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S-Net, A Neural Network Based Countermeasure
for AES

by Pradeep Venkatachalam

Abstract

Hardware implementations of encryption schemes are unprotected against side-channel anal-
ysis techniques. Physical realizations of secure algorithms leak side-channel information through
power, noise, time, sound and electromagnetic radiation. Data-dependent correlations with this
leakage are exploited to obtain secret information. Power analysis techniques are powerful, un-
detectable and non-intrusive attacks that allow an adversary to extracts the secret key of the
encryption scheme. These techniques rely on analyzing the power consumed by these physical
realizations using leakage models and statistical techniques.

Implementing a countermeasure against power analysis attacks require a thorough under-
standing of the attack, encryption algorithm and it’s implementation on hardware and soft-
ware. Conventional countermeasures for AES against power analysis techniques minimize the
side-channel information by implementing masking and hiding strategies at different abstraction
levels. This thesis investigates a new class of countermeasures known as ”breaking” through the
implementation of the Substitution Box transformation using a neural network (S-Net). The
inherent properties associated with the neural network architecture is expected to remove the
correlation between the power consumed and the secret key used for encryption by breaking the
linear power characteristics assumed by the leakage model.

The proposed approach was implemented in software and an attack framework is used to
run side-channel attacks and quantify information leakage. The effectiveness of the implemented
countermeasure is measured by checking and quantifying it’s security against Differential and
Correlation Power Analysis, Template and Deep Learning based techniques. The results indicate
that the implementation is secure against these attacks.
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Introduction 1
This chapter introduces the subject addressed in the thesis, the motivation and the state-
of-the-art. Section 1.1 highlights the motivation behind the thesis. This is followed by
Section 1.2 which presents the state-of-the-art countermeasures against power-based side-
channel attacks on AES implementations. Section 1.3 covers the contribution of the
thesis. Lastly, Section 1.4 presents the thesis outline.

1.1 Motivation

Increasing digitization in everyday aspects of modern life has resulted in today’s tech-
nological world being highly data-driven. The data stored, processed and transmitted
in this digital world is prone to vandalism, manipulation or theft during transmission,
storage or computation. Encryption is a technique used to obfuscate information into a
code, to limit or prevent unauthorized access by entities. It finds applications in critical
economic sectors such as banking operations [1], access control [2], internet security [3]
etc. Thus, information security is critical in the modern world. This has led to a need
for security measures and regulations validating the security of a system handling data
in the digital world.

This research focuses on the commonly used encryption technique known as Ad-
vanced Encryption System (AES). The algorithm is computationally secure, i.e, it can-
not be broken with modern computer technology in a practical time period [4]. AES is
the industry standard for symmetric-key encryption and finds implementations on both
hardware and software in various sectors of the economy.

Physical implementations of encryption schemes on hardware and software is, how-
ever, found to be susceptible to side-channel attacks. Side-channel attacks require the
adversary to capture and analyze sources of information-dependent leakage (power [?],
time [5], noise [6], radiation [7] etc.). The attacks allow complete recovery of the encryp-
tion key with inexpensive resources. These techniques allow the adversary to circumvent
the computational security of the encryption scheme and to decrypt the encrypted data
within a practical time frame. Figure 1.1 provides an illustration of the steps involved
in a typical side-channel attack. The security vulnerability posed by computing systems
calls for a need to create countermeasures against side-channel attacks.

Power analysis has proven to be the most effective side-channel technique due to the
ease of measurement and low sensitivity to noise [8]. Power consumption of a device is
highly data-dependent and correlation patterns between power and data being operated
upon may be obtained which can be used to break the encryption. Countermeasures
against power analysis techniques are implemented on various abstraction levels in de-
vices to increase the difficulty of breaking an encryption scheme. These countermeasures
result in increased size, power consumption or area of the cryptographic implementation
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2 CHAPTER 1. INTRODUCTION

at the cost of increased security [9]. Each countermeasure exhibits a different degree of
success against various attacks and often involves a trade-off between practical imple-
mentation aspects such as cost, power, area, and security.

Power analysis countermeasures are hence vital in maintaining the security of the
digital world. Thus, this thesis focuses on developing a novel countermeasure against
power analysis techniques. Exploration of different power analysis attacks and counter-
measures implemented at various abstraction levels is important to better understand
the security and cost of the implementation. In the next section, the state-of-the-art
countermeasures against power analysis techniques is covered.

Figure 1.1: Side Channel Attacks

1.2 State-of-the-art Countermeasures

Power analysis countermeasures primarily aim at removing the possible correlation be-
tween the power consumed by the device and the secret key used in the encryption
scheme. The security of the countermeasures are dependent on the attack being per-
formed and no single countermeasure can effectively protect against all possible attacks.
Thus, it is highly important to understand the system at different abstraction levels to
perform a threat analysis of potential attacks in order to develop solutions against these
attacks. Countermeasures are broadly classified into hiding and masking countermea-
sures.

Masking countermeasures are techniques that change the value of operands which
are dependent on the secret key in order to conceal the computation. This is done
through addition or multiplication of random variables to the intermediate values dur-
ing the encryption process. The first known application of masking to counter power
analysis techniques was proposed in 1999 [10], shortly after Paul Kocher [11] introduced
power based side-channel attacks. In [9], this technique was found to be insecure against
second-order power analysis techniques and was improved. Higher-order masking in-
creased the area of the implementation exponentially for every order of attack it was
designed to prevent. In [12], the authors proposed an efficient technique that allowed
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conversion between boolean and multiplicative masking of intermediate values. This
masking technique was proved to be insecure against zero value and collision attacks. A
stronger countermeasure secure against these attacks was proposed in 2005 through a
combination of additive and multiplicative masks [13]. Masking techniques have proven
to be secure against power analysis techniques at great cost. Through the years, there
have been attempts to optimize and modify the masking schemes in order to make them
less time consuming, energy and area efficient. The authors in [14] concluded that a
third-order masking scheme is 100 times slower than the original AES implementation.

Hiding countermeasures attempt to hide the computation without changing the
value of operands which are dependent on the secret key. This is achieved by random-
izing or smoothing the power consumed to make it constant during all operations. The
first known application of this technique was published in 2002. In the proposed tech-
nique [15], the authors implement dual-rail logic style systems at the gate level in which
each input and output signal have complementary signals, thus balancing bit-flips for
every intermediate value. This technique while effective, results in doubling the area uti-
lization and power consumed by the circuit. Multiple logic styles for counteracting power
analysis attacks are released with a varied level of success against different attacks over
the years. In 2008, the balancing was successfully implemented on architecture level [16]
by implementing two parallel computing cores each operating on complementary data.
Hiding countermeasures can also be implemented by the insertion of delay and dummy
elements in the chain of operations. This creates a misalignment in the traces and re-
duces the effectiveness of an adversary’s side-channel analysis on the implementation.
Hiding countermeasures only moderately increases the number of traces that are re-
quired by an adversary to break the encryption and do not require any modification of
the cryptographic algorithm.

The above passage clearly indicates that with the increasing sophistication of attacks,
there is a need to constantly update existing countermeasures. This thesis work aims
at analyzing and classifying existing attacks and countermeasures for AES implemen-
tations. It also proposes a novel countermeasure based on neural networks and tests
the effectiveness of the countermeasure against power analysis attacks. The question is
whether the power profile of a neural network is capable of reducing or removing the
correlation between power consumption and data.

1.3 Contribution

In this thesis, the primary objective is to propose and test a neural network based
countermeasure. The effectiveness of the countermeasure against different attacks is
measured by measuring the confidence with which the encryption key can be extracted
using different power based side-channel attacks. The main contributions of this thesis
are:

• Proposal of a novel class of countermeasures:. This thesis proposes a novel
type in addition to the existing solutions of hiding and masking techniques. It is
categorized as ”breaking”. The linear power characteristics assumed by existing
leakage models is broken resulting in secure implementation of the implementation
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of the S-Net.

• A conference submission on the proposal and implementation of a neural
network based countermeasure (S-Net) in software:. This thesis provides
the design methodology of the S-Net in software. The security of the design is
measured and validated using the Riscure experimental platform for side-channel
analysis.

• Measurement of security of implementation against Side Channel At-
tacks: This thesis evaluates the security of the implemented countermeasure
against Differential Power Analysis (DPA), Correlation Power Analysis (CPA),
Multivariate and Deep Learning based template attacks. It is observed that the
secret key of the unprotected implementation of AES can be extracted with less
than 3000 power traces. Results indicate that the implemented countermeasure
is secure against all attacks. Due to resource and time constrains, the number of
traces has been limited to 20000.

• Preparation of an experimental platform to perform security evalua-
tions: This thesis provides a description of the various devices, software and tech-
niques involved in evaluating the security of the implemented countermeasure.

• A classification and study of power based side-channel attacks and coun-
termeasures. This thesis classifies power based side channel attacks into profiled
and non profiled techniques and provides an explanation of the steps involved in
attacking protected and unprotected implementations of cryptographic algorithms
using these techniques. In addition, it classifies existing countermeasures into hid-
ing and masking techniques. This classifications gives a unique perspective on the
security of protected implementations of encryption schemes.

1.4 Thesis Organization

The remainder of this thesis report is organized into five chapters. The first two chapters
provide a background into topics that are relevant to the area of research. The next
chapter explains the motivation and design methodology of the proposed countermeasure.
This is followed by a description of the experimental platform used to validate the security
of the countermeasure. This chapter also provides an evaluation of the security and the
performance of the implemented countermeasure. The last chapter concludes the thesis.
The following list provides a more detailed description of the topics discussed in each
chapter:

Chapter 2 gives a brief background of the Advanced Encryption Standard (AES)
algorithm. Thereafter, it illustrates in detail the power based side-channel analysis tech-
niques on AES. This is followed by a brief literature review covering the design and
working principle of known countermeasures.

Chapter 3 gives a brief introduction to Artificial Neural Networks. Thereafter,
it illustrates in detail the different hyperparameters that affect the performance of the
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neural network. This is followed by an explanation of the backpropagation algorithm
and the steps involved in the training and inference phase of the neural network.

Chapter 4 first illustrates the motivation behind usage of neural networks as a
countermeasure (S-Net). The chapter then presents the design methodology of the S-
Net and optimization techniques used on the neural network architecture.

Chapter 5 first highlights the experimental platform used to validate the security of
the countermeasure. It illustrates the implementation details of the S-Net. Thereafter,
it provides an evaluation of the security of the implementation against various attacks.
Lastly, it provides a performance analysis of the implemented countermeasure.

Chapter 6 concludes this thesis and presents future research directions.





AES Power Analysis Attacks
and Countermeasures 2
AES (Advanced Encryption Standard) is a commonly used block cipher algorithm. It
was initially proposed by Joan Daemen and Vincent Rijmen as the Rijndael cipher [17]
and was selected by NIST as the new encryption standard in 2000 due to it’s simplicity,
security and ease of implementation. Once implemented, the algorithm was found to be
vulnerable to power analysis attacks. The effectiveness of these attacks depend on it’s
complexity, the adversary’s capabilities and the signal acquisition equipment. Secure im-
plementations are thus required to alter the underlying algorithm or implementation as
a countermeasure against these attacks. Section 2.1 covers the AES algorithm and high-
lights the steps involved in the encryption and decryption process. Section 2.2 provides
a classification of different power analysis attacks on AES implementations. Section 2.3
highlights proposed countermeasures to power analysis attacks.

2.1 Advanced Encryption Standard

An in-depth understanding of the steps of the AES algorithm is beneficial in identifying
the inherent weaknesses of the algorithm to power analysis attacks. AES is a symmetric
encryption algorithm that is capable of processing 128 bit data blocks at a time. The
key lengths can be 128, 192 or 256 bits. It is an iterative algorithm where a series of
transformations are applied iteratively in each ’round’. The encryption process involves
ten iterative rounds for 128-bit keys.

With the exception of the last round, each round involve an identical set of op-
erations. A key is generated for each round from the input master key using a key
scheduling (KeyExpansion) algorithm. The key scheduling process is highlighted in
the subsection below. As shown in Figure 2.1, the encryption and decryption procedure
consists of four transformations on the input data block. These include the addition of a
round key (AddRoundKey), byte-wise substitution(SubBytes), a row-shift function
(ShiftRows) and a mixing function of columns (MixColumns). The target encryption
algorithm in this thesis is the 128-bit key AES, which has a total of 10 rounds. The high-
level sequence of operations of the algorithm is shown in Figure 2.1. Each transformation
is highlighted in detail in the following subsections.

AES operates on 4×4 column-major order matrix also known as the state matrix.
Each column of the state matrix represents 32 bits and is also known as a word. Each
round of encryption of AES performs the round operations on the input state matrix and
produces a output state matrix to be fed to the next round. Figure 2.2 shows an example
of the representation of the input plaintext, round key and ciphertext as matrixes.

7
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Figure 2.1: AES Encryption and Decryption

Figure 2.2: Representation of Input Plaintext, Key and Ciphertext

2.1.1 AddRoundKey

In this step, a byte-wise XOR is performed between the state matrix and the round
key. The round keys are obtained as an output from the KeyExpansion step. The
AddRoundKey function is called once before the encryption rounds and once in each
encryption round.



2.1. ADVANCED ENCRYPTION STANDARD 9

2.1.2 SubByte

In this step, a byte-wise substitution function is applied on the state matrix. This results
in ai,j being substituted substituted with SubByte(ai,j) using a look-up table known as
Substitution Box(S-Box). This is the point of attack for many side-channel attacks [13].
The table is either computed on-the-fly or stored in the memory depending on the area
and memory constraints. The table is computed using two transformations which are
highlighted below.

• The first step involves computation the multiplicative inverse of the input byte in
GF (28).

• This is followed by an affine transformation on the inverted byte over GF(2).

The Substitution box used in AES is illustrated in Fig 2.3. The input byte is used to
select the row and column of the output byte. For example, an input byte ”12” would
point to ”c9” as a result of the SubByte operation.

Figure 2.3: Substitution Box used in AES

The S-Box is constructed to have good non-linearity properties [17]. It is also resistant
to differential and linear cryptanalysis techniques [18]. In this manner, the correlation
between input and the corresponding output is minimized. This minimized correlation
paves the path for side-channel attacks on implementations of AES [19].

2.1.3 ShiftRows

This step involves the application of a linear transformation to each row in the state
matrix. This is done by shifting each row in a cyclic manner to the left as illustrated in
Fig 2.4. The goal of this step is to create a diffusion in the state bits.
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Figure 2.4: Shift Rows Operation used in AES

2.1.4 MixColumns

In this operation, a linear transformation is applied on each column of the state matrix.
A matrix multiplication is performed in GF(28) as illustrated in Equation 2.1. This
operation is skipped in the final round of the encryption algorithm.

Out1,n
Out2,n
Out3,n
Out4,n

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

In1,n
In2,n
In3,n
In4,n

 (2.1)

2.1.5 KeyExpansion

A key scheduling algorithm is used to obtain a number of round keys from the master
key. The 10 round variant of AES requires eleven 128 bit round keys to be generated for
the encryption scheme. Thus, the round keys are a total of 1408 bits. The key scheduling
algorithm is as follows.

• K0,K1,K2 and K3 represent the thirty-two bit word components of the 128 bit
master key.

• W0,W1,W2 · · · W43 are the thirty-two bit word components of the ten round keys.

• The round constants used in each round is defined as follows.

rci = [01 02 04 08 10 20 40 80 1B 36]

Select the value of rci depending on the round i and substitute below

rconi = [rci, 0016, 0016, 0016]

• The operation RWord involves a one-byte left circular shift on the input array.

RWord([b0, b1, b2, b3]) = [b1, b2, b3, b0]
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• The operation SWord applies the Substitution Box on each byte of the input word.

SWord([b0, b1, b2, b3]) = [SubByte(b0), SubByte(b1), SubByte(b2), SubByte(b3)]

• Then, for i = 0, 1· · · 43, the following steps are used to compute the 32-bit com-
ponents of the round keys.

Wi =


Ki if i < 4

Wi−n ⊕ SWord(RWord(Wi−1))⊕ RoundConstanti/4 if i ≥ 4 and i ≡ 0(mod 4)

Wi−n ⊕Wi−1 otherwise

• In this fashion, the 44 words are generated and then combined to form 11 round
keys used in each round. Note that the first four words are the same as the original
master key which is applied on the input plaintext before entering the first round.

The algorithm has been found to be secure against various cryptanalytic techniques.
Given the large key size, it also becomes impractical for the adversary to use a brute
force attack. However, the properties of AES that make it secure against theoretical
techniques allow real-world implementations of the algorithm to be easily attacked as
will be explained in the next section.

2.2 Power-based Side Channel Attacks

Power analysis attacks seek to exploit the data dependence in the power consumed
during an encryption operation. Transistors are the building blocks of CMOS-based
logic designs. The power consumed by a device can be approximated as an aggregate of
the power activities of these individual elements. Observed power consumption is partly
dependent on the switching activity of the individual transistors [20]. It is clear that
the power utilization of a cryptographic implementation is at least partially dependent
on the data being processed. This forms the principle of power analysis attacks. The
success of these attacks are highly dependent on the strengths of the adversary including
signal acquisition equipment, countermeasures on the device under attack, processing,
time and memory constraints.

Side-channel attacks have made it clear that power dissipation considerations are
not only important from a device reliability perspective, but also a security point of
view. Thus, it is important to have an understanding of the behaviour of the device at
transistor level to truly appreciate and protect against side-channel attacks.

In order to explain the relationship of the data being processed and the power char-
acteristics of CMOS technology, it is necessary to look at the building blocks of every
device. A CMOS inverter is used to produce logic functions and is the primary compo-
nent of all integrated circuits including Microprocessors and Field Programmable Gate
Arrays. A CMOS inverter is a commonly employed logic design where the output is set
to binary voltage levels based on the input signals. It is evident that a change in the
input value causes current flow and the dynamic power behaviour of the inverter. Power
analysis attacks track the power consumption observed during this transition and corre-
late it with the value of the secret key under operation. To be precise, if an adversary
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can define a leakage model which correlates the observed power consumed to the value
of secret key bit under operation, a side-channel attack is successful.

2.2.1 Taxonomy of Side-Channel Attacks

Substantial progress has been made in power analysis attacks over the last two decades,
resulting in a perpetually growing list of countermeasures. This expansive list of attacks
calls for a need of categorization and classification of the various techniques. Power Anal-
ysis techniques can be broadly classified into profiled and non-profiled attacks based on
the control the adversary has over the device [21]. While non-profiled attacks assume lim-
ited control over the device and require some knowledge of the implementation, profiled
attacks assume possession of a clone of the device and freedom to perform operations
on input data and key of his choice. This is used to create a complete profile of the
device which is then used to extract the secret key. Taxonomy of the possible attacks
allows a structured overview into the capabilities of the adversary and simplify the task
of implementing countermeasures against a set of attacks. Thus, an extensive taxonomy
and summarizing of these attacks would be useful to any research that would benefit
from the design of countermeasures. This is illustrated in Figure 2.5 and each attack is
explained in detail in the following subsections.

2.2.2 Non-Profiled Attacks

Non-profiled attacks assume the ability to collect and analyze a limited number of side-
channel traces for known inputs and a fixed and unknown key by the adversary [22]. The
adversary does not possess the ability to perform encryptions using a key of his choice.
Some working knowledge of the implementation is assumed. Examples of non-profiled
attacks are highlighted in the section below.

2.2.2.1 Simple Power Analysis

Simple Power Analysis (SPA) [23] involves observation of the changes in the power
consumed by the target device during execution. SPA attacks are carried out by visually
inspecting the power trace and does not require any statistical analysis on the trace.
It is helpful in identifying the areas of interest in iterative encryption algorithms. For
example, one can easily observe ten rounds in the power consumption of unprotected
AES. This is illustrated in Fig 2.6. Thus, SPA is extremely useful in locating important
operations of an encryption scheme or identifying the encryption scheme being used.

In some implementations, it is also possible to extract the key being used during
encryption. For example, the square and multiply algorithm is commonly used for
exponentiation in an unprotected RSA implementation. This implementation can be
successfully attacked using Simple Power Analysis [25]. The power peaks for the square
and multiply operations are observably different and the key can easily be extracted.
This is illustrated in Fig 2.7 [26]. Thus, if a specific instruction ( or set of instructions
) with observably different power characteristics are executed dependent on the key bits
under operation, it is feasible to obtain the entire key by observing the power traces.
The KeyExpansion step of AES has also proven to be insecure against SPA techniques.
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Figure 2.5: Taxonomy of Side Channel Attacks on AES

In [27], the proposed attack against AES implementations has proven to considerably
reduce the key space to be searched by using brute force techniques.

2.2.2.2 Classic Differential Power Analysis ( Difference of Means )

Differential Power Analysis involves the use of a hypothesis in order to extract the
secret key from an encryption algorithm [8]. The power consumed is modeled based on a
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Figure 2.6: Identification of 10 rounds of AES Encryption using SPA [24]

Figure 2.7: Leakage of Key Bits from an RSA implementation [26]

hypothesis on an operand which is linked to the secret key. This is followed by validation
of the correctness of the hypothesis using the measured power traces. This is done by
segregating the power traces into groups based on each bit of a calculated intermediate
value. An observable difference between the average of the power traces between each
group indicates correctness of the hypothesis. Thus, this model evaluates the correctness
of a guess in a bitwise manner. The attack consists of the following steps:

1. Select an Intermediate Value in the Algorithm to attack. In this step, a
point of attack in the targeted cryptographic algorithm is selected. In AES, the
output from the SubByte operation is the result of a non-linear function applied
on the input plaintext and the key. This non-linearity ensures that an incorrect
hypothesis is easily identifiable in this attack. This makes it an ideal candidate for
a selected point of attack.

2. Acquisition of power traces. In this step, power consumed by the device is
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recorded in the form of power traces. Each trace corresponds to the encryption
of a random chosen plaintext with a constant key. The corresponding known
plaintext for each trace is also recorded along with each power traces. The recorded
values is stored in a matrix, PT with dimension t × n as shown in Equation 2.2.
The corresponding plaintext for each trace is stored in array Plaintext. Here, n
represents the number of points in the trace and t represents the number of traces
collected.

PT =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pt,n

 (2.2)

Plaintext =



Plaintext1
Plaintext2

.

.

.
P laintextt

 (2.3)

3. Formulation of hypothesis. In this step, a hypothesis on a SubKey, hk is formu-
lated and the corresponding byte of the Substitution operation, Ax,k is calculated
for each trace (indicated by x) collected. The intermediate value is computed as
the result of the SubByte(Plaintextx xor hk) operation. This step and the follow-
ing steps are iterated for 256 values of k. The calculated values can be stored in
an array, Ak where each row corresponds to the intermediate value generated by
each trace.

Ax,k = SubByte(Plaintextx xor hk) (2.4)

Ak =



A1,k

A2,k

.

.

.
At,k

 (2.5)

4. Partition of the Traces. In this step, the acquired traces in Step 2 are partitioned
into two groups according to the value of one of the bits of the intermediate value,Ak

obtained in Step 3. This step is iterated for every bit of the intermediate value
and all possible values of k. For example, the partitions can be formed according
the value of the LSB of the intermediate value for a given k. Here, PT0,k indicates
those power traces where the LSB of the intermediate value is 0 and PT1,k indicates
those power traces where the LSB of the intermediate value is 1.
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PT0,k =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pa,n

 (2.6)

PT1,k =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pb,n

 (2.7)

5. Evaluation. In this step, the average of the power traces in each partition is com-
puted and subtracted from each other. A correct key hypothesis, hk would result
in large peaks in the differential trace, which can be validated through inspection
or automation. An incorrect hypothesis would result in a differential trace with
smaller or no peaks. The position of the large peaks indicate the portions of the
trace where the hypothesized bit is being used. Thus, this attack reveals both the
correct SubKey and the exact point of leakage. Here, M0,k indicates the average
power consumption in PT0,k and M1,k indicates the average power consumption in
PT1,k. Dk indicates the difference between the average power consumption of the
two groups.

M0,k =
[
m0,1 m0,2 m0,3 ... m0,n

]
(2.8)

M1,k =
[
m1,1 m1,2 m1,3 ... m1,n

]
(2.9)

Dk =
[
d1 d2 d3 ... dn

]
(2.10)

6. Result. The array Dk is computed for all values of k. The array which contains the
highest valued element among the Dk arrays corresponds to the correct hypothesis
on the SubKey hk.

7. Differential Coefficient. The maximum value of Dk for each value of k is calcu-
lated and visualized.

The success of a DPA attack is dependent on the choice of the partitioning function.
Partitioning functions can also be a function of multiple bits of the chosen intermediate
value or a leakage model. Figure 2.9 and 2.8 shows graphs illustrating the variation in
the difference of means for a correct and incorrect hypothesis on the SubKey hk [28].
With increase in the number of traces collected, the difference of the averages of the
trace groups will converge to either the mean of the distribution or to zero depending on
the correctness of the hypothesis. This method of DPA is mostly limited to evaluating
one bit at a time and is time consuming. Stronger correlation models are used in more
advanced versions of side-channel attacks as described in the following sections.
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Figure 2.8: Differential trace for incorrect hypothesis on the SubKey hk [28]

Figure 2.9: Differential trace for correct hypothesis on the SubKey hk [28]

2.2.2.3 Correlation based Differential Power Analysis

Correlation Power Analysis [29] is a powerful variant of the classical Differential Power
Analysis. It involves the evaluation of the degree of correlation between a formulated
leakage model and actual measurements. The chosen leakage model is applied on the
hypothetical intermediate value and the correctness of the hypothesis affects the calcu-
lated correlation with the power traces. Some leakage models that are used for modelling
hypothetical power consumption are explained below.

1. Hamming Weight Model (HW). This model is a representation of the number
of bits set to ’1’ in a chosen value. The range of this value varies from 0 to 8. This
power model successfully captures the variation in power consumed by a transistor
circuit holding a ’one’ or a ’zero’ [30]. An example is shown below.

HW(0× 86) = HW(1000 0110) = 4

2. Hamming Distance Model (HD). This model is a representation of the distance
between two values. This is done by counting the number of 0 to 1 transitions
during an operation. This power model successfully captures the variation in power
drawn by a transistor during transition of it’s output value [30]. An example is
shown below.
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HD(0× 86→ 0× 44) = HD(1000 0110→ 0110 0110) = 3

3. Zero Value Model (ZV). This model is a representation of the difference in
power consumption when data being operated on is zero and non-zero [30]. An
example is shown below.

ZV(0× 86) = 0

ZV(0× 00) = 1

The attack consists of the following steps:

1. Select an Intermediate Value in the Algorithm to attack. Similar to Step
1 of the classical DPA, the adversary selects an intermediate value to attack.

2. Acquisition of power traces. Similar to Step 2 of the classical DPA, the adver-
sary records a set of power traces along with the plaintext under encryption.

PT =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pt,n

 (2.11)

Plaintext =



Plaintext1
Plaintext2

.

.

.
P laintextt

 (2.12)

3. Calculation of hypothetical Intermediate value. Similar to Step 3 of the
classical DPA, a hypothesis is made on the SubKey, hk and the corresponding
result of the SubByte operation is calculated for each trace and corresponding
plaintext, Plaintextx. This step and the following steps are iterated for all possible
hypotheses of the SubKey, i.e 256 values.
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Ax,k = SubByte(Plaintextx xor hk) (2.13)

Ak =



A1,k

A2,k

.

.

.
At,k

 (2.14)

4. Application of power leakage model. In this step, a leakage model is applied
to every element in the matrix Ak. The choice of leakage model is dependent on
the target device. The mapped values are represented by array Bk. These arrays
are generated for all values of k. The arrays are concatenated together to form a
matrix of leakage values B.

Bk =



l1,k
l2,k
.
.
.
lt,k

 (2.15)

B =


l1,1 l1,2 l1,3 ... l1,255
l2,1 l2,2 l2,3 ... l2,255
. . . . .
. . . . .
lt,1 lt,2 lt,3 ... lt,255

 (2.16)

5. Evaluation. In this step, the degree of correlation between the matrix B and the
acquired power traces in PT is calculated. This is calculated by substituting the
appropriate values in Equation 2.17. The results are stored in matrix C.

ci,j =

∑n(ln,i − µli)(pn,j − µpj )√∑n (ln,i − µli)
2(pn,j − µpj )2

(2.17)

C =


c1,1 c1,2 c1,3 ... c1,n
c2,1 c2,2 c2,3 ... c2,n
. . . . .
. . . . .

c255,1 c255,2 c255,3 ... c255,n

 (2.18)

6. Result. The row which corresponds to the highest valued element among each
column of the matrix elements corresponds to the correct hypothesis on the
SubKey hk. The location where the SubKey is used in the encryption operation
indicated by n.
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2.2.2.4 Higher Order Differential Power Analysis

Higher Order DPA (HODPA) is a powerful variant of the differential power analysis
which attacks multiple intermediate values simultaneously [31]. The attack combines
multiple samples within a trace that corresponds to multiple intermediate values using
a combination function.

A common application of HODPA is used when the target intermediate value x is
masked with a random mask m. If a second known intermediate masked variable, y
can be found with the same mask m, the values can be XORed with each other to
obtain the unmasked sum of the variables. An hypothesis can be formulated on this
combination and correlated with the power traces as shown in the classical DPA attacks.
For example, in a masked AES implementation, the input to the Substitution box, x is
normally masked with mask m, to obtain xm. The output of the Substitution box, ym
contains the same mask. A HODPA attack can be performed on this implementation by
creating a hypothesis on xm ⊕ ym, which is equal to x ⊕ y which can be predicted [32].

2.2.3 Profiled Attacks

Profiled attacks assume the possession of a clone of the target device capable of encrypt-
ing a chosen plaintext with a chosen key. The recorded power traces obtained from this
clone during encryption is used to construct a template. This template is then compared
with the behaviour of the target device during encryption to determine the key used in
the encryption scheme [33]. Profiled attacks are powerful and strong templates allow the
adversary to extract the hidden key with a single power trace.

Profiled attacks usually comprise of two phases: the Profiling and Extraction phase.
The Profiling phase involves the adversary capturing the behaviour of the clone which is
in turn used to create a template. The steps involved in the creation of the template is
dependent on the attack model used. This section highlights the steps involved in two
attack models i.e Multivariate distribution based template attack and the Deep learning
based template attacks.

2.2.3.1 Multivariate Distribution Template Attacks

The attack approximates the leakage observed in the power traces as a multivariable
distribution, represented using a covariance matrix and a mean vector. The adversary
computes the two components for each key and input and uses this information to create
a template. This template is then used to analyze the target trace to recover the secret
key with the highest probability of being used [34].

This profiling phase for this attack consists of the following steps:

1. Procurement of cloned device. In this step, the adversary procures a clone of
the device to be attacked.

2. Acquisition of traces. In this step, a set of power traces are recorded. Each
trace corresponds to the encryption of a randomly chosen plaintext with a random
key. The plaintext and key used for each trace is also recorded along with each
power trace. The recorded values can be stored in a matrix with dimension t × n
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as shown in Equation 2.30. Here, n represents the number of points in the trace
and t represents the number of traces collected.

PT =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pt,n

 (2.19)

3. Processing of traces. Full knowledge of the key used in the encryption of each
trace is assumed in the Profiling phase. Thus, for each trace collected in the
previous step, the adversary can compute the intermediate value. Similar to Step
4 of the previous attack, each output of the operation during encryption is mapped
according to the chosen leakage model. The mapped values are stored in matrix
B.

B =



l1
l2
.
.
.
lt

 (2.20)

4. Separation of Power Traces. In this step, the adversary divides the traces col-
lected based on the value of the mapped leakage model in matrix B. For example,
in the Hamming Weight (HW) leakage model, the traces can be divided into nine
possible groups.

5. Selection of Points of Interest. The adversary identifies m points of interest
in the power trace. The points in traces that give the highest difference in power
consumption for different Hamming Weights are selected as points which are in-
dicative of the key used. This is done by computing the mean vector of the power
trace for each Hamming Weight group and observing the difference between each
vector. The points on the resulting power trace which indicate maximum difference
are selected as the points of interest. The rest of the points in the power trace are
not considered in the further steps.

6. Creation of Template After separation of the traces into groups and identi-
fication of the points of interest, the covariance matrix and the mean vector is
computed for the traces in each group, indexed by i. The results are stored in
matrix CVi and array Mi. Thus, this step results in nine covariance matrixes and
mean vectors if the Hamming Weight model is used.

CVi =


cv1,1 cv1,2 cv1,3 ... cv1,m
cv2,1 cv2,2 cv2,3 ... cv2,m
. . . . .
. . . . .

cvt,1 cvt,2 cvt,3 ... cvt,m

 (2.21)
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Mi =
[
m1 m2 m3 ... mm

]
(2.22)

The Extraction phase for this attack is highlighted below.

1. Procurement of target device. In this step, the adversary procures the target
device to be attacked.

2. Acquisition of traces. Similar to Step 2 of the profiling phase, the adversary
records multiple traces during encryption of random plaintext. Unlike the profiling
phase, the adversary has no knowledge of the key used in the encryption. The
recorded values can be stored in a matrix with dimension t × n as shown in
Equation 2.32. Here, n represents the number of points in the trace and t represents
the number of traces collected. In the extraction phase, the number of traces
collected may be small.

PT =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pt,n

 (2.23)

3. Application of Probability Density Function on target traces Using the
covariance matrixes, CVi and the mean vectors, Mi that were computed in the pre-
vious step, the probability density function on each target trace, t is calculated for
each template. Thus, given a set of templates that are characterized by (Mi, CVi),
on application of the probability density function on the traces, the resulting value
indicates the probability that the particular leakage model value, i was used in the
trace.

fi(t) =
1√

2π × det(CVi)
× exp((t−Mi)

′ × CV −1i × (t−Mi)) (2.24)

The results of the computation is stored in matrix F . Each column indicates the
value of the leakage model and each row represents a power trace. The Hamming
weight is selected in the following equation. Thus the matrix would contain nine
columns, one for each value of the leakage model.

F =


ft1,(M0,CV0) ft1,(M1,CV1) ft,(M2,CV2) ... ft1,(M8,CV8)

ft2,(M0,CV0) ft2,(M1,CV1) ft2,(M2,CV2) ... ft2,(M8,CV8)

. . . . .

. . . . .
ftn,(M0,CV0) ftn,(M1,CV1) ftn,(M2,CV2) ... ftn,(M8,CV8)

 (2.25)
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4. Application of power leakage model on intermediate value. Similar to Step
3 and Step 4 of Correlation DPA, the adversary makes an hyptothesis on the 256
possible values of the Subkeys and calculates the intermediate value corresponding
to each trace and plaintext. This information is stored in matrix A. Subsequently,
a leakage model is applied on each element of A and the mapped values are stored
in B.

A =


A1,1 A1,2 A1,3 ... A1,255

A2,1 A2,2 A2,3 ... A2,255

. . . . .

. . . . .
At,1 At,2 At,3 ... At,255

 (2.26)

B =


l1,1 l1,2 l1,3 ... l1,255
l2,1 l2,2 l2,3 ... l2,255
. . . . .
. . . . .
lt,1 lt,2 lt,3 ... lt,255

 (2.27)

5. Application of Probability Density Function on leakage model. In this
step, the elements of the matrix B is correlated with the with the elements of
matrix F . We refer to this new matrix as C in which each element indicates
the probability that the hypothesized Subkey was used in the power trace. The
logarithmic sum of each column in C is calculated to produce an array S. The
index of the element with the largest sum in S indicates the SubKey used in the
power trace.

C =


c1,1 c1,2 c1,3 ... c1,255
c2,1 c2,2 c2,3 ... c2,255
. . . . .
. . . . .
ct,1 ct,2 ct,3 ... ct,255

 (2.28)

S =
[
s1 s2 s3 ... s255

]
(2.29)

2.2.3.2 Deep Learning Based Template Attacks

The Deep Learning Based Template Attack is similar to the Multivariate Distribution
template Attack. The characterization of the template is however executed with the help
of a trained deep learning neural network. The profiling phase for this attack consists of
the following steps.

1. Procurement of cloned device. In this step, the adversary procures a clone of
the device to be attacked.
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2. Acquisition of traces. In this step, a set of power traces are recorded. Each
trace corresponds to the encryption of a randomly chosen plaintext with a random
key. The plaintext and key used for each trace is also recorded along with each
power trace. The recorded values can be stored in a matrix with dimension t × n
as shown in Equation 2.30. Here, n represents the number of points in the trace
and t represents the number of traces collected.

PT =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pt,n

 (2.30)

3. Characterization using Deep Learning Network. The acquired traces are
characterized by using a deep learning network. The labels used to train the deep
learning network is the value returned by the leakage model for each trace. Since
the adversary has information about the plaintext and key used in each trace, the
corresponding intermediate value can be computed for each trace. The leakage
model is then applied on the intermediate value to to be used as a label for each
trace. The entire trace is passed as input to the neural network along with the
corresponding label. Sixteen such neural networks are trained simultaneously for
each subbyte of the key.

The Extraction phase for this attack is highlighted below.

1. Procurement of target device. In this step, the adversary procures the target
device to be attacked.

2. Acquisition of traces. Similar to Step 2 of the profiling phase, the adversary
records multiple traces during encryption of random plaintext. Unlike the profiling
phase, the adversary has no knowledge of the key used in the encryption. The
recorded values can be stored in a matrix with dimension t × n as shown in
Equation 2.32. Here, n represents the number of points in the trace and t represents
the number of traces collected. In the extraction phase, the number of traces
collected may be small.

PT =


p1,1 p1,2 p1,3 ... p1,n
p2,1 p2,2 p2,3 ... p2,n
. . . . .
. . . . .
pt,1 pt,2 pt,3 ... pt,n

 (2.31)

3. Application of traces on Neural Network. The traces collected are applied
on the trained neural network. The probability of the label used is returned as the
inference of the neural network. This is represented in Equation 2.32. Each value
of the matrix represents the probability that leakage model value i is used in trace
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tj . For example, on usage of the Hamming Weight model as a label to train the
neural network, the matrix would contain nine columns.

F =


DL(p1)1 DL(p1)2 DL(p1)3 ... DL(p1)j
DL(p2)1 DL(p2)2 DL(p2)3 ... DL(p2)j

. . . . .

. . . . .
DL(pt)1 DL(pt)2 DL(pt)3 ... DL(pt)j

 (2.32)

4. Application of power leakage model on intermediate value. Similar to Step
3 and Step 4 of Correlation DPA, the adversary makes an hyptothesis on the 256
possible values of the Subkeys and calculates the intermediate value corresponding
to each trace and plaintext. This information is stored in matrix A. Subsequently,
a leakage model is applied on each element of A and the mapped values are stored
in B.

A =


A1,1 A1,2 A1,3 ... A1,255

A2,1 A2,2 A2,3 ... A2,255

. . . . .

. . . . .
At,1 At,2 At,3 ... At,255

 (2.33)

B =


l1,1 l1,2 l1,3 ... l1,255
l2,1 l2,2 l2,3 ... l2,255
. . . . .
. . . . .
lt,1 lt,2 lt,3 ... lt,255

 (2.34)

5. Correlation of Hypothesis Matrix with Leakage Model. Each element of
matrix B is correlated with the elements of matrix F. This new matrix is referred to
as C in which each element indicates the probability that the hypothesized Subkey
was used in the power trace. The logarithmic sum of each column in C is calculated
to produce an array S. The index of the element with the largest sum in S indicates
the SubKey used in the power trace.

C =


c1,1 c1,2 c1,3 ... c1,255
c2,1 c2,2 c2,3 ... c2,255
. . . . .
. . . . .
ct,1 ct,2 ct,3 ... ct,255

 (2.35)

S =
[
s1 s2 s3 ... s255

]
(2.36)
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2.3 Countermeasures

The Substitution Box operation is a primary point of attack in the AES algorithm, as
seen in the previous section. Several countermeasures have been developed around this
operation with different levels of security. These typically involve protection at the al-
gorithmic level, and are independent of the device. Masking countermeasures typically
involve combination of the intermediate values with a random value during computation
in order to create random intermediates [35]. These random intermediates remove possi-
ble correlations between the power profile and the data being processed. There also exist
countermeasures that are independent from the executed algorithm. For example, a reg-
ister holding the intermediate value of an encryption operation can be duplicated to hold
the complement of the intermediate value. This countermeasure is also known as the
dual-rail scheme and belongs to the hiding class of countermeasures [36]. These counter-
measures make no modification to the intermediate values generated during encryption.
While there is no countermeasure which makes the algorithm completely secure against
all possible attacks, the objective of the countermeasure aims at increasing the difficulty
of the attack from a polynomial-time bounded adversary. Thus, it is clear that the ease
of attacking an implementation of a cryptographic algorithm using side-channel attacks
gives rise to the need for developing countermeasures against the same. This section
highlights a classification, in-depth analysis of some existing countermeasures and their
implementation.

2.3.1 Classification of Countermeasures

Countermeasures can be classified into two major categories based on their implementa-
tion. Hiding countermeasures aim at hiding the data being processed while the masking
countermeasures are designed to apply a randomized mask on the data being processed.
While masking countermeasures are strictly at an algorithmic level, hiding countermea-
sures can be classified further depending on the abstraction layer it is implemented in.
This classification is illustrated in Figure 2.10. The different types of countermeasures
are explained in detail in the following sections.

2.3.2 Hiding

The hiding countermeasure primarily aims at hiding the intermediate value with no
modification to the value itself. This can be achieved by adding data-independent noise
to the power consumption of the device. For example, addition of dummy instructions
or shuffling of operations is an inexpensive and commonly used countermeasure [37].
Misalignment of traces causes the intermediate value to be processed at different points
in each acquired power traces and can reduce the effectiveness of an attack [38]. This
countermeasure however offers limited security as simple pre-processing techniques on
the traces can remove the security of hiding techniques.

A hiding countermeasure can also be achieved by ensuring a constant power supply
irrespective of the data being operated on. For example, pre-charged logic cells and
balanced structures which process both the operation and it’s inverse simultaneously
to exhibit a constant power signature are commonly used countermeasures [39]. This
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Figure 2.10: Classification of Countermeasures
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Figure 2.11: Random Delay as Countermeasure for AES [40]

research study highlights some commonly used hiding implementations in the following
subsections.

2.3.2.1 Addition of Temporal Noise

Misalignment of traces through the addition of temporal noise causes the critical inter-
mediate value to be processed at different points in each acquired power trace and can
reduce the effectiveness of an attack. This is illustrated in Figure 2.11. Random inser-
tion of instruction and delay modules are inexpensive and do not significantly add to the
cost of implementation in terms of area, power and time. They can easily be added to
both hardware and software implementations of the algorithm. A secure pseudo random
generator must be implemented to calculate appropriate delay values [41]. For example,
the number and choice of dummy instructions or delay elements to be added in the al-
gorithm chain must not be a predictable pattern that can be easily ’edited out’ from a
power trace. Ambrose et al. proposed insertion of dummy instructions in the critical
areas of the algorithm which read and write random values to registers when critical
instructions are executed [42]. This is effective in disguising SPA patterns and makes
the acquired traces harder to pre-process for DPA. This scheme also offers protection
against higher-order attacks since alignment becomes more difficult when multiple points
on the trace needs to be taken into consideration [43].

However, these protection mechanisms are vulnerable to processing techniques which
may used by the adversary if the countermeasure is incorrectly implemented. Some tech-
niques include transforming the traces acquired using Fourier transform and removing
the effect of misalignment [44]. Insufficient randomness of the function dictating the
position and number of the dummy operations inserted may also allow the adversary to
simply remove the unwanted portions of the trace and proceed to mount a successful
attack. In this case, delay elements can be easily observed using a Simple Power Anal-
ysis attack allowing the adversary to mount an attack on the relevant segments of the
acquired power trace.
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Figure 2.12: Unprotected Implementation of AES [45]

Figure 2.13: Protected implementation of AES using random amplitude noise [45]

2.3.2.2 Addition of Amplitude Noise

The number of traces required to obtain the key used would increase by decreasing
amplitude of the signal with respect to the noise. This implementation makes it difficult
for the adversary to observe data dependent variations [45] by hiding the leakage. This is
illustrated in Figure 2.12 and 2.13. While these countermeasures are cheap and require
minimal investment in terms of area, noise and power, their security is measured by the
signal-to-noise ratio achieved and the attack used. It is important that the frequency
response of the noise source must match with the signal. Incorrect implementation
would allow the the adversary to pre-process the traces using a filter and remove the
added noise. Some sources of amplitude noise includes noise generators [46] and random
oscillators [47].

2.3.2.3 Balanced Implementation at Gate Level

Leakage models in side channel attacks rely on the detection of bit-flips or the value of
the bits stored in the registers. This hiding countermeasure involves the flattening of the
power consumed by the component making it independent of the bits involved in the op-
eration. This is achieved by creating logic cells that process data along with it’s inverse
thus equalizing power consumption during execution of each instruction. Thus, each in-
put and output signal is represented by complementary wires. The simultaneous charging
and discharging of these complementary wires results in fixed transition counts which
are data-independent. This breaks the leakage model and renders attacks ineffective. A
notable example of this logic style is the Wave Dynamic Differential Logic (WDDL). Fig-
ure 2.14 illustrates basic logic gates designed using the WDDL logic style [48]. Shrinking
transistor and wiring sizes results in implementation constraints making this counter-
measure expensive to design correctly. For example, in case of WDDL, the loading
capacitance between the two complementary wires must be the same. If designed incor-
rectly, the waveforms of each output signal can be distinguished and the attacks proves
to be successful. A difference in delay time between each output signal may also al-
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low the implementation to be attacked. Overheads include increased area along with
increased power consumption in comparison to the unprotected design. Thus, usage of
this countermeasure significantly increases design costs when implemented on a product.

Figure 2.14: Design of logic gates using WDDL logic style [48]

2.3.2.4 Balanced Implementation at Algorithm Level

The implementation of a countermeasure using balanced logic, as highlighted in the
previous section, is expensive in terms of area and power. A balanced design at a gate
level abstraction would perform the balancing for all data processed through the gates. It
would also require compilation of special libraries required to implement balanced logic.
This section highlights a proposed countermeasure which performs the balancing at an
architecture level. This technique makes use of a dual-processor architecture, where the
two processors encrypt complementary data, thus balancing the power observed due to
bitflips [16]. The second processor may be used only when data is being encrypted and
can execute other tasks when encryption is not required by the application. Thus, this
countermeasure uses twice the hardware only when performing secure operations.
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Figure 2.15: Balancing of AES Algorithm [16]

In order to obtain a complete inversion of the intermediate values processed during
encryption, the second processor uses an inverted key and an inverted and transposed
version of the SubByte operation, indicated by SubByteT . The S-Box used in the key-
scheduling process is also transposed. Figure 2.15 depicts the implementation of the
countermeasure in a step-by-step manner. The partial inversion is shown to indicate the
effect of complementing the Input and the Key with a transposed S-Box. This partial
inversion results in an inverted ciphertext. While this partial inversion produces a final
inverted output, the intermediate data after the first SubByte remains the same as the
original implementation making the implementation more vulnerable to power analysis
attacks. This partial inversion implementation is further modified by keeping the Input
unchanged and performing SubByteT . This results in retrieval of complementary values
during the SubByte operation in comparison to the original implementation. Thus, the
final design produces a complete inversion of all intermediate values obtained during
the encryption and the power consumption is balanced making it secure against power
analysis techniques. This implementation is secure against the Hamming Weight and
Distance models for every order of DPA.

The place and route of the chip containing these processors must be performed such
that it is not possible to isolate the power profile of one particular core. One possi-
ble threat model would be placement of an EM probe in the vicinity of a single core,
which would render the balancing technique useless. The processors must also be com-
pletely synchronized with each other using an external synchronizer to ensure that each
intermediate value ( and it’s inversion ) are processed at the same time. An incorrect
synchronizer allows the adversary to easily isolate the power trace of one of the proces-
sors.

2.3.3 Masking

The masking countermeasure primarily aims at concealing the critical intermediate value
by applying a random mask to it. This is achieved by addition or multiplication of ran-
dom values to the encryption input and intermediate values [49]. These ’masks’ obfuscate
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Figure 2.16: Unprotected SubByte operation [12]

the computation on actual values making the power trace uncorrelated to the secret key
being used. The power consumption is made independent at an algorithmic level with-
out making modification to the device characteristics. The masked representations of
the intermediate values are computed and stored until the final round of the AES en-
cryption algorithm. The original values are reconstituted from the final output of the
final round. Masking schemes can be sub-classified into two categories based on the type
of mask used to randomize the critical value, namely arithmetic and boolean masking.
Arithmetic masking performs modular addition or multiplication on the chosen inter-
mediate value. This masking scheme is suitable to mask non-linear functions such as
SubByte. Boolean masks performs a bit-wise exclusive-or operation on the chosen in-
termediate value. This technique is used to mask intermediate values that are inputs
to linear functions such as ShiftRows, MixColumns and AddRoundKey. The following
sections highlight different masking techniques commonly deployed as a side-channel
countermeasure.

2.3.3.1 Masking the Substitution Box against DPA

Non linear functions such as SubByte can be modified to allow masked inputs which
results in masked outputs. For example, boolean masks are applied to the input of
Substitution boxes as shown below [12]. Given the original SubByte operation S and
input i to which the mask m0 is applied, an appropriate output mask m1 and new
SubByte operation S′ must be constructed in the following manner in order to recover
the final output.

S′[i] = S[i⊕m0]⊕m1 (2.37)

An alternate approach to masking is through decomposition of the SubByte oper-
ation into a series of linear and non linear operations [12]. The SubByte operation is
a combination of a multiplicative inversion in GF(28) followed by an affine transforma-
tion, f applied on the input byte as illustrated in Figure 2.16. These operations can be
individually masked as illustrated on a high level in Figure 2.17. An illustration of the
modified inversion in detail is shown in Figure 2.18. The output X1i,j is computed as
f(Xi,j)⊕ 0× 63 ( derived from the affine properties of the transformation ). The mask
X1i,j at the end of the modified inversion is then transformed by the linear ShiftRow,
MixColumns and AddRoundKey step until it finally removed at the end of the round
with an additive exclusive-or addition.
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Figure 2.17: SubByte operation with masking countermeasure [12]

Figure 2.18: Detailed view of the masked inversion [12]

2.3.3.2 Masking against Higher Order DPA

The countermeasure discussed in the previous section is vulnerable to second order DPA
attacks. The adversary may identify multiple samples in the trace set obtained that
would allow him to remove the mask used in the encryption process by correlating a
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combination function of the masked intermediate value and the mask applied.
Rivain et al proposed a generic dth-order masking scheme, where d represents the

number of masks applied to each key dependent intermediate value [14]. This results in
d+ 1 shares that is used in the encryption algorithm. This countermeasure is based on
the principle of secret sharing schemes. Each intermediate value is split into multiple
shares each of which can be operated upon individually. The resultant shares can be
recombined to retrieve the result of the operation on the secret. The splitting of the
intermediate variable, x into d shares is illustrated below.

x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ ...xd = x (2.38)

In the above equation, d shares are randomly selected and x0 is calculated to satisfy
the equation. Splitting of the intermediate sensitive variable into shares ensures that
any computation that takes place on the shares is independent of the sensitive variable.

The dth-order masking scheme is vulnerable to an attack of (d + 1)th-order. This
attack selects points which target the leakage related to the d+ 1 intermediate variables
simultaneously. However, for d ≥ 3, such attacks become impractical due to increased
complexity and memory constraints. This makes a higher-order masking scheme a sound
countermeasure.
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Artificial Neural Networks (ANNs) are computing systems which possess the ability
to recognize patterns, observe trends, analyze data and make predictions based on the
data-sets. There is growing reliance on Neural networks in various disciplines such
as speech [50], image and video processing [51], weather forecasting [52] and cyber-
security [53]. ANNs have revolutionized many aspects of modern society and the fruitful
interactions that are possible between Neural networks and research in various fields are
proof to this claim. This chapter offers an insight into the working principles of a neural
network. Section 3.1 provides a background of the building blocks of Neural Networks.
Section 3.2 highlights different parameters that affect the performance of the neural net-
work. Section 3.3 describe the hyperparameters that define the structure and training of
neural networks.

3.1 Building blocks of Neural Networks

An Artificial Neural Network comprises of two building blocks, the neurons and the
weights. Figure 3.1 illustrates a single neuron and n weights. An input is given on each
weight and an external input in the form of bias is also applied to the neuron. The
neuron computes a function on the bias, inputs and the weights and produces an output
that is fed to an activation function. These functions are used to apply a transformation
on the output of neuron so as to pass the information to the next neuron.

The function, f of the inputs xi, weights wi and the bias which is computed by the
neuron is given below.

f(neuron) =

n∑
i=1

xiwi + bias (3.1)

Figure 3.1: Structure of a simple ANN

35
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Figure 3.2: Structure of Multilayer Perceptron

3.2 Multilayer Perceptron

The neuron detailed in the previous section forms the basic building block of complex
networks also known as Multilayer Perceptrons (MLP) [54]. An example of Multilayer
Perceptron with a single hidden layer is illustrated in Figure 3.2. The MLP depicted
consists of three layers namely the input layer, the hidden layer and the output layer.
The input layer acts as an entry point for the inputs into the neural network. Except
for the neurons in the input layer, every other neuron uses an activation function. The
hidden layer is responsible for extracting information and features from the input data.
The output layer presents the output decision or prediction of the neural network. MLPs
are fully connected structures with each node in one layer connected to every node in
the following layer.

MLPs are trained on a series of input-output pairs during which the weight and bias
values of the network are modified in order to model the dependency between the input
and the output. The error of prediction from each iteration of training is monitored
and the parameters are changed accordingly in order to minimize the error. The back
propagation algorithm is used to adjust the parameters relative to the error of prediction.

3.3 Hyperparameters

Hyperparameters are design parameters of the neural network which are initialized be-
fore training the model for a given set of inputs and outputs. These variables define the
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Figure 3.3: Width and Depth of a Multilayer Perceptron

structure (Eg: Number of neurons in the hidden layer) and influence the training algo-
rithm of the neural network ( Eg: The optimization and loss function used wile training
the neural network ). The hyperparameters can be classified into structural and training
hyperparameters. The following sections explore different examples of the two classes.

3.3.1 Structural Hyperparameters

Structural hyperparameters include parameters that define the structure of the network.
These parameters are width and depth of the neural network and the activation function
used. They are explained in detail below along with illustrations.

3.3.1.1 Width of Neural Network

The width of the neural network refers to the number of neurons contained in each
layer. Research in the field indicates that increasing width of neural networks shows a
promising improvement in performance across networks of different depth [55]. It is also
computationally more efficient to widen the network since multiplications required can
be computed in parallel. In addition, the authors in [51] conclude that increase in width
of a layer shows drastic improvement in performance of feature recognition systems.

3.3.1.2 Depth of a Neural Network

The depth of a neural network refers to the number of hidden layers contained in a neural
network. Research indicates that deep neural networks provide a better generalization
for a variety of tasks [56]. Increased depth enables networks to better capture variations
in data. However, the computational demands of increased depth make it expensive to
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implement in hardware and software. Figure 3.3 illustrates the width and depth of the
MLP.

3.3.1.3 Activation Function

The activation function attached to the neurons in the MLP perform the task of trans-
forming the weighted sum of the neurons of the previous layer to a suitable value for
input to the next layer. Figure 3.4 illustrates commonly used activation functions [57].
Activation functions are used to introduce non-linearity in the neural network ( with the
exception of the identity activation function ). This enables the network to detect and
distinguish complex features. The activation function attached to a particular neuron
allow the neuron to ’activate’ when specific stimulus is given as input. In case of classi-
fication problems, the neuron corresponding to the correct output gets activated. Some
activation functions are highlighted below.

Figure 3.4: Commonly Used Activation Functions [57]

• Identity. The identity unit is a linear activation function that takes input ar-
guments and returns them unchanged. In mathematical terms, the activation
function, f for an input, x can be described to be of the form f(x) = x.

• ReLU. The Rectified Linear Unit activation function takes input arguments and
returns the argument unchanged if it is a positive value. The function returns a
zero for negative input values. In mathematical terms, the activation function, f
for an input, x can be described to be of the form f(x) = max {0, x}.

• Hyperbolic tangent. The Hyperbolic tangent activation function takes input
arguments and applies the hyperbolic tangent function on them in the range of
(−1, 1). In mathematical terms, the activation function, f for input, x can be

described to be of the form f(x) = tanh(c) = (ex−ex)
(ex+ex) .

• Sigmoid.The Sigmoid tangent activation function takes input arguments and ap-
plies the hyperbolic tangent function on them in the range of (0, 1). In mathemat-
ical terms, the activation function, f for input, x can be described to be of the
form f(x) = 1

(1+e−x)
.
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3.3.2 Training Hyperparameters

Training hyperparameters include functions involved in the training of the neural net-
work. The parameters are the initialization, regularization and loss functions. Each
function is explained in detail below along with equations.

3.3.2.1 Initialization

The initialization function involves setting the values of the weights and bias of the
neural network before training. Research indicates that some initialization functions
enable faster training of the neural network model. Following are some basic initialization
techniques used to initialize the parameters of the neural network.

• Zero initialization. This initialization function sets all the weights and biases
to zero. This makes every neuron in the hidden layer symmetric throughout the
training process. This results in all neurons having the same value of weights after
iterations of training. This results in the complexity of the neural network to be
equivalent to that of a single neuron. Thus, zero initialization is not suitable for
classification problems.

• Random initialization. This initialization function sets random values to the
weights and biases of the neural network. Care must be taken to set the range of
random value set to the weights. High values of weights can result in slow training
of the networks while weights initialized with extremely low values leads to results
similar to zero initialization [58].

• He initialization. This initialization function is an extension of the random ini-
tialization function. In this method, the weights of a given layer are initialized
taking into consideration the width of the previous layer. This is defined in Equa-
tion 3.2. This factor is multiplied with the randomness function and results in
faster training of the network [59].

He Initialization Factor =

√
2

Size of Previous Layer
(3.2)

• Xavier initialization. This initialization function is a modification to the He
initialization function. The initialization factor as shown in Equation 3.3 [60].

Xavier Initialization Factor =

√
1

Size of Previous Layer
(3.3)

3.3.2.2 Loss Function

The loss function is tasked with calculation of the error between the predicted output
value produced by a network and the actual value provided by the user from the input
data-set. The neural network aims to minimize the loss function in the training phase in
order to improve prediction accuracy. Some commonly used loss functions are highlighted
below. In the following equations, it is assumed that N represents the number of samples,
yi represents the actual value present in the training data-set and ai represents the
predicted value.
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• Quadratic Error. The quadratic error loss function is implemented by calculating
the sum of the absolute difference between the predicted and actual output for the
entire data-set. This function is defined in Equation 3.4.

Quadratic Error =
N∑
i=1

|ai − yi|
2 (3.4)

• Cross Entropy. The cross entropy loss function is implemented by calculating the
difference between probability distributions of the predicted and the actual output
of the data-set. It is commonly used in classification problems whose output is the
probability value. The loss function decreases when the predicted probability dis-
tribution approaches the actual probability distribution. It is also referred to as the
log loss function. The loss function applies heavy penalization to the network for
confident and incorrect predictions [61]. This function is defined in Equation 3.5.

Cross Entropy Error =

N∑
i=1

|ailog(yi) + (1− ai)log(1− yi)| (3.5)

3.3.2.3 Regularization

The regularization function is tasked with preventing the neural network from over-
fitting to the training data. Overfitting is a modeling error that causes the trained
neural network to map too closely to the training data during the training stage and
not generalize enough to possess the ability to predict correctly in the inference stage.
Regularization functions are common methods to prevent this phenomenon and improve
the performance of the neural network. Some commonly used regularization techniques
are highlighted below.

• L1 / L2 Regularization. The regularization function ensures an upper limit on
the weights of the neurons in the network. Large weights leads to poor perfor-
mance and overfitting of the network. The L1/L2 regularization is implemented
by adding a term to the cost function as illustrated in Equation 3.6. This ensures
that the neural network trains with smaller weights preventing overfitting of the
trained model [62]. The regularization parameter, λ is a hyperparameter that is
used for tuning the degree of regularization. In case of L1 regularization, L is
substituted with the absolute sum of all the weights. Here, higher value of weights
are penalized during the next iteration of training. Similarly, in L2 regularization,
L is substituted with the square of the absolute sum of all the weights. This is also
known an weight decay since the weights are forced to converge to a minimum.

Cost Function = Loss Function + (λ× L) (3.6)

• Early Stopping The early stopping function avoids overfitting by setting a thresh-
old on the performance of the neural network during training. This is implemented
by testing the data on a validation dataset at the end of each iteration. The training
is stopped on achieving the threshold performance desired on the validation data.
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Early stopping is considered to be a type of ”implicit” regularization, wherein no
modifications are made to the loss function. This regularization technique is more
suitable on small networks.The research done in [63] highlight that early stopping
is ineffective on deep convolutional neural networks that perform the task of object
classification.

Figure 3.5: Dropout as a Regularization Technique

• Dropout The dropout function avoids overfitting by dropping randomly selected
neurons and their associated weights from each layer during each iteration of the
training phase. Figure 3.5 illustrates a neural network using dropout as a regu-
larization technique. The shaded nodes indicates neurons which are dropped and
the darkened neurons are used in the current iteration of the training phase. The
function is parameterized by D which defines the number of dropped neurons in
each layer and probabiltity p which defines the probability that a particular node
is dropped out of the network. This function ensures that neurons are not code-
pendent on each other and the individual features of every neuron are used to
generalize to the data [64]. This forces each neuron to learn features with a ran-
dom subset of other neurons in the network. This however leads to more number
of iterations required to train the network.

3.4 Backpropagation

The backpropagation algorithm is tasked with iterative updation of the weights, wi and
biases, bias of the training network based on the output of the selected loss function, E.
This is implemented by computation of the partial derivative of the output of the loss
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function with respect to the weights of the neural network. In this manner, the algorithm
computes the contribution of each parameter to the error. This is represented by ∂E

∂Wi,j

and ∂E
∂biasi

for neuron i. The optimization function is parameterized by the learning rate
defined by β. The steps involved in the backpropagation algorithm is highlighted in
detail below.

1. The error, E is obtained from the result of the loss function.

2. The gradient of the error obtained is calculated with respect to the values of the
bias and weights of the neural network. This is indicated in Equation 3.7.

Gradient Error =
∂E

∂Wi,j
(3.7)

3. The weights W old
i,j in each layer are updated to a value Wnew

i,j by an amount that
is proportional to the negative gradient of the error obtained. This is indicated
in Equation 3.8. The rate of updating is defined by the learning rate, β. The
first term of the gradient defines the derivative of the total error with repsect to
the selected activation function, A. The following term of the gradient defines the
derivative of the activation function with respect to the output of the corresponding
neuron yi. The final term defines the derivative of the output with respect to the
corresponding weight associated with the neuron. These terms are combined in
order to calculate the gradient for each weight. This is indicated in Equation 3.9.

Wnew
i,j = W old

i,j + β × ∂E

∂W old
i,j

(3.8)

∂E

∂Wi,j
=
∂E

∂A
× ∂A

∂y
× ∂y

∂Wi,j
(3.9)

4. This previous step is continued for the weight set in every layer through back
propagation of the error from the final year to the current layer. In this manner,
the weights are adjusted corresponding to the loss every neuron is responsible for.

5. It is important to note that the loss of the neurons contained in the final layer
is equivalent to the accumulated loss of the entire network. Also, the neurons in
the input layer are not involved in the backpropagation process since they have no
weight sets associated with any preceding layer.

3.5 Training and Inference of Neural Networks

3.5.1 Training and Test Data

The input data-set is divided into training and testing data. In the case of supervised
learning, the training data-set includes both the input data, as well as the corresponding
output (label). The testing data includes only input data. The training data is typically
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Figure 3.6: Training of Neural Networks

larger in size than the test data. This method of learning is called supervised learning,
since the label for the training data-set is used as a learning guide for the neural network
during the training phase. The hypothesis is used to predict unknown labels for the test
data in the inference stage. The performance of the neural network can be measured by
analyzing its prediction accuracy for test data in the inference stage.

3.5.2 Training of Neural Networks

Figure 3.6 provides an illustration of the steps involved in the training of a neural net-
work. The training data is further divided into smaller groups called batches and are
applied to the neural network iteratively for a number of epochs. The weights and bi-
ases of the neural network are updated in order to map the function represented by the
training data. These values are updated after a batch of training data has been applied
to the neural network. Thus, each iteration of training involves multiple batches applied
to the neural network and updating the weights and bias at the end of each complete
batch. The training procedure involves multiple such iterations known as epochs. The
number of epochs is represented by O. The steps involved in the training process are
highlighted below.

1. The training and structural hyperparameters of the neural network are selected
prior to the training process.

2. The weights are bias of the neural network are initialized using the selected ini-
tialization function.
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3. Batches are created from the input training data set and assigned to each epoch
of the training process.

4. The first batch is applied to the neural network.

5. The error of the neural network for the batch is computed using the selected loss
function.

6. The weights and bias of the neural network is adjusted depending on the error
propagated through the network and the back propagation function.

7. The selected regularization function for the epoch is applied during the training
process of each epoch.

8. The steps 3-5 are repeated for all batches.

9. The steps 3-7 are repeated for all epochs.

3.5.3 Inference of Neural Networks

The inference procedure involves testing the trained neural network against new data
and measuring the obtained performance. The weight sets of the trained neural network
are frozen and no longer updated in this stage. This procedure also involves ’pruning’
the neural network by removing the neurons which are not activated during the training
process. These neurons are indicated by zero-valued incoming and outgoing weights to
the network. In extreme cases, multiple layers of the neural network can be fused to
form a single layer [65]. It is observed that in such cases, negligible change in accuracy
of prediction is observed.



Neural Network Based
Countermeasure 4
This chapter explains the key concepts behind the implementation of the Neural Network
as a countermeasure (S-Net) . First, Section 4.1 highlights the motivation behind using
neural networks as a countermeasure against power analysis attacks. Section 4.2 provides
an in-depth design methodology of the S-Net. Section 4.3 describes optimizations done
on the baseline design to create an optimal design of the S-Net.

4.1 Motivation of Design

Power Analysis techniques relies on exploiting the correlation between the observed
power consumption of CMOS circuits and the data being stored and operated on by
the circuit. An adversary makes use of power models to convert an hypothesis on an
intermediate value to a hypothesis on the power consumption. Two commonly used
leakage models is given below.

• Hamming Weight (HW) Model. Representation of the number of bits set to one
in a given intermediate value. The variation of power consumption for Hamming
Weights is shown in Figure 4.1. An example is illustrated below.

Input Intermediate Value to SubByte (Hex) = 0× 86

Output Intermediate Value from SubByte (Hex) = 0× 44

Output Intermediate Value from SubByte (Binary) = 0110 0110

HW(Output Intermediate Value from SubByte) = 4

• Hamming Distance (HD) Model. Representation of the number of transitions or
bitflips that takes place during an operation on a given intermediate value. The
variation of power consumption for Hamming Distances is shown in Figure 4.2. An
example is illustrated below.

Input Intermediate Value to SubByte (Hex) = 0× 86

Output Intermediate Value from SubByte (Hex) = 0× 44

Input Intermediate Value from SubByte (Binary) = 1000 0110

Output Intermediate Value from SubByte (Binary) = 0110 0110

HD(Intermediate Value from SubByte) = 3

45
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Figure 4.1: Variation of Power Consumption for Different Hamming Weights

Figure 4.2: Variation of Power Consumption for Different Hamming Distances

Leakage models are used to quantize the power consumption for a given operation
executed on the system. They allow the adversary to predict behaviour of power con-
sumption with minimal effort. Figure 4.1 and Figure 4.2 illustrates the quantization of
simulated power consumption signals using the Hamming Weight and Hamming Distance
leakage model respectively [66].

This quantization of power consumption with the leakage models also assumes the



4.2. DESIGN METHODOLOGY 47

following relationships. The estimated power consumption while processing the interme-
diate variable is indicated by PC.

Intermediate Value1(Hex) = 0× 02

Intermediate Value2 (Hex) = 0× 03

Intermediate Value3 (Hex) = 0× 0F

Intermediate Value1(Binary) = 0000 0010

Intermediate Value2 (Binary) = 0000 0011

Intermediate Value3 (Binary) = 0000 1111

HW(Intermediate Value1) < HW(Intermediate Value2)

PC(Intermediate Value1) < PC(Intermediate Value2)

HW(Intermediate Value3) = 2 × HW(Intermediate Value2)

PC(Intermediate Value3) ≈ 2 × PC(Intermediate Value2)

The proposed design seeks to break the linear dependency of power analysis tech-
niques on the commonly used leakage models with the help of a neural network. The
following equations indicate the result of application of the leakage model on the input
and output to the designed neural network.

Input Intermediate Value to SubByte (Hex) = 0× 86

Output Intermediate Values (Integer Array) = −7948, 4510,−18468,−5480,

− 11789, 8202,−6721,−3299

Output Intermediate Value (After Conversion) = 0, 1, 0, 0, 0, 1, 0, 0

Output Intermediate Value from SubByte (Hex) = 0× 44

The designed neural network outputs an integer corresponding to each output bit.
The low bit is indicated by a negative output integer and a high bit is indicated by a
positive output integer. Each combination of eight bit outputs have an unique integer
representation which do not comply with the previously stated relationships. Thus it can
be hypothesized that the leakage models cannot be used to model the power consumption
and the implementation must be secure against side-channel attacks. This thesis aims
at proving this hypothesis.

4.2 Design Methodology

Figure 4.3 illustrates the high-level view of the programming environment used to train
the neural network and obtain the weight sets required to perform the mapping. Each
component of the platform is explained in detail below.
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Figure 4.3: Programming Environment

• Python Libraries: Keras, sklearn. Open source libraries with functions for
building and evaluating neural network models with different structural and train-
ing hyperparameters. The sklearn library provides pre-processing, training and
inference functions required to train the network for an input-output pair [67].
The Keras library is used to export weight sets and network architectures which
may be used on other platforms. The structure of the network to be trained and
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tested can be stored in a .json format using Keras [68].

• Hyperparameter Tuner. The hyperparameter tuner changes the value of the
structural and training hyperparameters of the target architecture according in a
predefined manner. This is primarily used to perform a design space exploration
(DSE) on the hyperparameters of the neural network. The results of this DSE is
then evaluated to implement an optimal structure capable of performing the entire
mapping.

• Neural Network Trainer. The trainer makes use of the library functions and
the hyperparameters returned by the hyperparameter tuner in order to train the
neural network with the 256 pairs of input and output. This is done for a fixed
set of iterations and returns a weight set to the weight set optimizer in the form of
numpy arrays.

• Weight Set Optimizer. The weight set optimzer attempts to apply multiple
optimization functions to the weights of the neural network. The optimzations
include limiting the weights to a fixed range, conversion of weight sets from float-
ing point to fixed point, dropping weights and neurons which do not contribute
significantly to the output, etc. This is highlighted in detail in Section 4.4.

• Performance Checker. The performance of the neural network is checked in
this module. It is required that the neural network performs the correct mapping
for all possible inputs. If not, the hyperparameters are tuned further until a full
mapping is achieved.

• Weight Set Library. This module parses the weight set from the architecture
returned by the Python library and saves the information in the weight set library
to be used as a countermeasure.

4.3 S-Net Design

The Look Up Table used in the SubByte operation is replaced with a neural network
that performs the same mapping. The neural network designed is required to replicate
the SubByte operation for all possible inputs. Thus, it it is required that neural network
overfit over all possible inputs and outputs so as to perform the required mapping with
full accuracy.

The S-Net is designed with eight inputs and outputs. Each neuron in the input and
output layer are activated corresponding to the representation of the numbers in binary.
For example, an input of A8 would turn on the first, third and fifth neuron corresponding
to 1010 1000. Given this input, the neural network would activate the first, third, fourth
and fifth neuron in the output layer, corresponding to 5C, which is the result of the
SubByte operation. The activation is triggered if the output integers produced in the
final layer is positive. This is illustrated in Figure 4.4.

The sign of the values of the neurons in the output layer was used to set the output
bits to 1 and 0. A positive integer indicated a 1 and a negative integer indicated a 0. It
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Figure 4.4: S-Net Design

was observed that the values of the integers had a wide range and this representation of
numbers as integers makes it possible to break the leakage models that power analysis
techniques rely on.

4.4 Optimization of Design

Optimization functions were implemented on the weight sets in order to ensure an imple-
mentation which is computation and memory efficient. This function was applied after
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Figure 4.5: Integer Arithmetic performance

training the neural network for all 256 input and output pairs and ensuring complete
mapping of the SubByte function. The optimization techniques are highlighted in detail
below.

• Data Representation. The result of the training phase of the neural networks
produces a floating point weight set. Figure 5.2 indicates the performance of cal-
culations on floating point arithmetic versus integer arithmetic on am ARM Cor-
tex based target board [69]. It is clear that integer operations show a significant
performance gain on comparison to floating point numbers. The advantage of im-
plementing the neural network using fixed point arithmetic is apparent. For this
reason, the weights of the neural network are typecasted to the integer data type
after the training phase. It is then checked if the integer data type does not af-
fect the performance of the mapping. On achieving complete mapping, the integer
weight set is then saved to the weight library.

• Range of Weights. The result of the training phase of the neural networks
produced a distribution of weights over a wide range. Implementation of a neural
network in hardware and software would be more optimal if the weight set can be
represented by distribution of weights bounded by an upper limit of bits. For this
reason, the weights of the neural network are forced to be in the range of numbers
which can be represented by 16 bits allowing faster operations and lower memory
overhead.

• Removal of bias. The result of the training phase of the neural networks produced
a set of weight and bias units for each layer. It was observed that the neural network
was capable of performing mapping with the same performance without the aid of
bias units in the output layer. Thus, the bias units of the output layer was set to
zero. It was also observed that bias units in the hidden layers below a particular
threshold did not contribute significantly to the activation of the neuron in that
layer. Thus, bias units obtained with a value below the threshold were set to zero.

• Multiplication Threshold. The result of the training phase of the neural net-
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Figure 4.6: Floating point Arithmetic performance

works produced neurons and associated weights which did not contribute signifi-
cantly to the activation of the output in the output layer. For this reason, in the
inference phase, a threshold was set on the products produced in the hidden layer
and the weights. The values below the threshold does not participate in the com-
putation of the final layer of outputs. This results in lesser computational overhead
of the architecture.



Validation and Results
Analysis 5
This chapter highlights the experimental platforms used to acquire traces and perform
side-channel analysis on the target. It also explores the implementation details of the
S-Net on the target boards. The experimental platform used to validate the effectiveness
of the S-Net as a countermeasure is highlighted in Section 5.1. Section 5.2 highlights
the implementation details of the S-Net on the targets. Section 5.3 provides the evalu-
ation of the security of the implementation against various attacks. Lastly, Section 5.4
provides a perfomance analysis of the countermeasure in comparison to the unprotected
implementation of AES.

5.1 Experimental Platform

Figure 5.1 illustrates the high-level view of the experimental platform used to acquire
power traces, evaluate and validate the security of the software implementation of the

Figure 5.1: High level overview of the experimental set up for software implementation
of AES
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Oscilloscope Picoscope 3206D

Input Channels 2 channels

Bandwidth 200MHz

Input Ranges +/- 20 mV to 20 V

Maximum Sampling Frequency 1 GS/s

Maximum Capture Rate 100,000 waveforms/second

Source Analog and Digital Channels channels, EXT trigger

Trigger Modes None, auto, repeat, single, rapid

Table 5.1: Technical specifications of Picoscope 3206D

Figure 5.2: Picoscope 3206D [70]

S-Net. Each component is highlighted in detail in the following subsections.

• Picoscope 3206D. Power traces for this experiment are acquired from the target
board using the Picoscope. Each power trace is stored along with the corresponding
plaintext being encrypted. The beginning and end of each encryption is identified
using a trigger signal produced by the target board. The Picoscope is connected and
powered via USB to a host system which allows real time acquisition and analysis of
traces. The traces is stored in a .trs format. The Picoscope software also presents
the user with multiple options such as int / float / double representation of power
values while storing the power trace. Some specifications of the oscilloscope are
highlighted in Table 5.1.

The Picoscope firmware directly interfaces with the Inspector software used to an-
alyze the power traces. This allows ease of acquisition and analysis taking into
consideration that a large number of power traces need to be acquired. The sam-
pling frequency of acquisition is dependent on the target under consideration. Since
the Pinata board runs at a clock speed of 168Mhz, a sampling frequency of 1GS/s
is used.

• Pinata Target board The Pinata board is the target microcontroller for the
software implementation of the S-Net. It is a development board manufactured by
Riscure for the purpose of implementing side-channel attacks and countermeasures.
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Target Board Pinata

Processor ARM Cortex-M4F

Maximum Clock Speed 168MHz

SRAM memory 196 Kbytes

Crypto Engine TRNG, cryptography engine for encryption algorithms

Power 3.3V input

Table 5.2: Technical Specifications of the Pinata Board

Figure 5.3: Riscure Pinata Board [71]

The source code and IDE required to program the board with custom implementa-
tions are provided along with the board. The current is measured using a current
sensor as highlighted in the next section. The Pinata board also contains a trigger
signal output from a GPIO pin which triggers at the beginning and end of every
encryption. This makes the board an ideal, low cost solution to implement passive
side-channel attacks. Some specification of the Pinata board are highlighted in
Table 5.2. The plaintext to be encrypted along with the encryption scheme to be
used is transmitted from the host system using the UART interface. The current
sensor is connected in series to the 3.3V input power supply. Any modifications to
the firmware on the board is downloaded on to the board via the USB interface.
The board is depicted in Figure 5.3.

• Current probe The current probe provides low-noise, high quality measurement
of the instantaneous power consumption of the target board. The current probe
used is depicted in Figure 5.4. It is a passive device capable of measuring elec-
tric currents, which are directly proportional to the power consumed by the target
board. The current probe is inserted in the power supply line of the target board
and is used in combination with an amplifier to measure and amplify current varia-
tions in the order of 1000 MHz. Some technical specifications of the current sensor
are shown in Table 5.3. Power lines of embedded systems usually produce noisy
signals with a very wide bandwidth. The current probe is effective with devices
that involve a cryptographic processor that is shielded or involves cooling elements.
Figure 5.5 shows an overview of the setup and connection of the current probe.
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Current Probe Built-in Tektronix CT1 current probe

Maximum Bandwidth 1 GHz

Frequency range 0.1 to 2500MHz

DC Power 12 V

Gain 25 dB at 1000MHz

Table 5.3: Technical Specifications of the Pinata Board

Figure 5.4: Riscure Current Probe [72]

Figure 5.5: Setup and connection of the current probe

• Inspector. The Inspector is a side-channel analysis program developed by Riscure
B.V [73]. It provides a library of functions that allow an user to interface with
the data acquisition models such as the Picoscope and the Pinata board. This
strong hardware integration allows easy configuration of both the Picoscope and
the Pinata board from a single GUI-based platform, tremendously reducing time
taken to perform security evaluations. It supports commonly used algorithms such
as AES, DES, 3DES, RSA, RC4 and also provides tools to perform side-channel
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Figure 5.6: Inspector Interface

and statistical analysis on implementations running these algorithms. It is capable
of performing modifications to the trace sets such as realignment, windowed re-
sampling, filtering, etc. For this experimental setup, the Inspector software is used
to run Differential and Correlation Power analysis on the protected and unpro-
tected software implementation of AES executed on the Pinata. Figure 5.6 shows
a display of the Inspector interface.

• Trace Sets. Riscure uses the .trs file format to store and read the acquired traces
from the hard drive. An open source Python library is made available [74] for
users to perform the own side-channel and statistical analysis on these tracesets.
Every trace acquired by the Picoscope has an associated header which contains
the plaintext to be encrypted, the number of samples, the trace offset etc. An
illustration of the trace set visualized in the Inspector software is provided in
Figure 5.7.

5.2 Implementation Details

The S-Net was implemented on software to be executed on the Pinata evaluation board.
The architecture of the network including the appropriate hyperparameters was selected
from the results of the training phase in Python. These details are highlighted in the
following subsections.
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Figure 5.7: Visualization of trace sets of the S-Net during encryption

5.2.1 Width and Depth of the S-Net

The neural network was trained iteratively for different width and depth parameters.
It was observed that a minimum number of neurons and hidden layers were required
to achieve complete mapping of the SubByte function. Table 5.4 illustrates the width
and depth parameters that were able to successfully map the function. The network
is represented by a : b : c : d : e where each value indicates the number of neurons
in each layer. The first and last number indicated the number of neurons in the input
and output layer respectively and a zero value indicates the absence of the hidden layer.
The first set of width and depth parameters were selected since increased depth with
a smaller width parameter is more computationally expensive and memory expensive.
These calculations are indicated by the number of arithmetic operations in the table.

5.2.2 Activation Function

The neural network was trained with different activation functions. Literature indicates
that the Sigmoid function and Hyperbolic Tagent activation functions are capable of
mapping non linear relationships with ease. However, it was also observed that the
Rectified Linear Unit (ReLU) function was successfully in performing the same mapping
with the selected architecture. It is also more computationally efficient in using the
ReLU function since it ensures that only neurons which contribute to the output are
activated. This results in a sparse network making it computationally efficient. It is
also easier to implement this activation function in hardware and software since it does
not involve any non-linear calculations. The ReLU activation function is provided in
Figure 5.8.

5.2.3 Weight Set and Bias

The weight set of the neural network obtained after the training phase is stored in the
form of a two dimensional integer array. The int16 datatype is used for data representa-
tion of the weight set. It is also possible for the implementation to use different weight
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Figure 5.8: Rectified Linear Unit Activation Function

Network Architecture
(a:b:c:d:e)

Total Number of Weights
Number of Multiplication

operations
Number of Addition

operations (including bias)

8:80:0:0:8 1280 1368

8:60:60:0:8 4560 4688

8:45:45:45:8 4770 4913

Table 5.4: Selection of Width and Depth parameter for S-Net

sets for each subsequent encryption. This allows the countermeasure to be resistant
against possible templates that the adversary may create against the implementation.

5.2.4 Software Execution Flow

The software execution flow on the Pinata board is highlighted in Figure 5.9. Only one
round of the encryption algorithm is executed as the SubByte function in the first round
is the selected point of attack. The beginning and end of the round is indicated by trigger
signals to the oscillopscope through one of the GPIO ports on the Pinata board. The
plaintext to be encrypted is sent to the Pinata board via UART from the host computer
and the corresponding ciphertext after the first round is communicated back to the host
computer.

5.3 Attack Resistance Results

This section highlights the performed power analysis techniques on the unprotected
and protected implementations of the SubByte operation of AES. The security of the
countermeasure is evaluated using Differential Power Analysis (DPA), Correlation Power
Analysis (CPA), Multivariate Distribution and Deep Learning based Template attacks.
The results of the security of the implementations against these attacks are illustrated
in the following subsections.
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Figure 5.9: Software execution flow on Pinata for Protected and Unprotected AES

5.3.1 Security Against Differential Power Analysis

As discussed in Section 2.2.2.2, the DPA attacks identifies the correlation between the
power signature and the intermediate value produced by the result of the SubByte
operation by partitioning the traces. In this attack framework, the power consumed
is quantized using the Hamming Weight model. Unlike the classical DPA, the attack
used evaluates the correctness of the hypothesis on the intermediate value by partitioning
according to the leakage model. The tracesets are partitioned into two groups based on
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the value of the Hamming Weight of the intermediate value corresponding to the plaintext
and the hypothesis on the key. The results of the attack are illustrated in Figure 5.10
and Figure 5.11. It can be seen that the difference in the differential coefficient for the
unprotected implementation is large allowing easy identification of the correct hypothesis
on the key. In case of the protected implementation, the correct SubKey does not appear
within the top 100 ranks of possible SubKeys. This highlights the security of the S-Net.
The evolution of the rank of the correct SubKey with the number of traces for the S-Net
is illustrated in Figure 5.12.

Figure 5.10: Security of Unprotected AES against DPA

Figure 5.11: Security of S-Net against DPA

5.3.2 Security Against Correlation Power Analysis

As discussed in Section 2.2.2.3, the CPA attacks apply the correlation function on the
trace matrix and the intermediate value. The Hamming Weight model is used in this
attack to model the power consumed. The results obtained are similar to the DPA attack
in the previous section. The correct SubKey (0XCA) does not appear within the top
100 ranks making the attack unsucessful against the protected implementation. This
is illustrated in Figure 5.13 and Figure 5.14. The ranking analysis for this attack is
illustrated in Figure 5.15.
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Figure 5.12: Ranking analysis of S-Net for DPA

Figure 5.13: Security of Unprotected AES against CPA

Figure 5.14: Security of S-Net against CPA
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Figure 5.15: Ranking analysis of S-Net for CPA

5.3.3 Security Against Multivariate Distribution Template Attacks
and Deep Learning Based Template Attacks

As discussed in Section 2.2.3.2 and 2.2.3.1, the profiled attacks involve the construction
of a template in order to obtain the SubKey. Figure 5.16 and Figure 5.17 highlight
the ranking evolution for the unprotected and S-Net implementations of AES for both
attacks. The graphs indicate that it is not possible to obtain the SubKey in the case
of the S-Net implementation. In case of the unprotected implementation, the correct
SubKey achieves a high rank within 3000 traces for both the attacks.

5.3.4 Discussion

The unprotected implementation of AES and the S-Net was successfully implemented
on software. It is observed that the correct SubKey can successfully be extracted for the
unprotected implementation within 3000 traces for all attacks. The S-Net proves to be
secure against all attacks. The security of the implementation was checked upto 20000
traces due to performance and memory constraints. None of the attacks were observed
to be capable of successfully extracting the SubKey with a high degree of confidence.

The Hamming Weight leakage model is used to quantize the power consumed in all
four attacks. The Hamming Distance (HD) model proves to be ineffective in attacking
software. To successfuly use the Hamming Distance model, an in-depth knowledge of
the mapping of the AES software on the computation and memory registers of the
target implementation is required. Since the power consumption of the algorithm covers
multiple clock cycles, it is an extremely strong requirement for the adversary to predict
the position and value of the intermediate value in every instruction. Hence, the HD
model is not effective in attacking software implementations of AES.

5.4 Performance Analysis

The performance of the unprotected implementation of AES is compared with the pro-
tected S-Net implementation. It is observed that the unprotected implementation re-
quires an average execution time of 62.5 µs while the S-Net requires 4.7 ms for execution
of one round of encryption. The execution time is calculated by activating a trigger at
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Figure 5.16: Ranking analysis of Unprotected AES against Profiled Attacks for correct
SubByte

the start and end of the encryption on the Pinata board. It is concluded that the S-Net
is 75 times slower than the unprotected implementation.
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Figure 5.17: Ranking analysis of S-Net against Profiled Attacks for correct SubByte





Conclusion 6
This chapter provides a summary of the work included in this thesis and proposes future
research work. Section 6.1 presents the summary of the conclusions of the dissertation.
Section 6.2 provides the proposed future research work that may be implemented.

6.1 Summary

Chapter 1 of this thesis introduces the motivation behind the need for secure implemen-
tations of cryptographic algorithms. The chapter discusses the impact of side-channel
analysis and the techniques used to secure devices against the same. It provides an in-
troduction to the state-of-the-art countermeasures developed to protect devices against
power based side-channel techniques.

Chapter 2 of this thesis gives a brief background of the targeted encryption algo-
rithm, i.e, Advanced Encryption Standard (AES). Thereafter, it provides an overview of
commonly employed power based side-channel analysis techniques. The state-of-the-art
countermeasures against power based side-channel attacks are classified and illustrated
with the help of examples.

Chapter 3 of this thesis gives a brief background of Artificial Neural Networks.
Thereafter, the different hyperparameters that affect the performance of the neural net-
work are classified and illustrated with the help of examples. An overview of the steps
involved in the training and inference phase of the neural network is provided along with
an illustration of the steps involved in the backpropagation algorithm .

Chapter 4 of this thesis provides the motivation behind usage of neural networks
as a countermeasure. It explains the ”breaking” of the leakage model using the S-Net.
This is followed by the design methodology and optimization techniques implemented
on the S-Net.

Chapter 5 of this thesis presents the experimental platform and the validation
of the security of the implemented countermeasure. The chapter first highlights the
experimental platform used to implement and validate the countermeasure. It provides
a description of the implementation details of the S-Net in detail. Thereafter, it provides
the results highlighting the degree of security of the implementation against various
attacks. The results demonstrate that the S-Net is secure against all performed attacks.
The thesis concludes that the implemented countermeasure effectively breaks the leakage
model used by power analysis techniques. Finally, it provides a performance analysis of
the implemented countermeasure.

67
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6.2 Future Work

In this section, recommendations for future work that may be implemented for the topic
addressed in the thesis is highlighted.

• Optimized Weight Sets. Weight sets containing multiples of two can be imple-
mented using shift operations which can be easily implemented on hardware. The
possibility of mapping the SubByte function using a neural network with binary
weights can be further investigated.

• Dedicated ASIC design for S-Net. Fabrication of an ASIC capable of per-
forming side-channel resistant encryption can be investigated.

• Implementation of S-Net for other block ciphers. There exists numerous
encryption algorithms such as DES, PRESENT, CAESAR which involve the use of
a substitution table in the encryption process. The possibility of implementing the
S-Net in these encryption schemes must be investigated. Research on the security
of the S-Net while mapping smaller substitution boxes is recommended.

• Resistance of S-Net against other side-channel analysis techniques. Re-
search on the resistance of the implementation against temperature, electromag-
netic and time-based attacks is highly recommended.

• Memristor-based implementation. Exploring the security and performance of
memristor-based implementations of encryption algorithms is an excellent topic of
research.
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