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a b s t r a c t

Wind farm (WF) controllers adjust the control settings of individual turbines to enhance the total per-
formance of a wind farm. Most WF controllers proposed in the literature assume a time-invariant inflow,
whereas important quantities such as the wind direction and speed continuously change over time in
reality. Furthermore, properties of the inflow are often assumed known, which is a fundamentally
compromising assumption to make. This paper presents a novel, closed-loop WF controller that
continuously estimates the inflow and maximizes the energy yield of the farm through yaw-based wake
steering. The controller is tested in a high-fidelity simulation of a 6-turbine wind farm. The WF controller
is stress-tested by subjecting it to strongly-time-varying inflow conditions over 5000 s of simulation. A
time-averaged improvement in energy yield of 1:4% is achieved compared to a baseline, greedy
controller. Moreover, the instantaneous energy gain is up to 11% for wake-loss-heavy situations. Note
that this is the first closed-loop and model-based WF controller tested for time-varying inflow conditions
(i.e., where the mean wind direction and wind speed change over time) at such fidelity. This solidifies the
WF controller as the first realistic closed-loop control solution for yaw-based wake steering.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the ‘‘Klimaatakkoord’’ [1], the Dutch government pledges to
significantly reduce carbon-dioxide emissions over the next
decade, lowering emissions to 49% of the levels measured in 1990.
In pursuit of this goal, the Dutch government has been installing an
increasing number of wind farms in the North Sea. The intention is
to have 11 GW of wind energy installed off the coast of The
Netherlands by 2030, thereby accounting for 40% of the Dutch
national electricity demand.

As the globally installed capacity of wind energy continues to
grow, so does the interest towards further improving the efficiency
of wind turbines and wind farms. The research field of control
engineering plays a significant role in this process. In the past, the
focus of control engineering has been on individual wind turbine
control. More recently, the focus has shifted from wind turbine
towards wind farm control, in which turbines are coordinated with
one another to achieve a collective objective [2].
Doekemeijer).
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A distinction can be made between two strategies of wind farm
control, namely induction control and wake steering. The first
strategy aims at derating upstream turbines, which purposely
lowers their energy yield through pitching the turbine blades and
adjusting the generator torque. Induction control is typically used
for active power control (e.g. Ref. [3,4], load mitigation strategies
(e.g. Refs. [5], and more recently power maximization (e.g., Ref. [6].
The second strategy, wake steering, displaces the wake down-
stream by purposely misaligning the rotor plane with the incoming
air stream. Wake steering is typically done using yaw control. The
most common objective of wake steering is power maximization
(e.g., Ref. [7e9].

Yaw-based wake steering has shown significant potential in
high-fidelity simulations and real-world experiments. For example,
Gebraad et al. [7] showan increase in energy extraction of up to 13%
for a 6-turbine wind farm in a large-eddy simulation. Furthermore,
Campagnolo et al. [10] show an increase in energy extraction of up
to 21% for an array of 3 turbines in a wind tunnel. Additionally,
Fleming et al. [9] show an increase in energy extraction of up to 4%
for an array of 3 turbines in a field experiment. Moreover, Howland
et al. [8] demonstrate wake steering through field experiments on
an array of 6 wind turbines, showing an increase of up to 47% at low
wind speeds (due to cut-in behaviour of downstream turbines) and
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The closed-loop model-based wind farm control framework. A simplified sur-
rogate model of the wind farm is used to represent the flow and turbine behavior at a
low computational cost. The first step in the controller is model adaptation, implying
the estimation of the inputs relevant for the current wind farm situation. Typically, this
implies the estimation of the ambient conditions. Then, the turbine control setpoints
are optimized using the surrogate model, which are the turbine yaw angles in this
work.

B.M. Doekemeijer et al. / Renewable Energy 156 (2020) 719e730720
an increase of up to 13% for higher wind speeds. Due to its prom-
ising potential, the paper at hand focuses on yaw-based wake
steering for power maximization.

However, a crucial limitation of most wind farm controllers
proposed in the literature is that the incoming wind field is
assumed to be time invariant. In reality, the wind field entering a
wind farm changes continuously due to fluctuations in the heating
of the Earth’s surface, among others. Moreover, wake steering is
highly sensitive to the ambient conditions [2]. In consequence, it is
crucial to test farm control solutions for realistic, time-varying
inflow conditions. Additionally, properties of the inflow such as
the wind direction and wind speed are typically assumed to be
prior knowledge to the wind farm controller, which is a secondary
unrealistic and compromising assumption. Controllers that do not
rely on live measurements but rather on prior knowledge of the
inflow are denoted as open-loop. The results from Gebraad et al. [7]
and Campagnolo et al. [10] are with open-loop controllers under
time-invariant inflows, in which the inflow is carefully selected to
maximize the potential benefits of wake steering.

Furthermore, the energy yield gain of up to 4% shown by
Fleming et al. [9] is extracted frommonths of field data, for narrow
time windows and inflow conditions. This provides little insight
into the benefits of wake steering over the annual operation cycle of
a wind farm. Furthermore, despite the notable improvements
shown in Howland et al. [8], the gain in annual energy production
for the field experiments was found to be insignificant.

The controllers deployed in both field experiments [8,9] are
open-loop, deriving the inflow properties from the most upstream
turbine or an external measurement system. However, the un-
certainties concerning inflow estimation and the high complexity
in modeling the relevant wind farm dynamics require a closed-loop
wind farm control solution. In closed-loop control, measurements
of the controlled system are fed back to the controller to allow
adaptation to a changing environment and model uncertainty. The
closed-loop model-based framework presented in this work con-
sists of two components, being model adaptation and setpoint
optimization, as depicted in Fig. 1. Model adaptation consists of
estimating the input parameters of a surrogate model that are
currently relevant for the wind farm. This surrogate model is a
simplified mathematical model of the wind farm dynamics with a
low computational cost. In practice and also in this work, model
adaptation often implies the estimation of the freestream wind
speed, wind direction, and the amount of wake recovery
(commonly defined by the turbulence intensity). Secondly, the
setpoint optimization leverages the adapted surrogate model to
find the turbine control setpoints that maximize a certain objective.
In this work, the objective is power maximization and the control
variables are the turbine yaw angles.

The main focus in the wind farm control literature has been on
surrogate model development (e.g. Ref. [7,11], and control setpoint
optimization (e.g., Ref. [12e14]. More recently, there has been an
increasing amount of interest towards the estimation of the
ambient conditions and dealing with the time-varying nature of
wind (e.g., Refs. [15e18]. However, many of the wind farm control
algorithms proposed in the literature are merely tested on simpli-
fied simulation models, from which no real conclusions can be
drawn apart from a proof of concept. Furthermore, the controllers
that are tested in high-fidelity (large-eddy) simulations and real-
world experiments typically assume a constant mean inflow wind
direction, wind speed, and turbulence intensity (e.g., Ref. [7,10].
However, experiments under such steady inflow conditions insuf-
ficiently represent real-world scenarios, and thusmuch uncertainty
remains concerning the true potential of these wind farm con-
trollers in actual farms.

A handful of articles exist that consider time-varying inflow
conditions for wind farm controller validation. Bossanyi [19]
demonstrates a wind farm control algorithm in low-fidelity simu-
lation subjected to time-varying inflow conditions. Also, Vollmer
[20] demonstrates open-loop wake steering on a two-turbine array
in a large-eddy simulation subjected to time-varying inflow con-
ditions. Furthermore, Ciri et al. [21] presents a closed-loop and
model-free control algorithm that improves the performance of
turbines inside a wind farm, demonstrated in high-fidelity simu-
lations under a time-varying inflow. However, model-free algo-
rithms for wake steering are fundamentally limited due to slow
convergence rates combined with the inherent variability of the
inflow conditions. Their practicability in real wind farms therefore
remains uncertain [2].

To the best of the authors’ knowledge, there is no literature on
the assessment of closed-loop model-based wind farm control so-
lutions in a high-fidelity environment (i.e., field experiment, wind
tunnel experiment, large-eddy simulation) with time-varying
inflow conditions. Addressing this scientific gap is invaluable for
the practical validation and implementation of wind farm control
solutions, as time-varying inflow conditions are ubiquitous in real-
world wind farms. This article contains three novel contributions:

1. a detailed fit of the surrogate wind farm model FLORIS to large-
eddy simulation data.

2. a model-based estimation algorithm that predicts the free-
stream wind direction, wind speed and a wake recovery factor
using measurements that are readily available in commercial
wind farms. This algorithm is assisted by a theoretical measure
of observability published in earlier work [18].

3. validation of the closed-loop wind farm controller in a large-
eddy simulation subjected to time-varying inflow conditions.

The structure of this article is as follows. In Section 2, the high-
fidelity simulation environment is described. In Section 3, the
surrogatewind farmmodel is outlined. In Section 4, the closed-loop
wind farm controller is synthesized. This controller is tested in
Section 5 in a high-fidelity simulation under time-varying inflow
conditions, upon which the turbine energy yield and the turbine
loads are investigated. The article is concluded in Section 6.

2. The Simulator for Wind Farm Applications

For surrogate model tuning and controller validation, the high-
fidelity Simulator for Wind Farm Applications (SOWFA) model
developed by the National Renewable Energy Laboratory (NREL) is
used in this article. SOWFA is a large-eddy wind farm simulation
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model that leverages the actuator line model to determine the
forces applied by each turbine on the flow. SOWFA has been vali-
dated to SCADA data in Churchfield et al. [22], among others. In
recent work, this high-fidelity simulator was coupled with MATLAB
using a network-based communication interface [23] for straight-
forward control algorithm testing. In this article, the wind turbine
of interest is the DTU 10 MW reference wind turbine [24]. An
overview of important parameters for all simulations presented in
this article is given in Table 1. The reader is referred to Churchfield
et al. [26] for a more detailed description of SOWFA.

3. Surrogate model

The closed-loop control architecture outlined in Fig. 1 requires a
surrogate model, serving for both the model adaptation and the
control setpoint optimization. Therefore, this model should predict
the flow and turbine behavior in the farm accurately while being
computationally tractable for real-time application. For this pur-
pose, a popular, steady-state, control-oriented surrogate model is
opted for. To increase accuracy, several model parameters are
calibrated in accordance to high-fidelity simulation data.

3.1. Model definition

The surrogate model employed in this work is the FLOw Redi-
rection and Induction in Steady-state (FLORIS) model [27]. FLORIS
predicts the time-averaged three-dimensional flow field and tur-
bine power capture of a wind farm as a function of the turbine
control settings and the incoming wind field. Since the surrogate
model is static, the computational cost for a single model evalua-
tion is between 10 ms and 1 s. This low computational cost makes
FLORIS feasible for real-time control applications. The general in-
puts and outputs of the FLORIS model are outlined in Fig. 2, cate-
gorized into four input classes (ambient conditions, control settings,
wind farm properties, and model definition) and two output classes
(turbine outputs and flow field). For a more detailed description of
FLORIS, the reader is referred to the literature [11,28,29].

Model discrepancies between SOWFA and FLORIS are inevitable.
In FLORIS, several assumptions are made on the single wake profile
Table 1
Important variables for the large-eddy simulations in this article.

Variable

Turbine type
Hub height
Rotor diameter (D)
Turb. spacing stream-wise (if appl.)
Turb. spacing cross-stream (if appl.)
Rotor approximation
Domain size
Cell size (base mesh)
Cell size (refined, near rotor)
Blade epsilon
ABL stability
Inflow wind speed (U∞): case A
Inflow wind speed (U∞): case B
Inflow wind speed (U∞): case C
Inflow wind speed (U∞): case D
Inflow wind direction (4): case A
Inflow wind direction (4): case B
Inflow wind direction (4): case C
Inflow wind direction (4): case D
Surface roughness (z0): case A
Surface roughness (z0): case B
Surface roughness (z0): case C
Surface roughness (z0): case D
Time step
and the interaction between multiple wakes. In addition to the
absence of secondary steering effects [30], the lack of time-
dependent wake propagation in FLORIS is a significant source of
model discrepancies.

3.2. Model tuning prior to controller synthesis

Surrogatewind farmmodels typically include amyriad of model
parameters (e.g., Ref. [7,11]. FLORIS has 10 free parameters that
must be defined prior to controller synthesis. Typically, the values
of these parameters are based on idealized theory and wind tunnel
experiments [11]. Moreover, these parameters are known to vary
with wind turbine type and various wind farm properties [23]. The
success of the controller largely relies on the accuracy of the sur-
rogate model. Hence, in this article, the model parameters are
tuned prior to controller synthesis in accordance to high-fidelity
simulation data of the wind turbine and wind farm of interest.

Firstly, the power curve of a single turbine as a function of the
yawmisalignment is tuned using cases A and B of Table 1. Currently,
FLORIS relies on a database of power and thrust coefficients, CP and
CT, for the DTU 10 MW turbine. This database includes the effect of
yaw on the power production and was generated using blade
element momentum (BEM) theory. Due to a difference in BEM
theory and large-eddy simulation, the power coefficient database is
scaled by a empirically found multiplication factor of hðgÞ ¼ 1:08

cosg.
The result is shown in Fig. 3.

Secondly, the wind profile behind a single turbine is tuned. This
is done by minimizing the error in the predicted flow fields be-
tween FLORIS and SOWFA for cases A, B, and C of Table 1. For each
case, 7 yaw setpoints are assessed: from g ¼ �30+ to g ¼ 30+ in
steps of 10+. The optimal model parameters U+ are found by
minimizing the root-mean-square error (RMSE) of the time-
averaged flow field from SOWFA, USOWFA2RNu , and the flow field
predicted by FLORIS, UFLORIS2RNu , as

JfitðUÞ¼
1
Nu

XNu

i¼1

wi

�
UFLORIS
i ðUÞ � USOWFA

i

�2
: (1)

here, the U-vectors are populated by taking Nu samples from the
Value

DTU 10 MW (Bak et al., 2012)
119.0 m
178.3 m
5.0 D
3.0 D
Actuator line (ALMAdvanced)
16.8 D � 16.8 D � 5.6 D
10 m � 10 m � 10 m
2.5 m � 2.5 m � 2.5 m
5.0 m [25]
Neutral
7.0 m/s
8.2 m/s
7.3 m/s
Time-varying, 6:0� 10:0 m/s
0 deg (west)
0 deg (west)
0 deg (west)
Time-varying, 0� 90 deg (south-west)
0.0 m (I∞ ¼ 0%)
2:0,10�4 m (I∞ ¼ 5%)
2.0 m (I∞ ¼ 12%)
2:0,10�4 m (I∞ ¼ 7� 13%)
0.20 s



Fig. 2. Flowchart of the FLORIS model. This model has four classes of inputs: the ambient conditions, the turbine control settings, the wind farm properties (e.g., layout), and a set of
model parameters. FLORIS maps these inputs in a static fashion to a set of turbine outputs being the power capture and the three-dimensional flow field.

Fig. 3. The power curve according to FLORIS and according to SOWFA as a function of
the yaw angle. FLORIS is tuned to the data of two SOWFA simulations (cases A and B of
Table 1) to guarantee a better match in power capture due to a yaw misalignment.

Table 2
Optimal model parameters U+ after model fitting, including optimization bounds
(min and max).

Symbol Relates to the … Min Max Value

ka wake expansion 0.05 1.5 0.537
kb wake expansion �0.01 0.02 �0.000848
ad wake deflection due to rotor rotation �1.0 1.0 0.0011
bd wake deflection due to rotor rotation �0.1 0.1 �0.0077
a distance of near-wake region 0.5 10.0 1.088
b distance of near-wake region 0.03 0.60 0.222
ta turbine-induced turbulence 0.07 10.0 7.84
tb turbine-induced turbulence 0.08 10.0 4.57
tc turbine-induced turbulence 0.001 0.50 0.43
td turbine-induced turbulence �5.0 �0.01 �0.246

Interesting to note is that, since FLORIS is now tuned to time-averaged SOWFA data,
FLORIS implicitly includes the time-averaged impact of wake meandering on the
flow and on the power production of turbines.
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vertical cross-stream slices (wake profiles) at x ¼ 3D, x ¼ 5D, x ¼
7D and x ¼ 10D downstream, with D the rotor diameter. Further-
more, the weighing terms are chosen as w3D

i ¼ 1, w5D
i ¼ 2, w7D

i ¼
2, and w10D

i ¼ 1, respectively, to emphasize a good calibration in
the flow field at 5D and 7D downstream, as turbines are often sited
at this distance. Table 2 shows the optimized model parameters U+

and the lower and upper optimization constraints.
Fig. 4. The absolute error between the hub-height flow field from SOWFA and as
predicted by FLORIS in m/s. A good match is seen in the far-wake regions and in front
of the downstream turbines. While the near-wake region is difficult to predict, this
region is less important for wind farm control.
3.3. Model validation

The calibrated surrogate model is validated using a different,
unused dataset. The optimal parameter set U+ is compared to three
simulations of case B (Table 1) and a three-turbine wind farm
spaced 5 D apart. In these simulations, the first two turbines are
misaligned with the inflow at g1;2 ¼ �20 deg, g1;2 ¼ 0 deg, and
g1;2 ¼ 20 deg, respectively, with g3 ¼ 0 deg for all three cases. This
layout, inflow and operating conditions are chosen for a number of
reasons. Firstly, the second turbine is set up to experience a slower,
more turbulent inflow than the upstream turbine, effectively
testing the wake model for inflow conditions it was not tuned for.
Secondly, the third turbine operates in partially waked inflow,
which is a common condition often causing significant model dis-
crepancies in surrogate models [30]. Thirdly, the upstream two
turbines are purposely yawed in either direction to assess the
model’s validity under realistic wake steering.

Fig. 4 shows the absolute error between the hub-height flow
field from SOWFA and as predicted by FLORIS for one validation
case. This figure clearly shows thatmost errors are in the near-wake
region, which are not of interest for wind farm control. Generally,
the far-wake regions and the flow in front of downstream turbines
are well predicted, which should in turn lead to accurate pre-
dictions of the energy yield.

Furthermore, Fig. 5 shows the cross-sectional wake profile at the
turbine hub height at several positions downstream, x ¼ 2:2 D, x ¼
7:8 D and x ¼ 12:9 D. Generally, the conclusions drawn from Fig. 4
are confirmed. Additionally, this figure clearly shows an improve-
ment of the parameter setU+ over the default parameter choiceU0.

In conclusion, a good match is found between FLORIS with U+

and the time-averaged results from SOWFA for unseen data with
multiple turbines and more complicated wake interaction. This



Fig. 5. The wake profile at hub height for different locations downstream. An improvement is seen for the optimized set of parameters, U+ , with the default parameters from the
literature, U0 [11,28,29]. Note that the wind speed outside of the wake appears higher in SOWFA. This is due to non-homogeneous effects in the turbulent inflowmodeled in SOWFA.

Fig. 6. The 6-turbine wind farm considered in this work. The wind farm has a spacing
of 5D longitudinally and 3D laterally.
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analysis brings sufficient confidence in the surrogate model for it to
be used in controller synthesis.

3.4. Introducing a wake recovery factor

While FLORIS has often shown a good match with high-fidelity
data (e.g. Ref. [7,23], and experimental field data [31], the amount of
wake recovery in FLORIS is described by a single input variable,
being the freestream turbulence intensity I∞. However, simulations
show that the model accuracy of FLORIS can improve by assigning a
turbulence intensity different from the true physical value e

leading to a better prediction of the flow field and the turbine
power signals. Therefore, the turbulence intensity I∞ is hereafter
redefined as the wake recovery factor z. This parameter can be
interpreted as a proxy for the amount of wake recovery, with z ¼
0:0 corresponding to a situationwithout wake recovery, and z ¼ 1:0
corresponding to a situation in which waked flow instantly re-
covers. Section 4.1 will present how the wind farm controller cal-
culates z using measurements in the wind farm.

4. Controller synthesis

The surrogate model of Section 3 is used to design a closed-loop
wind farm controller. The wind farm studied in this article is a
virtual offshore wind farm with six DTU 10 MW turbines [24]
spaced at 5 D � 3 D as shown in Fig. 6. The model adaptation al-
gorithm is described in Section 4.1. The control setpoint optimiza-
tion algorithm is described in Section 4.2. An overview of the
controller is given in Section 4.3.

4.1. Real-time model adaptation

Performance of the controller is highly dependent on the
assumed wind direction, wind speed and the amount of wake re-
covery inside the surrogate model. As not all of these variables are
measured accurately in the farm, a wind-farm-wide estimation
must be made before the control setpoints are optimized.

In previous work [23], the wind direction was estimated using
the approach of Bertel�e et al. [32], assuming blade load measure-
ments and using BEM theory to derive the turbine inflow
conditions. However, blade load sensors are typically not available
in commercial wind turbines. In this work, rather, a temporally and
spatially averaged freestreamwind speed, wind direction and wake
recovery factor are estimated using the readily available generator
power andwind directionmeasurements of each turbine. Thus, this
control solution does not require additional sensors to be installed
in the wind farm. Moreover, previous work did not consider the
(lack of) observability of the ambient conditions for particular sit-
uations. The observability measure presented in Doekemeijer and
van Wingerden [18] is now included in the algorithm to decide
which parameters can be estimated from the measurements
available. The complete estimation algorithm follows a sequential
approach:

1. The freestream wind direction 4 is estimated by turbine- and
time-averaging the local turbines’ estimates of the wind direc-
tion. In commercial turbines, such estimators readily include
low-pass filtering, bias and drift correction. For simplicity, the
wind direction measurements are idealized and taken as the
wind direction setpoints assigned to SOWFA in this work. To
increase realism, these measurements are disturbed by artificial
Gaussian noise representing measurement noise. Further, the
turbine yaw angles g in FLORIS are based on the nacelle orien-
tation measurement averaged over a set time horizon.

2. The freestream wind speed is estimated from the upstream
turbines. The set containing the indices of upstream turbines is
denoted by U , with NU the number of upstream turbines.
Mathematically, we solve

U∞ ¼ argmin~U∞

 
1
NU

X
i 2 U

ðPi � bPið4; ~U∞; z;giÞÞ2
!
; (2)

where Pi and gi are the 1-min-averaged measured power capture
and yaw angle of turbine i, respectively, and bPi is the power capture
predicted by FLORIS.

3. The wake recovery factor is estimated using a 5-min-average of
the turbine power measurements, as

z¼ argmin~z

 
1
NT

XNT

i¼1

ðPi � bPið4;U∞; ~z;giÞÞ2
!
; (3)

with NT being the number of turbines, P and g are vectors of length
NT containing the 5-min-averaged measured power signals and
yaw angles, respectively, and bP a vector of length NT with the
estimated power signal of each turbine according to FLORIS. Note
that z is estimated using 5-min averages rather than 1-min aver-
ages to reduce variance and because z inherently varies much
slower with time than the other variables. It is important to



Fig. 7. The observability of z when turbine power and wind direction measurements are available. The top bar shows the observability on a scale of 0 (not observable) to 1 (most
observable). The bottom bar saturates to values of 0 and 1, with a threshold at 0.25. The observability is shown for the complete rose of wind directions. These plots are produced
under a true z of 0.06 and U∞ ¼ 8 m/s. It is confirmed by simulation that the observability does not significantly vary over z and U∞ .

Fig. 8. Optimized yaw angles as a function of wind direction for z ¼ 0:07.
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mention that z is only estimated when there is sufficient infor-
mation in the measurements to do so. This relates to the observ-
ability O of the situation. A more elaborate analysis concerning
observability is performed in Doekemeijer and vanWingerden [18].

The degree of observability O for the various wind directions of
the 6-turbine farm is shown in Fig. 7. The top colormap shows to
what extendwe can reconstruct z from themeasurements available
in a steady-state situation. A value of O ¼ 0 implies that it can in no
way be derived from the measurements, while a value of O ¼ 1
refers to the best-estimable situation.

The lower bar in Fig. 7 saturates the observability to values of
0 and 1, with a threshold of 0.25 found empirically. In the farm
control solution, if the observability over the past 400 s has been
positive (O � 0:25) for at least 80% of the time (black zones),2 and
the ambient conditions and control settings have not changed
significantly in the last 400 s (i.e., a steady-state situation has
arisen), then the estimate for z is updated. If not, then the wake
recovery factor z is assumed to be equal to the last estimated value.
It is confirmed by simulation that the observability does not
significantly vary over z and U∞.
4.2. Real-time control setpoint optimization

After model adaptation, the turbine yaw angles are optimized in
a robust manner following Rott et al. [16] for maximum steady-
state wind farm power production assuming a standard deviation
on the wind direction of 2:5+ in accordance to simulation data, as3
2 The averaging time and the percentage thresholds here are found empirically.
3 This cost function could straightforwardly be extended to include structural

loads by, for example, penalizing the turbulence intensity in front of each turbine’s
rotor plane.
g¼ argmax~g

 
E

 XNT

i¼1

bPiðr;U∞; z; ~giÞ
!!

: (4)

This optimization now contains E denoting the expected value,
since r is a Gaussian probability distribution of the wind direction
with mean 4 and a standard deviation of 2:5+. The optimal yaw
setpoints are collected in a look-up table (LUT). Following this
optimization, FLORIS assigns strong jumps in the yaw angle for
small changes in 4, U∞ and z as to be optimal. These angles are
therefore smoothened in post-processing using a 2D Gaussian
distribution along z and 4 with standard deviations of 0.04 and 3+.
Note that the amount of smoothing necessary has a strong corre-
lation with the variability of the ambient conditions. A more elab-
orate study would be necessary to determine the degree of
smoothing that yields the best behavior.

The smoothened yaw setpoints for the 6-turbine case with a
wind speed of U∞ ¼ 8 m/s and a low wake recovery factor of
z ¼ 0:07 are shown in Fig. 8. These setpoints are largely insensitive
to the wind speed in region 2 operation [33]. The wind direction in
Fig. 8 is plotted along the x-axis, where 0+ implies wind flowing
from west to east, and 90+ implies wind flowing from south to
north. In the 6-turbine layout, this means that turbine 1 is always
upstream, and turbine 6 is always downstream. Hence, turbine 1
experiences a lot of yaw misalignment, while turbine 6 remains
aligned over the entire wind range. It should be noted that, as z
increases, wake losses diminish, and the optimal yawmisalignment
angles decrease. Essentially, there is less to be gained at down-
stream turbines.
4.3. An overview

The closed-loop control algorithm is synthesized by combining
the estimator from Section 4.1 with the optimizer from Section 4.2.
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A pseudo-code is given in Algorithm 1, where the control setpoints
are updated every 20 s.

Algorithm 1. Pseudo-code of the closed-loop control algorithm.
5. Simulation results

In this section, the controller synthesized in Section 4 is tested in
a high-fidelity simulation. The wind farm controller is subjected to
a stress test inwhich the inflow varies strongly over time, being the
SOWFA simulation of case D in Table 1. In Section 5.1, the estimation
submodule is assessed. Then, in Section 5.2, the optimization sub-
module of the controller is evaluated by looking at the energy yield
of the turbines. Finally, in Section 5.3, the yaw actuator duty cycle
and the structural loads on the turbine blades are investigated.
5.1. Model adaptation performance

The first component of the closed-loop controller synthesized in
Section 4 is the model adaptation block, as shown in Fig. 1. In this
simulation, the measurements fed to the wind farm controller are
the instantaneous turbine power and wind direction measure-
ments, of which the latter are artificially perturbed by Gaussian
noise with a standard deviation of 2+ to mimic measurement noise.
The 6-turbine wind farm experiences a wind field of which the
inflow direction and wind speed change often over time, as shown
in Fig. 9. In this figure, the solid black lines show the true values
from SOWFA, while the solid colored lines show the estimated
values according to the controller. The wake recovery factor z is
initialized at a high value of 0.40 to enforce conservatism in the
assigned control setpoints (small yaw misalignment angles) until
there is sufficient information to derive a correct estimate for z from
the measurements.
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Taking a closer look at Fig. 9, it becomes clear that both the wind
direction and the wind speed are estimated accurately and
consistently. Note that wind direction is by far the most important
variable to estimate, as the optimal yaw setpoints are most sensi-
tive to this variable, and less sensitive to the wind speed and wake
recovery factor [33]. Note that the estimate for the wake recovery
factor z is only updatedwhen the situation is sufficiently observable,
as defined in Section 4.1. The fluctuations in wind direction often
lead to situations with little to no wake interaction, yielding a low
observability, and hence z is constant until about 1500 s into the
simulation. Then, it is consistently estimated to be around 0:17�
0:31. In FLORIS, a high wake recovery factor leads it to predict high
wake recovery, which then leads to small yaw misalignment set-
points. A low wake recovery factor leads to large wake losses, and
therefore higher yaw misalignment setpoints.

The 5-min-averaged flow field and turbine power signals for
SOWFA and FLORIS are shown in Fig. 10. One can see that the model
shows a mediocre match in the flow fields at t ¼ 900 s. Namely, the
freestreamwind speed and wind direction are in the right ballpark,
but the prediction lacks in the far wake and in the turbine power
signals. This is not in the least due to the conservative initial value
for z. The model prediction improves at 1800 s and onward due to
the adaptation of z. Furthermore, most of the model errors seem to
originate behind the second row of turbines. One possible expla-
nation for this is the lack of secondary wake steering effects in
FLORIS, as discussed in Martínez-Tossas et al. [30]. Moreover, as the
turbine power signals are used for model adaptation, it is no sur-
prise that the turbine power signals match very well between
SOWFA and FLORIS. An interesting difference between SOWFA and
FLORIS is that FLORIS predicts many situations of symmetry, in
which turbines are predicted to capture an equal amount of power.
In SOWFA, however, the turbulent inflow unavoidably gives rise to
differences in power capture between turbines.
5.2. Setpoint optimization performance

With the ambient conditions estimated, the second component
of the closed-loop controller is setpoint optimization (recall Fig. 1).
In this work, that consists of the optimization of the turbine yaw
misalignment angles to maximize the power extraction of the wind
farm.

In Fig. 11, the relative power capture of each turbine normalized
to the greedy-controlled scenario is shown, averaged over the
5000 s of simulation. Since the wind changes from an inflow from
west to east to an inflow from south to north and anywhere in be-
tween, turbines 1, 2, 3 and 5 are most often upstream, while tur-
bines 4 and 6 are mostly downstream. This explains the energy loss
in turbines 1, 3 and 5, and it also explains the energy gain in tur-
bines 4 and 6. Over the total 5000 s of simulation, the energy yield
is 1:4% higher with the closed-loop controller compared to the
Fig. 9. Overview of the estimator’s performance in reconstructing the ambient conditions. T
are shown as solid colored lines.
baseline case.
Note that an improvement in energy yield of 1:4% is lower than

most values cited in the literature [2], as those studies typically only
focus exclusively on situations with significant wake losses. In this
simulation, at several time instants, there is little to no wake
interaction. This is demonstrated in Fig. 12, showing the relative
gain in wind-farm-wide energy yield over time. In this figure, it is
seen that the increase in instantaneous wind-farm-wide power
yield varies between �4% and þ 11%, depending on the inflow
conditions. For thewake-loss-heavy scenario in the timewindowof
1800e2300 s, a total increase in energy yield of 7:3% is noted.
Similarly, for the second wake-loss-heavy scenario in the time
window of 4000e4500 s, an increase in energy of 6:0% is noted.
Moreover, energy losses appear for short periods of time
throughout the simulation, mostly prevailing an increase in energy
yield due to yaw steering. This is because the benefit of misaligning
upstream turbines is not noticed until the flow has propagated to
the downstream turbines, which takes approximately 100 s in
these situations. The corresponding yaw angles for turbines 1, 2 and
6 are also displayed in the figure, showing misalignment angles of
up to 20�. As the wake of turbine 6 never impinges another turbine,
its yaw angle remains zero throughout the simulation. In total, a
gain in power production of 1:4% over the 5000 s of simulation
despite the large discrepancies between FLORIS and SOWFA is still a
very promising (andmore realistic) estimate of the true potential of
wake steering.

A final remark is that FLORIS somewhat underpredicts the
amount of wake displacement achieved due to a yawmisalignment,
as seen in Fig. 10. Therefore, the proposed closed-loop control so-
lution is somewhat conservative, assigning relatively small yaw
angle setpoints to the turbines. More energy than presented
currently may be harvested by refining the FLORIS model for wake
steering.
5.3. A deeper look into the yaw actuator duty cycle and structural
loads

Wake steering shows to be very promising in increasing the
energy yield of a wind farm. In contrast to the energy gains, the
effects of wake steering on the actuator duty cycle and the struc-
tural loads on the turbines remain unclear. This subsection ad-
dresses these two topics.
5.3.1. Yaw actuator duty cycle under wake steering
The change in the yaw actuator duty cycle (yaw travel) of each

turbine is shown in Fig. 13. From this figure, it is clear to see that
wake steering has a noticeable influence on the yaw actuator duty
cycle in this simulation. Specifically, for the upstream turbines, an
increase in yaw travel of up to 36% is seen. Furthermore, even for
the second row of turbines, an increase in yaw travel of 8� 13% is
he true values are shown as solid black lines. The variables estimated by the controller



Fig. 10. The estimation performance of the closed-loop controller. The 5-min-averaged true farm’s flow field and power signals from SOWFA are compared to those estimated by
FLORIS. This figure clearly shows that the wind farm controller accurately predicts the power signals and flow fields of SOWFA, even though there are significant discrepancies in the
model’s underlying equations. Note that z deviates significantly from the physical turbulence intensity, as it is commonly defined as. This allows a further reduction of the difference
between SOWFA and FLORIS, as successfully demonstrated in the simulation study at hand. Despite the discrepancies in the fundamental equations underlying FLORIS and SOWFA,
the model adaptation algorithm provides accurate and consistent estimates of the inflow conditions and the wake recovery factor.
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Fig. 11. Change in turbine electrical power capture compared to the case in which
turbines are controlled in the traditional, greedy manner. The values here are averaged
over the 5000 s of simulation. The turbines that are most often upstream (1, 3 and 5)
experience most losses, as they are most often misaligned with the inflow. The largest
gains are attained by the turbines that operate most often in a waked inflow (2, 4 and
6). On average, wake steering led to an increase in the total wind farm energy yield of
1:4% in the 5000 s of simulation.

Fig. 12. The top plot shows the wind farm power capture over time. While the time-
averaged change in power production is 1:4% (Fig. 11), the instantaneous change in
power capture varies between �4% and þ11% throughout the simulation. Furthermore,
the yaw angles of a subset of turbines over time are show in the bottom plot. Turbine 1
experiences misalignments of �11+ to þ20+ as it is the most upstream turbine,
whereas turbine 6 maintains zero misalignment, always being the most downstream
machine throughout the simulation.

Fig. 13. Total distance of yaw travel throughout the 5000 s simulation compared to the
greedy-operated case. This figure shows the additional load put on the yaw actuator to
track the assigned yaw setpoints. Turbines 1e5 are all misaligned at some point in
time, thereby increasing the yaw travel compared to greedy control. Since turbine 6 is
never misaligned, it has the same yaw travel as the baseline simulation.
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seen. Also, turbine 6 has no additional yaw travel as it always
operates most downstream of the wind farm for the simulated
wind conditions. The amount of yaw travel relates back to Fig. 8, in
which relatively large gradients can be seen for small changes in
the wind direction. One may reduce the yaw travel by further
smoothing the optimized yaw angles from Fig. 8, but this may go at
the loss of energy yield. In a practical controller implementation, a
trade-off must be made according to the yaw actuator limits, the
wind farm layout, and the wind rose of the wind farm.

5.3.2. Fatigue loads on the blade roots
The bending moments around the blade root are calculated for

each blade. The damage-equivalent loads (DELs) of the out-of-plane
bending moments at the blade roots are then calculated following
the Palgrem Miner’s rule [34], as

DEL¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1DS
m
i ,Ni

Nref

m

s
: (5)

In this equation, m is the inverse of the material W€ohler slope
and Nref is a reference number for the total amount of cycles taken
to be 1 here, Si is the mean load range value for a particular bin, and
Ni is the number of occurences within the bin. The load cycles are
calculated following the popular rainflow counting method [35].
Note that the blades of the DTU 10 MW turbine are manufactured
with amix of glass fiber, carbon fiber, and balsa [24]. Hence, the DEL
values are evaluated with both m ¼ 10 (glass fiber) and with
m ¼ 14 (carbon fiber), and the highest value of the two will be
shown.

The DELs normalized by the values of turbine 1 under greedy
control are plotted in Fig.14. The loads between the three blades are
very similar, and hence the blade-averaged DELs are shown. From
this figure, it is seen that the DELs mostly decrease for turbines 1e3
with the closed-loop controller compared to baseline operation,
and increase for turbines 4e6. For turbines 1e3, the decrease in
DELs is expected to be due to the reduction in effective wind speed
due to the applied yaw misalignments. Turbines 4e6 operate in
waked flow more often, and the increase in DELs is expected to be
due to the increase in the rotor-effective turbulence intensity and
wind speed.

However, generally, wake steering seems to have a relatively
small effect on the blade root out-of-plane bending moments in
this simulation study. This may be explained by literature that
suggests that the blade loads can both increase and reduce as a
result of yaw misalignment, depending on the yaw direction and
the amplitude [36]. Moreover, this publication also indicates that
there is a delicate balance between the change in loads due to
yawing a turbine, and due to the change in the wake profile as a
result of the yawing of an upstream turbine. Though, simulations
with a higher-fidelity aero-elastic models and physical experiments
are necessary to further solidify such statements.
6. Conclusions

In this article, a novel, closed-loop wind farm controller was
proposed. This control solution relies on the popular, steady-state,
computationally efficient FLORIS surrogate model of the wind farm.
The controller consists of two parts. Firstly, FLORIS is used to esti-
mate the freestream wind direction, wind speed, and the wake
recovery factor, supported by a theoretical measure of observability
to prevent the estimation of quantities about which no information
is available. Secondly, FLORIS is leveraged to optimize the turbine
yaw setpoints for energy yield maximization.

This closed-loop andmodel-based control solutionwas tested in
a high-fidelity simulation subjected to a time-varying inflow, being
the first of its kind in the literature. The wind direction and wind
speed in the simulation contain strong changes to stress-test the
controller. Compared to baseline operation, a total time-averaged
gain in energy yield of 1:4% was found for a virtual 6-turbine
offshore wind farm with 10 MW turbines. Moreover, for partic-
ular time windows, gains in the energy yield of up to 11% were



Fig. 14. Damage equivalent loads for the blade root out-of-plane bending moments,
normalized with respect turbine 1 in greedy operation.
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noted, agreeing well with studies in the literature [2]. Furthermore,
from an actuator duty cycle perspective, the yaw travel of the tur-
bines increased by up to 36%. Additionally, the damage-equivalent
loads of the blade root out-of-plane bending moments did not
change significantly compared to the baseline controller.

The results presented in this article highlight the potential of the
proposed controller, even when subjected to time-varying inflow
conditions, addressing an important phenomenon in real wind
farms. This solidifies the proposed control solution as the first
realistic, closed-loop wind farm control solution for yaw-based
wake steering.

A number of recommendations can be made for future research.
Firstly, the proposed control solution was stress-tested in this
article. To get a realistic idea of the effect of wake steering on the
annual energy production, one would have to perform experiments
with realistic wind profiles, e.g., generated from real measurement
data. This is forthcoming in Van der Hoek et al. [37]. Moreover, the
simulations would benefit from a larger simulation domain, even
though this increases computational cost. Secondly, the optimal
update frequency of the yaw setpoints was not considered in this
article and, at large, has been addressed insufficiently in the liter-
ature [33]. Thirdly, continued work on surrogate modeling (e.g.
Ref. [30,38], should further improve wind farm controller perfor-
mance, going hand-in-hand with developments in estimation (e.g.
Refs. [39], and optimization algorithms (e.g., Ref. [14]. Important
topics for surrogate modeling include wake propagation, time-
varying inflow, spatially varying inflow, atmospheric stability ef-
fects, and local variations inwind characteristics due to, e.g., terrain
effects. Finally, while considered a high-fidelity testing environ-
ment, SOWFA remains a simulation model, and field experiments
are essential to further increase confidence in the proposed algo-
rithm and, at large, wake steering for power maximization in wind
farms.
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