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Cross-Sensor Deep Domain Adaptation for
LiDAR Detection and Segmentation

Christoph B. Rist®*!, Markus Enzweiler®? and Dariu M. Gavrila®3

Abstract— A considerable amount of annotated training data
is necessary to achieve state-of-the-art performance in percep-
tion tasks using point clouds. Unlike RGB-images, LiDAR point
clouds captured with different sensors or varied mounting posi-
tions exhibit a significant shift in their input data distribution.
This can impede transfer of trained feature extractors between
datasets as it degrades performance vastly.

We analyze the transferability of point cloud features be-
tween two different LiDAR sensor set-ups (32 and 64 vertical
scanning planes with different geometry). We propose a super-
vised training methodology to learn transferable features in a
pre-training step on LiDAR datasets that are heterogeneous in
their data and label domains. In extensive experiments on object
detection and semantic segmentation in a multi-task setup we
analyze the performance of our network architecture under the
impact of a change in the input data domain. We show that
our pre-training approach effectively increases performance for
both target tasks at once without having an actual multi-task
dataset available for pre-training.

I. INTRODUCTION

Environment perception using LiDAR sensors is a key en-
abler for intelligent vehicles and autonomous driving. Object
detection and semantic segmentation on point clouds are key
problems within this domain. Both tasks enrich a simple
scanning of the surrounding with high-level information. See
Figure 1 for an example scan. Being able to solve these
two related tasks by using the same learned features saves
computation time for usage in a real-time scenario.

Machine learning methods for perception typically require
a sizable amount of training data to achieve state-of-the-art
performance. In a supervised set-up the typical assumption
is that the test data is drawn from the same distribution as
the training data. A large shift in the input data domain
degrades performance at test time and therefore jeopardizes
the possibility to make use of annotations on already existing
datasets which have a different distribution in their data
samples. The acquisition of suitable training data becomes
complex if a particular set of labels — 3D objects and seman-
tic segmentation in this work — is required for supervised
learning in a particular multi-task setup.

The data distribution in a automotive LiDAR dataset does
not only depend on the character of the recorded scenes
but also heavily on the sensor type itself and its mounting
position. Thus the desired data domain for a specific vehicle
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Fig. 1: Result of our method: Detecting objects (bounding
boxes) and annotating measurements semantically (colors
indicate different object classes) in full 3D space are key
problems for autonomous driving and can be tackled on
LiDAR point clouds.

setup lacks labeled data as it is challenging to transfer learned
features from a different dataset to the current setup.

In this paper, we are concerned with a feature extractor
for LiDAR scans for the tasks of 3D object detection and
semantic segmentation. In an experimental study we evaluate
how pre-training on two different support datasets impacts
the final performance on our multi-task problem.

In the visual domain it is common to reduce the issue
of litte training data by using pre-trained feature extractors
and fine-tuning them on the desired input domain and target
task. This approach is intuitive as there is a canonical and
obvious input representation for images in form of dense
data structures for convolutional networks. This has led
to the well-established strategy of exploiting large public
datasets, e.g. the ImageNet challenge [1], to help solve a
broad spectrum of perception problems in a different domain.

The same methodology applied to point cloud processing
yields some drawbacks: diverse approaches to process sparse
point cloud data with CNNs and the rather large spread
of LiDAR data distributions has not yet lead to a set of
distinguished feature extractors to be re-used for a range
of new tasks. The dependency of a feature extractor on
a certain underlying neural net architecture where there is
no definitive standard for a point cloud input representation
hinders establishing an equivalent to GoogleNet or ResNet
in the LiDAR domain.

As a first step towards that goal, we propose a convolu-
tional architecture based on a voxelized input representation
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and show that it is a suitable choice for our problem
definition. This work presents an architecture and training
methodology for object detection and semantic segmentation
on point clouds and evaluates the influence of an alternated
training on different tasks and different sensors. Using the
definitions from [2] and [3] we realize a heterogeneous
domain adaptation in a supervised manner, i.e. labels for the
target domain are available.

II. PREVIOUS WORK

a) Deep learning based LiDAR environment perception:
Since the advent of deep neural networks learned features
on LiDAR-captured point clouds have become the state of
the art to solve a variety of perception tasks relevant to auto-
mated driving: object detection (3D), semantic segmentation,
odometry estimation, scene flow, and object motion.

A variety of data representations for ordered and un-
ordered point clouds has emerged recently to be used as input
for their respective deep learning architectures: Sensor view
images [4], bird view images [5], voxel grids [6], [7], mixed
2.5D bird view approaches [8], [9], [10], permutohedral
lattice convolutions [11], global features on an unordered
point cloud [12], [13], nearest neighbor based convolutions
[14], representing point clouds as graphs and performing
convolutions on edges [15], and graph neural networks [16]
(see Table I). For object detection a split-head architecture
approach for region proposals and spatial regression has
proven effective and is popular [4], [5], [6], [7], [17]. The
problem to train the two output heads is sometimes also
referred to as multi-task problem [5].

b) Multi-task learning: Many vision-based tasks are
related and learning multiple tasks at once can help to
increase the performance of the individual tasks given the
right training parameters [18]. Solving multiple tasks in one
inference step based on the same image features greatly
reduces the required computation time compared to the usage
of separate per-task networks [19]. Training multiple tasks
at once on a multi-task dataset helps to successfully train a
particular task for which only a comparatively small amount
of annotated data is available [20].

Multi-task perception problems on point clouds have not
been evaluated extensively, yet. [7] shows that the problems
of scene flow, object detection, and object motion can be
solved with a single set of point cloud features from consec-
utive point clouds using a voxel grid. Part segmentation and
classification can be solved at once on artificially generated
point clouds based on 3D object models [12].

¢) Domain adaptation using deep networks: Domain
adaptation settings are categorized by the availability of
labels in the target domain, by domain divergence and
task divergence. In the heterogeneous domain adaptation
setting, feature spaces between source and target domain
are nonequivalent and usually differ in their dimensionality,
e.g. due to changed image resolution or changed number
of returned LiDAR points from a different sensor. A ho-
mogeneous domain adaptation exists when only the data
distributions between source and target domain differ [2].

Method Representation

VFE-Encoder,
+ Voxel Grid

VFE-Encoder,

3D Perception Task

VoxelNet [6] Object Detection

PointFlowNet [7] Object Det./Motion

+ Voxel Grid + Scene Flow
PointPillars [10] i’o%r;?izefzatures, Object Detection

Hand-crafted features +
Voxel Grid

Sensor-view image

3D FCN [17] Object Detection

Veh. Det. 3D [4]
LiLaNet [21]

PointNet [12]
PointNet++ [13]

MV3D [5]

Complex-YOLO [9]
Fast and Furious [8]

Object Detection
Sensor-view image Semantic segm.
Unordered set +

global description vector

Part segmentation,
classification
Object Detection

Object Detection
/Tracking

Sensor-view + Top view

Top view (2.5D)

TABLE I: Overview of LiDAR input representations of deep
learning approaches for automotive-related perception tasks

Deep network architectures can exercise a domain adap-
tation effect via the backpropagation mechanism [2]. This
is exploited when fine-tuning feature extractors for a target
domain. Since the adoption of deep networks in a broad
spectrum of visual perception tasks on images it is common
to use weights for an architecture trained on different datasets
as an initialization [22], [23], e.g. for a ResNet feature
extractor for semantic segmentation [24]. [25] point out that
pre-training on a high diversity dataset facilitates increased
generalization capabilities of a model after fine-tuning.

Batch normalization [26] primarily enables the training of
ever deeper neural networks by normalizing the distribution
of activations between layers while training. In generative
models it has become the default way to prevent mode col-
lapse [27]. While improving performance and convergence
it has also been shown to implicitly function as architecture-
based domain adaptation technique [28].

There are numerous studies on general domain adapta-
tion and image perception in particular [3]. Deep domain
adaptation techniques have so far mainly been reviewed on
visual tasks [2]. In the visual domain fine-tuning works well
in practice as convolutional neural networks learn similar
hierarchical visual features on a wide spectrum of datasets
regardless of the actual task. These features are representative
for different tasks and different datasets [22].

For LiDAR data and point cloud processing in general,
this research area is largely unexplored. We consider this
paper as a first step in this direction. Our main contributions
are:

o We present an end-to-end trainable model for the joint
prediction of 3D object detection and semantic segmen-
tation of unordered LiDAR point clouds.

« To the best of our knowledge we are first to evaluate
domain adaptation and feature re-usability on point
clouds.

e We propose a training scheme for heterogeneous
datasets that can effectively learn features that transfer
well to another data domain.



III. PROPOSED APPROACH

We design a CNN-based architecture with multiple task-
specific output heads to solve object detection and semantic
segmentation of point clouds with a single feature extractor.
In our approach, neither task does depend on the time
dimension and can be computed from a single LiDAR scan.

A. Deep domain adaptation on LiDAR scans

Rotating LiDAR scanners generate point clouds in a way
which is fundamentally different from RGB-image sensors.
The environment is sampled in a continuous motion around
the sensor producing a high-frequency stream of individual
columns of 3D points. It is common to collect the points of
a full 360 degree rotation into a single data sample, referred
to as frame or scan. This approach effectively neglects the
complex time dimension and allows to treat the generated
point cloud as self-contained samples from a feature space
{z1,29,...,2,} € X instead of individually measured
points.

Analogous to images of different resolutions the dimen-
sionality of the point cloud input space X" differs between
sensors with a different number of layers. When considering
the accumulation of points over time into a point cloud the
horizontal resolution affects the dimensionality of the data
space as well. Such nonequivalent feature spaces XA # X'B
between different sensors A and B and their configuration
constitute a heterogeneous domain adaptation setting. If the
mounting position of a sensor is changed the distribution of
data samples changes while the input dimensionality stays
fixed.

The qualitative differences between the two sensors
Velodyne-HDL64 and Velodyne-VLP32 [29] used in our
datasets are displayed in Figure 2. The horizontal resolu-
tion of both sensors is almost identical while the vertical
resolution differs substantially at the top and bottom of the
vertical field of view.

B. CNN Architecture

Voxel Feature Extractor: Convolutional networks as-
sume neighbourhood relations. Therefore reproducing the
metric space around the sensor in a deep learning archi-
tecture that convolves over these exact dimensions brings
a translation invariance that we consider useful for 3D
perception tasks. Hence our point cloud feature extractor
is based on a metric voxel grid in 3D space. One es-
sential challenge to overcome in voxelized architectures is
the non-uniform sampling density in sparse point clouds
when sampling the environment with a single sensor from a
single position. Therefore we use the feature encoder layers
originally proposed by [6] and employed by [7] as they
have demonstrated state-of-the-art results on large real-world
outdoor-scene point clouds. This feature encoder creates a
per-voxel feature resulting in a dense data representation of
fixed size.

An important benefit of this feature extractor is that it
prevents the problems associated with a change in the input
data dimensionality in heterogeneous domain adaptation. By

(a) Velodyne-HDL64

(b) Velodyne-VLP32

Fig. 2: Diverse LiDAR scan characteristics: The physi-
cal properties of LiDAR scanners tie the characteristics of
resulting scans to mounting position and the scanner type
itself. The doubled number of layers of the Velodyne-HDL64
model and their uniform distribution over the elevation angle
compared to the VLP32 sensor (top) create a different, but
distinct characteristic of the recorded point clouds. In an
outdoor vehicle-mounted setting this shift in the input data
domain becomes most visible at the ground surface (middle
row) while close objects at sensor height exhibit less change
in their sampled density (bottom).

using the metric space for a spatial arrangement of features
we gain a feature space that is linked to the sensor in use only
by the per-voxel feature extraction. When able to cope with
different sampling densities because of different distances,
this also holds the possibility to learn features independent
of the vertical layer distribution or mounting position.

These observations let us presume that this feature extrac-
tor is a particularly feasible architecture choice out of the
variety of LiDAR architectures to learn features that are as
independent of the sensor as possible.

Per-point input features: [6] proposes to supply two
sets of coordinates for each point into the VFE-Layers: The
absolute sensor coordinates x s, ys, 25 and a set of coordinates
Zr,Yr, 2y relative to the mean position of all points within
a given voxel. Additionally, the measured reflectivity is
provided as an input feature. We only supply the set of
per-voxel relative coordinates x,, ., 2. and the reflectivity
value. The absence of absolute point coordinates in a sensor
coordinate system forces the subsequent feature convolutions
to only learn features relying on the relative positions of
points and voxels among each other. We think of this measure
as a way to prevent the network from basing decisions
about objects or semantic categories on an absolute position
dependent on the mounting position of the LiDAR sensor.
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Fig. 3: LiDAR-Multi-Task architecture: Our CNN-architecture makes use of VFE-Layers [6] on the voxelized point cloud
to generate a fixed size representation. A convolutional feature encoder as network trunk follows, branching into slim output
heads for the desired tasks. The encoder samples the 3D grid resolution down and up again and connects identical grid
resolutions with skip connections. The grid feature height (z dimension) is omitted for visual clarity.

For example, it cannot base a classification for the class
Road on a absolute z; coordinate of a point at about —2.0 m
relative to the sensor.

Core Feature Encoder: The core feature layers of our
CNN are made up of 3D convolution layers with skip
connections. We make use of batch normalization after
every convolution and ReLU activations. An overview of the
complete architecture is given in Figure 3.

Point-wise classification output and region proposal
network: The output of the core feature encoder consists
of features that are spatially arranged in 3D at half the
resolution of the input voxel grid. To classify the individual
LiDAR measurements we concatenate each of the input
points with the feature vector of the voxel it resides in.
Analogous to the VFE-Layers we apply a series of fully-
connected layers on each point individually to obtain the
semantic classification. We retain the regression targets of
[6] but shrink the region proposal network to a depth of
four convolutional layers. Thus keeping the depth of the
individual network branches preferably small to minimize
the amount of per-task learnable network capacity.

Loss functions: The network features three task-specific
output heads: Object region proposals (cross entropy loss),
object regression (L2 loss) and point-wise semantic classi-
fication (cross entropy loss). We find that employing uncer-
tainty weighting [18] to weight all three output heads for the
final loss function gives slightly better results than a constant
factor weighting. Note that our loss function operates on
the individual point level for semantic segmentation as well
as on the bird view voxel grid for object classification and
regression. Following [6], we define two detection losses:
The region proposal loss

1
Lrpn = FZ£++
+ N

(D

1
N2l
N_

is a class-weighted sigmoid cross-entropy loss £ _ over the
bird view RPN matrix with NV, positive and N_ negative ex-
amples. The object regression 10ss Lreg = Llsmooth (7, 7)
is the smooth L1 distance between the predicted regression
vectors r* and the ground truth target vectors r for every
positive object location. The segmentation loss Lgegrm is
the mean cross-entropy classification loss over all annotated
points within the voxel grid extent. Integrating the learnable
uncertainty weights RPN Reg,Segm results in the overall
training loss

1 1 1
L= D) ‘CRPN + TﬁReg + TESegm + (2)
ORPN Reg Segm
2 2 2
IOg GRPNURegUSegm'
C. Training methodology
Domain A Task A
© 5 o
v

]zlomamDB Fask B

= Shared Feature Encoder
Domain Z
w4 Task Z

Fig. 4: Training methodology: An alternating training
scheme between multiple tasks A, B, ... each on its respec-
tive input data with backpropagation through a shared feature
encoder. This way there is no need for a single dataset to
include the annotations for all output tasks.

In the case of having only a limited amount of training
data, it can be useful to train a deep neural network on an
existing dataset of a related domain first. An increase in the
available amount of data can help learning useful features
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Fig. 5: Number of LiDAR Measurements on class ‘car’
We estimate that the difficulty to detect an object in a LIDAR
scan has an inverse correlation to the number of LiDAR
measurements on the respective object.

and therefore improve the final performance after fine-tuning
for the target data. However, it is challenging to discover a
large-scale dataset which has a superset of the desired tasks
annotated to be used for multi-task training. Therefore we
use an alternating training scheme to train our architecture on
two or more heterogeneous datasets each with its own input
data and label domain (Figure 4). We switch the input data
and respective output task after each training batch so that
every optimization step alternates between all datasets. The
idea is to leverage the backpropagation process to combine
features from the individual training sets. This allows us to
include both tasks from the supporting datasets in our pre-
training. Our network architecture facilitates this scheme by
employing fairly small task-specific output heads.

D. Training and architecture parameters

We use the Adam optimizer [30] and implement an axis-
aligned 2D non-maximum-suppression on the bird view
image. When training the voxel grid extent is 80.0m X
80.0m x 10.0m in front of the sensor with a voxel size of
0.2m x 0.2m x 0.4m for the z, y, and 2z axis respectively.
Our input representation choice makes it easy to apply spatial
augmentations to the input data. We apply a random uniform
rotation drawn from the interval [—45.0°,45.0°] around the
upward pointing z-axis of the sensor coordinate system, a
small uniform translation from the interval [—0.1m, 0.1 m]
and Gaussian noise on the point coordinates with a mean . =
0.0m and variance ¢ = 0.02m?. The per-task uncertainty
weights ORPN Reg,Segm are initialized with 1.0.

IV. EXPERIMENTAL EVALUATION
A. Datasets

To train our multi-task network we have manually anno-
tated scans from Velodyne-VLP32 recordings with ground

truth labels for 3D object detection and for semantic segmen-
tation. We will refer to this dataset as LiDAR Multitask (M)
dataset. Our dataset features diverse traffic scenes including
city and country roads (see Figure 6 for example frames).
Both annotation types are only available within a FOV of
approx. 90° of a front-facing RGB-camera because these
images are necessary to guide the annotators.

We aim to improve the performance of our multi-task setup
by using two already available datasets for pre-training. As
supporting datasets we use the KITTI Object Dataset [31]
and the semantic segmentation dataset of [21]. The latter
is auto-generated by transferring an RGB-image segmenta-
tion from a trained RGB-CNN onto LiDAR points using
the sensors’ calibration. This approach allows for effortless
generation of arbitrary amounts of training data for LiDAR
semantic segmentation, which is of high quality but still not
as accurate as manually annotated data [21].

The sizes and training splits of the datasets are listed in
Table II. Each dataset holds 360° LiDAR scans recorded
from a vehicle on public roads. The mounting position of
the LiDAR scanner in datasets S and M varies between the
roof and the hood of the recording vehicle. Our specialized
multi-task dataset is smaller than the two supporting datasets.
These datasets have the benefit of either being publicly
available (KITTI) or consisting of labels without the burden
of manual annotation effort. Adversely, every supporting
dataset only features one of our two desired output tasks.

Domain adaptation is particularly challenging because of
the different type of LiDAR sensors used, i.e. Velodyne
HDL64 (KITTI) and Velodyne VLP32 (datasets M and S).
The main difference being the doubled number of layers
in the HDL64 model. Additionally, the HDL64 features a
uniform distribution of its layers over the elevation angle,
whereas the VLP32 concentrates its layers around the hori-
zon when mounted with the rotating axis pointing upwards.
The much larger sampling density of the HDL64 is clearly
visible in Figure 2. The different distribution of layers results
in different sampling characteristics. Notable in our setup is
the high sampling density of the HDL64 directly in front of

Dataset Annotated #Annotated Frames
[LiDAR Sensor] Tasks Train. Val. Test
KITTI Object (K) Object

[HDL-64] Detection 3712 3769 7518
LiDAR Semantic (S) Semantic

[VLP-32] Segmentation 340000 12261 22983
LiDAR Multitask (M)  Detection +

[VLP-32] Segmentation 1047 226 441

TABLE II: LiDAR Datasets: To train for the multi-task
problem, we manually annotated a small multi-task dataset
(M) with both 3D objects and point-wise LiDAR semantic
segmentation. To boost performance, we make use of two
supporting datasets for pre-training: A semantic segmenta-
tion dataset (S) [21] auto-generated from RGB-segmentation
and the KITTI Object Detection dataset (K) [31] annotated
with 3D objects.
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having seen training data in these regions.

the ego-vehicle compared to recordings of the VLP32.

B. Evaluation Metrics

We use the well-established average precision (AP) metric
to rate the performance of the 3D detection task for the
object class ‘car’ in our experiments. A detection is accepted
as a true positive if it has an intersection-over-union with
the ground truth bounding box greater than 70% in bird
view perspective. Naturally, some cars in a dataset are
easier to detect than others. For that purpose the KITTI
Benchmark categorizes each box into one of three different
difficulty classes (easy, moderate, hard) based on the level
of truncation, occlusion and height in the image. We refer to
[31] for details. This ranking is biased towards RGB-image
based object detectors: Objects that are very close to the ego
vehicle tend to get classified as difficult because of a large
truncation in the camera image.

For LiDAR-based detection we propose to instead use
the number of LiDAR measurements within the object’s
bounding box as a difficulty measure. This way the impact
of distance and occlusions is covered in a straightforward
manner. We analyzed the distribution of KITTT’s difficulty
classes in objects with a certain number of measurements, see
Figure 5. We chose to use 20-49 (hard), 50-99 (moderate),
and 100+ (easy) LiDAR points per object as underlying
criteria to establish difficulty classes. In doing so, the overall
assignment of objects to difficulty classes has a similar
distribution as for the KITTI dataset. Note that AP scores
are still difficult to compare between datasets because the
difficulty to detect an object might depend on various factors.

Performance of the semantic task is rated using the stan-
dard mean intersection-over-union (mloU) metric over the
set of individual LiDAR points. We train the network on 12
different semantic classes based on Cityscapes [32] which
were slightly tailored to the properties of a LIDAR sensor as
defined in [21].

C. Experimental Results

We first train our CNN-architecture on the support datasets
K and S individually and combined using our proposed
alternating training scheme. This gives us three sets of
weights (K, S, and K+S) to initialize our architecture for
the fine-tuning step on the target LIDAR multi-task dataset.

Detection AP Segmentation

Method ~ puming (KITTI difficulties) mloU
atase Hard  Moderate  Easy

MultiTask K 0.692 0.711 0.815 -

MultiTask S - - - 0.579

MultiTask  K+S 0.678 0.708 0.791 0.569

TABLE III: Performances in multi-task and single-task
setup: Multi-task training (last row) reaches comparable
performance levels as single-task training (first two rows),
using the identical underlying network architecture.

Upon convergence on the multi-task dataset we select the
training state with the highest performance on the validation
set and report the performance metrics on the test split of
our datasets S and M. AP scores on the KITTI Dataset are
reported on the validation split using the evaluation code of
the original authors as supplied by the KITTI development
kit. We use the KITTI object dataset split proposed by [33].
We will refer to the AP score of the hard category when
comparing detection results.

The results of our study on pre-training are listed in Table
IV. The multi-task (M) section includes test performances for
both tasks and all three pre-training settings compared to a
training from scratch. Every setting is tested with and without
the influence of data augmentation. The increased number
of training setup and consistent results give us additional
confidence in our training and evaluation methodology.

Training our multi-task architecture for both tasks
without initialization only slightly decreases the performance
of the individual tasks as listed in Table III. This gives us
confidence that we found a deep network architecture that
works well for the multi-task problem. Providing 3D objects
and semantics in a single run makes the processing time
overhead negligible since every new task only requires to
add an additional network head, c.f. Figure 3.

Using network weights of a pre-training as initialization
improves the final performance on the respective task, as
shown in Table IV. This is true for pre-training on a different
sensor (compare AP 0.603 with 0.724 in detection accuracy
when pre-training on KITTI (K) and for training on a larger
dataset with a shifted label domain (compare mloU 0.670
with 0.694 in segmentation when pre-training on Semantic



Pre-training Augm Multi-Task (M) KITTI (K) Semantic (S)
Dataset Detection AP Segm. Detection AP Segm.
[Our difficulties] mloU [KITTI difficulties] mloU

All Hard  Moderate  Easy Hard  Moderate  Easy

No re-trainin v 0481 0.603 0678 0695 0.670 0.118 0109  0.090 0.512
p 8 X 0364 0462 0534 0551  0.520 0111 0107  0.106 0.413
. v 0582 0724 0814 0833 0464 0340 0305  0.298 0.380
KITTI Object (K) X 0522  0.657 0743 0757 0246 0489 0479  0.559 0.221
. . v 0322 0416 0476 0501  0.691 0.045 0046  0.046 0.539
LiDAR Semantic (S) X 0129 0.154  0.174 0176 0.676 0012 0011  0.004 0.531
KITTI Object (K) and v 0.603 0748  0.820  0.848  0.695 0486 0496  0.580 0.545
LiDAR Semantic (S) X 0554 0706 0775  0.786  0.685 0457 0435 0482 0.551

TABLE IV: Ablation Study on different pre-training setups for our multi-task problem. The performances on the original
support datasets used for pre-training after fine-tuning on the target dataset M are listed on the right-hand side.
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Fig. 7: Performance gain in both tasks through pre-
training: Our approach for pre-training on K+S datasets
improves both detection mAP (top) and segmentation mloU
(bottom) at the same time.

(S). However, when pre-training on a single task, the other
task’s performance is significantly reduced after finetuning.
Compare AP 0.603 with 0.416 in detection accuracy with
weights from Semantic and mIoU 0.670 with 0.464 left after
using weights from KITTL

Using the network weights from a pre-training with our
proposed alternating training methodology between both
tasks solves the issue of the performance drop in segmen-
tation when pre-training on object detection and vice versa.
Both tasks perform better at the same time compared to a
training from scratch. This is achieved without access to a
support dataset featuring the same set of multi-task annota-
tions. Detection accuracy even improves notably compared to
the pre-training with only KITTI data (AP 0.748 vs. 0.724)

samples and a simple training procedure. The performances
on the target dataset also improve consistently in all pre-
training settings (Table IV).

D. Further Analysis and Discussion

The right-hand part of Table IV details the performances
of the detector on the original support datasets after fine-
tuning on the target dataset. Without fine-tuning the detection
rate on a different LiIDAR sensor is poor reaching only an
AP of 0.118 on KITTI compared to 0.692 when training on
the KITTI dataset. The label domain shift between manually
annotated multi-task semantic and the transferred labels
in the semantic dataset (S) is small enough to reach an
acceptable performance (mloU 0.512 vs. 0.579). Later layers
of deep neural network learn more high-level and therefore
task-specific features. This is concordant with our findings
that pre-training on single task for a multi-task fine-tuning is
problematic. The task which is already pre-trained becomes
dominant and hurts the other task’s performance notably
which cannot benefit from more low-level features.

The performance on the support datasets considerably
drops in all setups when fine-tuning the network to the
different target domain. What stands out is that this per-
formance drop actually becomes substantially smaller when
pre-training is performed on both datasets K+S with augmen-
tation enabled. In this case the network yields a remaining

—e— v augm. enabled = augm. enabled, with pre-training
—e— X augm. disabled —+— X augm. disabled, with pre-training

and segmentation performance gains slightly (mIoU 0.695

vs. 0.691). The overall improvement for both tasks is detailed
in Figure 7.

Augmenting the dataset with spatial transformations
improves the final performance for both tasks when dealing
with limited training data. In Figure 8 we show that the
positive effects of pre-training and augmentation add up for
an additional performance boost. Both techniques combined
allow to reach feasible performance with only few training
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Fig. 8: Performance over training dataset size: Comparing
the performance gains by augmenting and pre-training for a
varying size of samples for training. Note that each data point
on the x-axis represents a new training of our CNN.



detection performance on KITTI of AP 0.486 (K+S) vs.
0.340 (K) and segmentation performance of mloU 0.545
(K+S) vs. 0.539 (S). We reached the overall best perfor-
mance when pre-training on two diverse data domains in
an alternating way (K+S). The additional observation of a
mitigated performance drop on the support datasets indicates
that a different quality of the learned features in pre-training
has been achieved leading to better generalization of the
desired tasks. This manifests in the resulting object detector
achieving a object detection performance of AP 0.748 on the
VLP32 and AP 0.486 on the HDL64 sensor simultaneously.

V. CONCLUSION

This paper presented a training methodology for hetero-
geneous datasets that improves performance of a LiDAR-
based multi-task detection system. We proposed a novel
multi-task CNN architecture and demonstrated its suitability
for both object detection and semantic segmentation with-
out much additional overhead. Our extensive experiments
prove that our method is effective and enables the usage of
other LiDAR-datasets even if a specific set of annotations
is required for the target task. In addition we take our
experimental results as an indication that our strategy enables
the CNN to learn features that generalize better between
varied LiDAR input domains. The described approach is task
agnostic and could be applied to enable or boost performance
of different LiDAR multi-task problems.
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