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Reliance on haptic assistance reflected in haptic
cue weighting

Tricia L. Gibo, Myrthe A. Plaisier, Winfred Mugge, and David A. Abbink, Senior Member, IEEE

Abstract—When using an automated system, user trust in the automation is an important factor influencing performance. Prior studies
have analyzed trust during supervisory control of automation, and how trust influences reliance: the behavioral correlate of trust. Here,
we investigated how reliance on haptic assistance affects performance during shared control with an automated system. Subjects
made reaches towards a hidden target using a visual cue and haptic cue (assistance from the automation). We sought to influence
reliance by changing the variability of trial-by-trial random errors in the haptic assistance. Reliance was quantified in terms of the
subject’s position at the end of the reach relative to the two cues. Our results show that subjects aimed more towards the visual cue
when the variability of the haptic cue errors increased, resembling cue weighting behavior. Similar behavior was observed both when
subjects had explicit knowledge about the haptic cue error variability, as well as when they had only implicit knowledge (from
experience). However, the group with explicit knowledge was able to more quickly adapt their reliance on the haptic assistance. The
method we introduce here provides a quantitative way to study user reliance on the information provided by automated systems with
shared control.

Index Terms—Trust, reliance, Haptic assistance, Haptic shared control, Cue weighting, Trial-by-trial variability

F

1 INTRODUCTION

OUR willingness to rely on the information or actions
provided by an automated system depends on how

much we trust the automation [1]. Trust is a psychological
construct of how one feels about the automation, which can
influence one’s reliance on the automation. In other words,
reliance is a behavioral correlate of trust. Inappropriate
reliance can cause misuse and disuse of the automation [2],
[3].

Designing for properly calibrated trust and reliance [4]
can be achieved by giving information about how the au-
tomation works and what its limitations are [2], [5], [6], [7].
More specifically, providing the user with information about
automation reliability helps to foster appropriate user re-
liance and thereby improve human-automation interaction
[8], [9], [10], [11].

Reliance on automation has been mainly studied in
terms of supervisory control. When the user assumes a
supervisory role, reliance on the automated system is often
defined in terms of how often users decide to disable the
automation and switch back to manual control. In contrast
to supervisory control, where either the user or automated
system is in control at a given time, shared control involves
both the user and automated system concurrently sharing
control [12]. One option for shared control is implemented
in the form of haptic assistance, i.e., haptic shared control
[13], [14], [15], [16], where assistive forces guide the operator
towards what the automation considers the optimal control
input. These forces are usually designed to be relatively low,
such that the user can overrule the suggested control input
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from the automation. Thus, the user can vary the extent to
which he follows the assistance on a continuous scale, in
contrast to supervisory control, where the user can only
choose between switching the automation on or off. Little
is known about how reliance affects behavior during shared
control. In the current study, we focus on user reliance on
the information provided by an automated system, here
via haptic assistance, and introduce a method to quantify
reliance during shared control.

Under real world conditions, the haptic assistance gen-
erated by an automated system may be erroneous due
to hardware failures, sensor inaccuracies, or model uncer-
tainties. There have been a few studies that considered
errors in the haptic assistance. These have, however, been
limited to gross failures, such as faulty obstacle detection
[17] or complete deactivation of the haptic feedback [18].
Another study introduced systematic inaccuracies in a peg-
in-hole task and found that the benefits of haptic assistance
were robust against small inaccuracies [19]. Accuracy of the
haptic assistance, however, can also vary over time. We
will refer to this as trial-by-trial random errors. The effect
of such random errors on reliance on the assistance, and
consequently task performance, is largely unknown.

Trial-by-trial random errors may cause the haptic assis-
tance to be inaccurate on any given trial. However, in the
case of zero-mean random errors, the haptic assistance will
be accurate when averaged over many trials. The likelihood
of the haptic assistance’s accuracy on any given trial can
be inferred from the variability of the previous trial-by-trial
random errors. Recent studies suggest that humans can es-
timate the trial-by-trial variability of sensory cues [20], [21].
In [20], we investigated how people rely on haptic assistance
(reliance on a haptic cue versus a visual cue) when the haptic
assistance contained trial-by-trial random errors. Here, the
trial-by-trial variability of the haptic assistance (i.e., haptic
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cue) was kept constant. Our results provided evidence that
people estimated the variability of the trial-by-trial random
errors and used this information to decide how much to rely
on the haptic cue versus the visual cue.

Here, we investigate how reliance on haptic assistance
is affected by changes in the haptic cue’s trial-by-trial vari-
ability. In addition, we examine the time course of this
adaptation in reliance and the effect of explicit knowledge
of the variability change on the time course of reliance adap-
tation. In this study, subjects performed an arm movement
towards a hidden target while visual and haptic cues (i.e.,
guidance forces) were provided. Both cues contained trial-
by-trial variability, but only the variability of the haptic
cue was systematically varied. Upon movement completion,
the actual location of the target was shown. This indicated
how accurate the haptic and visual cues were on each trial,
thereby allowing subjects to make an estimate of the trial-
by-trial variability over trials. We evaluated the effects of
trial-by-trial variability on the amount of reliance on the
haptic assistance in terms of how much the subjects chose to
follow the haptic cue versus the visual cue. In other words,
the less they rely on the haptic assistance, the closer the end-
point of their movement would be to the location suggested
by the visual cue. To investigate whether explicit knowledge
of the trial-by-trial variability facilitated in adapting reliance
on the haptic cue, we included two experimental groups:
one group received explicit information about the current
state of the variability of the trial-by-trial random errors,
whereas the other group did not. We hypothesized that
subjects with explicit knowledge would adjust their reliance
on the haptic assistance earlier than the implicit group.

2 MATERIALS AND METHODS

2.1 Subjects

Sixteen subjects (13 male, 12 right-handed, age 24 - 30)
participated in the experiment and were randomly divided
into two groups (Implicit, Explicit). The experiment was
approved by the Delft University of Technology Human Re-
search Ethics Committee and complied with the principles
of the Declaration of Helsinki. All subjects gave informed
consent prior to participating.

2.2 Experimental setup

To perform the target-hitting task, subjects made two
degree-of-freedom reaching movements while holding an
admittance-controlled haptic device (HapticMaster, Moog
Inc.). Movement was confined to a horizontal plane via
virtual hard constraints. The virtual inertia and damping
of the device were set to 2.5 kg and 5 Ns/m, respectively.
The device was controlled with a VxWorks RT operating
system running at 2048 Hz. A second controller (real-time
Bachmann GmbH) recorded the handle position (0.001 mm
resolution) and force measured at the handle (0.01 N reso-
lution) at 1000 Hz. The subject’s hand position, along with
other visual cues for the target-hitting task, were displayed
on a monitor (refresh rate 60 Hz, resolution 1920 x 1080
pixels, size 88.5 x 50.0 cm) approximately 140 cm in front
of the subject (Fig. 1a). Hand movement in the rightward
direction caused the cursor to move right on the screen,
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Fig. 1. Experimental setup and protocol. (a) Subjects made 2-DOF
reaching movements with a haptic device and tried to hit targets, using
visual (red dash) and haptic cues about the target location. The haptic
device was not visible to the subject. (b) Order of events in a single
trial. The visual cue was one red dash at the wall. The haptic cue was a
force channel (direction indicated by dotted line) that guided movement
along a straight path from the start position to the wall. Location of the
hidden target (green circle) was revealed upon trial completion when the
cursor reached the wall. The on-screen text about haptic dependability
was only available for the Explicit group. (c) Subjects’ target-hitting
performance with a single cue was calculated from the V (visual) and
H (haptic) blocks. In the V + Herr blocks, subjects learned of the two
possible distributions (high, low) of the haptic cue trial-by-trial variability.
Subjects’ performance in the combined cue conditions was measured
from the Verr + Herr blocks (two blocks indicated by dotted line),
where both visual and haptic cues with random errors were available.
The asterisk indicates that the haptic dependability was intentionally
displayed incorrectly for the Explicit group.
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and hand movement in the forward direction caused the
cursor to move up (one-to-one mapping). The haptic device
was hidden from view beneath a black cloth to encourage
subjects to focus on the screen.

2.3 Visual and haptic cues
Target locations were chosen randomly and uniformly along
the visible curved wall (100◦ span, 25 cm radius). Cues were
presented via the visual and/or haptic sensory modalities
to provide information about the target location. Here, we
make the distinction between within-trial noise (perceptual
uncertainty within a trial) and trial-by-trial variability (ran-
dom errors over trials). Classical cue integration studies
have mainly dealt with within-trial noise [22], [23], arising
from naturally occurring noise (e.g., sensory noise), in addi-
tion to artificially modulated cue noise (e.g., visual blur). In
our study, we focused on trial-by-trial variability, or random
error over trials with zero-mean.

The visual cue was one red dash along the curved wall
(Fig. 1a). The location of the visual cue was chosen randomly
and independently from a normal distribution centred on
the target location (arc length SD σV,t = 1.6 cm), thus
determining its error on a given trial. The spread of the
distribution controlled the variability of the visual cue trial-
by-trial random error. If a subject reached perfectly for the
visual cue, the theoretical target error would likewise have
a standard deviation of 1.6 cm over trials.

The haptic cue was a force channel that guided move-
ment along a straight path, producing forces perpendicular
to the channel direction. The force increased from 0 to 2 N
within 0 to 0.5 cm, then more gradually from 2 to 5 N within
0.5 to 7 cm, and was a constant 5 N outside 7 cm. The force
channel could otherwise be described by a piecewise linear
stiffness function:

f =


k1x |x| < δ1
(k1 − k2)δ1 + k2x δ1 ≤ |x| < δ2
(k1 − k2)δ1 + k2δ2 |x| ≥ δ2

(1)

where k1 and k2 are 400 N/m and 46 N/m, and δ1 and δ2 are
0.5 cm and 7 cm, respectively. The forces were strong enough
to be discernible, yet weak enough to be overridden if
desired. As with the visual cue, the direction of the channel
in a given trial was chosen randomly and independently
from a normal distribution centred on the target location.
There were two possible distributions for the haptic cue,
resulting in either high (arc length SD σH,t = 3.2 cm) or
low (arc length SD σH,t = 0.8 cm) variability of the trial-by-
trial random error. If a subject perfectly followed the force
channel, the theoretical target error would have a standard
deviation of 3.2 cm and 0.8 cm in the high and low haptic
variability conditions, respectively

The selection of σV,t and σH,t was informed by pilot
studies and related published studies [20], [24], [25]. The
standard deviations were chosen to be large enough such
that the trial-by-trial variability was discernible and not
masked by perceptual noise. At the same time, the standard
deviations were chosen to be small enough such that it was
feasible to override the haptic guidance (if desired) and still
appeared as a reasonably useful cue for target location. With
too large a standard deviation, people will fail to see the

correlation between a cue and the target location, and cue
weighting behavior breaks down.

2.4 Task
Subjects performed quick reaching movements to hit hidden
targets, using the available visual and/or haptic cues to
determine the target’s location xt. To begin a trial, subjects
brought the cursor (5 mm diameter) to the start position
(Fig. 1b). Once the cursor was in the start position for 0.8 s,
the visual and/or haptic cue appeared. Subjects then made
a reaching movement (25 cm) to try and hit the hidden
target, located somewhere along the wall. The haptic device
simulated a wall (stiffness = 400 N/m, damping = 20 Ns/m),
so subjects did not need to actively bring their hand to
rest. At the end of each trial, the true position of the target
(9 mm diameter), the current trial score, and the average
score over the current block of trials was displayed. The
score was based on the arc length error between the cursor
and target, with a maximum score of 100 (0 cm error) that
linearly decreased to 0 (2 cm error or greater). When the arc
length error was less than 0.6 cm, subjects heard a series
of ascending beeps. For all trials, subjects had to complete
the task within 1500-2500 ms, starting from when the visual
cue appeared; thus, the time limit included both the reaction
and movement time. If the trial was not completed within
the time limit, or the hand speed dropped below a threshold
of 0.015 m/s during movement, a warning message was dis-
played and a series of descending beeps would sound. For
all other trials, the default sound indicating task completion
was one monotone beep.

2.5 Experimental protocol
The experiment began with a visual block (V ) that consisted
of 75 trials (Fig. 1c). Only the visual cue was displayed and
its location corresponded exactly with that of the hidden
target (no error). During this block, subjects became familiar
with the task and the visual cue. These trials also provided
an estimate of the subjects’ ability to hit the visual cue. As
previously mentioned, the theoretical standard deviation
of hitting the target using the visual cue is given by σV,t.
However, this is corrupted by within-trial noise resulting
from human motor noise σh,V , which was measured from
these trials.

Next, subjects were told that they would also receive
guidance forces (haptic cue) to help steer them in the direc-
tion of the target. During this haptic block (H) of 75 trials,
only the haptic cue was present (no visual cue). Instead,
the word ‘go’ appeared on the screen to signal when to
begin movement. Subjects were instructed to follow the
force channel as best as possible. This block was used to
familiarize the subjects with the guidance forces, while also
providing an estimate of the subjects’ ability to follow the
haptic cue. The theoretical standard deviation of hitting
the target using the haptic cue is given by σH,t, assuming
that the force channel is perfectly followed. This, too, is
affected by additional within-trial noise from the human
σh,H , comprising noise in force perception and motor noise.

Subjects then performed combined cue trials with both
the visual and haptic cues available. Subjects first performed
practice trials, where they were informed that the visual cue
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would be veridical, but the haptic cue may not always be
correct (V +Herr). They were told that the error of the haptic
cue could differ from trial-to-trial, and the spread of these
errors was determined by one of two possible distributions
(high or low variability). Subjects first performed 20 practice
trials with high variability of the haptic cue error, then 20
practice trials with low variability. Here, subjects became
familiar with using the forces to help them perform the
task, in addition to overriding the forces when they no-
ticed a difference between the direction of the haptic cue
and the visual cue. During these blocks, both groups of
subjects were told about the current state of the haptic cue
variability. For the Explicit group, text at the bottom of the
screen indicated the dependability of the haptic cue (e.g.,
‘Haptic dependability: HIGH’), where high dependability
corresponded to low variability, and vice versa.

Lastly, subjects performed two blocks of trials with both
the visual and haptic cues, where both cues contained
random errors (Verr + Herr). Subjects were told about the
additional errors of the visual cue: the visual cue error could
vary from trial-to-trial, with the spread of errors determined
by a single distribution. As with the V + Herr trials, the
variability of the haptic cue error could be either high or
low. Subjects were told that the haptic cue variability would
stay the same for a series of trials (e.g., tens or hundreds
of consecutive trials), and may change once in a while. For
the Explicit group, the on-screen text regarding haptic cue
dependability would change accordingly, accompanied by a
series of beeps to alert subjects of the change. Subjects were
not told how the variability of the visual and haptic cue er-
rors related to one another. The first Verr+Herr block started
with 100 trials of high haptic cue error variability (trials 1-
100), followed by 50 trials of low haptic cue error variability
(trials 101-150). The second Verr+Herr block continued with
50 trials of low haptic cue error variability (trials 151-200),
and ended with 50 trials of high haptic cue error variability
(trials 201-250). For the Explicit group, the final change
in haptic cue error variability was intentionally indicated
incorrectly by the on-screen text; instead, it continued to
display ‘Haptic dependability: HIGH’. This represents a
worst-case scenario in which the user is informed that the
haptic cue is reliable, when in fact it is not.

2.6 Data analysis

All measurements were computed in terms of arc length
along the wall. Trials that were not completed within the
time limit, or wherein the hand speed dropped below the
set threshold, were omitted from analysis. Of the 4000 total
trials used for analysis, 222 trials (5.6%) were omitted from
analysis because they were either not completed within
the time limit or the hand speed dropped below the set
threshold.

Reliance was assessed using data from the Verr + Herr

combined cue blocks, assuming that a greater reliance on a
particular cue indicates more trust in that cue. The random
generation of the cues results in a discrepancy between the
visual and haptic cue location. To determine how strongly
a subject relied on the visual cue, the distance between
the subject’s final position at the wall and the haptic cue
was plotted versus the distance between the visual and
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Fig. 2. Measure of reliance on the visual cue. (a) Representative sub-
ject data. Reliance on the visual cue TV (regressed slope) calculated
from trials 51-100 (closed circles, solid line) and 151-200 (open circles,
dashed line) for the combined cue conditions with high and low haptic
cue error variability, respectively. Steeper slope indicates higher reliance
on the visual cue. The dotted diagonal line indicates reliance on only
the visual cue, whereas the dotted horizontal line indicates reliance
on only the haptic cue. Behavior suggests cue weighting rather than a
probabilistic cue switching strategy. In the latter case, one would expect
a percentage of the data points to lie on the dotted diagonal line, with the
remaining data points on the horizontal line. Instead, the data points are
clustered around a line that lies between the two dotted lines. (b) Group
data. Reliance on the visual cue (mean± standard deviation) for the two
combined cue conditions for Implicit (dark blue) and Explicit (light blue)
groups.

haptic cues (Fig. 2a, similar to [24], [25]). For each subject, a
multiple regression model was fit to the data:

Y = a0 + a1X + a2XD (2)

Y = x̂t − xH

X = xV − xH

D =

{
0 high haptic cue error variability
1 low haptic cue error variability
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where x̂t is the subject’s final position, xH is the haptic cue
location, xV is the visual cue location, and D is a categorical
variable depending on the haptic cue error variability. A
measure of reliance on the visual cue TV is calculated from
the regressed slopes, given by a1 and a1 + a2 for the high
and low haptic cue variability conditions, respectively. A
slope close to 1 indicates that the subject relied heavily on
the visual cue, whereas a slope near 0 signifies a greater
reliance on the haptic cue. A significant interaction term
a2 indicates that the slope is significantly different between
the two levels of haptic cue error variability. Note that this
analysis assumes that the position reached at the end of
movement reflects the subject’s belief about where the target
is located.

To see how reliance on the visual cue changed over
time, TV was calculated using a moving window of 25
consecutive trials. Differences between the two groups over
time were detected by performing a two-sample t-test using
Statistical Parametric Mapping (SPM) [26], [27], a procedure
for correcting thresholds based on random field theory [28].
One might imagine running a separate t-test at each time
point (n = 202) and correcting for multiple comparisons
(e.g., Bonferroni correction), but this would lead to an
overly conservative threshold. SPM offers a more realis-
tic significance threshold by taking into consideration the
regional correlation of smooth continuum changes in the
data. The temporal smoothness of the data is first estimated
using a scalar parameter, the FWHM (full-width-at-half-
maximum of a Gaussian kernel). The smoothness value
and time series length are used to compute a significance
threshold corrected for multiple comparisons across time
points, t*, keeping the family-wise error rate at 0.05. As
such, 5% of random time series with equivalent smoothness
under the null hypothesis (no difference between groups)
would exceed this corrected threshold. This analysis was
performed using Matlab functions from the open-source
software package ‘spm1d’ [27] (www.spm1d.org).

Recalibration of reliance on haptic cues due to the change
in their error variability is not expected to occur immedi-
ately: the trial-by-trial variability can only be assessed after
experiencing many trials (unlike within-trial noise, which
can be estimated within a single trial). Assuming that 50 tri-
als after a change in haptic cue error variability is sufficient
for recalibration, the steady-state TV was calculated over
trials 51-100 and trials 151-200 for the high and low haptic
cue error variability, respectively. A two-way ANOVA was
used for statistical analysis, with a between-subject factor
of group (Implicit vs. Explicit) and a within-subject factor
of condition (combined cue conditions with low vs. high
haptic cue variability).

Task performance was evaluated using target error, de-
fined as the subject’s final position relative to the target
position. From the Verr + Herr combined cue blocks, the
target error standard deviation σV+H was calculated over
trials 51-100 and trials 151-200 for the high and low haptic
cue error variability, respectively. For the single cue analysis,
the target error standard deviation was calculated from
the human uncertainty measured during the last 50 trials
of the V and H single cue blocks (σh,V , σh,H ) and the
defined distributions used to generate the cues (σV,t, σH,t).
Assuming that these factors are independent, the trial-by-

V

σV,t = 1.6 cm

H

σh,V= 0.59 cm σh,H= 0.43 cm

σV = 1.7 cm σH = 0.91 cm / 3.2 cm

σH,t = 0.8 cm or 3.2 cm
+ +

Fig. 3. Task performance with single cue determined by trial-by-trial
target error variability. The standard deviation of the target error over
trials using only the visual cue σV or haptic cue σH was calculated from
Equations 3 and 4, respectively, which sums the variability resulting from
human uncertainty measured from the respective V or H trials (σh,V
or σh,H ) and the defined distribution used to generate the respective
cue random error (σV,t or σH,t, with low or high variability shown for
the haptic cue). Data from a representative subject (black vertical lines)
show the human uncertainty in following the visual or haptic cue (set
at zero), with corresponding probability density function (± 1 standard
deviation in shaded region).

trial variability in locating the target with the single visual
or the single haptic cue is calculated by:

σV =
√
σ2
h,V + σ2

V,t (3)

σH =
√
σ2
h,H + σ2

H,t (4)

respectively (Fig. 3). In the visual V block, σh,V was de-
termined by calculating the standard deviation of the error
of the subject’s final position from the visual cue location.
Likewise, in the haptic H block, σh,H was determined
by calculating the standard deviation of the error of the
subject’s final position from the center of the force channel.
Two-way ANOVAs were used for statistical analysis, with a
between-subject factor of group (Implicit vs. Explicit) and a
within-subject factor of condition (combined cue vs. single
cue).

2.7 Cue integration models

Classical cue integration studies define two models that can
be used to describe how people rely on different cues: Max-
imum Likelihood (ML) estimation and Probabilistic Cue
Switching (PCS). In the ML estimation framework, the two
cues are weighted [22], [23], [29]. In other words, on a given
trial, a person relies partially on the visual cue and partially
on the haptic cue, ending up somewhere between the two
cues. The amount of reliance on the haptic assistance can
be quantified in terms of the relative weighting between
the visual and haptic cues. In the PCS framework, a person
completely relies on the visual cue during certain trials, then
completely relies on the haptic cue during other trials [30],
[31], [32]. The ratio of trials during which the user uses
the haptic cue can then be interpreted as a measure for
how much the user relies on the haptic assistance. Here,
we investigate whether the subjects’ observed behavior can
be described by either the ML estimation or PCS model.
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2.7.1 Maximum Likelihood estimation model
An ML estimation model predicts optimal performance
using a cue weighting strategy for the Verr+Herr combined
cue blocks. In cue integration studies, ML predictions are
typically based on the within-trial noise of an estimate
(variance of its likelihood function) [33]. Here, we use the
variability in the target location estimate across trials, thus
considering both within-trial noise and trial-by-trial vari-
ability. Thus, the ML model maximizes the percentage of
correct target location estimates, or in other words, mini-
mizes the target error variability over trials.

On a given trial, the ML estimate of target location x̂∗t is
the weighted sum of the estimates from the individual cues:

x̂∗t = wV xV + wHxH (5)

with the weight inversely proportional to the target error
variance with the respective individual cue estimate:

w∗
V =

1/σ2
V

1/σ2
V + 1/σ2

H

(6)

w∗
H =

1/σ2
H

1/σ2
V + 1/σ2

H

(7)

If a subject uses optimal cue weighting, the calculated TV
would be equal to w∗

V . The ML estimate also minimizes the
target error variability over trials:

σ∗
V+H =

√
1

1/σ2
V + 1/σ2

H

(8)

Thus, performance in the Verr +Herr combined cue blocks
with a cue weighting strategy can be predicted by the
performance achievable with the single cues.

2.7.2 Probabilistic Cue Switching model
In the alternate PCS model, or cue veto model, the estimate
is based on only one cue at a time rather than a combination
of cues. The probability of selecting a cue estimate is propor-
tional to its relative reliability, i.e., its weight from the ML
model determines its probability of being chosen in the PCS
model [32]. Upon averaging over trials, this strategy resem-
bles a cue weighting strategy. In other words, the calculated
TV may also give a value close to wV , although the cues are
not weighted. The PCS strategy, however, will not result in
improved performance relative to single cue performance,
but rather an increase in the target error variability.

The PCS estimate for target error variability was com-
puted by sampling 100,000 times from either a Gaussian
distribution with σV (calculated from Eq. 3) with probability
p(V ) = wV (calculated from Eq. 6), or a Gaussian distribu-
tion with σH with probability p(H) = wH = 1 − wV . The
standard deviation of the resulting samples σPCSV+H predicts
the performance in the Verr + Herr combined cue blocks
with a cue-switching strategy.

3 RESULTS

Of the analyzed trials, the average reaction and movement
time (mean ± standard deviation) was 297 ± 136 ms and
1592 ± 226 ms, respectively.

TABLE 1
Reliance on the visual cue TV , correlation coefficient R, and p-value of

interaction term a2 from the multiple regression model (Eq. 2) fit to
each subject’s combined cue data.

TV
Subj σH,t low σH,t high R a2 p-value

Im
pl

ic
it

G
ro

up

1 0.17 0.70 0.95 5.5 * 10−12

2 0.18 0.67 0.90 7.1 * 10−7

3 0.30 0.78 0.96 1.2 * 10−11

4 0.26 0.71 0.88 1.2 * 10−4

5 0.19 0.80 0.94 6.6 * 10−10

6 0.11 0.68 0.93 1.2 * 10−10

7 0.04 0.80 0.95 8.7 * 10−15

8 0.002 0.78 0.91 5.8 * 10−10

Ex
pl

ic
it

G
ro

up

9 0.12 0.73 0.92 4.8 * 10−10

10 0.23 0.68 0.92 1.5 * 10−6

11 0.15 0.59 0.88 3.1 * 10−5

12 0.08 0.71 0.92 1.8 * 10−9

13 0.34 0.69 0.91 4.4 * 10−4

14 0.07 0.67 0.91 9.1 * 10−9

15 0.02 0.64 0.88 2.4 * 10−7

16 0.02 0.69 0.91 3.3 * 10−10

3.1 Cue reliance

The steady-state measure of reliance on the visual cue
was determined for the combined cue conditions, when
both the visual and haptic cues contained random errors
(Verr + Herr). Figure 2a shows the measure of reliance on
the visual cue for a representative subject, as determined
by the regressed slopes (Eq. 2). Reliance on the visual cue
was greater when the variability of the haptic cue error was
high. This trend was observed across subjects (Fig. 2b), with
all 16 subjects showing a significant difference in reliance
between the two combined cue conditions (Table 1). A
two-way ANOVA showed a within-subject effect of hap-
tic cue error variability (F (1, 28) = 528.5, p < 0.001).
There was no significant between-subject effect of group
(F (1, 28) = 0.3, p = 0.62) and no significant interaction
(F (1, 28) = 0.2, p = 0.64). Thus, all subjects were able to
recalibrate their reliance on the visual cue after sufficient
exposure to the trial-by-trial cue errors (trials 51-100 and tri-
als 151-200 for the high and low haptic cue error variability,
respectively).

The maximum likelihood (ML) model was used to pre-
dict reliance on the visual cue, assuming a cue weighting
strategy was used. For each subject, the optimal visual
cue weight wV was calculated based on the trial-by-trial
variability in target error for the single cue conditions. In
accordance with the TV values calculated from the experi-
mental results, the ML model predicts a decrease in weight
(reliance) of the visual cue when the variability of the haptic
cue error is low (0.23 ± 0.06) compared to when it is high
(0.79 ± 0.01).

The time course of reliance on the visual cue over the
Verr + Herr trials is shown in Figure 4a, where TV is
calculated over 25 consecutive trials. The changes in reliance
follow the changes in the ratio of cue error variability
(σH,t/σV,t), i.e., as the haptic cue trial-by-trial error vari-
ability increases relative to that of the visual cue, reliance
on the visual cue also increases. Note that the ratio of the
cue error variability was also calculated over 25 consecutive
trials, and thus deviates from the defined ratio of 2 (σH,t
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high = 2 * σV,t) and 0.5 (σH,t low = 0.5 * σV,t).
The SPM two-sample t-test revealed a significant differ-

ence in reliance between the two groups when the haptic cue
error variability changed from high to low (Fig. 4b). With
the additional on-screen text about the increased haptic cue
dependability, the Explicit group made an earlier transition
to relying more on the haptic cue than the Implicit group.
There was no significant difference in reliance recalibration
when the haptic cue error variability changed from low to
high. Note that for the Explicit group, this change occurred
in spite of the incorrect on-screen text about haptic cue
dependability.

3.2 Task performance
As a measure of steady-state performance, the trial-by-trial
variability in hitting the target was compared between the
combined cue and single cue conditions. The variability
with only the visual or haptic cue was calculated from the
defined distributions used to generate the cues (σV,t, σH,t)
and the human uncertainty measured during the control
experiments (σh,V , σh,H ) (Fig. 3). The human uncertainty,
i.e., the measured standard deviation in following the visual
or haptic cue, across all subjects was 0.5 ± 0.1 cm and 0.4
± 0.3 cm, respectively. The target error variability in the
combined cue conditions was directly measured during the
Verr +Herr trials, then compared with the more reliable of
the two individual cues.

The target error variability with both the visual cue and
the haptic cue with high variability was higher than that of
the visual cue alone (Fig. 5a), as shown by the significant
within-subject effect in a two-way ANOVA (F (1, 28) =
12.2, p = 0.004). There was no significant between-subject
effect of group (F (1, 28) = 0.4, p = 0.55) and no significant
interaction (F (1, 28) = 0.4, p = 0.54). Alternatively, sub-
jects were able to hit the target with reduced trial-by-trial
variability when both the visual cue and the haptic cue with
low variability were present, compared to the haptic cue
alone (Fig. 5b). A two-way ANOVA confirmed a significant
within-subject effect (F (1, 28) = 5.7, p = 0.032), while
there was no significant between-subject effect of group
(F (1, 28) = 0.1, p = 0.83) and no significant interaction
(F (1, 28) = 0.3, p = 0.62).

The observed trial-by-trial target error variability was
compared to the predictions of the maximum likelihood
(ML) and probabilistic cue switching (PCS) models. Using
the ML model, the trial-by-trial target error variability of
the resulting cue combination is slightly lower than that of
the more reliable single cue. For the combined cue condition
with low haptic cue variability, subjects from both groups
behave similar to the ML prediction (Fig. 4b). The proba-
bilistic cue switching (PCS) model, on the other hand, pre-
dicts an increase in target error variability for the combined
cue condition compared to the more reliable single cue. For
the combined cue condition with high haptic cue variability,
subjects’ target-hitting performance is between that of the
ML and PCS estimates (Fig. 4a).

4 DISCUSSION

Our results show that subjects modulate reliance in haptic
assistance depending on the trial-by-trial random error of

the haptic cue. Subjects chose to deviate more from the
haptic cue when its trial-by-trial random error was larger
than that of the visual cue. Similar behavior was observed
for both the Implicit and Explicit groups. This means that
subjects were able to estimate the trial-by-trial variability
and adjust the amount of reliance in the haptic assistance
accordingly.

Analysis of the modulation of reliance over trials showed
a small advantage for the Explicit group. Subjects in this
group adjusted reliance on the haptic assistance significantly
earlier than those in the Implicit group. This confirms our
hypothesis that reliance would be adjusted earlier with
explicit knowledge of the limitations of the assistance, and
is in agreement with studies suggesting that providing
this type of information can improve performance with
automated systems [9], [11]. Although the Explicit group
gained reliance on the haptic assistance more quickly than
the Implicit group, both groups lost reliance on the haptic
assistance at the same rate. Interestingly, although the Ex-
plicit group was told they could rely on the haptic assistance
during this time, they quickly noticed the increase in trial-
by-trial random errors and began to rely less on the haptic
cue. Seven of the eight subjects in the Explicit group verbally
expressed that they thought the on-screen text about haptic
dependability was not correct. Even though one subject in
the Explicit group failed to notice any discrepancy, all sub-
jects exhibited significant reweighting (Table 1). Differences
in the speed of gaining and losing reliance may be caused by
differences in the learning speed of variability. It has been
shown that the learning speed of variance is faster when the
distribution changes from narrow to wide as compared to
the opposite direction [25].

In terms of task performance, when the haptic random
error had high variability, performance with both cues
present was worse than when only the visual cue was
present (Fig. 5a). However, when the haptic random error
was low, performance with both cues was better than with
either of the cues individually (Fig. 5b). This difference
in performance between the two combined cue conditions
might be due to the fact that subjects had to exert effort
to override the haptic assistance. In the high variability
case, the haptic assistance was more perturbing than in
the low variability condition. Nonetheless, our results show
that having the appropriate amount of reliance can improve
performance, even if both cues contain trial-by-trial random
errors.

Our results suggest that this performance was achieved
by weighting of the visual and haptic cues, rather than
cue switching, because the performance observed in the
combined cue conditions was better than that predicted
by the PCS model. Rather than choosing to follow one of
the two cues on a given trial, subjects aimed somewhere in
between the locations suggested by the two cues. Whether
weighting of the cues was optimal, in the sense that variance
was minimized, is unclear. Weighting appeared suboptimal
when the haptic cue random error variability was high, but
when the variability was low, performance was close to that
of the ML estimate. In classical cue weighting studies, the
ML estimate is generally assumed to be determined by the
reliability of a cue, which is estimated within a single trial
[33]. In our study, on the other hand, subjects had to learn
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Fig. 4. (a) Over trials, the change in reliance on the visual cue (left y-axis) with the change in the ratio of cue error variability (right y-axis, dotted
orange). Mean ± standard deviation across Implicit (dark blue) and Explicit (light blue) groups. Reliance and ratio of cue error variability calculated
over previous 25 trials within each of the two Verr +Herr blocks (separated by dashed line). Thus, within each of the two Verr +Herr blocks, the
first data point occurs after 25 trials (at 25 and 175, respectively). Additionally, the first data point calculated from only σH,t low trials occurs at 126.
Grey shaded region indicates a significance difference between groups, as determined by (b) the SPM two-sample t-test. Dashed horizontal line
represents the corrected threshold beyond which t values are statistically significant.

the likelihood of either cue being correct on any given trial
by estimating the variability of the trial-by-trial random er-
rors over several trials. Therefore, the ML estimation model
might not hold in this situation. On the other hand, previous
studies have observed experience-dependent reweighting of
cues [34], [35].

In the human perception and motor control studies
where ML estimation is generally applied, subjects are
mostly unaware of conflicts between the cues and the
resulting weighting behavior. In our study, however, the
conflicts were clearly noticeable and subjects were even told
that the cues had variable accuracy. Nevertheless, previous
studies have shown that cue weighting can be affected by
subjects’ awareness of the conflict, but weighting of the
individual perceptual estimates can still occur [36], [37].
Note that previous studies that applied the ML framework
assume weighting of the perceptual estimates derived from
the individual cues, based on their relative uncertainty. In
applying the ML framework to our study, we assumed that
weighting was affected not only by the uncertainty of the
perceptual estimates, but largely by the likelihood of these
perceptual estimates corresponding to the hidden target
position. Thus, it is likely that the cue weighting behavior
resulting from reliance on the cues, as observed in this

study, is a different weighting mechanism than that which
is responsible for sensory reweighting in human perception
and motor control.

Another interesting point of discussion involves the
dynamics of the presentation of the haptic versus visual
cue. While the cues appeared simultaneously, subjects could
immediately extract information about the target location
from the visual cue, whereas the haptic cue was only felt
during movement with a magnitude dependent on the
perpendicular distance within the force channel. In other
words, haptic percepts are typically built up over time,
unlike visual percepts [38]. Additionally, it has been shown
that the way in which haptic exploration occurs can af-
fect whether haptic and visual cues are even integrated
[39]. When forming a percept of surface orientation, visual
and haptic cues were only combined when the exploration
method (parallel vs. serial) was the same. In our study, the
additional cognitive component about cue correspondence
may explain why both the visual and haptic cues were used
to locate the hidden target [40].

In this study, we specifically addressed reliance on the
information (e.g., haptic assistance) provided by an auto-
mated system. It is not clear how this relates to a user’s
trust in the automated system as a whole. Future studies
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deviation) for combined cue conditions (dark blue: Implicit group, light
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(red: visual, green: haptic). Verr +Herr trials 51-100 and 151-200 were
used for combined cue conditions with (a) high and (b) low haptic cue
error variability, respectively. Predictions for target error variability in
combined cue conditions made from single cue data using maximum
likelihood estimation (ML, grey triangle) and probabilistic cue switching
(PCS, grey square) for each subject (mean ± standard deviation). Data
collapsed across all subjects for single cue conditions, ML, and PCS
since there was no difference between groups.

can compare users’ reliance on the information provided
by an automated system (using the method proposed here)
with their reported feelings of trust in the automated system
(typically measured by questionnaires [41]).

5 CONCLUSION

We conclude that reliance on haptic assistance is adapted
based on the variability of trial-by-trial random errors in
the cues, resulting in cue weighting behavior rather than
cue switching. This weighting behavior was observed in
all subjects, regardless if they received explicit information
about the current state of the variability of the trial-by-
trial random errors. However, explicit knowledge about
the haptic cue random error variability enabled subjects to
adjust their reliance on the haptic assistance more quickly
than subjects who did not receive such knowledge. The
implications of this study are favorable for haptic assistance
under practical conditions. Our results suggest that auto-
mated systems do not have to be perfect, as users can learn
to deal with errors by dynamically modulating their reliance
on the assistance.
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