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Abstract
In this work, a stiffness compensated piezoelectric vibration energy harvester is modelled and
tested for low-frequency excitations and large input amplitudes. Attracting magnets are used to
introduce a negative stiffness that counteracts the stiffness of the piezoelectric beam. This
results into a nearly statically balanced condition and makes the harvester a nonresonant device.
A distributed parameter model based on modal analysis is used to model the output of the
energy harvester. This model is extended by including the negative stiffness, endstop mechanics
and force-displacement data to the model. The peak RMS power amounts 1.20 mW at 9 Hz and
3 g input acceleration. These are large inputs and serve to illustrate the case of having inputs
larger than the device length. Furthermore, to benchmark the energy harvester in this work, the
efficiency is evaluated in terms of generator figure of merit and is compared to prior art. This
peak efficiency amounts to 0.567%, which is relatively large for its range of excitation. From
the output that has been obtained with this design, it can be concluded that stiffness
compensation can make a piezoelectric energy harvester competitive in terms of generator
figure of merit at low-frequency excitation with input amplitudes exceeding the device length.

Keywords: piezoelectricity, static balancing, zero-stiffness, stiffness compensation,
vibration energy harvesting, low-frequency

(Some figures may appear in colour only in the online journal)

1. Introduction

Remote sensor networks are increasingly becoming important
to monitor all sorts of processes [1]. Nowadays, batteries are
commonly used to power them. However, they deplete over
time and must be replaced, which can be challenging when
the sensor is placed somewhere hazardous or hard to reach.
As vibrations are omnipresent, transducing the vibrational
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power into useful electric power can provide a sustainable
alternative [2].

In many cases a dominant frequency is present in the vibra-
tion signal, allowing a tuned resonating mechanism to be a
good solution to extract power from the signal [2]. However,
this only works well at higher frequencies. At low frequen-
cies (below 10 Hz), the driving motion amplitude of a sinus-
oidal input rapidly increases for constant acceleration. As a
resonator relies on amplifying the input amplitude, the length
of the vibration energy harvester (VEH) then rapidly grows to
dimensions unsuitable for its intended applications. So at low-
frequency excitation with large amplitudes, resonance quickly
becomes impractical.

Several nonlinear techniques exist to possibly solve this.
A tubular electromagnetic VEH was made with an increased
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electric damping to allow larger inputs from human motion
[3]. A rolling mass in a circular cavity was used to circumvent
the displacement limit of the proof mass [4]. Hard stops are
also of use to limit the proof mass amplitude though it com-
promises the output power [5]. The principle of frequency-
upconversion (FupC) utilizes a low–frequency oscillator that
induces an impulse response in a high-frequency oscillator that
generates the output [6, 7]. In [8] it was shown that super-
harmonic resonances can be used for low-frequency harvest-
ing, enabling downscaling of devices. Bistable VEHs have
shown to provide decent output power figures in combination
to wide bandwidths [9–11]. However, the nonuniqueness of
the large-power orbits and strong dependency on initial condi-
tions form a barrier to reliably generating a large output [12].
Stiffness compensation can also be used for low-frequency
energy harvesting and allows for lowering the resonance fre-
quency [13, 14]. In the limit, a zero stiffness device can be
created [15].

However, though these methods are promising and all have
their (dis)advantages, apparently it seems hard to unify three
certain properties into one energy harvester: a small dimen-
sion in the excitation direction, operation at low frequency
and high efficiency. Often the largest dimension of the VEH
is in the excitation direction [3, 16, 17]. This is beneficial to
output power as it scales quadratically with the internal dis-
placement limit and linearly with the other dimensions [18].
Furthermore it was shown that the output power has a cubic
dependency on excitation frequency, so a small length VEH
excited at low frequency tends to perform poor. For electro-
magnetic transduction, the detrimental effect of downscaling
also influences this [19]. Furthermore, when a high efficiency,
defined by the generator figure of merit (FoMg) [20] is to be
found at a low frequency it requires a greater length of the
VEH as in [16, 21, 22]. Last, when a small length in the excit-
ation direction is sought in conjunction with high efficiency,
the device tends to operate at higher frequencies [23].

The previous discussion is characterized by three
keywords: ‘small in excitation direction’, ‘efficient’ and
‘low frequency’. Figure 1 shows that these do not coexist
that easily. Two characteristics can be picked, and their inter-
section results in the opposite of the characteristic that is left.
The intersection of all three, a VEH small in the excitation
direction operating efficiently at a low frequency with large
inputs seems infeasible up till now.

The research objective of this work is to end up in the inter-
section of all three characteristics by utilising stiffness com-
pensation. A small piezoelectric cantilever beam is used which
is generally too stiff to have resonance at low frequencies [24].
Therefore, the approach in this work is to compensate most of
the stiffness of the piezo through addition of negative stiff-
ness. This brings the piezo close to static balance and creates
a nonresonant device. The negative stiffness can be formed by
bistable flexure mechanisms [25, 26]. Others have used mag-
nets in attracting or repelling configuration [10, 27]. Attract-
ingmagnets are used in this work. Due to the lowered stiffness,
large deformations can be obtained more easily. This is benefi-
cial for power generation and efficiency. A piezoelectricbeam

Figure 1. Venn diagram representation of the problem of
low-frequency energy harvesting. Combining two juxtaposed
characteristics will result in the opposite of the one left. The
intersection of all three seems infeasible till now.

claims little space in the excitation direction, allowing a more
planar design. Combining this with the expected increase in
efficiency at low frequency it can be a good candidate for
ending up in the intersection of the three characteristics. The
dynamics and output voltage of this prototype will be mod-
elled and experimentally validated. Its performance will be
compared to prior art in literature.

The next sections are organized as follows: in section 2, two
important parameters are discussed that are used to benchmark
the harvester performance with respect to prior art. The design
of the harvester is discussed along with modelling approach.
In section 3, the results from the simulation are compared to
experimental results. These are discussed in section 4 along
with the performance of the harvester with respect to literature.
Finally, the main conclusions are summarized in section 5.

2. Method

2.1. Motion ratio and generator figure of merit

Two parameters that are of major importance throughout this
work are the motion ratio λ and the generator figure of merit
FoMg introduced in [20]. These are defined as:

λ =
Lz
2Y0

(1)

FoMg =
PRMS

1
16Y0ρpmVLzω

3
· 100%. (2)

Where Lz is the length of the VEH along the excitation direc-
tion, Y0 is the input motion amplitude, PRMS is the RMS output
power, ρpm is the density of the proof mass, V is the package
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Figure 2. Two harvester configurations of equal volume and proof
mass. The upper is often found in literature as it is beneficial for
power generation, the lower, more planar configuration is the focus
of this work. Double arrows indicate excitation directions.

volume of the VEH and ω is the radial frequency correspond-
ing to the driving motion.

The motion ratio is the ratio between the length of the VEH
and the applied driving motion, see figure 2. In the ideal case
where the frame claims no space, this length would be the dis-
placement limit of the proof mass. It is a measure to determ-
ine to what extent the VEH can be used as a resonator. For
instance, it can be used as a resonator when λ> 1 as in this
case, resonant amplification of the input motion is possible.
Hence, a resonator with a large Q-factor has a large motion
ratio as well. When λ⩽ 1, the input motion is larger than the
length of the VEH and resonant amplification is not possible,
resulting into a nonresonant device.

The generator figure of merit FoMg is an improved ver-
sion of the volume figure of merit FoMv discussed [18, 28]. It
uses the density of the proof mass and instead of using V4/3, it
uses VLz as the power output is more dependent on Lz than the
other directions [18]. This principle is shown in figure 2. The
upper tubular configuration with larger Lz like [3] is often seen
in literature due to its larger potential for power generation.
The lower configuration with smaller Lz is more planar and is
focussed on in this work for obtaining a better efficiency at a
low motion ratio. The FoMg enables a fair performance com-
parison between both configurations by removing the excita-
tion length bias.

2.2. Mechanical design

To compensate the stiffness of the piezoelectric beam, attract-
ing magnets have been chosen in the configuration shown in
figure 3. Details on the specifications can be found in table 1.
By using attracting magnets in this setup, the introduced neg-
ative stiffness can be tuned through adjusting the distance
between the magnets. As can be seen from figure 3, the frame
acts as an endstop to limit the motion of the proof mass. A

Figure 3. Schematic diagram, render and lateral cross section of the
energy harvester.

few reasons for this are: (1) the strain needs to be limited as to
not damage the piezo, (2) it prevents the proof mass magnet
from clinging to the fixed magnets and (3) it is a mechanism
to transfer momentum into the proof mass motion.

The VEH is designed to function around excitations below
10 Hz with input amplitudes that are larger than the device
length meaning a motion ratio lower than one. Normally, to
ensure that maximum power is extracted from the energy har-
vester, the load resistance is assessed by using the impedance
matching criterion as in [29]. As was seen in [24], the nat-
ural frequency of a piezoelectric beam increases with the load
resistance connected to it, which implies that the load resist-
ance affects the stiffness. Therefore, the load is kept constant
at 1 MΩ.

In order to compensate the stiffness of the piezoelectric
beam, its stiffness needs to be known. Therefore, a force-
displacement measurement was taken with the setup discussed
in section 2.5 to assess the stiffness at the uncompensated con-
dition with a load of 1 MΩ connected. This measurement can
be seen in figure 8(a). Then, a COMSOL Multiphysics elec-
tromagnetic simulation was carried out to find the distances
dm1 and dm2 between the proof mass magnet and fixed mag-
nets to provide an appropriate negative stiffness. The proof
mass magnet was displaced inbetween the fixed magnets by
a parametric sweep and the force was evaluated, resulting in a
force-displacement relation. A parametric sweep was applied
to dm1, dm2 and the proof mass displacement to find the negat-
ive stiffness that fits best to the positive stiffness of the beam.
The stiffness has been verified with the setup in figure 6. The
results are shown in figure 8(a).
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Table 1. Specifications of the energy harvester.

Parameter Symbol Value Parameter Symbol Value

Clamped length L 32 mm Damping ratio ζ1 0.021
Beam width b 6 mm Tip magnet size — 15 × 10 × 5 mm
Substrate thickness hs 0.37 mm Fixed magnet size — 15 × 2 × 1.8 mm
Piezo thickness hp 0.19 mm Magnet spacing 1,2 dm1,2 5.65/5.82 mm
Capacitance per layer C 36.22 nF Tip magnet flux density BT 1.17 T
Relative permittivity εTr33 3900 Fixed magnet flux density BF 1.08 T
Charge constant d31 −315 pCN−1 VEH package volume V 60 × 20 × 20 mm3

Piezoelectric constant e31 −19.2 NVm−1 Tip mass Mt 6.5 g
Elasticity piezo cE11 61 GPa Tip inertia It 0.0677 kg mm2

Elasticity substrate Ys 200 GPa Endstop stiffness Kstop 250 kNm−1

Mass per beam length m 0.0217 gmm−1 Endstop damping Cstop 15 Nsm−1

Endstop position ws 1.5 mm Length in exc. direction Lz 20 mm

2.3. Fabrication

The piezoelectric beam used in the energy harvester is an
in series connected Morgan Ceramics PZT-508 bimorph of
46× 6× 0.76 mm. An N35 Neodymium block magnet has
been fixed to its tip with epoxy glue to form a proof mass.
The frame of the VEH is 3D printed with 100% infill in PLA.
As the stiffness compensation becomes increasingly delicate
as the total stiffness approaches zero and to account for print-
ing tolerances, the frame was printed a few tens of millimeters
larger in the Lz direction. It was then manually sanded down
to obtain the correct magnet distances.

2.4. Model

To model the dynamics and voltage output of the stiffness
compensated piezo, a distributed parameter model is preferred
over a lumped parameter model as an accurate description of
the strain distribution is necessary. Furthermore, it was shown
that a distributed parameter model could be used to provide
corrections to a lumped model [24, 30]. The main question is
what this strain distribution looks like. One could reason that if
no stiffness is reduced, modal analysis is suitable if resonance
occurs. On the other hand, if the stiffness is fully removed, it
could be reasoned that the deflection pattern can be described
by the static deflection pattern of a cantilever beamwith a force
and moment at its tip multiplied by some temporal forcing
function:

δ(t) =

(
Px2(3L− x)

6YI
+
Mx2

2YI

)
f(t). (3)

Where δ is the tip deflection, P the tip load, L the beam length,
x the beam length coordinate, YI the bending stiffness, M the
tip moment and f the temporal forcing function. The eigen-
function from modal analysis and the static deflection pattern
form the bounds where the real deflection pattern should be in.
To compare them, they are plotted in figure 4 along with their
second derivatives which are directly related to the bending
strain. All functions have been normalized.

The figure shows that the deflections are very similar and
that the strain diverges with the beam length. However, near

Figure 4. Normalized deflection and strain for static deflection
pattern and first eigenmode.

the clamping the largest strain can be found and here the error
is minimal. It can therefore be assumed that the deflection
pattern is representative and modal analysis can be a repres-
entative method for modelling. Furthermore, modal analysis
is a well-developed method and therefore convenient to use.

The modelling approach is as follows. First, modal analysis
is used for the case of a cantilever beam. Next, the endstops
are included in the equations and then the negative stiffness
is added. Finally, the force-displacement data of the com-
pensated beam is added to the equations. This last step makes
sure that the remanent stiffness and hysteresis are included in
the model. These steps will be discussed next.

2.4.1. Modal analysis. In modal analysis, the relative dis-
placement of the beam is formed by a summation of vibra-
tion mode shapes obtained at the resonance frequencies. In
this case, only the first vibration mode is used as it closely
describes the deflection pattern obtained in this harvester.
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Figure 5. Schematic diagram of the in series connected piezo. The
red plates form the endstop contact surface, the lower left shows the
cross-section of the piezo. Hashed platforms denote the vibrating
world.

The comprehensive distributed parameter model of Erturk
and Inman is used for the model [24, 31]. In their work,
they had found closed-form solutions for the output voltage.
In this work, nonlinearities are included through the addi-
tion of endstops and hysteresis. Therefore, nonlinear tech-
niques based on energy methods can be used as an alternat-
ive [10, 32–34]. However, due to the numeric nature of the
hysteresis measurement included in the equations of motion,
the coupled equations in modal coordinates for an in series
connected piezo are used in this work and solved numeric-
ally in MATLAB. Their derivation is concisely shown. The
nomenclature is kept the same for easy reference. In figure 5,
a schematic diagram of the piezo is shown. To transform the
deflection w to modal coordinates the following infinite series
is used:

w(x, t) =
∞∑
r

ϕr(x)ηr(t). (4)

Where ϕr(x) is the mass-normalized eigenfunction corres-
ponding to eigenmode r and ηr(t) is the temporal response
corresponding to that same mode. The eigenfunction is
defined as:

ϕr(x) = Cr

[
cos

λr
L
x− cosh

λr
L
x

+ ςr

(
sin

λr
L
x− sinh

λr
L
x

)] (5)

where

ςr =
sinλr− sinhλr+λr

Mt
mL (cosλr− coshλr)

cosλr+ coshλr−λr
Mt
mL (sinλr− sinhλr)

. (6)

The modal eigenvalue λr is found by solving the characteristic
equation:

1+ cosλr coshλr+
λrMt

mL

(
cosλr sinhλr− sinλr coshλr

)
− λ3

r It
mL3

(
coshλr sinλr+ sinhλr cosλr

)
+

λ4
rMtIt
m2L4

(
1− cosλr coshλr

)
= 0. (7)

WhereMt, m, L and It are the tip mass, beam mass per length,
clamped beam length and tip inertia, respectively. To find the
amplitudeCr, the eigenfunction ϕr(x) is normalized by the fol-
lowing orthogonality condition:

ˆ L

0
ϕr(x)mϕs(x)dx+ϕr(L)Mtϕs(L)

+

[
dϕr(x)
dx

It
dϕs(x)
dx

]
x=L

= δrs. (8)

The bending stiffness is defined as:

YI=
2b
3

[
Ys
h3s
8
+ cE11

(
(hp+

hs
2
)3 − hs

8

3)]
. (9)

Where b, Ys, cE11, hp and hs are the beamwidth, Young’smoduli
and layer thicknesses of the substrate and piezo layer, respect-
ively. Using the bending stiffness, the eigenfrequency can be
found as:

ωr = λ2
r

√
YI
mL4

. (10)

The coupled beam and electric circuit equations confined to
the first mode in modal coordinates are as follows:

d2 η1(t)
dt2

+ 2ζ1ω1
dη1(t)
dt

+ω2
1η1(t)

+θ
dϕ1(x)
dx

∣∣∣∣∣
x=L

V(t) = F1(t) (11)

Cp
2

dV(t)
dt

+
V(t)
Rl

=−e31b
hp+ hs

2
dϕ1(x)
dx

∣∣∣∣∣
x=L

dη1(t)
dt

(12)

where the forcing term F1(t) and electromechanical coupling
θ are equal to:

F1(t) =−Y0ω2 sinωt

(
m
ˆ L

0
ϕ1(x)dx+Mtϕ1(L)

)
(13)

θ =
e31b
2

(
h2s
4
−
(
hp+

hs
2

)2
)
. (14)

Where ζ1, V, Cp, Rl, e31, Y0 and ω are the damping ratio, out-
put voltage, single layer capacitance, load resistance, piezo-
electric constant, drivingmotion amplitude and drivingmotion
radial frequency, respectively. Most parameters can be found
in table 1. The details on the derivation of these equations can
be found in [24, 31].
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2.4.2. Endstops. The endstops are defined as an additional
spring and damper placed in parallel [5, 35, 36]. Figure 5
shows a schematic interpretation of the endstop. The force
encountered by endstop contact can be described as:

f s(w) =


Ks(w−ws)+Csẇ if w⩾ ws
0 if |w|< ws
Ks(w+ws)+Csẇ if w⩽−ws.

(15)

Here Fs is the endstop force, Ks the endstop stiffness, ws is the
amplitude after which the stopper is hit and Cs is the endstop
damping. The endstop stiffness Ks is found by Hertz contact
mechanics. As the Hertz contact stiffness behaves nonlinearly
with indentation, its stiffness value was raised until its corres-
ponding indentation matched the indentation found in the final
simulations. The endstop damping was assessed experiment-
ally by a shaker test at 16 Hz and 2 g. By measuring the proof
mass displacement and velocity with laser sensors, the coeffi-
cient of restitution was found, which can be translated to the
endstop damping [36].

2.4.3. Negative stiffness. To add negative stiffness, the neg-
ative stiffness from the finite element simulation or the meas-
urement could be used. However, as indicated, the following
step is to include the hysteretic force-displacement measure-
ment at the compensated state. The introduced negative stiff-
ness never exactly equals the stiffness of the piezo, leaving a
remanent stiffness. This remanent stiffness is also present in
this force-displacement measurement. As a result, this reman-
ent stiffness would then be present twice in the model. There-
fore, it is chosen to numerically add a negative stiffness that
fully compensates the positive stiffness through subtraction of
a tip deflection force:

fN =
3YI
L3

w(L). (16)

By fully removing the stiffness and using the remanent stiff-
ness present in the force-displacement measurement of the
compensated beam, an accurate description of the stiffness in
the compensated state can be obtained.

2.4.4. Hysteresis. As the stiffness has been fully erased in
the model to provide a ‘clean slate’, the remanent bending
stiffness and the hysteresis are to be found. These are found by
quasistatically measuring the force-displacement of the com-
pensated beam with the setup in figure 6. The measurement is
taken for a connected load resistance of 1 MΩ. In figure 8(b)
the measured hysteresis is shown in a force-displacement dia-
gram and is named FH . The data has been filtered with a
Savitzky–Golay filter and has been fitted with a cubic inter-
polant in order to implement it into the model.

The implementation of the force-displacement data is as
follows: at peak displacement, one of the endstops is hit. This
hit is detected as an event in the MATLAB ODE-solver. After
the hit, the hysteretic force switches from curve, e.g. the left
endstop is approached from the red curve in figure 8(b) and
the force switches to the blue curve afterwards and stays on

Figure 6. Force-displacement test setup with (1) power supply, (2)
DAQ, (3) signal amplifier, (4) stepper motor, (5) laser sensor, (6)
resistance decade box, (7) load cell, (8) magnetic contact and (9)
harvester.

it until the right endstop is hit. This is representative as long
as peak–peak motion is present. A smaller loop is shown as
well in figure 8(b) in black and green. This is for the a spe-
cific case when no peak–peak motion is obtained and the proof
mass bounces from one endstop only. This case will also be
validated.

2.4.5. Integration in the modal equations. As the descrip-
tions of the endstops, the negative stiffness and the force-
displacement have been found, they can be integrated into the
coupled modal beam equation (11). The resulting equation is
found by equation (17). Note that the added terms are premulti-
plied by ϕ1(L)2. This is because the terms have to be converted
to modal coordinates given by equation (4) and are premulti-
plied by the mode shape through mode shape orthogonality.
The equations of motion are thus formed by equations (12),
(13) and (17).

d2η1(t)
dt2

+ 2ζ1ω1
dη1(t)
dt

+ω2
1η1(t)+ θ

dϕ1(x)
dx

∣∣∣∣∣
x=L

V(t)

+ϕ1(L)
2f S(η1(t))−ϕ1(L)

2 3YI
L3

η1(t)

+ϕ1(L)
2fH(η1(t)) = F1(t). (17)

There is one thing that must be noted by taking this approach.
As pointed out in Erturk and Inman [37], in a clamped-free
beam, no tip force may be present at the free tip as this is
one of the boundary conditions. In this model, the first vibra-
tion mode shape of the clamped-free condition is used and the

6
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added negative stiffness acting as a tip force theoretically viol-
ates the boundary condition. However, for now it is assumed
that the mode shape will not be affected that much and that it
may be negligible for the output, more about this in section 4.

2.5. Force-displacement setup

For the design and modelling of the VEH, force-displacement
measurements are necessary. The setup to measure these is
shown in figure 6. The setup consists of a Moons’ 24Q-3AG
steppermotor connected to anAlmotion LT50-TR-G8-200 lin-
ear stage. A Futek LSB200 sensor is used to measure the force
followed by a Scaime CPJ analog transmitter. The displace-
ment is measured by a Micro-Epsilon optoNCDT1300 laser
distance sensor and ELC DR07 resistance decade boxes are
used to set the load resistance. The outputs are measured by
an NI 9215 DAQ of which the data is analysed in MATLAB.

2.6. Harvester excitation setup

In order to validate the model, a custom air bearing stage with
a linear motor is used to excite the energy harvester at low
frequencies and large amplitudes. The setup that is used is
shown in figure 7. An NI cDAQ-9174 with NI-9263 and NI-
9215 modules is used. The NI-9263 generates the input sig-
nals that are sent to the stage which is feedback controlled. An
ME-Meßsysteme AS28e accelerometer is used to check the
applied acceleration and corrections to the input signal were
made if the acceleration was not accurate enough due to pos-
itioning errors from the feedback loop. A resistive divider is
used to lower the voltage from the piezo and is sent along with
the output from the accelerometer to the NI-9215 to record the
data.

2.7. Measurement procedure

In order to assess how accurately the simulation can predict the
performance of the VEH, the RMS power frequency response
is measured. In order to do so, a sinusoidal excitation is applied
at an acceleration between 1.5 and 3 g and frequency between
2 and 10 Hz. Large accelerations are used to make sure the
input is larger than the device length in most cases. The meas-
urement is not taken as a sweep: at every single frequency,
the measurement is started from zero initial conditions and
the measurement time is adjusted per frequency as to reach
steady-state conditions.

2.8. Benchmarking with respect to prior art

In order to benchmark the performance of the VEH in this
work, it is compared to prior art found in literature. This is
done by plotting the FoMg-λ space. This approach was also
taken in [20], where a comprehensive comparison of VEH per-
formance for different classes of VEHswas carried out. It must
be noted that literature falls short on reporting all the variables
needed to calculate themotion ratio λ andFoMg. In some cases
however, the necessary parameters could be derived from other

Figure 7. Linear motion stage to excite the energy harvester at low
frequency and large amplitudes with (1) resistive divider, (2)
harvester and (3) accelerometer.

parameters or be estimated. For instance, in the case of a reson-
ating cantilever, the size of the proof mass and the mechanical
Q-factor are used to find Lz.

3. Results

In figure 8 the force-displacement measurements are shown.
Figure 8(a) shows the force-displacement of the uncom-
pensated beam with a 1 MΩ load connected along with
the simulated and validated negative stiffness. Figure 8(b)
shows the force-displacement measurements for the com-
pensated state of the VEH. A large loop is shown that indic-
ates full range motion and a smaller loop as well for smal-
ler motions. In figure 9 the simulated displacement, velo-
city and voltage along with the measured voltage is shown
at the condition of 4 Hz and 1.5/3 g. Figure 10(a) shows the
steady-state RMS power frequency response. This is done at
a constant sinusoidal acceleration between 1.5 and 3 g and
between 2 and 10 Hz. The simulation is compared to the
measurements in terms of RMS output power at 2.5 and 3 g.
Figure 10(b) shows the trend in output voltage and velocity.
In figure 11, the performance of the energy harvester is evalu-
ated in terms of motion ratio λ and FoMg and is compared to
prior art from literature. Here, two classes can be seen, single
degree-of-freedom (SDoF) and FupC.

4. Discussion

4.1. Time domain

In figures 9(a) and (b), the blue line indicates the simulated
displacement and velocity for the case where both endstops
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Figure 8. Force-displacement diagrams with (a) measured force-displacement of the uncompensated beam along with simulated and
validated negative stiffness formed by the magnets, (b) measured hysteresis paths for the compensated beam with a load resistance of 1 MΩ
connected. A smaller loop is shown as well for smaller displacements.

Figure 9. Harvester performance at 4 Hz with in (a) simulated displacement and (b) simulated velocity with in blue 3 g and in black 1.5 g
excitation. The simulated and measured voltage are shown at 3 g in (c) and 1.5 g in (d).

are hit, which is the case for all measurements at 2.5 and
3 g. In this case, the measurements match the simulations
best, as the used hysteresis loop is also based on full range
motion. Figures 9(a) and (b) also show what happens if no
full range motion is obtained, e.g. at 1.5 g. From the displace-
ment in figure 9(a) it is seen that the proof mass detaches
from the lower endstop and does not reach the upper end-
stop. Figure 9(c) shows that for the full range motion case, the
voltage from the measurement matches well with the simula-
tion. For the case of 1.5 g, shown in figure 9(d), extra meas-
ures must be taken. Here it can be seen that taking the full
range motion hysteresis loop greatly overestimates the out-
put voltage. To improve the simulation performance for this
specific case, a hysteresis loop should be used that is rep-
resentative for the lower displacement. This measured loop

is shown in figure 8(b). Using this smaller loop as input
for the simulation, it is seen that the voltage is resembled
more closely. The consequences of this are however severe:
for every separate non-full range motion, a separate hys-
teresis loop is necessary in order to predict the output
within acceptable accuracy. This results into a large set
of input data, but there is a method to reduce the data-
set. In [38] it was demonstrated for piezoelectric actuat-
ors that inner hysteresis loops could be predicted by fitting
curves to the outer loops and projecting them to the start
and endpoints of the inner loop (black-green in figure 8(b)).
So the small loop in figure 8(b) can be predicted by only know-
ing the large outer loop. This can be a good starting point to
model non-full range motion, which will occur for lower input
amplitudes or non-sinusoidal input motions.

8
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Figure 10. Frequency responses with in (a) RMS output power at fixed input acceleration amplitude for simulation and measurement,
in (b) the peak voltage is shown along with the simulated peak velocity. Measurements are taken as single frequency sinusoidal excitations.

4.2. Frequency response

The RMS power frequency response is shown in figure 10(a).
The frequency response was measured at 1.5, 2, 2.5 and 3 g
yet only for 2.5 and 3 g it is compared to the simulations as
only in these cases full range motion is obtained. The peak
performance is found at 9 Hz and 3 g where an RMS power of
1.20 mW is delivered.

The effect of increased input acceleration is very clear. At
1.5 g only one endstop is hit, resulting in a low linear response.
This makes sense as the output voltage depends on the strain
rate integrated over the beam length, which is lower in this
case [24]. At 2 g, the second endstop is hit slightly at some
frequencies and at others it is not, resulting in a larger scatter
in power. At 2.5 and 3 g both endstops are hit. These curves
show an interesting behaviour. First, the response is linear until
6 Hz. This is also seen in other nonresonant devices such as in
[39]. After 6 Hz, the response continues in a sublinear trend
and a power saturation seems to appear.

The simulated output power response at 2.5 and 3 g is
also shown in figure 10(a). It can be seen that at frequen-
cies lower than 6 Hz, the simulated power closely predicts
the measured. The error remains below 10%. However, from
7 Hz and onwards, the simulation rapidly diverges from
the measurement and overestimates. The simulated voltage
starts to overestimate, resulting in a rapid increase in RMS
power.

The exact reason behind the rapid error growth is not fully
understood yet. The results suggest that the exclusion of the
negative stiffness in the mode shape function ϕr(x) is admiss-
ible; the difference in power is small at frequencies lower than
6 Hz. If the mode shape function were not representative, a lar-
ger error should be seen for all frequencies, as in the simula-
tion the deflection pattern remains constant for all frequencies.
Nevertheless, including the magnetic forces in the boundary
condition could improve the performance.

The growth of the error in power can also be seen from
the output voltage. Figure 10(b) shows the peak voltage in the
measurement and simulation and the simulated velocity. It can
be seen that the measured voltage stops to increase after 6 Hz,
whereas the simulated voltage monotonically increases along
with the simulated velocity. This is important, as the velo-
city directly relates to output voltage to the deformation rate
as shown in equation (12). It is therefore most likely that at
the higher frequencies energy is lost resulting in a lower velo-
city. This could be due to additional damping terms such as
strain rate damping [40] or nonlinear losses in the endstop col-
lisions. Furthermore, it is seen in piezoelectric actuators that
hysteresis loops between input voltage and displacement show
a rate dependence [41, 42]. If this principle also translates
between force and displacement, the used force-displacement
loop measured at quasistatic condition could become less
representative at the higher frequencies and additional terms
may be necessary for compensation. Further development by
including such terms is subject for future work.

4.3. Performance comparison to prior art

In figure 11, the measured performance of the energy harvester
is compared to prior art in terms of FoMg and λ. From the plot
it can be noted that prior art is inclined to larger motion ratios.
The FupC harvesters tend to be less efficient than SDoF. The
VEH of this work has a relatively good FoMg performance
compared to other works within its range. The FoMg peaks at
0.567% at a motion ratio of 0.18. Although this is still low, lar-
ger values can be expected as no optimization has been applied
yet. Nevertheless, the data show that having a design that uses
a piezoelectric beam in combination with stiffness compensa-
tion results into a competitive efficiency at low frequencies.

Several things can be noted from the performance
belonging to this work. First, the FoMg is relatively constant
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Figure 11. Generator figure of merit (FoMg) performance comparison of the energy harvester in this work to prior art as a function of
motion ratio [3, 4, 6, 7, 10, 16, 22–24, 39, 40, 43–52]. SDoF stands for single degree-of-freedom, FupC for frequency-upconverter.

throughout λ at constant acceleration. For instance, at 2.5 g
a factor of 25 can be found in λ but only a factor of 1.38 in
FoMg. To put this in perspective, resonating VEHs without
endstops were analysed in [20] and showed a factor 16 in λ
and 344 in FoMg. This clearly demonstrates the operational
differences between resonant and nonresonant devices.

From figure 11, it is seen that the peak FoMg does not cor-
respond to the peak power or peak acceleration. The peak
FoMg is found at a motion ratio of 0.18 which corresponds
to a frequency of 3 Hz and acceleration of 2 g. So although a
higher frequency or input acceleration results into more output
power, this clearly does not benefit the FoMg efficiency. This
implies that after a certain value for the acceleration or input
frequency, although the output power increases, theFoMg does
not. Hence, there is a certain threshold after which the VEH
starts making less practical use of its physical dimensions and
properties.

5. Conclusion

In this work, the stiffness of a piezoelectric VEH is com-
pensated through addition of attracting magnets. It was con-
ceived in order to provide an energy harvester that has a small
length in the excitation direction, that operates at a low fre-
quency with large inputs and that is more efficient. A distrib-
uted parameter model from literature based on modal analysis
was further extended by the addition of endstops, negative
stiffness and hysteretic force-displacement data. For peak-
peak displacements, the RMS power difference between sim-
ulation and measurement has been analysed. Between 2 and
6Hz, the error between simulation andmeasurement remained
below 10%, yet it rapidly grows when the frequency is fur-
ther increased until 10 Hz. Therefore, a modal analysis based
distributed parameter model can be found to be promising
for modelling the dynamics and output of a cantilever-based
stiffness compensated piezoelectric beam. However, work is

necessary to improve the simulation performance over a wider
range of frequencies.

The measured RMS peak power was obtained at 9 Hz and
3 g and was equal to 1.20 mW. When it comes to perform-
ance in terms of generator figure of merit (FoMg), a peak
value of 0.567% was obtained at 3 Hz and 2 g. The excit-
ation levels are high but serve to illustrate the case of input
motions larger than the device length. It can be concluded
that stiffness compensation of piezoelectric beams can enable
energy harvester designs to have a competitive efficiency at
low-frequency excitation with large input amplitudes.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).
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