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A B S T R A C T   

Tropical Cyclones (TCs) are singular storms causing intense wind, large waves, extreme water levels, and heavy 
rainfall. TCs prove every year to be one of the most destructive natural phenomena worldwide. The quantitative 
assessment of the hazards resulting from TCs (i.e., flooding and extreme winds) is challenging since satellite data 
are only available for recent decades, whereas older historical observations are incomplete and less accurate. In 
addition, long-term prediction through numerical weather forecasting is still limited. This often results in large 
uncertainties in the definition of TC hazards associated with events with longer return periods or in areas 
infrequently impacted by TCs. Even when this information is available, for example through statistical sampling 
of synthetic TC tracks, the numerical modelling of the associated hazards for all the different TC conditions can 
lead to computational costs which are often infeasible. Several methodologies that overcome the issues of ac-
curacy and computational efficiency currently exist, but these are not generically applicable, and they tend to 
focus on specific areas only, for example where TCs typically make landfall. The main contribution of this paper 
is a novel methodology for the estimation and analysis of TC hydro-meteorological conditions and induced 
hazards. The method is generically applicable and maximizes accuracy while accounting for computational ef-
ficiency. Our approach identifies a smaller but representative set of TC tracks (RTCs) that preserves the infor-
mation about extremes and the frequency of events of the larger population. The method is successfully applied 
and validated in a case study in the Bay of Bengal, using a set of synthetic TC tracks representing 1000 years of 
TC climate. For the best-performing configuration, the required number of scenarios and associated computa-
tional costs were reduced by 90% while maintaining accuracy in the simulated offshore storm surges, significant 
wave height, and windspeeds typically within 10% of the prediction based on the original full set of scenarios. 
This method is globally applicable and greatly improves the efficiency of TC-related hazard estimation, making it 
particularly valuable for areas with limited historical data.   

1. Introduction 

Tropical Cyclones (TCs), also called cyclones, hurricanes or typhoons 
depending on the region, are rotating systems of clouds and thunder-
storms, driven by heat transfer from the ocean, and triggered by pre- 
existing weather disturbances above warm tropical or subtropical wa-
ters (Emanuel, 2003). TCs often result in extreme flooding due to a 
combination of extreme storm surges, waves, and precipitation. Ac-
cording to Peduzzi et al. (2012), on average 87 TCs develop each year, of 
which 35 make landfall and can affect an estimated 1.53 billion people 

and a total asset value of US$ 16,218 billion (2010 values). However, TC 
induced hazards and associated risks vary significantly dependent on 
geographic area. Furthermore, future projections show that a combi-
nation of climate change impacts, including sea-level rise and a possible 
increase in TC intensity in some regions (Knutson et al., 2015), will 
further enhance the vulnerability of low-lying coastal areas to TCs. 
Therefore, regions that were rarely affected by TCs may also become 
prone to more frequent TC events (e.g., Dekker et al., 2018). 

The importance of understanding TC hazards and risks can be illus-
trated by the tragic event of Cyclone Nargis (2008), which made landfall 
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in the Ayeyarwady delta in Myanmar, a location along the Bay of Bengal. 
According to the International Best Track Archive for Climate Stew-
ardship database (IBTrACS; Knapp et al., 2018), which has been 
recording data since 1972, no TC had made landfall before at this 
location (Fritz et al., 2009). Local populations were also not expecting 
TCs in this area and were therefore unprepared. Areas up to 50 km 
inland flooded as a result of sustained wind speeds exceeding 210 km/h, 
in combination with storm surges of more than 5 m and wave heights of 
2 m (Fritz et al., 2009). An estimated 138,000 people lost their lives, 
mainly due to flooding. The occurrence and severity of Nargis could 
have only been predicted on short notice through operational fore-
casting, as TCs are singular and short-lived events (Chen et al., 2019; 
Magnusson et al., 2019). Nevertheless, TCs similar to Nargis could have 
been anticipated based on historical observations and experience in the 
Bay of Bengal through probabilistic assessments of TC activity (Lin and 
Emanuel, 2015) as well as the hydro-meteorological conditions and 
hazards resulting from TCs. Note that in this paper we refer to 
hydro-meteorological conditions as the direct effect of TCs (e.g., waves, 
storm surges, wind and precipitation), while hazards are the result of 
these hydro-meteorological conditions (e.g., flooding) impacting assets 
and people in the coastal area. 

Several variables influence the hazards resulting from a TC (Lin and 
Emanuel, 2015), so it is not trivial to assess them. Some of these vari-
ables are strictly related to the TC themselves (e.g., track (or landfall) 
location, wind speed intensity, pressure drop, storm size, forward speed, 
and precipitation rates). Other factors depend on the geographical area 
where the TC develops, propagates, and finally makes landfall (e.g., 
topography and bathymetry, presence of rivers, vegetation or reefs, and 
presence of possible flood protection measures). Hence, a wide range of 
TC scenarios as well as detailed models are required to account for the 
combination of all these factors. This makes the estimation of the haz-
ards challenging because (a) the estimation may be very location spe-
cific, (b) historical data (i.e., Historical Tropical Cyclone (HTC) tracks, 
hydro-meteorological conditions) are generally scarce and cover a 
relatively short historical period, which does not permit a comprehen-
sive statistical description of the forcing conditions, (c) even when this 
information is available, computational costs to represent all possible 
scenarios resulting from the combination of all different variables be-
comes extremely demanding. 

Several methods are available that overcome some of these limita-
tions of general applicability, accuracy, and efficiency. Sebastian et al. 
(2017) developed a modelling framework to estimate storm surge and 
precipitation based on synthetic TC landfall locations coupled to a 
simple one-dimensional empirical wind setup model for Galveston Bay. 
The approach shows accurate results but is specific to the case for which 
it was developed and implemented. Zheng et al. (2013) and Xu et al. 
(2014) applied data-driven techniques to estimate the (joint) probability 
of occurrence of storms and TC induced water levels and precipitation. 
As the methods are data-driven, they are accurate within the conditions 
for which they have been derived, however they are less suitable e.g., to 
represent the joint probability of occurrence of water levels and pre-
cipitation for low frequency events (e.g., the Nargis event) or at areas 
infrequently impacted by TCs. Similarly, Vousdoukas et al. (2018) and 
Torres et al. (2015) presented global and local flood hazard estimates, 
respectively, based on the use of actual and synthetically shifted HTCs. 
Consequently, results by Vousdoukas et al. (2018) are more accurate in 
areas frequently impacted by TCs, while those in the case of Torres et al. 
(2015) are with a specific local focus. For assessment of the impact of 
climate change on tropical cyclones and associated coastal hazards, 
several methods exist, see for example Mendelsohn et al. (2012), the 
pseudo global warming approach by Jyoteeshkumar Reddy et al. (2021) 
and the dynamical downscaling method by Mori and Takemi (2016). 

To overcome the issue of accuracy and limited historical records in 
areas seldom impacted by (extreme) TCs, several methods have been 
developed that use Synthetic Tropical Cyclones (STC). STC emulators 
generate long datasets of realistic TC tracks by sampling relevant 

physical parameters within ranges as observed in the HTCs (e.g., wind 
speeds, forward speed, heading), and have been widely used (see e.g., 
Vickery et al., 2000; James and Mason, 2005; Emanuel et al., 2006; 
Nakajo et al., 2014; Haigh et al., 2014; Neumann et al., 2015; Bloe-
mendaal et al., 2020; Nederhoff et al., 2021; Arthur, 2021, Hojjat Ansari 
et al., 2021). An alternative is the method described by Niedoroda et al. 
(2010) and used for flood hazard assessments in the U.S. This method 
makes use of idealized synthetic TC track scenarios with likelihood 
based on statistics of observed cyclone events, therefore making it ac-
curate but location-specific. Recently, Dullaart et al. (2021) have 
simulated global storm surge induced by tropical cyclones using a 
dataset of STCs (Bloemendaal et al., 2020). Nevertheless, these estimates 
lack the contribution of waves and are based on a global model set-up. 

Simulating long synthetic time series of TCs in process-based models 
(e.g., for the estimation of design waves and water levels or flooding 
simulations) comes with high computational costs. Computational effi-
ciency is poor as similar tracks can occur several times and are simulated 
individually. Therefore, a logical solution is to limit the number of STCs 
that must be simulated. A number of studies have attempted to reduce 
the number of realistic TC tracks, including manually selecting relevant 
tracks (e.g., Ou et al., 2002) and by clustering of historical tracks (e.g., 
Camargo et al., 2007; Choi et al., 2009). However, these studies did not 
focus on including extremes nor a higher variability of TC events than 
observed in the HTC record. 

Hybrid methods focus on reducing the number of tracks simulated (e. 
g., Resio et al. (2009) and Toro et al. (2010), and more recently Jia and 
Taflanidis (2013), Kim et al. (2015), Jia et al. (2016) and Bass and 
Bedient (2018)). Such methods proved capable of accurately repre-
senting a larger set of scenarios. However, they mainly focussed on TCs 
making landfall and their characteristics at that location. Nevertheless, 
for a correct representation of TC-induced hydro-meteorological con-
ditions and resulting hazards, TCs that do not make landfall are often 
also relevant (e.g., a TC passing far offshore may generate waves that 
propagate to the coastline). 

In this study, we present a novel hybrid method for estimating TC- 
induced hydro-meteorological conditions, which can be used directly 
as a basis for TC hazard assessments. The method is generally applicable 
to any location in the world. We use a large dataset of realistic STC track 
scenarios (generated based on HTC track data) to include a wide range of 
plausible TC events in the analysis, also covering areas with infrequent 
TCs or incomplete historical records. From the full set of STCs, we select 
a comprehensive subset of Representative Tropical Cyclones (RTCs) that 
describe the hydro-meteorological conditions corresponding to the full 
set. RTCs are selected based on the physical characteristics of the full 
STC track, whereby hydro-meteorological conditions resulting from all 
STC are represented, including the extremes, TCs that pass at large 
distances, and TCs that do not make landfall. Subsequently, the RTCs are 
simulated in hydrodynamic models, whereby the limited number of 
RTCs allows for relatively high-resolution modelling of their complex 
dynamics. By reconstructing the hydro-meteorological conditions for 
the original set of STC scenarios, essential information on the probability 
of occurrence is preserved. 

The method was applied to a case study at the Bay of Bengal (BoB). 
Different configurations of the method were tested, aimed at both 
downscaling tracks for the full Bay of Bengal area or for more local 
applications (i.e., O(100 km) coastline) and providing insight into the 
suitability of the method for different applications at different scales. For 
the best performing configuration, we also provide some insights in the 
performance for different number of RTCs, which can be used to balance 
efficiency and accuracy in future applications. In our case study we 
make use of a STC dataset generated by a specific emulator and specific 
hydrodynamic models. However, the method is conceptually relatively 
simple and flexible, so in principle it can be applied in combination with 
any TC track dataset and hydrodynamic model. 

An overview of the proposed method is described in Section 2. Our 
application to the BoB is described in Section 3. Results are presented in 
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Section 4. Assumptions and limitations of the study are discussed in 
Section 5, while the conclusions of the study are summarized in Section 
6. 

2. Overview of the methodology 

A general methodology to estimate tropical cyclone-induced wind, 
waves, and surge using RTCs is introduced (schematic shown in Fig. 1). 
In this manuscript we apply it into the offshore region (~30 m depth). 
The method is split into 6 steps:  

1. Collection of HTC track data, used as a basis for the analysis 
(Section 3.2), and pre-processing.  

2. Generation of STC tracks based on the HTC track data using a TC 
emulator (Section 3.2). With this step, longer time series of TCs are 
obtained, covering a wider area in greater density than the HTCs. In 
our application, a set of STCs including spatio-temporal wind fields 
derived following Leijnse et al. (2022) was used, generated with the 
Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE, 
Nederhoff et al., 2021), although alternative TC emulators could be 
used. Our work builds on theirs by providing a more efficient and 
effective way of using TC emulators.  

3. Sampling of a representative subset of RTC tracks (Section 3.3). 
In our application, we sample from the STCs, but alternatively the 
HTC tracks could be used directly for areas where sufficient data is 
available. In our application, we aim to approximate offshore hydro- 
meteorological conditions (waves, storm surge and wind) for the full 
set of TCs. For the design of the RTC subset, physical TC character-
istics relevant for quantifying their resulting offshore hydro- 
meteorological conditions are used. 

4. Simulation of the RTCs to obtain the hydro-meteorological condi-
tions (Section 3.4). In this study, a dataset following Leijnse et al. 
(2022) of simulated storm surge and waves for the full sets of HTCs 
and STCs was used. For validation purposes of this new 

methodology, computed hydro-meteorological conditions for the full 
sets of STCs and HTCs were used. However, this will normally not be 
required when applying the methodology as proposed here, as a 
small subset of RTC can be simulated instead of the full STC dataset, 
therefore leading to large savings in computational time.  

5. Reconstruction of hydro-meteorological conditions for each of 
the TCs in the full set (TCrecs) (Section 3.5). In our application STCs 
are used, giving the reconstructed STCs (STCrecs). By using the full 
STC set and RTCs, hydro-meteorological conditions for each of the 
STCrecs are reconstructed stochastically based on similarity of the 
same physical TC characteristics as used for the selection of RTCs. 
Because of this step, information about the probability of occurrence 
of the hydro-meteorological conditions is preserved.  

6. Extreme Value Analysis (EVA) is applied to the offshore hydro- 
meteorological conditions of the STCrecs to approximate the quan-
tiles for different Return Periods (RP) (Section 3.6). In our applica-
tion, EVA is also applied to the sets of HTCs and STCs to assess 
performance of the method. 

The optimal configuration and sensitivity of the methodology to its 
application in regional and local study cases are additionally discussed 
by comparing output from subsets of RTCs (ranging from 2 to 1744 TCs 
in size) with those obtained from a full set of STCs (1745 TCs), and with 
those modelled from the original HTCs (81 TCs). 

3. Application 

We apply the method described in Section 2 to the case study for the 
BoB. First the study area is described in Section 3.1. Subsequently, the 
application of each of the 6 steps of the method is described in Sections 
3.2–3.6. 

We make use of a dataset derived following Leijnse et al. (2022) that 
consists of simulated storm surge and wave conditions for a large set of 
HTC and STC tracks in the BoB (details can be found in the specific 
sections). This unique dataset makes it possible to assess the perfor-
mance of the method as derived in this paper, as hydro-meteorological 
conditions based on RTCs can be compared with those for the full set 
of STC, as well as with those for HTCs. In our application, we quantify 
hydro-meteorological conditions in terms of the maximum significant 
wave height (Hs,L), maximum storm surge (SSL), and maximum sus-
tained wind speed (vmax,L) per TC. 

3.1. Study area 

The BoB is located in the north-eastern part of the Indian Ocean 
(Fig. 2). Countries bordering the BoB are, in clockwise direction: Sri 
Lanka, India, Bangladesh and Myanmar. Within the bay lie the Andaman 
and Nicobar Islands in the east (territories of India). The methodology is 
presented as a regional setting case study, at the scale of the BoB, and at 
nine (9) specific locations: Batticaloa (Sri Lanka), Madras, Visakha-
patnam and Puri (India), Charchenga and Chittagong (Bangladesh), 
Sittwe and Mawlamyine (Myanmar) and Port Blair at the Andaman and 
Nicobar Islands (India) (Fig. 2). 

On average, there are about 2.3 TC events per year in the Indian 
Ocean basin of which 1.7 occur in the BoB. The wave conditions, storm 
surge, and wind speeds resulting from these events vary significantly by 
TC, and location within the BoB. TCs are relatively infrequent in the 
Northern Indian Ocean basin compared to other TC basins (e.g., 
compared to an average of 7.1 TC events per year in the North Atlantic 
basin (Nederhoff et al., 2021)). However, in terms of casualties, the most 
extreme TCs of the past decades – including Cyclone Nargis (2008), 
described in Section 1 – all occurred in this basin. 

To illustrate the details of our method, we chose two locations in the 
Bay of Bengal on which to focus our analysis. Charchenga (Bangladesh) 
and Batticaloa (Sri Lanka) were selected because of their relative 
different location and TC climate. Charchenga is fronted by an extensive 

Fig. 1. Schematic overview of the methodology proposed in this paper. In our 
application, we generate STCs, select the RTCs as a subset from the STCs and 
reconstruct the Synthetic TCrecs (STCrecs), but alternatively the RTCs could 
also be selected from the HTCs directly (grey arrows). 
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(shallow) continental shelf area and TCs make relatively frequent 
landfall here, including some of the TCs with the highest windspeeds 
(Fig. 3). At the other side of the study area, Batticaloa is in an area 
without an extensive continental shelf, where TCs infrequently make 
landfall and typically have lower windspeeds. Additional results for 
locations other than Charchenga and Batticaloa can be found in Sup-
plementary material A. 

3.2. HTC and STC - historical and synthetic TC tracks 

HTC tracks were derived from the IBTrACS database version v04r00 
(Knapp et al., 2018). From the database the subset of the Joint Typhoon 
Warning Centre was used, which contains 110 HTC tracks for the 
Northern Indian Ocean basin for the period 1972–2020. Eighty-one of 
these originated from the Bay of Bengal, including recent Cyclone 

Amphan (2020), see Fig. 3a. HTC tracks are described by the three 
hourly coordinates of the location of the TC eye (latitude, longitude) and 
the maximum sustained wind speed (vmax). 

Based on the HTC track data, 1000 years of STC tracks were gener-
ated following Leijnse et al. (2022) using a synthetic emulator of TCs, 
here the TCWiSE tool (Nederhoff et al., 2021). TCWiSE uses an Empir-
ical Track Model based on Markov-chains to generate synthetic TC 
tracks. It can be used in any oceanic basin and on any (historical) data 
source. In this tool, tracks are parameterized by the coordinates of the 
location of the TC eye (latitude, longitude) and the maximum sustained 
wind speed (vmax) on a three-hourly basis. This resulted in 1745 STC 
tracks for the BoB (Fig. 3b), which cover a much wider area and in much 
greater density than the HTCs. Both qualitative and quantitative com-
parisons of HTC and STC track genesis, passing, and termination loca-
tions show good agreement (Leijnse et al., 2022). Subsequently, TCWiSE 
is used to create the spatio-temporal wind and pressure fields used as 
input for model simulations (see Leijnse et al., 2022). 

3.3. RTC - representative TC track selection 

The STC tracks from the dataset (Section 3.2) were screened to select 
a limited number of tracks representative of the full dataset. RTC tracks 
were selected using the Maximum Dissimilarity Algorithm (MDA), first 
described by Kennard and Stone (1969). An important advantage of 
MDA is that the selected set of scenarios spans the full range of the 
parameter space, including the extremes or outliers. The 
hydro-meteorological conditions resulting from the TC depend on many 
factors spanning a broad parameter space, from the translation speed at 
the eye of the TC to windspeeds at hundreds of km away of the eye of the 
TC. However, the number of parameters used to describe the TC sce-
narios in MDA needs to be limited for optimal performance. Hence, a 
balanced set of parameters that summarizes all relevant characteristics 
of the scenarios is required for MDA to be effective. 

3.3.1. TC descriptors and parameters 
To describe the different physical characteristics of the TC, multiple 

descriptors can be defined, which in turn are represented by one or more 
parameters. An overview of the different descriptors and parameters is 
provided in Table 1. In this study, track location, TC duration, maximum 
sustained wind speed (vmax), and translation speed (c) of each TC track 
were used as descriptors. In case the TC hazard for only a specific 
location is of interest (hereafter called Selected Location, SL), the track 

Fig. 2. Map of the study area: Bay of Bengal (BoB). Surrounding countries 
(white, underlined) with borders (black) and studied locations (white) are 
indicated. In our analysis, we focus on Batticaloa and Charchenga locations 
(yellow star). Depth relative to Mean Sea Level (MSL) is indicated (colorscale); 
shallower continental shelf areas are clearly visible (warmer colors). 

Fig. 3. Overview of TC tracks in the Bay of Bengal and studied locations. Charchenga and Batticaloa locations are highlighted (yellow star). (a) 81 HTC tracks for the 
1972–2020 period. (b) 1745 STC tracks generated with TCWiSE (corresponding to 1000 years of the current TC climate). Track color is a measure of the maximum 
sustained wind speed (Vmax) of the TC at that location. Classification according to the North Indian Ocean scale of the India Meteorological Department. 
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location relative to SL is additionally used. As an alternative to the wind 
speed, other studies have also used the air pressure (e.g., Toro et al., 
2010), but those two variables are related (e.g., Holland, 2008). In our 
application, wind speeds were preferred over pressure drop as they are 
the principal drivers for coastal hazards resulting from wind, waves and 
storm surge (e.g., coastal flooding). Besides, several studies have used 
the angle of approach and landfall location to characterize the TC track 
(e.g., Toro et al., 2010; Sebastian et al., 2017). In our application, track 
location and relative track location descriptors were preferred over 
angle of approach and landfall location, as in this schematization the 
location of the full TC track is better described. Furthermore, TCs that do 
not make landfall can be included in the analysis as they can also 
contribute to coastal hazards. 

The track location descriptor was parameterized by the latitude and 
longitude coordinates of 4 points: the genesis location, a point at 1/3 
along the track, a point at 2/3 along the track, and the termination 
location of the TC, see Fig. 4a. The total duration of the TC was used 
directly. For both descriptors vmax and c, the maximum, median and 
minimum values along the track were used (parameters vmax,min, vmax, 

median, vmax,max and cmin, cmedian, cmax, respectively). The track location 
relative to the SL was parameterized by use of the minimum Distance of 
the Track to SL (DTSL) and the Azimuth of the line of the minimum 
distance of the Track to SL (ATSL), whereby effectively the polar co-
ordinates of the point on the track at minimum distance were used with 
SL as origin (Fig. 4a). To focus the analysis, a domain of interest for the 
selection was specified, and only the parts of tracks that fell within this 
region were included (Fig. 4a). 

3.3.2. TC parameter space modifications 
In total, 17 parameters were used for 5 descriptors (when the relative 

location of the TC track is included) (Table 1). If the Euclidean distances 
in this 17-parameter space were to be calculated directly, relatively 
more weight would go to the location of the track (described by 8 pa-
rameters) compared to, for example, the duration (1 parameter), 
because it is described by more parameters. The same applies to vmax (3 
parameters), c (3 parameters) and the relative track location to SL (2 

parameters). Consequently, physical TC characteristics described by 
only one or a few parameters (e.g., the duration) would not be well 
considered in the selection of RTCs. Furthermore, not all parameters are 
equally important for estimating the hydro-meteorological conditions 
resulting from the TC. For example, the distance of a TC track to a 
location (represented by DTSL) seems more strongly related to the 
hydro-meteorological conditions at that location than the total duration 
of the TC (see Fig. 5). In addition, the hydro-meteorological conditions 
are not necessarily linearly related to the value of a parameter (e.g., Hs,L, 
SSL, and vmax,L are not linear with DTSL parameter). 

To compensate for this kind of unrepresentative weighting, the 
parameter space can be modified in several ways: (1) the parameter 
space can be constrained, in our case by including only tracks within a 
certain area (i.e., within the domain of interest); (2) parameters can be 
scaled, whereby more weight can be given to TCs with high vmax 
compared to TCs with low vmax; and (3) weight factors can be applied to 
the parameters, whereby the relative importance of (groups of) pa-
rameters can be adjusted. The effect of such modifications is illustrated 
in Fig. 4b–e, where different sets of 9 representative samples were 
selected out of 200 samples (Fig. 4b), described by 2 parameters (sam-
ples generated for illustrational purposes only). In Fig. 4c, no modifi-
cations to the parameter space were applied. The samples were 
normalized, where after representative samples were selected by maxi-
mizing the Euclidean distance in normalized parameter space; 
numbering corresponds to the sequence of selection. Finally, the 
selected representative samples are shown in original parameter space. 
Fig. 4d illustrates how weight factors affect the normalized parameter 
space and the selection of representative samples. Similarly, Fig. 4e il-
lustrates the effect of scaling. 

In this study, normalized parameters were corrected for the number 
of parameters per descriptor (Npar/des), weighted by multiplication with 
a factor (Fw) and subsequently scaled by raising to the power with a 
factor (Fs), according to eq. (1). Applying a higher (lower) value of Fw to 
a parameter makes it more (less) important relative to others. Applying a 
Fs > 1 (Fs < 1) makes the higher (lower) values of that parameter rela-
tively more important than its lower (higher) values. 
[

Fw

Npar/des
∗(norm(parameter))

]Fs

(1)  

3.3.3. Parameter space configurations 
To provide some insights into the effect of the definition of the 

parameter space on track selection and performance of the method, 
three configurations of the method were tested:  

1. Full Basin without modified parameter space (except for correction 
for number of parameters per descriptor) (FB),  

2. Full Basin with Modified Parameter Space (FBMPS), and  
3. Selected Location focused with Modified Parameter Space (SLMPS). 

The FB and FBMPS configurations are for the full basin and the 
relative location of the TC track is not used, whereas in SLMPS the se-
lection is specific to one location (i.e., SL). Full basin configurations are 
more suitable for large-scale studies (≈1000 km) in which there is no 
specific accuracy requirement for a particular location. Configurations 
with focus at one location are best suited to more local studies 
(≈10–100 km), where higher accuracy requirements are generally 
needed for a specific area. An overview of the applied weight and scaling 
factors applied to each of the configurations is provided in Table 1. 

To optimally modify the parameter space (FBMPS and SLMPS con-
figurations), the relation between (combinations of) parameters used to 
describe the TC and the hydro-meteorological conditions resulting from 
that TC was analysed qualitatively. For each STC, values of Hs,L, SSL, and 
vmax,L at Charchenga and Batticaloa locations are plotted for different 
combinations of parameters (Fig. 5). Only parameter combinations vmax, 

max and DTSL (Fig. 5a–f), ATSL and DTSL (Fig. 5g-l), and cmin and 

Table 1 
Overview of descriptors with parameters and applied factors to modify the 
normalized parameter space for the tested configurations. Three different sets of 
parameter space modifications were tested: FB, FBMPS, and SLMPS configura-
tions. The number of parameters per descriptor (Npar/des) is used as correction 
factor in all configurations. Weight factors (Fw) and scaling factors (Fs) are 
applied to each of the normalized parameters in the descriptor according to eq. 
(1). DTSL (Distance Track to Selected Location) and ATSL (Azimuth of line of 
DTSL) parameters are only used in configuration SLMPS.  

Descriptor Parameters Full 
Basin 
(FB) 

Full Basin 
Modified 
Parameter 
Space 
(FBMPS) 

Selected 
Location 
Modified 
Parameter 
Space 
(SLMPS) 

Names Npar/ 

des 

Fw Fs Fw Fs Fw Fs 

Track location latgen, longen, 
lat1/3, lon1/3, 
lat2/3, lon2/3, 
latterm, lonterm 

8 1 1 2 1 2 1 

Duration of 
the TC 

Duration 1 1 1 1 1 1 1 

Translation 
speed (c) 

cmin, cmedian, 
cmax 

3 1 1 1 1 1 1 

Maximum 
wind speed 
(vmax) 

vmax,min,vmax, 

median, vmax, 

max 

3 1 1 3 3 3 3 

Relative 
location of 
the TC track 

DTSL 1 – – – – 3 1/3 
ATSL 1 – – – – 1 1  
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Fig. 4. Schematic overview of the parameterization of a TC track and modifications of the parameter space. (a) Example parameterization of a TC track over the Bay 
of Bengal. TC track color represents the maximum windspeed (warmer colors for higher windspeed). The yellow star indicates the Selected Location (SL). (b–e) 
Schematic overview of the selection of a subset of 9 representative samples (blue) out of (b) 200 samples (black, generated for illustrational purposes only) in 2 
parameter space (Cmin, Vmax,max). (c) Selection of 9 representative samples; numbering corresponds to the sequence of selection. (d) Illustrates the effect of weight 
factors on the normalized parameter space and selection of representative samples; locations of the grid lines correspond with the grid lines as in (c) to illustrate the 
effect of the modification. (e) Illustrates the effect of scaling, similarly to (d). 
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duration (Fig. 5m–r) are shown for simplicity. The parameters used for 
the descriptors maximum windspeed (only vmax,max shown), and relative 
location of the TC track (only DTSL shown) were found to be good 
predictors of the hydro-meteorological conditions (Fig. 5a–f). As ex-
pected, most extreme hydro-meteorological conditions are caused by 
TCs with high windspeeds and tracks with smaller distance to the 
studied location. For the translation speed (only cmin shown), duration 
and ATSL descriptors, the relation with the hydro-meteorological con-
ditions is less clear. 

The maximum windspeed (only vmax,max shown) of the TC and min-
imum distance (DTSL) are thus better predictors of the Hs,L, SSL, and 
vmax,L compared to the duration, translation speed (only cmin shown) and 
ATSL descriptors (Fig. 5). For the track location descriptor, many pa-
rameters (8) are required, and even qualitative assessment of the pa-
rameters is challenging. However, a proper description of the TC track is 
essential to quantifying the variability in TC tracks – especially when 
tracks for the full basin are selected and ATSL and DTSL parameters are 
not included. Hence, the maximum windspeed and minimum distance 
descriptors were weighted most strongly (Fw of 3 applied), followed by 
track location (Fw of 2 applied), while the duration, translation speed 
and ATSL have the least influence (Fw of 1 applied). Furthermore, 
following from Fig. 5a–f Hs,L, SSL, and vmax,L were highest for TCs with 
high windspeed (represented by vmax,max) passing at small distance 
(DTSL). To ensure that the most extreme TCs were well represented by 
the RTCs, scaling was thus applied in such way that the Euclidean dis-
tance between extreme TCs was enlarged. Once the parameter space 
configuration was chosen, the set of RTCs could be selected. 

3.4. Simulated TC hydro-meteorological conditions 

TC hydro-meteorological conditions for each of the HTCs and STCs 
are taken from Leijnse et al. (2022). Offshore wave conditions and 
nearshore storm surge associated with each TC were dynamically 

simulated by coupling a hydrodynamic model (Delft3D-FM, Kernkamp 
et al., 2011) with a wave model (SWAN, Booij et al., 1999). 
Spatio-temporal wind and pressure fields, generated with the TCWiSE 
tool for each of the TCs, were used as input for the model. The water 
level was set to mean sea level, with no tidal variation applied. For the 
wave model a constant resolution of ~2 km was used, while for the 
hydrodynamic model a varying resolution of up to ~3 km nearshore was 
used. Wave contributions to storm surge and the storm surge at the coast 
cannot be resolved at these scales. Bathymetric data for the Bay of 
Bengal were derived from the GEBCO 2008 global bathymetric data set 
(Becker et al., 2009). Despite the relatively coarse model resolution, the 
model runtime, which depends on the TC track, was estimated at about 
1 h per TC. Details of the model setup can be found in Appendix A of 
Leijnse et al. (2022).Appendix A 

The model produced time series of storm surge and significant wave 
height at output points along the coastline including the 9 locations used 
in this study. Storm surge conditions were obtained at output points 
along the shoreline of the BoB, while significant wave heights were 
obtained at the nearest point with a water depth of at least 30 m, so as 
not to be influenced by the local bathymetric conditions. From the time 
series of significant wave height and storm surge, maximum values of 
the significant wave height (Hs,L) and storm surge (SSL) per TC were 
obtained. Maximum sustained windspeeds (vmax,L) per TC for these lo-
cations were obtained directly from the wind fields as generated with 
TCWiSE. 

3.5. STCrecs - reconstruction of STC hydro-meteorological conditions 

Unlike the STC events, the RTC events and associated hydro- 
meteorological conditions do not have an equal probability of occur-
rence (i.e., they are selected from the STCs with emphasis on the ex-
tremes). Hence, to allow estimates of return periods, we reconstructed 
the hydro-meteorological conditions for each STC (STCrecs) by inter-

Fig. 5. Simulated hydro-meteorological conditions versus different combinations of parameters for the STC. Hydro-meteorological conditions (colorscale) are 
quantified by the local maximum significant wave height (Hs,L), storm surge (SSL), and wind speed (Vmax,L) for each TC offshore at Charchenga and Batticaloa 
locations, and plotted versus different combinations of parameters, used to parameterize the TC. This information is used to guide decisions about how to optimize 
the weighting and scaling of the parameter space. Parameters are explained in Fig. 4a. Note the logarithmic scale for the DTSL (Distance Track to Selected Location) 
parameter (a–l). 
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polation from the RTCs. For a given STC, we assigned a weight to each 
RTC based on the match between their track characteristics. These 
weights were determined by use of the Softmax function: a relatively 
simple, one parameter, non-linear interpolation function (Goodfellow 
et al., 2016), see eq. (2). 

S(x)i =
exp(− β∗di)

∑NRTC
j=1 exp

(
− β∗dj

) (2) 

In our application, S(x) is the weight given to RTC i to approximate 
the STC, with di as the (Euclidean) distance between the STC and RTC i, 
and dj as the (Euclidean) distance between the RTC j and approximated 
STC. β is a stiffness parameter and NRTC is the number of representative 
TC scenarios. The implementation of eq. (2) by Scott et al. (2020) was 
used. For di and dj, the Euclidean distances calculated in the parameter 
space between the scenarios were used – the same as were used in MDA 
to select the set of representative scenarios (Section 3.3). 

For each STC, Softmax returned a weight ranging between 0 and 1 for 
each of the RTCs, resulting in a matrix with weights of size NSTC by NRTC 
(the numbers of STCs and RTCs respectively). Hydro-meteorological 
conditions for each STC were thus approximated independently. The 
sum of the weights of all RTC to approximate one STC is 1 (by defini-
tion). Weights below 0.001 were redistributed to limit the number of 
RTCs used per STC. By using these weight factors, the hydro- 
meteorological conditions for each of the STCs were approximated 
based on the RTCs, resulting in the STCrecs. 

3.6. Evaluation of performance of the method by EVA 

To evaluate performance of the method, we compared the hydro- 
meteorological conditions resulting from model simulations for each 
of the STCs with their reconstructed counterpart in the STCrecs. In 
addition, it was possible to estimate the probability of occurrence for 
each condition at a specific location (e.g., there is an estimated 1/100- 
year probability of 12.85 m waves offshore at Charchenga (Table 2)). 
To estimate this, an EVA was carried out over the values of Hs,L, SSL, and 
vmax,L. A peak over threshold approach was used in combination with 
fitting of the exponential distribution. For HTCs (n = 81), the 80th 
percentile was used, while for the STCs and STCrecs (n = 1745) the 98th 
percentile values were used. The method of probability weighted mo-
ments was used for estimating the distribution parameters and 95% 
confidence bands were determined by bootstrapping (1000 samples) 
(Caires, 2016). The output from this step provides the information 
necessary to compute the hazards associated with TCs, like flooding. 

4. Results 

4.1. Comparison of RTC selection configurations 

4.1.1. Spatial comparison of selected RTCs 
To assess the spatial distribution of the RTC tracks, we compare the 

first 81 RTCs selected according to each of the configurations (FB, 
FBMPS and SLMPS, described in Section 3.3.3) (Fig. 6). In Fig. 6a the 
selected RTC tracks are presented for the FB configuration, which con-
siders the full basin without modifications to the parameter space. When 
compared with the same number (81) of HTCs (Fig. 3a), the selected 
RTC tracks for the FB configuration are slightly more uniformly 
distributed over the BoB area (Fig. 6a). More importantly, the selected 
RTCs generally have higher windspeeds compared to the HTCs, whereby 
a wider range of extreme events is included on the scale of the full basin. 

Next, we compare the tracks of the FB configuration with those of the 
FBMPS configuration, which is modified to prioritize more extreme TCs 
(Fig. 6b). In the FBMPS configuration, the (extremes of) maximum 
windspeed (vmax) descriptor were given a higher weight. Comparison 
with Fig. 6a indeed shows that these modifications result in the selection 
of more RTCs with a very high windspeed. This seems advantageous for 
assessment of hazards (e.g., coastal flooding), as it is typically the ex-
tremes that are of interest. However, the downside of this is that the STC 
tracks at lower latitudes (e.g., near Batticaloa) are less well represented, 
as TCs in these regions typically have lower maximum windspeeds. 

We can further refine our selection of RTCs by focusing on TCs that 
affect a selected location (SL). When RTC are chosen according to the 
SLMPS configuration, the relative location of the track to the SL is 
included and the parameter space modified to prioritize extreme events. 
The effect of this can be seen in Fig. 6c and d, where Charchenga and 
Batticaloa were used as SL respectively. As expected, the selected RTC 
tracks are located closer to their SL compared to the RTCs selected for 
the full basin (Fig. 6b). Furthermore, the RTC windspeeds around a 
given SL vary more compared to those derived with the FBMPS 
configuration (Fig. 6b). This effect is especially visible in Fig. 6c, where 
more RTCs with lower windspeeds were selected around Charchenga 
compared to Fig. 6b. In the selected RTCs for Batticaloa (Fig. 6d) this 
effect is also visible, but due to the relatively high weight given to the 
(extremes of) maximum windspeed descriptor, some extreme tracks at 
larger distance from Batticaloa were also selected. While the RTC thus 
better cover the area of the SL, the selection is not optimal for locations 
other than the SL. For example, selected RTCs of Fig. 6c with Charch-
enga as SL are not representative for STCs around Batticaloa, as they 
cover the area very poorly. 

4.1.2. Comparison of RTC hydro-meteorological conditions 
Since the overall aim is to identify an optimal set of TCs, which can 

Table 2 
Performance of configuration SLMPS for all studied locations. Values of STCrec based on 175 RTCs (±10% of the STC dataset) are compared with values based on the 
full set of 1745 STCs. Presented are approximated 100-year RP values based on STCs and based on STCrecs (estimated by empirical cumulative distribution functions), 
Spearman rank correlation coefficient (ρ), Relative Root Mean Square Error (RRMSE), and Relative Bias (RB), for significant wave height (Hs,L), maximum storm surge 
(SSL) and maximum wind speed (Vmax,L), at each of the studied locations.  

Location Hs,L SSL vmax,L 

STC 
[m] 

STCrec 
[m] 

ρ 
[− ] 

RRMSE 
[%] 

RB 
[%] 

STC 
[m] 

STCrec 
[m] 

ρ 
[− ] 

RRMSE 
[%] 

RB 
[%] 

STC 
[m/ 
s] 

STCrec 
[m/s] 

ρ 
[− ] 

RRMSE 
[%] 

RB 
[%] 

Charchenga 13.74 12.85 0.94 7.57 0.91 2.79 2.68 0.94 6.40 0.44 48.5 44.2 0.94 5.84 0.26 
Batticaloa 8.26 7.49 0.87 9.43 0.58 0.26 0.26 0.71 5.26 − 0.14 27.8 26.9 0.91 6.12 − 0.63 
Madras 10.44 9.55 0.91 7.90 1.09 0.51 0.39 0.89 7.04 0.83 38.1 35.3 0.94 6.49 0.42 
Visakhapatnam 9.19 8.09 0.92 6.47 − 0.15 0.36 0.35 0.91 5.59 − 0.16 30.3 29.0 0.91 6.56 − 0.31 
Puri 10.10 9.55 0.89 7.05 0.17 0.49 0.50 0.86 6.97 − 0.27 36.9 35.3 0.90 6.33 − 0.32 
Chittagong 11.93 10.96 0.95 7.99 − 0.37 3.46 3.12 0.95 7.15 − 0.23 47.0 47.6 0.94 6.44 − 0.04 
Sittwe 12.58 11.17 0.95 5.55 0.11 1.11 0.93 0.95 5.67 − 0.20 42.8 39.3 0.95 5.18 − 0.75 
Mawlamyine 4.33 3.86 0.72 7.13 − 0.98 0.70 0.61 0.86 7.92 0.11 14.5 13.4 0.88 13.58 − 1.61 
Port Blair 6.40 5.04 0.82 8.94 0.28 0.13 0.11 0.85 6.89 − 0.34 26.3 21.7 0.86 7.62 1.23  
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best represent the hydro-meteorological conditions driving coastal 
hazards at a certain region, here we compare how well each RTC se-
lection configuration can estimate the hydro-meteorological conditions 
of the full set of STCs. To test this, the values Hs,L, SSL, and vmax,L for each 
STC (based on model simulations) were compared with their STCrec 
counterpart (based on model simulations for a smaller subset of RTC and 
interpolation). Only results for Charchenga and Batticaloa locations are 
presented in full (Fig. 7). For this, 175 RTCs were selected according to 
each of the configurations. This roughly corresponds to simulating 10% 
of the initial STCs or, in other words, corresponds to a 90% reduction in 
computational costs for simulating all STCs. The Softmax function was 
used for the interpolation, as described in Section 3.5. A stiffness 
parameter β of 175 (= NRTCs) was used for the configurations focused on 
the full basin (FB and FBMPS), while β of 35 (= NRTCs/5) was used in the 
site-specific SLMPS configuration. The SLMPS configuration selects 
more extreme RTCs compared to the configurations for the full basin. 
Therefore, the Euclidean distances between the extreme STCs and the 
RTCs are smaller for the SLMPS configuration (compared to the full 
basin configurations), and a lower β value is required for the SLMPS 
configuration. This principle is further elaborated on in Section 4.2.2, 
where the effect of the number of RTCs on the optimal β value is dis-
cussed (which has a similar effect on the Euclidean distances between 

STCs and RTCs). 
The aim is to obtain the best possible match between the simulated 

Hs,L, SSL, and vmax,L for each of the STCs and their approximate STCrec 
counterpart. When a perfect match is obtained, the marker is located on 
the diagonal in Fig. 7a–c, g-i; 10% error margins of the reconstructed 
hydro-meteorological conditions are shown as well (dashed lines). 
Furthermore, the distribution of the selected RTCs over Hs,L, SSL, and 
vmax,L is presented (Fig. 7d–f, j-l) for each of the configurations. To 
approximate Hs,L, SSL, and vmax,L for each of the STCs, the selected RTCs 
should preferably cover the full range of those parameters as well (at 
least when the STCs approximately cover the full range as well, which is 
the case here). Furthermore, the STC(s) causing the most extreme values 
of Hs,L, SSL, and vmax,L (or at least one close to this one) should preferably 
be selected as RTC(s) (one or multiple as the STC associated with the 
most extreme values of Hs,L, SSL, and vmax,L respectively could be 
different). Selection of the extremes is important, as hydro- 
meteorological conditions for STCs that are not selected as RTC can 
only be derived by interpolation and not through extrapolation. 

First, we compare the FB and FBMPS configurations, which both aim 
to select RTCs for the full basin (red and blue markers respectively in 
Fig. 7). Parameter space modifications of the FBMPS configuration, 
aimed at selecting more extreme TCs, indeed leads to the selection of 

Fig. 6. Distribution of the selected RTCs (in colorscale) over the BoB for different configurations of the selection method as presented in Section 3.3.3. The same 
number of RTCs (81) as the number of HTCs in the data set (Fig. 3a) are presented. RTCs are selected as a subset of the STCs (grey). (a) Full basin without modified 
parameter space (configuration FB), (b) Full basin with modified parameter space (configuration FBMPS), (c) Focused on one location (SL) with modified parameter 
space (configuration SLMPS) for Charchenga, and (d) SLMPS for Batticaloa. SL is indicated by yellow star; the colorscale of the RTC tracks is a measure for the 
maximum wind speed (Vmax). 
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more relatively extreme RTCs compared to the FB configuration without 
modifications. This is the case for both Charchenga and Batticaloa lo-
cations. Furthermore, this is in agreement with Fig. 6a and b. However, 
the set of RTCs improved more for Charchenga than Batticaloa; in 
particular, the effect on the approximation of SSL (Fig. 7k) at Batticaloa 
is negligible. Neither configuration FB nor FBMPS reconstructed all 
STCrecs well with 175 RTCs. Especially TCs causing the most extreme 
SSL at Batticaloa are not well captured, but extreme Hs,L, and vmax,L are 
not well represented, either. Extreme values of SSL at Batticaloa are 
significantly lower than at Charchenga and the distribution of the SSL, 
both for HTCs and STCs, is different (Fig. 7e–k). This is because of the 
typically direct hit by fully developed TCs at Charchenga while at Bat-
ticaloa TCs typically pass at larger distance, and the wider continental 
shelf at Charchenga (Fig. 2) which allows for higher surge levels. 

RTCs derived using the site-specific SLMPS configuration (black 
markers) are typically more uniformly distributed over Hs,L, SSL, and 
vmax,L, and their extremes are better covered than RTCs generated using 
the larger-scale FB and FBMPS configurations (Fig. 7d–f, j-l). In addition, 
the reconstructed maximum values of Hs,L, SSL, and vmax,L for each of the 

STCs are in better agreement with their simulated values (i.e., in 
Fig. 7a–c and g-i the black markers are typically closer to the diagonal 
compared to the red and blue markers of configurations FB and FBMPS 
respectively). The improvement is especially considerable for Batticaloa 
location. 

In Fig. 7c and i some STCs have zero maximum windspeeds (vmax,L =

0 m/s), while their approximated values (based on RTC) are higher. This 
is caused by simplifications in the windfields as part of the dataset used 
for this study and derived from TCWiSE (Nederhoff et al., 2021), and the 
interpolation method. In particular, wind fields were available for a 
circular area with a radius of 900 km around the TC eye, while outside 
this area they were set to 0 m/s. Hence, for STC passing at more than 
900 km, simulated vmax,L was 0 m/s, while interpolated values from 
RTCs may be larger than 0 m/s due to the interpolation procedure. 
Windspeeds for TC passing at such distances are low and cannot be 
attributed to the TC (e.g., see Nederhoff et al., 2019). 

In view of the better spatial coverage (Section 4.1.1) and represen-
tativeness of the extreme cases at specific locations of interest, we can 
conclude that the site-specific SLMPS configuration performs better than 

Fig. 7. Performance of the STCrecs in estimating the maximum STC-induced hydro-meteorological conditions (significant wave height (Hs,L), storm surge (SSL) and 
wind speeds (Vmax,L)) for three different configurations of the selection method, both for Charchenga (a–f) and Batticaloa (g–l) locations. Configurations in order of 
increasing performance: Full Basin (FB, red) without modifications to parameter space, Full Basin with Modified Parameter Space (FBMPS, blue), and Selected 
Location focused with Modified Parameter Space (SLMPS, black). (a-c, g-i) hydro-meteorological conditions based on simulation of all 1745 STC (x-axis), versus 
reconstructed hydro-meteorological conditions of the STCrecs (based on simulation of 175 RTCs and interpolation) (y-axis). When located on the diagonal (black 
line) they form a perfect match; dashed black lines indicate 10% error margins of the reconstructed hydro-meteorological conditions. (d-f, j-l) Distributions of the 
different sets of 175 selected RTCs (selected according to configurations FB, FBMPS and SLMPS) over values of Hs,L, SSL and Vmax,L, corresponding to the panel 
above. Distributions of 81 HTCs and the full set of 1745 STCs over Hs,L, SSL and Vmax,L are shown as well. 
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the full basin-based FB and FBMPS configurations, at least for specific 
locations. We thus adopt the SLMPS configuration for further analysis in 
Section 4.2. 

4.2. Application of SL configuration 

4.2.1. Performance evaluation in representing extreme event conditions 
Hydro-meteorological conditions during extreme events are impor-

tant for defining coastal hazards and risks as well as for the design of 
coastal protection interventions. In this section, we evaluate how well 
the RTCs selected with configuration SLMPS represent extreme event 
conditions for the following parameters: Hs,L, SSL, and vmax,L. 

For Charchenga and Batticaloa locations, Hs,L, SSL, and vmax,L for 
selected RTCs are indicated by red markers in Fig. 8; these are located on 
the diagonal as derived by model simulations. For both Charchenga and 
Batticaloa locations, the full range of values is well covered by the RTCs, 
and the STC track(s) that caused the most extreme hydro-meteorological 
conditions was selected as RTC. In fact, this is also the case for all other 
studied locations around the BoB (see Supplementary material A) – 
except for the Sittwe location (see Fig. 2 for this location) where the STC 
track that caused the second most extreme hydro-meteorological con-
ditions was selected as RTC. Mawlamyine, the studied location closest to 
the area where Cyclone Nargis made landfall (discussed in Section 1) is 
relatively sheltered from the waves caused by TCs passing at large dis-
tance. Many of the simulated STCs do not affect this location at all, and 
offshore values for 100-year RP are among the lowest of the studied 
locations (Table 2). However, the most extreme simulated hydro- 
meteorological conditions (corresponding to an estimated 1000-year 
RP) are Hs,L = 7.98 m, SSL = 2.14 m, and vmax,L = 31.9 m/s, based 
either on all STC or 175 RTC. The selected RTCs thus span the full range 

of Hs,L, SSL, and vmax,L and extreme and infrequent STCs were also 
captured. 

Subsequently, we evaluate the performance of our method for all 
studied locations around the BoB using error metrics. For both the sets of 
STCs and STCrecs, and for each of the studied locations, estimated 100- 
year RP values of Hs,L, SSL, and vmax,L are presented (Table 2). These 
were estimated based on the Empirical Cumulative Distribution Func-
tion (ECDF). Values of Hs,L, SSL, and vmax,L for the STCs are simulated 
values, values of the STCrecs were reconstructed based on 175 simulated 
RTCs and interpolation (β = 35). In addition, Spearman rank correlation 
coefficient (ρ), Relative Root Mean Square Error (RRMSE), and Relative 
Bias (RB) are presented. First, the Root Mean Square Error (RMSE) and 
bias values were calculated based on the values of Hs,L, SSL, and vmax,L for 
STCs and STCrecs; these values can also be found in Supplementary 
material A. Subsequently, RRMSE and RB values were obtained by 
dividing the RMSE and bias values (of the full set of STCs and STCrecs) 
by their 100-year RP value based on the ECDF of the STCs (Table 2). The 
presented RRMSE and RB are thus a percentage of the estimated 100- 
year RP values of Hs,L, SSL, and vmax,L at that location, and as such 
allow easy comparison for the different locations. 

For values for ρ of 1, RRMSE of 0, and RB of 0, estimated (STC) and 
reconstructed (STCrecs) values of Hs,L, SSL, and vmax,L form a perfect 
match. This is found by definition when all 1745 STCs in the dataset are 
also selected as RTC. For values of RB larger (smaller) than 0, the esti-
mated Hs,L, SSL, and vmax,L of STCrecs is larger (smaller) than the simu-
lated Hs,L, SSL, and vmax.L respectively. Values of ρ (mostly >0.9) show 
good agreement for Hs,L, SSL, and vmax,L at most locations, but with some 
deviations (e.g., for SSL at Batticaloa). RRMSE is below 10% for all 
studied locations, except for vmax,L at Mawlamyine (see Supplementary 
material A) where the windspeeds for part of the TCs passing at large 

Fig. 8. Performance of the RTCs selected with configuration SLMPS (Selected Location with Modified Parameter Space) and reconstructed STCrecs in estimating the 
STC-induced hydro-meteorological conditions (significant wave height (Hs,L), storm surge (SSL) and wind speeds (Vmax,L)). Presented are results for STCs (x-axis, 
based on simulation of 1745 STC) versus results for STCrecs (based on simulation of 175 RTC and interpolation) (black markers, with opacity), for Charchenga (a–c) 
and Batticaloa (d–f) locations. When located on the diagonal (solid black line) they form a perfect match; dashed black lines indicate 10% error margins of the 
reconstructed hydro-meteorological conditions. Selected RTCs (red) are indicated; being a simulated subset of the STCs they always form a perfect match. Empirical 
cumulative distribution function of the full set of STCs is plotted against the one based on the STCrecs (blue). Estimated values for different Return Periods (RP) 
are indicated. 
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distance were overestimated (see Section 4.1.2). The Absolute (value of 
the) Relative Bias (ARB) of Hs,L, SSL, and vmax,L is below 2% for all 
locations. 

For some individual STCrecs, the approximated values of Hs,L, SSL, 
and vmax,L deviate considerably from their STC counterpart. To assess the 
consequences of these deviations and performance after EVA, ECDFs for 
the simulated STC were plotted against the ECDF for the reconstructed 
STCrecs (Fig. 8, in blue). Quantiles for different RPs ranging 10–500 
years are indicated as well, to mark the range of quantiles that is typi-
cally of interest in TC hazard assessments. Comparison of the ECDF 
based on RTCs with the ECDF based on STCs shows that the quantiles of 
interest are typically estimated within 10% error margins (dashed lines). 
Even though ρ for SSL at Batticaloa was found to be the lowest value of 
all studied locations (0.71; Table 2), the quantiles corresponding to 10- 
500-year RPs could be well approximated. 

When looking at values of ρ in Table 2, typically the SLMPS config-
uration performs better for locations where TCs that directly make 
landfall lead to most extreme hydro-meteorological conditions (i.e., 
Charchenga, Visakhapatnam, Sittwe, Chittagong), compared to loca-
tions where TCs passing at larger distance can also lead to relatively 
extreme hydro-meteorological conditions (i.e., Batticaloa, Mawlamyine, 
Port Blair). This can be expected given the focus in the SLMPS config-
uration on one location. 

4.2.2. Optimization of RTC selection and interpolation 
To further improve the efficiency and accuracy of our method, we 

explored the number of RTCs and interpolation parameter values 
necessary to make good predictions. Performance of configuration 
SLMPS for different numbers of RTCs and stiffness parameter β in the 
Softmax interpolation method was tested for Charchenga and Batticaloa 
locations (Fig. 9). For combinations of the number of RTCs and β, the 
hydro-meteorological conditions (i.e., Hs,L, SSL and vmax,L) of the STCs 
were reconstructed and compared with their simulated values. Values of 
ρ, the RRMSE and ARB are presented (colorscale) in Fig. 9. The pre-
sented RRMSE and ARB are a percentage of their estimated 100-year RP 
values at that location based on STC (Table 2). 

As expected, the STCs can be better approximated when more RTCs 
are used. The required number of RTCs depends on the required level of 
accuracy. For each value of NRTC, the optimal β value is indicated by the 
black line in Fig. 9 (i.e., β value the corresponding to the highest value of 
ρ, lowest values of RRMSE, and lowest value of the ARB). When more 
RTCs are used for a site, a larger value of stiffness parameter (β) is 
required, since on average for each STC, closer RTCs are available (i.e., 
with smaller Euclidean distance in parameter space). Hence, with more 
RTCs available it is more favourable to give the closest RTCs more 
weight instead of taking values closer to the average of all RTCs. This is 
especially the case when approximating the hydro-meteorological con-
ditions for the most extreme STCs; even though the focus of the SLMPS 
configuration was on selecting the extreme STC, there were many more 
mild rather than extreme RTCs selected. Hence with constant β, using 
more RTCs thus generally leads to giving more weight to milder RTCs, 
and thereby underestimating the extreme STCs. 

For the SLMPS configuration, a value of NRTCs/β of about 10 was 
estimated as optimal based on ρ, RRMSE, and ARB values (Fig. 9). 
However, the calculated values of ρ, RRMSE, and RB in Table 2 and 
Fig. 9 are based on hydro-meteorological conditions for all STCs and 
STCrecs in the BoB. This means that for the calculation of ρ, RRMSE, and 
RB, no distinction is made between small deviations in the many STCrecs 
with relatively mild conditions on the one hand, and large deviations in 
the few extreme STCrecs on the other hand. For hazard assessment, large 
deviations in the approximation of the few extreme STCrecs are gener-
ally more important. Due to the mechanisms described above, a lower 
value of NRTCs/β performed better for approximating the conditions for 
extreme TCs and these events are of the most interest. In practice, a 
slightly lower value thus seems advisable and in this study a value of 
NRTCs/β of 5 was used. Fig. 9 can thus be useful to estimate the required 

values of NRTCs and β, but in applications the RTC selection and β should 
be checked by comparison as in Figs. 7 and 8 (e.g., by comparing vmax,L, 
see Section 5.3). 

4.2.3. Evaluation by EVA of hydro-meteorological conditions 
Having optimized our parameters for the RTC selection and inter-

polation, we can now compute the extreme values of hydro- 
meteorological variables as a function of return period. An EVA as 
described in Section 3.6 was performed on the maximum values of Hs,L, 
SSL and vmax,L for HTCs, simulated STCs, and STCrecs (as interpolated 
from RTCs). Only results for Charchenga and Batticaloa locations are 
presented (Fig. 10). As expected, comparison of STCs and RTCs shows 
stronger agreement for larger numbers of RTCs (81, 175, and 350 RTCs 
shown). With the STCs as benchmark, fits based on 81 RTCs typically 
perform better than fits based on 81 HTCs; Hs,L for Charchenga is the 
only exception (Fig. 10). 

RTCs are advantageous, especially for approximating higher return 
period (>50 years) quantiles. Such estimates based on HTCs and STCs 
deviate considerably at some locations, especially with infrequent TCs 
(e.g., for Batticaloa). For example, the maximum simulated SSL of only 1 
out of 81 HTC tracks for the BoB is > 0.1 m at Batticaloa (Fig. 10e), while 
this is the case for 7 out of the 81 selected RTC tracks. Reconstruction 
based on 81 RTCs results in 38 out of the 1745 STCrecs with SSL > 0.1 m. 
When all 1745 STCs are simulated, also 38 out of the 1745 STC are found 
to have SSL > 0.1 m. Consequences for an EVA can be clearly observed 
by comparing the fitted distributions for 81 HTCs, for STCrecs based on 
81 RTCs, and for all STCs: with the STCs as benchmark, estimated 100- 
year RP values for SSL based on HTCs are underestimated by more than 
250%, while those based on RTCs are only underestimated by ~10% at 
similar computational costs. This approach thus balances accuracy with 
efficiency in estimating extreme values for hydro-meteorological con-
ditions, particularly for more extreme events not well-captured by his-
torical tracks. 

5. Discussion 

In this section we discuss the main assumptions and limitations of the 
presented method and the underlying data in our case study. We also 
provide some suggestions for future applications and research. 

5.1. Optimal configuration 

For making estimates of TC-induced hydro-meteorological condi-
tions, our method enables a better balance between computational costs 
per simulation and the number of scenarios simulated, compared to 
using the HTCs or STCs directly. This approach can be used to increase 
efficiency by simulating fewer tracks, accuracy by permitting the use of 
higher resolution models, or a combination of both. However, for 
selecting the configuration and number of RTCs to be simulated, a trade- 
off between accuracy and efficiency must be made, in which the spatial 
scale of the analysis should also be considered. 

Three configurations were tested with increasing performance. The 
first configuration (FB) has no noteworthy advantages and was out-
performed by both the second (FBMPS) and third (SLMPS) configura-
tions. For large-scale assessments (e.g., for hazard assessment of coastal 
areas around the full Bay of Bengal), configuration FBMPS has the clear 
advantage that one set of RTCs represents the full basin, while with 
configuration SLMPS a new set of RTCs is selected for each location. For 
example, to represent STCs at both Charchenga and Batticaloa with 
configuration SLMPS, 291 RTCs (two times 175 RTCs with 59 over-
lapping) are needed. Nevertheless, performance at specific sites 
increased significantly after inclusion of the location of interest in 
configuration SLMPS compared to configurations FB and FBMPS for the 
full basin. With 175 RTCs, the SLMPS configuration was capable of 
selecting TC scenarios that represent the offshore hydro-meteorological 
conditions for the full set of scenarios and the only configuration 
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Fig. 9. Performance of the SLMPS configuration, focused on one selected location with modifications to the parameter space. Error metrics for different combinations 
of the number of RTCs (NRTC) and values of the stiffness parameter (β) in the Softmax interpolation method (logarithmic scales) are presented, for Charchenga and 
Batticaloa locations. Presented in colorscale are (a) Spearman rank correlation coefficient (ρ), (b) Relative Root Mean Square Error (RRMSE), and (c) Absolute value 
of Relative Bias (ARB) for maximum significant wave height (Hs,L), storm surge (SSL), and wind speed (Vmax,L). Cooler colors indicate better performance. For each 
given value of NRTC, the optimum value of β is indicated (black line). 
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including extreme events. Hence, for local applications in TC hazard 
assessment, configuration SLMPS is recommended. 

Individual STCrecs estimates of maximum Hs,L, SSL and vmax,L can 
deviate considerably from their STC counterpart value (Fig. 8). Hence, 
reconstructed hydro-meteorological conditions for the individual 
STCrecs should not be used. Due to the overall low RB of these estimates 
(Table 2), this is partially averaged out, and quantiles for ECDFs (Fig. 8) 
or fitted exponential functions (Fig. 10) typically show good agreement. 

As an alternative to MDA selection, other sampling methods such as 
Latin hypercube or orthogonal sampling could also be considered to 
select the RTCs. However, MDA allows for selecting the extremes of the 
parameter space, which is advantageous for extreme value analyses. 
Note that the Softmax function used as interpolation function is often 
used as the activation function in the output layer of neural network 
models that predict a multinomial probability distribution. That is, 
Softmax is used as the activation function for multi-class classification 
problems (e.g., Antolínez et al., 2016; Chiri et al., 2019) where class 
membership is required on more than two class labels. We used the 
Softmax function similarly and we additionally investigated the sensi-
tivity of its stiffness parameter on the reconstructed values, that in this 
application is shown to be sensitive to the number of selected RTCs 
(Section 4.2.2), showing a clear positive correlation between stiffness 
and a larger RTCs sample. We think this finding is intuitive, once there is 
a larger number of RTCs around and close to the unknown solution this 
parameter can be used to constrain the interpolation weights to its 
nearest neighbours. More complex alternatives to the simple Softmax 
interpolation based on statistical or machine learning methods that are 

mesh-free, such as radial basis functions, are promising for further 
development. 

For some locations, TCs making landfall nearby are most important 
(e.g., Charchenga), while for other locations extreme tracks passing at 
larger distance are equally important (e.g., Batticaloa). For example, TC 
generated swell waves have caused flooding at small islands in the Pa-
cific over 1000 km away from the TC-track (Hoeke et al., 2020). In these 
environments, even for the SLMPS configuration, it is recommended to 
use a large selection domain that covers a wide range of tracks. In this 
way, the most extreme and the closest tracks are emphasized by modi-
fying the parameter space, rather than by limiting the selection domain 
and excluding part of the tracks from the analysis. 

5.2. TC tracks and hydro-meteorological conditions 

In this study we took STCs and accompanying hydro-meteorological 
data following Leijnse et al. (2022) as benchmark. It should be noted 
that the synthetic tracks – and the sampled representative subset – are 
based on historical track records, thus they are dependent on the quality 
and length of those records (e.g., Mori et al., 2021). The underlying 
spatio-temporal statistical distributions (used in STC emulators) suffer 
from using relatively small datasets (observed or reanalysis data) in 
cyclogenesis and storm motion prediction. Furthermore, the decay rate 
of TCs making landfall or with motion on cold water is often parame-
terized only as a function of time (Kaplan and DeMaria, 1995; Vickery, 
2005). 

Astronomical tidal variations, being driven independent of the TCs, 

Figure 10. Extreme value analysis of hydro-meteorological conditions based on simulation of 81 HTC, 1745 STC and STCrecs based on different numbers of RTC 
(NRTC = 81, 175, 350). Hydro-meteorological conditions are quantified in terms of significant wave height (Hs,L), storm surge (SSL), and maximum wind speed 
(Vmax,L) for Charchenga (a–c) and Batticaloa (d–f) locations. Exponential distributions (solid lines) with 95% confidence intervals (shaded, only for HTC (black) and 
STC (blue)) are fitted to the data (markers, only shown for HTCs and STCs). Fitted distributions for SSL (b and e) based on STCs and based on STCrecs (NRTC = 175, 
350) are very similar and partially overlap in the figure. 
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were not included in the dataset. This allows for direct comparison of the 
storm surge and wave conditions for the different TCs. However, for 
realistic flood hazard assessment, the tide should certainly be considered 
in the model simulations to account for interactions between tide, storm 
surge, and waves. Similarly, precipitation was not included but can 
contribute to the TC flood hazard. Tide and precipitation could poten-
tially be added to the method (e.g., by making combined synthetic TC 
track, tide and precipitation scenarios, and additional descriptors in the 
representative scenario selection method). In the RTC selection method, 
the air pressure deficit was not included for reasons explained in Section 
3.3.1. Other STC emulators (e.g., Vickery et al., 2000; James and Mason, 
2005; Emanuel et al., 2006; Nakajo et al., 2014; Bloemendaal et al., 
2020; Arthur, 2021) do include air pressure and it could also be added as 
an additional descriptor similar to the windspeed. Adding such variables 
would help to better describe the TC activity and therefore would 
potentially help in the selection of key TCs to characterize the TC 
activity. 

5.3. General applicability 

In this case study, the method was tested at a specific location, and 
dataset of STC tracks generated with a specific STC emulator (i.e., 
TCWiSE), which in turn was based on a specific dataset of HTC tracks. 
However, the method uses key parameters for the characterization of TC 
activity and models that have shown the potential to be set-up in any 
specific regional setting. Other datasets of TC tracks, such as STCs 
generated with other emulators (see Section 5.2) or potentially also data 
from dynamical downscaling (e.g., Mori and Takemi, 2016; Jyo-
teeshkumar Reddy et al., 2021) could also be used. For areas where 
good-quality track records are readily available, HTC tracks could also 
be used directly (or a combination of HTC and STC tracks). Nevertheless, 
using synthetic tracks has the clear advantage of accounting for a wider 
range of events and reducing the uncertainty in extreme value pre-
dictions (Leijnse et al., 2022) at relatively low computational costs for 
generation of the STCs. Hybrid methods by Kim et al. (2015) and Jia 
et al. (2016) use idealized synthetic TC tracks and can accurately 
reconstruct time series of hydro-meteorological conditions for the range 
of TC tracks they have been derived for. In contrast, our method only 
reconstructs maximum values of hydro-meteorological conditions, but is 
more flexible and general, as we base our method on TC track param-
eters that are independent of the TC dataset or emulator, geographical 
location, or the TC making landfall. 

In our case study an existing dataset of STCs with simulated waves 
and surge levels was used, which allowed extensive validation of the 
STCrecs estimates of maximum Hs,L, SSL by one-to-one comparison with 
their STC counterpart. However, in most applications such information 
will not be available, being a major reason to use this method. For a 
given desired accuracy level, estimates of the required number of RTCs 
and the value of stiffness parameter β for the SLMPS configuration, 
presented in Section 4.2.2 and Fig. 9 can be used as a basis. However, it 
is highly recommended to perform additional validation of the repre-
sentativeness of the selected RTCs to the original dataset. For example, 
by comparison of values of vmax,L for the STCrecs with their STCs 
counterpart (as in Fig. 8c and g), as vmax,L can be obtained directly from 
the windfields without performing computationally expensive model 
simulations (e.g., TCWiSE provides windfields directly). For example, 
such strategy was applied in a case study for Majuro (Republic of the 
Marshall Islands, Western North Pacific basin) (Bakker, 2020). 

5.4. Implications for TC hazard assessment 

Quantiles of hydro-meteorological conditions obtained after EVA can 
be used directly if one is interested in the conditions offshore (as in our 
application), or propagated further shoreward (e.g., to obtain design 
values or for flood hazard assessment). Performance was typically better 
for locations with more frequent TCs (as more data was available), or 

where more extreme conditions occur. However, RTC scenarios add 
value for hazard assessment especially in areas with infrequent TCs, for 
which sufficient historical TC data is currently unavailable. They are 
also well-suited to estimating conditions associated with longer return 
periods when simulation of large sets of synthetic tracks is computa-
tionally unfeasible. 

In this study, offshore hydro-meteorological conditions were recon-
structed. Alternatively, the RTC scenarios may potentially also first be 
propagated further landwards before reconstructing STCrecs scenarios. 
For example, such an approach was applied by Bakker (2020) for esti-
mating flooding extents, but validation remains challenging, as propa-
gation of a full set of STC scenarios for a reference data set was not 
feasible. Other potential future applications include early warning sys-
tems, where a good balance between rapid assessment and accurate 
results is essential. 

6. Conclusions 

A new general method for efficient and accurate modelling of 
Tropical Cyclone (TC) induced hazards of flooding and extreme winds is 
presented. In the method, a comprehensive subset of Representative 
Tropical Cyclone (RTC) tracks is selected from a larger set of tracks by 
maximizing storm dissimilarity based on TC track characteristics. Ex-
tremes of the original set of TC tracks are included, and the information 
about frequency of TC and forcing conditions is preserved by statistical 
reconstruction of the original set based on the simulated RTC tracks. The 
method was successfully applied to a pre-existing dataset of 1745 Syn-
thetic Tropical Cyclone (STC) tracks (equivalent to 1000 years of TC 
conditions with the frequency of occurrence of the historical activity) 
with accompanying simulated maximum significant wave height (Hs,L), 
storm surge (SSL) and wind speeds (vmax,L) for nine selected locations in 
the Bay of Bengal. Performance was tested by comparing simulated 
values of Hs,L, SSL, and vmax,L of the full simulated set of STCs with their 
reconstructed value STCrecs, as interpolated from a smaller set of RTCs. 

We tested configurations Full Basin (FB), Full Basin Modified 
Parameter Space (FBMPS) and Selected Location Modified Parameter 
Space (SLMPS), which offered progressively better performance with 
each level of additional customization based on parameters and loca-
tions of interest. Configurations FB and FBMPS were designed to 
represent TC tracks for the full Bay of Bengal (regional setting), while 
SLMPS was designed to represent TC tracks per (project) location. In 
FBMPS and SLMPS the parameter space was modified whereby tracks 
with extreme windspeeds were made more important in the selection 
method. In addition, in SLMPS tracks passing close to the location of 
interest were given greater weight in interpolation. The approach was 
capable of making more accurate and comprehensive predictions of TC- 
induced hydro-meteorological conditions for longer return periods 
compared to simulating only Historical Tropical Cyclone (HTC) tracks, 
and with significantly lower computational costs compared to simu-
lating all possible STC tracks (175 vs 1745). 

Overall, the SLMPS configuration showed the best performance 
(typically within 10% deviation) in approximating the quantiles for 
return periods ranging 10–500 years with 90% reduction in simulated 
TC scenarios. By using more RTCs, the original set can be better 
approximated, but the rate of improvement decreases with an increasing 
number of representative tracks. The optimal value of the stiffness 
parameter (β) in the interpolation method increases with increasing 
number of RTCs. The presented configurations can also guide future 
applications, especially the parameterization of TC track scenarios. 

The method is general so it can be applied to any set of TC tracks 
worldwide in combination with any hazard model. Our approach en-
ables a more efficient and accurate TC (flood) hazard assessment; 
especially for infrequently impacted areas for which currently insuffi-
cient HTC data is available, when simulating large sets of synthetic 
tracks is infeasible, numerical models for hydrodynamics and waves 
need to be run on a higher resolution, or when only a limited set of tracks 
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can be modelled. Therefore, our method can improve or make feasible 
detailed flood hazard and risk assessments for areas where this was not 
feasible before. 

Data and code availability 

The IBTrACS dataset for HTC tracks is publicly available from: https 
://www.ncdc.noaa.gov/ibtracs/ 

The TCWiSE tool for generation of STCs is available through: https:// 
www.deltares.nl/en/software/tcwise/ 

We aim to include the Matlab code for selection of RTCs in a future 
release of the TCWiSE tool. The Delft3D Flexible Mesh Suite is available 
through: https://www.deltares.nl/en/software/delft3d-flexible-mesh- 
suite. 
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Glossary 

General 
HTC: Historical Tropical Cyclone (IBTrACS data in our case study) 
STC: Synthetic Tropical Cyclone (generated with TCWiSE in our case study) 
RTC: Representative Tropical Cyclone (selected subset of STC) 
TCrec: reconstructed Tropical Cyclone (based on interpolation) 
STCrecs: reconstructed Synthetic Tropical Cyclone (based on interpolation, as we recon-

struct the STCs we have STCrecs in our case study) 
IBTrACS: International Best Track Archive for Climate Stewardship (dataset) 
TCWiSE: Tropical Cyclone Wind Statistical Estimation (tool for STC generation) 
BoB: Bay of Bengal 
Hs,L: maximum significant wave height during a TC at a specific location 
SSL: maximum storm surge during a TC at a specific location 
vmax,L: maximum sustained windspeed during a TC at a specific location 

To describe a TC (track) 
SL: Selected Location 
descriptor: describes a characteristic of the TC, quantified by a number of parameters 
parameter: used to parameterize the TC track, see vmax,min to ATSL below 
vmax: maximum sustained windspeed of a TC, value specified for moment in time and 

location (lat,lon), obtained from IBTrACS or TCWiSE 
c: translation speed / forward velocity of a TC (eye), value specified for moment in time 

and location (lat,lon), approximated by calculating the distance between two 
consecutive TC locations (lat,lon), devided over the time past; lat, lon and time ob-
tained from IBTrACS or TCWiSE 

vmax,min: minimum value of vmax of the full TC track 
vmax,median: median value of vmax of the full TC track 
vmax,max: maximum value of vmax of the full TC track 
cmin: minimum value of c of the full TC track 
cmedian: median value of c of the full TC track 
cmax: maximum value of c of the full TC track 
duration: total duration / lifetime of the TC 
latgen: latitude coordinate of cyclogenesis location 
longen: longitude coordinate of cyclogenesis location 
lat1/3: latitude coordinate of the TC at 1/3 of its total lifetime 
lon1/3: longitude coordinate of the TC at 1/3 of its total lifetime 
lat2/3: latitude coordinate of the TC at 2/3 of its total lifetime 
lon2/3: longitude coordinate of the TC at 2/3 of its total lifetime 
latterm: latitude coordinate of TC termination location 
lonterm: longitude coordinate of TC termination location 
DTSL: minimum Distance of the (TC) Track to SL 
ATSL: Azimuth of DTSL (in degrees north) 

To select RTCs 
FB: Full Basin (configuration of the method) 
FBMPS: Full Basin Modified Parameter Space (configuration of the method) 
SLMPS: Selected Location Modified Parameter Space (configuration of the method) 
MDA: Maximum Dissimilarity Algorithm (used to select the RTCs) 
Npar/des: Number of parameters in a descriptor 
Fw: weight factor (applied to each of the normalized parameters in the descriptor) 
Fs: scaling factor (applied to each of the normalized parameters in the descriptor) 
NRTC: the number of RTCs 
NSTC: the number of STCs 

To reconstruct the STCrecs 
Softmax: Interpolation function used to reconstruct the STCrecs 
S(x)i: probability of the STC matching to RTC i 
β: stiffness parameter 
di: the (Euclidean) distance between the STC and RTC i 
dj: the (Euclidean) distance between the RTC and approximated STC j 

Errors and extreme value analysis 
EVA: Extreme Value Analysis 
RP: Return Period 
ECDF: Empirical Cumulative Distribution Function 
ρ: Spearman rank correlation coefficient 
RMSE: Root Mean Square Error 
RRMSE: Relative Root Mean Square Error, obtained by dividing the RMSE values (of the 

full set of STCs) by their 100-year RP value based on the ECDF of the STCs 
RB: Relative Bias, obtained by dividing the bias values (of the full set of STCs) by their 100- 

year RP value based on the ECDF of the STCs 
ARB: Absolute value of the Relative Bias (RB) 
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