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1
Introduction

This project was first commissioned by Bart Groen, Jouke Dijkstra and Cor de Kroon. Early stage ovarian
cancer detection is still problematic, and both false negatives and false positives carry significant conse-
quences: missed diagnoses can delay treatment and worsen patient outcomes, particularly in malignant
cases where early intervention is critical. False positives may lead to unnecessary surgical procedures such
as laparotomies, misuse of limited healthcare resources, and psychological distress for patients who may
undergo invasive interventions for benign conditions. Current methods for estimating the probability of
malignancy in ovarian tumors rely on the clinician’s level of expertise, which leads to variability in accu-
racy and reliability across different centers in the Netherlands. For these reasons, the applications of deep
learning to automatically classify ovarian tumors are being widely explored.

The dataset used in this report consists of scans from three different Dutch hospitals, collected over the
course of several years. As a result, the dataset is highly diverse; it includes considerable variation in terms
of operators, ultrasound machine manufacturers and models, and scanning conditions. This complexity,
as well as the relatively small size of the dataset (approximately 4000 scans, mostly benign), made clas-
sification initially challenging and necessitated the exploration of several potential improvements. These
included the removal of burned-in medical annotations, the incorporation of clinical factors and implicit
and explicit methods of adding focus to the lesion mask, which is the most important determinant of ma-
lignancy in ultrasound ovarian scans. Regular meetings with supervisors from both the deep learning and
medical domains were incredibly helpful in bridging domain knowledge and guiding the implementation
process.

The results presented in this thesis offer a promising next step to implementing and deploying deep
learning-based solutions for ovarian tumor classification. The overall best-performing classifier was the
one that incorporated all three of the proposed improvements. However, there were still some ambiguous
and incorrectly classified cases in the test set, which in a real-world setting would require manual clinical
involvement. Nonetheless, I am very optimistic about the applications of deep learning for ovarian tumor
classification in ultrasound scans, and some adjustments to the data (e.g, using more training images,
predicting on multiple slices per patient or using 3D volume scans) may be the final step needed to
achieve the level of performance required for clinical use.

The remainder of this thesis is structured as follows: chapter 2 contains the main report, structured in a
Computer Vision conference-style format similar to CVPR. This chapter includes related works, method-
ologies, experiments and results. Chapter 3 and 4 provide the reader with the necessary background
knowledge on neural networks for classification and semantic segmentation. Finally, the appendices of-
fer more details behind the experiment, the hyperparameters and the pre-processing steps. The code
for this project can be found on my Github (https://github.com/dtronmans), which includes the code
for the denoising autoencoder to remove medical annotations and the training scripts for single-task and
multitask-learning networks, as well as pre-processing scripts.
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Abstract

Distinguishing between benign and malignant ovarian
cysts is a challenging task that depends on subjective visual
markers in ultrasound scans. Current manual methods re-
main prone to costly misdiagnoses and the application of
these methods depend heavily on the clinician’s level of ex-
pertise. Recent research demonstrates promising applica-
tions of Convolutional Neural Networks (CNNs) for ovar-
ian tumor classification; however, we observed that their
performance is limited when applied to a diverse and com-
plex dataset. To address this, we propose, implement, and
evaluate three improvements to a baseline classifier.

First, we use a deep learning-based approach to remove
burned-in medical annotations and introduce a weighted
mean squared error (MSE) loss to improve its effectiveness
by emphasizing relevant regions. This aims to better recover
the original image content prior to annotation and remove
annotations which can act as confounders. Second, we en-
hance classification by fusing image features with two read-
ily available clinical factors at an intermediate stage of the
network. Third, and central to this study, we incorporate
a segmentation path that acts as a regularizer, encourag-
ing the shared encoder to learn lesion-specific features that
benefit the classification head.

These three contributions are informed by domain-
specific knowledge of ovarian lesions and collectively
demonstrate promising directions for improving deep
learning-based models in this setting.

1. Introduction

Ovarian cancer is one of the most lethal gynecological
malignancies worldwide, with an estimated 324,000 new
cases and 207,000 deaths annually [1]. In the Netherlands,
ovarian cancer remains a significant health concern, with
around 1,500 new cases and 1,100 deaths annually [2]. Ac-
curately distinguishing between ovarian tumors at an early
stage could have a drastic positive impact on the survival
rate; survival rates drop to 27% for Stage III and 13% for

Figure 1. Examples of ovarian ultrasound scans. Each row shows
a different case, with the left image displaying the raw ultrasound
scan and the right image showing the same scan with the lesion
area highlighted in red. Surrounding anatomical structures, such
as the bladder and bowel, are visible in the raw scans but are not
relevant for classification. The highlighted lesion regions contain
the discriminative visual features used to distinguish between be-
nign and malignant tumors, despite heterogeneity in the surround-
ing anatomy.

Stage IV diagnoses [3].
Given the significant benefits of detecting ovarian cancer

at an early stage, the objective of this report is to develop
and improve classifiers for distinguishing between benign
and malignant tumors in ultrasound scans. This project
is a collaborative effort between Frisius MC (Bart Groen)
and LUMC (Cor de Kroon, Jouke Dijkstra), representing
an initial step toward replacing current manual diagnostic
methods with deep learning-based approaches. Over several
years of data collection, a diverse dataset of transvaginal
ultrasound scans has been compiled. This dataset encom-
passes scans from three different Dutch hospitals, various
ultrasound machines, operators, and device models.

Recent works in deep learning have shown that applying
classification models to 2D ultrasound scans can yield sat-
isfactory results in distinguishing between benign and ma-
lignant tumors. However, in our case, such success with
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a simple baseline classifier has not been observed. This is
likely due to the limited size of our dataset, combined with
the heterogeneity of the scans.

Given the unsatisfactory performance of classifiers on
our dataset, this study investigates three enhancements to
a baseline model. Each of these improvements integrates
domain-specific knowledge related to ultrasound imaging,
ovarian cancer, and tumor diagnosis into the convolutional
neural network.

As a first improvement, we pre-process the images by re-
moving medical annotations such as text and arrows. Most
ultrasound scans in the dataset are annotated by clinicians,
and these annotations can act as confounders that CNNs
may learn instead of features relevant to ovarian tumor clas-
sification. Since these annotations are burned into the image
and not stored as separate layers, we remove them using a
denoising autoencoder. Although prior work has explored
the use of deep learning for removing medical annotations,
the proposed loss functions in those studies had certain lim-
itations, which we address through a weighted loss function
and the incorporation of skip connections into the autoen-
coder to better preserve high-frequency information.

The second potential improvement we investigate is the
incorporation of clinical features. 2D ultrasounds can be
ambiguous and challenging to interpret on their own, so the
addition of clinical information such as menopausal status
can give the classifier additional contextual information to
support its decision-making. In this study, clinical tabular
features are fused with image features at an intermediate
stage of the network, prior to the final multilayer perceptron
(MLP) that returns the classification output.

Finally, we evaluate the impact of guiding the classifier
to focus on the lesion mask. As Figure 1 shows, the key vi-
sual characteristics in determining malignancy are derived
physical properties of the ovarian lesion itself. The rest of
the image, which can include the bladder, bowel and uterus
are considered irrelevant in the visual assessment. This
domain- specific knowledge can be used to construct clas-
sification models that focus solely on the lesion region, and
reduce the influence of surrounding anatomical structures.
This is primarily done through the addition of a semantic
segmentation decoder, turning the classification task into
a multitask learning scenario. The semantic segmentation
decoder, as well as its associated loss term acts as a regu-
larizer that encourages the encoder to learn lesion-specific
features. While this type of multitask setup has been ex-
plored with U-Net architectures, we argue that an auxiliary
segmentation path can be added to any baseline classifier
to potentially improve performance. In our case, we imple-
ment the auxiliary segmentation path on an EfficientNetB0
architecture.

The contributions of our work can be summarized as fol-
lows:

• We devise an automatic method of generating clean-
annotated image pairs to train a denoising autoencoder
to remove medical annotations, using a weighted MSE
loss.

• We propose and evaluate an intermediate fusion
method for adding clinical factors, namely the oncol-
ogy center and the menopausal status, to the classifica-
tion head of deep learning architectures.

• We assess the potential performance improvement of
multitask learning architectures for joint classification
and semantic segmentation of ovarian lesions, com-
pared to equivalent single-task baselines.

• We explore the effectiveness of a cascaded approach
in which ovarian lesions are first segmented and then
classified, and compare it to joint multitask learning
methods.

• We extend existing joint classification–segmentation
frameworks by developing and evaluating a multitask
model based on an EfficientNetB0 [4] backbone.

• The existing dataset, with scans from three different
Dutch hospitals, is expanded with more semantic seg-
mentation labels. This was done in a collaborative ef-
fort by the author of this thesis, Maite Timmermans,
Cor de Kroon and Bart Groen.

The report is structured as follows: we start by a treat-
ment of already-existing deep learning methods for ovar-
ian cyst classification, multitask learning in medical settings
and annotation removal. Section 3 describes the methods,
including the details behind the architectures we devised,
trained and evaluated. Section 4 is a detailed overview of
the experimental setup, including hyperparameters and pre-
processing steps, in order to ensure reproducibility and to
compare architectural changes under similar settings. In
Section 5, results are shown under all the presented abla-
tions, and Section 6 is a discussion of the results. We con-
clude our report in Section 7, and offer future improvements
in Section 8.

2. Related Work
2.1. Visual Confounders and Annotation Artefacts

Medical annotations such as overlaid text, arrows, or
measurement markers can act as confounding factors for
CNNs. These models may inadvertently learn to rely on
such annotations instead of lesion-specific features, poten-
tially limiting their generalization and diagnostic perfor-
mance. In our dataset, most scans include such annotations;
examples are shown in Figure 2.

Therefore, several works propose deep learning-based
approaches for removing medical annotations. The process
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Figure 2. Transvaginal ultrasounds from our dataset that contain
burned-in medical annotations. These annotations are in the form
of arrows, text and bounding boxes, and can act as confounders.
We aim to evaluate the diagnostic performance of classifiers in set-
tings with and without medical annotations, to measure the impact
of removing them.

involves using a standard convolutional autoencoder with a
mean-squared error [5] or SSIM loss [6], and treating an-
notations as noise. However, these loss functions did not
produce satisfactory results in our case. To address this, we
developed a custom loss function that combines a weighted
MSE with the SSIM loss.

The existing methods rely on original DICOMs being
available before the clinician’s annotations to gather clean-
annotated image pairs, or a manual overlay of annotations
on clean images. We propose an automated method for
generating clean–annotated image pairs suitable for train-
ing denoising models for the task of removing medical an-
notations. Our approach leverages the existence of a subset
of unannotated images in the dataset and uses this subset to
synthetically model overlaid annotations, without requiring
manual intervention or pre-annotation images.

2.2. Single and multi-modal deep Learning for
Ovarian Tumor Classification

Past research shows promising results for the application
of deep learning for classifying ovarian tumors. However,
privacy and security concerns mean that there is no unified
benchmark dataset for ovarian cancer classification. Fur-
thermore, although many deep learning methods have been
devised for classifying ovarian cancer, the data modalities

used change drastically between each approach.
Ovarian tumor classification using deep learning on MRI

scans has demonstrated diagnostic performance compara-
ble to that of radiologists in multiple studies [7, 8]. Simi-
lar to our approach, first localizing the ovarian tumor and
then feeding the cropped region into a classifier has also
been shown to significantly enhance classification perfor-
mance in MRI-based methods [9]. However, MRI remains
a more expensive first-line imaging modality compared to
ultrasound, and it does not consistently outperform simple
diagnostic rules [10].

Some studies have directly compared the performance of
deep learning-based approaches with expert subjective as-
sessment (SA) on ultrasound scans [11, 12], demonstrating
comparable or even superior results across key evaluation
metrics such as sensitivity, specificity, and accuracy. How-
ever, despite also focusing on ultrasound imaging, these
studies do not measure the impact of adding clinical infor-
mation or incorporating semantic segmentation masks.

Past work also includes machine learning models that ac-
curately classify ovarian cancer using purely tabular clinical
information. In order to reach a satisfactory accuracy for
early-stage diagnosis without imaging information, these
models rely on up to 49 features [13], including biomarkers,
ovarian cancer markers, and blood test results. This makes
them complex to implement in typical hospital settings. In
our case, using the available clinical features alone, we were
unable to develop classifiers with sufficient accuracy.

Motivated by the limited performance of models trained
solely on imaging or tabular data in our primary dataset, we
extend prior work by developing multimodal classifiers that
combine easily attainable imaging and clinical features.

2.3. Clinical Data and Multimodal Fusion

Ovarian tumor diagnosis is inherently a multimodal task,
with physicians relying on a combination of image-level
and clinical features to assess the probability of malignancy.
A widely used method for estimating the risk of malignancy
in ovarian tumors in the IOTA Adnex [14], which relies
on the combination of six visual markers and three clinical
variables. Despite this, the integration of clinical and imag-
ing features for ovarian tumor classification remains largely
unexplored.

Fusing clinical and image features can be done at dif-
ferent levels. Early fusion involves combining raw clini-
cal and imaging data before feature extraction, allowing the
clinical information to guide the extraction of image fea-
tures [15, 16]. Intermediate fusion takes place after image
features have been extracted, and integrates these features
with clinical information to improve classification perfor-
mance. Fusing clinical information with extracted image
features after the encoder stages has been shown to improve
breast cancer classification when combined with MRI im-
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age data [17]. Finally, late fusion involves training separate
models for each modality, and aggregating decisions from
each sub-model [18].

In our case, the tabular data consisted of only two clinical
features, and standalone models trained on them failed to
achieve meaningful performance. As a result, pursuing a
late fusion strategy was not justified, and we chose to rely
solely on the popular and widely successful intermediate-
fusion strategy.

Numerous studies have shown that the risk of malig-
nancy is higher in postmenopausal women when presenting
with adnexal masses [19, 20]. Some studies cite age as a
predictor of malignancy risk, which can be seen as a proxy
for the menopausal status [21].

The type of center to which a patient is admitted is also a
predictor of malignancy risk. Patients evaluated at oncology
centers have a higher probability of malignancy than those
assessed at other types of centers. This is likely because
oncology centers tend to receive referrals for more complex
or suspicious cases, leading to a higher pre-test probability
of malignancy [22]. This variable is one of the three clinical
features incorporated into the IOTA Adnex model [14].

Our study focuses on the multimodal fusion of ultra-
sound scans and easily obtainable clinical information,
specifically the patient’s menopausal status and whether the
admission center is an oncology facility. Transvaginal ul-
trasound (TVS) is a widely accessible, low-cost, and safe
imaging modality that does not expose patients to ionizing
radiation [23, 24]. The clinical variables we incorporate are
routinely collected during initial assessments and do not re-
quire any additional procedures. This makes our approach
more practical and broadly applicable in real-world clinical
settings, especially where access to advanced or expensive
diagnostic tools is limited.

2.4. Multitask Learning in Medical Computer Vi-
sion

In the context of deep learning for computer vision, mul-
titask learning refers to a network learning multiple tasks
at the same time, by making use of a shared encoder and
separate decoder heads [25]. In settings where tasks are
related or make use of similar visual cues, and in settings
where data is scarce, this can result in better performance
across tasks compared to separate networks. This is because
shared representations allow the network to generalize bet-
ter by leveraging complementary information across tasks,
acting as an inductive bias that helps regularize the learning
process [26].

For this reason, multitask learning can be used in med-
ical imaging scenarios where the outcome of the diagnosis
depends on a specific Region of Interest (ROI). When visual
characteristics of lesions determine the outcome, it could be
beneficial to simultaneously learn semantic segmentation to

localize the ROI and classification to determine the pres-
ence or severity of disease. The segmentation task guides
the encoder to focus on relevant anatomical structures like
ovarian masses, which helps the classification head avoid
overfitting to irrelevant regions and focus on the most infor-
mative areas for diagnosis.

Shared encoders with different downstream tasks have
shown promising results in medical settings where a given
region-of-interest is the most important determinant of a
classification outcome; use cases include primary bone tu-
mors in radiographs, breast cancer classification in 3D ultra-
sound scans, histology images and Chronous Venous Disor-
ders (CVD) [27–30].

The Multi-Modality Ovarian Tumor Ultrasound
(MMOTU) image dataset is a dataset of 1,469 2d ultra-
sound scans with eight tumor classes and corresponding
lesion segmentations for each scan [31]. The original
study evaluated single-task classification and segmentation
performance but did not evaluate the potential benefits of
multitask learning. The addition of a segmentation loss
as a feature-enforcing regularizer could be particularly
useful in their case given the limited size of the dataset. For
this reason, this report evaluates the effects of multitask
learning not only on the primary Dutch hospital dataset but
also on the MMOTU dataset.

The U-Net is one of the earliest and most influential
works in deep learning-based semantic segmentation [32].
In U-Net backbones, multitask learning for joint semantic
segmentation has been shown to slightly outperform single-
task equivalents [33]. U-Net encoder blocks are not typi-
cally used for classification because they are designed for
dense prediction tasks like segmentation. Their limited use
and performance in classification settings prompted us to
also evaluate EfficientNetB0-based multitask learning ar-
chitectures, in order to extend our results to another back-
bone and reach better classification outcomes.

3. Methods

3.1. Denoising Autoencoder for Medical Annota-
tions

We start with a brief overview of the denoising autoen-
coder, which is trained in a supervised manner to remove
drawn text and arrows from ultrasound scans.

3.1.1 Self-supervised Annotations and Training

The architecture for removing embedded medical annota-
tions such as arrows and text is a standard U-Net. Orig-
inally, a standard Convolutional Autoencoder architecture
was used, but the lack of skip connections led to a loss
of higher-frequency information and contrast in the recon-
structed image.
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Figure 3. The process of generating images and training the denoising autoencoder

The steps in generating the training dataset, comprised
of clean-annotated image pairs, were as follows:

1. Retrieved the subset of images from the dataset of im-
ages that do not contain medical annotations, as well
as their ovarian mass masks.

2. Trained a U-Net on the images to automatically detect
ovarian masses.

3. For each image, randomly select two starting and two
endpoints on the edge of the ovarian mass, and drew
arrows that use these points to denote their origin and
end.

4. Randomly selected one entry from a text bank of com-
mon annotation, like ”Fluid” or ”Rt Ov” and drew the
text at a random location on the ovarian mass.

The training process is as follows:

1. Sample a batch of artificially annotated images from
the dataset.

2. Use the model to predict clean (inpainted) images from
the annotated images.

3. Compute the reconstruction loss between the origi-
nal clean image, and update the model parameters via
backpropagation.

Figure 3 shows the pipeline for generating a clean-
annotated pairs dataset and training the model.

3.1.2 Loss Function

Although the mean-squared error (MSE) loss was used by
previous studies, we encountered two potential shortcom-
ings in our experiments:

• The task of removing annotations is inherently imbal-
anced, as the majority of pixels in an ultrasound image
do not contain text or arrows. As a result, even a model
that simply outputs the input image can achieve a low
MSE loss without addressing the annotated regions

• Pixels in the predicted image may be numerically close
to those in the ground truth but not perceptually simi-
lar. MSE does not account for structural or contextual
information, leading to outputs that may lack visual fi-
delity. For this reason, perceptual losses like the Struc-
tural Similarity Index (SSIM) [34] are sometimes in-
corporated to capture human-perceived similarity and
preserve anatomical structures

The loss function we have devised for this study is a
weighted combination of two terms: an SSIM-based loss
and a weighted MSE loss. The weighted loss is a traditional
mean squared error that assigns higher importance to pix-
els affected by annotations (pixels that differ between the
clean and annotated images), which allows the model to fo-
cus more on regions requiring restoration. The SSIM-based
loss term is included to preserve perceptual and structural
information, enforcing that the reconstructed images main-
tain the anatomical coherence of the clean images.
Let:

• Î denote the predicted image (output from the U-Net).
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(a) Benign and malignant distributions among Leiden University Medical
Center (LUMC) patients, which is an oncology center

(b) Benign and malignant distributions among Reinier de Graaf Gasthuis
(RdGG) patients, which is not an oncology center

Figure 4. Benign (orange) and malignant (blue) distributions according to menopausal status for different types of center. (a) LUMC,
an oncology center, shows no identifiable pattern between the menopausal status and the ovarian malignancy, while (b), a non-oncology
center, shows the majority of malignant cases are present in post-menopausal women.

• Iclean denote the clean target image (ground truth).

• Iannot denote the annotated input image (with added
text/arrows).

• α and β be scalar weights for the pixel-wise weighted
loss (e.g., α = 10.0, β = 0.10).

• λMSE and λSSIM be weighting factors for the combined
loss function.

• SSIM(·, ·) denote the Structural Similarity Index be-
tween two images.

M(x, y) =

{
1 if Iannot(x, y) ̸= Iclean(x, y)

0 otherwise

w(x, y) = α ·M(x, y) + β · (1−M(x, y))

Lweighted =
1∑

x,y w(x, y)

∑
x,y

w(x, y) ·
(
Iclean(x, y)− Î(x, y)

)2

(1)

LSSIM = 1− SSIM(Î , Iclean)

Ltotal = λMSE · Lweighted + λSSIM · LSSIM

Initial experiments were performed with values λMSE =
1.0, λSSIM = 0.05, α = 10.0, and β = 0.10. However,
through experimentation, we found that exaggerated values

of α that were close to the ratio of annotated pixels to clean
pixels worked very well, while preserving detail and higher-
frequency information. Furthermore, there were no visual
improvements from the addition of the SSIM term to the
loss, and it was therefore removed. The denoising autoen-
coder used for the purpose of this study was trained with
values λMSE = 1.0, λSSIM = 0, α = 300.0, and β = 1.0.

Appendix A shows examples of the denoising autoen-
coder, trained with the hyperparameters mentioned above,
being used to remove medical annotations.

3.2. Fusion of Clinical and Image Features

The clinical features used to enhance classification re-
sults are the menopausal status and the type of center (on-
cology vs. normal). These clinical features are appended
to the classification head of the joint and classification-only
networks.

As previously stated, a patient’s menopausal status is
a significant factor in assessing the risk of ovarian can-
cer malignancy. However, this relationship between the
menopausal status and malignancy is not generally reflected
in oncological centers, where more complex or high-risk
cases are typically referred.

To illustrate this, Figure 4 presents the distribution of
menopausal status among patients at LUMC - an onco-
logical facility - and RdGG - a non-oncological facility,
respectively. As the figures show, non-oncology centers
like RdGG have very few pre-menopausal malignant pa-
tients, while oncology centers have a distribution of benign
and malignant cases that does not seem impacted by the
menopausal status. For this reason, the IOTA Adnex also re-
lies on the type of center as one of the three clinical feature.
Due to the low number of samples, peri-menopausal pa-
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Figure 5. The fusion of image features and clinical features before
feeding both into a classification MLP. This is a form of intermedi-
ate fusion, where pooled image features are combined with clinical
features that are projected to a higher dimension.

tients have been combined with post-menopausal patients.

The third and last clinical factor used by the IOTA Adnex
model is the CA125 biomarker, and the impact of incorpo-
rating it will not be measured because too many patients had
missing values for this feature.

The integration of these two clinical features in the clas-
sification head is shown in Figure 5. This exact configu-
ration is applied to the classification head of every tested
network.

3.3. Multitask Learning Architectures

We compare the performance of two multitask learning
architectures with their single-task counterparts: the stan-
dard U-Net and a custom EfficientNetB0-based architec-
ture. EfficientNetB0 was selected as an additional back-
bone due to its strong classification performance as a base-
line classifier on the primary dataset compared to ResNet18,
ResNet50 and DenseNet121.

3.3.1 EfficientNet backbone

Figure 6 illustrates the architecture of the EfficientNetB0-
based multitask model. The downsampling path is identical
to the original EfficientNetB0 encoder, and a the same mul-
timodal classification head is used in single-task and multi-
task settings. By keeping the classification branches and
hyperparameters consistent, we minimize incidental differ-
ences in performance, which allows us to more directly ex-
amine the effects of multitask learning.

3.3.2 U-Net backbone

Current multitask learning methods mainly rely on a U-Net
backbone for joint classification and semantic segmenta-
tion. Image features are pooled into the classification head
from different stages. For example, CMSVNetIter pools
and concatentes image features from the second-last and the
last down-block of the U-Net, as well as the first upsampling
block [28]. For the purpose of our study, this setup is not
possible because a multitask architecture that pools from
an upsampling block cannot be compared to its single-task
classification equivalent, as the classification-only network
does not have access to this additional contextual informa-
tion. Figure 7 shows the joint classification and semantic
segmentation U-Net architecture used in our study.

3.3.3 Joint loss

During training, the joint architectures output both the seg-
mentation loss and the classification loss. The loss term for
the joint tasks is λseg · LDice + λcls · LCE.

The choice of 0.3 is motivated by past work that shows
that this ratio yields strong performance in joint classi-
fication and semantic segmentation tasks [28, 35]. Al-
though parametric methods for task weighting like uncer-
tainty weighting [36] and GradNorm [37] also exist, they
are typically used in scenarios where both tasks are be-
ing optimized. In our study, the segmentation path is used
solely as an auxiliary task to regularize the encoder, rather
than as a primary objective.
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Figure 6. A joint classification and semantic segmentation network with an EfficientNetB0 backbone. This was done by adding an
upsampling path and skip connections to the original EfficientNetB0 model.

Figure 7. The Multitask U-Net-based architecture. A classification head is added to the traditional U-Net architecture, which performs
global average pooling on the last two encoder blocks and concatenates these pooled features.

3.4. Evaluation Metrics

For classification-only and joint classification-
segmentation networks, the following evaluation metrics
are tested on the primary dataset:

• Accuracy (%): the proportion of correctly predicted
samples out of all samples.

• Sensitivity (Recall): the proportion of true positives
among all actual positives, computed as Sensitivity =
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TP
TP+FN .

• Specificity: the proportion of true negatives among all
actual negatives, computed as Specificity = TN

TN+FP .

• AUC (Area Under the Curve): the area under the re-
ceiver operating characteristic (ROC) curve [38].

• F1 score: the harmonic mean of precision and recall.

For each trained model, the true positive (TP), true neg-
ative (TN), false positive (FP), and false negative (FN) rates
are reported in Appendix C.

We compare the segmentation-only network to the MTL
approach using the Intersection over Union (IoU) metric,
which is defined as:

IoU =
|Prediction ∩ Ground Truth|
|Prediction ∪ Ground Truth|

=
TP

TP + FP + FN

The MMOTU dataset has 8 classes, compared to the pri-
mary dataset which has 2 classes. This makes it impractical
to use metrics such as the F1 score or the AUC-ROC, which
are binary classification metrics. For this reason, we solely
report the IoU and accuracy results for the MMOTU dataset.

As for the primary dataset, the classification metrics used
all rely on a threshold for the boundary, which creates a
trade-off between sensitivity and specificity. This depen-
dency, as well as the class imbalance present in the dataset,
make it difficult to use these metrics to compare the dif-
ferent approaches. Furthermore, clinicians may adjust the
threshold based on the individual patient or the perceived
cost of false positives and false negatives [39]. For this rea-
son, we use the Area Under the Curve (AUC) as our pri-
mary comparison metric, as it is independent of any spe-
cific threshold and not sensitive to class imbalances in the
test set.

3.5. Datasets

3.5.1 Primary Dataset

This study includes data from 963 unique patients, collected
across three different hospitals: Leiden University Medical
Center (LUMC), Reinier de Graaf Gasthuis (RdGG), and
Haga Ziekenhuis (HAGA).

Each patient in the dataset is associated with a variable
number of 2D ultrasound slides, ranging from 1 to 20. Since
slides from the same patient tend to be visually similar,
dataset stratification was performed at the patient level to
split the data into training, validation, and test sets. This
approach ensures that the models learn to differentiate be-
nign from malignant tumors based on morphological fea-
tures rather than memorizing patient-specific characteris-
tics. The 3895 benign and malignant images represent a

Figure 8. MMOTU classes

total of 963 patients. Of these, 85% of patients were allo-
cated to the training and validation sets, while the remaining
15% were used for testing.

As lesion masks were necessary for this experiment, a
joint effort was established to annotate lesion masks in the
images of the dataset. This labeling effort includes contri-
butions by the author of this thesis, Cor de Kroon, Maite
Timmermans and Bart Groen. The Labelme [40] program
was used to visualize, annotate and correct lesion masks.

3.5.2 MMOTU pre-training

In this study, we begin by pre-training our joint and single-
task networks on the Multi-Modality Ovarian Tumor Ul-
trasound (MMOTU) dataset. The MMOTU dataset is an
open online dataset with 1,469 ultrasound ovarian scans,
each having class labels and corresponding semantic seg-
mentation masks. This makes it possible to use the dataset
to pre-train and evaluate multitask joint architectures.

The classification, segmentation and joint models trained
on the MMOTU dataset are later fine-tuned on the primary
dataset. Given the limited size of our own dataset, pre-
training is useful because it means that the encoder can start
with feature representations that are specific to ovarian le-
sions.

Furthermore, since MMOTU includes both classification
labels and lesion masks, it allows us to assess the generaliz-
ability of multitask learning across datasets. By evaluating
on MMOTU, we can better understand how multitask strate-
gies perform in the context of ovarian mass classification in
smaller datasets.

The eight classification classes present in the MMOTU
dataset are shown in Figure 8.

4. Experimental Setup

4.1. Hyperparameters

Throughout the training process for the multi-task learn-
ing networks, the separate classification and the separate se-
mantic segmentation networks, the set of hyperparameters
remains constant. This was done in an effort to attribute
differences in results to architectural choices instead of hy-
perparameter differences.

Appendix B shows the full list of hyperparameters em-
ployed for each dataset.
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Figure 9. An overview of the multimodal cascaded approach. In this approach, the ovarian lesion is first segmented using the U-Net and
the image is then cropped using this mask. This cropped image is resized to 164x164 and classification is then performed using clinical
features.

4.2. Pre-processing of images

The full list of pre-processing steps is provided in Ap-
pendix C.

5. Results
5.1. MMOTU

The first evaluation of the multitask learning approach
compared to single-task baselines was performed on the
MMOTU dataset, in both original and denoised settings.
Table 1 and 2 show the results. There were 233 test, 236
val and 1000 train images, which make a total 1469 images.

Architecture IoU Accuracy (%)
U-Net segmentation 0.66 –
U-Net classification – 52.31
U-Net MTL 0.70 57.76
EfficientNet segmentation 0.70 –
EfficientNet classification – 64.22
EfficientNet MTL 0.75 69.83

Table 1. MMOTU performance of the models in the original sce-
nario

Architecture IoU Accuracy (%)
U-Net segmentation 0.66 –
U-Net classification – 48.71
U-Net MTL 0.62 64.66
EfficientNet segmentation 0.65 –
EfficientNet classification – 65.95
EfficientNet MTL 0.71 73.71

Table 2. MMOTU performance of the models in the denoised sce-
nario

5.2. Primary Dataset

For the primary dataset, the IoU, sensitivity, specificity,
precision, F1 score and AUC are computed for all entries

in an independent test set comprised of 165, with a total of
731 slides.

Tables 3 to 6 show the results for the performance of the
models with the U-Net backbone and the EfficientNet back-
bone, as well as the impact of adding clinical information,
removing annotations and using multitask architectures in-
stead of single-task equivalents.

5.3. Cascaded Approaches

In addition to exploring joint approaches for classifying
and segmenting ovarian lesions, we also investigate a cas-
caded approach. In this approach, the lesion is first seg-
mented, and the image is then cropped to only include the
lesion. A classifier is then trained to only detect these le-
sion crops. This approach is motivated by the observation
that the lesion mask is not strictly required for the final clas-
sification output. Figure 9 shows the full pipeline for the
cascaded approach.

As the segmentation-only EfficientNetB0 backbone
model performed the best on the MMOTU segmentation
task, it was trained to localize lesions in the primary dataset
then used to crop each image to only include its lesion.
The cropped images were square-padded and resized to
164x164.

6. Discussion

6.1. MMOTU results

As the MMOTU dataset does not feature the needed clin-
ical information, the impact of removing medical annota-
tions and using auxiliary segmentation branches was evalu-
ated, but not the impact of incorporating clinical features.

The results on the MMOTU dataset show clear benefits
- in both U-Net architectures and EfficientNetB0 architec-
tures, and in both original and denoised scenarios - of trans-
forming a classification-network into a multitask learning
network by adding an auxiliary segmentation path.

This drastic increase in accuracy across all scenarios
could most likely be due to the relatively small size of the
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Architecture IoU Accuracy (%) Sensitivity (Recall) Specificity Precision F1 Score AUC
U-Net segmentation 0.7651 – – – – – –
U-Net classification – 86.59 0.4653 0.9302 0.5165 0.4896 0.8501
U-Net MTL 0.5914 84.95 0.5545 0.8968 0.4628 0.5045 0.8403
U-Net classification clinical – 93.99 0.7030 0.8619 0.4494 0.5483 0.8767
U-Net MTL clinical 0.6408 81.81 0.7426 0.8302 0.4121 0.5300 0.8899

Table 3. Primary dataset performance of the U-Net models, with and without clinical data and on original images

Architecture IoU Accuracy (%) Sensitivity (Recall) Specificity Precision F1 Score AUC
U-Net segmentation 0.7590 – – – – – –
U-Net classification – 87.96 0.4455 0.9492 0.5844 0.5056 0.8655
U-Net MTL 0.6879 82.63 0.6832 0.8492 0.4207 0.5208 0.8701
U-Net classification clinical – 88.65 0.6337 0.9270 0.5818 0.6066 0.9243
U-Net MTL clinical 0.6638 89.19 0.7426 0.9159 0.5859 0.6550 0.9218

Table 4. Hospital performance of the U-Net models, without clinical data and on denoised images

Architecture IoU Accuracy (%) Sensitivity (Recall) Specificity Precision F1 Score AUC
EfficientNet segmentation 0.8422 – – – – – –
EfficientNet classification – 81.94 0.7822 0.8254 0.4180 0.5448 0.8916
EfficientNet MTL 0.7878 85.77 0.7129 0.8810 0.4898 0.5806 0.9024
EfficientNet classification clinical – 88.65 0.8317 0.8952 0.5600 0.6693 0.9460
EfficientNet MTL clinical 0.8014 90.15 0.8020 0.9175 0.6090 0.6923 0.9424

Table 5. Primary dataset performance of the EfficientNetB0 models, with and without clinical data and on original images

Architecture IoU Accuracy (%) Sensitivity (Recall) Specificity Precision F1 Score AUC
EfficientNet segmentation 0.8264 – – – – – –
EfficientNet classification – 84.95 0.7921 0.8587 0.4734 0.5926 0.8972
EfficientNet MTL 0.8018 83.45 0.8020 0.8397 0.4451 0.5724 0.8987
EfficientNet classification clinical – 87.82 0.7723 0.8952 0.5417 0.6367 0.9294
EfficientNet MTL clinical 0.8050 91.24 0.8416 0.9238 0.6391 0.7265 0.9493

Table 6. Hospital performance of the EfficientNetB0 models, without clinical data and on denoised images

MMOTU dataset. With such limited number of images and
8 classes, classification models may learn to rely on non-
lesion regions of the scan for classification. In settings with
so few images, encouraging the encoder to learn lesion-
specific features through an auxiliary loss seem to improve
the performance and reduce overfitting and reliance on ir-
relevant regions.

Removing medical annotations also led to improved
classification performance, again because these annotations
could act as confounders on which the network relied. This
improvement may also be partly attributed to the limited
size of the dataset, as neural networks trained on larger
datasets might still learn lesion-specific features even in the
presence of annotations.

Our results also demonstrate that using an Efficient-
NetB0 backbone outperformed the U-Net backbone for both
classification and segmentation tasks. While this finding is

specific to our use case, it suggests that researchers should
not default to U-Net architectures when designing and eval-
uating multitask networks.

6.2. Primary Dataset

The results of our approach show that, when looking at
the AUC as a metric, the addition of clinical information
brought the best improvements to the classification metrics.
In all cases, there was an increase in the AUC when clini-
cal information was incorporated. This is likely because the
menopausal status and the type of center offer additional
contextual information to the classifiers when cases are am-
biguous and image features are not enough to distinguish
between benign and malignant cases.

Employing multitask architectures instead of single-task
equivalents led to similar or slightly higher AUCs, but not
in all cases. For example, using an efficientnet-based joint

11



Architecture Accuracy (%) Sensitivity (Recall) Specificity Precision F1 Score AUC
Full image clinical 87.82 0.7723 0.8952 0.5417 0.6367 0.9294
Cascaded 85.09 0.6634 0.8810 0.4718 0.5514 0.8912
Cascaded with clinical 89.33 0.7921 0.9095 0.5839 0.6723 0.9367

Table 7. Results of cascaded models, using the EfficientNetB0 classifier

architecture with denoised images and clinical information
improved all classification metrics, as Table 6 shows. How-
ever, this improvement cannot be seen in all cases: for ex-
ample, there was no improvement in the AUC when multi-
task architectures were used instead of single-task equiva-
lents on original iamges.

The use of a multitask learning architecture as a regu-
larizer proved beneficial across some settings, but their im-
provements were not seen consistently. The largest gain be-
ing an increase of 0.02 in denoised images with fused clin-
ical and image features. Labeling ovarian lesions remains
a time-consuming and tedious task, and the observed im-
provements may not justify the additional labeling annota-
tion effort.

As Table 7 shows, the cascaded approach that first seg-
ments the lesion, crops it then classifies this cropped re-
gion performed better than running a classifier on the en-
tire image. This is likely because the classifier is forced to
only rely on the lesion for its outcomes, and cannot over-
fit on surrounding anatomical structures. However, even
with this mechanism for explicit focus on the lesion, the
cascaded approach performed slightly worse than the multi-
task learning approach, most likely because the cropping
process was not always precise and was prone to over and
under-cropping lesions.

In both the EfficientNet and U-Net architectures, the IoU
was higher when using single-task semantic segmentation
architectures. This is likely because there is a small amount
of interference in the encoder when both tasks are learned
simultaneously. Nonetheless, the segmentation path was
employed to add an auxiliary loss to improve classification,
and not with the goal of reaching satisfactory segmentation
outcomes. Therefore, the observed drop in segmentation
accuracy is an acceptable trade-off.

As per our hypothesis, when evaluating using the AUC
metric, using an EfficientNet backbone for multitask learn-
ing brought improvements in all cases compared to the U-
Net equivalent. The U-Net backbones also struggled with
reaching satisfactory sensitivity (recall) scores when com-
pared to their EfficientNet equivalents. This difference in
classification performance could be a positive sign to rely
on classification-tailored encoders in joint classification and
semantic segmentation settings for clinical applications.

6.3. Clinical relevance of results

As the results indicate, the applications of deep learning
to ovarian mass classification yield promising results, when
the proposed improvements are implemented. As Table 6
shows, the combination of removing medical annotations,
incorporating clinical information and employig a multitask
network yielded an accuracy of 91%, a sensitivity socre of
0.84, a specificity score of 0.92, and an AUC of 0.95.

Segmenting the image lesion, cropping the image then
classifying the crop also led to satisfactory classification
outcomes; as Table 7 shows, this method yielded an accu-
racy of 89.33%, a sensitivity of 0.7921 and a specificity of
0.9095.

However, the benefit of mechanisms that encourage the
encoder to learn lesion-specific features appears to be more
pronounced in smaller datasets. The results show that the
MMOTU dataset, which contains fewer images, exhibited
greater improvement from the multitask learning approach
compared to the primary dataset. This suggests that as
dataset size increases, the classifier becomes more capable
of learning morphological features directly, and the relative
benefit of an auxiliary loss decreases.

Given that the gains from a joint architecture decrease
when the size of the dataset increases, and given the labor
cost and expertise needed to annotate semantic segmenta-
tion masks, it is generally more practical to improve clas-
sification performance by collecting additional images. In
this clinical context, however, acquiring more ovarian scans
is a tedious and costly process, mostly due to privacy and
security constraints.

The addition of clinical information, namely the
menopausal status and the type of center, proved to be
crucial and providing the greatest benefit to the classifier.
These two clinical variables are both readily available and
routinely collected for each patient, and should be included
in any model that aims to accurately classify ovarian tu-
mors.

Although each patient has a variable number of ultra-
sound slides, the study was restricted to independent classi-
fication on single slides. Relying on single slides is depen-
dent on the operator and can miss contextual information
for a patient that is present in other slides. A simple ex-
tension that could increase the accuracy and reliability of
the model would be to run the model on all patient slides
and aggregate the results through majority voting. This ap-

12



proach would also give a measurable uncertainty metric for
patients; when the model agrees on a diagnosis outcome for
all patient slides, it could be deemed more certain than when
its decisions are split between patient slides.

Given the promising performance of CNNs on 2D ovar-
ian ultrasound scans, another potential extension would be
to train CNNs on 3D volumes. This would reduce reliance
on operator-selected slides and provide a more holistic view
of the lesion to the classifier.

7. Conclusion
This study aimed to evaluate the performance of a multi-

task network for the classification and semantic segmenta-
tion of ovarian lesions, with the segmentation path serving
as a regularizer to guide the shared encoder toward learning
lesion-specific features beneficial for downstream classifi-
cation.

We demonstrated that, across most settings, joint ar-
chitectures outperformed their single-task counterparts in
classification. However, this advantage diminished as the
dataset size increased, possibly showing that collecting
more samples for a dataset might lead to the same effect
as using joint architectures as regularizers.

Our results also indicated that the removal of medical
annotations did not lead to significant performance changes,
whereas fusing clinical and image features consistently led
to significant improvements.

8. Future work
There are several potential approaches of improving the

accuracy, robustness and explainability of the classifier,
which could be explored in future work.

First, the incorportation of clinical information should
not be limited to the menopausal status and center type. If
available, biomarkers such as CA125 and CAE significantly
enhance the accuracy of our approach. CA125 in particular
is a strong indicator of malignancy in ovarian lesions and
is the third clinical factor used in the IOTA Adnex model.
As previously stated, we did not include these biomarkers
in our study due to the lack of availability for all patients.

Another limitation of our study lies in the explainability
of the models. CNNs are inherently difficult to interpret,
and even saliency-based methods such as Grad-CAM have
known limitations. Furthermore, the relative contribution
of clinical versus image-based features should be evaluated
to better understand their influence on the final prediction.
Among the methods explored, the cascaded approach offers
the greatest level of interpretability, as it allows clinicians to
assess whether a misdiagnosis stems from incorrect lesion
cropping or from misclassification of the cropped image.

Although our study demonstrates improvements when
incorporating clinical features, their impact at inference

time remains difficult to assess. As clinical models increas-
ingly rely on multi-modal inputs rather than image data
alone, recent work on multi-modal clinical explainability
by Leiden University Medical Center (LUMC) [41] could
offer valuable insights and be adapted to enhance the inter-
pretability of our models.
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3
Neural Networks

This chapter gives the relevant background information behind neural networks, convolutions and the
process of using convolutional neural networks to learn to classify between images of different classes.

3.1. Perceptron
The most basic and fundamental building block of a neural network is the perceptron. Loosely inspired
by the neurons in the human brain, a perceptron computes a linear weighted combination of its inputs
and adds a bias term. More formally, the perceptron can be expressed as:

y = ϕ

(
n∑

i=1

wixi + b

)

where xi are the input features, wi are the corresponding weights, and b is the bias term. In this report,
all input features, weights, and bias terms are floating-point numbers. To enable the perceptron to model
non-linear relationships, its output is passed through a non-linear transformation known as an activation
function. This activation function is represented by ϕ in the above formula for the perceptron. Common
choices for activation functions include the Rectified Linear Unit (ReLU), the sigmoid function, and the
step function. Figure 1 shows a single perceptron unit, known as a neuron.

Figure 3.1: The perceptron, from [2]. The inputs x1 and x2 are weighted by the learnable parameters w1 and w2 and added
together, as well as a bias term b. The output is passed through a non-linear activation function; in this example, it is a step

function.
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3.2. Multi-layer perceptron
While a single perceptron is capable of solving only linearly separable problems, its representational capac-
ity to solve complex, non-linear and multi-dimensional problems is limited. the Multi-layer Perceptron
(MLP) is a collection of multiple layers of connected perceptrons, each followed by a non-linear activation,
that addresses these limitations.

Three types of layers constitute the building blocks of the MLP:

• Input layer: This layer receives the input features, and its size dictates the required dimensionality
of the input. This layer does not perform any computation, and passes the input value to the next
layer.

• Hidden layers: These are intermediate layers that each contain a given, fixed number of perceptrons.
Each perceptron (known as a neuron) applies a weighted sum and an activation function of the output
of all preceding neurons.

• Output layer: This layer produces the final output of the network. The number of output neurons
depend on the nature of the task (e.g., regression, binary classification, multi-class classification).

The output of each neuron in a hidden layer becomes the input to neurons in the subsequent layer. For
this reason, an MLP is also known as a fully-connected network. Mathematically, the transformation
through a hidden layer can be expressed as:

h(l) = ϕ
(
W(l)h(l−1) + b(l)

)
where:

• h(l−1) is the output of the previous layer (or input if l = 1),

• W(l) is the weight matrix for layer l,

• b(l) is the bias vector for layer l, and

• ϕ is the application function applied element-wise

The weight matrix W(l) and the bias vector b(l) for each layer l are the learnable parameters of the
network, gradually adjusted during training so that the network can learn non-linear patterns in the data.

The multi-layer perceptron architecture can be seen in Figure 3.2.

3.3. Loss function
During training, a neural network requires a quantitative measure of how well it is performing on its task.
This measure is provided by a loss function, which compares the model’s predictions to the actual target
values at each learning iteration. The loss function must be differentiable with respect to the network’s
parameters, as it is not only used to evaluate performance but also to guide the adjustment of the weights
during training. At each iteration, the model moves closer to an optimal solution.

The loss function that is most essential to this report is the Cross-Entropy (CE) loss function. This loss
function is used in classification tasks, and its binary (two-class) form can be written as:

LCE = − [y log(ŷ) + (1− y) log(1− ŷ)]

where y ∈ {0, 1} is the true label, and ŷ ∈ (0, 1) is the predicted probability that the input belongs to class
1. In our report, class 0 refers to the benign class and class 1 refers to the malignant class.

The cross-entropy loss penalizes confident but incorrect predictions more heavily than less confident ones,
making it particularly suitable for probabilistic classification models.
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Figure 3.2: The multi-layer perceptron, from Scikit-Learn’s documentation [1]. The set of neurons {xi|x1, x2, ..., xm} represents
the input features, and each intermediate (hidden) layer transforms the values from the previous layers through a weighted linear

sum. In this example MLP, there is one hidden layer.
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3.4. Optimizers
Once the network has calculated the loss using a loss function, it needs a way to update its parameters
(weights and biases) to improve future predictions. This is the role of an optimizer. The optimizer looks
at the current loss and adjusts the parameters in a direction that is expected to reduce the loss in the next
iteration.

Most optimizers use a method called gradient descent, which relies on the gradient (or slope) of the loss
function with respect to each parameter. These gradients tell the network how to change each parameter
to reduce the loss. The amount by which the parameters are changed is controlled by a value called the
learning rate, denoted by η: this is a small positive number that determines the step size during each
update.

Assuming we use the binary cross-entropy loss function shown in section 3.3

LCE = − [y log(ŷ) + (1− y) log(1− ŷ)] ,

where y ∈ {0, 1} is the true label and ŷ = fθ(x) is the predicted probability from the MLP with parameters
θ, we can compute the gradient of the loss with respect to the parameters θ as

∇θLCE =
∂LCE

∂ŷ
· ∂ŷ
∂θ

.

Then, using gradient descent, the parameters are updated according to:

θ(t+1) = θ(t) − η · ∇θLCE,

where θ(t) is the parameter vector at iteration t.

Although the above formula describes the gradient descent optimizer, there are several variations of gra-
dient descent used in practice. One of the most widely used is the Adam optimizer [6], which combines
ideas from momentum and adaptive learning rates to make learning faster and more stable.

3.5. Backpropagation
Backpropagation is the algorithm used to efficiently compute the gradients of the loss function with respect
to each parameter in a neural network. It applies the chain rule of calculus to propagate the error from
the output layer back through the network, layer by layer.

In a feedforward neural network, each layer computes an output based on the inputs it receives from the
previous layer. During training, after the forward pass computes the predictions and the loss is calculated,
backpropagation begins the backward pass.

Suppose the output of a layer is given by

z = Wx+ b, a = ϕ(z),

where W and b are the weights and biases, x is the input to the layer, z is the pre-activation, and ϕ is the
activation function. The gradients are propagated backward using the chain rule:

∂L
∂W

=
∂L
∂a

· ∂a
∂z

· ∂z

∂W
,

and similarly for the biases:

∂L
∂b

=
∂L
∂a

· ∂a
∂z

· ∂z
∂b

.

By applying these derivatives from the output layer to the input layer, backpropagation computes all nec-
essary gradients to perform parameter updates using gradient descent or another optimization algorithm.
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3.6. Convolutions
Multi-layer perceptrons are effective for many tasks, but their success is limited when applied to the task
of image classification. This is because there are special structural patterns in images that are not rep-
resentable by an MLP. For example, in images, nearby pixels (in the horizontal and vertical direction)
are often more closely related than distance ones. Furthermore, specific patterns related to our objects of
interest like edges or textures can appear in multiple locations.

To better capture these spatial relationships, we use a different kind of neural network called a convolu-
tional neural network. Instead of relying on a linear combination of all previous neurons in a layer, a
convolutional neural network uses the convolution operation to compute filter scores at each layer. This
section explains the convolution operation, and the next one builds a simple convolutional neural network.

In convolutional layers, the basic building blocks are no longer individual perceptrons holding a single
weight. Instead, they are small matrices called kernels or filters, which slide over the input data and
perform a mathematical operation known as a convolution. These filters are learnable, meaning their
values are adjusted during training just like weights and biases in fully connected layers.

Each filter is designed to detect specific patterns in the input. for example, one filter might return a strong
output to vertical edges, while another might focus on corners. As the filter moves across the input, it
produces a new output called a feature map, which highlights where the pattern associated with the filter
is found.

Formally, a 2D convolution between a filter K and an input I can be expressed as:

S(i, j) =
∑
m

∑
n

I(i+m, j + n) ·K(m,n)

where S(i, j) is the output value at position (i, j), and the sums run over the dimensions of the filter K.

The process of sliding a kernel through an input image can be seen in Figure 3.3, where the convolution
operation is performed.

Figure 3.3: The convolution operation [5].

3.7. Convolutional Neural Networks
In this section, we use the definition of the convolution operator introduced previously to build a simple
Convolutional Neural Network (CNN).While the CNNs discussed in the main report may differ in structure
and depth, the fundamental building blocks described here provide sufficient background to understand
their architecture and function.
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Assume an input image of size 28×28 pixels with three color channels (Red, Green, and Blue). The first
layer in our CNN is a convolutional layer with a set of learnable filters (also called kernels). Each filter
processes all three color channels at once: it has one small 2D kernel for each channel, and the results
from these are added together to form a single feature map. If the layer uses 6 filters, it will produce 6
such feature maps.

Once this feature block is generated, it is typically passed through a pooling layer to reduce its spatial
dimensions while retaining the most relevant information. This is important because reducing the spatial
size helps decrease the computational load and number of parameters, and more importantly, increases
the receptive field. The receptive field is the region of the input image that affects a particular element
in a feature map; increasing it allows subsequent filters to capture patterns from a larger context in the
original image.

To achieve this, we introduce the max pooling operation. Max pooling partitions each feature map into
non-overlapping 2x2 regions and outputs the maximum value from each region. This downsampling
operation both reduces spatial dimensions and adds a form of translation invariance to the network.

Following the convolution and pooling layers, additional convolutional and pooling layers can be stacked
to build hierarchical representations of the input. Eventually, the resulting feature maps are flattened and
passed to a multi-layer perceptron, which performs the final classification.

Successive alternations of convolution and pooling operations are the core of nearly all modern CNN
architectures. As an example, the LeNet architecture, which uses all described components so far, is
shown in Figure 3.4.

Figure 3.4: The LeNet-5 architecture, which was implemented and used in 1998 for digit recognition [7]. This architecture relies
on a succession of convolution and max-pooling blocks that were described in this section.

3.8. EfficientNet
The single and multi-task architectures employed by this report are based on the traditional U-Net back-
bone and the EfficinetNetB0 backbone. In this section, the EfficientNetB0 architecture and its most im-
portant building block - the MBConv block - is explained. The next chapter will explain the task of
semantic segmentation as well as the U-Net architecture.

EfficientNet is a family of convolutional neural networks developed by Google that achieves high accuracy
with fewer parameters and less computations [10]. In order to understand the EfficientNet architecture,
the most important aspect to understand is the MBConv block.

3.8.1. Depthwise convolutions
Contrary to the previously shown standard convolution operation, depthwise convolutions do not mix
information across channels. The following example is an illustration of depthwise convolutions.

For the sake of the example, we use a 64x64x6 feature map. This means that the height of the feature map
is 64, the width is 64 and the channels (depth) is 6.
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Using a standard 2D convolution, each filter spans all 6 channels of the input feature map. This means
that, using the standard 3x3 kernel, the actual filter size is 3x3x6. If 32 filters are used, the 64x64x6 feature
map is transformed into a 64x64x32 feature map.

On the other hand, with depthwise convolutions, each input channel is assigned to one filter, and each
filter is applied independently to this one channel. This means that, for a 3x3 kernel, there will be 6 filters
in total for our feature map, each with dimensions 3x3x1. The final feature map will preserve the original
64x64x6 output shape.

Figure 3.5: Depthwise convolution [8]. In this example, there are 3 learnable filters, each of depth 1, for an input feature block
with 3 channels

3.8.2. Pointwise convolutions
As the example above demonstrated, in the example of a 64x64x6 input feature map, depthwise convolu-
tions apply a separate filter to each channel and return a feature map of the same dimension. However,
there is no information mixing between different channels in the input. In order to remedy this, the Effi-
cientNet blocks use standard convolutions but with a 1x1 filter. These convolutions are called pointwise
convolutions, and are applied across all channels. For example, using 32 filters would give the output
shape 64x64x3.

The combination of depthwise and pointwise convolutions results in a much lower parameter count than
standard 3×3 convolutions, and still enables effective mixing of spatial and cross-channel information.

3.8.3. Squeeze and excitation blocks
The squeeze and excitation block [4] is an efficient method of reweighting the channels of a feature map
to emphasize important information. The process is as follows:

1. Squeeze: Global Average Pooling (GAP) is applied to each channel of the feature map, which con-
denses the information into a single numerical descriptor per channel. In Section 3.7, the max-pool
operation was introduced. The global average pooling operation differs in that it computes the aver-
age of all values within each feature map, rather than taking the local maximum in a 2x2 filter. As
a result, it produces a vector where each element represents the mean activation of a channel across
its entire spatial (height, width) extent. The output of this operation is a one-dimensional vector
that has the same number of elements as the number of channels in the input feature map.

2. Excitation: the resulting vector is a channel descriptor, with one real number per channel in the
input feature map. This vector is passed through a two-layer fully connected network. The first
fully-connected layer applies non-linearity through a ReLU activation, and the second one through
a Sigmoid activation. This modified vector is now used to reweigh the original feature map through
channel-wise multiplication.

3.8.4. MBConv block
Using all the previously-described components, the MBConv block can be constructed. Figure 3.6 shows
the stacked components of the MBConv block, which follow a given order:
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1. Pointwise convolution

2. Depthwise convolution

3. Squeeze-excitation block

4. Pointwise convolution

5. Residual connection: this is an identity mapping from the input signal before any processing, that
is concatenated to the output of the last pointwise convolution

Figure 3.6: The MBConv block [3].

3.8.5. EfficientNetB0 architecture
The EfficientNetB0 architecture, as shown in Figure 3.7, is built using successiveMBConv blocks. Instead of
relying on traditional max-pooling operations for downsampling, EfficientNetB0 performs downsampling
by setting the stride parameter of certain convolutional layers to 2. The stride of a convolution refers to the
number of pixels the filter moves across the input. A stride of 2 means that every second pixel is sampled.
Assuming the filter size and padding remain unchanged, this effectively reduces the spatial dimensions of
the output by half.
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Figure 3.7: The EfficientNetB0 architecture.



4
Semantic Segmentation

In our report, we detect lesion masks of arbitrary shapes and contours by assigning all pixels in the
image to either non-lesion or lesion classes. This task is referred to as semantic segmentation, a common
application of convolutional neural networks (CNNs) in computer vision.

The U-Net remains one of the most widely used architectures for semantic segmentation, especially in
medical image analysis. In this report, we use the U-Net architecture in two contexts: once as a denoising
autoencoder that removes medical annotations from input images, and once as a segmentation model that
produces pixel-level predictions of lesion masks.

4.1. Encoder path
The encoder path in semantic segmentation resembles a typical CNN used for image classification. It
consists of a sequence of convolutional blocks, each typically followed by a non-linear activation function
(such as ReLU) and a downsampling operation (usually max-pooling). With each successive block, the
spatial resolution (height and width) of the feature maps decreases, while the number of feature channels
increases.

4.2. Decoder path
After the encoder path, because of the repeated application of max-pooling operations, the resulting
feature map is smaller in width and height than the original image. This resulting feature map is called
the bottleneck. Unlike classification tasks, which typically flatten this feature map and apply fully connected
layers, semantic segmentation tasks require a pixel-level output with the same spatial dimensions as the
input image.

To achieve this, the decoder path progressively upsamples the feature maps using transposed convolutions
or interpolation followed by convolution. These upsampling layers gradually reconstruct the spatial reso-
lution of the feature maps while reducing the number of channels. The goal is to produce a full-resolution
output map where each pixel contains a class prediction.

4.3. Skip connections
At the end of the encoder path, the spatial resolution is significantly reduced due to repeated pooling.
While this bottleneck captures global context, it loses fine-grained spatial details that are essential for pre-
cise segmentation. This is especially important in medical settings, where small structures or boundaries
matter.

To recover this lost spatial information, U-Net introduces skip connections between corresponding layers
in the encoder and decoder at the same level. These connections concatenate feature maps from the
encoder with the upsampled feature maps in the decoder. By reintroducing high-resolution features from
earlier layers, skip connections help the decoder reconstruct accurate lesion boundaries and preserve finer
details in the output map.
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4.4. U-Net architecture
The U-Net architecture combines the encoder path, decoder path, and skip connections into a symmetrical
U-shaped structure. As shown in the Figure 4.1, there is a corresponding upsampling block for each
encoder block.

After the final upsampling operation, a 1×1 convolution is applied. This layer maps each pixel’s feature
vector to the desired number of output classes, producing a final segmentation map. The depth (i.e.,
number of channels) of this 1×1 convolution corresponds to the number of classes—in our case, two:
lesion and non-lesion. In order to determine the final class label of each pixel, a pixel-wise argmax is
applied as a last step.

Figure 4.1: The U-Net architecture [9], which shows the componenets presented by this section: the encoder path (left) which
resembles the encoding path of a traditional CNN used for classification, the bottleneck (center), the decoding/upsampling

path(right), and the skip connections (grey arrows).

4.5. Loss function
The output of a semantic segmentation network is a feature map that has the same height and width as
the original image, and a pre-determined depth. The depth of the feature map depends on the number
of output classes. In our case, the feature map has 1 channel, as it only needs to indicate whether a pixel
belongs to the lesion class or not.

In this binary setting, predictions are floating-point numbers between 0 and 1, with numbers being closer
to 1 indicating a lesion pixel and numbers closer to 0 corresponding to non-lesion pixels. In order to com-
pare the output of the predicted segmentation map with the actual labeled segmentation map, the Mean
Squared Error (MSE) loss function can be used. For semantic segmentation, this function computes the
average of the squared differences between the predicted values and the ground truth values for all pixels:

LMSE =
1

HW

H∑
i=1

W∑
j=1

(ŷi,j − yi,j)
2
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where H and W are the height and width of the segmentation map, ŷi,j is the predicted value at pixel
(i, j), and yi,j is the corresponding ground truth value. In the binary setting, yi,j ∈ {0, 1} and ŷi,j ∈ [0, 1].

MSE penalizes large differences between the predicted and true values, which encourages the model to
produce outputs that closely match the ground truth segmentation. However, since most of the image
contains non-lesion pixels, the model can easily be biased towards predicting mostly non-lesion pixels as
a way of minimizing the MSE loss. For this reason, losses that are agnostic to the imbalance in classes
have been devised for the task of semantic segmentation. In this report, we used the Dice Loss, which is
expressed as follows:

LDice = 1−
2
∑

i,j ŷi,jyi,j∑
i,j ŷi,j +

∑
i,j yi,j + ϵ

where ŷi,j and yi,j are the predicted and ground truth values at pixel (i, j), respectively, and ϵ is a small
constant added to prevent division by zero.

Dice Loss directly optimizes the overlap between the predicted segmentation and the ground truth, making
it well-suited for imbalanced datasets where one class (e.g., lesion pixels) is much smaller than the other.
A Dice Loss of 0 indicates perfect overlap.
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A
Examples

In this Appendix, examples of images with removed annotations are shown, as well as inference results of
the joint architecture.

A.1. Removing medical annotations
Figures A.1 and A.2 show inference results when using the trained denoising autoencoder to remove
medical annotations. As Figure A.1 shows, the arrow than spans the ovarian lesion was correctly in-
painted, and there are no arrow artefacts visible in the image. However, the written text on the left side
of the image has not successfully been removed, likely because the denoising autoencoder was not trained
on this type of text. In Figure A.2, both the arrow that spans the lesion and the diameter marking on the
top-left are successfully removed.

Figure A.1: A pre-menopausal patient from a non-oncology center being correctly classified as benign.

Figure A.2: A pre-menopausal patient from a non-oncology center being correctly classified as benign.

A.2. Inference results
The best results in the report were obtained using the following combination:
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• Removing the annotations on images

• Incorporating clinical information

• Using multitask learning

As shown in section 5 of the report, this combination achieved a test accuracy of 91%, a sensitivity of 0.84,
a specificity of 0.92, a precision score of 0.64, an F1 score of 0.73 and an AUC of 0.95.

In this section, we use the constructed classifier to run inference on some images in the test set to give
examples of correct and incorrect predictions. These examples are present in Figures A.1-6.

Figure A.3: A pre-menopausal patient from a non-oncology center being correctly classified as benign.

Figure A.4: A post-menopausal patient from a non-oncology center being correctly classified as malignant. However, there are
some doubts regarding the correctness of the segmentation mask.
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Figure A.5: A post-menopausal patient from a non-oncology center being correctly classified as benign.

Figure A.6: A post-menopausal patient from a non-oncology center being correctly classified as malignant. However, there are
some doubts regarding the correctness of the segmentation mask.

Figure A.7: A post-menopausal patient from an oncology center (LUMC) being correctly classified as malignant.
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Figure A.8: A post-menopausal patient from a non-oncology center being incorrectly classified as malignant, while they are
benign.

A.2.1. Example confusion matrices
Figure A.9 shows the confusion matrix for the baseline classifier on the test set. The upper-left corner
represents correctly classified benign instances and the bottom-right corner represents correctly classi-
fied malignant instances. The confusion matrix also shows false positives (top-right) and false negatives
(bottom-left).

Figure A.9: The confusion matrix for the baseline classifier on the test set shown in the main report.

Figure A.10 shows the confusion matrix for the classifier with all incorporated improvements.
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Figure A.10: The confusion matrix for the best-performing classifier on the test set shown in the main report. This classifier
incorporates all three suggested improvements: the removal of medical annotations, the fusion of image and clinical features and

the use of an auxiliary semantic segmentation path.



B
Hyperparameters

This section is a full overview of the hyperparameters used during the training stages, in both the MMOTU
datasets and the primary dataset. This is done in an effort to ensure that the experiment is repeatable
and the results are reproducible.

The hyperperameters are architecture-agnostic, meaning that the same set of hyperparameters is used for
the U-Net and the EfficientNetB0 architectures. The nature of the task (joint vs. classification only) also
does not change the set of hyperparameters, as the goal of the report is to attribute improvements in
performance to changes in architecture and not differences in hyperparameters.

The set of hyperparameters for training the denoising autoencoder to remove medical annotations:

• Epochs: 200

• Batch size: 4

• Resize size: 336 x 544

• Optimizer: Adam with default PyTorch parameters

• Learning rate: 0.001

• Save strategy: model from the last epoch

• Hardware: NVIDIA RTX 6000

The set of MMOTU hyperaparameters is as follows:

• Epochs: 200

• Resize size: 336 x 544

• Batch size: 8

• Optimizer: SGD with momentum 0.9

• Learning rate: 0.001

• Save strategy: lowest validation loss

• Loss function classification: focal loss

• Loss function semantic segmentation: dice loss

• Loss balancing: 0.3 · LDice + 1.0 · LFocal.

• Train/test split: 85/15 (same train and test sets used in all settings)

• Hardware: NVIDIA Tesla P100

The set of hyperparameters for the training of networks on the primary (hospital) dataset is as follows:

• Epochs: 200

• Resize size: 336 x 544 (164 x 164 if cropped to the lesion mask)
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• Batch size: 8

• Optimizer: Adam with default PyTorch parameters

• Learning rate: 0.001

• Save strategy: lowest validation loss

• Loss function classification: cross-entropy with class weights [1.0, 2.0]

• Loss function semantic segmentation: dice loss

• Loss balancing: 0.3 · LDice + 1.0 · LCE.

• Train/test split: 85/15 (same train and test sets used in all settings)

• Hardware: NVIDIA RTX 6000



C
Pre-processing of images

Although pre-processing code is provided, this section describes all necessary pre-processing steps in
plaintext.

The original images were ultrasound scans supplied in the form of DICOMs, which are Digital Imaging
and Communications in Medicine files. This is a standard format used for storing, transmitting, and
handling medical imaging data that includes both image information and associated metadata (such as
patient details, imaging modality, and acquisition parameters).

The preprocessing steps are as follows:

1. Use the metadata about the manufacturer name and model name to accordingly crop out patient-
identifying information and metadata. Each ultrasound model appends text metadata of a certain
height, and this can be deterministically removed. For example, the Philips Affiniti 70W requires 40
pixels to be cut from the top of the image. The script that performs this step was written by Floris
Luitjes, a previous medical student who worked on the early steps of this project.

2. Annonymize the DICOM, to remove patient-identifying metadata. This script was also written by
Floris Luitjes.

3. Convert the DICOM to PNG.

4. Use OpenCV’s binary thresholding and contour detection functions to locate the ovarian scan.

5. Change every pixel outside the detected ovarian scan to black in the image.

6. Expand the ovary to occupy the entire width and height of the image.

7. If medical annotations need to be removed, use the denoising autoencoder to infer the clean image.

8. If the patient is perimenopausal, change the status to postmenopausal.
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