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Introduction 1
“It was only viewing, you see” – Gladia in “The Naked Sun” by Isaac Asimov.

In the science fiction novel “The Naked Sun”[4], Isaac Asimov described a futuristic
society where people almost never saw each other, rather ‘viewed’ each other remotely
through holographic ‘trimentionals’. This novel was first published in 1957. In the
present day, new viewing technologies are making the world smaller, making seeing
each other redundant. As can be imagined, a system capable of transporting and
displaying immersive video can have numerous applications. Like many technologies
envisioned in science fiction, telepresence[39] has also found its way into real life. The
term telepresence, coined in 1980 by Marvin Minsky, has come to be used widely in the
context of technologies that enable people to assert their presence at a remote location.

Telepresence doesn’t just consist of being able to ‘view’ each other. Rather, it
has come to encompass situations with varied degrees of ‘presence’. At the moment,
academics and corporations alike have taken numerous initiatives that fall under the
scope of telepresence. For example, video-conferencing rooms where several people can
take part from around the globe, using large screens and microphones while providing
guaranteed quality-of-service; defense personnel using robots for diffusing bombs or for
surveillance. Further, there is ongoing research where the fields of telepresence and
augmented reality are combined. As we achieve more natural telepresence capabilities,
the applications become more immersive, intuitive and most importantly, useful.

Providing a natural experience of telepresence is a multi-faceted problem. Not only
do such systems have to provide natural means to perceive the surroundings, they
also have to allow users to easily influence their surroundings. A remote system that
allows for such capabilities can be thought of as a ‘proxy’ to the user. Lack of any
such capability can be equated to your proxy being blind, mute, deaf or amputated.
Therefore, in order to simulate the experience of “being there”, efforts have to be made
to create such an immersive environment that fully stimulates all our senses. As we shall
see, several academic and commercial initiatives have been taken to make telepresence
more natural and immersive.

The quality requirements of such systems are strained by the fact that, the more
engaging the system is made, the more susceptible the user is to inaccuracies in the
system. To illustrate this, consider recording and playing a song in stereo instead of
mono. This would not only require the use of two microphones and speakers, one needs
to ensure that the two parallel recording and playback systems should have similar
characteristics. Should this not be the case, and say, the sound to one ear is delayed with
respect to the other; the user will experience discomfort. Thus, creating an immersive

1



2 CHAPTER 1. INTRODUCTION

system is not a case of simply extending existing technologies in a plug-and-play manner.
As we shall see, in order to create such a system with existing technology, trade-offs have
to be made to accommodate for the limitations of current technologies.

1.1 Context and Motivation

Binocular vision allows us to see in three dimensions. Each of our eyes sees the same
scene from different angles. The same object is present in these two views at different
positions. These two views are combined in our brain and the resulting process is called
stereopsis. This along with several depth-cues we receive directly or indirectly from our
sense-organs help us create a three dimensional picture of our surroundings, resulting in
depth-perception.

As sight is our leading sense, it follows naturally that any synthetic environment
would not appear natural as long as the system does not excite our vision to its fullest.
However, common display systems strip us of the advantages of our ability to perceive
depth via stereopsis. Displays that present a different view to each of our eyes, i.e.
stereoscopic displays, can unlock this ability. There are many such displays in the
market and many alternative technologies are being researched. Growing interest and
recent developments in technology has made these displays cheaper than before and
much more easily accessible. Like any other nascent technology, there is a wide array
of technologies for achieving the same results. However, the sheer amount of data
and processing requirements for capture, compression and transport of 3D video often
exceeds the capabilities of economically viable embedded systems. Therefore, a simple,
cheap, robust and easily reproducible toolchain for end-to-end stereoscopic remote
vision can be beneficial for academic and industrial communities alike. This thesis is an
effort to research ways to leverage established technologies that can be used to create
end-to-end stereoscopic remote vision systems while satisfying the specific requirements
of our desired application.

Consider a disabled person seated on a wheelchair (Figure 1.1). Currently, electric
wheelchairs allow for easy mobility of aged and disabled people. However, performing
daily tasks can still be a daunting task for people with limited upper body control.
Further, constantly being seated also diminishes their reach. These people often find
themselves in need for support. With the use of modern technologies, it should no longer
be necessary for support personnel to always be present to aid them. Electric wheelchairs
fitted with stereoscopic cameras and robotic arms can allow for remote assistance. Our
target is to create this telepresence system to help improve the quality of life of our aging
population.

1.2 Requirements

The several processes involved in such a toolchain may be coarsely grouped as Capture,
Compression, Transport, Decompression and Display. Designing this an end-to-end so-
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Client at remote-end
(Needs Assistance)

Teleoperator
(Provides Assistance)

Stereoscopic
camera 

Robotic Arm 3D Display

Video

Control

Delay

Delay

Figure 1.1: Schematic of assisted living, an application of this work. The camera and
the robotic arm are together constitute the ‘proxy’.

lution for stereoscopic video requires considering several alternative technologies present
for a multitude of constituent steps in the remote vision toolchain. Each alternative
method for carrying out these steps can have its advantages and disadvantages. There-
fore, in order to select the best suited technologies for an intended system, it is important
to gather a set of requirements for the system as a whole. Although many of these re-
quirements can be resource or technology oriented; the most important requirements are
derived from human-comfort and usability criteria. A brief set of these requirements is
presented here:

1. Immersion: The more immersive a system, more easy it is for the viewer to
believe that they are actually present at another place. Adding depth perception
is one way to provide an immersive experience. This is the principle requirement
of the system. Most of the other requirements are derived from this requirement.

2. Latency: The end-to-end delay between an event occurring before the proxy and
the corresponding display of this event to the user should be minimum. This
is essential for most applications of telepresence. For example, the difficulty of
carrying out a conversation on the phone grows with the delay. This is even more
important in the scenario where the user must manipulate the remote environment.

3. Bandwidth: Lower bandwidth consumption increases the possibility of ubiquitous
use of a remote vision system. It also influences the cost of using such a system.
Further, using lower bandwidth proportionally reduces network induced latency.

4. Video Quality: Higher quality video corresponds to better visibility and hence
usability. Video quality is influenced by compression level, resolution and several
other factors.

5. Jitter: Data traveling over networks can suffer from variations in latency (jitter).
High jitter not only affects user comfort, it can drastically influence the usability
of the system in certain applications.
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6. Left-Right View Correlation: As we shall see, even slight deviation in the left
and right views can have drastic influence on the human comfort levels. This places
stringent requirements on the relative position of the cameras.

7. Size: The proxy has to be an embedded system that can easily fit on a wheelchair.
Small size also means that there is limited processing power available at the proxy.

8. Cost: As with any other system, cost is a major factor for the suitability of the
remote vision system for its various applications. Most importantly, remote assis-
tance can be provided to multiple individuals from a single teleoperation machine.
This many-to-one relationship means that the ‘proxy’ system should be low cost
while a costlier teleoperation system can be used.

In addition to the above requirements, we must also minimize development time while
ensuring reliability.

1.3 Structure of this Report

The rest of this report is organized as follows: Chapter 2 provides some background in-
formation about the different aspects of stereoscopic vision and related areas of research
such as teleoperation and human depth perception. It also provides information from
which more specific requirements can be derived. Chapter 3 discusses design choices
made by comparing the pros and cons of the several alternative technologies involved at
every step of the targeted toolchain. It also covers the architecture and implementation
specific details of the system. Chapter 4 provides a case study of the current solution. It
describes characteristics of the system discovered by carrying out meticulous measure-
ments. Further, it also discusses a user survey conducted to discover impact of variations
in the system’s characteristics upon human operator performance in a teleoperation like
scenario. Finally, Chapter 5 concludes this report and talks about parts of the system
where there is a room for improvement or extension.



Background 2
“Knowledge is indivisible. When people grow wise in one direction, they are sure
to make it easier for themselves to grow wise in other directions as well. On
the other hand, when they split up knowledge, concentrate on their own field, and
scorn and ignore other fields, they grow less wise even in their own field.” – Isaac Asimov

A large part of this thesis has been an effort to bring together the knowledge of
several fields of science. This chapter attempts to collate the information gathered to
better understand the requirements of a stereoscopic remote vision system intended for
telepresence applications and to explore and evaluate the several alternatives to develop
such a system.

2.1 Telepresence and Teleoperation

Telepresence is a term used for technologies that allow people to assert their presence at
a remote location. As mentioned before, the degree of presence is enhanced if more of
our senses are stimulated by the system. Correspondingly, it can be expected that the
usability and effectiveness of the system would increase as well. This idea has inspired
several initiatives to create telepresence systems that allow humans to perceive depth
at the remote location. A large portion of research being carried out in this field aims
to take the current teleconferencing systems to the next level by allowing for depth
perception. Some examples are the NTII[42] and VIRTUE[26] projects.

Teleoperation is the handling of machines from a distance. Remote controlled robots
have been in use in space and military for a long time. More recent applications include
the Da Vinci robot that allows surgeons to perform minimally invasive surgeries with a
very high degree of precision with robotic actuators while looking through a stereoscopic
display. Stereoscopic remote vision systems have been shown to significantly improve
human performance in teleoperation [16, 53, 35, 15]. Figure 2.1 shows the results of
one such study comparing the performance of human operators with stereoscopic and
monoscopic video for a peg-in-hole task. The objective of this thesis is to develop a
stereoscopic remote vision system intended for telepresence applications. The envisioned
application is to provide “assisted living” services to disabled and aged people with the
help of the stereoscopic remote vision system coupled with remotely controlled actuators.

2.1.1 Delay in Teleoperation

Delay is known to significantly degrade human performance in teleoperation tasks.
Research conducted at NASA suggests that: “Delays as small as 1/4 second are

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: Comparison of Stereoscopic and Monoscopic video for teleoperation [16]

noticeable to the operator. Delays as small as 1 second, measurably degrade the
operator’s performance.”[7]. Multiplayer computer gaming is another scenario similar
to teleoperation where delay plays a significant role in the quality of gameplay. In
this context, Smed et. al. write: “Latency affects the users performance nonlinearly:
continuous and fluid control is possible when the latency does not exceed 200 ms, after
which the interaction becomes more observational and cognizant.”[58]. Consequently,
significant effort has gone into mitigating the effects of delay.

A majority of teleoperation systems use special control schemes to compensate for
operator inaccuracy that results from delay. An example of such schemes is compliance
control, where the stiffness of the robot’s actuators is reduced when it hits an object.
A comparative study of these control schemes is presented in [3]. Another method is
to use predictive display where 3D models of the actual robot are superimposed on the
incoming video [6]. Thus, the operator receives immediate feedback about the model’s
action corresponding to his/her control followed by that of the actual robot. Although
these techniques provide significant improvement in operator performance, it remains
important to minimize the actual delay wherever possible. As we shall see, minimiza-
tion of delay has been an important factor in the selection of technologies and their
implementation throughout this project.

2.2 Monoscopic Remote Vision

Before we discuss stereoscopic / 3D vision and related research and technologies, it
is required that we lay some groundwork about monoscopic remote vision. Here, we
describe the several transformations a scene undergoes before it is shown to the viewer.
We shall describe the major steps of Capture, Compression/Decompression, Transport
and Display and the processes involved in these steps that are relevant to our specific
problem and its solution.
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Figure 2.2: Sensitivity of the three types of colour receptors in the human eye[47] 1

2.2.1 Capture

Digital images are essentially two dimensional grids consisting of points that represent
colours. Digital cameras use arrays of sensors to translate an actual scene into a digital
image. Each of these sensors corresponds to a pixel in the resulting image. Typically,
these sensors are sensitive to a large spectrum of light, therefore, in order to obtain a
color image, colour filters are placed before these sensors. Digital cameras can use a
variety of pattens for the color filters, one of the most common patterns is the Bayer
Color Filter Array [45] as shown in Figure 2.3. Since the sensitivity of the human eye
varies with the frequency (i.e. colour) of light [40], the Bayer pattern contains twice as
many pixels for green as red or blue. A camera sensor chip reads the intensity of light
at each of these sensors and converts them into digital values.

At this point, each pixel only contains intensity information corresponding to the
colour of the filter at that location. Therefore, the other two colours must be estimated
at each pixel to make the information complete. This process is called demosaicing [19].
A relatively simple method to perform demosaicing would be to use the average values of
nearby pixels. This demosaicing can be done by means of a simple bilinear interpolation.

For example, the Red, Blue and Green Values at Pixels B2 and G5 can be calculated
as shown in Equations 2.1 through 2.4. A Green value at a Red/Blue pixel is interpolated
as the average of the four nearby green pixels. A Red/Blue value at a Blue/Red location
is the average of the four diagonal Red/Blue pixels. Finally, a Red/Blue value at a Green
pixel is the average of the two nearest red/Blue pixels.

1The curves in Figure 2.2 are normalized to unity. The peak sensitivity of the green-absorbing
receptors (B cones) is approximately 5% higher than the red-absorbing receptors (A cones) and 30 times
greater than the blue-absorbing receptors (C cones) [47]. Please note that this figure is an enhanced
replica.
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G1 R1 G2 R2 G3 R3

B1 G4 B2 G5 B3 G6

G7 R4 G8 R5 G9 R6

B4 G10 B5 G11 B6 G12
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B7 G16 B8 G17 B9 G18

Figure 2.3: The Bayer color filter array

Green(B2) =
G2 +G4 +G5 +G8

4
(2.1)

Red(B2) =
R1 +R2 +R4 +R5

4
(2.2)

Blue(G5) =
B2 +B3

2
(2.3)

Red(G5) =
R2 +R5

2
(2.4)

Demosaicing can lead to false colours and artifacts in the image. Several advanced
demosaicing algorithms are discussed by Gunturk et. al. in [19]. However, most of the
commercially used demosaicing algorithms are closed proprietary information. Battiatio
et. al. [5] have discussed some recent patents in this area.

2.2.2 Compression and Decompression

Compression is a widely used method for reducing the size of audio-visual data, allowing
for reduced storage space and transmission time. The scope of this thesis is limited to
video compression and decompression. Since video codecs are extensions of still image
codecs, we will discuss still image compression first.

2.2.2.1 Still Image Compression: JPEG

A simple image compression algorithm can exploit the fact that large sections of images
are spatially correlated i.e. nearby pixels in a digital image typically contain the same
data. Therefore, it is possible to compress an image with a generic entropy encoding
algorithm. However, this compression can be improved by exploiting the limitations of
human vision. Figure 2.4 shows the response of the human vision system to variation in
light intensity with respect to the angular frequency (measured relative to the observer’s
eye) of these changes. This is indicative of two facts:

1. Humans are less sensitive to finer variations in light intensity.
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Figure 2.4: Human vision sensitivity to changes in luminance and chrominance intensi-
ties2 [47, 48]

2. Humans are less sensitive to colour variation as compared to intensity variation.

The JPEG Still Picture Standard is once such standard for systems that exploit
these characteristics. It has become a de-facto universal method for compress-
ing/decompressing still images for storage and transmission. The JPEG compression
takes advantage of these characteristics by preferentially compromising the quality of
details in an image while retaining its overall structure. The major steps involved
JPEG Compression and Decompression are depicted in Figure 2.5. After a possible
colour space transformation and downsampling, the incoming image is divided into
blocks of 8x8 pixels. This block is transformed into its frequency-domain repre-
sentation with a Discrete Cosine Transform. Once the image is in the frequency
domain, it is possible to individually process its different levels of spatial detail. This
means that we can decide to remove the finer details of the image while retaining
its overall structure. This is done with the help of the quantization process where
different frequencies can be divided by different factors (stored in a quantization ta-
ble). This data is then encoded with an entropy encoding (typically Huffman) algorithm.

The level of desired quality (and therefore the output size) can be altered for example
by using a different quantization table. A quantization table containing larger divisors
would result in less variation in the input data to the entropy encoder, thereby reducing
the output size. A lower quality requirement also means that faster, less accurate al-
gorithms can be used to perform the several steps involved in the compression process.
Further, a smaller image takes less time to transfer over a network. Therefore, a trade-off

2Figure 2.4 is an enhanced replica.



10 CHAPTER 2. BACKGROUND

        
       

      
          

        
        

     

         
         

       
       

      
       
         

        
       

        
        

        
        

      
      

        
       

    
    

        
      

       

       
        

       
        
        

        
      

          
    

         
        

         
      

      

      
      
        

       
     

     
      

        
         

      
       

      

   8x8 blocks

FDCT                 Quantizer  Entropy
  Encoder

     Source                                              Table                          Table                      Compressed

•

Specifications               Image Data SpecificationsImage Data

  
   

                 

 

                                 
                 

     
    

      

      

(a) The JPEG Encoding Process

        
       

      
          

        
        

     

         
         

       
       

      
       
         

        
       

        
        

        
        

      
      

        
       

    
    

        
      

       

       
        

       
        
        

        
      

          
    

         
        

         
      

      

      
      
        

       
     

     
      

        
         

      
       

      

                                                

                  
  

                                                                                                   
                  

  Entropy
   Decoder

 Dequantizer                IDCT

    Table                             Table
 Specifications               Specifications

Compressed
Image Data

     Reconstructed
   Image Data

      

      
(b) The JPEG Decoding Process

Figure 2.5: The JPEG compression / decompression processes [62]

exists between size, speed and quality of the image. As we shall see, this trade-off also
exists for video encoding, decoding and transfer.

2.2.2.2 Video Compression

A simple video compression algorithm would simply compress each individual frame of
a video with the JPEG algorithm. However not only are the frames in a video spatially
correlated within themselves, they also have a temporal correlation between the frames
i.e. successive frames in a video are usually small transformations of the image in the
past and future frames. Video compression methods exploit this fact to obtain better
compression ratios.

Although there is a large variety of video codecs that can be used to compress a
video, they all make use of nearly the same principles to achieve compression. For this
discussion we use the MPEG codec family as a reference. The MPEG codecs exploit
the temoral correlation between successive frames by estimating motion of objects in
nearby frames with respect to each other. This process is called motion compensation[47].

The MPEG codecs divide the frames into blocks whose motion is estimated. These
blocks are called macroblocks. A search algorithm is used to match a macroblock in
the current frame to another macroblock in a reference frame. Next, a motion vector is
calculated for this macroblock. This vector is essentially the x and y translations of the
macroblock with respect to its reference. For example, the object in Figure 2.6 has been



2.2. MONOSCOPIC REMOTE VISION 11

Current Frame

Reference Frame

Figure 2.6: Motion Compensation

moved and rotated in the current frame. Since this is the only change in the image,
the rest of the picture need not be stored/transmitted again. The codec only sends the
motion vectors and if required, the residual error image (coloured portion in the figure)
for the current frame.

If a certain macroblock is not found to have changed in between frames, then no new
information needs to be sent/encoded for this block. However, it is possible that the
video transforms such that no match between a macroblock and the available reference
macroblcoks is found. In this case, this macroblock is compressed independently.

As shown in Figure 2.7, three kinds of frames are used in the MPEG codecs:

• I Frames or intra coded frames are the frames that are processed independently of
other frames in the video stream. The compression used is principally similar to the
JPEG compression. Therefore, these frames do not utilize the temporal correlation
themselves. However, these frames are used as reference frames to compress the
other two types of frames.

• P Frames or predictive coded frames utilize the temporal correlation using pre-
dictions obtained while keeping the nearest preceding P or I frame as a reference.

• B Frames or bidirectionally predictive are essentially predictive frames that use
the preceding and/or upcoming I or P frames as reference frames. However, in
H.264, B frames can also be used as a reference for other frames.

Typically, the three kind of frames are sent out in a repetitive pattern called a Group
of Pictures (GOP). For example the GOP in Figure 2.7 is IBBPBBPBB. However, a
certain GOP structure is not always followed because of scene changes in the video to
be encoded. If a scene change occurs at a certain frame, the content of that frame is
usually completely different from the past frames. Such a frame must be encoded as an
I frame.
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Figure 2.7: Prediction in MPEG Frames

The MPEG codecs do not specify any specific searching algorithm for matching the
macroblocks. However, typically the algorithms used for this purpose are fairly complex
and computationally expensive. Further, any system using P or B frames should be
capable of buffering the required number of frames to be able to exploit the temporal
correlation between frames. Further, in order to display a B frame, the future I or P
frame should already be available to the display system. This will cause a delay in the
case of live streaming of video. Because of such constraints, it is not always possible
to make use of temporal correlation. In such cases, each frame may be compressed
individually. MotionJPEG is one such class of video codecs that compress each video
frame individually.

2.2.3 Data and Video Transport

Layer Protocols

Application HTTP, DNS

Presentation SSL, TLS

Session PPTP, RPC

Transport TCP, UDP

Network IP, IPsec

Data Link PPP, Ethernet

Physical Ethernet, RS-232

Table 2.1: The OSI Reference Model

The structure of commonly used protocols over the internet loosely follows the OSI
Reference Model (Table 2.1). In order to keep the cost of networks low, the more
numerous intermediate devices that are responsible for connecting machines, have to be
cheap and therefore dumb. Consequently, the lower layer protocols have to be simple
and complexity must bubble upwards into the end-points: computers.

As shown in Figure 2.8, the internet protocols follow an hourglass like structure. The
Internet Protocol (IP) layer binds together the multitude of layers above and below it,
allowing them to inter-operate. It is these characteristics of this design that allowed the
internet to spread and become as ubiquitous as computers and portable communication
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Figure 2.8: Hourglass structure of the Internet [67]

devices. However, these very qualities also cause computer networks to be unreliable
and non-deterministic. For example, because of the hourglass structure, there is no way
for an application to know what physical medium is used to transport any data it sends
or receives. This means that the application doesn’t have any knowledge of network
behavior that may affect its performance. It can only hope to characterize the network
by making some measurements. Further, because the complexity of interconnecting
devices has to be kept low, it is impossible to guarantee

• Hop-to-hop data integrity

• Preservation of packet order

• Data rate

• Latency and Latency Jitter

at the IP Layer. Accounting for these conditions and correcting where possible and
necessary is left up to the higher level layers.

Such characteristics cause computer networks to be an imperfect match for real-time
applications such as remote vision. Given these conditions, it is important to decide
the level at which these deficiencies should be compensated for. The choice of using
TCP or UDP protocols becomes important at this point. These protocols offer either
reliability and congestion control or timeliness. As we shall see, for real-time multimedia
applications, timeliness is more important. The lack of congestion control in UDP can
cause congestion breakdown in case of heavy traffic. Datagram Congestion Control
Protocol (DCCP) is a next-generation transport protocol that allows for congestion
control like TCP but does not ensure reliable in-order delivery. However, since DCCP
is a proposed protocol, not many successful implementations of DCCP are available.

Although it is not uncommon for multimedia applications to transport audio and
video streams directly using the TCP or UDP protocols, several important services are
required by real-time media applications that these protocols fail to provide. Therefore,
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it is usually beneficial to use a protocol designed for real-time data. One key stan-
dard protocol for audio/video transport over IP networks is the Real-Time Transport
Protocol[55] (RTP). Some of the several important services offered by RTP are timing
recovery, loss detection/correction and media synchronization [49]. Further, since time-
liness is more important for streaming media, RTP is usually coupled with UDP. As
we shall see, because of its several advantages, RTP was also chosen for our specific
implementation for transporting live stereoscopic video.

2.2.4 Display

The present day consumer electronics market boasts products based on a wide variety
display technologies and many others are under development. However, a discussion on
the several display technologies is beyond the scope of this thesis, instead we discuss
some of the common issues with displays that affect the user’s comfort.

CRT based displays update the contents of the screen periodically by means of
an electron beam progressively moving across the horizontal lines on the screen. The
number of times this electron beam completes this process for the whole screen in a
second is called the refresh rate. Although CRTs are rarely used in the present day,
and the more common LCD display’s do not progressively scan the screen; the notion
of refresh rate is still used. It can now be equated to the rate at which the video card
sends out the contents to be displayed at the screen.

Typically, a computer display system can be thought to be asynchronous. Applica-
tions place the content to be displayed on the screen on a memory location. This can
be thought of an application drawing on the screen. Meanwhile, the display is updated
periodically. Because the process of drawing on the screen occurs independently from
the display process; it is possible that the user can see the drawing process in progress,
called the tearing effect.

In order to avoid the tearing effect, a double buffer is used. The applications draw
on a ‘back buffer’ while the contents of the ‘front buffer’ are shown on the screen. When
the drawing process is complete, the contents of the back buffer are copied to the front
buffer during the blanking period of the screen (time during which no new data is sent
to the screen). Alternatively, the roles of the memory locations assigned to the buffers
may be swapped. This is called page flipping. In general, to avoid the tearing effect, the
read and write operations of a frame must be exclusive at several steps in the complete
end-to-end system. As we shall see, this adds to the delay suffered by the video in our
remote vision system.

2.3 Depth Perception

Our eyes are positioned such that our brains receive similar images of a scene taken from
two nearby points, usually positioned at the same height. If two objects are present
at different depths from the viewer, the relative positions of their images in the two
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eyes will differ. Our brains measure this disparity and use it to estimate depth [50, 36].
This process is called stereopsis and the difference in the two images is called binocular
disparity. Stereopsis is commonly confused with depth perception. This is inaccurate
as our brains rely on several cues for depth perception[32, 30, 20, 27]. The major visual
cues are:

• Binocular Cues

– Stereopsis: Disparity in two parallel, horizontally separated views of the
same scene.

– Convergence: In order to focus on an object, our eyes converge inwards,
bringing the object at zero disparity. The degree of this convergence gives
a sense of an objects proximity to the observer. The terms vergence and
convergence are used alternatively in literature and this report.

• Monocular Cues

– Kinetic Depth Perception: The perception of distance from objects by
change in their size as they move towards or away from the observer.

– Motion Parallax: The apparent relative motion of objects seen by an ob-
server as they move.

– Retinal Image Size: Objects of the same size appear bigger when they are
closer. This is even more helpful when the objects are familiar to the observer.

– Occlusion: An object in front of another blocks the view to the one behind.

– Aerial Perspective: Scattering of light by the atmosphere causes objects at
a distance to have less contrast, luminance and colour.

– Accommodation: The sensation of contraction and relaxation of ciliary
muscles as we focus on objects at different depths. This is only effective for
objects close to the oberserver.

– Texture Gradient: The decrease in clarity of an object’s texture with dis-
tance.

– Light and Shadows: The way light falls on an object, its reflection and
shadows.

As shown in Figure 2.9, the several depth cues are active at different ranges of
distance. It can be discomforting if our brain receives conflicting information from
independent depth cues. Therefore, an artifical system that exploits one or more of these
cues should take into account the strength of these cues at its distance of operation.
This knowledge can also be used to dynamically adjust the system according to the
content of the scene.

Other than our eyes, the vestibular system (the balance organ inside our ears) also
contributes to our depth perception [31, 51, 18, 43]. With motion parallax we can only
estimate the relative depth of objects in our vicinity. When our brains combine this
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Figure 2.9: Effectiveness of Depth Cues vs. Distance. Derived from [44]

with the the movement and orientation information of our own bodies (obtained by the
vestibular system), it can create an absolute map of our surroundings. This explains how
people with only one functional eye, and animals lacking binocular vision can perceive
depth.

2.4 Stereoscopy: Evolution of technologies

Stereoscopy is the process of creating the illusion of depth in an artificially created
scene. It exploits the process of stereopsis. The viewer(s) is presented with two or more
similar images of the same scene while ensuring that each of the images is only visible
to the eye it is meant for.

Figure 2.10 shows a timeline of major events pertaining to stereoscopy. The
first stereoscope was invented by Sir Charles Wheatstone in 1838. As shown in
Figure 2.11a, the device employed an arrangement of mirrors to present two similar
drawings that created the illusion of depth. With the advent of silver plate photog-
raphy, these drawings were replaced with photographs and stereoscopes became popular.

Later, anaglyphs were used for black and white and colour photographs. For viewing
an anaglyph, the audience wears red/green or red/cyan filters over their eyes and the
photograph contains depth in the form of disparity in the same colours. This technology
took stereoscopy to the world of cinema, generating interest and investment in relevant
technologies. However, the separation of images meant for the left and right eyes was
not very good and the audience usually left the halls feeling nauseated. This lead to
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Figure 2.10: A History of 3D Media

invention of new technologies to create the illusion of depth. These current technologies
for stereoscopy are discussed in later sections.

2.5 Stereoscopic/3D Remote Vision: Contemporary Tech-
nologies

Here we discuss the several technologies involved in stereoscopic/3D remote vision.
Being an end-to-end solution and an area of active research, it has a large multitude of
technologies involved. Therefore, a lot of options need to be explored when designing
such a system. Here, we briefly describe the principles behind each method while briefly
discussing their pros and cons. A comparative study of these alternatives is provided in
a later chapter.

Much of the research in this area is being driven forward by the 3DTV market.
Consequently, much of the solutions are geared towards fulfilling the requirements of
3DTV. This makes choosing an appropriate set of technologies more difficult for our
particular application. This is further complicated by the interdependence amongst the
technologies involved at the different steps of the solution as one technology might be
an ideal match for one step and its counterpart unsuitable for another. A discussion
of transport technologies is omitted here as the technologies used in the context of the

3Some figures are enhanced replica.



18 CHAPTER 2. BACKGROUND

(a) The first Stereoscope and a drawing used for it[32]

      

          
            

             
              

             
           

    
           

            
              

           
           

      
            

           
            

              
         

               
           

           
              

             
          

           
  

            
           

  

(b) The Brewster stereoscope and its optics.[32]

(c) An anaglyph photograph of a 1932 Renault

Figure 2.11: The Evolution of Stereoscopy 3

internet do not differ from those for monoscopic video. Moreover, a discussion on display
technologies is provided first to allow for the establishment of basic facts.



2.5. STEREOSCOPIC/3D REMOTE VISION: CONTEMPORARY TECHNOLOGIES
19

Screen

Sphere

Left ImageRight Image

C
onvergence 

Length

F
ocal Length

(a) Object seen in front of the screen

Screen

Sphere

Left Image Right Image

(b) Object seen behind the screen

Figure 2.12: Binocular Disparity in stereoscopic displays and accomodation - convergence
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2.5.1 Display

Television is one of the largest consumer electronics markets worldwide and the prize
for developing a successful display technology for 3D video is likely to be great. Conse-
quently, there has been a large push from the industrial and academic communities to
come up with a multitude of candidates for the next generation display technology. The
success of any technology in this realm depends on its technical viability, cost and user
comfort. So far there is no clear winner in this field. Apart from the criteria mentioned
before, the choice of a display also rests on its compatibility with the technologies in the
complete end-to-end system, development effort and scalability. The discussion offered
here attempts to cover a majority of the contemporary 3D display technologies. More
comprehensive discussions on these technologies are present in [8, 37, 23, 46].

Most displays render two or more images and use some mechanism to ensure that
the user’s eyes only see the view meant for them. Figure 2.12 shows this process. A
sphere in the original scene is displayed on the screen. If the right image of the sphere is
displayed to the left and the left image to the right, the sphere is perceived in front of the
screen and vice versa. The user’s eyes converge to see the object while they are always
focused on the surface of the screen. This leads to a mismatch between the depth cues
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perceived by our brain, leading to user discomfort. This is a common shortcoming of most
displays discussed here. The only exceptions being Volumetric and Holographic displays.
The problem has proved to be very difficult to crack and is generally circumvented and
not solved. A detailed discussion of human comfort is presented later. Broadly, these
display systems are categorized as binocular (showing only two views) or multi-view and
autostereoscopic or those requiring user-mounted objects such as glasses or head-tracking
devices.

2.5.1.1 Field Sequential Technologies

Field sequential or time multiplexed systems typically alternatively show left and
right views and use a blocking mechanism to ensure that the left eye cannot see the
image meant for the right eye and vice versa. Since these systems only show two
views, they fall under the category of binocular systems. Historically, mechanical
devices were used for blocking but current systems generally employ LCDs. The user
wears goggles that have an LCD in front of each eye. The screen, refreshing at a
high rate, alternatively shows the left and right views while the LCD shutters are
opened and closed to allow only one eye to see the screen at a time. Typically infrared
emitters attached to the display system send pulses to synchronize the glasses with
the display. CRT screens were typically used as displays but recent advancements in
LCD technologies have pushed their refresh rates high enough to be used for this purpose.

An example of such systems is nVidia’s 3D vision system. The company provides
support for connecting a pair of LCD shutter glasses and an infrared emitter to
their graphics cards via USB or via the VESA stereo interface. Several screens
supporting high refresh rates can then be coupled with the system. The system is
capable of rendering two separate views for 3D games. Further, it allows use of the
standard OpenGL library to manipulate separate buffers for the left and right views.
Other examples include DLP R©-3D[25] based HDTVs offered by Samsung and Mitsubishi.

Modern LCD screens can operate at 120Hz so each eye receives images at 60Hz.
However, shutter glasses can have synchronization issues at high refresh rates. Further,
the shuttering of glasses can develop beats with artificial lighting. An advantage of
this technology is that the system can easily switch between normal and stereoscopic
operation. However, these systems can suffer from ghosting effects especially for bright
areas in the scene as the switching time of an LCD pixel increases with brightness.

2.5.1.2 Polarization based Technologies

Another method in the category of binocular systems is to use the principle of polariza-
tion of light to separate the left and right views. In such systems, the source produces
left and right views of orthogonally polarized light while the user is required to wear
polarization filters to isolate the left-right views. The principle is applied in a variety of
methods. The simplest of these methods employs two projectors, one stacked on top
of the other. Light coming from the projectors is linearly polarized with the help of
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Figure 2.13: Viewing zones for autostereoscopic displays [46]

filters4. Because of the difference in location of the two projectors, dual projector based
systems suffer from the keystone effect.

Other systems such as the LCD monitors produced by Zalman use circularly polar-
ized light instead of linear polarization. These monitors circularly polarized alternate
lines in orthogonal directions. Clearly, interlacing reduces the vertical resolution for
each eye by half. Another approach is to individually rotate the polarization of each
pixel. Monitors manufactured by iZ3D work by rotating the polarization plane of each
pixel individually. For example, if a pixel is to be seen as white by the right eye and
black by the left, the linearly polarized light of that pixel is rotated to be parallel to the
axis of right eye filter. Consequently, varying degrees of rotation can individually vary
the brightness of each pixel. One disadvantage of the iZ3D system is ghosting of images
caused by imperfect polarization.

Most polarization based systems use linearly polarized light. A clear disadvantage
of these systems is that the brightness perceived by the user depends on the angle of
user’s head with respect to the screen. Imperfect polarization also results in ghosting of
images. Further, projector based systems also require a special screen. Even though the
initial set up costs of such systems is high; the filter glasses are very cheap. Therefore,
the cost of adding viewers is very small. Consequently, these systems are widely used in
cinemas.

2.5.1.3 Autostereoscopic Technologies

A major drawback of the previously mentioned techniques is that they require the user
to wear glasses. Autostereoscopic displays create viewing zones in front screen where
either the left or the right image is visible [46]. Figure 2.13 depicts these viewing zones,
the user’s eyes must be located in one of these zones to perceive depth. These displays
produce the left and right images on alternating pixel columns. Next, separation of
the left-right views is achieved by use of a parallax barrier, lenticular screen, controlled

4Light from DLP projectors is unpolarized. Therefore polarizing filters need to be placed in front
of the projector. On the other hand, more efficient polarizers are required to be used in case of LCD
projection.
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Figure 2.14: Optics of Lenticular Screen and Parallax Barrier Methods

light sources behind the pixels and prismatic screens [46]. Size of a viewing zone is
less than that of the separation between human eyes: around 65 millimeters. Figure
2.14 demonstrates the lenticular screen based methods. A lenticular screen consists of
semi-cylindrical lenses placed vertically in front of the screen. Light coming from each
pixel is refracted from these lenses, resulting in only one of the views being visible in a
certain zone. Screens based on the parallax barrier method use fine vertical slits in an
opaque screen placed in front of the pixels. Similar to the lenticular screens, only pixels
corresponding to one view are visible from a given viewing zone.

A clear disadvantage of binocular autostereoscopic displays is the existence of viewing
zones. Consequently, the user observes crosstalk5 between views [28]. Say the user’s left
eye is positioned at zone R and the right eye is positioned at zone L1. In this case,
the left and right eyes see the views meant for each other. This can lead to a complete
breakdown of the 3D effect. One solution to this problem is to use head tracking systems.
In these systems, the pixel columns corresponding to the left and right views can be
adjusted according to the position of the user’s head. Further, viewing the system from
different lateral positions gives a false effect of rotation of the objects and distortion
of depicted objects. An advantage of binocular displays is that they demand a limited
bandwidth and hardware from the transport and capture systems. Head tracking can
also be used to display one of several views (to one viewer), extending binocular systems
to multiview systems; thereby allowing the perception of motion-parallax. Lenticular
screen and parallax barrier methods have been extended into multiview systems in in
Philips 9-view and the Sanyo 4-view displays respectively.

5 Crosstalk occurs when a percentage of the view meant for the right eye is seen by the left eye and
vice versa.
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2.5.1.4 Head Mounted Displays

Head Mounted Displays (HMDs) operate on the same principles as the Brewster stere-
oscope. The user wears the HMD device like goggles. LCD’s placed in front of each eye
display separate images to the left and the right eye. Since the LCD screen is very close
to the eyes, the accommodation-convergence mismatch can be very pronounced. Lenses
are used to increase the focal distance to values close to 50 centimeters [63]. HMDs have
two differentiating factors: the user is completely isolated from his/her surroundings; the
focal distance is fixed. Further, as most users are used to working with screens, they feel
out of place whilst using HMDs. A survey of comparisons between screen based displays
and HMDs is presented in [57] and the general conclusion is that HMDs generally induce
more user discomfort than screens. Consequently, use of HMDs is limited to situations
where portability is required.

2.5.1.5 Other Display Technologies

Other classes of display methods include volumetric and holographic displays. Volumet-
ric displays actually reproduce the scene on a volume of space. Therefore, there is no
conflict between accommodation and vergence. These systems employ optical and me-
chanical methods to reproduce slices of the actual scene [46]. These slices sequentially
scan the volume of the scene. A disadvantage of these systems is their large size and
the need for moving parts. As discussed before, holography captures the intensity and
phase of the incident light in the form of an interference pattern. The Spatial Imaging
Group at MIT were the first to attempt production of moving holographic pictures [46]
by using acousto-optic modulators. Holography been an area of research for a long time
but its requirements such as very high computation requirements, high amount of data
involved, inability to capture ambient light make it impractical. However, distant as it
may be , holography offers the promise of a future with true reproduction of a scene.

2.5.2 Capture

A large variety of methods have been developed to capture 3D or stereoscopic video and
their characteristics vary over a large spectrum. A short discussion of these techniques
is presented here.

2.5.2.1 3D Scene Representation

Because of the tight coupling of capture and representation methods, we touch upon
some methods used to represent 3D scenes first. 3D video can be represented either
in its raw original form, which in most cases is several independent 2D views, or this
information can be converted into data structures that reflect the 3D nature of the scene
more closely. Representation in these forms allow the video to be easily manipulated
and displayed freely from many angles. The broad classes for techniques for the latter
are as follows [2] :

• Individual/Concatenated Views: The simplest method to represent a 3D scene
would be to leave it in its original form i.e. as individual views. If there is a one-



24 CHAPTER 2. BACKGROUND

(a) An Image and its Depth Map [41] (b) Voxel and Octree [2]

Figure 2.15: 3D Scene Representations

to-one correspondence between the captured views and displayed views (i.e. no
intermediate views need to be rendered), this scheme can be the least computa-
tionally expensive alternative. Multiple views can also be concatenated in different
ways such as side-by-side or top-bottom formats. Doing so allows the use of mono-
scopic compression of stereoscopic or multiview video.

• Depth Maps: In this method, each pixel in a view has an associated depth value
associated with it. Depending on the application, multiple views with their corre-
sponding depth maps may be used. These can then be used to render intermediate
views. This is a common method used to for stereoscopic (2 views) images.

• Surface-Based Representations: Surfaces such as polygons are used to repre-
sent parts of a 3D scene. These techniques have their basis in computer graphics.
Common paradigms for this class are polygonal meshes, NURBS, point-based mod-
eling and subdivision surfaces.

• Volumetric Representations: Volumetric representations simply represent the
world in a 3 dimensional structure. A voxel or a volumetric pixel is the basic unit
for representing a 3D scenes by this method. However, empty voxels may take up a
large amount of space in such a representation. A more memory-efficient way is to
use octrees (Figure 2.15b) for volumetric representations with varying granularity.

These classes can be grouped under Image-Based (Depth Maps) and Geometry Based
(Surface-Based and Volumetric) representations. The depth information generated by
converting a video into these representations can also be used for automation tasks such
as object recognition and manipulation.
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2.5.2.2 3D Scene Extraction form a Single Camera

Extraction of 3D scenes from a single camera video has been an area of research within
computer vision for decades. It involves using monoscopic cues similar to the ones used
by the human brain to extract depth information from a video. These techniques are
generally grouped as Shape-From-X techniques. X being shading, texture, defocus/focus
or motion. Amongst these techniques, Shape-from-Motion has been most successfully
applied to real-life problems [60].

High processing requirement, poor results and dropping costs of capture equipments
make such system unpopular. Therefore, the application for such technologies exists
only for extending legacy systems where modifying the camera apparatus is not possible
and for converting existing footage for use in 3DTV.

2.5.2.3 Human Face and Body Specific Techniques

For many scenarios, the 3D scenes are mostly composed of human face or bodies. For
such cases, a priori knowledge of the structure and motion of the human face and body
can be used to make the process of extracting depth more efficient [60]. These techniques
usually consist of the following subtasks:

• Detection of face and facial features.

• Face motion analysis and mimic.

• Face structure capturing.

• Modeling of the human body.

• Analysis and recognition of human body motion.

Typically, these techniques use surface based representations of the human face and
body to represent the obtained depth. These techniques are algorithmically complex and
therefore are hard to use in a real-time scenario. Further, their human-centric nature
makes their main application to be entertainment oriented.

2.5.2.4 3D Scene Extraction from Multiple Cameras

Multicamera systems capture a scene from several viewpoints at the same time as
shown in figure 2.16. The remainder of this document uses the terms multiview and
multicamera interchangeably. Capturing dynamic scenes with multiple cameras has a
number of challenges.

As there usually isn’t a one-to-one correspondence between pixels captured by a
camera and the corresponding location of an object in 3D space; camera calibration is
required by any system that aims to extract depth from an image. Other parameters
such as exposure, white balance between cameras also need to match. Toolboxes in [61]
and [66] use a moving LED as a target for multicamera calibration.

Further, if two frames from different cameras arriving at time T were actually
captured at times (T − T1) and (T − T2), the two frames may be correlated incorrectly
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Figure 2.16: An array of cameras for multiview capture [42]

while reconstructing the 3D scene, causing artifacts. Small amount of de-synchronization
can be safely ignored as human eyes are not very sensitive to rapidly moving objects
but may be unacceptable for automation tasks. However, small delays Hardware and
software based approaches for multicamera synchronization are proposed in [24] and
[33]. Another problem is handling the large amount of data that is parallely generated
by the several cameras used in such systems.

As discussed before, the multiple views can either be used directly for compression,
transport and viewing or the actual 3D scene can be reconstructed from them. Recon-
struction algorithms are fairly complex and therefore hard to implement in a real-time
scenario. These algorithms fall into four classes [56]. Algorithms in the first class start
by computing a cost function on a 3D volume and then produce a surface from this
volume. For example, the voxel coloring algorithm and its variants sweep through the
volume, compute costs and reconstruct voxels with costs below a threshold. The second
class evolves a surface iteratively to minimize a cost function. These methods typically
employ volumetric or surface-based representations. The third class of techniques
computes a set of depth-maps based on disparity information between the captured
views. Constraints are used to ensure consistency in between the resulting depth-maps.
As mentioned before, these depth-maps can then be combined or interpolated to
reconstruct a smooth 3D representation of the scene. The last class first finds a set of
feature points and then fits a surface to these features.

Typically, photo-consistency is used to compute the cost function. For example, voxel
coloring may by matching an assumed color for a voxel, projecting the resulting color
on all the recorded views and measuring how consistent this color is with the recorded
pixels. The color that minimizes the difference between actual views and projected values
is then the correct color for that voxel.

2.5.2.5 Pattern Projection Techniques

This technique exploits the distortions in a light pattern projected upon the subjects of
the scene. The reflection of this pattern from the objects in the scene is distorted. As
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(a) Pattern Projection (b) Recording of Digital Holograms

Figure 2.17: Apparatus for 3D capture using Holograms and Pattern Projection [60]

this distortion is a function of the geometry of the objects, depth information can be
extracted from the scene by processing the reflected pattern.

The advantage of such a system is that the processing requirement for extracting
depth information by this method is relatively low and it can be used in real-time ap-
plications. However, this technique suffers greatly from noise and usually has a low
resolution. Further, the pattern must be at a high contrast with respect to the ambient
light for proper detection. It also introduces moving light into the scene which can cause
eye-problems.

2.5.2.6 Holographic Techniques

Holography is the process of recording the 3D structure of an object in the form of a
light interference pattern. Figure 2.17b demonstrates the apparatus for this process. A
split laser beam is reflected off of an object and the interference pattern of the reflected
laser with the reference wave is recorded. Recent advancements have allowed the use of
CCD and CMOS image sensors to record this pattern instead of film. Colored (RGB)
lasers can be used to record full colored holograms [65]. In order to successfully record
the interference pattern, the angle θ between the object and the reference waves must
be less than the value given by:

θmax = sin−1

(
λ

2xp

)
(2.5)

Here xp is the distance between the centers of two camera pixels and λ is the laser’s
wavelength [54]. This limits digital holography to only recording small objects located
far from the camera. Further, the data rate of a holographic video is too high for
practical transport mechanisms. Therefore, significant advancements in imaging, laser
and communication are required to make digital holography of large moving objects a
reality.
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2.5.2.7 Time of Flight Techniques

Time of Flight(TOF) has been used for distance measurement for decades in radar
and lidar systems [22]. TOF systems measure the time taken by the probing signal to
travel to the target, be reflected and travel back to the receiver. The distance is then
simply half of this time multiplied by the signal velocity in the propagation medium.
The systems applied for 3D capture typically employ RF modulated near-infrared light
from an arrray of LEDs or laser diodes, creating a uniform illumination of the object
[60]. The intensity and phase of the reflected light can then be measured with an array
of pixels.

Since these systems usually use a periodic signal to modulate the light, they suffer
from ambiguity in the measured distance between phase shifts of 2π. Reducing mod-
ulation frequency increases the ambiguity distance at the expense of resolution. This
problem is solved by using multiple modulation frequencies [17]. TOF systems are fairly
low cost and usually accurate to a range in the order of millimeters. Further, these sys-
tems can operate at a very high frame rate. However, since these systems only provide
intensity information, separate sensors need to be used to capture the scene in color.

2.5.3 Compression and Decompression

Data rates for uncompressed Stereoscopic / 3D video can be several times that of mono-
scopic video. Clearly, efficient compression is crucial for effective transport and storage.
Further, different views of the scene are highly correlated with each other. The simplest
and least computationally expensive method would be to use monoscopic compression
techniques to compress 3D video by either first concatenating the several views into a
single video stream or compressing each view independently. However, by doing so we
are effectively wasting the correlation between views. Here, we explore these methods
and others that can be applied to the several representations for stereoscopic / 3D video.

2.5.3.1 Multiview Video Coding

Consider a stereoscopic video. At any given time, disparity between the two views is
equivalent to the dense motion field between two temporally correlated images in a
video. Consequently, the same principles of motion estimation and compensation can
be used to exploit inter-view correlation to achieve better compression.

However, the statistical properties of inter-view disparity vector fields and those for
motion compensation [59]. Disparities are relatively larger and biased. Zero disparity
correlates to an object very far from the cameras while objects close-by would cause
very large disparity values. Disocclusion (content hidden behind an object in one view
is visible in another and therefore cannot be predicted) is also more pronounced in
between views than temporally nearby frames. Further, incorrect camera calibration

6Quantization Parameter (QP) affects the quality of the encoded video (higher is worse) and its size.
In H.264 this can be varied from 0 to 51. Please note that the reference here is a single view video
compressed with the given QP for each series.
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(a) H.264/AVC Multiview coding with hierarchical B frames for temporal and inter-
view prediction (red arrows) [41]

  

 

(b) Bit-rate gains for Multiview Coding [38] for different val-
ues of Quantization Parameter6

Figure 2.18: Multiview Video Coding and the resulting gain in bitrate.

(discussed earlier) and variation in scene lighting and reflection effects can also cause
views to be more dissimilar.

Standards for such compression has already been defined in the Multiview profile
of H.262 / MPEG-2 Video [21] and amendments for H.264/AVC for Multiview Video
Coding (MVC) [41]. Figure 2.18a shows the process of inter-view prediction. Intra coded
frames are only used in one of the views and the frames from other views are predicted
from these frames. Bidirecionally predicted frames also use other bidirectionally
predicted frames as reference frames.
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(a) Original (b) Reproduced from a stream with 4:1
View/Depth coding ratio

Figure 2.19: Errors caused by Depth Map Compression [41]

Peak gains with this method are reported to be 3dB PSNR7 with corresponding bit-
rate savings of 50% [38]. However, [41] reports and average PSNR of 0.9dB with several
benchmark video sequences. Further, as shown in Figure 2.18b, the gain increases with
the number of cameras. Therefore, for systems with fewer cameras, the small gain with
respect to compressing each view individually may not justify the added complexity.

A major drawback of combining temporal and inter-view prediction is its very high
computational complexity, memory requirements and delay. This complexity can be
reduced by only using inter-view correlation for I frames as most of the gain in MVC
comes from converting the I frames to P frames [59].

2.5.3.2 View + Depth Coding

As discussed before, depth information can be derived from multicamera systems or
recored directly with cameras using techniques like pattern projection or time of flight
measurement. The obtained depth information can be compressed as a video stream as
brightness values. In case of a stereo camera pair, one view and depth is compressed.
For multiview, depth infgormation is associated with each view.

Depth data is usually encoded on to an 8 bit luma channel and chrominance values
are set to a constant value, effectively encoding it as a monochrome video. Because
of the characteristics of human perception, inverse depth 1/z is quantized uniformly,
allowing finer depth resolution for nearby objects [41]. For correct reproduction, the
received depth needs to be inverted before display. MPEG has specified a corresponding
container format “ISO/IEC 23002-3 Representaion of Auxillary Video and Supplemen-
tal Information”, also called MPEG-3 Part 3, for video + depth data [10]. Further,
H.264/AVC also allows the encoder to add depth information via its auxiliary picture
syntax.

7Peak Signal to Noise Ratio is a common measure of codec quality. It is used to compare how close
the codec is to the original at the same bitrate as the reference codec.
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As with disparity vectors, the depth data is statistically different from normal video.
Color video typically contains detailed texture information. On the other hand, depth
data usually consists of large homogeneous regions of show-changing values. Also, object
boundaries typically contain abrupt changes in depth values. Consequently, depth
data is primarily composed of very low and very high frequencies. Higher frequencies
are removed at higher compression rates. For normal video, this only leads to slight
degradation of visual quality of the video. However, as shown in Figure 2.19, the effect
on depth information is much more severe. While artifacts caused by removing high
frequencies from normal image or video is simply spurious objects; similar artifacts in
depth information are near / far depth objects floating on a far / near background.
Clearly, sharp edges of object depth and discontinuities in depth are highly visible and
can be very discomforting to the viewer.

As mentioned earlier, stereoscopic video is encoded as a single view + depth data. In
this case, an additional problem is with objects occluded in transmitted view being visible
in the omitted view. This means parts of background occluded behind a foreground from
the transmitted view show up as blank areas in the reproduced video. This can usually
be corrected by filling such areas by spatially neighboring content.

2.5.3.3 Geometry Coding

This class of algorithms is used to compress 3D content represented with surface-based
and volumetric methods. These algorithms have their origins in computer graphics
where it is required to compresses 3D meshes to reduce the data that needed to be
transferred from the main memory to the graphics card. These algorithms have now
been applied for compression of 3D video. Considerable research has been done in
this area and covering the multitude of algorithms is outside the scope of this report.
Therefore, we limit ourselves to the principles behind geometry coding.

As mentioned before, surface-based representations use polygons as basic blocks.
Position and connectivity information about these polygons is required to construct a
surface. This is called a 3D mesh. Algorithms for compressing meshes can be divided
into two categories: single rate encoders and progressive encoders. Single rate encoders
compress the mesh into a single bit stream containing both the connectivity and position
information of the mesh. Progressive encoders first simplifies the mesh into a base
representation that contains fewer polygons. It then compresses the base mesh into a
bit stream. It then encodes a sequence of operations that undo these simplifications.
This method allows the decoder to recreate the simplified mesh with the smaller base
mesh and then build upon it progressively as new information arrives. This is not
to be confused with multi resolution meshes, where independent meshes of increasing
resolution may be used.

Single rate encoders traverse the mesh, generating a symbol for each triangle. These
symbols are then entropy coded [46]. Further, prediction is used to concentrate the
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statistical distribution around small values. In essence, each time a new vertex is visited
by the encoder, its coordinates are predicted by those of the previously visited vertex.
The difference between the actual position and the predicted position is then entropy
coded. Since these errors are generally small values, fewer symbols are needed for
entropy coding, causing an increase in coding efficiency.

Progressive encoders first simplify the mesh, reducing the number of triangles
used to represent the surface. The resulting base mesh is then compressed using a
single rate encoder. The sequence of simplification used to create the base mesh are
then reversed by encoding opposite refinement operations. In an animation sequence,
successive meshes are encoded as transformations on previous meshes. In analogy to
video compression, independently encoded meshes are called I meshes while predicted
meshes are called P meshes. The MPEG-4 standard supports mesh compression in the
form of 3DMC tools [1].

Volumetric representations are commonly compressed using Octrees. First, the
entire volume is divided into octants. For each octant, a set of motion vectors are
computed. Then, an error measure is computed to compare the individually calculated
motion from the cumulative motion of the octant. If this error measure is less than a
threshold, the octant is encoded. Otherwise, the octant is subdivided again[46]. The
algorithm recursively creates octants and computes error measures until the error for
the derived octant falls below the threshold. The algorithm stops when the entire
volume has been traversed. Needless to say, geometric compression and decompression
algorithms in general require a considerable amount of processing power.

2.6 Factors of Human Comfort

Stereoscopic / 3D remote vision has considerable advantage over standard monoscopic
remote vision. For example for teleoperation applications, [9] reports 10 times im-
provement in task completion time for stereoscopic over monoscopic systems. Another
study [8] claims that the “overall psychological impact of a 3-D screen is equal to flat
images twice their size”. As with anything that improves our lives, there is a catch. A
number of mismatches between 3D displays and the human system for depth perception
leads to decreased viewer comfort. Symptoms exhibited after using 3D displays include
headache, disorientation, nausea and breakdown of 3D perceived from the display.

As mentioned before, a major problem is the accommodation-vergence mismatch.
This mismatch is depicted in Figure 2.12. While viewing an object on a 3D display,
our eyes are always focused on the screen but in order to perceive an object, they
have to converge to its apparent depth. This conflict of depth cues can lead to
serious user discomfort. This discomfort grows with object depth[8] perceived with
stereopsis. As a result, many studies define the so called ‘working areas’ as the region
of binocular disparity where users are found to be comfortable. According to [9], the
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Figure 2.20: Angular Disparity

most conservative estimates put the limits on crossed angular disparity8 to 0.45◦ and
0.4◦ for uncrossed angular disparity. Another experiment puts the limits between
4◦ – 7◦ for crossed disparity and 9◦ – 12◦ for uncrossed disparity and claims that this
variation in the range stems from factors like lighting conditions, contrast and proper
image blending. Some research suggests dynamically adjusting disparity by adjusting
the angle of cameras. This is done by converging or diverging the cameras in a manner
similar to our own eyes to bring the prominent objects at near-zero depth. This is said
to improve user comfort and task completion times [9].

To make sense of the above angular values, the mathematics of angular disparity is
described here. Since the disparity of objects depicted on a screen varies with the viewing
distance and the distance between his/her eyes, angular disparity is used as a measure
of disparity. Lets say the viewer is located at a distance d from the screen and an object
B is is shown at the screen such that the viewer perceives the object at a depth of x as
shown in Figure 2.20. If the distance between the eyes (called inter-ocular distance) is o
then:
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Here α and β are visual angles. Therefore, the angular difference θ perceived by one
eye is:
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And the resulting angular disparity µ is:
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8Crossed disparity is the disparity observed when the object is perceived in front of the screen. In
this case, the left and right images of the same object cross each other.
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However, the screen depicts linear disparity p is given by:

p = 2(x− d)tan
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)
(2.10)
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x

∣∣∣∣ (2.11)

Other than the accommodation-vergence rivalry, vertical disparity and crosstalk are
known to be the most significant factors that determine user comfort [8]. Kooi and Toet
at TNO [28] have evaluated the effect of several asymmetries between the left and right
views. Some of their key findings are:

• Horizontal shift should be less than 1.14◦ of visual angle.

• Vertical shift should be less than 0.57◦ of visual angle.

• Difference in contrast (often caused by polarizing filters) between the left-right
views should not exceed 25%.

• Relative magnification of one view with respect to another should be less than
2.5%.

• Crosstalk between the left-right views should be less than 5%.

• People with reduced binocular vision find misalignments such as horizontal and
vertical shifts less troublesome and the quality of binocular vision is determined
by the poorer eye.

• Discomfort increases with disparity. This is because effects like crosstalk get more
pronounced with disparity.

Another cause of user discomfort is the keystone effect produced when the cameras
are converged or ‘toed-in’. Although this configuration helps control depth in the scene,
the space seen by cameras is warped. The perceived space is compressed near the center
of the scene and expanded at the outer edges. This is a common cause of vertical shift.
Lens distortions are also found to commonly cause mismatch between the left and right
views. A mathematical model of image distortions in stereoscopic systems is presented by
Woods et. al. in [64]. They also suggest that increased exposure to stereoscopic displays
seems to improve user comfort [64]. This is not to be confused by prolonged usage which
can lead to increased discomfort over time for systems that exceed the above recommen-
dations. Another comfort factor worth mentioning is screen flicker. The frequency at
which screen flicker becomes just visible (critical flicker frequency) increases with with
luminance [8]. Another influence on critical flicker frequency is the screen’s surroundings.

In conclusion, accommodation-vergence rivalry is the primary cause of user discom-
fort. Unless volumetric or holographic systems are used, this problem can only be circum-
vented and not solved. However, as discussed earlier, these systems require significant
improvements in current technologies before they can become practical. Other causes of
discomfort are generally caused by asymmetries between the left and right views. These
can be caused during the capture or display processes. Humans are resilient to a certain
degree of these asymmetries. A system that remains within these bounds can be be used
without the user experiencing discomfort.



Design and Implementation 3
“The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ‘Eureka!’ but ‘That’s funny...’ ” – Isaac Asimov

The previous chapter was focused on exploring various technologies to develop the
targeted remote vision system. We also discussed several aspects of teleoperation and
human perception that shed light on the desired characteristics of the targeted system.
In this chapter, these characteristics are crystallized and merits of these technologies are
weighed against these requirements. This results in a set of high-level design decisions
which are followed by lower-level design decisions coupled with implementation specific
details they are derived from.

3.1 Requirements

In order to make informed design choices, it is important to understand the desired
characteristics of the targeted system. The research presented in Chapter 2 provided
insight into these requirements which are crystallized here:

• Delay: Delay has a significant effect on the performance of the operator. As sug-
gested by Smed et. al. [58], human control of a system is fluid when delay is lower
than 200ms; higher delays cause it to become more cognizant. However, this value
is more relevant for computer gaming where faster responding individuals tend
to dominate the game. Since teleoperation is typically performed with unnatural
controls, the operator needs to think before they perform even the simplest task.
Therefore, teleoperation is not intuitive but cognizant to begin with. Consequently,
this requirement can be relaxed in our context.

• Jitter: Jitter, or variation in delay, can also affect operator performance signif-
icantly. Since camera hardware is inherently periodic, jitter can be caused by
software or the network. Therefore, care should be taken at software level to en-
sure timely behavior. Further, features in streaming and display software need to
be chosen to avoid network jitter along with appropriate network protocols.

• Bandwidth: Minimizing the video data rate with compression relaxes the re-
quired network capabilities for the system to work. It also reduces the network
delay. However, this adds processing delay for compression and decompression and
reduces video quality. Therefore, bandwidth vs video quality is a tradeoff that
needs to be made carefully.

• Binocular Disparity: As discussed before, accommodation-vergence rivalry is a
major cause of discomfort for viewers. Therefore, binocular disparity needs to be

35
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minimized. More importantly, out-of-screen or crossed disparity should be mini-
mized as this is known to be more discomforting. Suggested limits for binocular
disparity lie between 4◦ – 7◦ for crossed disparity and 9◦ – 12◦ for uncrossed dispar-
ity [9]. Disparity can be controlled at different levels. If the chosen representation
format encodes depth separately, it can be done at the rendering machine, other-
wise this needs to be done by manipulating the camera configuration.

• Camera Convergence: The camera convergence or the degree by which the
cameras are ‘toed-in’ should be adjusted to a convergence distance such that fewer
objects are displayed with crossed disparity and the objects to be manipulated
(therefore the objects the operator looks at most) are at near zero disparity. How-
ever, toed-in camera configuration also causes keystone distortion. Keystone dis-
tortion is perceived by the user as a warping of space, and more importantly as
vertical shift at the sides. Consequently, there is a trade-off between minimizing
discomfort caused by accommodation-vergence conflict and vertical shift.

• Crosstalk: Crosstalk between the left and right views is a common problem with
several display types. The level of crosstalk should not exceed 5% [28]. This needs
to be taken into consideration while selecting a dsiplay technology.

• Contrast Difference: Difference in contrast between the left and right views
can be caused by difference in camera properties and scene lighting. In many
teleoperation scenarios, scene lighting cannot be controlled but camera features
like automatic exposure control should be synchronized or turned off. Contrast
difference can also be caused by the characteristics of a display. For example,
displays based on linear polarization will have varying contrast in the perceived
left and right views for different angles of user’s head with respect to the display.

• Left-Right View Misalignment: Misalignments, between left-right views can
also cause user discomfort. The most important of these misalignments is vertical
shift which should be limited to 0.57◦ of visual angle [28]. This limits the acceptable
error range in camera positioning. Recommendations for other, less significant left-
right view asymmetries can be found in section 2.6.

• Video Quality: It is hard to quantize the quality of video. Factors such as video
resolution and compression artifacts affect the video quality. Increasing the com-
pression level decreases bandwidth, network and processing latency at the expense
of increased compression artifacts. Decreased delay would typically improve the op-
erator’s performance but decrease in video quality would make it worse. Therefore,
adjusting the compression level to optimize operator performance is an important
task.

• Immersion: It is important for the operator to have a more immersive experience
of ‘being there’ and his/her performance is likely to improve with the quality
of immersion. For example, allowing for depth perception is known to increase
operator performance. However, immersion does not just stop at depth perception.
Several other characteristics of the display can affect the degree of immersion.
These are discussed further in the rest of this chapter.
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• Extensibility: As discussed later, highly immersive display systems can be very
costly. It is economically viable to start with a display system with low initial
cost. An ideal display system would be one that can then be extended for higher
immersion with little additional effort.

• Cost: As with any other system, cost is a major factor for the suitability of the
remote vision system for its various applications. Most importantly, remote assis-
tance can be provided to multiple individuals from a single teleoperation machine.
This many-to-one relationship means that the ‘proxy’ system should be low cost
while a costlier teleoperation system can be used.

• Development Effort: The system must be developed while best utilizing the
currently available hardware and software packages such that the overall develop-
ment effort is little. Making use of available software packages also means that
the target system benefits from future improvements in those packages with little
effort.

3.2 Delay Analysis

As discussed before, delay plays a significant role in operator performance. Therefore,
it is important to discover the parts of the system that affect delay wherever possible.
Assuming the cameras operate a t 15 frames per second, the worst case latency between
an event happening in the real world and being registered in the form of a frame is
1/15 = 66.67ms. Correspondingly, typical displays refresh (show new information) at a
rate of 60Hz, i.e. an additional latency of 1/60 = 16.67ms. These capture and display
delays of the hardware devices alone constitutes a significant amount of delay in itself.

Network delay can also play a significant role. A typical network consists of several
switches and routers between network end-points. In this case, the two end-points are
the remote ‘proxy’ machine and the teleoperation machine. Network latency mainly
consists of the time spent by packets in these network devices. For example, the task of
a network switch is to store and forward packets. They do so by use of input and output
queues at each port. When a packet arrives from a port, it is placed in the input queue
corresponding to that port, after looking up the destination address of that packet, it is
placed int the output queue of the destination port. The time taken to do this depends
on the packet’s priority and the number of older packets in the queue. Other factors
include the memory latency of the switch. For the highest priority packet on 100Mb/s
Ethernet, given that there are 23 prior highest priority packets in the queue, the total
time spent by a 1000 byte packet in the switch is approximately 2.06ms [14]. The time
taken to transport a combined frame of from two cameras, at a resolution of 1024x768
each with 16 bits for each pixel is:

1024 ∗ 768 ∗ 16 ∗ 2

100Mb/s
+ 2.06ms = 242.06ms

At the resolution of 512x384 each, this is reduced to 62.06ms which is still considerably
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Technology Advantages Disadvantages

Autostereoscopic + No need to wear glasses – View + Depth Format Required

(Philips Lenticular
Screen)

– Fixed Viewing Zones, 3D effect
breaks down elsewhere

– Expensive

– No support for Extensibility

Poalrized (iZ3D
and Zalman)

+ Cheap glasses: easy to
add users

– Contrast varies with angle of
user’s head for linear polarization
(iZ3D)

+ Cheap – Imperfect polarization at display
often causes crosstalk

– No support for extensibility

Field Sequential
(nVidia 3D Vision)

+ Support for extensibility
(up to 9 screens)

– Synchronization issues at high
frequencies can cause flicker and
crosstalk

+ Independent left-right
view buffers

– Glasses are expensive compared
to polarization filter glasses

+ Cheap – Bright areas have more pro-
nounced crosstalk

Table 3.1: Comparison of commercially available 3D displays

large. Further, this delay will increase with the number of switches and routers between
the end-points.

What remains is the delay caused by processing of this data at the remote and tele-
operation machine. This may include transport delays between hardware and software,
transformation to a representation format, compression, decompression and color space
conversion. However, 145.5ms are already lost during capture, over the network and
display. Further, the data rate for internet is typically lower than Ethernet. By com-
pressing the frame data, the network delay can be reduced significantly. As discussed
later, compression has indeed been used for this system.

3.3 Display

The choice of display can directly affect operator performance. Not only is it important
to select a display technology that has good technical characteristics such as low
crosstalk, but also to maximize the degree of immersion that can be achieved with these
displays. The ‘suspension of disbelief’ (what you see on a screen is not real), decreases
with increasing size of the screen. A popular example in literature is the CAVE (CAVE
Automatic Virtual Environment) system [13]. A CAVE is essentially a room where the
user is surrounded by stereoscopic projections on all walls, ceiling and floor.
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In order to create an immersive experience for teleoperation, we intend to allow
the user to look around at his/her proxy’s surroundings. The user’s head can then
be tracked with the help of one of the several tracking technologies discussed in [52].
By capturing the part of the proxy’s surroundings that corresponds to the user’s head
orientation, and displaying it at the corresponding location, it is possible to create a
highly immersive teleoperation system. This would involve either using large displays
or an array of displays.

Projectors can be used for creating a large display for look-around capability.
However, looking around would not feel natural with a flat screen in which case the
space around the user would seem warped in a way opposite to the keystone effect.
Instead, a dome like structure of display curved around the user is required. The
author is not aware of a projector based stereoscopic display capable of projecting
on a curved screen. Moreover, as discussed before, projector based stereoscopic
displays use linear polarization which has a disadvantage of contrast variation in the
left and right views depending on the orientation of the user’s head. Therefore, an
array of screens is the better alternative. However, this adds extensibility require-
ments on the display system. An ideal system would be one in which it is possible to
start with one or more screens and allow for the system to be extended to several screens.

Table 3.1 compares the commercially available 3D displays. The nVidia 3D vision
system offers the ability to either play a single video extended across as many as 9 screens
simultaneously or to play several separate videos on each screen. This is achieved by
coupling several graphics cards together. A single nVidia graphics card can play a stereo-
scopic video on 2 screens. by using OpenGL and nVidia Quadro cards, separate video
buffers for the left and right eye views can be written to independently. This means any
video representation format can be used with this display system by rendering two differ-
ent views. These qualities led us to use the nVidia 3D vision system for our remote vision
system. As we shall see, the current implementation only uses one screen. Extending
the system is left as future work but can be achieved with the present hardware.

3.4 Capture

The available capture hardware for this project were generic cameras. In order to
surround the operator with video of the proxy’s surroundings, it is required to have
a camera configuration that can capture video from several angles. This kind of
configuration is the opposite of a typical multiview capturing system in which multiple
cameras are oriented towards the same set of objects as shown in Figure 2.16. This
means that the user cannot perceive motion parallax with such a configuration. However
this is not a significant issue as the ability to look around is more important than
motion parallax in a teleoperation scenario. However, such a system would pose very
heavy requirements in terms of size, processing power and bandwidth. This would
significantly increase the delay and cost of the system.
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Stereoscopic

Monoscopic

(fis
h eye)

Monoscopic
(fish eye)

Teleoperator

Figure 3.1: Extending current stereoscopic remote vision system with a single fish-eye
camera and 2 additional screens for peripheral vision

For the above mentioned reasons, we opted for a stereoscopic approach instead of
multiview. In order to provide the viewer with a wider field of view, it is possible to
use a fish-eye lens with a single additional camera. Fish-eye lenses can increase the
field-of-view of cameras to up to 180◦. This would allow a wide field-of-view with
the addition of only one camera. Therefore, stereoscopic video would be available in
only one of the screens and the rest would display a monoscopic view of the proxy’s
surroundings. As the user looks around, the orientation of his/her head can be used
to change the orientation of the stereoscopic cameras with the help of actuators in a
manner similar to the operator’s neck movement. Thus, stereoscopic cameras coupled
with head pose detection can be used to provide nearly the same level of immersion
with much simpler hardware and lower delay. The current implementation only consists
of two cameras, the addition of the fish-eye camera is left as future work.

With stereoscopic cameras, the choice of representation format is between leaving
them in their original form as individual views, concatenating the views into a single video
stream, or converting to View + Depth format. A comparison of these formats is pre-
sented in Table 3.2. The View + Depth format which requires implementation of stereo
matching algorithm and entails added delay because of the additional processing required
before the video can be compressed. Another disadvantage of using View + Depth for-
mat is caused by occlusion. Consider a scenario where the View + Depth format consists
of the scene as seen by the left camera and the depth map. Parts of the scene that are
visible to the right camera and occluded from from the left view (an object behind an-
other) are not transmitted and the viewer sees this as a blank in the right view. One
workaround is to fill the resulting blank areas with neighboring content but the left right
views are still inconsistent which can confuse the operator and possibly decrease his/her

1 Computational complexity of calculating depth maps varies from as much as O(NN ) to O(NDlogD)
where N is the number of pixels and D is the range of disparity in pixels [12].
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Format Advantages Disadvantages

Individual
Views

+ No manipulation
required at capture

– Each view needs to be compressed
individually

+ Higher compression
ratio than concatenation
possible

– Higher data rate than View + Depth

Concatenated + Only concatenation
required

– Higher data rate than View + Depth

+ Simple monoscopic
compression

View + Depth + Data rate 60% to 70%
of others [59]

– Disturbing artifacts from depth map
compression

– Depth needs to be computed1

– Objects occluded from transmitted
view can cause blank areas

Table 3.2: Comparison of stereoscopic representation format

performance. Therefore, it was decided to not use the View + Depth format. The choice
between the other two options (individual vs. concatenated views) is discussed later in
Section 3.5, as this choice is influenced by compression.

3.5 Compression

In the previous sections, many 3D representation formats were ruled out. The choice now
lies between compressing the two views individually or as a single concatenated mono-
scopic video. As mentioned before, the correlation between the left-right views is akin to
the temporal correlation between neighboring frames of a monoscopic video. Therefore,
similar techniques can be used to compress one view with respect to the other. However,
the left-right views are much more dissimilar than temporally neighboring frames, mak-
ing it harder to exploit this correlation. Further, as shown in Figure 2.18b, the gain by
compressing different views of a scene with respect to another increases with the number
of views. Most importantly, motion estimation is the most demanding algorithm for a
video encoder and takes up 60% – 80% of the total computation time [29]. Conseqently,
inter view disparity estimation can be expected to take up significant amount of com-
putation time. Therefore, we chose not to implement inter-view compression. Further,
this allows us to use concatenated views with monoscopic compression techniques.

As mentioned before, motion estimation requires a large amount of processing time.
In order to exploit temporal correlation with motion estimation and compensation,
the encoder must accumulate a certain number of frames, estimate the motion from
past and future frames and then transmit the resulting group of frames. Therefore, a
few frames must be buffered before any frame is transmitted. An investigation into
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Codec
Scene
Composition

Configuration
Bitrate
(kb/s)

MPEG-4 Still Default 3063
MPEG-4 Still Only I-frames 9549
MPEG-4 Motion Default 6136
MPEG-4 Motion Only I-frames 7702
MotionJPEG Still 11293
MotionJPEG Motion 9369

Table 3.3: Comparison of codecs for various configurations and scenes

the bitrates for different codecs with different scenarios. The resolution used was
640x480 pixels at 22 frames per second. FFmpeg package was used on an Ubuntu
9.10 machine to encode and transmit the video using the RTP protocol while mplayer
was used to view the video live on the same machine. The encoder was configured to
maintain the same quality of output video as the input with variable bitrate i.e. the
encoder varied the quantization parameter according on the complexity of the scene to
maintain the same quality as input. Further, the encoder was configured to use only
Intra frames. This means that no motion estimation was used and each frame was
compressed independently, or to use the default configuration with P and B frames. The
MotionJPEG2 codec which compresses each frame individually using JPEG compression
was also used for comparison.

The results are present in Table 3.3. The bitrate for MPEG-4 with Intra frames
and MotionJPEG does not change much between motion and still scenes. In fact it
was found to decrease because the compositional complexity of the scene decreased with
the moving object present in front of the camera. On the other hand, the bitrate for
default configuration doubles with motion. On an average, the bitrate for the default
MPEG-4 configuration was approximately 53.3% of that for MPEG-4 with Intra frames
and 44.5% of MotionJPEG. Finally, we decided to use the MPEG-4 codec with Intra
frames only. This has a bitrate advantage over MotionJPEG. Most importantly it is a
standard codec and by using libraries or software that supports the standards, we can
easily reconfigure the system to use different MPEG-4 configurations. As mentioned
before, using Intra frames reduces processing requirement and frame buffering delay at
the expense of bandwidth. The increase in bandwidth was found not to affect delay as
much as the corresponding buffering delay.

3.6 Transport

One important decision when designing a system that uses computer networks for
communication is that between TCP and UDP protocols. The TCP protocol offers

2 Please note that MotionJPEG codec is not specified by any standard so the specifics vary greatly
between software.
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reliability, congestion control and in-order delivery. However, it does so at the cost of
speed. In order to provide congestion control, TCP protocols increases speed until it
observes a collision upon which it reduces speed. It also requires that every packet be
acknowledged. Consequently, upon collision, the complete stream must suffer a delay
until an erroneous packet is retransmitted. UDP on the other hand, simply sends
packet with no congestion control and packet ordering is not preserved. It does offer a
checksum to ensure that the contents of the packet are not corrupted. Video streams for
teleoperation must suffer the minimum amount of delay possible. Additionally, many
video applications are error resilient, it may be possible to decode a frame if some parts
are corrupted. Further, a frame may be skipped over if a newer frame is already available.

Thus, real-time media systems3 require what is called application-level framing,
which implies that only the application has sufficient knowledge to decide what to do
when a network error occurs; it may chose to ignore the error, ask for a retransmission,
or use a lower-fidelity copy of the same data [49]. Thus, the transport protocol must
expose as much information to the application as possible. This is at odds with the
design of TCP protocol. Therefore, the UDP protocol is more suitable than TCP. For
the same reasons, it is commonly used for media streaming.

However, UDP lacks some features that are desirable for real-time media applications.
Sequence and timing information is important for real-time media applications to know
when a certain packet was transmitted in order to play the video in correct order and
to detect out-of-order or lost packets. For example, the decoder can use the timestamp
to ensure smooth playback of the video; thereby compensating for network jitter. The
Real Time Protocol (RTP) implements these features on top of UDP. It provides packet
sequencing which can be used to detect out of order or lost packets. In addition, each
RTP packet contains a timestamp which corresponds to the sampling instant of the first
byte of data in that packet. It also contains a marker bit that applications can set
for various purposes; for example to indicate that this is the last packet in the video
frame, so the receiver can start decoding. Therefore, we chose to use RTP over the UDP
protocol for our system.

3.7 High-Level System Architecture

So far we have selected a set of technologies to use:

• Display: nVidia 3D Vision

• Capture: Stereoscopic, Concatenated

• Compression: MPEG-4 with Intra frames

• Transport: RTP over UDP

The rest of this chapter discusses low-level design and implementation of the remote
vision system. Before doing so, it is important to establish the high-level flow of video

3 In this context, real time media systems are ones in which the receiver plays the media as it is being
sent rather than storing it for later use.



44 CHAPTER 3. DESIGN AND IMPLEMENTATION

Ethernet / Internet

Left 
Camera

Right 
Camera

FPGA
Single Board 

Computer
Remote 
Machine

Graphics 
Card

DisplayPLX Chip PCI

Figure 3.2: The flow of video from key hardware elements

through the remote vision toolchain. This is shown in Figure 3.2. The video is captured
with cameras capable of capturing in raw Bayer format at a resolution of 2500x1600
at up to 20 frames per second. The cameras allow configuration of several parameters
such as resolution, frame rate, white balance etc. via an I2C interface. The video
flows from the cameras to a Xilinx Virtex 5 FPGA where it can be converted into 16
bit or 32 bit RGB formats. Further, the two video streams from the cameras can be
concatenated at the FPGA. The FPGA interacts with the PLX 9056 chip via a local
bus interface4. The video is then available to the Single Board Computer (SBC) via the
PCI bus which contains a Celelron M 1GHz processor and 512MB of DDR2 memory.
The system runs the Ubuntu 9.10 operating system which uses the Linux kernel version
2.6.31. In addition the SBC supports communication with the 33MHz PC/104 (PCI) bus
and 10/100 Base-T Ethernet. Here, the video is processed and transferred via Ethernet
to the remote machine that runs Windows XP. On the remote machine, the teleoperator
can see the stereoscopic video on a 120Hz LCD monitor with the help of an nVidia
Quadro FX 3700 graphics card and LCD shutter glasses.

3.8 Cameras and FPGA

Figure 3.3 presents a high level view of the cameras and the video processing done at
the Virtex 5 FGPA before it reaches the SBC. The video from the cameras is output
in a manufacturer specific serial format. This is converted to 8 bit parallel format,
thereby reducing the data rate by a factor of 8. Also, Hsync and Vsync signals are
added before the video is available to the FPGA. The Hsync signal is high when a line
of pixels is being transmitted. It stays low for a short period where no pixel data is
transferred. Likewise, the Vsync signal is high during the duration of a meaningful
frame and low for a definite period between frames. Aside from synchronization,
the blank periods also serve other purposes. This blank period allows some time for
the cameras to integrate the pixel values from the sensors and perform Analog to
Digital conversion. It also allows for the receiving system to process the line or frame
before new data is available. These periods depend on the frame rate the cameras are
configured for. The camera adapt module principally preforms clock space conversion
between the FPGA and camera clock. As mentioned before, the cameras can be
configured via I2C to output the video at different resolutions. However, the output
video is always padded with dummy pixels to the highest resolution of 2500x1600.
The cameras were always configured to keep the frame size at a 4:3 width to height

4 Please note that although the author was actively involved in the design and testing of the VHDL
code for the FPGA, the author of this code was Hans Kanters (Philips Apptech)
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ratio. The dummy pixels are removed at the crop module. Further, the positions of
the cameras were adjusted to keep the horizontal and vertical misalignments to minimum.

The FPGA can be configured to forward the video coming from the cameras in
either its original Bayer format (discussed in Chapter 2) or in 32 or 16 bit RGB formats.
The 32 bit RGB format consists of 8 bits for each color channel and an additional
8 bits for the Alpha or transparency mask. In our case, this mask is always set to
a constant value. The 16 bit RGB format is called RGB565 which consists of 5 bits
each for the Red and Blue channels and 6 bits for Green. This means it represents
the Green channel with double the resolution of Red and Blue channels. As discussed
before, this is because humans are much more sensitive to the Green colour. Further, it
can also be configured to output the video for either the left or the right view or both
in concatenated form. Concatenation of images is performed in side-by-side format
rather than top-bottom format as top-bottom would require a complete frame to be
buffered at the FPGA or capture of left-right frames one after the other. Thereby
reducing the frame rate by half. Further, the resulting temporal variation between the
left-right frames could also cause motion sickness. The conversion from Bayer to RGB
formats is essentially a demosaicing process. The available processing power of the SBC
limited the resolution that could be compressed and transmitted. This led us to use an
averaging algorithm that combines 4 pixels in the incoming Bayer format into one RGB
pixel, thereby down sampling the incoming video. As a result, the maximum resolution
available at the SBC was 1024x768 pixels for each camera.

The processed video is then buffered at a FIFO with a depth of 16384 elements of
32 bits each. This buffering prevents data from being lost in case of differences in the
timing of transfer requests from software side. Further, the FPGA also detects a FIFO
overflow and indicates this error in its error register. Upon initiation of a subsequent
transfer, it clears up the FIFO and holds off until the next frame arrives. The PLX chip
communicates with the FPGA using a manufacturer specific local bus. The local bus
IO module is responsible for interacting with the PLX chip. It also exposes status, error
and configuration registers for its internal modules at different addresses accessible at the
SBC via the PLX driver. The author was actively involved in gathering requirements,
design, testing and debugging of the FPGA code. The actual development was carried
out by another team member. Therefore, the details of this system are abstracted from
this discussion. Instead, later sections focus on the rest of the toolchain.

3.9 Software Toolchain

The video is transferred from the FPGA to the SBC via the PCI bus. To enable this,
the FPGA board contains a PLX 9056 chip. PLX also provide corresponding drivers
for the Linux and Windows operating systems. A corresponding SDK is also provided.
Therefore, a user space application can obtain the video from the cameras. The rest of
the toolchain consists of compression, transport (streaming over RTP), decompression
and display. One advantage of choosing to concatenate the left and right camera views
is that we can use monoscopic compression techniques. Several software packages
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Figure 3.3: High level schematic of the remote vision system: Cameras and FPGA
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Package (De)Compr. Server Client Display License Library / Binary

mplayer X
(mencoder)

X Monoscopic;
Stereoscopic

GPL Binary

VLC X X X Monoscopic GPL Binary

FFmpeg X X X Monoscopic
LGPL
(partly GPL)

Library (libav-
codec) + Binary

gstreamer X X X LGPL
(partly GPL)

Library

Live555 X X LGPL Library

ccRTP X X GPL Library

Table 3.4: Comparison of software packages

exist that can be used for this purpose. This fits with our goal to maximize the use
of standard interfaces and applications as much as possible so that the project could
benefit from improvements in those applications while keeping it highly modular. These
packages are compared in Table 3.4. As shown, each of these packages solves a different
part of the puzzle.

These packages can be combined in several ways to create the complete toolchain.
In case of libraries, the video available at user space can directly be compressed and
transported. For example, libavcodec can be used to compress incoming video and
the resulting video transported with help of Live555 or ccRTP libraries that support
RTP streaming. Interfacing with software meant for binary distribution is not that
straightforward. Software like mencoder and VLC are fairly complex, and modifying
them to fetch data from the PLX driver is a daunting task. Further, linking together
these software with code to retrieve the video via the PLX API is not a modular approach
and does not present any advantage over using libraries. Often, they internally use
libraries like libavcodec and Live555. Typically, software like FFmpeg, mencoder and
VLC can encode and stream files or directly stream from a webcam. We came up with
a unique approach to make video available via the Video4Linux driver interface. Thus,
the cameras appear as webcams to any user space application. The several ways these
packages can be combined is presented below:

1. Video4Linux (video source) + VLC / FFmpeg (compression, server) + mplayer
(client, decompression, display)

2. libavcodec (compression) + Live555 / ccRTP (server) + mplayer (client, decom-
pression, display)

3. gstreamer (compression, server) + mplayer (client, decompression, display)
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Playback of stereoscopic video is not inherently present in mplayer but a patch is
available to add this capability. However, the patch was meant for an earlier release of
mplayer and was tested only under Linux. Therefore, it was considered risky to patch
mplayer and developing our own implementation to output stereoscopic streams using
OpenGL was considered as a fallback. However, the patch was applied successfully with
a few modifications. Moreover, mplayer was also used to locally display the captured
video. Amongst the above choices, the first combination was selected. This is because
it allowed for the structure of the software to remain highly modular by decoupling
compression and transport from the hardware and drivers. Further, it also exposed the
video from the cameras via a standard interface. This allows the system to be easily
usable for other applications. Moreover, it also allows for independent development and
testing of each part of the toolchain. FFmpeg was to be used for compression and server
as it allowed for more parameters to be easily configured. This completes the entire flow
of video from the PLX 9056 chip to the display at the teleoperation computer as shown
in Figure 3.4. Later sections discuss this toolchain in more detail.

3.10 Video Transport Driver

As shown in Figure 3.4, the video transport driver sits between the PLX driver and the
Video4Linux driver. This driver operates in user space while the PLX and Video4Linux
drivers are present in kernel space. Clearly, its main task is to act as a bridge between
the PCI and video streaming subsystems. It initiates the transfers of frames from the
PCI bus with the help of the API provided with the PLX driver and forwards it to the
Video4Linux driver. However, transporting video is not its only task. It also initiates
the set-up of the cameras and the several FPGA modules. Further, it performs error
checking and recovery for PCI transfers, FPGA and cameras. Therefore, it acts as
a central controlling module. This makes it the most important component of the
toolchain.

The PLX 9056 chip is a generic chip designed to be used for PCI cards. It
communicates with the local hardware (in our case the Virtex 5 FPGA) with a local bus
with separate 32 bit address and data lines. The chip allows for single or burst mode
transfers. In a burst mode transfer, a number of transfers from contiguous addresses
are performed after a single bus negotiation. Obviously, this significantly improves the
throughput. The bursts can either be of a fixed size (4 locations) or continuous. We
used continuous bursts for our system. Further, the can operate in Master, Slave or
DMA modes. In the master mode, the FPGA becomes the bus master and instructs
the chip to transfer data from given memory area on the FPGA to an address or a set
of contiguous addresses at the PCI bus. The slave mode is the exact opposite with the
master being on the other side of the PCI bus. As expected, in these modes, the master
is occupied for the duration of the transfer. Therefore, we used the DMA mode in which
the master places a description of the entire transfer in the registers of the PLX chip
and instructs it to start a transfer. An interrupt is raised when the transfer is finished.

The DMA transfers in turn can be performed in two modes. In the DMA Block
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Read and Write cycles continue...
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(b) DMA transfer from PCI to Local bus

Figure 3.5: Sequence of events for DMA transfers with Scatter-Gather lists.

mode, the master sets the PCI and local starting address, byte count and direction
and instructs the PLX 9056 chip to initiate the transfer. An interrupt is raised when
the transfer is complete. In the DMA Scatter/Gather mode, the master sets up blocks
of descriptors in the PCI or local memory. These blocks consists of PCI and local
addresses, transfer size, direction and location of the next descriptor block. The master
then enables the DMA Scatter/Gather mode (by setting a control bit in a register in
PLX 9056), writes the address of the first descriptor block and initiates the transfer by
setting another control bit. Figure 3.5 shows the chain of events that take place for a
DMA transfer involving the use of Scatter-Gather lists.

The drives provided by PLX allows for transfers to be made either into a contiguous
region of memory allocated by the driver itself, or into a user space virtual memory.
Virtual memory is a memory management technique where the actual physical memory
(in the form of RAM, Disks etc.) is abstracted from programs. The programs are given
what they perceive to be contiguous blocks of memory as working area and the actual
physical fragmentation of memory is abstracted from the programs. Further, the size of
a physically contiguous block of memory called a page, is fixed (4kB for x86) depending
on the architecture of the machine. Depending on fragmentation of memory, it may be
possible to allocate more than one page of physically contiguous memory. For example,
the kalloc function used by Linux kernel modules to dynamically allocate memory
allows up to 128kB (i.e. 32 pages) of physically contiguous memory to be allocated.
This process however may fail depending on the current memory fragmentation. Some
kernel modules attempt to allocate memory early on (as soon as they are loaded) to
avoid fragmentation but there is no guarantee that it will actually succeed. Therefore,
the PLX driver only allocates a single page (4kB) of memory for DMA transfers.

During the initial design and development of the project, individual frames from
memory were transferred and stored into bitmap files. For this, we used the PLX driver’s
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Figure 3.6: Call hierarchy of the different modules of the video transport driver

own memory for transfers using DMA block mode. For testing, the image data was
replaced with incrementing numbers at the FPGA. It was soon realized that the data
went missing periodically. This was caused because the time taken by the system to
schedule a new transfer was longer than the time taken for the the FIFO in the FPGA
to overflow. Therefore, we used memory allocated in the user space (and therefore non-
contiguous) memory of the size of a single frame to transfer a complete frame in a single
DMA transfer. As discussed before, in case of a FIFO overflow the FPGA holds off on
storing new data and it holds the transfer of any data to the SBC until a new frame
arrives. This ensures that each frame-length DMA transfer actually consists of frame
data. Further, after each frame, there is window of time during which the Vsync signal is
low and no new pixel data is transferred from the cameras. This blanking period allows
for the set-up time of the next DMA transfer. However, transferring a complete frame
at once requires the use of Scatter-Gather lists for the DMA transfer. This implies
that the driver must always analyze the virtually contiguous memory, and create the
Scatter-Gather list of physically contiguous pages before each transfer. As we shall see,
this causes some delay before the actual transfer commences. The PLX driver was later
optimized to overcome this problem.

3.10.1 Driver Architecture

Since the video transport driver interacts with all the preceding hardware components,
it is important to keep it highly modular. As shown in Figure 3.6, the driver is divided
into modules that interact with different hardware units. This allows for the driver to
be easily modified in case one or more underlying hardware components are changed.
The Camera and FPGA modules rely on the DMA transfer module for transport of
their data. They are further abstracted from the DMA Transfer module with the
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help of interfaces so that a change in the DMA module has minimum effect on them.
Further, the I2C interface of the cameras is dependent on the I2C communication
module in the FPGA. However, it is possible for the computer to interact with them
without the intervention of the FPGA. For example USB to I2C converters available
in the market can be used for this purpose. Also, a change of cameras may mean
using another bus to interact with them. Therefore, I2C is also kept as a separate module.

Each module has a startup, reset and shut down function which is generally called
by the global control function. Configuration registers in the cameras and FPGA have
their corresponding data structures which contain separate elements for its internal flags
and configuration bits. Corresponding interconversion functions are present to facilitate
interconversion between the 8, 16 or 32 bit registers and their corresponding structures.
This allows for easy configuration from a programmer’s perspective which is carried out
at the global control module. The driver takes simple configuration parameters at the
command line at startup, translates them into module specific configuration parameters
and configures the underlying modules accordingly. In addition, the driver ensures
graceful exit by stopping the underlying hardware components even when killed by the
user.

Error recovery is built into the driver. Apart from renegotiating the DMA channel
with the PLX driver and chip, the driver also resets or restarts the preceding hardware
components appropriately if a DMA transfer fails. However, with the timing optimiza-
tions and scheduling policy discussed later, recovery is not required. the current system
is capable of meeting the needed transfer deadlines at all times. The only possible excep-
tion is when an interrupt takes over the CPU at the instant when a new frame transfer
needs to be initiated.

3.11 DMA Transfer: Issues and Solutions

As discussed before, the video transport driver transfers frames by requesting the PLX
driver to transfer data across the PCI bus for it. Lets say that the system has been
transferring frames successfully for a while. Therefore, the timing of requests to transfer
new frames and the incoming frames matches. At the time when a new frame transfer
needs to be initiated, another process takes up the processor, it is possible that the PLX
driver may no get enough CPU time to initiate the new transfer. In this case, there is a
small window of time before the FIFO at the FPGA overflows and image data is lost. As
mentioned before, the meaningful pixel data is followed by dummy pixels (not forwarded
to the SBC) and with a blanking period where Vsync is low. Once new data starts to
come in, the time (TF ) taken to fill up the FIFO is the ratio of FIFO capacity (C) and
data rate (R) of incoming pixels.

R =
# Pixels ∗ Bits per Pixel

Vsync on Time
(3.1)
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Figure 3.7: A example frame being transferred through the local bus between the FPGA
and PLX 9056

TF =
C

R
=

16384 ∗ 32 ∗ (66.69− 3.6)

1250 ∗ 800 ∗ 16
(3.2)

= 2.067 ms

T = TF + Dummy Pixel Time + Vsync off Time (3.3)

= 2.067 + (66.69− 3.6) ∗ (800− 384)/800 + 3.6

= 38.474 ms

The total time T is then the sum of TF , time where lines with only dummy pixels are
transferred and the blanking period where Vsync is low. Note that the number of pixels
in the equations above is the number of pixels output by the FPGA in a full resolution
frame with no dummy pixels. This is because the data rate of actual pixels does not
change when the resolution is decreased. Instead, the actual pixel data is followed by
a time period where no data is available to be transferred. Equations 3.2 and 3.3 are
calculated at a frame rate of approximately 14.90625 fps with RGB565 format and
3.6ms is the duration for which the Vsync signal is low. These values are the same as
the ones used to record the waveforms in Figure 3.7. In this figure, the orange (top)
waveform corresponds to the Vsync signal and the green (bottom) waveform shows
activity on the local bus between the FPGA and the PLX 9056. More specifically, the
green waveform corresponds to the signal used by PLX 9056 to ‘hold’ of the bus. The
area with variation in this signal is caused by burst transfers. After transferring the
pixel data, the video transport driver requests for a new transfer and PLX 9056 holds
the bus until another 4kB of pixel data is transferred. The gray area corresponds to
variation in the hold signal in the past (recorded by using signal persist at the CRO).
As shown, the time taken to request a new frame varies a lot.

At the resolution of 2048x768 where dummy pixels (800 – 768 = 32 lines) are
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transferred for just 2.52 ms, this time reduces to just 8.19 ms. Please note that the
deadlines are not affected much by single view vs. side-by-side format as there are
separate FIFO’s for each camera. Therefore, we need to take care of this variation in
the time taken to start the transfer of a new frame and optimize the code to reduce
the time taken to perform cleanup at the end of a transfer and the time taken to start
a new transfer. As mentioned before, the PLX driver needs to analyze the user space
memory area passed by the video transport driver to calculate the scatter gather list.
This analysis primarily consists of finding out the actual physical addresses where the
allocated memory is fragmented. With the help of debug messages from the PLX driver
which are recorded along with timestamps in the kernel log, we found that the average
time taken by the PLX driver to compute the SGL was nearly 0.54 ms. As explained
later, the actual memory location wheres the frame transfer takes place is allocated by
the Video4Linux driver in kernel space and the video transport driver simply maps this
memory into the user space. This is one of the steps we took to remove the delay caused
by copying the frame from one place to another. The Video4Linux driver can allocate
several such buffers to transfer frames. However, once these buffers are allocated, their
memory locations never change.

Even more importantly, the PLX driver dynamically allocates memory to store the
SGL. Therefore, memory allocation failure can cause the driver to stop functioning.
Therefore, we can pre-calculate the Scatter-Gather list (SGL) and look up against the
starting address of the requested destination against an array of pre-calculated lists.
As we shall see, the number of frame buffers is very small so the search was a simple
lookup. Functionality to calculate and store an SGL was added to the PLX driver and
exposed via adding to the PLX API. The video transport driver requests recalculation
of SGLs at startup after it has mapped the buffers from the Video4Linux driver. As a
result, the average SGL computation time was reduced to 0.17 ms.

Another optimization was to speed up the notification of transfer completion to
the video transport driver. The PLX API allows the programs requesting a DMA
transfer to register for a notification after requesting a transfer. Requesting notification
essentially puts the requesting program on sleep until the transfer is complete. This
way, the program can start a transfer, work on something else for a while and when
its done, it can register for a notification and be woken up when the transfer is
complete. Of course, if the transfer is already complete, it will be woken up (i.e.
put in the list of runnable processes) immediately. In our case, the video transport
driver has nothing to do while the transfer is being made. This can change, for
example if some computer vision algorithm needs to be run on the received frame.
The problem was, that upon receiving an interrupt from PLX 9056 that the DMA
transfer is complete, the PLX driver did some cleanup activities and deferred the
notification process in the form of a work-queue. Work-queues are a feature available
for kernel modules for deferred work. This delayed the notification until the time
the module got a CPU slice under normal operation. By moving the notification into
the interrupt service routine, quick notification to the video transport driver was ensured.
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Another optimization made was the addition of recursive transfers to the PLX driver.
As mentioned before, each element of the SGL points to the next one, the last element
usually carries an indication that its indeed the last element. In this case, we modify
the last element of the list to point to the first one. This constitutes a never-ending
transfer which is only stopped with an abort instruction. This functionality is also
exposed via additions to the API. and the video transport driver also carries support to
initiate such a transfer.

Such a transfer mechanism poses a data integrity problem. Say, the PLX 9056 chip
is transferring to a memory location of the size of a single frame recursively. At the
same time FFmpeg is also reading the same location to be compressed. In this case,
the viewer will observe a tearing effect caused by the lower part of the frame being
older than the upper part. This is the same as the tearing effect discussed earlier.
This can be very disturbing to the user. Therefore, it must be ensured that the writer
writes to a different memory location than the reader. To solve this, we can allocate
a memory location whose size is a multiple of the frame size. The problem is that the
software has no knowledge about when PLX 9056 has finished writing at a specific
frame. The only straightforward way to ensure exclusion of the reading and writing
frame memories is to include some kind of marker in the frame to indicate a frame
number. The video4linux driver can then act as an arbiter by checking the frame
memories each time a read request comes and point the reader to the appropriate
memory. However, this kind of arbitration in the video4linux driver is left as future work.

The jitter in the time taken to schedule a new DMA transfer is caused by the Linux
scheduler. Once the PLX driver receives an interrupt indicating that the transfer is
complete, the video transport driver is put back in the list of runnable processes. Now
its up to the scheduler to give it a slice of CPU time. However, if there are higher
or same priority processes already running, the driver will have to wait in queue to
get some CPU time. The problem was alleviated to some degree by elevating the
static priority of the video transport driver to highest which is a nice value of -20
(-20 to 19) and a priority of 100 (100 to 139). Note that lower numbers mean higher
priority. However, the scheduler also dynamically changes process priorities. Interactive
processes are favored over batch processes. Interactive processes are essentially the
processes that spend longer time sleeping while waiting for the kernel to perform some
tasks for them. For example, waiting for an input from the keyboard. Clearly, the video
transport driver is also a highly interactive process. However, while playing the video
locally, mplayer also spends a long time asking the Video4Linux kernel module for new
frames or calling other kernel modules to display the current frame. In fact, mplayer
actually requests the next frame in a tight loop irrespective of the frame rate specified
by the video4linux driver. From the kernel’s perspective, both these processes are highly
interactive and their dynamic priorities are increased, causing the video transport driver
to sometimes miss its deadline to request a new frame, especially at the resolution of
2048x768, even when mplayer is started at lowest priority. Please note that scheduling
criteria are discussed in more detail in Appendix A.
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Therefore, simply running the video4linux driver at high priority was not enough to
solve the scheduling problem. Fortunately, the Linux scheduler also supports running
processes with different scheduling policies. Processes can be run as normal processes
(discussed above), using the round-robin scheduling policy or with FIFO scheduling.
Round-robin and FIFO scheduling processes have priorities ranging from 1 (highest
priority) to 99 (lowest priority). Notice that this range is higher than normal processes.
FIFO and round-robin processes are considered real-time processes and their CPU slices
are never expired (always active, see Appendix A), irrespective of the CPU time used
by them. Scheduling the video transport driver using the FIFO scheduling policy (using
the chrt command) at the highest priority, it was ensured that the driver got CPU
time until it willingly relinquishes the CPU or calls a kernel module. This is with the
exception of interrupts in which case the driver may lose one frame but will recover in
time for the next one.

The system was stress tested to ensure stability using the stress package to occupy
the CPU and also under normal circumstances by manually launching several programs
at once. The system is capable of transferring concatenated video at a resolution of
1024x384 and single video at a resolution of 1024x768. Concatenated video at the res-
olution of 2048x768 could not be used because the interconnect between the cameras
and FPGA could not support the required data rate. From the perspective of DMA
transfer, the PCI bus is capable of sustaining the data rates required for transporting
concatenated video at the resolution of 2048x768. As explained before, concatenating
the two videos does not affect the time window within which a new transfer needs to
be started. A comparative study of time taken by the system to reschedule the next
transfer is presented later.

3.12 Video4Linux Driver

Video4Linux is an interface used for video capture devices. It exposes a very rich set
of functionalities to the user applications that source the video from its API. It is not
meant as a method to actually retrieve the video from the hardware, rather it is only
meant to create a common platform from which any user space application can obtain
the retrieved video. It also presents a standard interface for applications to configure
the device such as changing channels for a TV-tuner, negotiate the video format, colour
space etc. It has become a de-facto standard for video capture devices and is used by
most user space programs to obtain the captured video. However, little documentation
is available for developing drivers with it. The author developed an interfacing driver
with the Video4Linux2 API.

As mentioned before, in order to avoid tearing, frames must be buffered such
that the reader and writer work with separate frames. Video4Linux2 provides a
method for user space applications to request and return frame buffers shown in
Figure 3.8. Initially, applications retrieve information about several capabilities of
the device and the driver such as resolution, colour format, frame rate and number
of available frame buffers. If several options are available, such as multiple colour
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Figure 3.8: Video4Linux frame transaction with user space applications

formats, the application may request one of them. Once all negotiations are com-
plete, applications can request to use a frame buffer (dequeue), processes it and
return it back (queue) to the driver. While a frame is queued, the driver is free to
write a new frame at that location. The API only requires that a driver implement
these functions, the actual management mechanism for frames is left up to the developer.

Several schemes were considered for managing the frames. It was chosen to use a
Circular Queue for management of frames. In this case, the driver acts as an arbiter
between the video transport driver and compression and display applications. It main-
tains variables pointing to the position of the writer (video transport driver) and reader
(FFmpeg or mplayer). The queue management scheme is described below:

• Initially, the writer position is initialized as one frame ahead of the reader.

• When the writer/reader requests a new frame buffer, it is given the next location
in the queue unless the next location is occupied by the reader/writer.

• If the next location is occupied, the writer/reader is given the same location.

Although this scheme is inherently simple, it adheres well to our goal of minimizing
latency while keeping the underlying computations very lightweight. The reader is
always much faster than the writer. A new frame is written only when one is available
from the hardware. Mplayer attempts to output a new frame as fast as possible. In
case of FFmpeg, it proceeds at a rate of 100fps which is specified by us. However,
it only compresses and streams the frames at a rate of 22fps. Timing measurements
of this FIFO showed that on an average, the time taken between the video transport
driver requesting the next write position and FFmpeg requesting a new buffer is
approximately 97µS. Therefore, a negligible delay is induced at this step. The number
of buffers does not affect the system. The only exception to this case would be when
the queue is full, in which case the writer continues to write at the same location again.
In this case, when the reader does catch up, the user would see a jerk in the video as
some time would elapse between the one but latest and the latest frames. Therefore,
the queue is usually kept at a size of 5 frame buffers. Figure 3.9 shows the circular
queue with a normal case where the reader is immediately behind the writer and the
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Figure 3.9: Circular queue used for managing frame buffers

case where the reader is lagging.

Further, latency was also minimized with the help of memory mapping. Drivers can
provide data to applications by means of two methods. In the first case, the writer
writes to the driver as if it were writing a file. This means that the video transport
driver must first cache a frame locally, and then write it to the Video4Linux driver
where it is stored again. Then the reader reads this frame into its own local memory
with a read call. Clearly, this will significantly increase latency as the frame is copied at
each step. Instead, we used memory mapping to transfer frames. The writer and reader
map the memory allocated by the video4linux driver into user space. DMA transfers
are performed directly into the buffers and the reader can use the frame directly. The
frame buffers themselves are allocated at initialization time to avoid any problems later
because of memory allocation failure. Further, as the queue-dequeue mechanism was
unnecessary for the writer, we implemented a custom communication mechanism which
only requested the next location to write.

3.13 FFMPEG and mplayer

As discussed before, FFmpeg was used for compression and streaming of the stereo-
scopic video. It is one of the leading open source projects for media applications and
is its library for compression and decompression is widely used in other projects. We
configured FFmpeg to use video4linux as input. Although applications using the
video4linux API are expected to negotiate the frame rate with the driver, it was found
that this is hardly the case. Configuring FFmpeg to source the incoming video at a high
frame rate of 100fps ensures that the latency is minimized. An asynchronous method
to transport frames with video4linux as an arbiter is not theoretically the ideal solution
but it ensures a high degree of modularity. Therefore, it was chosen above other, more
tightly coupled approaches. Further, it was configured to compress and steam the
stereocopic video using the RTP protocol. MPEG-4 compression with intra frames only
was used. As discussed earlier, this minimized the processing requirement and reduced
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latency caused by the need to buffer multiple frames. FFmpeg also allows control over
the level of compression by specifying the quantization parameter. Alternatively, it
can also configured to output the same quality video as input. It was found that the
processing requirement for compression was quite high and FFmpeg consumed most of
the available CPU time. To ensure smooth operation of the more time critical DMA
operation, we ran FFmpeg at the lowest priority.

On the teleoperation machine, mplayer was used to display the video. As mentioned
before, we used OpenGL output with quad buffers to output separate left and right
views at the graphics card. The decoded frame is first split into its constituent left and
right views. Next, these are written into appropriate buffers followed by an instruction
to draw these buffer. This effectively swaps the two double buffers, allowing the graphics
card to display the contents of the front buffers while the back buffers are again written
with the contents of a new frame. In order to minimize latency, we disabled caching of
frames at mplayer.
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Case Study 4
“A subtle thought that is in error may yet give rise to fruitful inquiry that can establish
truths of great value.” – Isaac Asimov

In the previous chapter, the toolchain for a stereoscopic remote vision system
was described in detail. In this chapter, a case study comparing the timing and delay
effect of the several aspects of the toolchain is presented. Further, we present a study
of user performance in a teleoperation-like scenario while varying several parameters.

4.1 DMA Transfer Time

After configuring the FPGA and cameras, the video transport driver spins in a tight
loop performing the following tasks:

1. Request a new frame buffer from the Video4Linux driver. This is the memory
location where the frame will be transferred.

2. Request the PLX 9056 chip to transfer a new frame (via the PLX Driver). This
involves the PLX driver computing the Scatter-Gather list first. Once its done, the
first address in the SGL is sent to PLX 9056 and the transfer begins.

3. Request the PLX Driver to notify it when the transfer is complete. This task does
not influence the timely behavior of the system as the transfer proceeds independent
of it.

4. Receives a notification that the DMA transfer is complete.

This process is illustrated in Figure 4.1. Please note that the figure does not include
step 3 shown above because it does not influence the timely behavior of the system. The
time between the end of the transfer of a frame and the beginning of the next transfer

PLX 9056

Video4Linux 
Driver

Frame 
Buffers

1. Write Position Request2. DMA Request

Frame Data

Video 
Transport 

Driver
PLX Driver

3. DMA Complete

FFMPEG
Frame 

Request

Figure 4.1: Sequence of events involved in DMA transfer of a frame
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Figure 4.2: Comparison of time taken for Video4Linux Driver to give the next frame
buffer with and without FFmpeg

decides whether the FIFO overflows and therefore a whole frame is lost. Therefore, the
time taken for these tasks is compared here for different scenarios.

Figure 4.2 compares time taken by the Video4Linux driver to give the next frame
buffer to be written. These measurements are taken at the video transport driver.
A timestamp was recorded before and after the execution of this function. Adding
FFmpeg to the equation increases the average time taken for this function from 7.59µS
to 14.09µS. Please note that these values are so small that they may be affected
by variations in the execution time of the function used for generating timestamps
(gettimeofday). Nevertheless, the plots do show some trends. The high peaks at the
beginning and end of the plot are caused by the start and end of FFmpeg which requires
the Video4Linux driver to do some initialization and cleanup oriented tasks. A call
from the video transport driver should preempt the call from FFmpeg, but the context
switch time is still involved. Further, some parts of the Video4Linux driver involve
holding spinlocks for a short duration. Holding spinlocks disables kernel preemption.
Spinlocks are lightweight semaphore-like constructs available to kernel modules to
preserve atomicity of its operations where required. The spinlock and context switch
times may cause such peaks.

Execution time measurements taken at the Video4Linux driver are consistent with
the above explanation. When the function to give the next write position has started, it
means that any spinlocks being held have already been released; and the context switch
has also taken place. So the time spent inside this function is expected to remain nearly
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Figure 4.3: Comparison of optimized transfer with FIFO scheduling and unoptimized
transfer with normal scheduling at highest priority

constant. This was indeed the case, and the average execution time was found to be
3.2µS irrespective of whether FFmpeg was running or not.

As discussed in the earlier chapter, time taken by the PLX driver to compute the
Scatter-Gather list was also measured. For the unoptimized driver, the average time
taken was 0.54ms and that for the optimized driver was 0.17ms. These values were
measured at the resolution of 1024x384. This time increases with frame size and was
quadruple (2.16ms) for the resolution of 2048x768. For the optimized driver, this time
remained constant as there is no additional load with a larger SGL. Please note that
this is the time spent inside the function that calculates the SGL, other tasks are also
performed at the beginning of a DMA transfer and the average total time between
receiving a request for DMA transfer from the video transport driver and actually
initiating the transfer was found to be 0.61ms (2.86ms for 2048x768) for the unoptimized
and 0.25ms for the optimized driver. Once again, this the actual time taken by the
driver, and does not incorporate the additional delay caused by scheduling, context
switches and spinlocks.

Figure 4.3 shows the comparison of unoptimized DMA transfer with high priority
with normal scheduling policy and optimized transfer with FIFO scheduling policy.
Both the plots were recorded with FFmpeg running. Further this is the total time for
one frame i.e. it incorporates all the steps mentioned above. The effect of switching
to the FIFO scheduling scheme is clearly visible here and the variance is reduced
from 3207372µS2 to 851.52µS2. The initial period of low values is for the time period
when FFmpeg was not started yet and shows how even normal scheduling policy with
unoptimized driver is sufficient at low CPU load.
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Figure 4.4: DMA transfer time with and without FFmpeg

Figure 4.4 shows the time taken to transfer a frame with and without FFmpeg
running. The transfer time referred to here is the time starting at step 2 and ending
with step 4 in the above list of tasks. These measurements were taken with a frame rate
of 14.90625 frames per second at a resolution of 1024x384(concatenated views) with the
optimized driver running with FIFO scheduling policy. Unless mentioned otherwise, the
conditions for further measurements are the same. The measurements were made with
the help of timestamps (gettimeofday function) taken just before step 2 and at the end
of step 4 in the list of tasks above.

Note that the average case transfer time with FFmpeg is much lower than that
without it. This is because the measurements are taken from the time a transfer request
is initiated and the time it completes. Consequently, the time taken waiting for the
new frame data to arrive is also incorporated here. Further, transfer taking a long time
sometimes delays the next transfer as well which shows up as taking less time than
normal. This does not affect the quality of our measurements as variation in the time
is what matters and the worst cases can cause FIFO overflow. The variance of transfer
times without FFmpeg was 493.6µS2 and that with FFmpeg was 1230.7µS2.

Note that it is difficult to deduce how late the actual transfer was from these
graphs. Longer transfer time may mean that the transfer was rescheduled faster
than the average case. Therefore, it spent longer time waiting for the data to arrive.
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Figure 4.5: Frame transfer at the local bus interface at the resolution of 1024x384 (non-
optimized and normal scheduling, 10mS per division)

Figure 4.6: Detailed Frame transfer at the local bus interface at the resolution of
1024x384 (non-optimized and normal scheduling, 2mS per division)

Or it could mean that the transfer was completed but spinlocks and context switch
elongated the time taken for the video transport driver to be notified that the transfer
is complete. The opposite applies to shorter transfer times. Therefore, it is not possible
to tell how long the actual transfer took, or how late the transfer was. The trans-
fer was analyzed from the perspective of the FPGA to find more meaningful information.

Figure 4.5 shows the transfer of a complete frame for the non-optimized driver with
normal scheduling scheme. The orange waveform shows the Vsync signal. This signal
is high when a frame is being transmitted and low for 3.6ms in between frames where
no data is transmitted. Recall that dummy pixels are transmitted when the cameras
are configured to operate at a lower resolution. The green (bottom) waveform shows
activity on the local bus between the FPGA and the PLX 9056. More specifically, the
green waveform corresponds to the signal used by PLX 9056 to ‘hold’ of the bus. The
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Figure 4.7: Frame transfer at the local bus interface at the resolution of 2048x768
(Optimized and FIFO scheduling, 200µS per division)

Resolution
Request Write

Posn.
Init Transfer

Notify Tr.
Complete

Time Window
Remaining

Time

Optimized Driver:

1024x384 3.2µS 0.25mS 0.1mS 38.74mS 38.387mS

2048x768 3.2µS 0.25mS 0.1mS 8.19mS 7.837mS

Unoptimized Driver:

1024x384 3.2µS 0.61mS 0.34mS 38.74mS 37.787mS
2048x768 3.2µS 2.86mS 0.34mS 8.19mS 4.987mS

Table 4.1: Actual time taken for different tasks involved in transferring a frame to the
frame buffers in Video4Linux Driver

area with variation in this signal is caused by burst transfers. The gray area corresponds
to variation in the hold signal in the past (recorded by using signal persist at the CRO).
As shown, the time taken to request a new frame varies a lot. This data was recorded
at a resolution of 1024x384 with side-by-side stereoscopic format at a frame rate of
14.90625fps. Figure 4.6, shows a CRO recording taken at the same conditions at a
higher time resolution of 2ms per division. In this recording the worst case time time
taken to reschedule a frame transfer is approximately 16.86mS. Conversely, figure 4.7
shows a similar plot taken with video being transferred at the resolution of 2048x768.
In this case, FIFO scheduling policy is used along with the optimized driver. In this
case the worst case time to reschedule a transfer is just 964µS. This clearly shows how
using FIFO scheduling improves the timely behavior of the system.

The time window during which a new transfer must be started three factors: frame
rate, frame size and how much data is buffered at the FIFO in the FPGA. As shown
in Equation 3.3, this time is 38.474mS for the resolution of 1024x384 and 8.19ms for
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Figure 4.8: Variation of Data Rate with Quantization Parameter

2048x768. As explained earlier, this time is not affected if a concatenated or single view
is transferred. This means that this window is same as above for resolutions of 512x384
and 1024x768 respectively. Based on the above measurements, the amount of time spent
by the drivers performing different tasks is presented in Table 4.1. The table lists these
events in the order of occurrence from left to right. The actual transfer takes place
in between transfer initialization and notification that the transfer is complete. Please
note that the times mentioned here are the average actual times taken performing these
tasks. They do not include the time spent during scheduling, context switches and while
waiting for spinlocks to be released. Therefore, some of the remaining slack time is used
up because of these overheads and the total time to schedule a new transfer comes to
a maximum recorded value of 0.964mS for optimized driver with FIFO scheduling and
16.84mS for normal scheduling with unoptimized driver. Therefore, maximum recorded
times of 0.817mS (FIFO scheduling policy, optimized driver) and 15.887mS (normal
scheduling policy, unoptimized driver) are used for these overheads.

4.2 Effect of Compression

Data rate and end-to-end delay were measured while varying the Quantization Pa-
rameter of compression at FFmpeg. Recall that Quantization Parameter typically
varies from 1 to 51 for MPEG-4 compression and increases the compression ratio at
the expense of output quality. Figure 4.8 shows the variation of data rate with respect
to QP. As shown by the trendline (black), data rate nearly decays as a power of the
Quantization Parameter. Data rate was available directly from FFmpeg but measuring
delay was not so straightforward.



68 CHAPTER 4. CASE STUDY

Figure 4.9: A screenshot depicting method for measuring delay

As the reader is aware by now, the complete remote vision system consists of
many components much of which cannot be modified. Therefore, measuring the
end-to-end delay is a daunting task. For example, it may be possible to measure
delay from the point at which the viedo enters the video transport driver with the
help of timestamps. On the other end, mplayer can be modified to read and compare
these timestamps. Network Time Protocol (NTP) can be used to synchronize the two
computer’s own time. However, we still cannot account for the delay from cameras,
processing done at FPGA, time taken for video to reach the screen etc. Further,
this would involve modifying several software packages to take these measurements.
Therefore, a better approach is to measure the delay of the system as a black box. This
was done by pointing the cameras to the screen at the teleoperation machine. The
screen shows a timer with millisecond accuracy. A video of the screen as seen by the
cameras is streamed to the same screen with the remote vision system. Finally, the
contents of the complete screen are recorded into a file using software. The difference
between the actual timer and the timer as seen by cameras which shows up in the
streamed video then yields a round trip delay of the system. A image showing the ac-
tual timer along with the video of the timer as seen by the cameras is shown in Figure 4.9.

The video shown in this figure is in its original side-by-side form for clarity. The
actual measurements were taken with the video being shown stereoscopically. One
precaution taken was to measure the delay only at times when a new frame arrives
(change in the timer value is observed in the video). This was done because a frame
persists at-least for a time of of 1/frame-rate which is approximately 67.08ms. If a
reading is taken at a random instant, anything from 0 to 67.08ms may be added to
the actual measurement. Since the refresh rate of the screen is 60Hz, the accuracy of
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Figure 4.11: Variation of Delay with Data Rate

these readings may also suffer from the time period taken to refresh the screen 1/60 =
16.66ms. Therefore, 16.66ms is our margin of error.

In order for these readings to be statistically accurate and independent of any jitter
in delay, an average of 10 measurements was taken for each QP. However, the individual
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Figure 4.12: Photograph of a user test

readings were not found to vary much. This kind of measurements may suffer from
discrete behavior of the system, such as the refresh rate of the screen and untimely
behavior of software may cause inaccurate measurements. However, the main goal is to
compare the effect of compression on delay and not to establish highly accurate delay
measurements. This task is done well by our black-box measurements and the results
are shown in Figures 4.10. As expected, delay decreases as we increase compression.
This is not only because of decreased network latency but also because less processing
is required as QP is increased[34]. Further, Figure 4.11 shows the variation of Delay
with Data Rate. As shown by the trendline, delay of the system approximately shows a
polynomial growth with the data rate.

Increasing compression has a two fold effect of decreasing delay while also decreasing
the quality of the video. Therefore, it makes an interesting study to see how users
perform when these factors are changed together.

4.3 User Survey

As explained earlier, several factors may affect the performance of a teleoperator. The
focus for this thesis has been to maximize teleoperator performance. A survey with
performance of users was taken while varying delay, depth perception and video quality.
For this, the users were presented with a teleoperation-like scenario in which the users
were required to perform a task while using the developed remote vision system. Several
targets were marked on a table and the cameras were placed overlooking the table.
Next, the users were asked to place a mark as close to the target as they could with
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User # Average User Error (cm)
297.8 ms 364.88 ms 431.96 ms 499.04 ms

1 0.48 0.52 0.88 3.4
2 0.67 0.88 1.78 3.16
3 0.18 0.22 0.32 0.78
4 0.36 0.44 0.36 0.44
5 0.26 0.3 0.56 0.78
6 0.21 0.34 0.36 0.9
7 0.82 0.94 1.26 1.72

Table 4.2: User Test results for various delays(ms)

the help of a magic marker while viewing the table and their own arms with the help
of the stereoscopic remote vision system. The distances from the placed marks and
the targets were then recorded. The delay and compression (QP) were then varied to
measure the corresponding variation in user performance. The users were also asked
to perform the same test while viewing the same scene with a monoscopic video feed.
Figure 4.12 shows a user performing the test. The photograph shows the stereoscopic
video on the teleoperation machine on the right and the targets on the left.

Before performing the actual test, the users were asked to practice the task until
they were comfortable with the scenario. This made sure that the test results were
not affected by changes in user’s proficiency as they repeated the same task. The test
was performed with 7 adult users. Further, in order to keep the results statistically
accurate, every test was performed 5 times for each variation of a parameter and the
resulting measurements were averaged. Delay was varied by buffering the frames and
therefore in steps of 1/frame-rate (67.08ms). The based delay is derived from the value
of delay for QP value of 1 from the previous section. The video resolution was 512x384
stereoscopic (i.e. 1024x384 resolution of actual video) for all cases. Quantization
Parameter was kept constant at 1 throughout the experiment. Table 4.2 shows the
result of this test. Note that lower values signify better accuracy. A shown in the table,
the accuracy of users for the same value of delay varies a lot. User performance can vary
a with a lot of factors such as their visual acuity, overall dexterity, concentration etc.
However, the overall trend still shows a pattern. In general, accuracy decreases with
delay. This was expected. We are more interested in the variation of accuracy with delay.

In order to derive more definitive values from the recorded user accuracies. In order
to find a norm amongst all the users, the minimum (most accurate) was subtracted
from each value. Followed by division from the range of the user’s error (maximum -
minimum). This normalized each user’s average error as values ranging from 0 to 1.
Therefore:

Normalized Error =
Error−Minimum Error

Maximum Error−Minimum Error

This normalized error was then averaged across all users for every delay. The resulting
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Figure 4.13: Variation of Normalized user error with Delay

User # Average User Error (cm)
1 2 4 8 16 32

1 0.48 0.5 0.3 1.1 1.06 1.66
2 0.67 0.68 0.45 1.04 1.35 1.6
3 0.18 0.21 0.15 0.35 0.46 1.83
4 0.36 0.1 0.26 0.3 0.44 0.74
5 0.26 0.32 0.22 0.18 0.2 0.8
6 0.21 0.18 0.13 0.17 0.23 0.94
7 0.82 0.78 0.64 1.34 1.73 2.1

Table 4.3: User Test results for various levels of Quantization Parameter (compression)

variation is plotted in Figure 4.13. As the figure shows, accuracy does not scale linearly
with delay and decreases more rapidly for higher values of delay.

Another parameter for user accuracy is the quality of video. The level of com-
pression (varied with the Quantization Parameter) is an important factor affecting
video quality. However, it also affects data rate and delay. Variation of delay with
quantization parameter has been discussed in the previous section and delay was found
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Figure 4.14: Variation of Normalized user error with Quantization Parameter (compres-
sion)

User # Stereoscopic Monoscopic

1 0.48 0.98
2 0.67 3.12
3 0.18 0.38
4 0.36 1.8
5 0.26 1.16
6 0.21 0.92
7 0.82 3.46

Table 4.4: Comparison of user error between monoscopic and stereoscopic video

to approximately decay as a power function of QP. However, as shown above, user
performance improves with decreasing delay. The overall effect should be such that
there should be an optimum value where user performance can be maximized. For
this reason, compression is an important tradeoff that needs to be made to optimize
user performance and was explored during this survey. During the initial testing of
the system, it was found that users were much more comfortable in the lower range
of QP. So the user survey was performed with QP changing as a power of 2 in order
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to have better resolution of results in the lower range of QP. The results are shown in
Table 4.3. The same normalization method was used for the obtained results as well.
As can be seen from Figure 4.14, the optimum value for compression was found at the
Quantization Parameter of 4.

Finally, users were also asked to do the same task while viewing a monoscopic video
feed. Measurements were taken in the same conditions are the base case for delay that
is, a delay of 297.8ms and QP of 1. The results comparing the error in placing marks for
monoscopic as compared to stereoscopic case with delay of 297.8ms is shown in Table
4.4. The results were quite encouraging, the average error was 3.83 times for monoscopic
as compared to stereoscopic video.



Conclusion and Future Work 5
“The true delight is in the finding out rather than in the knowing.” – Isaac Asimov

5.1 Conclusion

Teleoperation is a a field of technology places high demands on the underlying system.
Not only should a teleoperation system create a sense of presence at the remote location,
it must also allow fluid control of actuators at the remote site. This makes delay a key
factor for performance of the teleoperator.

Several methods were explored for capture, compression, transport and display of 3D
video. For capture, very large arrays of cameras have been used to capture multi-view
video. Compression of the resulting video streams may involve the use of technologies
that stem from temporal correlation used in monoscopic video and from computer
graphics. Much of these technologies involve a high amount of processing power and
bandwidth which conflicts with the goals of teleoperation.

After exploring and exhaustive set of technologies pertaining to remote vision, the
set of technologies was pruned according to the requirements derived from factors
of human comfort for 3D video and performance in teleoperation. By doing so, this
report presents a qualitative analysis of 3D remote vision technologies. The selected
technologies attempt to make the best of the limited resources of an embedded system.
As hardware gets smaller and more powerful, more computationally intensive methods
may become feasible. This research, analysis and decision process can be re-used in the
future to create better 3D remote vision systems.

The report also presents a study of delay and compression on teleoperator perfor-
mance. As per the knowledge of the author, a comparative study of these parameters
for such systems is not present in literature. As discussed earlier, increasing compression
has the dual effect of reducing video quality and reducing delay. These factors reduce
and improve teleoperator performance respectively. Therefore, tradeoff was made
between video quality and delay based on the results of a user survey.

The stereoscopic remote vision that has been created can be combined with robotic
arms and mounted on a wheelchair. The resulting system can be used to remotely assist
disabled individuals perform daily tasks, improving their quality of life.

75
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5.2 Future Work

The current system only utilizes two cameras. As discussed earlier, adding a third
camera to the system will allow for a monoscopic field of view of 180◦. The 3 video
feeds can be combined the same way as the two current camera views. The resulting
video would need to be transformed to remove lens distortions which can be done at
the client side where ample processing power is available.

As mentioned earlier, the display system was selected while keeping extensibility
in mind. Presently only one screen is used but the display system can support up to
9 screens simultaneously. As a first step, two more screens can be added on each side
to create a curved display system to surround the teleoperator with video from the
remote environment. The author expects that such a system would increase the sense
of presence for the teleoperator. The two additional screens would show monoscopic
video from the third camera while the center screen shows stereoscopic video. Such a
system would enable the operator to use depth perception to perform tasks while being
aware of the surroundings.

Head tracking can be used to capture the orientation of the operator’s head. This
information can be sent to the remote site and used to turn the complete camera setup
towards the orientation intended by the operator.

As discussed before, the current system requires that each frame must be individually
requested for transfer over the PCI bus using DMA. Support for continuous transfers
was also added to the drivers. This makes the PCI chip continue to transfer data over
the PCI bus to the same memory location repeatedly. Therefore, a memory area with
the capacity of multiple frames can be used to transfer frames. When one transfer is
complete, the chip simply starts over. This will alleviate the several real-time issues
pertaining to this system.

However, by doing so, the software is no longer aware of the status of the transfer. If a
certain are is being written by the chip while the same area is being used for transmission
to the teleoperation machine, the operator will perceive a tearing effect where part of the
frame is new and the rest is an older frame. In order to avoid this, markers need to be
placed on each frame so that the Video4Linux driver can poll the locations corresponding
to these markers and prevent reading of the memory location corresponding to frame
being currently transferred over the PCI bus. Implementation of this functionality is
also left as future work.
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Linux Scheduler A
The scheduler for Linux 2.6 is much more sophisticated than earlier versions and is highly
scalable (O(1)) with the number of processes. Most importantly, it differentiates between
interactive, batch and real-time processes. It is a priority based preemptive scheduler.
Higher priority processes can preempt lower priority processes i.e. when a higher priority
process becomes runnable, it can replace the currently running process. Moreover, Linux
2.6 is a preemptive kernel which means that a process running in kernel mode (i.e. some
kernel module is servicing its request), it can be preempted by another process while it
is in the middle of a kernel function [11]. Priorities of conventional processes vary from
100(highest priority) to 139. Further, priority of a process affects the time quantum
assigned to it:

QB = (140− PS) ∗ 20 if PS < 120

= (140− PS) ∗ 5 if PS ≥ 120

Where QB is the base(initial) time quantum(in ms) and PS is static priority. Note
that the kernel modules servicing a request inherit the priority of the calling process.
Interactivity of processes is determined by their behavior. If a process waits for I/O
from a kernel module, such as waiting for a keystroke, it is considered interactive and it
is considered important to reduce the latency for such processes. While the priority of a
process specified by nice or renice contributes to its initial or static priority, the scheduler
calculates a dynamic priority based on the behavior of the processes. If a process sleeps
a lot because of I/O calls (interactive), its dynamic priority (PD) is raised according to:

PD = max(100, min(PS −Bonus+ 5, 139))

Here the Bonus is calculated based on the time spent sleeping for I/O. Further, a process
is considered ‘interactive’ if

PD ≤ 3 ∗ PS

4
+ 28

Therefore, it is much easier for process with high static priority to be considered inter-
active. Process starvation can occur when higher priority processes lock out the lower
priority processes from getting any CPU time. In order to avoid this, the scheduler keeps
two lists of runnable processes: active and expired processes. Active processes are those
which have not yet exhausted their time quantum. Expired processes are those which
have finished their time quantum and are not run until all active processes expire. This
is when the interactivity criteria comes in. Active batch processes that have finished
their time quanta are expired. On the other hand, active interactive processes remain
active because the scheduler refills their time quanta. Active interactive processes are
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moved to the expired list only when the eldest expired process has waited for long time
or if one of the expired processes has higher priority. This ensures that the processes are
not starved while reducing latency for interactive processes.

Processes can be run as normal processes (discussed above), using the round-robin
scheduling policy or with FIFO scheduling. Round-robin and FIFO scheduling processes
have priorities ranging from 1(highest priority) to 99(lowest priority). Notice that this
range is higher than normal processes (100 to 139). FIFO and round-robin processes
are considered real-time processes and are always kept active. Further, a real-time is
replaced with another process only when:

• It is preempted by a higher priority real-time process.

• It is put to sleep because it performed a blocking operation (called a kernel func-
tion).

• It is stopped or killed.

• It is a round-robin real-time process has used up its time quantum.

• It relinquishes the CPU on its own.

Further, the nice or setpriority system calls when used for a round-robin process
priority change the length of its time quanta rather than its priority. The scheduling
policy and priority(of real-time processes) can be changed with the sched setparam and
sched setscheduler system calls or with the chrt command.
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