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Abstract
Objective. Uncertainties in treatment planning are typically managed using either margin-based
or robust optimization. Margin-based methods expand the clinical target volume (CTV) towards
a planning target volume, which is generally unsuited for proton therapy. Robust optimization
considers worst-case scenarios, but its quality depends on the chosen uncertainty (scenario) set:
excluding extremes reduces robustness, while including too many make plans overly conservative.
Probabilistic optimization overcomes these limitations by modeling a continuous scenario distri-
bution, enabling the use of statistical measures. Approach. We propose a novel approach to prob-
abilistic optimization that steers plans towards individualized probability levels, to control CTV
and organs-at-risks (OARs) under- and overdosage. Voxel-wise dose percentiles (d) are estim-
ated by expected value (E) and standard deviation (SD) as E[d]± δ · SD[d], where δ is iteratively
tuned to match the target percentile of the underlying probability distribution (given setup and
range uncertainties). The approach involves an inner optimization of E[d]± δ · SD[d] for fixed
δ, and an outer optimization loop that updates δ. Polynomial chaos expansion provides accurate
and efficient dose estimates during optimization. We validated the method on a spherical CTV
(prescribed 60Gy) abutted by an OAR in different directions and a horseshoe-shaped CTV sur-
rounding a cylindrical spine, under Gaussian-distributed setup (3mm) and range (3%) uncer-
tainties.Main results. For spherical cases with similar CTV coverage, P(D2% > 30Gy) dropped by
10%–15%; for matched OAR dose, P(D98% > 57Gy) increased by 67.5%–71%. In spinal plans,
P(D98% > 57Gy) increased by 10%–15% while P(D2% > 30Gy) dropped by 24%–28% in the same
plan. Probabilistic and robust optimization times were comparable for spherical (hours) but longer
for spinal cases (7.5–11.5 h vs 9–20min). Significance. Compared to discrete scenario-based optim-
ization, the probabilistic approach offered better OAR sparing or target coverage, depending on
individualized priorities.

1. Introduction

Intensity-modulated proton therapy (IMPT) has demonstrated improved sparing of organs at risk
(OARs) and normal tissue compared to intensity-modulated radiation therapy (IMRT) for various treat-
ment sites (Stuschke et al 2012, van de Sande et al 2016, Nguyen et al 2021). However, the precise dose
delivery of IMPT makes it more sensitive to uncertainties that may occur during treatment. Uncertainties
include patient setup misalignment, anatomical changes during the treatment, or range uncertainties due
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Figure 1. Illustration of the probability density function of the voxel dose, being a result of the statistical nature of the considered
uncertainties. Shown are the expectation value (solid green), standard deviation (purple arrow) and the αth-percentile of the
voxel dose (dotted blue), which is the dose value for which α% of the error scenarios (area under the curve) result in lower dose
values. The conditional value-at-risk (dotted orange) corresponding to probability α is the mean of the lowest α% of scenarios.
This example is used to control target underdosage probability, while equivalent representations can be made for (target and
OAR) overdosage probability.

to CT to stopping power conversions (Schaffner and Pedroni 1998, Lomax 2008). To ensure an effective
treatment, it is crucial that treatment plans are robust against such uncertainties.

In photon therapy, uncertainties are typically managed using planning target volume (PTV) margins
around the clinical target volume (CTV) (van Herk et al 2000). However, as the proton dose distribution
is more sensitive to geometrical shifts, applying PTV margins is often ineffective in IMPT. Robust optim-
ization offers an alternative by considering a predefined set of uncertainty scenarios, in practice corres-
ponding to errors of a fixed magnitude. Multiple robust approaches exist (Unkelbach et al 2018), but
most commonly used is mini–max robust optimization (Fredriksson et al 2011). It treats all scenarios in
the uncertainty set as equally important and, for each iteration, optimizes for the worst-case among the
scenario set. Depending on the desired conservativeness of the plan, one can choose to optimize using
voxel-wise (Pflugfelder et al 2008, Liu et al 2012), objective-wise (Chen et al 2012) or composite-wise
(van Dijk et al 2016, Janson et al 2024) worst-case objectives. While effective with a well-defined uncer-
tainty set, robust optimization can lead to overly conservative plans if extreme scenarios dominate or
to insufficient robustness if the uncertainty set is too narrow (van der Voort et al 2016, Zhang 2021).
Unlike mini–max robust optimization, stochastic programming (Unkelbach et al 2007, 2008) assigns a
probability weight to each scenario in the set. However, as the number of scenarios is still limited in this
approach, it is not straightforward how the probability weights can be effectively assigned to a single
scenario. Robust optimization methods that allow for intermediate robustness levels have been developed
as well. Taasti et al (2020) proposed to optimize using the p-norm, for 1⩽ p⩽∞, where p= 1 and
p=∞ correspond to stochastic and composite-wise robust optimization. Alternatively, in scenario-based
robust methods (Fredriksson and Bokrantz 2016, Bokrantz and Fredriksson 2017), each voxel is weighted
according to how often it overlaps with the region of interest (ROI).

Probabilistic optimization (not to be confused with stochastic robust optimization) presents a prom-
ising alternative by defining uncertainty as a distribution, so that it simultaneously accounts for a full
spectrum of possible errors. As quantities of interest (e.g. voxel dose) depend on the uncertainties, they
become random variables as well, whose statistical effect can be presented by a probability density func-
tion (PDF), as shown in figure 1. The impact of uncertainty can be quantified by stochastic metrics (e.g.
using expectation values and variances (Cristoforetti et al 2025), or using percentiles), which provide
consistent and statistically interpretable results, thereby helping to reduce inter-patient variation (Rojo-
Santiago et al 2023b, de Jong et al 2025). The αth-percentile is the dose level such that α% of the scen-
arios result in lower dose values. For small or large α, the percentile allows to quantify the most extreme
scenarios, which in the context of radiotherapy can be used to respectively minimize for under- and
overdosage probability. The conditional value-at-risk (CVaR) can be used alternatively, which quanti-
fies the average of the worst α% of scenarios. CVaR has been applied before in photon radiotherapy
(Tilly et al 2019), IMRT (Chan et al 2014) and IMPT (An et al 2017), using a discrete number of error
scenarios.

The calculation of percentiles and other probabilistic metrics require the evaluation of the PDF of
the response of interest (e.g. voxel dose). This is challenging because these PDFs typically do not have an
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analytical form. A common approximation is to assume that response PDFs have Gaussian-distributed
tails, which is reasonable for e.g. the total dose in treatments involving a sufficient number of fractions
(Sobotta et al 2010), but may be inadequate for other metrics. Chu et al (2005) approximated voxel-
wise dose percentiles by expectation value (E) and standard deviation (SD) as E± δ · SD, where δ is a
constant that quantifies the displacement from the mean in units of SD. Fabiano et al (2022) optim-
ized robustly for biological effective dose (BED) using δ= 2, estimating the 2nd and 98th percentiles as
E− 2 · SD and E+ 2 · SD, respectively. These correspond to the dose values below which 2% (or 98%)
of the scenarios have lower values (if the response PDF would be truly Gaussian distributed). Although
the Gaussian approximation potentially allows the PDF to be steered into the desired direction (Sobotta
et al 2010), these methods do not allow to tune exactly for desired probability levels and dose thresholds.
In fact, distribution shapes may be complex in practice and there is no guarantee that they are even near
Gaussian distributed.

Probabilistic optimization studies have been done for photon therapy, optimizing for minimum dose
percentiles in the objectives (Gordon et al 2010) and constraints (Mescher et al 2017), e.g. requiring that
90% of the scenarios lead to a minimum dose greater than 95% of the prescribed dose, as in the Van
Herk margin recipe (VHMR) (van Herk et al 2000). An approach has been developed to optimize for
target coverage (e.g. D98%) in general by using approximate DVH penalties (Wu and Mohan 2000), only
including voxels within a rim around the CTV. This rim was defined using the VHMR, and dose-volume
histograms (DVHs) were sampled under the static dose cloud approximation. Such margin recipes and
the static dose cloud approximation do not hold in general for proton therapy, limiting the applicability
of these approximations in proton plans.

These limitations motivate the need for a flexible probabilistic approach that can be applied to pro-
ton therapy as well (i.e. without relying on the static dose cloud), which allows us to optimize for spe-
cified dose thresholds for individualized probabilities of under- and overdosage, regardless of the PDF
shape. Accurate probabilities are obtained by sampling thousands of error scenarios from the Gaussian
distribution, resulting in the same number of dose distributions. As it is computationally expensive to
perform these calculations by Monte-Carlo sampling, we use polynomial chaos expansion (PCE). It
has proven to be an accurate meta-model of the dose-engine, also for probabilistic evaluation of treat-
ment plans (Perkó et al 2016, Rojo-Santiago et al 2023a). Once constructed, PCE facilitates the efficient
sampling of dose distributions in many error scenarios.

The probabilistic approach consists of an inner optimization and an outer optimization loop. The
inner part optimizes the pencil-beam weights for a fixed set of δ-factors (as done by Fabiano et al
(2022)). Qualitatively, the δ-factor is a bridge between the probability levels and dose thresholds, even
when the underlying distribution is non-Gaussian. In other words, a probabilistic goal (e.g. at most 10%
probability of underdosing) is translated into a specific dose threshold used in the optimization. The
outer optimization loop updates the δ-factors to improve the E± δ · SD approximation, effectively rescal-
ing it based on the updated PDF.

The main goal of the probabilistic approach is to replace worst-case objectives by voxel-wise probab-
ilistic objectives, keeping the spatial information of the ROIs and avoiding the under- and overconservat-
ism that is inherent in mini–max robust optimization. This is achieved by efficient PCE sampling, which
allows to optimize directly on statistical information (i.e. probability level and dose threshold). Regarding
plan evaluation, often worst-case evaluation metrics (e.g. the D98% of the voxel-wise minimum) are used
(Korevaar et al 2019), which lack statistical insight into the plan quality (Park et al 2013, Sterpin et al
2021). Here, as we optimize for statistical objectives, the step towards plan evaluation with statistically
meaningful metrics is a straightforward consequence.

This paper presents a proof-of-principle of a novel probabilistic approach to probabilistic treatment
planning for systematic setup and range errors. In section 2 we discuss the PCE method that is used for
the scenario sampling, the probabilistic approach and the (homogeneous) phantom geometries used: a
simple spherical CTV with surrounding OARs, and a more complex horseshoe-shaped CTV around a
cylindrical spine. In section 3, probabilistic VHMR equivalence with the probabilistic approach is valid-
ated for setup errors in a spherical CTV, after which comparisons to composite-wise mini–max robust
plans are done, matching either CTV coverage or OAR sparing. In sections 4 and 5, a discussion and
conclusion on the results are respectively presented.

2. Methods andmaterials

2.1. Polynomial Chaos Expansion
In this work, we consider Gaussian-distributed setup (in x and y) and range errors (denoted as ξ) with
respective SDs of σsetup = 3 mm and σrange = 3%. The Gaussian distribution is truncated such that the
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combined setup and range errors is cut at the 99% confidence level to include the majority of the uncer-
tainty space used for sampling. Setup errors are modeled by shifting all pencil-beam spots with respect
to the dose distribution in the shift-direction. Range errors are modeled by scaling all pencil-beam spots
in the beam direction (i.e. the ±z-direction) with the relative range uncertainty.

For the uncertainty quantification of the response, Polynomial Chaos (Wiener 1938) is used. The
response is estimated as a PCE that is a function of the N uncertainty variables, in this work N = 3. As
we assume these to be independent and Gaussian-distributed, their joint PDF p(ξ) can be described as
the product of the one-dimensional PDFs, such that p(ξ) =

∏N
j=1 p(ξj). We consider the assumption on

uncertainty variable independence to be reasonable, as in robust optimization (the clinical practice) and
plan evaluation (e.g. using voxel-wise minimum and maximum metrics (Rojo-Santiago et al 2021, de
Jong et al 2025)), the discrete error scenarios are assumed independent as well. The PCE is an expansion
using multi-dimensional basis vectors Ψk(ξ), where the PCE of response R(ξ) is defined as

R(ξ) =
P∑

k=0

rkΨk (ξ) , (1)

where rk are the polynomial coefficients, such that P+ 1 basis vectors are used. The type of the basis
vector is chosen based on the uncertainty distribution. For Gaussian input variables, the Wiener–Askey
scheme (Xiu and Karniadakis 2002) proposes to use probabilists’ Hermite polynomials Heγk,j(ξj), where
γk,j = (γk,1, . . . ,γk,N) denotes the polynomial order of the jth polynomial corresponding to basis vector

k. The multi-dimensional basis vectors are thus given by Ψk(ξ) =
∏N

j=1Heγk,j(ξj). The PCE correspond-
ing to order O with a full basis set is defined by including the multi-dimensional polynomials for which∑N

j=1 γk,j ⩽ O. As a result, the PCE in (1) has P+ 1= (N+O)!/(N!O!) basis vectors. In this work the
full basis set is used.

Constructing the PCE comes down to determining the polynomial coefficients rk. In this work we
use spectral projection, such that

rk =

〈
R(ξ)Ψk (ξ)

〉〈
Ψk (ξ)Ψk (ξ)

〉 = ´
R(ξ)Ψk (ξ)p(ξ)dξ´
Ψk (ξ)Ψk (ξ)p(ξ)dξ

=
1

h2k

ˆ
R(ξ)Ψk (ξ)p(ξ)dξ, (2)

where
〈
·
〉
denotes the inner product and h2k =

〈
Ψk(ξ)Ψk(ξ)

〉
is the norm of basis vector k. The integral

in the nominator is determined by Gauss–Hermite cubature, for which a defined set of cubature points
ξl is used with corresponding weights wl to yield

ˆ
R(ξ)Ψk (ξ)p(ξ)dξ =

∑
l

R(ξl)Ψk (ξl)p(ξl)wl. (3)

For this computation, the exact response R(ξl) only has to be calculated on these cubature points, which
is done using the dose engine. Instead of using full cubature grids we use Smolyak sparse grids (Smolyak
1963), in which higher-order cubature points that simultaneously occur in multiple dimensions are neg-
lected, essentially reducing the number of terms in (3) and therefore the number of necessary dose com-
putations without compromising accuracy. A more advanced form is to use extended Smolyak sparse
grids, where the grid level along the single dimensions is increased by levextra levels, as often a signific-
ant increase in PCE accuracy can be obtained by only limited number of extra calculations. To reduce
memory cost, we neglect voxels that have a dose lower than 0.01Gy in the nominal and ±3σ scenarios
along the principal axes. This assumption has negligible effect on the plan quality (see section 1 of the
supplementary material (SM)). Further details about PCE construction and numerical integration with
sparse grids can be found in the SM of (Perkó et al 2016).

Through PCE construction, we obtain a meta-model of the exact response that can be used for
efficient sampling. Moreover, obtaining the first two moments from (1) is computationally simple.
The mean of the response µR is equal to the zeroth polynomial coefficient r0 and its variance is σ2

R =∑∞
k=1 r

2
kh

2
k ≈

∑P
k=1 r

2
kh

2
k. These metrics become useful in the probabilistic evaluation of the treatment

plans.

2.2. The probabilistic approach
Underdosage and overdosage probability can be quantified using percentiles, which define the worst
voxel dose scenarios that may occur during a treatment. In the context of underdosing the CTV, we spe-
cifically aim to limit the probability (or in simpler terms, the fraction of scenarios) α where the dose
falls below a voxel dose threshold γi, such that

P(di (x,ξ)⩽ γi)⩽ α ∀i ∈ CTV. (4)
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Figure 2. Probability density functions f of the voxel dose di(x(k),ξ) for two different pencil-beam weights (e.g. at iterations k)
during the optimization. Target underdosage probability is optimized for P(di(x,ξ) ⩽ γi) ⩽ α, or equivalently dα%

i (x) ⩾ γi.

Target and OAR overdosage can be optimized by P(di(x,ξ) ⩽ ϵi) ⩾ β, i.e. dβ%i (x) ⩽ ϵi. The PDF shape has changed for iteration

2, resulting in sufficient target coverage in this voxel (dα%
i (x(2))> γi).

For example, one may aim for the voxel dose to fall below γi = 0.95 · dpi (i.e. underdosing) in at most
α= 10% of the error scenarios. In this work, we aim to reformulate (4) into an objective, such that
dose threshold γi and probability α are quantities that can be controlled as part of the objective in our
optimization approach. For this purpose, we define the αth-percentile of the voxel dose PDF as dα%i (x).
Its definition is such that α% of the error scenarios lead to voxel doses smaller than dα%i (x), such that

α= P
(
di (x,ξ)⩽ dα%i (x)

)
=

ˆ dα%
i (x)

−∞
f(di (x,ξ))d(di (x,ξ)) , (5)

where the voxel dose PDF f(di(x,ξ)) is analytically unknown in general. Substituting (5) into (4) for
voxel i gives

P(di (x,ξ)⩽ γi)⩽ α= P
(
di (x,ξ)⩽ dα%i (x)

)
, (6)

which holds if α is such that dα%i (x)⩾ γi. This implies that reducing P(di(x,ξ)⩽ γi) below α can be
achieved by increasing dα%i (x) above γi. Practically, this means that obtaining the α-th percentile of
the voxel dose and setting threshold γi is sufficient to optimize for such a percentile description. This
is visualized in figure 2, where the PDFs corresponding to two example pencil-beam weight vectors (x(1)

and x(2)) during the optimization are illustrated. For pencil-beam weights x(2), the target underdosage is
lower than the desired level, so P(di(x,ξ)⩽ γi)< α.

Similarly, for overdosing structure Σ (e.g. for CTV or OAR), we aim to limit the probability 1−β
where the dose exceeds voxel dose threshold ϵi, such that P(di(x,ξ)⩽ ϵi)⩾ β ∀i ∈ Σ. Equivalently, we

use dβ%i (x)⩽ ϵi. In this context, one may aim for the voxel dose to exceed ϵi = 1.07 · dpi (i.e. overdosing)
in at most 1−β = 10% of the error scenarios. Or to put it differently, we aim for the voxel dose to fall
below ϵi = 1.07 · dpi in at least β = 90% of the error scenarios.

In order to determine the voxel dose percentiles, di(x,ξ) must be computed in a large number of
uncertainty scenarios. The voxel dose di(x,ξ) =

∑
j∈BDij(ξ)xj is determined by summing over all phys-

ical proton pencil-beams (j ∈ B) with corresponding intensity xj (i.e. pencil-beam weights, also referred
to as beam weights). Each pencil-beam’s Bragg peak is positioned at a predefined spot position in the
pencil-beam grid. Its contribution to each voxel i ∈ V is defined by the dose-influence matrix Dij(ξ) and
volume V. A PCE of the dose-influence matrix is approximated as

Dij (ξ)≈
P∑

k=0

R(k)
ij Ψk (ξ) , (7)

with P+ 1 number of basis vectors, kth coefficient R(k)
ij and multi-dimensional Hermite basis vector

Ψk(ξ). Sampling directly from (7) is possible, but requires the construction of maximally Nv ·Nb (the
number of Dij(ξ) elements) PCEs. The number of needed PCEs can be reduced to only Nv (the number
of di(x,ξ) elements) by converting (7) to a PCE of the voxel dose di(x,ξ) for all voxels i = 1, . . .,Nv as

di (x,ξ) =
∑
j∈B

Dij (ξ)xj ≈
∑
j∈B

(
P∑

k=0

R(k)
ij Ψk (ξ)

)
xj (8)
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Figure 3. The proposed probabilistic optimization approach has a nested structure: the inner optimization optimizes pencil-beam
weights, while the outer optimization loop ensures convergence to desired probability levels.

=
P∑

k=0

∑
j∈B

R(k)
ij xj

Ψk (ξ) =
P∑

k=0

q(k)i Ψk (ξ) , (9)

where the PCE coefficients of the voxel dose q(k)i =
∑

j∈BR
(k)
ij xj can be obtained from the PCE coeffi-

cients of Dij (i.e. from R(k)
ij ). Since (7) is independent of the beam weights, constructing it once before

the optimization is sufficient (as opposed to constructing the voxel dose PCE for each iteration). To
summarize, voxel dose percentiles are determined from voxel dose samples (we use Ns = 100.000 num-
ber of samples), by constructing the PCE coefficients of Dij (i.e. (7)), then converting (7)–(9), so that the
approximated voxel dose can be efficiently sampled.

The remainder of section 2.2 introduces the probabilistic approach. The corresponding optimization
scheme is a nested structure consisting of an inner optimization and outer optimization loop, as is illus-
trated in figure 3. The inner optimization serves as an optimizer for the beam weights by optimizing
using a given percentile estimate. The outer optimization loop makes sure that the percentile estimate
remains accurate during the optimization.

2.2.1. The inner optimization
The inner optimization focuses on optimizing the beam weights for a given percentile estimate dα%i (x),
i.e. with fixed δ-factors, as was done by Fabiano et al (2022). We choose to optimize the CTV under-
dosage probability by defining a quadratic underdose penalty as

f α,γCTV (x) =
1

NCTV

∑
i∈CTV

wCTV
i

[
γi − dα%i (x)

]2
+
, (10)

where wCTV
i is the CTV voxel weight and NCTV is the number of CTV voxels. We use [h]+ =max{0,h}

to only penalize voxels if h⩾ 0, meaning that only underdosed CTV voxels are penalized (dα%i (x)< γi).
In order to use an analytical gradient and Hessian of the objective, we rewrite dα%i (x) using the

expectation value E[di(x,ξ)] and standard deviation SD[di(x,ξ)] of the voxel dose (Fabiano et al 2022),
as

dα%i (x) = E [di (x,ξ)]− δα%i (x)SD [di (x,ξ)]

= E [di (x,ξ)]− δα%i (x)
[
E
[
d2i (x,ξ)

]
−E2 [di (x,ξ)]

]1/2
, (11)

where δα%i (x) ∈ R (also referred to as δ-factor) defines the number of SDs the percentile dα%i (x) is dis-
placed from the expectation value E[di(x,ξ)]. The δ-factor is determined by using the accurate percentile
dα%i (x) obtained from the PCE as

δα%i (x) =
E [di (x,ξ)]− dα%i (x)

SD [di (x,ξ)]
. (12)
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Similarly, quadratic overdose penalties for CTV (dβi > ϵi) and OAR (dνi > µi) voxels are defined as

f β,ϵCTV (x) =
1

NCTV

∑
i∈CTV

wCTV
i

[
dβ%i (x)− ϵi

]2
+
, (13)

f ν,µOAR (x) =
1

NOAR

∑
i∈OAR

wOAR
i

[
dν%i (x)−µi

]2
+
, (14)

where wOAR
i is the OAR voxel weight and NOAR is the number of OAR voxels. The δ-factors are similarly

calculated assuming that the βth-percentile and ν th-percentiles are written as

dβ%i (x) = E [di (x,ξ)]+ δβ%i (x)SD [di (x,ξ)] , (15)

dν%i (x) = E [di (x,ξ)]+ δν%i (x)SD [di (x,ξ)] , (16)

leading to the corresponding multiplicative factors δβ%i (x), δν%i (x) ∈ R. The probabilistic objectives
in (11), (15) and (16) are convex if the δ-factors in each term are non-negative for all voxels in the cor-
responding structure (see section 4 of the SM). In the experiment for setup errors in X and Y (CTV-
only, see figure 8(b)), a few δ-factors were slightly negative (δ >−4 · 10−3). In all other experiments the
δ-factors were non-negative, ensuring convexity.

The objectives in (10), (13) and (14) vanish for dα%i (x)> γi, d
β%
i (x)< ϵi and dν%i (x)< µi, respect-

ively. To ensure that CTV and OAR voxels are always included in the optimization, we further optimize
for the expected quadratic dose difference (we have a similar term for normal tissue) with a low weight,
respectively as

f CTV (x) =
1

NCTV

∑
i∈CTV

wCTV
i E

[(
di (x,ξ)− dpi

)2]
, (17)

f OAR (x) =
1

NOAR

∑
i∈OAR

wOAR
i E

[
(di (x,ξ))

2
]
, (18)

f Tissue (x) =
1

NTissue

∑
i∈Tissue

wTissue
i E

[
(di (x,ξ))

2
]
, (19)

where dpi is the prescribed voxel dose, NTissue is the number of tissue voxels and wTissue
i is the tissue

weight. The tissue objective in (19) aims to achieve dose conformity to the CTV. Voxel weights of CTV,
OAR and Tissue are chosen based on clinical priority (see appendix).

The complete probabilistic (inner) optimization for a given set of δ-factors and objective weights
Π = {πα

CTV,π
β
CTV,π

ν
OAR,π

low
CTV,π

low
OAR,πTissue} is given by

min
x

[
πα
CTVf

α,γ
CTV (x)+πβ

CTVf
β,ϵ
CTV (x)+πν

OARf
ν,µ
OAR (x)

+πlow
CTVf CTV (x)+πlow

OARf OAR (x)+πTissuef Tissue (x)
]

(20)

s.t. dα%i (x) = E [di (x,ξ)]− δα%i (x)SD [di (x,ξ)] ∀i ∈ CTV (21)

dβ%i (x) = E [di (x,ξ)]+ δβ%i (x)SD [di (x,ξ)] ∀i ∈ CTV (22)

dν%i (x) = E [di (x,ξ)]+ δν%i (x)SD [di (x,ξ)] ∀i ∈OAR (23)

di (x,ξ) =
∑
j∈B

Dij (ξ)xj, xj ⩾ 0, ∀j ∈ B, (24)

where the probabilistic objective weights Π were determined empirically, depending on the phantom
experiment, aiming to balance target coverage and tissue sparing.

We solve the optimization using the interior-point method provided by fmincon in Matlab (The
MathWorks, Inc. 2024), with an optimality tolerance of 10−8. To make sure the optimality tolerance
is reached before the step- and function tolerance, we define the latter two to be 10−25. The analytical
gradient and Hessian of the objective in (20) are derived in section 4 of the SM.
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2.2.2. The outer optimization loop
The outer loop is responsible for updating the percentile estimates (by the δ-factors), so that
E[di(x,ξ)]± δ · SD[di(x,ξ)] remains an accurate estimation of the percentile (obtained from PCE
sampling). For current iteration k, the inner optimization starts with initial guess xinit and results in
beam weight xk∗, which in general is significantly different from xinit. As a result, the PDF associated to
each voxel dose (and thus the voxel dose percentiles) may have changed. We warm-start the next (inner)
optimization (iteration k+ 1) using the previous initial (xk) and final (xk∗) beam weights as

xk+1 = xk +κ ·
(
xk∗ − xk

)
, (25)

where the damping factor κ= 0.2. Once the beam weights are updated, in the outer optimization loop
the new δ-factors are determined by (21), (22) and (23), making use of the fast PCE sampling. The
dampening of the beam weights implicitly dampens the δ-factors as well (i.e. the percentiles that are
optimized for), because the δ-factors depend on the beam weights.

The outer optimization loop is terminated when the voxel dose percentiles corresponding to the
damped pencil-beam weights converge for all CTV and OAR voxels. Since the voxel dose percentiles
are determined by PCE sampling, a sampling noise is involved (which is propagated to the δ-factors).
As a result, the percentiles can only converge within a tolerance that is larger than the sampling noise.
We consider the percentiles to be converged if their trend does not change within a certain tolerance. To
quantify this trend, we smooth the percentiles at iteration k associated with the damped beam weight
xk, using a moving average (MA) of window ∆W (denoted as MA∆W). For the lower percentile of the
CTV (as in (21)) this is done as

dα%,MA∆W
i

(
xk
)
=

1

∆W

k∑
t=k−∆W+1

dα%i (xt) , ∀i ∈ CTV, (26)

for k⩾∆W. We define the convergence criteria such that the relative change of dα%,MA∆W
i (k) within ∆k

iterations is smaller than τCTV,α for all CTV voxels, i.e. the convergence criterion for probability level α
is given by ∣∣∣∣∣dα%,MA∆W

i (k)− dα%,MA∆W
i (k−∆k)

dα%,MA∆W
i (k)

∣∣∣∣∣< τCTV,α, ∀i ∈ CTV, (27)

for k⩾∆W+∆k. The same convergence criteria are applied to dβ%,MA∆W
i and dν%,MA∆W

i for all voxels
in the structure, with corresponding convergence tolerances of τCTV,β and τOAR,ν .

2.2.3. Initialization of the probabilistic optimization
As will be shown in section 3.1, the probabilistic optimization is closely related to a PTV-based optim-
ization with a spherically symmetric dose distribution and static dose cloud approximation. Therefore,
it serves as a good initial estimate to warm-start the probabilistic optimization. The PTV is defined by
extending the CTV by a PTV-margin MPTV isotropically. The PTV-optimization is initialized by using
uniform beam weights (all 0.01) and minimizes for the quadratic difference of the nominal voxel dose
dnomi (x) and the prescribed dose dpi as

∑
i∈Vwi (dnomi (x)− dpi )

2. The resulting output beam weights xPTV
are used in the first k= 1 iteration of the probabilistic optimization, i.e. xinit = xPTV.

Before starting the inner optimization, we specify the voxel dose thresholds γi, ϵi and µi with the
corresponding desired probability levels α, β and ν. Then, we determine the voxel dose percentiles by
PCE, for the CTV and OAR voxels that correspond to the current beam weights (so for k= 1 that is
xPTV). After the percentiles are converted to the δ-factors by (21)–(23), the probabilistic optimization
is started.

2.3. Composite-wise robust optimization as comparison
Various types of robust treatment planning exist (Unkelbach and Paganetti 2018), where one can choose
for voxel-wise, objective-wise or composite-wise mini–max robust optimization (for decreasing level
of conservativeness). Therefore, we restrict ourselves to compare to the composite-wise approach. We
robustly optimize for the worst-case scenario within scenario set S for CTV and OAR with a nominal
tissue objective, as

8
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Figure 4. The robust error scenario set used during optimization. For every setup error with given setup robustness (SR) a
range error with given range robustness (RR) is included. The nominal scenario (red) is always included.

min
x

[
max
s∈S

{ωCTVf CTV (d(x, s))+ωOARf OAR (d(x, s))+ωmax
OARf maxOAR (d(x, s))} (28)

+ωnom
CTVf

nom
CTV (d(x))+ωTissuef

nom
Tissue (d(x))

]
s.t. x⩾ 0,

f CTV (d(x, s)) =
1

NCTV

∑
i∈CTV

wCTV
i ·

(
di (x, s)− dpi

)2
,

f OAR (d(x, s)) =
1

NOAR

∑
i∈OAR

wOAR
i ·

(
di (x, s)− dpi

)2
,

f maxOAR (d(x, s)) =
1

NOAR

∑
i∈OAR

wOAR
i ·

(
di (x, s)− dmaxOAR

i

)2
+
,

f nomTissue (d(x)) =
1

NTissue

∑
i∈Tissue

wTissue
i ·

(
dnomi (x)− dpi

)2
,

f nomCTV (d(x)) =
1

NCTV

∑
i∈CTV

wCTV
i ·

(
dnomi (x)− dpi

)2
,

where the set of objective weights is given by Ω= {ωCTV,ωOAR,ω
max
OAR,ω

nom
CTV,ωTissue} and determined as

explained in section 2.5.3. Large OAR voxel doses are penalized by a piecewise quadratic dose difference
between the scenario voxel dose di(x, s) and the voxel dose threshold dmaxOAR

i . As composite-wise robust
optimization risks to neglect scenarios involving the smaller displacements from the nominal scenario
(Fredriksson and Bokrantz 2016, Bokrantz and Fredriksson 2017), the importance of the nominal scen-
ario (tuned by objective weight ωnom

CTV) is increased for some phantom experiments.
Scenario set S is commonly defined as illustrated in figure 4, consistent with approaches implemen-

ted in commercial treatment planning systems, such as by RayStation (RaySearch Laboratories 2023). For
setup errors in X and Y, scenarios are included at primary axes corresponding to the used setup robust-
ness (SR). Scenarios in the (±1,±1) direction of the XY-plane are included and lie on the circle defined
by the SR. For every setup scenario, range error scenarios are included with a fixed range robustness
(RR). The nominal scenario is always included.

2.4. Phantom geometries
Figure 5 shows the three-dimensional homogeneous (water) phantom geometry that is used in this
work for the spherical (left) and spinal (right) case in the XZ-plane. The spherical geometry has dimen-
sions (Lx,Ly,Lz) = (45 mm,45 mm,130 mm) and consists of 1× 1× 1 mm3 voxels. As the ROI in the z-

direction is limited from Lz = 85 mm to 130mm, the number of considered voxels is Nspheres
v = 91.125.

The spherical CTV has radius rCTV = 9 mm. As a first case, only the spherical CTV is considered
(referred to as CTV-only), i.e. no OARs are included so that the remaining volume is normal tissue. For
the CTV+OAR case, we include a single OAR to the geometry. We distinguish between the XZ-displaced
OAR (radius rXZOAR = 9 mm) and X-displaced OAR (radius rXOAR = 5 mm), which centers are respectively
located at (x,y,z)XZ = (44.5 mm,22.5 mm,129.5 mm) and (x,y,z)X = (44.5 mm,22.5 mm,107.5 mm).
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Figure 5. Illustration of the three-dimensional homogeneous (water) phantom geometries used in this work, for the (a) spherical
and (b) spinal case in the XZ-plane. Dimensions are (Lx,Ly,Lz) = (45 mm,45 mm,130 mm) and (70 mm,30 mm,129 mm) for
the respective cases. Voxel grids are defined for z> 85 mm, with respectively 1× 1× 1 mm3 and 2× 2× 2 mm3 voxels. Pencil-
beam j ∈ B is directed at the pencil-beam spot in the grid and travels in the positive z-direction.

As only part of the OARs fall within the ROI, only a quarter of the XZ-displaced and half of the X-
displaced OAR is included. The remaining part of the geometry is normal tissue. The CTV, OAR and
normal tissue voxels form the ROI V, i.e. V= CTV∪OAR∪Tissue.

The spinal geometry has dimensions (Lx,Ly,Lz) = (70 mm,30 mm,129 mm) consisting of 2× 2 ×
2mm3 voxels, thus Nspinal

v = 11.550. It consists of a cylindrical spine that is surrounded by a horse-
shoe shaped CTV. The spine has radius rSpine = 6 mm and is positioned parallel to the y-direction
along the entire geometry at (x,z) = (35 mm,115 mm). Parallel to the spine lies the CTV (for 9 mm<
y< 21 mm), extending from rinnerCTV = 12 mm to routerCTV = 24 mm in the XZ-plane for z< 115 mm. The
remaining part of the geometry is normal tissue.

In both cases, the CTV is irradiated by pencil-beams traveling in the positive z-direction. In the
spherical geometry we use 13 pencil-beam spots in each direction (spaced 3 mm apart), so that the
number of pencil-beam spots Nspherical

b = 133 = 2197. The center pencil-beam spot is located at the CTV
center, such that the grid extends 18 mm from the CTV center in all directions. In the spinal geometry,
the number of pencil-beam spots in the respective directions are (Nx

b,N
y
b,N

z
b) = (21,9,13), spaced 3mm

apart (Nspinal
b = 2457). Dose dependencies in this work are obtained by analytical approximations of the

Bragg curve (Bortfeld 1997), where dose values below 0.01% of the maximum in Dij are neglected. Each
beam has a Gaussian-distributed lateral profile that is assumed to have an energy-independent initial
width of σb = 3 mm, increasing in depth.

2.5. Probabilistic evaluation of treatment plans
2.5.1. Cost accuracy analysis of the PCEs
To ensure that the dose approximation is sufficiently accurate in the relevant uncertainty domain dur-
ing optimization, a cost-accuracy analysis of the PCE is done in section 1 of the SM. For this purpose,
a Γ-evaluation (Biggs et al 2022) is done (with distance-to-agreement 0.1Gy and 1% dose difference cri-
teria) for two different pencil-beams (and voxel doses ⩾ 0.1Gy), in 123 different error scenarios that lie
within the 99% confidence ellipsoid of the input phase space (taking into account all uncertain variables
simultaneously). For every scenario in the 99%-ellipsoid we check the accepted voxel fraction.

Moreover, the PCE accuracy is quantified by determining the dose difference between the PCE and
the dose engine for both test pencil-beams. For all test scenarios within the 99% confidence ellipsoid,
we determine the minimum voxel dose difference among the 2% of the voxels having the largest dose
difference, which we denote by ∆D2%. Then, we calculate the scenario fraction for which the ∆D2% is
larger than a certain dose value. Moreover, we determine the voxel dose difference averaged over all test
scenarios (denoted by ∆D), and check what voxel fraction has ∆D larger than a certain dose value.

After the optimization is done, treatment plan quality is checked by constructing an independ-
ent PCE of the voxel dose, in line with previous work (Rojo-Santiago et al 2021, 2023a, 2023b, 2024,
Oud et al 2024). As the voxel dose distribution for a single pencil-beam is different than for the final
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Figure 6. Illustration of dose population histograms for the CTV metric D98% (left) and OAR metric D2% (right), showing
the fraction of error scenarios that exceed a given dose level (e.g. 90% of scenarios yield D98% ⩾ ddesired, where ddesired may for
example be 95% of prescription dose dp).

treatment plan, the necessary PCE accuracy is determined by a separate Γ-analysis (with distance-to-
agreement 0.1Gy and 1% dose difference criteria for voxel doses ⩾ 0.1Gy).

2.5.2. Probabilistic evaluation metrics
In the following we discuss the probabilistic evaluation metrics that are used to get insights in the prob-
abilistic outcomes of the treatment plans (Perkó et al 2016). The well-known DVH can be probabilist-
ically extended towards the DVH-distribution (Trofimov et al 2012), where the plan robustness is cap-
tured by the width of the DVH bands, representing confidence intervals of the DVHs. For example, the
95% confidence band is defined such that in 95% of the error scenarios—or in other words with 95%
probability—the DVH-curves lie within the 2.5th and 97.5th percentile of the dose value.

Probabilities of voxel-wise under- and overdosage can be shown to understand to which extent the
treatment plan reaches the probabilistic objectives. The probabilities are obtained by counting the frac-
tion of error scenarios for which a voxel is below or above the desired threshold.

A more complete understanding can be obtained by the dose population histogram (DPH) (van
Herk et al 2000), which is strongly related to the cumulative distribution function (CDF). It shows the
(error) scenario fraction (i.e. probability) in which a dose metric of interest exceeds a given dose level.
An illustrative example of the DPH is shown in figure 6 for the D98% (left) and D2% (right), but other
dose metrics may be used. For DVH-metrics of the CTV (e.g. D98%) we aim to have steep DPH curves,
ideally being a step function that starts at a scenario fraction of 100% and drops to 0% at prescription
dose dp. This ideal shape corresponds to a perfectly homogeneous dose distribution, because in all error
scenarios the D98% is exactly equal to dp. In practice, some scenarios would result in the D98% > dp (as
a result of partially overdosing the CTV), or would result in D98% < dp (as a result of partially under-
dosing the CTV). The corresponding DPH curve would be less steep and deviates from the ideal curve.
In figure 6, the initial DPH curve shows that 90% of the error scenarios has a D98% of at least dinitial.
For the same fraction of error scenarios, the minimum D98% can be increased (i.e. improved) towards
ddesired > dinitial (in practice, ddesired is for example 95% of the prescription dose), such that 90% of the
error scenarios has a D98% of at least ddesired.

For OARs we aim to have DVH-metrics (e.g. D2%) that have low dose values in most scenarios,
which correspond to DPH curves in the bottom left of the figure. By going from the initial to the
improved DPH we improve the probability in which D2% > d.

2.5.3. Probabilistic scaling to compare probabilistic and robust plans
The probabilistic plans (section 2.2) are compared to robust optimizations (section 2.3). The compar-
ison is done by obtaining a robust plan that has either 1) a similar CTV coverage, or 2) a similar OAR
dose, as the probabilistic plan. The used robust objective weights are found by manual tuning, and by
checking what combination results in similar CTV or OAR dose, depending on the comparison method.
The CTV coverage is defined as the 10th percentile of the D98% (as used by Tilly et al (2019), denoted
as D10th

98%), which is the maximum D98% value among the 10% of scenarios with the lowest D98% values.
Alternatively, when the OAR dose is matched, the 90th percentile of the D2% is used (denoted as D90th

2% ),
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which is the minimum D2% value among the 10% of scenarios with the highest D2% values. Thus, once
the probabilistic plan is done, either its D10th

98% or its D90th
2% is determined, and robust plans are made and

similarly evaluated using PCE.
As a next step, the probabilistic plan is scaled such that the 50th percentile of D50% (the median dose,

an ICRU-recommended metric (The International Commission on Radiation Units and Measurements
2010)), matches the prescribed dose (D50th

50% = 100%dp). For the robust and probabilistic plans that are
matched based on CTV coverage, the robust plan is scaled identically as the probabilistic plan, i.e. so
that the 50th percentile of the D50% equals 100%dp. For similar OAR dose, the robust plan is scaled to
the probabilistic plan by matching the D90th

2% .

3. Results

In the following, results are first presented on the spherical CTV-only case (section 3.2) and compared
with the VHMR. The spherical CTV+OAR case (section 3.3) and the spinal case (section 3.4) are shown
as well. The optimization parameters for each geometry case are discussed in appendix and are summar-
ized in tables A1 and A2 for the probabilistic and robust optimizations.

Expectation values in (11), (15) and (16) (E[Dij(ξ)] and E[Dij(ξ)Dij′(ξ)]) are calculated for CTV and
OAR by Gauss–Hermite cubature (so without PCE) using 105 dose calculations. The PCE of the dose-
influence matrix is constructed using 1637 dose calculations. Details on their cost-accuracy analyses are
shown in section 1 of the SM.

3.1. Comparison with the VHMR
The PTV margin recipes (van Herk et al 2000) are based on a spherical CTV with ideal dose conform-
ation (i.e. spherical symmetry in the dose) and static dose cloud approximation (i.e. invariance of the
dose distribution shape under uncertainties). As only systematic errors are considered in this work, we
compare to the VHMR without random errors and maintain spherical symmetry by assuming setup
errors in the X and Y directions (i.e. setupXY). The phantom itself is 3D.

The VHMR ensures that a certain patient population (e.g. 90%) receives at least a minimum
CTV dose, i.e. P(dmin ⩾ 57Gy)⩾ 90%. To compare with our probabilistic approach, we optimize
to avoid voxel-wise CTV underdosage probability by prioritizing P(di ⩾ 57Gy)⩾ 98%. The result-
ing probabilistic plan is shown in figure 7 with the cross section along the x-axis, together with the
CTV edge (dashed black), the Van Herk margin (MVH, dashed orange), and the probabilistic margin
(Mprobabilistic, dotted brown) corresponding to the start of the dose fall-off at x= 36 mm. Plan evalu-
ation by PCE sampling yields P(dmin ⩾ 57Gy)≈ 90.1%. The corresponding (2D) Van Herk margin is
MVH =Σsetup

√
−2 · ln(1− P)≈ 2.15Σsetup, where Σsetup = 3 mm and P= 0.901.

The Van Herk margin for systematic errors depends only on the Gaussian uncertainty, not on the
dose-falloff, therefore assuming a hard cutoff at the CTV edge (i.e. the 57 Gy dose level was not con-
sidered). In an extreme scenario (e.g. a 2.15Σsetup shift), the entire CTV still receives the full prescrip-
tion dose. When the dose fall-off is included, the dose decreases gradually, so that after a 2.15Σsetup shift,
parts of the CTV edge still receive at least ⩾ 95%dp. The dose fall-off in the probabilistic plan is a 2D
Gaussian with µlateral = 36 mm and σlateral = 5.6 mm (dashed gray, see figure 7).

Accounting for this dose fall-off allows reducing the Van Herk margin to Mreduced
VH = 4.6 mm (see

section 5 of the SM), showing that accounting for dose fall-off makes the Van Herk margin less con-
servative (but more realistic). In the probabilistic plan, this corresponds to the distance between the CTV
edge (at x= 31.5 mm) and the start of the dose fall-off (at x= 36 mm), i.e. 4.5 mm. The 95% dose level
in this reduced-margin model lies 6.4 mm beyond the CTV—nearly identical to the probabilistically
obtained margin of 6.2 mm. This shows that full probabilistic planning and evaluation yield margins
comparable to the Van Herk approach when dose fall-off is included, while automatically generalizing to
dose fall-offs of any shape (as this is captured by the PCE model).

3.2. Probabilistic and robust plans for the spherical CTV-only case
For the spherical CTV-only case we consider two combinations of systematic uncertainties: (1) setup
errors in X and Y (i.e. setupXY) and (2) setup errors in X and Y together with range errors (i.e.
setupXYrange).

3.2.1. Probabilistic and robust optimization
The probabilistic optimization minimizes for CTV underdosage (P(di ⩽ 0.95 · dpi )⩽ 10%) and over-
dosage (P(di ⩾ 1.07 · dpi )⩽ 10%) probabilities, at the same time pushing the expected dose in the CTV
to dpi = 60Gy. As a comparison to the probabilistic plan, we perform a robust optimization for the
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Figure 7. The probabilistic plan (setupXY) as a comparison with the Van Herk margin recipe, where avoiding CTV underdosage
probability was prioritized. The (a) nominal dose distribution in the XY-plane is shown with the (b) cross section through the
CTV center along the x-axis.

Table 1. Comparison of the CTV coverage in the robust plans for a setup robustness (SR) ranging from 4 mm till 7 mm versus the
probabilistic plan in the CTV-only setupXY case.

Treatment Plan D2nd
98% (Gy) D5th

98% (Gy) D10th
98% (Gy) P(D98% ⩾ 0.95 · dp)

SR of 4 mm 35.95 41.36 46.30 55%
SR of 5 mm 43.98 48.70 52.55 75%
SR of 6 mm 49.36 53.18 55.96 87%
SR of 7 mm 53.70 56.42 57.98 94%
Probabilistic plan 50.19 53.59 55.98 85%

Table 2. Comparison of the CTV coverage of the robust plan for a setup robustness (SR) of 6 mm and range robustness (RR) of 4% and
5%, versus the probabilistic plan in the CTV only case.

Treatment plan D2nd
98% (Gy) D5th

98% (Gy) D10th
98% (Gy) P(D98% ⩾ 0.95 · dp)

SR/RR: 6 mm/4% 42.94 48.93 53.01 77%
SR/RR: 6 mm/5% 45.86 50.84 54.31 81%
Probabilistic plan 46.58 50.92 54.03 79%

CTV and use a nominal objective for tissue, with the same objective weights as in the probabilistic
optimization.

Robust plans with setup errors ranging from 4 till 7mm were made and compared to the probab-
ilistic plan by matching their CTV coverage probability (D10th

98%). Additionally, we checked the D2nd
98% and

D5th
98%, and determined the probability of D98% exceeding 95% of the prescribed dose dp, i.e. P(D98% ⩾

0.95 · dp). As table 1 shows, the required SR to achieve similar CTV coverage (D10th
98%) as in the prob-

abilistic setupXY plan, is SR= 6 mm. Figure 8(top) compares the dose distributions for the robust
(SR= 6 mm) and probabilistic setupXY plans for the XY-plane (z= 117.5 mm). Additionally, cross
sections through the CTV center for both plans along the x-axis are shown.

As the SR was tuned to the D10th
98%, the dose extension beyond the CTV is very similar for the probab-

ilistic and robust plans. Moreover, both plans are very conformal to the CTV, because of the way the
uncertainty set is defined. According to RaySearch Laboratories (2023), the uncertainty set for SR=
6 mm includes the nominal scenario and eight others located on a circle of radius SR: (x,y) = (0,0),
(x,y) = (±SR,0), (x,y) = (0,±SR) and (x,y) =

(
±SR/

√
2,±SR/

√
2
)
. No intermediate scenarios are

included.
For SR= 6 mm, we proceed to determine the necessary RR to achieve comparable CTV coverage

(where we use range errors additional to setup errors in the X and Y-directions). The results are listed
in table 2, showing that an RR of 5% gives the closest match of CTV coverage to the probabilistic plan.
The robust (SR/RR: 6 mm/5%) and probabilistic setupXYrange plans are compared in figure 8(bottom)
for the XZ-plane (y= 22.5 mm). Cross sections through the CTV center along the diagonal (z= x+
85 mm) for y= 22.5 mm are shown as well.

Compared to the probabilistic plan, the robust plan shows a larger (more conservative) dose expan-
sion along the diagonals of the XZ-plane. This is a consequence of the way the discrete error scenarios
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Figure 8. Nominal dose distributions for the (top) setupXY and (bottom) setupXYrange cases, shown in the XY-plane and XZ-
plane through the CTV center, respectively. For each case: (left) the robust plan, (middle) the probabilistic plan, and (right) a
cross-section through the CTV center (along the x-axis for setupXY and along the line z= x+ 85 mm for setupXYrange) are
shown.

Table 3. Statistical DVH-metrics to compare the CTV coverage (D10th
98%

) and OAR overdosage (D90th
2%

) of the robust and probabilistic
plans for the XZ-displaced spherical CTV+OAR case. Metrics corresponding to the robust plans after scaling the beam weights are
shown in brackets. The objective weights used in the robust plans are shown in the corresponding rows as {ωCTV,ωOAR,ωmax

OAR,ωTissue}.

D10th
98% (Gy) D50th

50% (Gy) D90th
2% (Gy)

Robust {120,1,1,160} 52.4 (52.3) 60.1 (60.0) 40.8 (40.8)
Robust ({100,10,10,100}) 45.4 (44.6) 60.2 (59.1) 27.6 (27.1)
Probabilistic 53.3 (53.3) 60.0 (60.0) 27.0 (27.1)

are constructed (see figure 4): scenarios that include a range-shift error are positioned farther from the
nominal case than those without a shift. Probabilistic optimization, however, takes into account that
large-shift scenarios are less probable to occur (compared to other scenarios in the set), resulting in a
more conformal margin. In the XY-plane, where all scenarios in the set are equidistant from the nom-
inal scenario (with distance SR), the dose distribution ends up as conformal as in the probabilistic plan.

3.3. The spherical CTV and OAR case
We perform similar probabilistic optimizations as in section 3.2, but here we additionally optimize
probabilistically for a spherical OAR, either for the XZ-displaced case or for the X-displaced case.
Accordingly, besides optimizing for CTV under- and overdosage probability, the OAR overdosage prob-
ability is limited as P(di ⩾ 30Gy)⩽ 10%. In the following, results for the XZ-displaced case are shown.
Results of the X-displaced case are shown in section 2 of the SM. Robust plans are obtained by tuning
its objective weights, to achieve 1) a similar CTV coverage (D10th

98%) and 2) a similar OAR dose (D90th
2% )

as in the probabilistic plan. The robust plan with objective weights of {ωCTV,ωOAR,ω
max
OAR,ωTissue}=

{120,1,1,160} and {100,10,10,100} give similar CTV coverage and OAR dose, respectively. The res-
ulting probabilistic DVH-metrics before and after scaling (within brackets) are shown in table 3.

The dose distributions for the XZ-displaced case are shown in figure 9, where the probabilistic plan
(left) is shown together with the robust plans, scaled by matching CTV coverage (middle) and OAR dose
(right). We show the XZ-slice (top) and XY-slice (bottom) through the CTV center. The dose distribu-
tion of the probabilistic plan shows a slight reduction in the CTV margin on the OAR-side, at the same
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Figure 9. Comparison of nominal XZ-displaced dose distributions for the (left) probabilistic plan, with the robust plans that are
matched based on the (middle) D50th

50%
and (right) D90th

2%
metrics. Both the (bottom) XY-plane and (top) XZ-plane through the

CTV center are shown.

time being conformal to the other parts of the CTV. Compared to the probabilistic plan, the robust
plan with similar CTV coverage (middle row) is less conformal in general and has larger margins on
the OAR-side, leading to higher OAR doses.

By increasing the relative OAR objective weight (i.e. its importance in the optimization) with respect
to the D50th

50% comparison, the margin at the OAR-side is reduced, leading to a similar OAR dose (D90th
2% ).

At the same time, this leads to reduced CTV conformity in both the XY- and XZ-plane. Since the OAR
has an increased importance, shifts into the OAR (i.e. diagonal shifts) become worst-case scenarios more
frequently during the optimization. This has two main effects. Firstly, the CTV margin in the y-direction
is reduced because y-shifts are less likely to be worst-case scenarios (diagonal shifts lead to more OAR
overdosage than y-shifts). In turn, this leads to a significant drop in CTV coverage. Secondly, a dose
extension appears on the opposite side of the OAR (around (x,z) = (12.5 mm,97.5 mm)), ensuring that
CTV coverage remains in cases where high-dose regions are shifted into the OAR.

The CTV coverage of the plans is compared in figure 10, where the DPH of various DVH-metrics is
compared between the probabilistic plan and either the (top) D50th

50% or the (bottom) D90th
2% scaled robust

plan. For the former, CTV coverage (especially the high scenario fraction region) is similar and signi-
ficant differences in the near-maximum OAR DVH-metrics can be seen. Specifically, in the probabilistic
plan the D2% is larger than 30 Gy in about 7.5% of the scenarios whereas this probability is increased to
about 22.5% in the scaled robust case.

The D90th
2% scaled robust plan has similar near-maximum OAR DVH-metrics, whereas significant dif-

ference in the CTV coverage is visible. In the scaled robust plan, P(D98% > 57Gy)≈ 6%, whereas this
probability increases to approximately 77% in the robust case (i.e. about 70% increase).

In figure 11, we compare the DVH bands of CTV (top) and OAR (bottom) between the probabil-
istic (left) and robust plans that are matched based on the (middle) D50th

50% and (right) D90th
2% metrics. The

probabilistic plan shows more CTV homogeneity in the presence of uncertainty (as well as in the nom-
inal plan) and shows a smaller spread in the DVH distributions of the CTV, compared to both robust
plans. The scaled D90th

2% robust plan was matched to the probabilistic plan by OAR dose, resulting in sim-
ilar DVH-distributions for the OAR. Compared to the probabilistic plan, the DVH-distributions of the
D50th
50% scaled robust plan are wider (i.e. less robust) and shifted towards larger dose (i.e. increased OAR

overdosage probability).
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Figure 10. Dose population histograms of various DVH metrics (DV , e.g. V= 98%) comparing XZ-displaced probabilistic
(solid) and robust (dashed) plans in the CTV (left) and OAR (right). Plans matched on CTV coverage (top) have similar CTV
coverage (a) and reduced OAR overdosage probability (b), whereas matching on (bottom) D90th

2%
reduces CTV underdosage prob-

ability (c) with similar OAR dose (d).

3.4. The spinal case
We perform 3 optimizations for the spinal geometry as depicted as in figure 5, where the OAR over-
dosage (> 54Gy) is prioritized over CTV coverage, with the 3 cases corresponding to optimizing for
different probability levels for the OAR (ν = 90%, ν = 95% and ν = 98%). Robust plans are optimized
by matching their CTV coverage (and scaling the D50th

50%) to the probabilistic plan. The statistical DVH-
metrics that are used for scaling are shown in table 4. Dose distributions of the ν = 90% case are shown
in this section, while the ν = 95% and ν = 98% cases are similar and are presented in section 3 of the
SM.

The resulting dose distributions for ν = 90% are shown in figure 12, where the XZ-slice (top)
and XY-slice (bottom) through the spine center are shown, respectively. The probabilistic plans show
improved CTV conformity compared to the robust plans, the difference being especially significant in
the XY-plane. A dose build-up occurs at the inner CTV edges (on the spinal side) in order to reduce
the spinal dose (at the same time preserving CTV coverage). This effect is seen more clearly in figure 13,
where cross sections (for ν = 90%) along the X- and Z-axis passing through the spine center are shown,
with the cross sections for the ν = 95% and ν = 98% plan comparisons for completeness. Compared to
the robust plans, all probabilistic plans lead to reduction of spinal dose, at the expense of having more
inhomogeneous CTV dose. As expected, the dose margin in the probabilistic plan is reduced if spinal
overdosage is allowed in less error scenarios (i.e. increased ν). This is especially visible in the range dir-
ection (along the z-axis).

To understand to which extent the probabilistic objectives are reached in the ν = 90%, ν = 95%
and ν = 98% case, we show the probability of underdosing and overdosing CTV and spinal voxels in
figure 14(in the XZ-plane). The probabilities of CTV underdosage, CTV overdosage and spinal over-
dosage are shown from top to bottom, where the ν = 90%, ν = 95% and ν = 98% cases are shown from
left to right. CTV voxels that do not reach the probabilistic objectives are red (i.e. are under- or over-
dosed in more than 10% of the scenarios). For the ν = 90% plan, spinal overdosage probabilities are
below 10% (i.e. the probability that was optimized for) for all voxels. Probability levels of overdosage in
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Figure 11. Dose volume histogram distributions for the CTV (top) and OAR (bottom), comparing the XZ-displaced probabilistic
(left) and robust plans that are matched based on the (middle) D50th

50%
and (right) D90th

2%
metrics. The nominal scenario (black) is

shown together with various confidence bands.

Table 4. Statistical DVH-metrics to compare the CTV coverage and spinal overdosage of the robust and probabilistic spinal plans.
Metrics corresponding to the robust plans after scaling the beam weights are shown in brackets.

D10th
98% (Gy) D50th

50% (Gy) D90th
2% (Gy)

Robust (equivalent of ν = 90%) 33.1 (33.1) 60.0 (60.0) 54.2 (54.3)
Probabilistic (ν = 90%) 32.0 (31.6) 60.7 (60.0) 54.8 (54.1)

Robust (equivalent of ν = 95%) 30.4 (30.4) 59.9 (60.0) 52.9 (52.9)
Probabilistic (ν = 95%) 31.0 (30.6) 60.8 (60.0) 52.7 (52.1)

Robust (equivalent of ν = 98%) 27.5 (27.6) 59.9 (60.0) 51.2 (51.3)
Probabilistic (ν = 98%) 27.9 (27.5) 60.9 (60.0) 48.7 (48.0)

the spinal edge voxels reach approximately 5% and 2% for the ν = 95% and ν = 98% plans, respectively.
This shows that the probabilistic approach allows for tuning desired probability levels.

A comparison of the DVH-metrics is done in figure 15, where the DPH of various DVH-metrics is
shown for the probabilistic and robust (ν = 90%) plans. As both plans are matched by the CTV cover-
age D10th

98%, both plans are similar the region of large scenario fraction (i.e. in the lower tails of the DVH-
metrics). This means that in the worst error scenarios (where the CTV receives the lowest dose), the
plan quality is similar. Also, the region of low scenario fraction of the spinal DVH-metrics (e.g. D90th

2% )
is similar between both plans. All DPHs deviate significantly in the central region of the distributions.
For the majority of the dose values, the probabilistic plan shows smaller probability of CTV under-
dosage (e.g. P(D98% > 57Gy) increased by about 14%) and spinal overdosage (e.g. the P(D2% > 30Gy)
is reduced by about 28.5%) in the same plan.

DVH bands of the CTV and spine are compared between the probabilistic (top) and robust (bot-
tom) plans in figure 16 for the ν = 90% case. The probabilistic CTV objectives at 0.95 · dp = 57Gy and
1.07 · dp = 64.2Gy are shown, together with the maximum OAR dose threshold at 54Gy. As the probab-
ilistic plan focused on preventing spinal overdosage probability, the spinal DVH has lower dose values
associated to the same fractional volume, but similar DVH spread. Only for approximately 5% of the
scenarios (corresponding to the upper bound of the 90% confidence level), the robust plan reaches lower
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Figure 12. Comparison of nominal dose distributions for the (left) probabilistic and (right) robust plan in the spinal case (ν =
90%). Both the (bottom) XY-plane and (top) XZ-plane through the CTV center are shown.

Figure 13. Cross sections through the spine center along the X and Z axes for the probabilistic (ν = 90%, ν = 95% and ν =
98%) and robustly matched plans.

doses than in the probabilistic plan. Improvement in the spine is possible at the expense of a less homo-
geneous CTV, with a slight overdosage (as allowed for). Additionally, the DVH bands are wider, though
they remain within the desired thresholds.

4. Discussion

In this work we present a proof-of-concept of a novel approach to probabilistic treatment planning, that
allows for the precise tuning of voxel-wise under- and overdosage probabilities.

Probabilistic planning—based on re-optimization after probabilistic evaluation—has shown poten-
tial to reduce inter-patient variation and improve trade-offs between target coverage and OAR sparing
(de Jong et al 2025). Earlier developed probabilistic approaches for IMRT optimize for minimum dose
objectives (Gordon et al 2010), which was later extended to minimum dose constraints (Mescher et al
2017). Approaches for probabilistic target coverage have been proposed as well (Tilly et al 2019), where
the dose-volume metric (e.g. D98%) is approximated by a surrogate function. Our approach adds to these
previous developments by optimizing probabilistic voxel dose directly in a convex formulation when
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Figure 14. The probability of CTV underdosage (top), CTV overdosage (middle) and spine overdosage (bottom) probability, for
the (left to right) ν = 90%, ν = 95% and ν = 98% cases. Probabilistic CTV objectives are reached if the probability of under-
and overdosage is below 10% (blue).

Figure 15. Dose population histograms of various DVH metrics (DV , e.g. V= 98%) comparing spinal probabilistic (solid) and
robust (dashed) plans for ν = 90% in the (a) CTV and (b) spine, scaled by D50th

50%
. The probabilistic plan shows reduced spinal

overdosage probability and reduced CTV underdosage probability in the same plan.

δ > 0 for all active voxels. Since the coverage probability and dose threshold can be selected without
proxies, the approach is personalized and not tied to patient populations and tumor sites. The resulting
formulation is conceptually similar to the VHMR but is based on fewer assumptions, as it does not rely
on spherical target geometry, the static dose cloud, or uniform population-based uncertainty (i.e. the
same SD of setup or range uncertainties for all patients).

The approach is sufficiently general to be used for different purposes, e.g. to optimize for probab-
ilistic minimum, maximum or mean dose. By associating the δ-factors to CVaR estimates rather than
percentile estimates, our approach can likewise optimize the CVaR of the voxel dose (as was used in Tilly
et al (2019)). In future work, we can explore a broader range of probabilistic objectives, including com-
monly used radio-biological metrics, such as generalized equivalent uniform dose, BED and tumor con-
trol probability (van Haveren and Breedveld 2019).
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Figure 16. Dose volume histogram distributions for the CTV (left) and spine (right) for the ν = 90% plans. Probabilistic (top)
and robust (bottom) plans are compared, showing the nominal scenario (black) with various confidence bands.

Percentile optimization has been approximated in previous studies (Chu et al 2005, Sobotta et al
2010, Fabiano et al 2022) by assuming Gaussian-distributed responses, which does not allow for precise
tuning towards desired probabilities or percentiles. Our approach directly applies to non-Gaussian
response distributions, because PCE allows to model non-Gaussian responses and its efficient sampling
allows to yield sufficient statistics for accurate percentile prediction. This was demonstrated in the spinal
case, where the probability of spinal overdosage in the treatment plan matched the desired values or
reached values below the threshold.

PCE is not intrinsic to the current approach, but other fast methods can be used, such as Monte-
Carlo based methods (Holmes et al 2024), potentially using artificial intelligence (Pastor-Serrano and
Perkó 2022). As sampling thousands of scenarios is preferable for obtaining accurate statistical estima-
tions, the efficiency of the alternatives should be comparable to PCE.

Although improved robust plans (e.g. in terms of conformity) can possibly be achieved by addition
of other objectives or other types of robust optimization (e.g. objective-wise), the spherical and spinal
probabilistic plans consistently show that OAR/spinal overdosage is reduced for identical CTV coverage.
The reason for this is that, as opposed to probabilistic optimization, mini–max robust optimization relies
on a chosen uncertainty set and treats every scenario within it as equally probable.

The effect of using a discrete uncertainty set in robust optimization can be clearly seen in the CTV-
only setupXYrange case (figure 8, bottom). The dose margin is extended into all directions where an
error scenario is defined. As a result, the dose margins along the diagonals of the XZ-plane are more
conservative (and thus less conformal) compared to the probabilistic plan. Similar results are seen in
figure 9 for the D90th

2% comparison, where the increase of the OAR objective weight leads to overcom-
pensation of single shifts, at the same time giving less importance to other (potentially more important,
higher probability) shifts. Besides a reduction in conformity, this leads to a smaller CTV margin in the
y-direction, in turn resulting in lower CTV coverage. In the spherical XZ-displaced case, the probabilistic
plan automatically leads to a conformal plan, because (1) there are no competing objectives and (2) it
does not rely on single worst-case scenario that could overcompensate other scenarios.

For the spinal phantoms, we prioritized to limit spinal overdosage probabilities, resulting in large
CTV underdosage probabilities. Still, CTV underdosage probabilities were larger in the robust case (for
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Table 5. Computation times of expectation values (E[Dij(ξ)], E[Dij(ξ)Dij′ (ξ)] and
∑

i∈nonCTVwiE[Dij(ξ)Dij′ (ξ)]) and PCE
construction of the dose-influence matrix.

spherical spinal Number dose calculations

Expectation values of Dij 8435 s 1412 s 105
PCE construction of Dij (CTV) 6416 s 1738 s 1637
PCE construction of Dij (OAR) 2435 s 1143 s 1637

Table 6. Comparison of total probabilistic and robust optimization times.

Probabilistic Robust

Spherical XZ-displaced 3.7 h 4.0 h
Spherical X-displaced 6.8 h 4.4 h
Spinal (ν = 90%) 7.6 h 9min
Spinal (ν = 95%) 7.3 h 11min
Spinal (ν = 98%) 11.4 h 20min

similar spine overdosage). The CTV coverage in these plans did not meet the clinical criterion that
is often aimed for (D10th

98% = 95%dpi ), meaning that these plans are non-robust. This can be seen from
figure 16, where the lower tails of the near-maximum DVH metrics of the CTV extend to dose val-
ues much smaller than was prescribed. Sufficient CTV coverage can be reached by using a stricter CTV
underdosage objective, or by increasing the importance of the particular objective. A probabilistic optim-
ization of the horseshoe-shaped CTV shows that the clinical criterion can be reached if there would be
no spine (see section 3 of the SM).

To enable a fair comparison, plans were scaled by the D50%. This ICRU-based metric describes the
median CTV dose and is numerically robust. We want to emphasize that the exact choices and priorities
chosen in treatment planning do not invalidate the approach. In fact, we observed that in some probab-
ilistic optimizations, even one or two outer loop iterations were sufficient to achieve the desired under-
and overdosage probabilities. Further research on clinical datasets is needed to explore how the probabil-
istic approach performs under realistic clinical trade-offs and priorities.

The current approach is memory intensive, because of the combination of quadratic underdosage
and overdosage objectives with the SD[di(x,ξ)] term. Summation over the voxels must be done during
the optimization, because for every iteration the active voxel subset (that is under- and overdosed) must
be determined. Therefore, E[Dij(ξ)Dij′(ξ)] (with maximally N2

b non-zero elements for every active voxel)
is computed and stored (see section 4 of the SM). The probabilistic approach should especially upscale
by number of voxels. In the current approach, voxels were excluded from the dose-influence matrices
using conservative bounds, no sparsity was used in the optimization, and the approach was not optim-
ized for computational efficiency. Besides improving on these aspects, upscaling to clinical grid sizes
becomes more feasible if probabilistic terms only optimize for substructures of the ROIs (e.g. for rims
or checkerboard-like structures). Automatic methods can select voxel subsets using adaptive (Martin et al
2007) or deep-learning based (Quarz et al 2024) sampling.

The expectation value calculation in (11), (15) and (16) and PCE construction of the dose-influence
matrix have been parallelized by 16 CPU-cores (2x Intel XEON E5-6248R 24C 3.0GHz) (Delft High
Performance Computing Centre DHPC). Computation times are reported in table 5. Calculations for the
spinal plans were significantly lower, because of the courser voxel grid. Long computation times for the
expectation values are especially due to

∑
i∈nonCTVwiE[Dij(ξ)Dij′(ξ)], which is computed for non-CTV

voxels. This computational expense can be partly reduced by optimizing over tissue voxels without using
expectation values. Computation speeds are expected to be improved by using GPU-cores.

PCE construction times in this work can be treated as a conservative upper bound to what is clin-
ically often regarded as sufficient, because stricter Γ-evaluation criteria are used here. Namely, a Γ-
evaluation using 3mm/3% instead of 1mm/0.1Gy settings lead to 98% of the voxels being accepted in
all test scenarios for both pencil-beams.

Cumulative optimization times are listed in table 6. Spherical X-displaced plans took longer to
optimize than XZ-displaced plans, due to more conflicting probabilistic objectives (CTV and OAR
are closer). For the same reason, even though the spinal geometry contains less voxels than the spher-
ical geometry, the probabilistic spinal plans took longer to optimize than the spherical plans. Robust
optimization times for spherical plans were similar to probabilistic ones, but spinal robust optimiza-
tions were much faster, likely because the choice of objective weights made the plans more challenging
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to optimize. Probabilistic optimization times could be improved by parallelization and by using differ-
ent warm-start strategies. Large computation times are primarily due to the inner optimization, which is
further analyzed in appendix A.1. The computational expense of the current approach may benefit from
operator-splitting methods, as was shown to be the case in previous studies on mini–max robust (Fan
et al 2024, Liu et al 2025) and robust-CVaR optimization (Luxenberg et al 2025).
Other suggestions to be included into future work are as follows:

(i) Although the current work only focuses on probabilistic objectives, the approach can be extended
to handle probabilistic constraints.

(ii) The presented approach is not limited to proton therapy, but can likewise be applied to photon
therapy, or radiation therapy in general. Although photons may be less sensitive to uncertainties
than protons, photons—particularly volumetric modulated arc therapy—have shown inter-patient
variation in PTV coverage (Rojo-Santiago et al 2023b). In cases involving complex anatomies,
challenging trade-offs between target and OARs, or hypo-fractionated treatments, the probabilistic
approach could potentially have great added value for photon therapy as well. Even when the
expected improvements are less significant, the probabilistic approach can help in the interpretation
of dosimetric outcomes.

(iii) To extend the work to hypo-fractionated treatments, random errors should be included in the
probabilistic approach. Possibly, fractionation schemes can be explicitly included into the
optimization process by accounting for the number of fractions, similar to previous approaches for
photon (Unkelbach and Oelfke 2004) and proton therapy (Wahl et al 2018).

5. Conclusions

This work presents a new approach to probabilistic treatment planning, that is able to optimize for exact
underdosage and overdosage probabilities of multiple structures (which are not site-specific), for person-
alized probability levels and dose thresholds. For systematic setup errors, including dose fall-off—which
reflects the actual dose distribution—makes the Van Herk margin less conservative, yielding values that
closely correspond to those from the probabilistic approach. Compared to composite-wise robust plans,
the probabilistic plans achieve more OAR sparing with similar target coverage (or improved target cov-
erage with similar OAR sparing) for all spherical and spinal comparisons. Probabilistic plans were found
to be more conformal to the CTV, as probabilistic optimization accounts for the probability of differ-
ent error scenarios rather than relying only on a predefined uncertainty set and optimizing with a single
worst-case scenario. As the proposed method is sufficiently general to be extended to dose-coverage or
CVaR optimization, this is an obvious follow-up. Besides that, following work should focus on improv-
ing computational efficiency through time and memory optimization techniques, so that clinical feasibil-
ity (i.e. the application to real clinical cases) can be demonstrated.
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Appendix. Probabilistic and robust optimizations details

This section presents a summary of the probabilistic (appendix A.1) and robust (appendix A.2) optimiz-
ations that are applied to all phantom geometries, as presented in section 2.4.

A.1. Probabilistic optimizations
Table A1 summarizes the probabilistic optimization parameters that are used for each geometry. All
variables are in accordance with section 2.2.1, where the general (inner) probabilistic optimization is
shown in (20). As an example, for the spherical CTV-only case, we aim to limit the CTV underdosage
probability as P(di(x,ξ)⩽ γi)⩽ α%= P(di(x,ξ)⩽ 57Gy)⩽ 10% and CTV overdosage probability as
P(di(x,ξ)⩾ ϵ)⩽ (100−β)% = P(di(x,ξ)⩾ 64.2Gy)⩽ 10%.

Convergence criteria are defined in accordance with section 2.2.2. A representative example of the
percentile convergence (corresponding to the damped beam weights) is shown on top in figure A1 for
the spherical setupXYrange plan, where the 10th- and 90th-percentiles of the CTV voxels and the 90th-
percentiles of the OAR voxels are optimized for. The bottom of figure A1 shows the respective conver-
gence criteria with the convergence thresholds (in dashed black).
Probabilistic optimization times. Large computational times are primarily due to the inner optimization.
Figure A2 shows the inner optimization times for the spherical (CTV + OAR) and spinal plans, which
decreases over the course of the optimization for all plans. This occurs because the probabilistic object-
ives are only evaluated for voxels that have not yet met the target probability level. Voxels that meet
the target do not necessarily remain passing throughout the optimization; they can fall below the target
again and be re-included in the probabilistic objective. However, as optimization continues, more voxels
consistently satisfy the objectives. This reduces the number of voxels needing probabilistic optimization
and thus lowers the overall computational load.

Table A1. Probabilistic optimization parameters.

Spherical Spinal

van Herk comparison CTV-only CTV and OAR νi = 90% νi = 95% νi = 98%

wCTV
i 100 100 100 100 100 100

wOAR
i 20 20 20 20 20 20

wTissue
i 1 1 1 1 1 1

dpi [Gy] 60 60 60 60 60 60
αi [%] 2 10 10 10 10 10
βi [%] 90 90 90 90 90 90
νi [%] — — 90 90 95 98
γi [Gy] 57 57 57 57 57 57
ϵi [Gy] 64.2 64.2 64.2 64.2 64.2 64.2
µi [Gy] — — 30 54 54 54

πα
CTV 750 15 15 15 15 15

πβ
CTV 15 15 15 15 15 15

πν
OAR — — 15 750 750 750

πlow
CTV 1 1 1 5 5 5

πlow
OAR — — 1 15 15 15

πTissue 1 1 1 1 1 1

∆W 15 20 15 15 15 15
∆k 5 10 5 5 5 5
τCTV,α 5 · 10−3 5 · 10−4 5 · 10−4 1 · 10−2 1 · 10−2 5 · 10−3

τCTV,β 1 · 10−3 5 · 10−4 5 · 10−4 4 · 10−3 4 · 10−3 1 · 10−3

τOAR,ν — — 7 · 10−3 0.1 0.1 5 · 10−2
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Figure A1. The convergence behavior of the damped (10th and 90th) CTV and (90th) OAR voxel dose percentiles (dashed) for the
XZ-displaced setupXYrange probabilistic optimization, with their moving average (MA15, solid). Only representative outer voxels
of both structures are shown, along the CTV and OAR centered X, Y, Z and Z= X+ 85 mm axes. The relative change in MA15 as
in (27) with∆k= 5 is shown (bottom) with the convergence tolerance (dashed black).

Figure A2. Inner optimization times of the probabilistic spherical and spinal plans.

The ν = 98% case took particularly longer than the other cases, mainly because of increased inner
optimization times during the early iterations (before iteration 21). In addition to having slightly stricter
convergence criteria compared to ν = 90% and ν = 95%, stricter spinal overdose probabilities caused
more voxels to not reach the target probability level, making them active in the optimization more often.

The fact that iterations take longer if more voxels have not reached the desired thresholds yet, means
at the same time that optimization times are sensitive to the choice of initial beam weights. Inner optim-
ization times may be improved by terminating the first iterations before fully converged beam weights
are obtained. This can be done since the main purpose of these initial optimizations is not to obtain
converged beam weights, but rather to direct the voxel dose percentiles (i.e. δ-factors) to the desired
levels. This may reduce the optimization time significantly, while the number of (outer loop) iterations
is barely affected.
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Table A2. Robust optimization parameters for the XZ-displaced (XZ) and X-displaced (X) geometries, that are matched by either CTV
coverage (D10th

98%
) or OAR dose (D90th

2%
). Prescribed dose dpi = 60Gy and voxel weights for CTV, spine/OAR and tissue are wCTV

i = 100,

wOAR
i = 20, wTissue

i = 1, respectively.

ωCTV ωOAR ωmax
OAR ωnom

CTV ωTissue dmaxOAR
i (Gy)

CTV-only 15 — — — 1 30
XZ (D10th

98%) 120 1 1 — 160 30
XZ (D90th

2% ) 100 10 10 — 100 30
X (D10th

98%) 120 1 1 — 160 30
X (D90th

2% ) 100 15 1 — 100 30

Spinal (ν = 90%) 2 1 1 4 1 54
Spinal (ν = 95%) 3 2 2 6 2 54
Spinal (ν = 98%) 11 10 10 22 10 54

A.2. Robust optimizations
All probabilistic plans in this work are compared to a composite-wise mini–max robust plan as in (28).
Table A2 shows the resulting robust objective weights ω ∈ Ω, obtained from tuning the CTV coverage or
OAR/spinal dose towards the probabilistic plan outcome. For the spherical CTV + OAR case, combin-
ations of XZ-displaced or X-displaced and types of scaling (either by CTV coverage or OAR dose) are
done. Three different spinal plans are compared, where the spinal overdosage probability is limited by
different probability levels (νi = 90%, νi = 95% and νi = 98%,∀i ∈ Spine).
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