considerably harder. The above strategy is not useful in this case.

5. CONCLUSION
In this paper we discussed the results of a fully automatic aspect

mining tool in contrast to a manual aspect mining approach.
From our experience many aspect candidates proposed by the

automatic aspect mining tool are not useful for an automatic refac-
toring, as language restriction, i.e. un-accessible context, control
dependences, i.e. calls to-be-extracted which are embedded in
loops/governed by if-statements, or data-dependences, i.e. modi-
fications of parameter values prior to calls to-be-extracted, prevent
refactoring. Reviewing these problems for particular cases often
also raises doubt if the corresponding code is actually part of the
implementation of a crosscutting concern.

Our second study based on manual aspect mining was suc-
cessful to discover standard aspects, but failed to reveal any
new/application specific aspects. This is a general weakness of this
approach. While here per definition no false positives occur (either
a valid concern can be found or not), refactoring the found cross-
cutting code might not be recommendable due to a high coupling
with the base system.

To improve result quality for aspect mining tools, we suggest to
build two kinds of tools: (i) aspect mining tools guided by a catalog
of well-known crosscutting concerns to assist software engineers
in actually refactoring existing systems and (ii) less restricted au-
tomatic mining tools designed to help researchers find completely
new aspects. For the first category of tools refactorizability might
be a good criterion to prioritize mining results.

Using projects like AJHotDraw and HSQLDB as case studies
(once our project is finished) seems to be a good way to evaluate
category (i) aspect-mining tools. We encourage researchers to use
their tools to also refactor other projects as case studies and make
the resulting aspect-oriented systems publicly available.

Acknowledgments
Thanks to the anonymous reviewers and Daniel Wasserrab for their
valuable and interesting comments on this paper.

6. REFERENCES
[1] Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and

Paolo Tonella. Automated Refactoring of Object Oriented Code into
aspects. In ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages 27–36,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] Silvia Breu. Extending Dynamic Aspect Mining with Static
Information. In 5th International Workshop on Source Code Analysis
and Manipulation (SCAM 2005), Budapest, Hungary, October 2005.

[3] Silvia Breu and Jens Krinke. Aspect Mining Using Event Traces. In
19th International Conference on Automated Software Engineering
(ASE 2004), pages 310–315, September 2004.

[4] Kris Gybels and Johan Brichau. Arranging language features for more
robust pattern-based crosscuts. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development,
pages 60–69, New York, NY, USA, 2003. ACM Press.

[5] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT, USA, 2003.

[6] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and
describing concerns using structural program dependencies. In ICSE
’02: Proceedings of the 24th International Conference on Software
Engineering, pages 406–416, New York, NY, USA, 2002. ACM Press.

[7] Stefan Schöffmann. Semi-automatisches Aspect
Refactoring–Tool-Entwicklung und Fallstudie auf Basis bestehender
Aspect Mining Tools. Master’s thesis, Universität Passau, Innstraße
32, 94032 Passau, Germany, Dezember 2004.

[8] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton.
N degrees of separation: multi-dimensional separation of concerns. In
ICSE ’99: Proceedings of the 21st international conference on
Software engineering, pages 107–119, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

[9] Arie van Deursen, Marius Martin, and Leon Moonen. AJHotDraw: A
showcase for refactoring to aspects. In In Proceedings AOSD
Workshop on Linking Aspect Technology and Evolution, 2005.

Workshop Proceedings: Towards Evaluation of Aspect Mining (TEAM 2006) SERG

20 TUD-SERG-2006-012

TUD-SERG-2006-012
ISSN 1872-5392 SERG

	Introduction
	Workshop Background
	Motivation, Topics, and Goals
	Organizers
	Program Committee

	Technical Papers
	Evaluating EA-Miner: Are Early Aspect Mining Techniques Effective? Ruzanna Chitchyan, Américo Sampaio, Awais Rashid and Paul Rayson
	Automatic Mining Of Context Passing In Java Programs Linda M. Seiter
	Quality-Driven Conformance Checking in Product Line Architectures Grigoreta Sofia Moldovan and Gabriela Serban
	Aspect Mining for Aspect Refactoring: An Experience Report Maximilian Störzer, Uli Eibauer and Stefan Schoeffmann

