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Abstract 

The police control room determines where to send available police units to intercept 
a fleeing fugitive. Models can support the police with decision-making for fugitive 
interception. The police have, at most, a few minutes to determine an interception 
strategy. Therefore, a timely calculation of the interception positions is essential to sup-
port police interception operations. The number of nodes in the network, each being 
a crossing where routes of the fleeing suspect can split, greatly contributes to the com-
putation time. Graph coarsening is a promising approach to reduce the complexity 
of the network, and therefore the computation time. We compare four graph coarsen-
ing algorithms on five road networks and assess their impact on computation time 
and solution quality for the fugitive interception problem. Based on the comparison, 
we propose and test a new method specifically for fugitive interception. This method, 
Search Space Representation, improves the quality of the best solutions obtained 
by the optimization algorithm with up to 12%, improves the reliability of the optimi-
zation to find high-quality solutions, and decreases the number of function evalua-
tions required to obtain high-quality solutions to 5000–10,000 depending on the size 
and complexity of the road network, which is feasible for real-time decision-making. 
Search Space Representation can be applied to reduce the computation time of other 
network-based optimization problems.

Keywords: Graph coarsening, Network topology, Fugitive interception, Search 
problem, Real-time optimization

Introduction
Fugitive interception is a challenging task, requiring police to decide in at most a few 
minutes on the optimal positions of police units to intercept a fleeing suspect. The flee-
ing fugitive moves from the incident location to escape interception, e.g., by crossing 
the border or reaching the highway. Police units do not know the fugitive’s whereabouts, 
so they have to move to a vertex in the network where the probability of interception is 
highest, e.g., a chokepoint in the network where many routes pass through. The goal of 
the so-called ‘fugitive interception problem’ is to position the police units in such a way 
that they maximize the number of intercepted escape routes. Possible escape routes are 
simulated using a generative model of escape behavior (van Droffelaar et al. 2024). Note 
that the fugitive interception problem is not about chasing a fleeing fugitive; it concerns 
intercepting a fleeing fugitive, who is taking an unknown escape route from a known 
crime location. Models can support police decision-making for this problem, but the 
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timely calculation of optimal interception positions is challenging due to the complexity 
of the problem. A major contributor to the overall computation time is the size of the 
underlying road network, particularly the number of nodes in the network (van Drof-
felaar et al. 2024).

Graph coarsening, a technique to reduce the size of a graph while preserving essen-
tial structural properties, offers a promising approach to reducing the computation time 
of the fugitive interception problem. Graph coarsening is also referred to as contrac-
tion hierarchies (Geisberger et al. 2008), graph reduction (Loukas 2019), edge contrac-
tion (Asano and Hirata 1983), and graph sparsification (Peleg and Schäffer 1989). Graph 
coarsening algorithms have successfully been applied to various graph-based optimiza-
tion problems where reducing the number of nodes significantly improves computation 
time, such as routing optimization (Sanders and Schultes 2012), the Traveling Salesman 
Problem (Walshaw 2004) and graph partitioning (Chevalier and Safro 2009).

Graph coarsening algorithms vary depending on the application, as the importance of 
the nodes and links is very case-specific. For example, coarsening for transport modeling 
often focuses on preserving the shortest paths (Sanders and Schultes 2012), while coars-
ening for graph partitioning aims to minimize the number of edges (Chevalier and Safro 
2009; Safro et al. 2015). Pung et al. (2022) propose an algorithm that coarsens road net-
works using characteristics most prominent in the United States – grids and cul-de-sacs.

We distinguish two approaches to graph coarsening with different trade-offs between 
solution quality and computation time for fugitive interception: pre-processing and on-
the-fly coarsening. The first approach coarsens networks in advance and saves them for 
later application. Hence, the computation time of the coarsening algorithm does not 
affect the computation time of any subsequent optimizations. However, the coarsening 
algorithms cannot take any incident-specific information into account, like the starting 
positions of police units, the starting position of the fugitive, or their plausible escape 
routes. Therefore, pre-processed coarsening risks removing nodes of high importance to 
any specific fugitive interception problem and, therefore, decreasing the solution quality. 
In contrast, on-the-fly coarsening approaches can take all relevant incident characteris-
tics into account, likely leading to a higher solution quality. However, the computation 
time of the coarsening is critical in this case and might offset any gains in computation 
time for the optimization.

This paper compares four graph coarsening techniques on both computation time and 
solution quality for fugitive interception. We measure the solution quality by running 
the optimization algorithm for 100 000 function evaluations across 10 seeds and take the 
best-found solution. To measure the computation time, we consider (1) the number of 
function evaluations required by the optimization algorithm to find a solution, and (2) 
the computation time per function evaluation. We evaluate these methods across five 
different types of road networks. The evaluation studies both pre-processing and incor-
porating on-the-fly graph reconstruction into the optimization process.

The contribution of this research is two-fold: (1) we compare the effectiveness of exist-
ing graph coarsening algorithms for a new application, and (2) we propose an approach 
incorporating on-the-fly graph reconstruction into the Search Space Representation in 
the optimization process. This allows for more flexibility, capable of handling different 
fugitive profiles and network structures.
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Section "Optimization problem"describes the case study used throughout the paper, 
fugitive interception optimization. Section "Method" describes the experimental setup. 
Section "Coarsening algorithms: results and discussion" details each of the chosen algo-
rithms, their implementation for fugitive interception, and the results of the experi-
ments. Based on the results, Sect.  "Proposed method: search space representation" 
proposes and tests an on-the-fly coarsening approach for fugitive interception. Sec-
tion  "Discussion" discusses the possible threats to the validity and implications of the 
research, and, lastly, we share our conclusions in Sect. "Conclusion".

Optimization problem
Background

The fugitive interception problem aims to find the best positions for police units to max-
imize the probability of intercepting a fleeing fugitive on a road network. The problem is 
modeled from the start of the escape from the incident until the fugitive is either inter-
cepted or escaped. Since the police do not know the fugitive’s exact location, they have 
to position themselves at points in the network where there is a high chance of intercep-
tion, such as chokepoints where many escape routes intersect.

Related optimization problems in literature are search, and, more specifically, inter-
ception problems. Alspach (2004) optimizes the routes of searchers to either maximize 
the probability or minimize the time to find a target. However, determining an optimal 
action for each time step becomes computationally infeasible when the size of the net-
work and the length of the time horizon increase.

Pursuit-evasion games, where both the routing of the searcher (or pursuer) and the 
target (or evader) are optimized, are primarily used in robotics (Chung et al. 2011). Pur-
suit-evasion problems are solved for different graph topologies, such as grids, circular 
graphs, trees, and random graphs. Depending on the network topology, these problems 
are proven to be pseudo-P to strongly NP-complete (Borie et al. 2011). Due to the com-
putational complexity, the problem instances that are studied are typically very small.

Formalization of the optimization problem

We formulate the optimization problem as a variant of the Flow Interception Problem 
(Hodgson 1990; Berman et  al. 1992), meaning the objective is to position each police 
unit to maximize the number of intercepted escape routes. A route is considered inter-
cepted if (1) it passes a police unit’s target position and (2) the police unit can reach that 
position before the fugitive does.

The decision variables of the optimization problem are the target nodes of the police 
units ( πu,v ) and the intercepted routes ( zr ) (Table 1). The optimization problem is for-
malized in Eqs. 1-3. A route is considered intercepted ( zr = 1 ) if, for a given route (r), 
the fugitive is at the same place (v) at the same time (t) as the position of a police unit 
( πu,v ), and that position is within reach at that time for that particular police unit ( τu,v,t ). 
The positions of the police units are optimized to maximize the number of intercepted 
escape routes. Routes are only intercepted at target positions, not at intermediate points 
along the route. The minimization function in Eq. 3 ensures that each route can only be 
intercepted once and contribute to the objective function.
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Simulation of the fugitive escape routes

The optimization depends on the simulated escape routes of the fugitive. The routes 
are modeled as the shortest paths from the incident location to the escape nodes of the 
network. To generate a diverse set of plausible routes, 2% noise is added to the routes, 
meaning that the fugitive makes a wrong turn at 2% of the intersections, after which a 
new shortest path is recalculated from their current position (van Droffelaar et al. 2024). 
This approach produces a distribution of routes around the optimal paths. Simulating 
the fugitive escape routes through this method takes a few seconds, depending on the 
road network, the starting position of the fugitive, and the locations of the escape nodes 
(Winterswijk: 2.4 s, Utrecht: 9.9 s, Manhattan: 1.4 s, Main roads: 1.1 s, Rotterdam: 9.2 
s). The simulation of fugitive routes should be further optimized and parallelized before 
implementation in a control room. In future work, this model could be replaced with a 
more detailed behavioral model.

Solution approach

The optimization problem is NP-hard, meaning that exactly solving real-world cases 
could take years (Boccia et  al. 2009). Therefore, we use a genetic algorithm supple-
mented with the auto-adaptive framework Borg, which co-evolves the probabilities of 
the evolutionary operators used for population adaptation based on their success in gen-
erating better solutions (Hadka and Reed 2013). van Droffelaar et al. (2024) compare this 
metaheuristic optimization algorithm to the exact optimization algorithm CBC (Ralphs 

(1)Maximize: Z =

∑

r∈R

zr

(2)Subject to:
∑

v∈V

πu,v = 1 ∀u ∈ U

(3)zr = min
(

1,
∑

u∈U

∑

t∈T

∑

v∈V

φr,v,t · πu,v · τu,v,t

)

∀r ∈ R

Table 1 Notation of parameters and decision variables

Decision variables

zr ∈ {0, 1} Route r is intercepted

πu,v ∈ {0, 1} Node v is the target node of police unit u

Parameters

V = {v} Set of nodes

R = {r} Set of fugitive routes

U = {u} Set of police units

S = {s} Set of sensors

T = {t} Ordered index set of time steps

tmax Maximum time step; length of planning horizon

φr ,v ,t = {0, 1} Fugitive route r is present at node v at time step t

τu,v ,t = {0, 1} Node v is reachable by police unit u at time t



Page 5 of 23van Droffelaar et al. Applied Network Science            (2025) 10:2  

2022) and show that the metaheuristic finds near-optimal solutions in a fraction of the 
computation time. Problem instances on networks with 2 500 nodes are solved in 5–10% 
of the computation time, and the computation time increases less rapidly with increas-
ing network size. To speed up convergence, the nodes are sorted on their proximity to 
the starting position of the fugitive. Thus, the proximity of solutions in the search space 
is more related to proximity in the objective space. To further ensure solution quality, 
the optimization algorithm is run for ten random seeds for 100 000 function evaluations. 
All experiments are performed on the Delft Blue supercomputer, with an Intel XEON 
E5-6248R 24C 3.0 GHz CPU with 48 cores and 192 GB memory (Delft High Perfor-
mance Computing Centre 2022).

Method
Case study networks

To reduce the dependency of the experiments on the topology of the road network, 
we evaluate the coarsening approaches on five distinct road networks (see Table  2 
for an overview). First, Winterswijk, the Netherlands, represents a rural area. Sparse 
roads lead from the town to the border with Germany in the north, east, and south. 
Second, Manhattan, New York, United States of America, represents a grid layout city 
with traffic lights and cameras at most intersections. Third, Utrecht, The Netherlands, 

Table 2 Case study road networks used in this study. Escape nodes are marked in red. The starting 
positions are displayed in blue (police units) and orange (fugitive)
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represents a typical European city with a historical center surrounded by more mod-
ern neighborhoods. Fourth, the main road network around Amsterdam, The Neth-
erlands, consists of highways, and primary and secondary roads around the city. 
This network is vastly different from city road networks and represents an applica-
tion where a fugitive flees at high speeds over a larger distance. Fifth, Rotterdam, The 
Netherlands, represents a large modern European city divided by a large river. The 
starting position of the fugitive is a central location in each road network, and the 
police start locations are the local police stations in the respective areas.

The networks are obtained from OpenStreetMap via the OSMnx Python library 
(Boeing 2017, 2024). We use the built-in simplify_graph functionality to remove 
nodes that do not represent intersections, as well as dead ends. The OpenStreetMap 
raw data consists of sets of straight-line segments: curved roads contain intermediate 
nodes to represent their geometry. For fugitive interception, these nodes do not add 
any value but do increase the number of nodes considerably. For example, the unsim-
plified Winterswijk network consists of 9540 nodes, whereas simplifying the network 
reduces the number of nodes to 1926.

Evaluation method

Each coarsening algorithm is evaluated on each of the road networks using the frame-
work depicted in Fig. 1. The evaluation method consists of four steps: 

1. The fugitive escape routes are simulated on the uncoarsened road network G using 
the method described in Sect. .

2. The road network G is coarsened using the algorithm under evaluation, resulting in 
the coarsened network Gc . Each coarsening algorithm has its own tuning parameters, 
which are varied to obtain different extents of coarsening for each algorithm.

3. The police interception positions are optimized based on the coarsened network Gc , 
meaning that only nodes that remain in Gc are considered possible interception posi-
tions. The number of routes intercepted by a combination of interception positions – 
the quality of the candidate solution – is calculated using the set of routes generated 
in step 1.

4. The police interception positions optimized based on Gc are then evaluated on the 
original graph G. Discrepancies in the number of intercepted escape routes arise 
when either the path between the police start position and the calculated intercep-

Fig. 1 Schematic representation of the evaluation method used in this study
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tion position is longer in G than in Gc , or when the path does not exist in Gc or in G. 
We collect three metrics from each parametrization of each coarsening algorithm:

• The solution quality, which is the percentage of escape routes intercepted by 
the calculated police interception positions. Note that the metaheuristic solu-
tion approach does not guarantee finding the exact optimal solution. Therefore, 
we take the best-found solution after 100  000 function evaluations across 10 
seeds to account for variations in convergence between seeds. The solution 
quality is scaled to the best-found solution quality on the uncoarsened graph 
G to obtain the degradation of the solution quality caused by the coarsening of 
the graph.

• The convergence, which is the number of function evaluations at which the opti-
mization algorithm obtains 95% of its solution quality. Effectively, this is the num-
ber of function evaluations at which the search stalls. To account for variation 
between seeds, we take the minimum number of function evaluations at which 
a seed reaches 95% of its best-found solution quality. This statistic is collected for 
every seed of each parametrization of each coarsening algorithm.

• The time per function evaluation, which, combined with convergence, indicates 
how much graph coarsening reduces the computation time. For these experi-
ments, we rerun a subset of the coarsening algorithm parametrizations on a dedi-
cated node of the supercomputer to prevent interference with other jobs.

Coarsening algorithms: results and discussion
We compare the effectiveness of four graph coarsening algorithms for fugitive intercep-
tion: three preprocessing algorithms and one on-the-fly approach. The three preproc-
essed graph coarsening algorithms are selected for their diverse approaches to graph 
coarsening and the availability of open-source implementations (preferably in Python). 
The on-the-fly coarsening method was developed as part of this research. The algo-
rithms considered are: 

1. Pruning: a first step to simplifying the network, by removing dead ends and cul-de-
sacs (Pung et al. 2022).

2. Node consolidation: a generic, application-agnostic graph coarsening approach that 
merges nodes that are topologically close together to simplify complex intersections 
and clusters in the network (Boeing 2024).

3. Heuristic coarsening: a transport-specific coarsening algorithm that preserves key 
properties of the network, such as connectivity and shortest paths (Krishnakumari 
et al. 2020).

4. On-the-fly coarsening: a case-specific coarsening algorithm that filters the network 
before optimization, retaining only the nodes and edges that are relevant to the spe-
cific interception case.

The following paragraphs outline the four graph coarsening algorithms, first discussing 
them in general, second detailing the implementation for the fugitive interception case 
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used throughout this paper, and third, presenting the results. Lastly, the computation 
time and obtained solution quality of the algorithms are compared.

Pruning

Background

A logical first step to simplify the road network is pruning dead ends and cul-de-sacs 
(Pung et al. 2022). Dead ends and cul-de-sacs are not expected to be nodes with a high 
probability of intercepting a fleeing suspect. Therefore, pruning these nodes should not 
degrade the solution quality by much.

Implementation

This study uses a simple recursive algorithm that removes nodes with only one incom-
ing or outgoing edge. Self-loops, which are edges that connect a node to itself, are also 
removed. The recursion ensures that any new dead ends or self-loops created during the 
pruning process are also removed.

Results and discussion

Depending on the road network, the number of nodes in the network is reduced by 
2.7% to 29.1%, depending on the road network (Table 3). This is a considerable reduc-
tion, especially because the removal of these nodes does not affect the solution qual-
ity. Figure 2a shows that, relative to the uncoarsened graph, pruning obtains the same 
best-found solution quality across seeds. Notably, the mean obtained solution quality 
increases for all road networks. Note that for some seeds, the solution quality exceeds 
100%, indicating that the metaheuristic solution approach identifies solutions bet-
ter than the best-known solutions for the uncoarsened network. This occurs because 
metaheuristics do not guarantee finding the exact optimal solution. The reduction in 
the number of nodes available for interception decreases the size of the solution space, 
which speeds up convergence and reduces the likelihood of getting stuck in local optima.

Additionally, the variation between seeds either stays similar or decreases. This is 
important for the predictability of computation time for the decision-maker. A large var-
iation in solution quality across seeds indicates that a decision-maker should run with 
many seeds in parallel and aggregate the results.

Figure 2b shows that the convergence of the optimization algorithm is largely depend-
ent on the seed and the initial sample of solutions. On average, pruning leads to slower 

Table 3 Node reduction by pruning for the five case study road networks, relative to the 
uncoarsened networks

City Node 
reduction 
(%)

Winterswijk 29.1

Manhattan 2.7

Utrecht 15.1

Main roads 5.9

Rotterdam 13.0
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convergence in most road networks. This, however, is a distortion of the plot due to the 
much higher obtained solution quality (Fig. 2a). The earliest NFE at which the optimiza-
tion algorithm finds a solution with the quality of the uncoarsened network solution is 
lower after pruning.

Node consolidation

Background

Node consolidation is a graph simplification method that merges nodes that are topo-
logically close together (Boeing 2024). Real-world road networks often have complex 
intersections that, when converted to a graph, result in a group of nodes. For instance, 
a roundabout is represented by four or eight nodes, depending on its specific layout. 
For transport planning – and for fugitive interception – we can consider these multiple 
nodes as one.

Implementation

This study uses an OSMnx’s node consolidation algorithm (Boeing 2024). The algo-
rithm’s tuning parameter, ‘tolerance’ (measured in meters), defines the buffer radius 
around each node. Overlapping node buffers are merged into a single node at the center 

Fig. 2 Results of the pruning experiments with ten seeds per city. Each dot represents the results of one 
random seed. The overlaid boxes represent the first quartile, median, and third quartile
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of the buffer area. In this study, we vary the tolerance from 1 to 50  ms. A low toler-
ance simplifies complex intersections into single nodes (Fig. 3a). A higher threshold col-
lapses more of the network, but keeps the main roads intact (Fig. 3c). A grid network, 
like Manhattan, collapses after surpassing a tolerance threshold of the distance between 
the blocks (Fig. 3b).

The node consolidation algorithm retains information about which original nodes 
were consolidated into each new node. After consolidation, the starting positions of the 
police, the fugitive, and the escape nodes are mapped to the corresponding consolidated 
nodes. By handling this in post-processing, rather than exempting certain nodes during 
consolidation, the coarsened network is flexible to any incident location.

Results and discussion

Table 4 show that varying the ‘tolerance’ parameter produces coarsened networks with 
varying numbers of nodes. The exact impact of tolerance differs across networks. When 
the tolerance is set to its maximum of 50 ms, some networks are reduced to as little as 
7% of their original size.

To maintain clarity, Fig.  4 only shows the best solutions across seeds. The solution 
quality varies a lot between seeds, which improves with coarsening but still makes it dif-
ficult to observe clear trends. For all networks except Winterswijk, there are some outli-
ers due to the optimization algorithm’s sensitivity to the random seed, even across 10 
seeds.

Fig. 3 Road networks after node consolidation with different tolerance settings (in brackets)

Table 4 Node reduction by node consolidation for the five case study road networks, relative to the 
uncoarsened networks, for a tolerance value of 5, 25 and 50

Node reduction (%)

Tolerance 5 25 50

Winterswijk 24.1 58.2 89.9

Manhattan 3.4 25.0 93.7

Utrecht 17.5 55.0 90.2

Main roads 14.3 52.7 61.2

Rotterdam 10.0 53.6 89.9
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The impact of network size reduction on solution quality varies between networks 
(Fig. 4a). For Winterswijk and the main road network, node consolidation has little to no 
effect on solution quality. The key interception positions and the paths from the starting 
positions are preserved. In Manhattan, we see a jump in node reduction once the toler-
ance exceeds the spacing between streets, which results in a large drop in solution qual-
ity. For Rotterdam, we see two of these drops: the first consolidations barely affect the 
solution quality, which then drops to approximately 60%, and later to 20%. For Utrecht, 
we see a more gradual but similarly dramatic decline in solution quality.

Figure 4b shows that reducing the number of nodes considerably decreases the num-
ber of function evaluations to search stall. The results for Winterswijk and the main road 
network are particularly interesting as the convergence speed is improved considerably 
without a loss in solution quality.

Heuristic coarsening

Background

Krishnakumari et al. (2020) propose a heuristic coarsening algorithm tailored to appli-
cations in transportation. The algorithm preserves key properties such as graph con-
nectivity, shortest paths, and trip length distribution, making it a promising coarsening 
algorithm for fugitive interception.

The algorithm consists of four coarsening steps, repeated until either the maximum 
number of iterations is reached or the network cannot be coarsened further using the 
current settings. 

Fig. 4 Results of the node consolidation experiments, showing only the best result across seeds for each 
setting of the tolerance parameter. The grey crosses indicate the best result for the uncoarsened graph
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1. Assign weights to the links in the graph. The weights can be based on properties rel-
evant to the application, such as link length, road type, or speed.

2. Rank the nodes for removal. Instead of selecting nodes randomly, as is common in 
other coarsening algorithms, nodes are ranked deterministically for removal. This 
ensures reproducibility and reduces the computational time required for coarsening.

3. Contract and prune nodes. To avoid an excessive increase in the average node degree 
in the coarsened network (Geisberger et al. 2008), the algorithm applies a contrac-
tion criterion. Only nodes meeting this criterion are contracted. The tuning param-
eter ‘threshold’ ( ρ ) determines how strictly the criterion is followed, with higher val-
ues resulting in greater node reduction. Another parameter, pruning, removes dead 
ends, self-loops, and disconnected components.

4. Update the link weights. After contracting and pruning, link weights are recalculated 
for the coarsened graph, and steps 2–4 are repeated until the stopping criterion is 
reached.

Implementation

This study applies the heuristic coarsening algorithm from Krishnakumari et al. (2020), 
originally implemented in Matlab, which we have re-implemented in Python.1

We conducted two sets of experiments. In the first set, we used the default settings, 
contracting nodes based on road type. These road types are crowdsourced in Open-
StreetMap and range from ‘pedestrian path‘ and ‘bus lane’ to ‘motorway’. Nodes that 
serve as a connection between different types of roads (e.g., a highway and a residential 
street) are not contracted, assuming these nodes are important for the network’s con-
nectivity (Krishnakumari et al. 2020). In the second set of experiments, nodes are con-
tracted based on their betweenness centrality. Nodes with a high betweenness centrality 
are preserved, assuming that these nodes are important for network connectivity and for 
fugitive escape routes.

The coarsening can be pre-processed, so the computation time of the coarsening algo-
rithm does not affect the real-time performance of the decision support system. If the 
police starting positions, fugitive starting position, or escape nodes are removed during 
coarsening, the shortest paths from these positions to the coarsened network are added 
back to the network afterward. This post-processing step makes it possible to handle any 
incident location.

Both variants of the algorithm are tested with the same parameter settings as in 
Krishnakumari et al. (2020). We run the algorithm both for a single iteration and until 
completion, with thresholds set to either the minimum (0) or maximum (1000). We 
experiment with and without pruning.

Results and discussion

When coarsening the network based on road type, the node reduction is relatively lim-
ited (Table  5), but the solution quality declines quickly. Even for Winterswijk and the 
main road network, we see a large degradation of solution quality, while other coarsening 

1 The Python implementation can be found at https:// github. com/ irene- sophia/ Heuri sticC oarse ning

https://github.com/irene-sophia/HeuristicCoarsening
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algorithms had less problems with these networks. Pruning, in particular, causes a dras-
tic decline in solution quality to 5–40 % of the original quality (Fig. 5a). Again, the node 
reduction does considerably speed up the convergence, while obtaining poor solutions 
(Fig. 5b).

Using betweenness centrality improves the heuristic coarsening algorithm for fugitive 
interception (Fig. 6). The solution quality for Utrecht, Rotterdam, and the main road net-
work is affected little by the coarsening. For Winterswijk, the size of the road network is 
only reduced very little without pruning (Table 6). However, enabling pruning causes a 
sharp decline in solution quality. Similarly, pruning leads to very poor solution quality 
for Manhattan. Additional analysis shows that, while the original interception positions 
are largely preserved, the paths from the police starting positions to the interception 
positions are not. The node reduction does considerably speed up the convergence 
(Fig. 6b).

On‑the‑fly coarsening

Background

Instead of generic coarsening algorithms that allow for pre-processing, it is also possi-
ble to construct the road network on the fly for each optimization run. No important 

Table 5 Node reduction by heuristic coarsening (type) for the five case study road networks, 
relative to the uncoarsened networks

Node reduction (%)

Pruning 0 0 1 1

Iterations 1 Max 1 Max

Threshold 0 1000 0 1000

Winterswijk 1.1 3.1 30.0 36.2

Manhattan 4.2 20.8 10.9 32.3

Utrecht 5.9 15.3 25.8 42.0

Main roads 38.6 55.7 47.5 74.5

Rotterdam 7.0 18.3 25.2 43.8

Table 6 Node reduction by heuristic coarsening (betweenness) for the five case study road 
networks, relative to the uncoarsened networks

Node reduction (%)

Pruning 0 0 1 1

Iterations 1 Max 1 Max

Threshold 0 1000 0 1000

Winterswijk 72.9 73.7 79.6 82.7

Manhattan 64.4 71.8 65.5 75.9

Utrecht 35.9 45.7 44.8 62.8

Main roads 54.4 71.6 56.8 83.6

Rotterdam 0.1 18.3 11.5 43.8
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Fig. 5 Results of the heuristic coarsening (road type) experiments, showing only the best result across seeds 
for each parameter setting. The grey crosses indicate the best result for the uncoarsened graph

Fig. 6 Results of the heuristic coarsening (betweenness centrality) experiments, showing only the best result 
across seeds for each parameter setting. The grey crosses indicate the best result for the uncoarsened graph
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nodes or paths are lost, only the unimportant parts of the network for each specific 
case are removed. The on-the-fly coarsening method was developed as part of this 
paper. To our knowledge, no research exists that implements this network repre-
sentation, though it could be a promising approach, especially for Flow Interception 
Problems.

Implementation

A new network is created from the simulated escape routes and the shortest paths 
from the police starting positions to any node on these escape routes. The network 
reconstruction takes a few seconds, depending on the number of nodes in the net-
work (Winterswijk: 0.22 s, Utrecht: 3.74 s, Manhattan: 1.12 s, Main roads: 0.84 s, Rot-
terdam: 5.89 s).

Results and discussion

Table 7 shows that removing unimportant parts of the network results in a considerable 
reduction in the number of nodes, ranging from 45.0 to 70.8%. This reduction improves 
the average solution quality across all networks (Fig. 7a). By removing nodes that do not 
lie on escape routes or police paths, many possible combinations of police interception 
positions that do not lie on any fugitive route (with a solution quality of 0) are removed.

The number of function evaluations to search stall is lower for Winterswijk, Man-
hattan, and Rotterdam – networks with a smaller increase in solution quality from 
on-the-fly network reconstruction. In these cases, the node reduction primarily 
speeds up the search. On the other hand, for Utrecht and Manhattan, where the net-
work reconstruction leads to a more substantial improvement in solution quality, the 
optimization requires more function evaluations. However, even in these cases, the 
optimization algorithm reaches a solution quality equivalent to the uncoarsened net-
work earlier in the process. Additionally, the earliest NFE at which the search stalls 
(across multiple seeds) is lower, indicating a more efficient search despite the greater 
number of evaluations required for significant improvements. However, the mini-
mum NFE at which the optimization algorithm finds a solution with the same quality 
as the uncoarsened network is lower. Additionally, across seeds, the earliest point at 
which the search stalls is also reached sooner, indicating that the network reconstruc-
tion not only improves solution quality but also speeds up convergence.

Table 7 Node reduction by on-the-fly network construction for the five case study road networks, 
relative to the uncoarsened networks

City Node 
reduction 
(%)

Winterswijk 70.8

Manhattan 45.0

Utrecht 52.3

Main roads 54.2

Rotterdam 52.9
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Comparison

Figure  8 combines the results, grouped by approach and by city. Appendix presents a 
comparison of the results in tabular form. Evidently, pruning and, to a larger extent, on-
the-fly network reconstruction reduce the size of the network while achieving the same 
or higher solution quality. The effectiveness of the other coarsening algorithms varies by 
network. Node consolidation and heuristic coarsening (based on betweenness central-
ity) perform well for Winterswijk and the main road network. Node consolidation shows 
a more gradual decline in solution quality, whereas heuristic coarsening – particularly 
when using the road type in the algorithm – shows a larger degradation, even at low 
node reduction. This is surprising since heuristic coarsening was specifically designed 
for transportation networks.

Figure  9 shows the results of the timing experiments. The relationship between the 
number of nodes and the time per function evaluation generally follows a power-law 
trend. On-the-fly network reconstruction is an exception since many low-quality solu-
tions are removed from the set of possible interception positions. For every function 
evaluation, the optimizer first checks whether a path exists between the police starting 
position and the candidate interception position. If that path exists, the length of the 
shortest path is calculated. That second step obviously adds to the computation time. 

Fig. 7 Results of the on-the-fly network construction experiments
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In other words, a network with many infeasible solutions shows a shorter computa-
tion time, though the solution quality is poor. The experiments presented in Fig. 7 have 
shown that on-the-fly network reconstruction significantly reduces the number of func-
tion evaluations to convergence.

Proposed method: search space representation
The experiments show that pruning and on-the-fly network reconstruction effectively 
reduce network size, while preserving solution quality. This, in turn, reduces the NFE to 
search stall, and the time per function evaluation. In other words, the computation time 
is reduced in two ways.

Fig. 8 Comparison of coarsening algorithms. The solution quality is scaled to the best-found solution quality 
across seeds for the uncoarsened network

Fig. 9 The computation time per function evaluation across different graph coarsening approaches and 
road networks
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Drawing inspiration from Bode et al. (2019), we incorporate on-the-fly network con-
struction in the representation of the search space, filtering out low-quality solutions. 
The remaining solutions are the combinations of police unit positions that a) are located 
on at least one escape route and b) can be reached by the respective police unit. intro-
duces variability in the number of potential positions for different police units, depend-
ing on their initial locations. Compared to on-the-fly network reconstruction, the 
proposed Search Space Representation further reduces the size of the optimization 
problem by removing unreachable positions.

Figure 10 shows that this approach is generally effective in achieving a higher-quality 
solution using fewer function evaluations. For all case study road networks, the best-
found solution quality increased, up to 12%. Especially for Utrecht, the Main roads and 
Rotterdam, both the average and best solution quality across seeds increased dramati-
cally (Fig. 10a). Increasing the average obtained solution quality improves the reliability 
of the optimization for the decision-maker. Since there are no possible solutions that 
have a solution quality of 0 (not intercepting any escape routes), the algorithm gets stuck 
less often in local optima and therefore converges to a solution with a higher quality. 
For Winterswijk, Manhattan and Utrecht, these high-quality solutions are also found in 
fewer function evaluations. For Rotterdam, the average number of function evaluations 

Fig. 10 Results of the proposed method
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until the search stalls is higher, but the seed with the quickest convergence converges 
at a lower number of function evaluations than without the Search Space Representa-
tion (SSR). For the Main roads, the slower convergence is due to the significantly higher 
obtained solution quality: the earliest NFE at which the optimization algorithm finds 
a solution with the quality of the solution without the SSR is lower (Fig. 10b). Across 
networks, the number of function evaluations required to obtain high-quality solu-
tions is reduced to 3  000 -10  000 depending on the size and complexity of the road 
network. Considering that the time per function evaluation is 2–13 ms depending on 
the size of the network, this number of function evaluations is feasible for real-time 
decision-making.

Filtering the search space does not add to the overall computation time. In the optimi-
zation, the nodes are sorted on their proximity to the fugitive starting positions to speed 
up convergence (also in the uncoarsened case, Sect. ). While the filtering step takes time, 
this is compensated because the number of nodes to be sorted is shorter. Depending on 
the network, this means that introducing the filtering step adds up to 0.3 s (Rotterdam) 
to reducing the computation time by 0.3 s (Utrecht), or does not impact the computa-
tion time (Winterswijk, Manhattan, Main roads).

Discussion
The effectiveness of graph coarsening algorithms for fugitive interception is dependent 
on the topology of the road network. Networks with dominant interception positions, 
like a highway network or Winterswijk, are relatively easily coarsened without degrading 
the solution quality. For other networks it proves difficult to find a general coarsening 
algorithm that both reduces the size of the network (and thus the computation time), 
while preserving the solution quality, i.e., the interception positions with a high prob-
ability of interception.

This research used a shortest-path model with noise to generate fugitive escape routes. 
Alternative models of fugitive behavior, such as avoiding busy roads, could affect the 
effectiveness of the coarsening algorithms that use preprocessing. The choice of escape 
nodes is also crucial; in this research, they are set at network boundaries like highway 
on-ramps or border crossings. If escape nodes were instead located at places like parking 
garages, the likely interception points would change, which could affect the effectiveness 
of the coarsening algorithms to different extents. In contrast, on-the-fly network recon-
struction maintains the solution quality regardless of the fugitive escape routes. The 
solution quality is not affected by different models of fugitive behavior, but the reduc-
tion in computation time decreases when the number of nodes visited by the fugitive 
increases.

The data quality of open-source road networks influences experiments with graph 
coarsening. Since OpenStreetMap data is crowd-sourced, errors occur in network 
topology and attributes, such as road classification or speed limits. For example, in our 
research, we found a roundabout where one section was labeled as ‘unclassified’, while 
the rest was labeled as a ‘residential road’. The heuristic coarsening algorithm that relies 
on the road classification to determine which nodes to contract, therefore produces 
incorrect results. Another example we encountered was a highway on-ramp that was 
mistakenly not connected to the main highway in the data. Such an error affects both 
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the generation of escape routes and the suggested police paths to interception positions. 
In this case, the generated escape routes falsely suggested that the fugitive would not use 
the on-ramp. While we have corrected these mistakes, other errors likely persist in the 
data.

The Search Space Representation approach in this paper can be applied to other net-
work-based optimization problems. In cases like search and rescue, where the location 
and paths of a lost person are uncertain (Koester 2008), filtering out non-essential parts 
of the network and focusing on likely routes can significantly reduce computational com-
plexity. For other network-based optimization problems, such as large-scale route plan-
ning, this method can help speed up computation and improve solution quality. Using 
the detailed network is only critical at the beginning (departure from the warehouse) 
and the end (delivery point). Preserving the full detailed graph is essential at these loca-
tions to ensure accurate routing, while coarsening the network in between could signifi-
cantly speed up the optimization.

Conclusion
This paper compares four graph coarsening techniques for fugitive interception across 
five road networks. Pruning – the removal of dead ends and self-loops – seems to always 
be effective: it removes 2.7% to 29.1% of nodes (depending on the network), but these 
nodes are likely not relevant for fugitive interception. Other preprocessed graph coars-
ening algorithms can significantly reduce the number of nodes in the networks, but 
cause the solution quality to deteriorate significantly. Important interception positions 
and paths for the police units are often not preserved for these algorithms. In contrast, 
on-the-fly network reconstruction, where a new network is created from the escape 
routes and the shortest paths from the police starting positions to any node on these 
escape routes, improves the optimization. By removing poor-quality solutions, the opti-
mization algorithm converges more quickly and results in higher-quality solutions.

Based on these results, we propose an approach incorporating on-the-fly graph recon-
struction into the Search Space Representation in the optimization process. This allows 
for more flexibility, capable of handling different fugitive profiles and network struc-
tures. Search space representation improves the quality of the best solutions obtained 
by the optimization algorithm with up to 12%. Notably, the reliability of the optimization 
to find high-quality solutions is increased: the average obtained solution quality across 
seed increases by up to 24%. Meanwhile, the number of function evaluations required 
to obtain high-quality solutions is reduced to 5 000 -10 000 depending on the size and 
complexity of the road network, which is feasible for real-time decision-making.

The Search Space Representation approach in this paper can be applied to other net-
work-based optimization problems, specifically search and rescue, and more generally to 
large-scale route planning.

Tabular comparison of results
Tables 8 , 9, 10, 11 and 12 present the results of the evaluated graph coarsening algo-
rithms for the five road networks. The results for node consolidation are presented 
using a tolerance value of 30 ms, as this value results in a balanced trade-off between 
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Table 8 Results of the coarsening algorithms for fugitive interception in Winterswijk

Min Med Mean Max

G Z (% of max) 0.72 (97.3%) 0.74 (99.5%) 0.73 (99.2%) 0.74 (100%)

NFE 3443 20433 27752 83163

Pruning Z(Gc)/Z(G) 0.98 1.00 1.00 1.01

NFE(G)/NFE(Gc) 0.62 5.43 6.27 18.00

Node consolidation Z(Gc)/Z(G) 0.69 0.74 0.78 1.01

NFE(G)/NFE(Gc) 0.41 2.88 3.04 6.22

Heuristic - type Z(Gc)/Z(G) 0.34 0.34 1.00 0.35

NFE(G)/NFE(Gc) 0.03 0.76 2.69 9.12

Heuristic - betweenness Z(Gc)/Z(G) 0.34 0.34 0.34 0.36

NFE(G)/NFE(Gc) 0.03 1.69 2.71 13.30

On-the-fly Z(Gc)/Z(G) 0.99 1.00 1.00 1.01

NFE(G)/NFE(Gc) 0.66 2.66 3.55 10.86

Table 9 Results of the coarsening algorithms for fugitive interception in Manhattan

Min Med Mean Max

G Z (% of max) 0.76 (84.3%) 0.85 (94.8%) 0.85 (94.2%) 0.90 (100%)

NFE 23159 52635 52994 79822

Pruning Z(Gc)/Z(G) 0.89 0.96 0.95 1.02

NFE(G)/NFE(Gc) 1.19 1.72 2.00 3.12

Node consolidation Z(Gc)/Z(G) 0.12 0.45 0.45 0.89

NFE(G)/NFE(Gc) 0.31 1.09 1.73 4.15

Heuristic - type Z(Gc)/Z(G) 0.01 0.42 0.48 1.00

NFE(G)/NFE(Gc) 0.01 0.35 0.54 1.67

Heuristic - betweenness Z(Gc)/Z(G) 0.01 0.01 0.05 0.30

NFE(G)/NFE(Gc) 0.05 0.13 0.14 0.33

On-the-fly Z(Gc)/Z(G) 0.91 0.97 0.96 0.99

NFE(G)/NFE(Gc) 0.60 1.41 1.41 2.22

Table 10 Results of the coarsening algorithms for fugitive interception in Utrecht

Min Med Mean Max

G Z (% of max) 0.48 (73.9%) 0.55 (85.0%) 0.55 (84.5%) 0.65 (100%)

NFE 24000 62978 58561 87309

Pruning Z(Gc)/Z(G) 0.78 0.91 0.90 1.05

NFE(G)/NFE(Gc) 0.86 2.36 2.32 3.25

Node consolidation Z(Gc)/Z(G) 0.05 0.50 0.45 0.77

NFE(G)/NFE(Gc) 0.66 1.78 2.13 4.14

Heuristic - type Z(Gc)/Z(G) 0.00 0.00 0.01 0.03

NFE(G)/NFE(Gc) 0.00 0.00 0.00 0.00

Heuristic - betweenness Z(Gc)/Z(G) 0.80 1.00 0.99 1.06

NFE(G)/NFE(Gc) 0.25 1.30 1.38 2.89

On-the-fly Z(Gc)/Z(G) 0.75 0.90 0.90 1.05

NFE(G)/NFE(Gc) 0.31 1.92 1.76 3.38
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node reduction and maintaining solution quality. For the heuristic coarsening algo-
rithms, the maximum coarsening settings are applied, with pruning set to 1, iterations 
to the maximum, and the threshold also at its maximum value. For each algorithm, 
we report the minimum, median, mean, and maximum values across seeds. The first 
row in each table presents the results for the uncoarsened graph: Z is the fraction 
of intercepted routes and NFE is the number of function evaluations to search stall 
(reaching 95% of the solution quality). For each coarsening algorithm, the results are 
scaled to the best found for the uncoarsened graph: the maximum value for Z and the 
minimum value for NFE. A Z value close to or above 1 indicates good solution quality, 
while an NFE value below 1 indicates faster convergence.
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Table 11 Results of the coarsening algorithms for fugitive interception in the main road network 
around Amsterdam

Min Med Mean Max

G Z (% of max) 0.61 (64.1%) 0.78 (82.0%) 0.78 (82.0%) 0.96 (100%)

NFE 5769 24928 36126 91322

Pruning Z(Gc)/Z(G) 0.82 0.84 0.88 1.01

NFE(G)/NFE(Gc) 1.53 5.00 6.68 17.34

Node consolidation Z(Gc)/Z(G) 0.83 0.99 0.95 1.03

NFE(G)/NFE(Gc) 0.30 8.01 7.23 15.50

Heuristic - type Z(Gc)/Z(G) 0.00 0.00 0.00 0.01

NFE(G)/NFE(Gc) 0.02 0.02 0.02 0.02

Heuristic - betweenness Z(Gc)/Z(G) 0.00 0.02 0.34 0.89

NFE(G)/NFE(Gc) 0.02 0.02 2.38 9.35

On-the-fly Z(Gc)/Z(G) 0.84 1.01 0.99 1.03

NFE(G)/NFE(Gc) 1.05 5.80 6.34 11.80

Table 12 Results of the coarsening algorithms for fugitive interception in Rotterdam

Min Med Mean Max

G Z (% of max) 0.31 (84.0%) 0.33 (89.0%) 0.34 (90.0%) 0.37 (100%)

NFE 11169 26599 33641 72047

Pruning Z(Gc)/Z(G) 0.91 0.94 0.94 0.97

NFE(G)/NFE(Gc) 1.27 3.39 3.28 6.38

Node consolidation Z(Gc)/Z(G) 0.06 0.17 0.20 0.58

NFE(G)/NFE(Gc) 0.90 2.84 3.26 6.70

Heuristic - type Z(Gc)/Z(G) 0.84 0.93 0.92 0.99

NFE(G)/NFE(Gc) 1.05 1.69 2.36 7.80

Heuristic - betweenness Z(Gc)/Z(G) 0.89 0.93 0.94 1.07

NFE(G)/NFE(Gc) 0.75 1.62 1.98 6.13

On-the-fly Z(Gc)/Z(G) 0.89 0.96 0.96 1.03

NFE(G)/NFE(Gc) 0.32 1.96 2.51 7.57
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