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Abstract
The rise in global energy demand, combined with the imperative to reduce CO2 emissions, has driven
significant investments in renewable energy technologies. Offshore wind energy is a critical part of
this transition, given its potential to provide large-scale clean energy. However, one of the main chal-
lenges facing the offshore wind industry is the high levelised cost of energy (LCOE), driven primarily
by the costs of operation, maintenance, and the construction of support stuctures and foundations.
Reducing the LCOE is essential to make offshore wind energy more competitive. Innovations in tur-
bine design and installation techniques can play a key role in achieving this goal. A good example is
the introduction of slipjoint connections, which simplify the installation process and reduce material
use. Similarly, new turbine concepts, such as the hydraulic pump generator by Delft Offshore Tur-
bine (DOT), aim to reduce the weight and complexity of the rotor nacelle assembly (RNA), potentially
cutting both maintenance costs and structural demands.

This thesis investigates the effects of the lighter RNA, due to the innovative hydraulic generator
pump, on the support structure. The DOT turbine employs a hydraulic pump directly driven by the
rotor, eliminating the need for a gearbox and reducing the RNA weight by up to 50%. Moreover, the
hydraulic pump uses significantly less space in the nacelle. This reduction provides an opportunity to
enhance the support structure and incorporate dampers in the nacelle to mitigate vibrations caused
by environmental loads. In the second half of this research, the potential of a gyroscopic damper to
improve the dynamic response of wind turbines subjected to wind and wave loads is explored. The
focus lays on the reduction of the undamped side-to-side vibrations.

The research objectives include evaluating the impact of the lighter topside on the design of the
support structure and evaluating the effectiveness of gyroscopic dampers in reducing fatigue and
wave-induced vibrations. To this end a comparison between a conventional wind turbine support
structure and the lighter DOT design is made. The dynamic response of the system is analyzed
through ultimate limit state (ULS) and fatigue limit state (FLS) evaluations, using simplified, but accu-
rate, dynamic models. In addition, the performance of the gyroscopic damper is modeled and tested
to determine its ability to reduce the steady-state amplitude of side-to-side vibrations.

The results demonstrate that the lighter topside of the DOT turbine reduces steel use for the support
structure by 13%, compared to the conventional support structure. Furthermore, the implementation
of a passive gyroscopic damper without any damping elements demonstrates a frequency skipping
tool that can easily be tuned by altering the gyricity of the spinning disk. In addition to that, when a
damping element is added to the gyrostabiliser, a positive effect in damping the side-to-side vibra-
tions is observed. Compared to the undamped case, a reduction of more than 90% of the maximum
bending stress at the mudline is achieved. Additionally, due to the added weight and the ability of a
spinning disk to resist changing its orientation, the natural frequency of the total system lowers. A
sensitivity analysis of gyricity and mass variations confirms the potential benefits of such a damper
to improve the structural integrity and extend the lifetime of the turbine. The findings suggest that
further optimization of the damper configuration could lead to more reliable and cost-effective off-
shore wind turbines.

The thesis concludes with recommendations for future research, including the exploration of the
effects of lighter topsides on the support structure and the implementation of gyrostabilisers in
larger turbines, deeper-water and floating turbine applications.

ii



Contents

Preface i
Abstract ii
Nomenclature v
List of Figures viii
List of Tables x
1 Introduction 1

1.1 DOT turbine concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Hydraulic pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Ripple effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Opportunity for dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Report set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Design Basis 6
2.1 Load cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Environmental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Aerodynamic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Hydrodynamic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Soil characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Support Structure Design 13

3.1 Target frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Initial pile diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Aerodynamic loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Hydrodynamic loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Embedded pile length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Calculation of natural frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Limit State Analysis 21
4.1 Ultimate Limit State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Yield check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Global buckling check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Results ULS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Fatigue Limit State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Dynamic fatigue model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Aerodynamic damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Wave data input FLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 Amplitude Frequency Response Function. . . . . . . . . . . . . . . . . . . . . . . 32
4.2.5 Fatigue calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.6 Fatigue Limit State Results and Conclusions . . . . . . . . . . . . . . . . . . . . . 34

5 Gyroscopic Dampers 37
5.1 Gyroscopic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Configuration of a gyrostabiliser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



Contents iv

6 Gyrostabiliser Modelling 41
6.1 Support structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 RNA and gyrostabiliser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Systems interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Forcing input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Results 46
7.1 Gyrostabiliser parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.1 Gyricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.2 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Damped gyrostabiliser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8 Conclusions and Recommendations 55

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.1 Lighter topside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.1.2 Gyrostabiliser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References 61
A Derivation of critical wave loads 62
B Derivation of rotational matrix 64



Nomenclature

Abbreviations

Abbreviation Definition
AEY Annual energy yield
AFRF Amplitude frequency response function
ATMD Active tuned mass damper
CO2 Carbon dioxide
COE Cost of energy
CPT Cone penetration test
DFF Design fatigue factor
DOT Delft Offshore Turbine
EOG Extreme operating gust
ESS Extreme sea state
ETM Extreme turbulence model
EWH Extreme wave height
FLS Fatigue limit state
JONSWAP Joint North-Sea wave project
LAT Lowest astronomical tide
LCD Liquid column damper
LCOE Levelised cost of energy
MSL Mean sea level
NEA Netherlands Enterprise Agency
NTM Normal turbulence model
O&M Operation and maintenance
OWT Offshore wind turbine
PTMD Passive tuned mass damper
RNA Rotor nacelle assembly
SFRF Stress frequency response function
ULS Ultimate limit state

Symbols

Symbol Definition Unit
c Blade cord length [m]
𝑐𝑎𝑒𝑟𝑜 Aerodynamic damping coefficient [-]
𝐶𝑚𝑦 Moment factor for buckling [-]
𝐶𝑇 Thrust coefficient [-]
𝐷 Accumulated fatigue damage [-]
𝐷𝐹𝐹 Design fatigue factor [-]
𝐷𝑀𝑃 Diameter of monopile [m]
𝐷𝑅 Rotor diameter [m]
𝐷𝑆𝐽,𝑏 Diameter of slipjoint bottom [m]
𝐷𝑆𝐽,𝑡 Diameter of slipjoint top [m]
𝐷𝑇,𝑏 Diameter of tower bottom [m]
𝐷𝑇,𝑡 Diameter of tower top [m]
𝐹𝑥 Lateral force in x-direction [N]

v



Contents vi

Symbol Definition Unit
𝑔 Gravitational acceleration [m/s²]
𝐻𝑚0 Significant wave height [m]
𝐻𝑚𝑎𝑥 Maximum wave height [m]
𝐼𝑗 Segment second moment of area [m⁴]
𝐽𝑅𝑁𝐴,𝑥 Moment of inertia of RNA (x-axis) [m⁴]
𝐽𝑅𝑁𝐴,𝑦 Moment of inertia of RNA (y-axis) [m⁴]
𝑘 Number of stress blocks [-]
𝐾𝐿 Lateral spring coefficient [GN/m]
𝐾𝐿𝑅 Coupling spring coefficient [GN]
𝐾𝐿𝑇 Lateral spring stiffness [GN/m]
𝐾𝑅 Rotational spring coefficient [GNm/rad]
𝑘soil Soil stiffness [N/m]
𝑘𝑦𝑦 Coupling term for bending moments [-]
𝐿 Lagrangian [-]
𝐿𝐵𝑢𝑐𝑘 Buckling length [m]
𝐿𝑒𝑚𝑏 Embedded length monopile [m]
𝐿𝑀 Monopile length [m]
𝐿𝑆 Slipjoint length [m]
𝐿𝑇 Tower length [m]
𝑚 Negative inverse slope of the S-N curve [-]
𝑀𝑑 Mass gyroscopic disk [kg]
𝑀𝑅𝑁𝐴 Mass of rotor nacelle assembly [kg]
𝑀𝑦 Moment around y-axis [Nm]
Δ𝑀𝑦,𝐸𝑑 Moment due to the shift of the centroidal axis [Nm]
𝑀𝑦,𝑅𝑘 Moment resistance [Nm]
𝑀𝑧,𝑅𝑘 Moment resistance about z-axis [Nm]
𝑚𝑡𝑜𝑝 Mass of topside [kg]
𝑁 Normal force [N]
𝑁𝑏 Number of blades [-]
𝑁𝑐𝑟 Euler buckling normal force [N]
𝑁𝐸𝑑 Design normal force [N]
𝑁𝑖 Number of stress cycles to failure at a constant

stress range Δ𝜎𝑖
[-]

𝑛𝑖 Number of stress cycles for certain stress range [-]
𝑅 Radius of gyroscopic disk [m]
𝑃𝑟 Rated power [MW]
𝑇𝑝,𝐻𝑚𝑎𝑥 Peak wave period associated with 𝐻𝑚𝑎𝑥 [s]
𝑢𝑐 Current speed [m/s]
𝑈10,𝑎𝑣 10-min average wind speed at 100m [m/s]
𝑈𝑅 Rated wind speed [m/s]
𝑈𝑍 Wind speed at height 𝑍 [m/s]
W Elastic section modulus [m4]
𝑉 Topside for-aft horizontal displacement [m]
�̇� Topside for-aft horizontal velocity [m/s]
�̈� Topside for-aft horizontal acceleration [m/s2]
𝑉Ω Rotational speed of blade element [rad/s]
𝑍𝐿𝐴𝑇 Lowest astronomical tide [m]
𝑍𝑀𝑆𝐿 Mean sea level [m]
𝛼 Wind shear parameter [-]
𝜂 Fatigue usage factor (1/DFF) [-]
𝛾𝑒 Environmental safety factor [-]
𝛾𝑚 Material factor for S355 steel [-]
𝛾𝑠 Wave spreading factor [-]



Contents vii

Symbol Definition Unit
𝛾𝑀1 Partial safety factor for resistance of monopiles to

instability
[-]

𝜆 Eigenvalue [-]
𝜇𝑦 Additional term in buckling equations [-]
𝜌 Density [kg/m³]
𝜌𝑎 Air density [kg/m³]
𝜌𝑚 Displacement at mudline [m]
Δ𝜎𝑖 Stress range [Pa]
𝜎𝑉𝑀 Von Mises stress [Pa]
𝜏 Torque [Nm]
𝜏𝑥𝑦 Shear stress [Pa]
𝜃 Rotation gyroscopic disk around x-axis [rad]
𝜃𝑚 Rotation at mudline [°]
𝜙𝑥 Rotation of topside around x-axis [rad]
̇𝜙𝑥 Rotational velocity of topside around the x-axis [rad/s]
̈𝜙𝑥 Rotational acceleration of topside around the x-

axis
[rad/s2]

𝜒 Stiffness ratio between tower and monopile [-]
𝜒𝑧 Reduction factor due to flexural buckling [-]
𝜓 Rotation gyroscopic disk around y-axis [rad]
𝜔𝑤 Wave frequency [rad/s]
Ω𝑑 Gyricity disk [rad/s]



List of Figures

1.1 Yearly average wind speed at 100m height [3] . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Distribution of LCOE for offshore wind turbines [5] . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Depiction of a geared drivetrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Schematic overview novel hydraulic DOT pump . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Schematic overview of cross-section hydraulic pump . . . . . . . . . . . . . . . . . . . . 4

2.1 Exact location of OWT in Prinses Amalia Wind Park - source: www.noordzeeloket.nl . . 6
2.2 Power curve of DOT hydraulic pump generator turbine . . . . . . . . . . . . . . . . . . . . 8
2.3 Average annual yield for several hub heights . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Wind speed profile representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Vertical wind speed profile, with hub height region . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Schematic resemblance OWT with equivalent springs . . . . . . . . . . . . . . . . . . . . 11

3.1 Grouted (left), bolted (middle) and slip joint connection [4] . . . . . . . . . . . . . . . . . 13
3.2 Frequency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Schematic ULS analysis model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Displacement DOT turbine over full length - ULS case . . . . . . . . . . . . . . . . . . . . 24
4.3 Moment and shear force DOT turbine - ULS case . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Buckling curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Dynamic model FLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Joint scatter diagram HKN (2005-01-01 - 2016-01-01) . . . . . . . . . . . . . . . . . . . . . 31
4.7 Horizontal displacement topside conventional turbine . . . . . . . . . . . . . . . . . . . 32
4.8 Absolute horizontal displacement topside . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Stress Frequency Response Function - 1.5m wave . . . . . . . . . . . . . . . . . . . . . . . 34
4.10 S-N curves for steel in seawater [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.11 SFRF side-to-side motion - 1.5m wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.12 support structure modeshapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.13 SFRF for different heights above the mudline . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Schematics of an aviation instrument using a gyroscope . . . . . . . . . . . . . . . . . . 38
5.2 Visualization of gyroscopic precession due to a torque . . . . . . . . . . . . . . . . . . . 39
5.3 gyrostabiliser configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Simplified support structure-RNA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Schematic representation of the 4 degrees of freedom of the flywheel . . . . . . . . . . 42
6.3 Topview of flywheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Joint occurance table of wave direction (WD) and wind-misalignment . . . . . . . . . . . 45

7.1 Top-view of incoming wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Stress Frequency Response Functions in side-to-side direction . . . . . . . . . . . . . . 47
7.3 Results in for-aft direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Stress Frequency Response Function gyricity alteration | side-to-side direction . . . . . 49
7.5 Maximum bending stress for different gyricity configurations | side-to-side direction . 49
7.6 Transferred moment from nacelle to gyrostabiliser . . . . . . . . . . . . . . . . . . . . . . 50
7.7 Stress Frequency Response Function mass alteration | side-to-side direction . . . . . . 51
7.8 Stress Frequency Response Function - gyricity alteration damped 5000kg gyrostabiliser|

side-to-side direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



List of Figures ix

7.9 Stress Frequency Response Function - gyricity alteration damped 7000kg gyrostabiliser|
side-to-side direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.10 Maximumbending stress for different gyricities of damped gyrostabiliser | side-to-side
direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.11 𝜃 frequency response plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.12 Visualization of linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.1 Stress Frequency Response Function gyricity alteration damped 7000kg gyrostabiliser|
side-to-side direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 Wake amplification factor for smooth (solid line) and rough (dotted line) roughness . . 63

B.1 Topview of flywheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



List of Tables

1.1 Novel turbine characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 MetOcean data Prinses Amalia Wind Park . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Soil parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 ULS load combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Soil and spring parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Input parameters OWTs for validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Measured and calculated frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Parameters support structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 ULS results. *below mudline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Results FLS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Moments of inertia topside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 Parameters support structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Results ULS analysis. *with respect to mudline . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Results FLS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



1
Introduction

The rise of the global energy demand together with the goals on reducing CO2-emissions, has en-
couraged organizations to invest in renewable energy sources. The goal for the world to have a net
zero emission in 2050 would mean a 37 gigatonnes (Gt) reduction of annual emissions. That is, an
increase of 79% in the worldwide share of renewable energy [1]. The Paris agreement states that
this is compatible with the target of a global temperature increase of 1.5°C, required to keep the
environment from being irreversibly damaged. To meet these sustainability goals, the expansion
and improvement of feasible low-carbon technologies is of the highest priority. Offshore wind is a
compelling example of a fast-developing technology that is prone to contribute to these goals.

Renewable energy sources, such as wind, acquire a vast potential as it is a clean and unlimited source
of energy. The offshorewind industry is one the largest and fastest growing renewable energy sources
and has been proven to greatly contribute to the transition from fossil fuels to non-emitting sources.
This is mainly due to the higher andmore constant wind climate at seas compared to the land climate,
see figure 1.1. Offshore wind turbines (OWTs) have the potential to produce much more energy than
their terrestrial counterparts. The potential energy contained in offshore sites around the world is
more than 10 times the global energy demand in 2040 [2]. This, together with the reduced visual
horizon pollution caused by the onshore turbines, makes them a logical investment for countries
that strive to produce and use more green energy.

Figure 1.1: Yearly average wind speed at 100m height [3]

The biggest drawback of offshore wind farms is the high cost of energy. To compare different energy
harvesting techniques the levelised cost of energy (LCOE) is introduced. A number that includes the

1



1.1. DOT turbine concept 2

total investment costs, the costs of operation and maintenance and the earnings over the lifetime
of the turbine. The distribution of the components over the lifespan of the turbine is shown in fig-
ure 1.2, where we see that the biggest contributors to the LCOE are the operation and maintenance
(O&M), turbine and support structure & foundation. Improvement of reliability and therefore reduc-
ing maintenance costs has a significant impact on the LCOE. A lower LCOE will make it more attractive
to construct offshore wind farms. New techniques and optimizations within the offshore wind indus-
try are realised frequently to reduce the LCOE and accelerate the sustainable energy transition. An
example of a method to lower the LCOE is to apply smarter installation techniques. A distinctive
example of this is the slip joint [4], a connection method between the support structure and the
turbine to save costly installation time and materials. Section 3 in this thesis provides the reader
with more information regarding this technique.

Figure 1.2: Distribution of LCOE for offshore wind turbines [5]

1.1. DOT turbine concept
Currently, a large amount of new bottom founded offshore wind turbines are placed all over the
world. These all have approximately the same design and used technology, which originated from
the smaller onshore turbines. As the turbines went offshore and grew bigger over the years - and are
expected to scale more in the upcoming years - it is foreseen that the weight of the top of the turbine
will become too large for a feasible design. This is mostly a function of the volume and weight of
the gearbox needed to transfer the energy from the rotor into a low torque and high speed rotation
in the generator [6], depicted in figure 1.3. Therefore, new turbine designs with a variety of different
working principles are developed on regular basis. One of these is the patented hydraulic pump
design of Delft Offshore Turbine (DOT), depicted in figure 1.4.

Figure 1.3: Depiction of a geared drivetrain
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Figure 1.4: Schematic overview novel hydraulic DOT pump

The idea uses one hydraulic pump directly connected to the slowly rotating rotor, replacing high
maintenance components as the gearbox and generator all together, while saving up to 50% of the
original weight of the rotor nacelle assembly (RNA). The hydraulic pump pumps up seawater through
the low pressure line and pressurizes is in the hydraulic pump. The electricity is generated by a sep-
arate generator attached to a Pelton wheel. This method of energy generation lends itself to design
a configuration where several OWTs can interact with a collective power generator. An overview of
the relevant RNA parameters of the turbine are shown in table 1.1.

Table 1.1: Novel turbine characteristics

Parameter Symbol Value Unit
Rated power 𝑃𝑟 2.5 MW
Rated wind speed 𝑈𝑟 13 m/s
Rotor diameter 𝐷𝑅 100 m
Mass hydraulic pump 𝑚𝑝𝑢𝑚𝑝 26 t
Mass nacelle 𝑚𝑛𝑎𝑐 18 t
Mass hub 𝑚ℎ𝑢𝑏 20 t
Mass blades 𝑚𝑏𝑙𝑎𝑑𝑒𝑠 9.1 t
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1.1.1. Hydraulic pump
The hydraulic pump pressurizing the water via pistons. The cross-section of the pump is shown in
figure 1.5, where the orange parts are the pistons. The outer grey cam ring transfers the rotational
energy of the rotor to the upward motion of the cylinders. These cylinders pressurize the water when
being compressed and suck in the water when being decompressed. This is the working principle of
the rotary piston hydraulic pump.

Figure 1.5: Schematic overview of cross-section hydraulic pump

1.1.2. Ripple effect
The compressing and decompressing of the cylinders in the pump generate a ripple effect within
the system with a frequency of approximately 18Hz at rated power. This frequency is far from the
expected natural frequencies of the system, so no excitation from this ripple effect will be expected.
The approximation of the magnitude of the ripple is 2-5% of the total generated energy. Based on
these two parameters, it is not expected that the ripple effect has a significant effect on the structural
integrity of the system. Therefore, it will not be integrated in this research.

1.2. Research objectives
The optimization quest of the offshore wind turbine is constantly going on. The DOT turbine concept
contributes to this by innovating the generator and aiming for a more reliable system. In addition to
that, the lighter topside has a positive influence on the amount of material required for a structurally
integer support structure. Besides this it gives the opportunity to utilize a damper in the topside, due
to weight and size benefits.

Hence, the objectives of this research thesis are to firstly analyze the extend of effects of the lighter
topside on the design of the support structure. And successively, to analyse the feasibility of a
damper in the form of a gyroscope as these effects are fairly unknown. This results in the following
research questions:

”What are the effects of a lighter topside on the support structure of a bottom founded offshore
wind turbine?”

”How effective are gyroscopic dampers in reducing wave-induced vibrations in bottom founded
offshore wind turbines?”

1.3. Opportunity for dampers
Using a damper can improve the dynamic response of the turbine under offshore environmental
loads. This can, just like the lighter topside, contribute to a more structurally efficient support struc-
ture. It is expected that the lighter topside has a significant effect on the ultimate- and fatigue load
toughness of the support structure. This is further elaborated in chapter 4.
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Dampers in offshore wind turbines have many different forms, a handful is introduced in chapter
5. All of them have one thing in common, the additional weight and volume added to the structure.
Because the DOT turbine design is reduced in weight and volume compared to the conventional elec-
trical turbine, the implementation of a damper in the RNA could have major benefits to the overall
structure.

Especially for larger turbines in deeper water, the environmental loads on the turbine increase. Wind
and waves can cause significant structural vibrations, leading to higher fatigue loads in several parts
of the structure. Minimizing these vibrations can lead to more reliable systems and allows for larger
turbines to be placed in more remote waters. The damping of vibrations contributes to maintain-
ing a consistent angle of incidence of the wind on the rotor. Deviations from perpendicular wind
incidence induce moments on the topside, leading to vibrations throughout the tower, which are
mitigated through the damping mechanism. Consequently, by ensuring a more uniform angle of in-
cidence, the efficiency of the turbine is enhanced, resulting in an increased energy output.

In this paper, the utilization and feasibility of a gyroscopic damper will be explored. The use of this
mechanism as a damper in an OWT has been briefly researched [7], but will be explored further in
this thesis.

1.4. Report set-up
This report is structured to initially design a support structure for the DOT hydraulic generator pump,
simultaneously with a support structure for a wind turbine with a conventional electrical generator.
This is done to show the effects of the lighter topside on the support structure and its limiting fac-
tors. Later, the mechanism of a gyroscopic damper is explained. A dynamic model is set up and the
effectiveness of the gyroscopic damper is tested.

In chapter 2 the basis of the design in given, on which the two foundations are based. This design cy-
cle is shown in chapter 3. In chapter 4 the support structures are subjected to the ultimate limit state
(ULS) and fatigue limit state (FLS) checks to pinpoint constraining factors. After this, the research on
and mechanisms of a gyroscopic damper is explained in chapter 5. Chapter 6 shows the implementa-
tion of the gyroscopic damper in the dynamic wind turbine model, followed by the results in chapter
7. Finally, the conclusions and recommendations of the research are given in chapter 8.



2
Design Basis

The main goal for the foundation is to transfer all the loads acting on the wind turbine to the soil
safely and within the acceptable deformations. This is governed by the Limit State Design philoso-
phy, where we look at the largest possible loads acting on the system. These loads originate from
the environmental climate the turbine operates in. In this case, the site location is in the Princess
Amalia Wind Park, a wind park in operation since 2008, located about 23 kilometers west of Ijmuiden,
North-Holland, The Netherlands. The global area of the park and the exact location of the turbine
placement are depicted in figure 2.1. The characteristics of the wind turbine, the load cases and the
environmental data together form the basis of the support structure design. First, the load cases
are explained, then the origin of the environmental data and the adequate use of it is elaborated.
Later, these loads are used throughout the paper for the limit state analysis and testing of the im-
plemented damper.

The majority of the site data are provided by the DOT, other data is collected from open sources. As
the turbine is located at the edge of the site, the influence of turbulence generated by surrounding
turbines is neglected in this analysis.

Figure 2.1: Exact location of OWT in Prinses Amalia Wind Park - source: www.noordzeeloket.nl

2.1. Load cases
The relevant standards [8], [9], [10] report numerous amounts of load cases that need to be consid-
ered to ensure the safety of the wind turbines during its lifetime. These load cases state a combina-
tion of environmental conditions. The wind conditions that are considered are as follows:

6
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1. Normal turbulence scenario: in this condition we consider the Normal Turbulence Model (NTM)
at the rated wind speed (𝑈𝑅), where the highest thrust force is expected. The NTM standard
deviation is stated in IEC [10].

2. Extreme turbulence scenario: in this conditionwe consider the Extreme TurbulenceModel (ETM)
at the rated wind speed (𝑈𝑅). The ETM standard deviation of wind speed is again stated in IEC
[10].

3. Extreme gust at rated wind speed scenario: this condition considers the 50-year EOG (extreme
operating gust), described in 2.2.1, during rated wind speed (𝑈𝑅) [10].

4. Extreme gust at cut-out wind speed scenario: this condition considers the 50-year EOG, de-
scribed in 2.2.1, during a wind speed just below the cut-out wind speed. This EOG speed is
different from the EOG at rated wind speed [10].

With the given wave heights given in table 2.1, the considered wave conditions are:

1. 1-year Extreme Sea State (ESS): this wave condition considers a wave acting on the support
structure with a height equivalent to the 1-year significant wave height (𝐻𝑚0,1).

2. 1-year Extreme Wave Height (EWH): this wave condition considers a wave acting on the support
structure with a height equivalent to the 1-year maximum wave height (𝐻𝑚𝑎𝑥,1).

3. 50-year Extreme Sea State (ESS): this wave condition considers a wave acting on the support
structure with a height equivalent to the 50-year significant wave height (𝐻𝑚0,50).

4. 50-year ExtremeWave Height (EWH): this wave condition considers a wave acting on the support
structure with a height equivalent to the 50-year maximum wave height (𝐻𝑚𝑎𝑥,50).

It is expected that the largest wind load occurs during the extreme gust at rated wind speed scenario
and the highest wave load occurs during the 50-year extreme wave height scenario. It can be easily
seen that the largest load on the support structure is a combination of these two. In practice, the
probability of these two scenarios to happen simultaneously is negligible [8]. In this thesis, for ULS
analysis, the two conservative combinations below are considered.

1. Extreme Turbulence Model (ETM) at rated wind speed, combined with the 50-year ExtremeWave
Height (EWH).

2. The 50-year Extreme Operating Gust (EOG), combined with the 1-year Extreme Wave Height
(EWH).

In the following section, we elaborate on these two wind conditions and two wave conditions.

2.2. Environmental data
A large part of the required environmental data can be extracted directly from the site itself. The
wind and water data used in this research comes mainly from the Netherlands Enterprise Agency
(NEA) [11]. NEA is an open source database providing private individuals and companies with a com-
plete data set of wind and water statistics. This set consists of data from 1979 to 2018. The most
essential parameters are summarized in table 2.1. The soil characteristics are provided by DOT and
are derived from an extensive geotechnical investigation report from a third party Fugro and are
elaborated in section 2.3.
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Table 2.1: MetOcean data Prinses Amalia Wind Park

Parameter Symbol 1-year value 50-year value Unit
Mean Sea Level (MSL) 𝑍MSL 24.4 - m
Lowest Astronomical Tide (LAT) 𝑍LAT 23.3 - m
10-min average wind speed 100m 𝑈10,av 33.1 41.0 m/s
Average current speed 𝑢𝑐 1.0 1.1 m/s
Significant wave height 𝐻𝑚0 5.6 7.3 m
Peak wave period ass. with 𝐻𝑚0 𝑇𝑃,𝐻𝑚0 10.1 11.9 s
Maximum wave height 𝐻max 10.4 14.0 m
Peak wave period ass. with 𝐻max 𝑇𝑃,𝐻𝑚𝑎𝑥 9.2 10.2 s
Wind shear parameter 𝛼 0.14 - [-]
JONSWAP peak enhancement factor 𝛾 2.2 - [-]

Both the wind shear parameter and the JONSWAP (JOint North-Sea WAve Project) peak enhancement
factor are provided by DOT and are a result of measurements.

2.2.1. Aerodynamic data
The wind condition is a critical design input for the offshore wind turbine. It determines the total en-
ergy yield of the system, but also is the main contributor to the extreme forces acting on the support
structure. Firstly, on the basis of the set turbine characteristics, power curve and wind condition,
the approximate hub height is determined. The common power curve of the 2.5MW DOT hydraulic
generator is shown in figure 2.2.

Figure 2.2: Power curve of DOT hydraulic pump generator turbine

Hub height
The height of the hub above the water level is a result of the wind distribution at the site and the
power curve of the turbine. In this case, the rotor size is fixed, where this can also be varied to design
the configuration with the lowest cost of energy (COE) [12]. Therefore, we exclusively base it on the
annual energy yield (AEY). The AEY is the product of the power curve and the Weibull distribution
of the wind at the location. The average annual energy yield, as illustrated in figure 2.3, represents
the total energy output of the 2.5 MW turbine over the course of a year. From this analysis, it can be
observed that the optimal hub height is approximately 70 meters. Further increases in hub height
does not result in a proportional increase in energy yield sufficient to justify the additional costs
associated with a taller support structure. The precise hub height will be determined in chapter 3.
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Figure 2.3: Average annual yield for several hub heights

The data set states the 10-minute average at a height of 100 meters above MSL. The mean wind speed
profile, depicted in figure 2.4, can be plotted using the power law equation [13]:

𝑢𝑧
𝑢𝑟𝑒𝑓

= ( 𝑧
𝑧𝑟𝑒𝑓

)
𝛼

, (2.1)

where:

𝑈𝑍 = the wind speed at height 𝑍 [m/s]
𝑈𝑟𝑒𝑓 = the wind speed at reference height [m/s]
𝑧𝑟𝑒𝑓 = the reference height [m]
𝛼 = the wind shear parameter [-]

This can be done for the rated wind speed, 1 year maximum and 50 year maximum, where the 1 year
and 5 year maximum wind speed is the maximum wind speed statistically occurring every 1 or 50
years, respectively. For the latter meaning that, annually the change of exceeding is 1/50 or 2%. The
rated wind speed profile shows the wind speed profile over the height of the support structure with
a wind speed of 13 m/s at hub height. These extrapolated wind shear profiles are shown in figure 2.5.

Figure 2.4: Wind speed profile representation
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Figure 2.5: Vertical wind speed profile, with hub height region

The mean wind profile is depicted in figure 2.4, where it can be seen that this is not an evident
representation of the reality. The actual wind speed profile consists of a heavy gust governed profile.
Therefore, the turbulence is an important design consideration. We apply two models to represent
the turbulence: the extreme operating gust at the rated wind speed:

𝑢𝐸𝑂𝐺 = min {1.35 (𝑈10,1− year − 𝑈𝑅) ;
3.3𝜎𝑈,𝑐
1 + 0.1𝐷

Λ1

} , (2.2)

where:

𝑈𝑅 = the rated wind speed of the turbine [m/s]
𝑈10,1−𝑦𝑒𝑎𝑟 = the 10 minute average wind speed with a 1 year return period at hub height [m/s]
𝜎𝑈,𝑐 = the characteristic standard deviation =0.11𝑈10,1−𝑦𝑒𝑎𝑟 [-]
𝐷 = the rotor diameter [m]
Λ1 = 𝐿𝐾/8, with 𝐿𝐾 being the integral scale parameter [m]

and the extreme turbulence model:

𝜎𝑈,𝐸𝑇𝑀 = 𝑐𝐼ref [0.072 (
𝑈avg
𝑐 + 3) (

𝑈𝑅
𝑐 − 4) + 10] (2.3)

where, 𝑐 is a constant of 2 m/s [10], 𝐼𝑟𝑒𝑓 is the reference turbulence intensity at 15 m/s. This value is
estimated to be 0.15 [10]. 𝑈𝑎𝑣𝑔 is the annual average wind speed at hub height, being 9.2 m/s.

It is expected that the maximum wind load occurs during rated wind conditions with a 50-year EOG
impacting the rotor. During this event the actuation of the blade pitching is not fast enough to mini-
mize the impact [8].

According to the DNV-OS-J101 [14] the integral scale parameter 𝐿𝐾 is 340.2 meters. The calculated EOG
can be added on top of the wind speed profile of figure 2.5 to obtain the maximum wind speed. This
is used in chapter 3 to calculate the largest overturning moment.
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2.2.2. Hydrodynamic data
The severity of the hydrodynamic environment can be captured in several parameters, which are
used to calculate the maximum loads on the submerged support structure caused by the waves. A
summary of the most significant provided values of the sea state are given in table 2.1. Here, it is
relevant to note that the significant and extreme wave height have different meanings. Where the
extreme wave height is the single highest wave in a 3-hour sea state, the significant wave height is
the average of the highest one third of all waves in the same sea state. The water current velocity is
significantly lower and are therefore not considered in this case.

These hydrodynamic loads together with the load cases in 2.1 give the maximum loads originating
from the sea environment.

2.3. Soil characteristics
The soil characteristics play a significant role in the dynamic behaviour of an OWT. Especially for
turbines placed in shallow water as the DOT tower, soil stiffness plays a consequential role in its
dynamic nature [15]. An extensive investigation regarding the soil is therefore very important. DOT
features soil data, obtained by a third party through a cone penetration test (CPT). For confidential
reasons the exact data can not be shared in this thesis. Together with this and the fact that soil
behaviour is not the focus of this research, the effects of the soil are modelled as a set of equivalent
springs located at the mudline. Figure 2.6 shows the equivalent springs: 𝐾𝑅 (rotational stiffness), 𝐾𝐿
(lateral stiffness), 𝐾𝐿𝑅 (cross coupling) and 𝐾𝑉 (vertical stiffness). For this example of a small turbine,
it is not expected that the pile bearing capacity is governing. Therefore, the vertical stiffness is in
this case not considered, as we assume the system is very stiff in the vertical direction.

Figure 2.6: Schematic resemblance OWT with equivalent springs

The vast majority of the soil consists of clean to silty sand for the first 20 meters below the mudline.
This soil has an average unit weight of 17 𝑘𝑁/𝑚3, which linearly increases over the depth.

The values of the equivalent springs are determined according to Davis and Poulos [16], where the
equations for the spring coefficients for rigid piles in linearly in-homogeneous soil are given in the
following set of equations:
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𝐾𝐿 =
1
2𝐿

2
𝑃𝑛ℎ

𝐾𝐿𝑅 = −
1
3𝐿

3
𝑃𝑛ℎ

𝐾𝑅 =
1
4𝐿

4
𝑃𝑛ℎ

(2.4)

Here 𝐿𝑃 is the, to be determined, embedded pile length of the monopile and 𝑛ℎ is the coefficient of
subgrade reaction [17], which can be evaluated via

𝑛ℎ =
𝐴𝛾′
1.35 (2.5)

Here, 𝐴 is in the range of 300-1000 for medium sand and 100-300 for loose sand, here we use 600 as
the sand is of medium density. 𝛾′ is the average soil weight, which is already stated above. Finally,
it is necessary to verify whether the assumption of rigid piles is acceptable. This can be done by
checking the boundaries from the two equations [18]:

Slender if: 𝐿𝑝 >
4𝐸𝐼𝑝
𝑛ℎ

Rigid if: 𝐿𝑝 <
2𝐸𝐼𝑝
𝑛ℎ

(2.6)

Here the 𝐸 is the Young’s modulus of the steel and 𝐼𝑃 is the second moment of area of the pile.
Making use of equations 2.4 to 2.6, the spring coefficients can be determined as a function of the
embedded length. The required embedded length and its resulting values for the equivalent springs
are assessed in section 3.3.

Due to the loading cycles, the stiffness of the soil changes over time. This is not captured in the
modelling of the soil-structure interaction as linear springs. To check for ULS in the future, some
safety factor should be applied [19], but for this initial design this is omitted for now. The calculated
parameters are summarized in table 2.2.

Table 2.2: Soil parameters

Parameter Symbol value Unit
Average soil weight 𝛾′ 17 𝑘𝑁/𝑚3

Soil parameter A 600 -
Internal angle of friction 𝜓′ 43 °



3
Support Structure Design

The aim of this research is to show the effects of a lighter topside on the support structure. Based on
the design basis, an initial support structure design will be set up [18]. The values given as example
throughout this chapter are for the DOT hydraulic generator. At the end of this chapter the effects of
using a conventional heavier generator on the support structure will be assessed. For comparability
reasons, the tower dimensions of the two support structures will be kept the same, only the slipjoint
and monopile dimensions will be altered for the different topsides.

In the next chapter, the initial support structure designs will be tested on their ultimate limit state
(ULS) capacities and a fatigue limit state (FLS) analysis will be done over the life span. With both
checks the support structure dimensions will be altered accordingly.

Slip joint
Besides the development of the hydraulic low speed pump, DOT has realised other new innovative
components for wind turbines. One of these components is the slip joint, depicted in figure 3.1. The
slipjoint is included in this research as it is an integral part of the DOT design and therefore makes
the support structure design more realistic.

This simplified method of connecting the foundation monopile to the turbine tower makes use of the
friction between the two conical shapes. In comparison with the two conventional methods, grouted
and bolted, the slip joint does not use any additional materials as bolts or grouting. But its greatest
advantage is, that this method reduces the installation time offshore [4].

This connection method will be used in the design of the support structures. As the mechanics of
the slip joint are not in the scope of this research, the conical slip joint will be represented as a part
between the turbine and foundation with twice the wall thickness of the tower and an expanding
angle between 0.5° and 1.5°.

Figure 3.1: Grouted (left), bolted (middle) and slip joint connection [4]

13



3.1. Target frequency 14

The following steps will be conducted to construct a suitable support structure for the novel turbine
design:

1. Target frequency - the target natural frequency is set, depending on the environmental loading
and rotor characteristics.

2. Initial pile diameter - guess the initial pile diameter based on the maximum overturning mo-
ment as the mudline due to the wind load and the structural yield criteria of the material. With
this diameter the hydrodynamic loads on the monopile can be computed.

3. Embedded pile length - Based on the geotechnical data and maximum allowable deformations
at the mudline, the embedded length of the monopile can be determined.

4. Calculation of natural frequency - the natural frequency of the initial support structure is de-
termined via the stepped tower method.

5. Support structure optimization - Iterative optimization of the initial support structure config-
uration, based on the ultimate limit state (ULS) and fatigue limit state (FLS) and calculated
natural frequency.

3.1. Target frequency
The target natural frequency (𝑓𝑛) of the system is an important design parameter. When the system
is dynamically loaded with a frequency close to the natural frequency of the system, the dynamic
response is amplified, possibly resulting in structural and material damages. Therefore, it is very
common to design the support structure in such a way that the natural frequency does not coincide
with the frequencies of the external loads acting on the system. In this study: wind, wave and rotor
loads are considered.

Figure 3.2: Frequency diagram

Figure 3.2 shows the frequencies of the considered forces acting on the turbine. The wind forcing
is captured in the Kaimal spectrum and the waves are represented by the JONSWAP spectrum, both
according to the DNV standards [14]. It is practice to set the target structural natural frequency
above the the frequency domain of the waves. Normally, the target frequency is set between the
ranges of the 1P and 3P, the rotor rotational and blade passing frequency respectively. As in this
case these ranges overlap, the target natural frequency is set in the lower region of the 3P blade
passing frequency range. To still bypass the resonance, the method of frequency skipping it used
[20]. During frequency skipping, the torque in the hydraulic pump is externally altered when the rotor
frequency approaches the natural excitation frequency. This way the 3P blade passing frequency that
coincides with the natural frequency is omitted. In the lower region of the 3P blade passing frequency
the rotational speed of the rotor is lowest, hence the energy is lowest in the rotor. Applying frequency
skipping in this frequency range is therefore easiest and has the lowest risk. Concluding, the target
natural frequency of the system is set to 0.27 hertz.
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3.2. Initial pile diameters
To set the initial diameters of the monopile, the maximum overturning moment at the mudline due
to the aerodynamic load is calculated. Once the diameter of the submerged monopile is known, the
hydrodynamic forces can be generated. The dominating load cases for this initial analysis are the
ETM and 50-year EWH, and EOG and 1-year EWH combinations. The results of this iterative process
are shown in table 3.1.

3.2.1. Aerodynamic loading
To establish the initial diameter of the monopile, the maximum thrust force is calculated. This force
can be calculated, in a simplified manner, with equation

𝐹wind ,𝐸𝑂𝐺 = 𝑇𝐸𝑂𝐺 =
1
2𝜌𝑎𝐴𝑅𝐶𝑇 (𝑈𝑅 + 𝑢𝐸𝑂𝐺)

2 , (3.1)

where, 𝑈𝑅 is the maximum wind speed hitting the rotor swept area 𝐴𝑅 and 𝐶𝑇 is the thrust coefficient,
which can be conservatively estimated as 7/𝑈𝑅 [21].
The overturning moment at the mudline, while applying the correct load factor of 𝛾𝐿 = 1.35 according
to the standards [8], can then evidently be calculated by

𝑀𝑤𝑖𝑛𝑑,𝐸𝑂𝐺 = 𝑇𝐸𝑂𝐺(𝑆 + 𝑧ℎ𝑢𝑏)𝛾𝐿. (3.2)

The loads and moments are given in table 3.1.
From this, the initial dimensions of the pile can easily be found using the following equation:

𝜎𝑚 =
𝑀𝑤𝑖𝑛𝑑,𝐸𝑂𝐺 ∗ 𝐷𝑃

2𝐼𝑃
<
𝑓𝑦𝑘
𝛾𝑀

(3.3)

where, 𝐼𝑃 is the moment of inertia of the pile, 𝑓𝑦𝑘 is the yield stress in the S355 steel and 𝛾𝑀 is the
factor of material = 1.1. Through equations 3.1 to 3.3 we find the initial pile dimensions and are then:
𝐷𝑃 = 4.25 [m] and 𝑡𝑃 = 0.04 [m].

3.2.2. Hydrodynamic loading
Using the initial dimensions of the monopile, the critical hydrodynamic loads can be calculated. For
this simplified wave load approximation, the Morison equation is used [22]. This equation is based
on the linear Airy wave theory for which the surface elevation 𝜂, horizontal particle velocity 𝑤 and
horizontal particle acceleration �̇� are given in the characteristic equations 3.4, 3.5 and 3.6, respec-
tively.

𝜂(𝑥, 𝑡) =
𝐻𝑚
2 cos (2𝜋𝑡𝑇𝑆

− 𝑘𝑥) (3.4)

𝑤(𝑥, 𝑧, 𝑡) =
𝜋𝐻𝑚 cosh(𝑘(𝑆 + 𝑧))

𝑇𝑆 sinh(𝑘𝑆)
cos (2𝜋𝑡𝑇𝑆

− 𝑘𝑥) (3.5)

�̇�(𝑥, 𝑧, 𝑡) =
−2𝜋2𝐻𝑚 cosh(𝑘(𝑆 + 𝑧))

𝑇2𝑆 sinh(𝑘𝑆)
sin (2𝜋𝑡𝑇𝑆

− 𝑘𝑥) (3.6)

where, 𝑥 is the horizontal coordinate along the direction of wave propagation. Here, 𝑥 = 0 is the
location of the monopile. 𝑘 is the wave number, which can be obtained from the dispersion relation:

𝜔2 = 𝑔𝑘 𝑡𝑎𝑛ℎ(𝑘𝑆) with 𝜔 = 2𝜋𝑇𝑆
. (3.7)

The complete derivation for obtaining the foundation loads can be found in Appendix A. The final
wave loads are summarized in table 3.1. In this simplified approach to determining foundation loads,
it is conservative to consider the design wave load as the sum of the drag and inertia loads, as these
loads do not occur simultaneously in reality.
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The application point of the extreme wave is at 1/3 below the highest point of the wave. The wave-
induced moment can then be simply computed. The same stress check, given in equation 3.3, can
then be performed for the hydrodynamic loading.

Table 3.1: ULS load combinations

Load Extreme Wind Scenario ETM Extreme Wind Scenario EOG at 𝑈𝑅
and 50-year EWH and 1-year EWH

Maximum wind load [MN] 0.98 1.30
Maximum wind moment [MNm] 139.57 184.87
Maximum wave load [MN] 3.49 2.64
Maximum wave moment [MNm] 81.95 58.83
Total load [MN] 4.47 3.94
Total overturning moment [MNm] 221.52 243.69

These total loads lead to new pile dimensions, therefore changing the hydrodynamic loads again.
This iterative process is solved to find the required pile dimensions. Where: 𝐷𝑃 = 4.75 [m] and 𝑡𝑃 =
0.044 [m].

3.3. Embedded pile length
Typically, the limiting factor for maximum lateral loads is the material yield strength of the pile. A
check has to be performed to ensure that the foundation is able to carry the load. This is done by
calculating the lateral deflection and rotation at the mudline [18].

The deflection 𝜌𝑚 and rotation 𝜃𝑚 can be easily calculated using the equivalent springs at the mud-
line, depicted in figure 2.6. The stiffness model can be written as a stiffness matrix:

[ 𝐹𝑥𝑀𝑦
] = [ 𝐾𝐿 𝐾𝐿𝑅

𝐾𝐿𝑅 𝐾𝑅
] [ 𝜌𝑚𝜃𝑚

] (3.8)

Where 𝐹𝑥 is the maximum lateral force in the for-aft direction and 𝑀𝑦 is the maximum overturning
moment around the y-axis, both summarized in table 3.1. 𝐾𝐿,𝐾𝐿𝑅 and 𝐾𝑅 are evaluated in section 2.3
and are dependant on the embedded length of the monopile. The deformations can be determined
in an iterative manner, with a limitation for rigid behaving monopiles in sandy soils of 0.5° [23]. The
determined springs coefficients, required embedded length and accompanying deformations at the
mudline are given in table 3.2.

Because both mudline deformations are well within their respective limits, the negligence of the
axial forcing component is valid.

Table 3.2: Soil and spring parameters

Parameter Symbol value Unit
Longitudinal spring coefficient K𝐿 1.22 GN/m
Coupling spring coefficient K𝐿𝑅 -1.47 GN
Rotational spring coefficient K𝑅 19.80 GNm/rad
Embedded length L𝑒𝑚𝑏 18 m
Lateral displacement at mudline 𝜌𝑚 0.014 m
Rotation at mudline 𝜃𝑚 0.171 °
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3.4. Calculation of natural frequency
As explained in Section 3.1, the first eigenfrequency, also called the natural frequency, of a system is
an important parameter for the dynamic stability of any loaded structure. To determine the natural
frequency of the OWT, the fixed base natural frequency is calculated and corrected by several design
coefficients [18].

𝑓𝑛 = 𝑓𝑓𝑏𝐶𝐿𝐶𝑆𝐶𝑅 (3.9)

where,𝑓𝑛 is the fixed base natural frequency, 𝐶𝐿 and 𝐶𝑅 are the lateral and rotational foundation
flexibility coefficients and 𝐶𝑆 is the flexibility coefficient of the support structure. Here, the stepped
tower method is used to express this first natural frequency of a fixed base system (𝑓𝐹𝐵) [24]. The
analytical expression for the natural period is given as

𝑇2𝑛 =
4𝜋2(𝑀𝑡𝑜𝑝 + 𝑚𝑒𝑞𝐿)𝐿3

3𝐸𝐼𝑒𝑞
48
𝜋4 , (3.10)

from which the natural frequency can be easily derived with 𝑓𝐹𝐵 = 1/𝑇𝑛.
Here:

𝑚𝑡𝑜𝑝 = the mass of the topside [kg]
𝑚𝑒𝑞 = the equivalent mass per unit length [kg/m]
𝐼𝑒𝑞 = the equivalent second moment of area [m3]
𝐸 = the elastisticy modulus steel (210 GPa)
𝐿 = the total length of the system [m]

The system is split up into equal 10 cm length segments. The second moment of area and mass per
segment is calculated and used to calculate their equivalent adaptions of the entire system with the
following two equations:

𝐼𝑒𝑞 =
∑𝑛𝑗=1 𝐼𝑗𝑙𝑗 cos2 (

𝜋𝑥𝑗
2𝐿 )

𝐿 , (3.11)

𝑚𝑒𝑞 =
∑𝑛𝑗=1𝑚𝑗𝑙𝑗 (1 − cos (

𝜋𝑥𝑗
2𝐿 ))

2

𝐿 , (3.12)

where:

I𝑗 = the segment second moment of area of [m4]
l𝑗 = the segment length [m]
x𝑗 = the distance from the segment to the mudline [m]
m𝑗 = the segment mass [kg]

The fixed base frequency has been cross checked by comparing the result with the analytical result
of a continue cantilever beam, where the results for a 20m cantilever beam, with segment length
0.1m, are 3. 8% higher than the analytically computed value. This is deemed functional for this engi-
neering purpose.

The rotational and lateral flexibility coefficients account for the foundation stiffness. Their expres-
sions can be found in the following equations:

𝐶𝑅 = 1 −
1

1 + 0.6(𝜂𝑅 −
𝜂2𝐿𝑅
𝜂𝐿
)
, (3.13) 𝐶𝐿 = 1 −

1
1 + 0.5(𝜂𝐿 −

𝜂2𝐿𝑅
𝜂𝑅
)
. (3.14)
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These coefficients are defined by the dimensionless foundation stiffness values 𝜂𝐿, 𝜂𝐿𝑅 and 𝜂𝑅. It can
be easily seen that the natural frequency again is a function of the equivalent springs and, therefore,
the embedded length. 𝐿𝑇 is the length of the tower.

𝜂𝐿 =
𝐾𝑅𝐿𝑇
𝐸𝐼𝑒𝑞

(3.15) 𝜂𝐿𝑅 =
𝐾𝐿𝑅𝐿𝑇
𝐸𝐼𝑒𝑞

(3.16) 𝜂𝑅 =
𝐾𝑅𝐿𝑇
𝐸𝐼𝑒𝑞

(3.17)

The support structure flexibility coefficient is calculated using the non-embedded monopile length
from the slipjoint to the mudline (𝐿𝑆). It is calculated using two dimensionless coefficients that
express the stiffness ratio between the tower and monopile, 𝜒 = 𝐸𝐼𝑇/𝐸𝐼𝑃 . Where, 𝐸𝐼𝑇 is the bending
stiffness of the tower and 𝐸𝐼𝑃 is the bending stiffness of the non-embedded monopile. And finally,
the length ratio, 𝜙 = 𝐿𝑆/𝐿, where 𝐿 is the total length of the system. The support structure flexibility
coefficient can then be derived using equation

𝐶𝑆 = √
1

1 + (1 + 𝜙)3𝜒 − 𝜒 . (3.18)

By calculating the natural frequencies of offshore wind turbines where this is empirically measured,
the proposed method can be validated. The input parameters are summarized in table 3.3 [25], [26].

Table 3.3: Input parameters OWTs for validation

Parameters Symbol Irene
Vorrink

Kentish
Flats Lely A2 North

Hoyle Walney 1 Unit

Top
mass 𝑚𝑡𝑜𝑝 35.7 130.8 32 100 234.5 𝑡𝑜𝑛

Density
steel 𝜌𝑠𝑡𝑒𝑒𝑙 7860 7860 7860 7860 7860 𝑘𝑔/𝑚3

Tower
length 𝐿𝑇 44.5 60.06 37.9 67 67.3 𝑚

Diameter tower
top 𝐷𝑇,𝑡 1.7 2.3 1.9 2.3 3 𝑚

Diameter tower
bottom 𝐷𝑇,𝑏 3.5 4.45 3.2 4 5 𝑚

Tower wall
thickness 𝑡𝑇 13 22 13 35 40 𝑚𝑚

support structure
length 𝐿𝑠𝑠 5.2 16 12.1 7 37.3 𝑚

support structure
diameter 𝐷𝑠𝑠 3.5 4.3 3.2 4 6 𝑚

support structure
wall thickness 𝑡𝑠𝑠 28 45 35 50 80 𝑚𝑚

Embedded
length 𝐿𝑒𝑚𝑏 19 29.5 13.5 33 23.5 𝑚

Young’s
Modulus E 210 210 210 210 210 𝐺𝑃𝑎

Submerged unit
weight soil 𝛾′ 9.76 10 9.76 9.76 10 𝑘𝑁/𝑚3

Soil density
indicator 𝐴𝑠𝑜𝑖𝑙 600 1500 600 600 1500 −
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The calculated frequencies are presented in table 3.4. Equations 2.4 and 2.5 are altered for slender
monopile designs as outlined in equation 2.6. Here, the slenderness or rigidity of the embedded
monopile is a function of its dimensions and the characteristics of the soil. It can be seen that the
support structure of OWT Irene Vorrink can not be classified as slender or rigid, as falls outside the
ranges.

The inability to classify the OWT Irene Vorrink’s support structure means that the suggested model
does not adequately assess its natural frequency. Furthermore, the computed frequencies are slightly
overestimated. However, despite these limitations, when complying with equation 2.6 for slender or
rigid configurations, the model is deemed applicable for engineering purposes.

Table 3.4: Measured and calculated frequencies

OWT ID Slender / Rigid Measured 𝑓0 [Hz] Calculated 𝑓0 [Hz] Error [%]
Lely A2 Rigid 0.634 0.640 0.9
Irene Vorrink - 0.546 0.670 18.5
Kentish Flats Slender 0.339 0.351 3.4
Walney 1 Rigid 0.350 0.353 0.8
North Hoyle Slender 0.350 0.358 2.2

The natural frequency of the system can conclusively be calculated filling in equation 3.9 using the
formerly determined initial parameters of the monopile. The governing tower parameters are opti-
mized for the minimal material used to still satisfy the target frequency. An angle of 0.5-1.5° of the
slipjoint with the vertical axis needs to be guaranteed with a wall thickness of twice the thickness of
the tower. The described manner of calculating the parameters can be solved iterative, to be within
the given dynamical and structural boundaries. The found parameters of the DOT and conventional
support structure are presented in table 3.5.

To correctly visualise the effects of a lighter topside on the monopile dimensions, the tower dimen-
sions shall be kept equal for both cases. Because of that themethod of altering the support structure
dimensions is as follows:

1. Increase monopile diameter by increasing the slipjoint angle.
2. Increase monopile wall thickness.

Table 3.5: Parameters support structure

Parameter Symbol DOT Conventional Unit
Tower length L𝑇 65 65 m
Slipjoint length L𝑆𝐽 9 9 m
Monopile length L𝑀𝑃 31 31 m
Embedded length L𝑒𝑚𝑏 18 18 m
Diameter tower top D𝑇,𝑡 3 3 m
Diameter tower bottom D𝑇,𝑏 5.2 5.2 m
Diameter slipjoint top D𝑆𝐽,𝑡 5.2 5.2 m
Diameter slipjoint bottom D𝑆𝐽,𝑏 5.29 5.44 m
Diameter monopile D𝑀𝑃 5.29 5.44 m
Wall thickness tower t𝑡 30 30 mm
Wall thickness slipjoint t𝑆𝐽 60 60 mm
Wall thickness monopile t𝑀𝑃 50 58 mm
Slipjoint angle 𝛼𝑆𝐽 0.6 1.5 °
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Altering the weight of the topside has a significant effect on the natural frequency of the turbine,
which can be easily concluded by looking at equation 3.10. Substituting the 50% heavier topsidfe
lowers the natural frequency. An additional volume of steel of 13% is required to meet the natural
frequency, thus showing the advantage of a lighter topside.

These two designs will both be further analysed in the following chapter on their ultimate and fatigue
limit states to show the technical challenges to come with this novel turbine design.



4
Limit State Analysis

In the coming sections, on the basis of the ultimate limit state (ULS) and fatigue limit state (FLS), the
support structure will be tested and optimized inmore detail. A distinction between the conventional
and lighter topside weight will be made in the coming sections. This will manifest the effects of the
lighter topside on the support structure and reveal the possible new limiting factors.

4.1. Ultimate Limit State
The ULS design check for monopile-based support structures primarily relates to the check of tubu-
lar structures. For this the Von Mises yield check and global buckling check are required [27]. DNV
standard also state for a local buckling check. This is omitted in this thesis, as it requires a more de-
tailed design [28]. Because we are looking for the impact of a more slender support structure on the
overall ULS performance, the states of the bolted and welded connections are also not considered
in this research. The following analysis will be performed for both the DOT and conventional design.

4.1.1. Yield check
The first performed check is the Von Misis stress check [29]. Here the maximum occurring stresses
in the support structure are compared to the yield strength of the material used, in this case S355
steel. The Von Mises stress can be expressed as a function of the maximum stresses caused by axial
forces, shear forces and overturning moments:

𝜎𝑉𝑀 = √𝜎
2
𝑋 + 𝜎2𝑌 − 𝜎𝑋𝜎𝑌 + 3𝜏

2
𝑋𝑌 (4.1)

For the present study, it is sufficient to only consider the axial and shear stress caused in one di-
rection. Meaning, we only consider the shear force and bending in the for-aft direction, when the
maximum stress occurs. The simplified equation therefore becomes

𝜎𝑉𝑀 = √𝜎
2
𝑋 + 3𝜏2𝑋𝑌 (4.2)

Here 𝜎𝑋 is the axial stress consists of a normal force component and an overturning moment com-
ponent, given by

𝜎𝑋 =
𝑁
𝐴 𝛾𝑔 +

𝑀
𝑊 𝛾𝑒 (4.3)

The normal force (N) is caused by the own weight of the system. The moment (M) is a result of the
environmental loading, as described in section 2.1.

21
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where: N = Normal force [N]
A = Segment cross section [𝑚2]
M = Moment [Nm]
W = Segment elastic section modulus [𝑚3]
𝛾𝑔 = Permanent load safety factor = 1.1
𝛾𝑒 = Environmental load safety factor = 1.35

The shear stress in equation 4.1, 𝜏𝑥𝑦 , can be calculated with:

𝜏𝑥𝑦 =
2𝑉
𝐴 𝛾𝑒, (4.4)

where 𝑉 is the shear force at a certain height.

Figure 4.1: Schematic ULS analysis model

The Von Mises stress is a function of the shear force, moment and normal force along the height
of the system, caused by the ultimate limit state environmental condition. To determine the shear
force and moment, a static model is set up. This system is shown in figure 4.1. Due to the static
nature of the ultimate limit state response, the time dependant physics, such as damping, can be
neglected. The wave force is simplified and is modelled as a concentrated force the equivalent point
of application, which is 1/3 of the water depth below the waterline [8]. The wind forcing hitting the
tower and the current forcing acting on the submerged support structure are not included in this
analysis, as they are negligible [28]. As the diameter of the monopile is updated in an iterative way,
the wave forcing is also updated accordingly.
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Once the model is set up, the maximum displacement of the OWT to the ULS load case, as described
in section 2.1, can be calculated. Through the correlations 4.5 and 4.6, between displacement and
bending stiffness, the maximum shear and moment can be determined.

𝑀 = −𝐸𝐼 𝜕
2𝑢
𝜕𝑧2 (4.5) 𝑄 = 𝜕𝑀𝜕𝑧 (4.6)

The model consists of 5 beam element, chosen in such a way that the forces act upon the boundaries
of the beam. Also the surrounding medium, and support structure parts change at the boundaries
of the beams. For beam 4 and 5, the slipjoint and the tower respectively, the average parameters
such a diameter and moment of inertia, are used for the model. For the notation above, using the
Euler-Bernouilli beam theory, the equations of motion for each segment can be written as:

𝐸𝐼5
𝜕4𝑢5
𝜕𝑧4 + 𝜌𝐴5𝐿𝑔

𝜕2𝑢5
𝜕𝑧2 = 0 𝑧4 ≤ 𝑧 ≤ 𝐿

𝐸𝐼4
𝜕4𝑢4
𝜕𝑧4 + 𝜌𝐴4𝐿𝑔

𝜕2𝑢4
𝜕𝑧2 = 0 𝑧3 ≤ 𝑧 ≤ 𝑧4

𝐸𝐼3
𝜕4𝑢3
𝜕𝑧4 + 𝜌𝐴3𝐿𝑔

𝜕2𝑢3
𝜕𝑧2 = 0 𝑧2 ≤ 𝑧 ≤ 𝑧3

𝐸𝐼2
𝜕4𝑢2
𝜕𝑧4 + 𝜌𝐴2𝐿𝑔

𝜕2𝑢2
𝜕𝑧2 = 0 𝑧1 ≤ 𝑧 ≤ 𝑧2

𝐸𝐼1
𝜕4𝑢1
𝜕𝑧4 + 𝜌𝐴1𝐿𝑔

𝜕2𝑢1
𝜕𝑧2 + 𝑘soil 𝑢1 = 0 0 ≤ 𝑧 ≤ 𝑧1

(4.7)

The set of fourth order differential equations 4.7 can be solved by assuming the correct general
solution for each corresponding segment and implementing these in the boundary and interface
conditions of the system. The boundary conditions at the ends of the system, z=0 and z=L, are given
as:

𝜕2𝑢1,5
𝜕𝑧2 |

𝑧=0,𝐿
=
𝜕3𝑢1
𝜕𝑧3 |

𝑧=0
= 0 (4.8)

− 𝐸𝐼5
𝜕3𝑢5
𝜕𝑧3 |

𝑧=𝐿
= 𝐹𝑤𝑖𝑛𝑑 (4.9)

The interface conditions between the sequential beams 1 to 5 state that the displacements, rotations,
shear forces and moments are equal between all the connecting beam segments. The interface
conditions at the locations: z1, z3 and z4 are given as:

𝑢𝑛(𝑧𝑛) = 𝑢𝑛+1(𝑧𝑛) (4.10)

𝜕𝑢𝑛
𝜕𝑧 |𝑧=𝑧𝑛

=
𝜕𝑢𝑛+1
𝜕𝑧 |

𝑧=𝑧𝑛

(4.11)

𝜕2𝑢1,3,4
𝜕𝑧3 |

𝑧=𝑧1,3,4

=
𝜕2𝑢2,4,5
𝜕𝑧3 |

𝑧=𝑧1,3,4

(4.12)

𝜕3𝑢𝑛
𝜕𝑧2 |

𝑧=𝑧𝑛

=
𝜕3𝑢𝑛+1
𝜕𝑧2 |

𝑧=𝑧𝑛

(4.13)

At the height z=z2, where the wave force affects, the wave force appears in the equilibrium:
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− 𝐸𝐼2
𝜕3𝑢2
𝜕𝑧3 |

𝑧=𝑧2
+ 𝐹𝑤𝑖𝑛𝑑 = −𝐸𝐼3

𝜕3𝑢3
𝜕𝑧3 |

𝑧=𝑧2
(4.14)

Since segments 2, 3, 4, and 5 are not subjected to any external loading, the general solution to the
governing differential equations is given by the corresponding homogeneous equations:

𝑢𝑛(𝑧) = 𝐴𝑛 + 𝐵𝑛𝑧 + 𝐶𝑛 sin (√
𝑚𝑛𝑔
𝐸𝐼𝑛

𝑧) + 𝐷𝑛 cos (√
𝑚𝑛𝑔
𝐸𝐼𝑛

𝑧) , (4.15)

where, 𝑚𝑛 is the mass of segment n. The equations of motion of the segment that is submerged in
the soil can be rewritten as the fourth order differential equation:

𝜕4𝑢1
𝜕𝑧4 + 𝛼2

𝜕2𝑢1
𝜕𝑧2 + 𝛽𝑢1(𝑧), (4.16)

where, 𝛼 = 𝑚1𝑔
𝐸𝐼1

and 𝛽 = 𝑘𝑠𝑜𝑖𝑙
𝐸𝐼1

. For equation 4.16, the general solution can be formulated as:

𝑢(𝑧) =
4
∑
𝑛=1

𝐶𝑛𝑒𝑖𝜆𝑛𝑧 (4.17)

for which the fourth-order characteristic equation is defined as:

𝜆4 + 𝛼2𝜆2 + 𝛽 = 0. (4.18)
For this equation, the four eigenvalues 𝜆 can be found, and the solution for segment 5 can be written
as:

𝑢1(𝑧) = 𝐴1𝑒(𝜆1𝑧) + 𝐵1𝑒(−𝜆1𝑧) + 𝐶1𝑒(𝜆2𝑧) + 𝐷1𝑒(−𝜆2𝑧). (4.19)
The general solutions to the differential equations can be applied to the system’s boundary condi-
tions, allowing us to solve the unknown constants. This completes the set of equations describing
the displacement of the entire system under the ultimate limit state environmental forces. The dis-
placement of the DOT turbine is illustrated in figure 4.2.

Figure 4.2: Displacement DOT turbine over full length - ULS case
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With the relation of displacement and tower stiffness in equations 4.5 and 4.6, the moment and shear
force along the length of the tower can also be calculated and is depicted in figures 4.3a and 4.3b.

(a) Moment (b) Shear force

Figure 4.3: Moment and shear force DOT turbine - ULS case

As expected, the maximummoment and shear force occur below the mudline, approximately 1 times
the diameter of the monopile [18]. With the moment, shear force and normal force known along the
length of the structure, the Von Mises stress can then be computed using equation 4.2. For each 10cm
segment that the model consists of, the Von Mises check,

𝜎𝑉𝑀
𝑓𝑦𝛾𝑚

≤ 1, (4.20)

can be performed. Here, 𝑓𝑦 is the yield strength of the S355 steel. For plate material between 25mm
and 50mm thickness, the yield strength is reduced to 335MPa [30]. The material factor 𝛾𝑚 is 1.1 [-].

4.1.2. Global buckling check
Secondly, the global buckling check is performed following Eurocode [27]. The equations for the
global buckling check of members subjected to combined bending and axial compression are given
as the two equations:

𝑁𝐸𝑑
𝜒𝑦𝑁𝑅𝑘
𝛾𝑀1

+ 𝑘𝑧𝑦
𝑀𝑦,𝐸𝑑 + Δ𝑀𝑦,Ed

𝜒𝐿𝑇
𝑀𝑦,𝑅𝑘
𝛾𝑀1

+ 𝑘𝑦𝑧
𝑀𝑧,Ed + Δ𝑀𝑧,Ed

𝑀𝑧,𝑅𝑘
𝛾𝑀1

≤ 1, (4.21)

𝑁𝐸𝑑
𝜒𝑧𝑁𝑅𝑘
𝛾𝑀1

+ 𝑘𝑦𝑦
𝑀𝑦,𝐸𝑑 + Δ𝑀𝑦,Ed

𝜒𝐿𝑇
𝑀𝑦,𝑅𝑘
𝛾𝑀1

+ 𝑘𝑧𝑧
𝑀𝑧,Ed + Δ𝑀𝑧,Ed

𝑀𝑧,𝑅𝑘
𝛾𝑀1

≤ 1. (4.22)

Since only bending moments in one direction are considered, and torsional moments are neglected,
the equations can be simplified to the single unity check given by:

𝑁
𝜒𝑧𝑁𝑅𝑘
𝛾𝑀1

+ 𝑘𝑦𝑦
𝑀𝑦 + Δ𝑀𝑦,Ed
𝜒𝐿𝑇

𝑀𝑦,𝑅𝑘
𝛾𝑀1

≤ 1 (4.23)
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where: 𝑁 = Normal force [N]
𝑀𝑦 = Moment [Nm]
Δ𝑀𝑦 = Moment due to the shift of the centroidal axis [Nm]
𝜒𝑧 = reduction factor due to flexural buckling
𝛾𝑚1 = partial safety factor for resistance of monopiles to instability = 1.1 [27]
𝑁𝑅𝑘 and 𝑀𝑦,𝑅𝑘 = resistances for normal force and moment.

The normal force resistance (𝑁𝑅𝑘) and moment resistance (𝑀𝑦,𝑅𝑘) can be determined by:

𝑁𝑅𝑘 =
𝐴𝑓𝑦
𝛾𝑚

(4.24)

𝑀𝑦,𝑅𝑘 =
𝐷3 − (𝐷 − 2𝑡)3

6
𝑓𝑦
𝛾𝑚
. (4.25)

The reduction factor 𝜒𝑧 can be determined from figure 4.4. For hollow sections of S355 steel, curve 𝑎
shall be used [27]. The non-dimensional slenderness parameter 𝜆 can be calculated by equation:

𝜆 = √
𝐴𝑓𝑦
𝑁𝑐𝑟

. (4.26)

In equation 4.26, 𝑁𝑐𝑟 is the normal Euler buckling force. This can be calculated via

𝑁𝑐𝑟 =
𝜋2𝐸𝐼
𝐿2𝑏𝑢𝑐𝑘

(4.27)

where, 𝐿𝑏𝑢𝑐𝑘 is the buckling length equal to twice the total length of the system.

Figure 4.4: Buckling curves

The coupling term 𝑘𝑦𝑦 for the assumption that the section has elastic cross-sectional properties [27],
can be found via:

𝑘𝑦𝑦 = 𝐶𝑚𝑦𝐶𝑚𝐿𝑇
𝜇𝑦

1 − 𝑁𝐸𝑑
𝑁𝑐𝑟

. (4.28)
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Here, 𝐶𝑚𝑦 can be calculated using the equation:

𝐶𝑚𝑦 = 1 −
𝑁
𝑁𝑐𝑟

. (4.29)

The moment factor 𝐶𝑚𝐿𝑡 is 1.0 [27]. And finally, the additional term 𝜇𝑦 , that can be found through
equation:

𝜇𝑦 =
1 − 𝑁𝐸𝑑

𝑁𝑐𝑟

1 − 𝜒 𝑁𝐸𝑑𝑁𝑐𝑟

. (4.30)

4.1.3. Results ULS analysis
Both checks were conducted along the entire length of the structure, with the results presented in
Table 4.1. While both designs passed the tests, it is noteworthy that the yield check for the DOT design
is close to the defined limit.

Table 4.1: ULS results. *below mudline

DOT conventional
Von Mises yield check [-] 0.967 0.821
Max. Von Mises yield location* [m] -1.2 -1.2
Global buckling check [-] 0.882 0.779
Max. global buckling location* [m] -0.3 -0.3

Based on the ultimate limit state analysis, it can be concluded that the current DOT design is con-
strained by the yield criterion. In contrast, the conventional turbine design appears to be over-
dimensioned in terms of structural checks but is limited by its natural frequency constraints.

Both design shall now be further investigated for the fatigue limit state.
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4.2. Fatigue Limit State
Turbines experience vibrations throughout their entire operational lifetime due to environmental
loads. Even small vibrations within the linear elastic deformation range contribute to material fa-
tigue [31]. That is, even for the smallest vibrations, the material, although it is on micromechanical
level, is failing. Fatigue is the most common cause of failures in engineering systems, and therefore
an adequate analysis of the fatigue limit state (FLS) is required.

The fatigue calculation is performed according to the DNV standards [32]. Here, the fatigue life is
calculated on the basis of the S-N fatigue approach, where the assumption of linear cumulative
damage is in place. The Palmgren-Miner rule can be used to calculate the accumulated fatigue dam-
age resulting from the sum of stress reactions due to the wave forcing over its design lifetime. The
Palmer-Miner rule is given as:

𝐷 =
𝑘
∑
𝑖=1

𝑛𝑖
𝑁𝑖

= 1�̄�
𝑘
∑
𝑖=1
𝑛𝑖 ⋅ (Δ𝜎)𝑚 ≤ 𝜂 =

1
𝐷𝐹𝐹 (4.31)

where: 𝐷 = accumulated fatigue damage
𝑛𝑖 = number of stress cycles for certain stress range
𝑁𝑖 = number of stress cycles to failure at a constant stress range Δ𝜎𝑖
�̄� = intercept of the design S-N curve with the log N axis
𝑚 = negative inverse slope of the S-N curve
𝑘 = number of stress blocks
𝜂 = fatigue usage factor = 1/DFF
DFF = design fatigue factor.

To compute the accumulated fatigue damage over the lifetime of the turbine, the dynamic response
to a wave load should be calculated. The method for this is described in section 4.2.1. The input for
the computation is given in section 4.2.3 and the calculation and results are given in sections 4.2.5
and 4.2.6.

For this analysis the design fatigue factor is assumed to be 1 [33], meaning a 5-year inspection interval
that is carried out afloat is in place. Wind forcing is neglected in this analysis, because it is assumed
constant. As we are looking into the differences between the two designs and their fatigue behaviour
over the lifetime, for simplicity we only consider the power production load case. In this load case,
the wind turbine is in operation and connected to the electrical grid.

4.2.1. Dynamic fatigue model
To find the dynamic response to the environmental forces, a dynamic model is set up, shown in fig-
ure 4.5. Fatigue is a predominantly dynamic phenomenon, aspects as mass, structural stiffness, soil
stiffness and damping should be included. The topmass with inertia, represents the RNA and the
rotational spring at the mudline is already calculated with equation 2.4. The model consists of 4
segments. Segments 1 and 2 are chosen in such a way again, that the wave force is located at an
intersection. Segments 3 and 4 represent the slipjoint and tower, respectively. For both the slipjoint
and tower, the average of the linear increasing diameter of the structural part is used.

The effects of the hydrodynamic added mass for the submerged part is neglected in this research. It
is proven that the effects of the hydrodynamic added mass on the natural frequency is very small
[34]. Its effect on the first mode shape is in the range of 0-2%. Because we are mainly interested in
the behaviour of the natural freuquency, the hydrodynamic added mass can be neglected.
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Figure 4.5: Dynamic model FLS

The damper shown in the figure represents the aerodynamic damping of the rotor. Besides the aero-
dynamic damping, there is also hydrodynamic, structural and soil damping. The influence of these
is negligible compared to the aerodynamic damping and is therefore not included.

The governing equations of motion for the system are set up via the Lagrangian method [35]. Here,
the derivation of the equations of motion for an elastic system interacting with a moving object is
introduced, these equations given by equations:

𝜆𝑢𝑛 −
𝜕
𝜕𝑡𝜆 ̇𝑢𝑛

− 𝜕
𝜕𝑧𝜆𝑢𝑛𝑧 +

𝜕2
𝜕𝑧2 𝜆𝑢𝑛𝑧𝑧 +

𝜕2
𝜕𝑧𝜕𝑡𝜆 ̇𝑢𝑛𝑧

+ q = 0; 𝑧 ≠ 𝐿, 𝑛 = 1..4 (4.32)

𝐿𝑉 −
𝑑
𝑑𝑡𝐿�̇� + 𝑄 − 𝑅�̇� = [−

𝛿
𝛿𝑥 𝜆u4𝑧𝑧 ] ; 𝑧 = 𝐿 (4.33)

𝐿𝜙 −
𝑑
𝑑𝑡𝐿�̇� + 𝑀 = [𝜆u4𝑧𝑧 ] ; 𝑧 = 𝐿 (4.34)

Due to the inclusion of damping at the topside, equation 4.33 is expanded with the Rayleigh dis-
sipation function R. The dot-notation is the definition of the time derivative of that variable. The
sub-notation is the partial derivative with respect to the sub-notated variable.

In these equations 𝜆 is the beams Lagrangian density function, described in equation 4.35, and L is
the Lagrangian of the topside of the system. For a topside, that can be expressed as a concentrated
mass with rotating inertia, the Lagrangian can be given as equation 4.36.

𝜆 = 12𝜌𝐴�̇�𝑛(𝑧, 𝑡)
2 − 12𝐸𝐼un𝑧𝑧(𝑧, 𝑡)

2 (4.35)
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𝐿 = 12𝑚�̇�(𝑡)
2 + 12𝐽�̇�(𝑡)

2 (4.36)

Q and M are the shear force and moment at the location of the topside (z=L). 𝑉(𝑡) is the horizontal
displacement of the topside and 𝜙(𝑡) is the rotation of the topside. 𝑚 and 𝐽 are themass andmoment
of inertia around the tower axis of the RNA. The Rayleigh dissipation function R is given as:

𝑅 = 12𝑐𝑎𝑒𝑟𝑜�̇�
2, (4.37)

where, 𝑐𝑎𝑒𝑟𝑜 is the aerodynamic damping coefficient in this case.

Evaluating for the functions 4.32, 4.33 and 4.34 for the system specific beam Lagrangian density func-
tion, topside Lagrangian and Rayleigh dissipation function, the following well known governing equa-
tions are found:

𝜌𝐴𝑛
𝛿2𝑢𝑛
𝛿𝑡2 + 𝐸𝐼𝑛

𝛿4𝑢𝑛
𝛿𝑧4 = 0; 𝑛 = 1..4, (4.38)

𝑚�̈� − 𝐸𝐼4
𝛿3𝑢4
𝛿𝑧3 |

𝑧=𝐿
− 𝑐�̇� = 0, (4.39)

𝐽 ̈𝜙𝑥 + 𝐸𝐼4
𝛿2𝑢4
𝛿𝑧2 |

𝑧=𝐿
= 0. (4.40)

We find the Euler-Bernouilli beam equations for beams 1 to 4 (4.38) and the force and moment equi-
librium at the location of the topside z=L (equations 4.39 and 4.40).

The latter two equations act as compatibility conditions for the beam at the location z=L. The com-
patibility conditions at z=0 are given by:

𝑢1(0) = 0, (4.41)

𝐸𝐼1
𝜕2𝑢1
𝜕𝑧2 |

𝑧=0
= 𝑘𝑟

𝜕𝑢1
𝜕𝑧 |𝑧=0

. (4.42)

The interface conditions between the segment are of the same form as equations 4.10 - 4.14. Finally,
the compatibility conditions between beam segment 4 and the topside are given by the equations:

𝑉(𝑡) = 𝑢4(𝐿, 𝑡), (4.43)

𝜙𝑥(𝑡) =
𝜕𝑢4(𝑧, 𝑡)
𝜕𝑧 |

𝑧=𝐿
, (4.44)

implying the fixed connection between the beam and the topside. Because the wave excitation is
assumed to be purely harmonic, the general steady-state solution to this boundary value problem
can be written as:

𝑢𝑛(𝑧, 𝑡) = 𝑈𝑛(𝑧)𝑒𝐼𝜔𝑡, (4.45)
where 𝜔 is the frequency of the forcing. Filling in this general solution in the system above, the
governing equations of motion in the frequency domain can be found.
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4.2.2. Aerodynamic damping
Consider a tower top inmotion for a simple illustration of aerodynamic damping. As it moves into the
wind, the blades experience a slight increase in wind speed. This movement results in an additional
aerodynamic force that opposes the motion of the tower top, reducing its eventual displacement.
Similarly, when the tower top moves backward, the aerodynamic force decreases, minimizing its
motions. This phenomenon is called aerodynamic damping as it is a function of the velocity. It
should be mentioned that aerodynamic damping only occurs during power production. An analytical
expression, for a constant rotation speed turbine, for the aerodynamic damping ratio is:

𝜉𝐴𝐷 =
𝑐𝑎𝑒𝑟𝑜
𝑐crit

=
1
2𝑁𝜌𝑎𝑣Ω𝑐

𝜕𝐶𝐿
𝜕𝛼

2𝑚𝜔𝑛
, (4.46)

where: 𝜌𝑎 = air density [kg/m3]
𝑁 = number of blades [-]
𝑉Ω = rotational speed of the blade element [rad/s]
𝑐 = blade chord length [m]
𝛿𝐶𝐿
𝛿𝛼 = lift coefficient derivative = 1 [-]

The critical damping coefficient: 𝑐𝑐𝑟𝑖𝑡 = 2𝑚𝜔𝑛 [36]. And thus we can derive the equation for the
aerodynamic damping 𝑐𝑎𝑒𝑟𝑜. The aerodynamic damping for a 100m diameter rotor is calculated to be
216475 𝑁𝑚/𝑠.

4.2.3. Wave data input FLS
In this study only the harmonic wave force is considered as input, being the main contributor to the
structural fatigue. The wave force is again simulated as a harmonic point force at 1/3 below the water
level. The water level is considered to be constant.

Figure 4.6: Joint scatter diagram HKN (2005-01-01 - 2016-01-01)

For the fatigue analysis we are interested in the steady-state response of the beam to the waves.
As input for the wave forcing, the scatter diagram, shown in figure 4.6 at the location, of significant
wave height and peak period is used. This is obtained from The Netherlands Enterprise Agency (RVO),
which publicly provides the site environmental characteristics. The omnidirectional scatter diagram,
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capturing data from 2005 to 2016, represents bin occurrences based on 1-hour averages [37]. For this
analysis, utilizing the omnidirectional scatter diagram is a conservative approach, as it assumes that
all bending stresses accumulated over the lifetime are concentrated at a single point. In reality, wave
forces are applied from multiple directions, resulting in a more distributed stress profile. The wave
force, as a function of height and period, can be calculated via the method described in Appendix A.

For the analysis the average of each bin is used. It should be noted that taking the average of the
period for each bin, could have a negative effect on the accuracy. As different wave periods, and
thus frequencies, result in different dynamic reactions, especially around the natural frequency of
the system.

4.2.4. Amplitude Frequency Response Function
The horizontal displacement of the topside of the structure, in the frequency domain, to a 1.5 meter
wave is depicted in figure 4.7. Due to the introduction of damping, the solution has a real and an
imaginary part. It can be clearly concluded that around the natural frequencies the imaginary part
becomes governing as the system is mainly driven by the aerodynamic damping. The magnitude of
the maximum steady-state response to the harmonic loads can be derived as the absolute value of
the real and imaginary part.

(a) Real part (b) Imaginary part

Figure 4.7: Horizontal displacement topside conventional turbine

The total magnitude of the displacement to the same wave, for a range of forcing frequencies, of both
the conventional and DOT-design are plotted in figure 4.8. The first and second eigenfrequencies can
be identified from the peaks in the response. The natural frequencies of the two designs coincide at
1.7 rad/s (=0.27Hz). The second eigenfrequency differs slightly. This can be clarified when we look at
the mode shape of the vibration. The second mode shape mainly vibrates in the middle parts of the
structure, where the moment of inertia of both designs differentiate.
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Figure 4.8: Absolute horizontal displacement topside

4.2.5. Fatigue calculation
With the complete dynamic model and the wave input, we can find the stress ranges for each wave
frequency. Looking at figure 4.3awe find that themaximumbending stress occurs around themudline.
With equation

𝜎𝑥 =
𝑀
𝑊 𝛾𝑒𝛾𝑠, (4.47)

themaximumbending stress can be calculated. Here,𝑀 is the bendingmoment, which can be derived
from the displacement along the length of the system with the relationship described in equation
4.5. 𝑊 is the elastic section modulus. 𝛾𝑒 is the environmental safety factor, which is equal to 1.0 [8],
and 𝛾𝑠 is the wave spreading factor. For this analysis the wave spreading factor is set to 0.85, which
is the average factor for the Northern North Sea. The maximum bending stress as a result to a 1.5m
wave for a frequency range can be calculated, the results for both turbines is depicted in figure 4.9.
The wave frequency ranges from 1.5s to 19.5s, being equal to 4.2 rad/s to 0.32 rad/s, therefore the
plotted frequency range is from 0 to 5 rad/s.

From equation A.8 in Appendix A it can be easily seen that the wave force scales linearly with the
wave height for an inertia dominated wave. Therefore, the bending stress can also be scaled linearly
with the wave height. Together with the joint scatter diagram the occurrences of stress ranges over
the design life time of the turbine can be computed.
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Figure 4.9: Stress Frequency Response Function - 1.5m wave

For tubular structures submerged in seawater with cathodic protection to reduce corrosion the S-N
curves are shown in figure 4.10. The S-N curves are obtained from fatigue tests and can be found in
the relevant standard [32]. The curves relate the stress range (S) with the number of cycle (N) for the
material to fail.

Figure 4.10: S-N curves for steel in seawater [32]

4.2.6. Fatigue Limit State Results and Conclusions
For this case the results of the fatigue analysis are summarized in table 4.2. The unity check can not
exceed 1.0 to pass the test. Because the DOT turbine has a slimmer monopile, the resulting stress
is greater compared to the conventional turbine. This easily visible from figure 4.9. The DOT turbine
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only passes the test for the higher grade steal B2, where the conventional turbine also stays within
the limits for the lower grade steel C.

Table 4.2: Results FLS analysis

S-N curve DOT Conventional
B2 0.35 0.23
C 1.22 0.78
C1 2.11 1.35
C2 3.72 2.39

As previously noted, the wave input for the fatigue limit state check is considered purely unidirec-
tional. However, this approach overlooks a significant effect. When wind-wave misalignment occurs,
the wind and wave forces are not aligned. The rotor, along with the associated aerodynamic damp-
ing, is aimed to be oriented perpendicular to the incoming wind. Consequently, the aerodynamic
damping, which plays a crucial role in mitigating fatigue vibrations induced by wave action, is not
aligned with the incoming waves. The side-to-side motion has insignificant aerodynamic damping.
This way the structure is prone to large side-to-side vibrations. [38]

Any wind-wave misalignment would induce an undamped vibration. This is depicted in figure 4.11,
where the bending stress response in the non-damped side-to-side direction of the DOT turbine is
plotted. In line with the expectations, the response, especially around the natural frequency, in-
creases significantly.

Figure 4.11: SFRF side-to-side motion - 1.5m wave

Interestingly, it is observed that the bending stress located at the mudline almost goes to zero for a
forcing frequency of 3 radians per second. This can be explained by looking at the different mode-
shapes of the vibrations for different forcing frequencies. Figure 4.12 shows the vibrating modeshape
of the DOT-turbine for 5 different forcing frequencies Ω. For the forcing frequency Ω = 2 radians per
second, the bending at the mudline is almost zero. Notably, when Ω is 2 radians per second, the
displacement is at its maximum, which aligns with the system’s proximity to its natural frequency.
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Figure 4.12: support structure modeshapes

Looking at the higher frequencies, the tower bending shifts higher up the turbine. Consequently, the
maximum stress frequency response function varies depending on the location along the turbine,
as shown in figure 4.13. For Ω being higher than the natural frequency, the bending stress increases
as we move further above the mudline. In contrast, for forcing frequencies lower than the natural
frequency, performing the FLS check at the mudline is conservative. From the scatter diagram in
figure 4.6 it can be derived that only 6% of all wave-induced bending stresses are undervalued from
the maximum at the mudline. Consequently, 94% of the bending cycles are equal or overvalued.
Therefore, the FLS evaluation at the mudline can be considered conservative, and is thus valid for
the total system.

Figure 4.13: SFRF for different heights above the mudline

There are several existing techniques to reduce undamped side-to-side vibrations. Some examples
are: individual pitch control [39], acceleration feedback control [40] and structural control like mass
dampers. The latter are shortly introduced in chapter 5. With the same goal to reduce the response
in the side-to-side direction, in the next chapters the effectiveness of a gyroscopic damper is re-
searched.



5
Gyroscopic Dampers

The use of dampers in offshore wind turbines is not a novelty and has been studied by many re-
searchers. The techniques vary from simple passive tuned mass dampers (PTMD) [41] to active tuned
mass dampers (ATMD) [42] and liquid column dampers (LCD) [43]. All of these methods share the
same goal: to improve stability and reliability, reducing the required material and maintenance. A
major downside of these techniques is the added weight to the structure. As shown in chapter 4, this
added weight increases the amount of steel required.

Given that the topside of the DOT turbine is 50% lighter than a conventional turbine, the negative side
effect of adding extra weight on the topside of the system is therefore (partially) nullified. Apart from
the added complexity, the implementation of a damper in the topside of an offshore wind turbine
can have great benefits. The damper reduces the transmission force and the displacement of the
system, which means that the maximum displacement of the maximum limit state is smaller. How-
ever, dampers mainly reduce fatigue loads on the support structure during the lifetime of the turbine.
This can result in a more optimal support structure design. In addition to this, due to the reduced
response of the top side generated by cycling loads such as wind and waves, the interaction between
the blades and the incoming wind becomesmore stable, improving the efficiency of the turbines [44].

A technique that has not yet been extensively studied is the use of a gyroscope as a damper in off-
shore wind turbines. The primary advantage of gyrostabilisers is their ability to generate damping
with significantly less added mass compared to conventional dampers, because of the use of spin-
ning energy. Conventional dampers work by resisting motion, and the principle behind this lies in
inertia — an object’s resistance to changes in its state of motion, as first described by Newton. Mov-
ing a large mass requires considerable force, which is why conventional dampers rely on significant
mass to absorb vibrations. However, when an object spins at high speeds, it is also resistant to mo-
tion, known as gyroscopic inertia. This means a spinning object can achieve the same damping effect
with far less mass, making spinning dampers more efficient and compact.

Additionally, the damping direction can be precisely controlled by adjusting the configuration of the
system Finally, the damping can be easily tuned by varying the rotational speed of the gyroscope.

In the studies where gyrostabilisers have been researched, only the for-aft movement in the time
domain is assessed [7]. In this research, the orientation and configuration of the gyrostabiliser are
chosen to reduce the motion in the undamped side-to-side direction, to reduce the fatigue load in
that direction.

In this chapter, the dynamics of a gyroscope are explained, followed by the introduction of the gy-
rostabiliser configuration that is proposed in this research.

37
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5.1. Gyroscopic effects
There are two main gyroscopic effects: its rigidity in space and precession. The use of these effects
for dynamic systems date back to the 1800’s, where the rigidity in space effect is used for naviga-
tional purposes [45], [46]. Today, this technique can still be found in flight instruments in airplanes,
as shown in figure 5.1. Here, due to the rotational inertia of the gyroscope, the instrument always
remains level to the earth, independent of the movement and orientation of the airplane. Using this
effect, the pilot is always able to visualize the orientation of the aircraft. Other uses of the rigidity
in space effect, involve the stabilization of film-making equipment using the same effect [47].

Figure 5.1: Schematics of an aviation instrument using a gyroscope

Precession
Precession is the characteristic change in orientation of a rotating gyroscope when an external force
or torque is applied. This behaviour, known as gyroscopic precession, causes the gyroscope to move
in a direction that is perpendicular to the applied force, which can be difficult to intuitively grasp.
Despite its complexity, gyroscopic precession has several practical and useful applications. A visual
representation of torque-induced gyroscopic precession is shown in figure 5.2. Here, 𝐿 is the angular
momentum of the disk around its rotational axis. 𝐹𝑧 is the applied force at the edge of the disk, which
has a torque around the y-axis of 𝜏 = 𝐹𝑧∗𝑟, where 𝑟 is the radius of the disk. The change in the angular
momentum around the perpendicular x-axis, due to this torque, is called gyroscopic precession.
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Figure 5.2: Visualization of gyroscopic precession due to a torque

The change of the angular momentum as function of the applied torque can easily be derived from
the equation:

𝜏 = 𝑑L𝑑𝑡 . (5.1)

5.2. Configuration of a gyrostabiliser
The configuration of the vertical gyrostabiliser (named vertical gyrostabiliser after the orientation
of the axle where the disk spins around) is depicted in figure 5.3. The spinning disk with gyricity Ω
around the z-axis can rotate freely around the x-axis but is restricted to rotate around the y-axis.
Consider the configuration shown in figure 5.3 to be fixed inside the nacelle of the OWT. Due to the
restriction around the y-axis, the angle 𝜃 is equal to the rotation of the nacelle. This is equal to
the rotation of the tower at the location of the topside. The restriction also transfers the moment
from the tower to the gyrostabiliser. This moment induces the precession around the x-axis, which
is denominated as a variable 𝜙.

Figure 5.3: gyrostabiliser configuration
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This configuration causes the moments in the side-to-side direction, around the y-axis, to be trans-
ferred into a rotation of the gyrostabiliser with angle θ, thereby reducing the vibrations in the side-
to-side orientation. The restricting rods are assumed to be infinitely stiff and weightless for the sake
of simplicity.

Unlike conventional passive mass dampers, this passive gyrostabiliser does not rely on an energy-
dissipating system. In typical passive mass dampers, a damping element is used to dissipate energy
and mitigate vibrations. However, a damper is not implemented in this case because the preces-
sion of the gyrostabiliser is expected to effectively transfer the topside displacement into rotational
motion, significantly reducing the vibrations in the undamped side-to-side direction.



6
Gyrostabiliser Modelling

To test the feasibility of the gyrostabiliser in the DOT offshore wind turbine design, a model is set
up. The model is split up into two subsystems: the RNA including the gyrostabiliser and the support
structure, that is the: tower, slipjoint and monopile. The support structure model and its equations
of motions are similar to the dynamic fatigue model, introduced in section 4.2.1, but is expanded
to also include the vibrations in the side-to-side direction. The equations of motion of the RNA
including the gyrostabiliser are also derived using the Lagrangian mechanism.

6.1. Support structure
For this analysis a beam model with vibrations in the x- and y-direction is set up. The vibrations in
the x- and y-direction coindice with the side-to-side and for-aft motion of the tower, respectively. A
schematic overview of the model is shown in figure 6.1.

Figure 6.1: Simplified support structure-RNA model

41
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The support structure consists of two beams. Beam 1 represents the tower and slipjoint, where the
average cross-area (A), bending stiffness (EI) and density (𝜌) are used for the homogeneous beam.
Beam 2 denotes the monopile and has the same parameters as the DOT monopile. It is apparent that
the compatibility conditions between the top beam and nacelle: 𝑢𝑥(𝐿, 𝑡) = X(t), 𝑢𝑦(𝐿, 𝑡) = Y(t), 𝑢′𝑥(𝐿, 𝑡) =
𝜙𝑦(𝑡) and 𝑢′𝑦(𝐿, 𝑡) = 𝜙𝑥(𝑡) are in place. At the mudline, the soil is represented by the rotational spring
given in table 2.3.

𝜌𝐴
𝜕2𝑢𝑥,𝑦(𝑧, 𝑡)

𝜕𝑡2 + 𝐸𝐼
𝜕4𝑢𝑥,𝑦(𝑧, 𝑡)

𝜕𝑧4 = 0 (6.1)

The equations of motion for the beams, in 𝑥- and 𝑦-direction, are described by equation 6.1. Here,
the axial forcing component is omitted for the fatigue analysis, as the bending stress cycles are gov-
erning.

Themethod of solving equation 6.1 is similar to themethod described in section 4.2.1. The differences
occur in the equation describing the horizontal balance of forces 4.39. At the location of the gyrosta-
biliser in the side-to-side direction, there is no aerodynamic damping. Besides this, the moment of
inertia of the topside differs in both directions. These values are provided by DOT and are given in
table 6.1.

6.2. RNA and gyrostabiliser
The equations of motion for the gyroscope are derived through the Lagragian approach, which is
based on the kinetic and potential energy of the system. To obtain the equations of motion for all
degrees of freedom, the Lagrangian equation reads:

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�𝑖

− 𝜕𝐿
𝜕𝑞𝑖

= 0, (6.2)

Figure 6.2: Schematic representation of the 4 degrees of freedom of the flywheel

where 𝑞𝑖 are the degrees of freedom with 𝑖 = 1, 2, 3, 4. These are referring to the four degrees of
freedom seen in figure 6.2, namely: x, y, 𝜃 and 𝜓, respectively. 𝐿 is the Lagrangian of the RNA and
gyrostabiliser system. A function of the kinetic and potential energy of the system:

𝐿 = 𝑇 − 𝑉 (6.3)
As we are in the assumption of small vibrations, we can assume that the vertical displacement along
the z-axis of the gyrostabiliser is 0. That is, the centre of mass of the disk is stationary in the vertical
z-direction, this way only the kinetic term (T) remains in equation 6.3. So, the kinetic energy of
a spinning disk with two translational and two rotational degrees of freedom needs to be set up.
Assuming a constant thickness of the flywheel, we can describe the kinetic energy expressed in the
global coordinate system as

𝑇 = 12
𝑀𝑑
𝜋𝑅2 ∬

𝑅2𝜋

0
( ̇ ⃗𝑠
𝑔
𝑓 ⋅ ̇ ⃗𝑠

𝑔
𝑓 ) 𝑟𝑑𝑟𝑑𝜂 (6.4)
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where, we recognize the well-known form for the kinetic energy of a mass: 12𝑚𝑣
2, where:

𝑀𝑑 = the mass of the flywheel [kg]
𝑅 = the radius of the flywheel [m]
̇ ⃗𝑠
𝑔
𝑓 = the position vector, from the centre of the flywheel to an arbitrary point on the disk,

expressed in the global coordinate system (superscript g), see figure 6.3
𝜂 = the angle of the position vector within the flywheel-fixed coordinate system. [rad]
𝑟 = the length of vector s [m]

Figure 6.3: Topview of flywheel

Expressing the position vector ⃗𝑠𝑓𝑓 in the flywheel fixed coordinate system 𝑓 , shown in figure 6.3, and
by making use of the polar coordinate system gives:

⃗𝑠𝑓𝑓 = [
𝑟 cos𝜂
𝑟 sin𝜂
0

] , (6.5)

To express this vector in the global orientated coordinate system, one must multiply this with a
rotationalmatrix. This rotationalmatrix consists of themultiplication of 3 rotationalmatrices around
the 3 rotational degrees of freedom: 𝜂, 𝜓 and 𝜃. 𝜂 can be seen in figure 6.3 and 𝜓 and 𝜃 can be seen
in figure 6.2. The derivation of the rotational matrix can be found in Appendix B, but for brevity the
definition of 𝑅𝑜𝑡𝑡𝑜𝑡:

𝑅𝑜𝑡𝑡𝑜𝑡 = [
cos(𝜂) cos(𝜓) − sin(𝜂) cos(𝜃) + cos(𝜂) sin(𝜓) sin(𝜃) sin(𝜂) sin(𝜃) + cos(𝜂) sin(𝜓) cos(𝜃)
sin(𝜂) cos(𝜓) cos(𝜂) cos(𝜃) + sin(𝜂) sin(𝜓) sin(𝜃) − cos(𝜂) sin(𝜃) + sin(𝜂) sin(𝜓) cos(𝜃)
− sin(𝜓) cos(𝜓) sin(𝜃) cos(𝜓) cos(𝜃)

]

(6.6)
Including the translational degrees of freedom 𝑥 and 𝑦, the vector ⃗𝑠𝑔𝑓 of an arbitrary point on the
flywheel in the global coordinate system is given as

⃗𝑠𝑔𝑓 = [
𝑥(𝑡)
𝑦(𝑡)
0

] + 𝑅𝑟𝑜𝑡 ⋅ ⃗𝑠
𝑓
𝑓 (6.7)

To find the velocity vector in the global frame, we simply take the time derivative of this expression.
Substitution of this velocity vector in 6.4 followed by integration over the surface of the flywheel and
multiplication of the thickness gives the Lagrangian of the flywheel.
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𝐿𝑔𝑦𝑟𝑜 =
1
8(𝑀𝑑 (𝑟

2 (cos(𝜓)2 cos(𝜃)2 + 1) �̇�2 − 2𝑟2 (cos(𝜓) cos(𝜃) sin(𝜃)�̇�+

sin(𝜓)�̇��̇� − 𝑟2 (cos(𝜃)2 − 2)𝜓2 + 𝑟2�̇�2 + 4�̇�2 + 4�̇�2
(6.8)

As we assume the system small vibrations, we can applying the approximation of small angles, where
cos(𝜃) ≈ 1 and sin(𝜃) ≈ 𝜃. Recognizing that the term �̇� in the Lagrangian is the rotational velocity of
the flywheel, expressed as the gyricity of the disk Ω, equation 6.8 can be simplified to

𝐿𝑔𝑦𝑟𝑜 =
𝑀𝑑 (2𝑟2Ω2 − 2𝑟2 (𝜃�̇� + 𝜓�̇�) Ω + 𝑟2�̇�2 + 𝑟2�̇�2 + 4�̇�2 + 4�̇�2)

8 . (6.9)

To complete the Lagrangian that also includes the RNA, we include the kinetic energy of the RNA.
The degrees of freedom are shown in figure 6.1. 𝑌 and 𝑋 are the horizontal displacement of the
topside, where 𝜙𝑦 and 𝜙𝑥 are the rotations of the topside around the respective axis. Then we find
the following Lagrangian expression for the whole system:

𝐿𝑡𝑜𝑡 =
𝑀𝑑 (2𝑟2Ω2 − 2𝑟2 (𝜃�̇� + 𝜓�̇�) Ω + 𝑟2�̇�2 + 𝑟2�̇�2 + 4�̇�2 + 4�̇�2)

8 +
𝑀𝑅𝑁𝐴(�̇�2 + �̇�2)

2 +
𝐽𝑅𝑁𝐴,𝑥𝜙2𝑥

2 +
𝐽𝑅𝑁𝐴,𝑦𝜙2𝑦

2
(6.10)

Where, 𝑀𝑅𝑁𝐴 is the mass of the rotor-nacelle-assembly. 𝐽𝑅𝑁𝐴,𝑥 and 𝐽𝑅𝑁𝐴,𝑦 are the moment of inertia of
the RNA around their respective axis. These are provided by DOT and are given in table 6.1.

Table 6.1: Moments of inertia topside

Unit Value [𝑚4]
𝐽𝑅𝑁𝐴,𝑥 4370612
𝐽𝑅𝑁𝐴,𝑦 7082284

Using the Lagrangian equation 6.10, where we partially derive equation 6.9 to the 5 degrees of free-
dom: 𝑋, 𝑌 , 𝜙𝑥 , 𝜙𝑦 and 𝜃. This way, the five equations of motion, 6.11 - 6.15, for the RNA and gyrosta-
biliser system are established. Here it can be seen that the is no direct interaction between the beam
and the degree of freedom 𝜃.

− 𝐸𝐼2
𝛿3𝑢2,𝑦
𝛿𝑧3 |

𝑧=𝐿

+ (𝑀𝑑 + 𝑀𝑅𝑁𝐴)�̈� − 𝑐�̇� = 0 (6.11)

− 𝐸𝐼2
𝛿3𝑢2,𝑥
𝛿𝑧3 |

𝑧=𝐿
+ (𝑀𝑑 + 𝑀𝑅𝑁𝐴)�̈� = 0 (6.12)

− 𝐸𝐼2
𝛿2𝑢2,𝑥
𝛿𝑧2 |

𝑧=𝐿
+
(𝑀𝑑𝑟2 + 2𝐽𝑅𝑁𝐴,𝑦) ̈𝜙𝑦

2 −
𝑀𝑑𝑟2�̇�Ω

2 = 0 (6.13)

− 𝐸𝐼2
𝛿2𝑢2,𝑦
𝛿𝑧2 |

𝑧=𝐿

+ 𝐽𝑅𝑁𝐴,𝑥 ̈𝜙𝑥 = 0 (6.14)

−
𝑟2𝑀𝑑 ( ̇𝜙𝑦Ω −

�̈�(𝑡)
2 )

2 = 0 (6.15)

From equations 6.11 and 6.12, it can be quickly concluded that the gyrostabiliser acts as a lumped
topmass in the translational directions. From equations 6.13 and 6.15, we observe that the gyricity
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term Ω is the mathematical and physical coupling between the rotation around one axis and its reac-
tion about an axis perpendicular to it, or in term of gyroscopes: precession. In mechanical systems,
a velocity term in the equations of motion is normally related to a damping effect. But in this case,
no energy is dissipated from the system. The energy is solely transferred into a different direction.

Equations 6.11-6.14 act as the boundary conditions for the beam at the location of the topside. Where
equation described the motion 6.15 of the separate degree of freedom 𝜃.

6.3. Systems interaction
Similarly to equations 4.43 and 4.44, at the location of the topside, the deflection and rotation of the
beam are equal to the vertical displacement and rotation of the RNA. These continuity conditions
also hold for the displacement and rotation in the side-to-side direction.

The gyrostabiliser and beam interact via the internal moment, see equation 4.5 of the beam at the
location of the gyroscope. This translates into the angle 𝜙𝑦 of the RNA to be equal to the angle 𝜓 of
the gyrostabiliser.

In the frequency domain, the two systems in both x- and y-direction, can be solved simultaneously
together with the equation of motion for 𝜃, to find the steady-state beam vibrations and the steady-
state angle 𝜃 of the gyrostabiliser. Here, we also assume the steady-state solution for the angle 𝜃 to
be of the form:

𝜃(𝑡) = Θ0𝑒𝐼𝜔𝑡 (6.16)
in which𝜔 is the forcing frequency. Using the continuity conditions at the top side location and filling
in the general solutions 4.45 for the beam elements and the general solution 6.16 for the degree of
freedom of 𝜃, in the boundary conditions of the beam a system of 17 equations with 17 unknowns is
found. This set can be solved in the same manner as described in section 4.2.1.

6.4. Forcing input
To investigate the effects of wave-wind misalignment, it is essential to analyze joint probability scat-
ter diagrams of wind and wave data. These diagrams provide a statistical overview of the simultane-
ous occurrences of wind and wave conditions, thus we can check for misalignment cases. The joint
probability scatter diagram for the turbine location is given in figure 6.4 and is from the same RVO
source as mentioned before [37].

Figure 6.4: Joint occurance table of wave direction (WD) and wind-misalignment

For this study, only an unfavorable case is analyzedwhere there is a 45-degreemisalignment between
the incoming wind and waves. This specific angle of misalignment is chosen because it represents a
scenario in which the aerodynamic damping is significantly misaligned with the wave forcing. Again,
the calculated force for a 1.5 meter (𝐻𝑚0) and wave period of 3.5 seconds is used as input.
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Results

In this chapter, we present and analyze the results obtained from testing the gyrostabiliser designed
to reduce undamped side-to-side vibrations in the DOT-design turbine. The primary goal of these
numerical experiments is to check the effectiveness of the gyrostabiliser in minimizing side-to-side
vibrations and thus minimizing the bending stress at the mudline.

The results discussed here are generated through the dynamic model described in chapter 6. Sim-
ilarly to the FLS, to reduce computation time the solution is determined using a semi-analytical
approach. To be able to thoroughly investigate the effects of the gyrostabiliser on the manner of
vibrating of the structure, several other characteristics also are extracted from the model: the nat-
ural frequency, the first mode shape, the amplitude and stress frequency response functions in the
for-aft direction.

All results have the same wave-force input described in section 6.4. A top-view representation of the
incoming wave direction is shown in figure 7.1. The displacement in Y-direction is called the for-aft
motion of the turbine. The displacement in X-direction is named the side-to-side motion. In the
coming chapter we are mainly interested in this side-to-side motion of the turbine.

Figure 7.1: Top-view of incoming wave

First, some initial parameters of the gyrostabiliser system are acquired. Secondly, to identify the
optimal setup, we evaluate multiple configurations by varying key parameters such as gyroscopic
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mass and angular velocity. The performance of each configuration was assessed on the basis of its
ability to reduce lateral vibrations, as well as the associated bending stress on the structure. Finally,
an energy dissipation element is added to the system.

7.1. Gyrostabiliser parameters
When looking at equations of motion 6.11-6.15, we find that the force balance of the gyrostabiliser
depends on its mass 𝑀𝑑 , radius 𝑟 and gyricity Ω𝑑 . Regarding the mass, conventional PTMD’s are in
the region of 1-2% of the total mass of the structure [41], [42]. A mass of 0.75% of the total mass of
the structure is chosen, resulting in a disk with a mass of 5000kg. The radius of the disk is based on
the dimensions of the nacelle and is set to be 1.5 meters. Finally, the initial gyricity of the disk is cho-
sen to be 50 radians per second. The stress frequency response functions (SFRF) at the mudline, in
the side-to-side direction, of the systemwith and without the gyrostabiliser are depicted in figure 7.2.

It is clear that the gyrostabiliser, in this configuration, does not reduce the magnitude of the maxi-
mum bending stress at the mudline. Since the analysis is performed in the frequency domain, only
the the steady-state response is captured. However, from literature, it is observed that the transient
vibrations are damped by the gyrostabiliser [7].

Although it appears that the response increases, this is not necessarily the case as it might be re-
lated to the discretization of the frequency axis in the followed semi-analytical approach. Given the
stepsize of 0.01 radians per second, the undamped vibration, within that stepsize-bin the amplitude
goes to infinity.

Figure 7.2: Stress Frequency Response Functions in side-to-side direction

In the for-aft direction, no effect is expected of the precession of the gyrostabiliser. The results of
the displacement and bending stress in the for-aft direction are depicted in figure 7.3. The expected
effect of the added weight can be observed. There is no direct effect of the spinning velocity of the
disk on the dynamics in y-direction. From now on, only the results in the side-to-side direction shall
be evaluated.
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(a) Amplitude frequency response function (b) Stress frequency response function

Figure 7.3: Results in for-aft direction

The observed shift in the frequency response peaks indicates a change in the natural frequency of
the system, likely due to the added weight in the topside. To gain a clearer understanding of this shift
and its implications, a sensitivity analysis is conducted. This analysis explores the impact of varying
gyrostabiliser weight and gyricity on the natural frequency and performance of the gyrostabiliser.

7.2. Sensitivity analysis
The sensitivity analysis involves evaluating the performance of the gyrostabiliser in various configu-
rations. Parameters such as mass and gyricity are systematically modified to show the effectiveness
of the gyrostabiliser in reducing bending stress at the mudline.

In figure 7.2, it can be seen that the peaks are within a certain range of frequencies. Because we
are mainly interested in these peaks, we only plot the results in the forcing frequency range of 1-3
radians per second. This way, the accuracy of the semi-analytical solution can be increased while
maintaining a sensible computation time.
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Figure 7.4: Stress Frequency Response Function gyricity alteration | side-to-side direction

7.2.1. Gyricity
Figure 7.4 shows the side-to-side response in the frequency domain for a variety of gyricities of the
gyrostabiliser. For a clear comparison, the case of no gyrostabiliser is also included. There is no
significant reduction of bending stress visible for the system including the gyrostabiliser. Again, the
shift in natural frequency is clearly visible.

Also, it is clear that the maximum value of the stress response varies with changes in gyricity. To
investigate this further, themaximum SFRF value is extracted and plotted as a function of gyricity. For
a clear comparison, the scenario without a gyrostabiliser installed was also included in the analysis.
It was observed that in only a limited number of gyricities, the maximum stress response decreased
relative to the base case. From figure 7.5, it can be seen that for several gyricity values the response
exhibits a significant spike. This analysis only shows the maximum values of the SFRF and does not
say anything about the response at the other frequencies.

Figure 7.5: Maximum bending stress for different gyricity configurations | side-to-side direction
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This behaviour indicates that the natural frequencies of the damper system around the 𝜃 axis coin-
cides with the natural frequency of the total system. The natural frequency of the damper is called
the precession frequency of the spinning disk. The precession frequency under a known torque is
given as [48]:

𝜔𝑝 =
𝜏
𝐼Ω , (7.1)

𝜔𝑝 is the precession frequency in radians per second, 𝐼 is the second moment of the disk around
its rotational axis, Ω denotes the gyricity of the disk in radians per second, 𝜏 represents the torque
applied to the gyroscope, in this case the internal moment due to the bending of the tower.

To find the configuration of structure and damper, where the natural frequencies of the total system
and gyrostabiliser coincide, the equations for both should be set equal and solved for Ω. As seen in
figures 7.5, the natural frequency of the system depends on the gyricity and disk mass. This is also
true for the frequency of precession.

Figure 7.6: Transferred moment from nacelle to gyrostabiliser

Finally, we can look at the internalmoment, or torque, at the location of the gyrostabiliser. The torque
exerted on the gyrostabiliser as a result of the wave forcing varies over the wave frequencies and is
also dependent on the gyricity, as shown in figure 7.6. With this, the gyricities where the precession
frequency is equal to the natural frequency of the system can be found. In this thesis no equation
for the natural frequency of the system, with gyrostabiliser, is set up. The full derivation and analyis
is left for future research.

7.2.2. Mass
Altering the mass of the disk affects the energy stored in the rotating disk. A disk with increased
rotational kinetic energy exhibits greater resistance to changes in orientation, thus influencing the
overall system response. Additionally, increasing the mass on the topside leads to a reduction in the
system’s natural frequency. The corresponding response plots of the bending stress at the mudline
with a disk gyricity of 50 radians per second, are presented in figure 7.7.

Again, a clear shift in natural frequency is observed. The significantly larger displacement for the
7000kg can also be explained by the natural frequency of the gyrostabiliser to coincide with the
systems. Looking at equation 7.1, it can be quickly seen that increasing the mass, decreases the
precession frequency. Where the mass of 7000 kilograms, the natural frequency of the gyrostabiliser
becomes 1.48 radians per second.
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Figure 7.7: Stress Frequency Response Function mass alteration | side-to-side direction

The passive gyrostabiliser, while a useful tool in various engineering applications, does not serve as
an absolute stress-reducing technique. This limitation becomes apparent when analyzing its perfor-
mance in the frequency domain, particularly during the steady-state dominated assessments, such
as the FLS checks. The crux of the issue lies in the inability of the passive gyrostabiliser to adequately
dampen stress responses under steady-state conditions. The gyrostabilisers ability to dampen vi-
brations in a certain direction, originates from its rigidity in space. More clearly, its ability to resist
change in orientation. To effectuate a change in orientation, the rotating mass should be acceler-
ated. In the steady-state response, all masses are in a steady sinusoidal motion, in phase with the
sinusoidal wave forcing. However, it is known from literature, when the motion of the nacelle and
the precession of the gyrostabiliser are not in phase, we do experience damping of the vibration [7].

However, the passive gyrostabiliser can function effectively as a frequency skipping tool. By altering
the gyricity, it is possible to shift the natural frequencies of the system. This frequency manipulation
allows the system to ”skip” over resonant frequencies that would otherwise induce high-stress re-
sponses. Similar approaches are already in place in existing wind turbines. By adjusting the pitch of
the blade or the torque of the generator [39], the resonating frequencies are omitted. The gyricity of
the gyrostabiliser could be included in the controllable parameters to achieve an effective frequency
skipping strategy.

The frequency skipping tool is used to avoid resonant conditions and thereby contribute to reducing
the stress within the system. This would mean, adding a system that can detect incoming wave
frequencies. By actively setting the rotational speed of the disk, the passive system becomes an
active system.

7.3. Damped gyrostabiliser
To our current setup, a rotational damper and a spring mechanism around the 𝜃-degree of freedom
are added. The main reason for incorporating these elements is to dissipate some of the energy
of the system and control the rotation 𝜃 of the disk. This way, the response of the system will be
reduced. The damper and spring will help to better control the dynamic behavior of the system and
manage its overall stability.
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The bending stress at the mudline resulting from the same 1.5m wave is shown in figure 7.8. Here, a
clear reduction of bending stress can be seen as a result of the gyrostabiliser. Especially for higher
gyricities, the reduction is significant. As expected, by using a disk with a higher mass, the effective-
ness increased. This is visualized in figure 7.9.

Figure 7.8: Stress Frequency Response Function - gyricity alteration damped 5000kg gyrostabiliser| side-to-side direction

Figure 7.9: Stress Frequency Response Function - gyricity alteration damped 7000kg gyrostabiliser| side-to-side direction

With this configuration, a reduction of the maximum bending stress at the mudline of 90.3% is
achieved. This is compared to the undamped case, where no gyrostabiliser is included. The max-
imum value occurs at a lower forcing frequency, due to the added weight in the topside and the
damping effect originating from the .

Again, the maximum bending stress over the wave frequency range 1-3 radians per second is taken
and plotted against the gyricity of the disk. The results of bending stress at the mudline for the
damped gyrostabiliser system are depicted in figure 7.10.
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Figure 7.10: Maximum bending stress for different gyricities of damped gyrostabiliser | side-to-side direction

From these results, it can be concluded that from a certain value of rotational velocity, which de-
pends on the parameters of the system, the gyrostabiliser reduces, in fact, the absolute maximum
stress response of the turbine.

Finally, we evaluate the response angle 𝜃. The angle is plotted as a function of wave frequency and
gyricity, which can be seen in figure 7.11.

Figure 7.11: 𝜃 frequency response plot

In general, and especially around the natural frequency, large rotations are observed. The assump-
tion of small angles, and the linearisation that follows, can be questioned based on these results.
The linearisation due to small angles for 𝑠𝑖𝑛(𝜃) = 𝜃 is visualized in figure 7.12a. In this figure it can be
seen that for small angles the resulting values are close enough to be considered equal.
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(a) 𝑠𝑖𝑛(𝜃) = 𝜃 (b) Gyrostabiliser equation of motion

Figure 7.12: Visualization of linearisation

Figure 7.12b presents the normalized values of the linearised and non-linearised angles, θ, from the
Lagrangian in equation 6.10, where the horizontal line represents the and linearised equation. The
linearisation is valid only for angles near −π, 0, and π. Consequently, the effectiveness of the gy-
rostabiliser in enhancing the system’s overall stability may be overestimated when relying on this
linearisation. To accurately assess this effect, the non-linearised Lagrangian should be utilized to
solve the system in the time domain. This solution can then be compared with the frequency-domain
solution provided in this study.



8
Conclusions and Recommendations

This chapter presents the main conclusions derived from the research conducted. Following this, the
limitations of the analysis are discussed, and recommendations for future research are provided.

8.1. Conclusions
The conclusions are split up into the two main parts of this research. Here, the two main research
questions given in section 1.2 will be answered.

8.1.1. Lighter topside
The worldwide demand for offshore renewable wind energy has experienced an exponential growth,
driven by the need for clean energy and global CO2 reduction goals. To support this growth, the
industry must focus on producing more efficient, reliable, and cost-effective turbines, thereby lower-
ing the levelised cost of energy (LCOE). One innovative approach is the Delft Offshore Turbine (DOT)
hydraulic pump, which replaces traditional, heavier components such as the gearbox and generator,
reducing the weight of the turbine’s topside by up to 50%.

In this research, two bottom founded support structures for a designated locations in the North-Sea
are designed. One with the conventional topside mass, and one with the lighter DOT topside mass.
For comparison reasons, the tower design is kept the same for both designs. The research is set up
to answer the question:

”What are the effects of a lighter topside on the support structure of a bottom founded offshore wind
turbine?”

As main conclusion, the lighter topside reduces the steel requirements for the monopile, with the
ultimate limit state (ULS) check becoming the primary constraint. Interestingly, for the conventional
turbine, the limiting factor is the target natural frequency. The parameters of both designs are re-
peated in table 8.1. A reduction in 13% steel is achieved in overall steel usage for the lighter topside.

Throughout the design process for both cases, the same optimization method was applied. First, the
diameter of the monopile was increased, followed by the wall thickness.
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Table 8.1: Parameters support structure

Parameter Symbol DOT Conventional Unit
Tower length L𝑇 65 65 m
Slipjoint length L𝑆𝐽 9 9 m
Monopile length L𝑀𝑃 31 31 m
Embedded length L𝑒𝑚𝑏 18 18 m
Diameter tower top D𝑇,𝑡 3 3 m
Diameter tower bottom D𝑇,𝑏 5.2 5.2 m
Diameter slipjoint top D𝑆𝐽,𝑡 5.2 5.2 m
Diameter slipjoint bottom D𝑆𝐽,𝑏 5.29 5.44 m
Diameter monopile D𝑀𝑃 5.29 5.44 m
Wall thickness tower t𝑡 30 30 mm
Wall thickness slipjoint t𝑆𝐽 60 60 mm
Wall thickness monopile t𝑀𝑃 50 58 mm
Slipjoint angle 𝛼𝑆𝐽 0.6 1.5 °

The results of the ULS check are given in table 8.2. Both designs pass the test, where the DOT design
unit check comes close to the limit. Therefore, it is concluded that the current design is limited by
the ULS Von Mises yield check.

Table 8.2: Results ULS analysis. *with respect to mudline

DOT conventional
Von Mises yield check [-] 0.967 0.821
Max. Von Mises yield location* [m] -1.2 -1.2
Global buckling check [-] 0.882 0.779
Max. global buckling location* [m] -0.3 -0.3

The results of the Fatigue Limit State (FLS) are given in tables 8.3. The checks are performed only
for a unidirectional wind profile. This means that only vibrations in the for-aft direction are consid-
ered and no wind-wave misalignment is included in the results. This way, all bending stress cycles
accumulate at one point in the structure, which is a conservative approach. Not taking into account
wind-wave misalignment is therefore allowable.

Table 8.3: Results FLS analysis

S-N curve DOT Conventional
B2 0.35 0.23
C 1.22 0.78
C1 2.11 1.35
C2 3.72 2.39

The model developed in this research, despite its simplified nature, is currently focused on altering
only the monopile dimensions while keeping the tower unchanged. This is done for two reasons:
to clearly visualize the relation between topside mass and support structure dimensions and for
production reasons coming from Delft Offshore Turbine. However, this model has the potential to be
extended to optimize the entire support structure of the turbine, including both the tower and the
monopile, to achieve the most efficient design.

8.1.2. Gyrostabiliser
In this research, a simplified dynamic model representing the support structure of a bottom-founded
offshore wind turbine is developed. A gyrostabiliser is integrated into the nacelle to study its effect
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on the system’s dynamics. The model aims to capture the steady-state response to wave forcing,
which is the primary contributor to fatigue in offshore structures. The dynamics of the system are an-
alyzed in the frequency domain to provide insights into how the gyrostabiliser influences the overall
stability and fatigue resistance of the structure. This model is set up to answer the research question:

”How effective are gyroscopic dampers in reducing wave-induced vibrations in bottom founded off-
shore wind turbines?”

Due to the minimally damped side-to-side motion of the topside, we aim to reduce the motion in
this direction. The investigation into the use of a gyrostabiliser for reducing side-to-side displace-
ment, and thus stresses, in offshore structures reveals mixed outcomes. Initially, it was found that a
passive gyrostabiliser without a damper does not significantly reduce these stresses, contrary to ex-
pectations. However, it does show potential as a frequency-skipping tool. By varying the disk gyricity
the natural frequency of the system changes. By adjusting the spinning velocity of the disk based on
the incoming wave frequency, making it an active system, the overall response can be improved.

When a rotational damper and spring are incorporated into the system, the gyrostabiliser becomes
more effective. In this configuration, the passive system successfully dampens both displacements
and bending stresses. This reduction of bending stress at the mudline, for a particular configuration,
is shown in figure 8.1. Tuning the system can easily be done by altering the disk’s spinning velocity,
offering flexibility in adapting to different conditions. The optimal gyricity of the disk depends on
several parameters, including its mass, radius, and the values of the rotational damping and spring.

Figure 8.1: Stress Frequency Response Function gyricity alteration damped 7000kg gyrostabiliser| side-to-side direction

Reducing side-to-side vibrations has further advantages, particularly regarding the incoming wind
angle. By stabilizing the platform, the apparent wind angle experienced by the blades is optimized,
potentially enhancing the efficiency of energy conversion. This indicates that a properly tuned gy-
rostabiliser can contribute to both structural integrity and performance in offshore wind turbines.

When the gyrostabiliser is compared to conventional passive mass dampers (PMDs), several advan-
tages and disadvantages emerge. gyrostabilisers are typically lighter and more compact than PMDs,
making them easier to integrate into existing designs. Their ability to be tuned via the rotational
speed of the disk adds a level of adaptability not present in PMDs. Here, the tuning is done by al-
tering the structural parameters of the damping system. However, this tuning comes with the risk
of hitting the precession frequency, which could result in increased displacement rather than sta-
bilization. Moreover, gyrostabilisers are mechanically more complex than PMDs, leading to higher
maintenance requirements.



8.2. Recommendations 58

8.2. Recommendations
To build upon the findings of this research, several areas warrant further investigation. First, the
methodology for frequency skipping using the gyrostabiliser should be explored in more depth. This
globally involves the process: (1) measuring the incoming wave frequency, (2) determining the re-
quired rotational velocity of the gyrostabiliser disk, and (3) adjusting the disk’s spin rate accordingly.
An important aspect to consider here is the speed at which the disk can be accelerated to the desired
rotational velocity. Understanding the time frame and limitations of this acceleration is crucial for
implementing an effective frequency-skipping strategy.

Second, the energy consumption associated with this sequence also needs to be evaluated. It is
essential to quantify the energy requirements for adjusting the disk’s rotational velocity in real-time
and assess whether this approach is feasible for practical application. Additionally, the overall com-
plexity and financial implications of this technique should be analyzed. The potential benefits, such
as extended structural lifetime due to reduced bending stress at critical locations or the possibility
of using less expensive steel, as indicated in table 8.3, should be weighed against the costs involved.

Third, exploring the application of this gyrostabilization technique for floating offshore wind turbines
is also recommended. Floating structures have different - and often more extreme - dynamic char-
acteristics compared to bottom founded turbines. The effectiveness of the gyrostabiliser in such
scenarios could lead to further innovations in wind turbine design. Moreover, the effects of bottom-
founded offshore wind turbines in deeper waters should be investigated. These turbines experience
larger forces and internal moments, potentially amplifying the benefits of gyrostabilization in en-
hancing structural resilience.

Fourth, to enhance the gyrostabiliser’s effectiveness further, the implementation of a second gyrosta-
biliser is suggested. A dual gyrostabiliser setup could not only reduce vibrations in the side-to-side
direction but also address vibrations in the fore-aft direction. This comprehensive stabilization ap-
proach may significantly improve the structural dynamics and efficiency of offshore wind turbines.

Lastly, solving the system in the time domain is recommended to capture the transient response.
This approach would allow for a more accurate assessment of the validity of linearisation, applied
due the assumption of small vibrations, on the overall accuracy of the model.
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A
Derivation of critical wave loads

In this appendix the derivation from the water surface elevation to the critical wave loads acting on
the substructure is given [8].

The drag force and inertia force of the wave per unit length give the wave force per unit length. This
equation is given in A.1, where 𝐶𝐷 and 𝐶𝑚 are the drag and inertia coefficient, respectively. And 𝜌𝑤 is
the density of the seawater at the site.

𝑑𝐹𝑤𝑎𝑣𝑒(𝑧, 𝑡) = 𝑑𝐹𝐷(𝑧, 𝑡) + 𝑑𝐹𝐼(𝑧, 𝑡) =
1
2𝜌𝑤𝐷𝑆𝐶𝐷𝑤(𝑧, 𝑡)|𝑤(𝑧, 𝑡)| + 𝐶𝑚𝜌𝑤𝐴𝑆�̇�(𝑧, 𝑡) (A.1)

To obtain the total drag and inertia force, we integrate over the full submerged length. The moment
of the wave around the seabed is then easily derived.

𝐹wave (𝑡) = ∫
𝜂

−𝑆
𝑑𝐹𝐷𝑑𝑧 +∫

𝜂

−𝑆
𝑑𝐹𝐼𝑑𝑧 (A.2)

𝑀wave (𝑡) = ∫
𝜂

−𝑆
𝑑𝐹𝐷 (𝑆) 𝑑𝑧 +∫

𝜂

−𝑆
𝑑𝐹𝐼 (𝑆) 𝑑𝑧 (A.3)

Themaxima for the drag and inertia induced wave loads occur at different times, hence we determine
them separately. The peak load for the drag occurs when 𝑡 = 𝑇𝑆/4 and 𝜂 = 𝐻𝑚/2. Contrary, the peak
load for the inertia governed load occurs at 𝑡 = 0 and 𝜂 = 0. Filling in these time-instances and
performing the integration, the equations for the drag force and moment then become:

𝐹𝐷,max =
1
2𝜌𝑤𝐷𝑆𝐶𝐷

𝜋2𝐻2𝑆
𝑇2𝑆 sinh(𝑘𝑆)

𝑃𝐷(𝑘, 𝑆, 𝜂) (A.4)

𝑀𝐷,max =
1
2𝜌𝑤𝐷𝑆𝐶𝐷

𝜋2𝐻2𝑆
𝑇2𝑆 sinh(𝑘𝑆)

𝑄𝐷(𝑘, 𝑆, 𝜂) (A.5)

Where 𝑃𝐷 and 𝑄𝐷 are defined in A.6 and A.7 and are both functions of the wave number, water depth
and wave elevation at the considered instant of the maximum load.

𝑃𝐷(𝑘, 𝑆, 𝜂) =
𝑒2𝑘(𝑆+𝜂) − 𝑒−2𝑘(𝑆+𝜂)

8𝑘 + 𝑆 + 𝜂2 (A.6)

𝑄𝐷(𝑘, 𝑆, 𝜂) = (
𝑆 + 𝜂
8𝑘 − 1

16𝑘2 ) 𝑒
2𝑘(𝑆+𝜂) − (𝑆 + 𝜂8𝑘 + 1

16𝑘2 ) 𝑒
−2𝑘(𝑆+𝜂) + (𝑆 + 𝜂2 )

2
+ 1
8𝑘2 (A.7)

The same holds for the inertia governed loads:

𝐹𝐼,max =
1
2𝜌𝑤𝐶𝑚𝐷

2
𝑆

𝜋3𝐻𝑆
𝑇2𝑆 sinh(𝑘𝑆)

𝑃𝐼(𝑘, 𝑆, 𝜂) (A.8)
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𝑀𝐼,max =
1
2𝜌𝑤𝐶𝑚𝐷

2
𝑆

𝜋3𝐻𝑆
𝑇2𝑆 sinh(𝑘𝑆)

𝑄𝐼(𝑘, 𝑆, 𝜂) (A.9)

𝑃𝐼(𝑘, 𝑆, 𝜂) =
sinh(𝑘(𝑆 + 𝜂))

𝑘 (A.10)

𝑄𝐼(𝑘, 𝑆, 𝜂) = (
𝑆 + 𝑛
2𝑘 − 1

2𝑘2 ) 𝑒
𝑘(𝑆+𝜂) − (𝑆 + 𝜂2𝑘 − 1

2𝑘2 ) 𝑒
−𝑘(𝑆+𝜂) + 1

𝑘2 (A.11)

Finally, the drag and inertia coefficient can be determined. These are generally functions of the
Reynolds number, the Keulegan-Carpenter number and the relevant roughness.

𝐶𝐷 = 𝐶𝐷𝑆 ∗ 𝜓(𝐶𝐷𝑆,𝐾𝐶) (A.12)

Where the drag coefficient for steady-state flow 𝐶𝐷𝑆 may be taken as

𝐶𝐷𝑆 = {
0.65 for 𝑘/𝐷 < 10−4 (smooth)
29+4 log10(𝑘/𝐷)

20 for 10−4 < 𝑘/𝐷 < 10−2
1.05 for 𝑘/𝐷 > 10−2 (rough)

(A.13)

Due to marine growth, we take 𝑘 = 0.02. The wake amplification factor 𝜓 in equation A.13 can be
determined by looking at the curves in figure A.1. The Keulegan-Carpenter number, for deep water,
can be gives as

𝐾𝐶 = 𝜋 ∗ 𝐻
𝐷𝑚𝑝

(A.14)

Figure A.1: Wake amplification factor for smooth (solid line) and rough (dotted line) roughness

The loads of relevant wave scenarios are given in table 3.1.



B
Derivation of rotational matrix

This appendix shows the derivation of the rotational matrix given in equation 6.6.

The goal is to find the rotational matrix to go from the global coordinate system to the fixed coordi-
nate system of the body. In this way, we can multiply the simply postition vector in the body fixed
with the rotational matrix, to find the postition vector in the desired global coordinate system. The
rotations of freedom from the disk are: 1) the rotation around the x-axis with angle 𝜃, 2) the rotation
around the y-axis with angle 𝜓 and 3) the rotation around the z-axis with angle 𝜂. To obtain the total
rotational matrix, the rotation matrices around the 3 degrees of freedom are multiplied.

Figure B.1: Topview of flywheel

Rotation matrix from the x’-frame to the global coordinate system for an angle 𝜃 as depicted in figure
B.1:

𝑅𝑜𝑡𝜃 = [
1 0 0
0 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)
0 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

] (B.1)

Rotation matrix from the y”-frame to the y’-frame for an angle 𝜓 as depicted in figure B.1:

𝑅𝑜𝑡𝜓 = [
𝑐𝑜𝑠(𝜓) 0 𝑠𝑖𝑛(𝜓)
0 1 0

−𝑠𝑖𝑛(𝜓) 0 𝑐𝑜𝑠(𝜓)
] (B.2)

Rotation matrix from the z”’-frame to the z”-frame, for an angle 𝜂 as depicted in figure B.1:
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𝑅𝑜𝑡𝜂 = [
𝑐𝑜𝑠(𝜂) −𝑠𝑖𝑛(𝜂) 0
𝑠𝑖𝑛(𝜂) 𝑐𝑜𝑠(𝜂) 0
0 0 1

] (B.3)

To obtain the total rotational matrix we apply:

𝑅𝑜𝑡𝑡𝑜𝑡 = 𝑅𝑜𝑡𝜂 ⋅ 𝑅𝑜𝑡𝜓 ⋅ 𝑅𝑜𝑡𝜃 (B.4)

to become:

[
cos(𝜂) cos(𝜓) − sin(𝜂) cos(𝜃) + cos(𝜂) sin(𝜓) sin(𝜃) sin(𝜂) sin(𝜃) + cos(𝜂) sin(𝜓) cos(𝜃)
sin(𝜂) cos(𝜓) cos(𝜂) cos(𝜃) + sin(𝜂) sin(𝜓) sin(𝜃) − cos(𝜂) sin(𝜃) + sin(𝜂) sin(𝜓) cos(𝜃)
− sin(𝜓) cos(𝜓) sin(𝜃) cos(𝜓) cos(𝜃)

] (B.5)
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