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Abstract

Structured illumination microscopy (SIM) is a kind of wide-field super resolution imaging
technique which achieves the resolution improvement by exploiting the interference patterns
to obtain the information out of the observable region in Fourier space[1]. The resolution
improvement in SIM is done by analyzing the obtained image and restored the observed
sample with software. This process is sensitive to the measured PSF, as the PSF is the main
factor to do the image deblurring and parameters estimation.

Frequently, the PSF of a SIM system is obtained by fitting the recorded beads image with
the Gaussian function[2]. However, the Gaussian fitting can not retrieve the aberration and
noise in the PSF.

The blind image deconvolution method is a family of algorithms which can be used to restored
the object and corresponding PSF from the degraded images. The novel Tangential Iterative
Projections (TIP) algorithm is a kind of blind image deconvolution algorithm proposed by
Wilding et al.. This algorithm is simple, fast and robust to the noise condition. It is proved
that TIP can be implemented on both the multi-frame deconvolution scenario and single-
frame scenario[3, 4].

The aim of this thesis is to verify whether TIP algorithm can retrieve a PSF, which can be
used to do the SIM image reconstruction, from the SIM data. For this purpose, a simulated
SIM optical system is built in Matlab to generate the SIM images, and both the single-frame
TIP and multi-frame TIP frameworks are used to do the PSF retrieval. In addition, a new
constraint for the PSF which is generated based on the diffraction limit of the optical system is
implemented. In order to reduce the execution time and avoid the overfitting of the algorithm,
a stop criterion is introduced.

The result shows both the multi-frame TIP and single-frame TIP can be used to retrieve an
effective PSF from the SIM data, and the single-frame TIP is more applicable and accuracy
compared with the multi-frame TIP.
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Chapter 1

Introduction

Over the past decades, fluorescence microscopy has become an essential tool in the observa-
tion of the biological structures. The resolution of the conventional fluorescent microscopy is
restricted by the diffraction limit, about 200 300 nm in the lateral direction and 500 700 nm
in the axial direction [13]. Some biological structures are smaller than this limit and are too
small to be observed in detail. To reveal the details of these small cellular structures, the su-
per resolution microscopy is developed. The most common used super resolution microscopy
are Stimulated emission depletion (STED) microscopy, the Single-molecule localization mi-
croscopy (SMLM) and the structured illumination microscopy (SIM). Compared to the other
super resolution techniques, SIM does not have special requirement of the fluorophores, and
can be used to image both the fixed and living object [1, 14]. Therefore SIM is widely used
in the biomedical science.

The frequently used image reconstruction algorithms in SIM are Richardson-Lucy algorithm
and Wiener filter. Both of these methods require the known point spread function (PSF).
This PSF is always obtained by the experimental measurement. This method is achieved by
recording images of the small beads. These obtained images are averaged and then used to
calculate the PSF. This experimental PSF includes all the physical deviations of the imaging
system, however, the beads are not the real point source, which will enlarge the PSF and
cause problem in image restoration.

Considered that the experimental PSF will reduce the quality of the restored image, is it
possible to use other methods to get the PSF and the object? Then the problem becomes a
blind image deconvolution problem.

Filip Sroubek and Peyman Milanfar presented a noise robust multichannel blind deconvolution
method based on the alternative minimization method [15]. In this method, for each iteration,
the image deconvolution is split into o-step and h-step which are used to estimated the object
and the PSF respectively.

Wilding et al.[3] present the tangential iterative projection algorithm to solve both the multi-
frame and single-frame blind image deconvolution problem. For each iteration, the algorithm
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2 Introduction

contains four steps, two linear deconvolution steps and two projection steps which is used to
reduce the error in the estimated PSF and object.

The objective of this thesis is to find a method to estimate the PSF of the SIM, of which
the estimated PSF is accurate enough and can be used as a prior knowledge in the image
restoration process. By comparing the characteristics of different blind image deconvolution
algorithms, the TIP algorithm is the most applicable algorithm as it is noise robust, low
computational complexity and can work on data at low signal-to-noise ratios. Then the
research question can be narrowed down to:

Whether the TIP algorithm can retrieve the PSF, which can be used to do the
SIM image reconstruction from SIM raw data?

The structure of the thesis is following. First, the principle of the optical imaging and the
basic theory of the structured illumination microscopy are introduced in the Chapter 2. Then
the method that can be used to obtain the PSF with a set of images are described in Chapter
3, followed by the introduction of how to implement the PSF estimation algorithm with SIM
data in Chapter 4. The result of the SIM simulation and the limitation of the algorithm are
shown in Chapter 5. Finally, the conclusions are drawn in Chapter 6.

X. Liu Student Master of Science Thesis



Chapter 2

Optical Imaging and Super Resolution
Technique

In this chapter, the mathematical model for the image formation in an optical system and
how the super resolution techniques break the diffraction limit are introduced.

2-1 Image Formation in an Optical Imaging System

Optical imaging systems are used in different types of application to achieve object observation
and image acquisition. In geometric optics, the light is treated as a ray, which means the
propagation distance of the light can be arbitrarily extended and the beam do not have
width. However, some optical phenomena, like diffraction can not be explained by geometric
optics. Thus,the physical optics is introduced. In physical optics, the light is considered as
electromagnetic radiations which have the properties of wave [5]. The wave-nature of the light
emitted by the point source will cause the degradation of the obtained image. The image
captured by the imaging system is not a point again.In this section we follow the reasoning
and use the formulas of the [5].

2-1-1 Basic concept of Optics

In physical optics, the light is considered to propagate as a wave. Based on the scalar wave
theory, the light wave can be described as

u(~r, t) = a(~r)cos(wt−ψ(~r)) = a(~r) Re ei(wt−ψ(~r)) = Re a(~r)e−iψ(~r)eiwt = Re A(~r)eiwt, (2-1)

in which t is the time, ~r is the spatial coordinate, a(~r) represent the amplitude, A(~r) is the
complex amplitude, w denote the angular frequency of the light, and ψ(~r) describe the initial
phase delay in the spatial coordinate.
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4 Optical Imaging and Super Resolution Technique

A point source will emit light in all directions. As a result, the wavefront of this point source
is spherical in shape and the expression of the wave light is

A(~r) = A0(~r)
d

e−iwt = A0(~r)
d

ei
2πc
λ

d
c = A0(~r)

d
e−ikd, (2-2)

where A0(~r) is the initial complex amplitude at 1m, d is the distance that the wave propagated,
k = 2π

λ denotes the wavenumber which is the spatial frequency of the wave. Assume that
A0(~r) is the complex amplitude at point ~r0 = (x0, y0, z0), then the expression of the spherical
wave at~r = (x, y, z) is given by

A(~r) = A0(~r)
|~r − ~r0|

e−ik|~r−~r0| = a0
|~r − ~r0|

e−ik|~r−~r0|−iψ0 , (2-3)

where a0 is the initial amplitude and ψ0 is the initial phase.

In the imaging process, the light passes through the optical system and specimen, during
which the aberration is introduced causing the distortion of the wavefront. Both the imperfect
optical components and the misalignment of the imaging system can cause aberration in the
wavefront. Besides, the external factors, such as the inhomogeneous medium and the thermal
blooming, also lead to the aberration in the wavefront. The wavefront is a surface over which
the optical wave has a constant phase. The phase aberrations are changes in the wavefront.
Therefore, after introducing the phase aberration, the wavefront is not a ideal shape anymore.

Zernike Polynomials

The shape of the wavefront influences the performance of the optical system. The wavefront
is changed by the phase aberrations, and the standard method to describe these aberrations
is using some predefined functions. In optics, a weighted sum of Zernike Polynomials is used
to described the wavefront aberrations:

w(x, y) =
∑
m,n

amn Z
±m
n (x, y), (2-4)

where amn is the weight for the Zernike Polynomial Zmn for whichm and n are two non-negative
integer that

m,n ∈ Z≥0, n ≥ m, n−m ∈ 2Z. (2-5)

Noll introduced a modified notation of Zernike polynomials in [16] where the Zernike polyno-
mials are numbered with single index. Figure 2-1 shows the first 15 Zernike polynomials in
Cartesian coordinates and its corresponding PSF.

2-1-2 The Point Spread Function

The wavefront can be controlled by introducing extra phase delay with the optical compo-
nents. This can be done by introducing the lens in the optical system. The positive lens can
convert the plane wave into a spherical wave converging to a point at the focal plane.

X. Liu Student Master of Science Thesis



2-1 Image Formation in an Optical Imaging System 5

Figure 2-1: The first 15 Zernike Polynomials in Cartesian coordinates.[5]

The field distribution of a plane wave A(x) at the pupil, for which the amplitude is A and

Master of Science Thesis X. Liu Student



6 Optical Imaging and Super Resolution Technique

the phase aberration is φ(x), at the focal plane can be described as

A(u, v) = e
ik
2f (u2+v2)

iλf

∫∫
R2
A(x)P (x)e−i

2π
λf

(xu+yv)
dx, (2-6)

with pupil function

P (x) =
{

1 inside the lens

0 elsewhere
(2-7)

Then by calculating the intensity of the field in the imaging plane, the image of the point
source can be obtained.

I(u, v) = A2

λ2f2

∣∣∣∣∫∫
R2
e−iφ(x)P (x)e−i

2π
λf

(xu+yv)
dx

∣∣∣∣2 . (2-8)

The image of the point source in the image plane is not a point. In the aberration-free
system, the image of the point source is a bright central region together with the concentric
rings around it. This pattern is called Airy Disk caused by the diffraction limit. If the
aberration is considered, the image of the point source is not the Airy Disk. The example of
the image of the point source with different aberrations are shown in Figure 2-1. The image
of the point source is called PSF, which describe the response of the imaging system to a
point source.
As the object can be seen as the collection of a set of independent point sources, the image is
the combination of the images of each point. Then the image can be seen as the convolution
of the object and the PSF:

i = o ∗ h+ n, (2-9)
where i is the acquired image, o denotes the object, h refers to the PSF, and n is the additional
noise.
The resolution of the image system depends on the width of the PSF. The resolution of an
optical system refers to the shortest distance between two points in the object which can still
be distinguished as two independent entities in the image plane. In 1873, German scientist
Ernst Abbe found the resolution of an microscope is limited by the diffraction limit [17]. In
theory, the minimum resolvable distance for an aberration free system is

d = λ

2NA, (2-10)

where λ is the wavelength of the light, NA is the numerical aperture which is a number
describing the amount of light that can be collected by the objective.
In practice, due to the inevitable aberration of the imaging system, the resolution is lower
than the diffraction limit. The commonly used measure to characterize the resolution is Full
Width at Half Maximum (FWHM): the width of the PSF measured at the level where the
intensity is half of the maximum (Shown in Figure 2-2).

2-2 Super Resolution Technique

Super resolution technique is a set of methods which are used to break the diffraction limit
of the optical system and enhance the resolution of the imaging system.
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2-2 Super Resolution Technique 7

Figure 2-2: Left: The Point spread function of a system. Right: The cross-section plot of the
PSF. ([6])

4Pi and I5M

Both 4Pi and I5M are the interference-based techniques which improve the axial (z-) resolution
by introducing two opposing object lenses [18, 19].

The idea of the 4Pi laser scanning fluorescence microscope which improves the axial resolution
by increasing the acceptance solid angle of the aperture was first proposed by the S. Hell in
1990. Four years later, he made this proposal come true [20]. A scheme diagram of 4Pi
microscope is shown in Figure 2-3. The detected light of the detector are the combination of

Figure 2-3: Optical scheme in 4Pi mi-
croscope [7]

Figure 2-4: Optical scheme in I5M
microscope [7]

the emitted light collected by two opposing object lenses, which are from the same Fluorescent
molecule excited by the coherence beams. In the ideal situation, the solid angle of the light
that an object lens can collect is 2π. Therefore, by using two opposing object lenses, the solid
angle of the system is increased to 4π, in other words, the numerical aperture is increased.
However, in practice, the numerical aperture of one object lens can only reach 1.3π, as a result
the resolution can be improved from 500-700nm to 100-150nm. This kind of microscope is
always used with STED together to realize the resolution optimization in 3-D problem.
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8 Optical Imaging and Super Resolution Technique

The image scheme of I5M is similar to 4Pi (see Figure 2-4). Instead of using the laser, the
incoherent light source is used in I5M. The I5M is a combination of the I2M and I3M. I2M,
image interference microscopy, collects the confocal fluorescence lights illuminated by beams
through two high numerical aperture and then interference of these lights is created on the
CCD plane. The incoherent light can also be used to illuminate the sample. If we used the
I2M microscope in this way, it becomes I3M, incoherence interference illumination microscopy,
which can get the incoherence pattern of the sample. Gustaffson and his colleagues developed
the I3M and make a combination of these two techniques, then the I5M is formed. During
the measurement, a set of images can be obtained by scanning the focal plane of the sample
layer by layer, and then using the proper deconvolution method to process the data, a high-
resolution 3-D image is achieved. The resolution of the I5M can reach 100nm [21]. Figure 2-5
shows the image deconvolution in both the 4Pi and I5M.

Figure 2-5: The axial slice in 4Pi and I5M. (a) shows the typical section of the 3D image recorded
by the 2PE PI of type C. The dashed line in the inset of figure (a) illustrate the position of xz-slice
in the xy-overview. Figure (c) shows the deconvolution result of the figure (a). Figure (c) and (d)
shows the recorded image and the deconvoluted image in I5M. The inset of the figure (c) shows
the position of xz-slice in the xy-overview. [7]

Stimulated emission depletion (STED) microscopy

The theory of the STED microscopy is first proposed by Stephen Gull er al. in 1994 [22] and
then demonstrated by the biological experiment in 1999 [23].

As shown in Figure 2-6, two pulse lasers, of which one is for the excitation of the fluorescence
molecules and the other one is for the depletion of the excited fluorescence molecules, are
used. After exciting the fluorescence molecules by the first laser, the second laser, whose
cross section is hollow, like a doughnut, is illuminated onto the same region as the first
one. The fluorescence in the hole part of the second laser is still excited while the excited
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2-2 Super Resolution Technique 9

fluorescence molecules outside the hole change to the ground state which can not be detected.
Thus, an Airy disk is modified to a small bright spot. This kind of microscope is always
used with 4Pi and I5M together, and the resolution of the STED microscope can reach 30nm.
Figure 2-7 shows the image in both the confocal microscopy and the STED microscopy.

Figure 2-6: Optical scheme in STED [8]

Figure 2-7: Fluorescent nanoparticles imaged by confocal microscopy (left) and STED microscopy
(right) [9].

Single-molecule localization microscopy (SMLM)

The image of the fluorophore is broadened by the diffraction, which makes the fluorophores
in the image plane are too close to resolve. But the broaden of the image does not have
impact on the relative position of the image center of each fluorophore [24]. Based on this
property, the SMLM technique are developed. Figure 2-8 illustrates the principle of the
SMLM. Instead of imaging all the fluorophores together, the SMLM technique image the
individual fluorophore in the object at a time and get the position of it. After getting the
location of all fluorophores, the super resolution image can be constructed by plotting points
at the corresponding positions.

In order to obtain the individual iamge of each fluorophore, the photoactivatable fluorophores
are used. This kind of fluorophores can be activated by the laser and will return to the ground
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10 Optical Imaging and Super Resolution Technique

Figure 2-8: The process of super resolution imaging in SMLM [10]

state after emitted fluorescence for a short while. With the use of low intensity laser, although
all the object is illuminated, only one or a few of fluorophores are activated. Each time the
fluorophore in the object is activated randomly. By illuminating the object for plenty of times
to make sure that each fluorophore has been activated at least once [24].

The most popular microscopes of SMLM are photoactivated localization microscopy (PALM)
proposed by Betzig et.al [25] in 2006 and stochastic optical reconstruction microscopy (STORM)
proposed by X. Zhuang [26] at the same time. The resolution of PALM and STORM are 20-
30nm and 10-20nm respectively. Figure 2-9 shows the comparison of the image in confocal
microscopy and the PALM.

Figure 2-9: The image of confocal microscopy (left) and photoactivated localization microscopy
(right) [11]

Structured illumination microscopy (SIM)

Structured illumination microscopy (SIM) is compatible with any fluorescence microscopes
which puts a diffraction grating on the path of the laser beam. It uses spatial harmonics as
periodic illumination pattern. It is a super-resolution imaging technique using moire effect

X. Liu Student Master of Science Thesis



2-3 The principle of SIM 11

to shift the high spatial frequency information of the object into the pass-band of the optical
transfer function. By separating these superimposed information components and shifting
them to their original location in Fourier space, the resolution of this system is enhanced.
The quality of the image depends on the thickness of the diffraction grating, the thinner
the diffraction grating is, the higher quality the image have. The resolution of SIM can
reach 100nm, the 2-fold higher resolution of the conventional microscope. The Figure 2-10
demonstrates how the SIM achieves the super resolution imaging and Figure 2-11 shows the
comparison between the SIM and conventional side-field microscope imaging.

Figure 2-10: The principle of resolution improvement in structured illumination microscopy.(a)
The support region of optical transfer function which is the observable region of the conventional
microscope in Fourier domain. The three dots in (b) describes three information component.
After getting the shifting-phase, these superimposed components can be shift back to their orig-
inal position resulting in an expanded observable region (c). Rotate the illumination in three
orientations to expand the resolution isotropically. [12]

2-3 The principle of SIM

Structured illumination microscopy (SIM) is a super resolution method which breaks the
diffraction limit of the optical system and increases the spatial resolution of the wide-field
fluorescence microscopy by using spatial structured illumination light [27, 28, 29]. Unlike
other super resolution techniques, like PALM and STED, which improve the resolution by
optimizing the modulation method of the PSF, the SIM achieves the super-resolution by
obtaining the information outside the observed region in the frequency domain [30]. Compared
with other super resolution techniques, SIM has several advantages, such as the fast rate of
imaging, the compatibility with other optical systems, and the observation of the living cell,
which make it widely used in medicine, biology.
In SIM, the sample is illuminated by the periodic light patterns which are created by the
optical grating or digital micro-mirror device (DMD) [30]. After illuminated by the periodic
light patterns, the high frequency information of the sample is down-modulated to the support
area of the OTF, where the images of these information can be captured by the microscope.
Since both the high frequency information and the low frequency information are modulated
to the support area of the OTF, these information components are superimposed. The super-
resolution is achieved by separating these information components and shift them back to
their original position in the Fourier domain.
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12 Optical Imaging and Super Resolution Technique

Figure 2-11: The image of the conventional wide-field microscope (a) and the SIM (b). [12]

The mathematical model of the image formation and image reconstruction of SIM are intro-
duced below. The introduction of the image formation and the image reconstruction of SIM
in this section are based on the principle described by Wicker et al. in [27, 31] as well as the
method present by Lahrber et al. in [32], and the same notations are used.

2-3-1 Image Formation and Reconstruction in SIM

The SIM is characterized by the use of illumination patterns. The acquisition of several images
for different illumination patterns is required to reconstruct the super resolution image. The
periodic illumination pattern used in SIM is a set of spatial harmonics, and the illumination
intensity can be expressed as:

I(~r) =
M∑

m=−M
amexp {i(2πm~p · ~r +mφ)} , (2-11)

in which ~r is the vector in spatial coordinate, am is the strength of the mth harmonic, M
denotes the number of the harmonics, ~p represents illumination spatial frequency, i is the
imaginary unit and φ is the phase of this illumination. For 2-D problem, in principle illumi-
nation patterns with 3 orientations which has three different phases are sufficient.

The observed image of a given fluorescent object is determined by three factors, the distribu-
tion of the fluorescent molecules on the object, the intensity of illumination patterns and the
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2-3 The principle of SIM 13

PSF of the optical system. The relation among these three factors can be written as:

D(~r) = [S(~r) · I(~r)]⊗ h(~r), (2-12)

where S(~r) is the sample fluorophore density, h(~r) is the point spread function. Therefore,
the nth SIM raw image captured in the imaging plane can be expressed as

Dn(~r) =
M∑

m=−M
[S(~r)amexp {i(2πm~p · ~r +mφn)}]⊗ h(~r). (2-13)

Fourier transforming Eq. (2-13) gives

D̃n(~k) =
M∑

m=−M
exp {imφn} amS̃(~k −m~p)h̃(~k)︸ ︷︷ ︸

=:C̃m(~k)

, (2-14)

where˜represent the Fourier transform of the function, D̃n(~k) can be regarded as the nth raw
image and C̃m(~k) denote the information component. The composition of these individual raw
images denotes the image vector, and similarly, the composition of all information components
denotes the component vector. Therefore Eq. (2-14) can be rewritten as

~̃
D(~k) = M ~̃C(~k), (2-15)

in which M denotes the component mixing matrix and

Mnm = exp {imφn} . (2-16)

Assume that the pattern phases are known, then components can be separated.

C̃(~k) = M−1 ~̃D(~k) (2-17)

After getting the phase for each individual component, these information components can be
shifted to the correct position in Fourier space.

To achieve the resolution enhancement of the reconstruction, a set of raw images from different
orientations with different phases need to be acquired, which means the component separation
need to be repeated for all orientations. Then the phase shift of all the components are known
and these component can be shifted back to their original frequency in Fourier domain.
Next, a weighted-averaging, generalized Wiener filter is used to recombine these information
components together, leading to the estimation

S̃′
(
~k
)

=
∑
q,m

{
amh̃

∗
(
~k +m~pq

)
C̃q,m

(
~k +m~pq

)}
∑
q′,m′

{∣∣∣a′mh̃ (~k +m′~pq′
)∣∣∣2}+ w

. (2-18)

Recall that am is the strength of the mth harmonic, ~p refers to the illumination spatial
frequency, C̃ indicates the information component and w denotes the Wiener filter parameter
which is a constant and the value of it is chosen empirically. The index q here is introduced
to denote the shift orientation.
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14 Optical Imaging and Super Resolution Technique

The noise suppression of the Wiener filter leads to the distortion of the deconvolution spec-
trum, due to the non-constant of the object spectrum. Therefore, an Apodization filter is
introduced to suppress the distortion in the high frequency spectrum [33]. Then the recon-
structed object can be expressed as:

S̃′
(
~k
)

=
∑
q,m

{
amh̃

∗
(
~k +m~pq

)
C̃q,m

(
~k +m~pq

)}
∑
q′,m′

{∣∣∣a′mh̃ (~k +m′~pq′
)∣∣∣2}+ w

Ã
(
~k
)

(2-19)

where Ã
(
~k
)
indicates the apodization filter which prevents the ring artifact in the restored

image by shaping the overall spectrum [32].

There are different shapes for the apodization filter. One of the effective apodization functions
is given by the exponential function of the distance transform (s) of the footprint (f) of the
normalized reconstructed OTF. And it is found that the 0.4-th power of the distance transform
can achieve a good image restored result [31]. Figure 2-12 shows the cross-section plot of the
apodization function.

Ã
(
~k
)

= [s(f(h̃(~k)))]0.4. (2-20)

Figure 2-12: The cross-section plot of the distance transform result (left) and the Apodization
filter (right).

2-3-2 Parameter estimation

The accurate estimation of the illumination pattern parameters is an important process in the
SIM image reconstruction. With the proper parameters, the information components can be
unmixed (Eq. 2-17) and the SIM orders can be shifted back to its original location (Eq. 2-19)
in the Fourier domain. In the following subsection, the parameter determination method are
introduced.
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2-3 The principle of SIM 15

Phase shift estimation

To achieve the resolution improvement and get a high quality restored SIM image, the initial
phase of each illumination pattern should be known with a high precision. The phase shift
estimation algorithm used in this thesis is the non-iterative algorithm proposed by Wicker in
[27], which using the auto-correlation of the filtered image spectrum at the spatial frequency
~p to determine the phase. The filter here is the complex conjugated OTF, which is used to
reduce the impact of the additional noise and the asymmetry of the OTF [27]. The filtered
image is described by D̃′n:

D̃
′
n(~k) = D̃n(~k)h̃∗(~k). (2-21)

Then the auto-correction (⊗) of D̃′n is calculated and we get

Dn =
[
D̃
′
n ⊗ D̃

′
n

]
(~p) (2-22)

The result of the Eq. 2-22 is a positive and complex value. Then the phase of the nth image
can be derived from the angle of this value, thus:

φn = −arg {Dn} . (2-23)

Spatial frequency estimation

The use of the non-iterative phase estimation algorithm requires the precise known spatial
frequency ~p of the illumination pattern (See Eq. 2-22). The spatial frequency of the illumina-
tion pattern is estimated from the Fourier spectrum of the images. By finding the position of
the peaks in the Fourier spectrum, the information of the spatial frequency can be obtained.
The precision localization of this peaks do not only have impact on the estimation spatial
frequency but also influence the accuracy of the phase shift estimation. A subpixel peak
detection method presented in [32] is used in this work.

The estimation of the spatial frequency starts with the localization of the peaks in D̃(~k).
The indices of these peaks are (u0, v0) in Fourier domain and the localization precision of
these indices equals to the step size 1

Nx,y
, where Nx,y is the length of the image. Next, an

area around the corresponding pixel of this peaks in the spatial domain are selected and
oversampling is done for this selected area [34, 35] (cited in [32]). Then the Fourier transform
for this region is calculated using the twofold matrix multiplication:

D̃(û, v̂) = exp

(
−2πi
Ny

v̂T y

)
D(x, y)exp

(−2πi
Nx

xT û

)
(2-24)

where exp(·) refers to the exponential of each element of the input array, (x, y) is the coordi-
nate in the spatial domain, and (û, v̂) is the indices of the subpixel after oversampling which
around the original peak (u0, v0). The use of this method can reduce the error of the local-
ization of the peak, which is illustrated in Figure 2-13. After the oversampling, the detected
location of the peak is closer to the actual position (see Figure 2-13(d)).
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16 Optical Imaging and Super Resolution Technique

Figure 2-13: Illustration of the subpixel detection. (a) and (b) are raw image and its Fourier
spectrum respectively. The wave vector is shown in (b). (c) shows the peak location mismatch,
the green and red cross in (c) indicate the actual location and the location estimated with the
original image. (d) shows the result of the proposed subpixel detection method.

Modulation strength calculation

After getting the spatial frequency ~p and the initial phase φ as well as the OTF h̃, the mod-
ulation strength can be calculated from the OTF corrected information component directly
[32]. The OTF corrected information component is obtained by:

C̃
′
m = C̃mh̃

∗

|h̃|2
, (2-25)

where ∗ represent the complex conjugated. Then the strength of the m-th harmonic is deter-
mined by:

am =
∣∣∣∣∣
∑
~k′ C̃

′∗
0 (~k′)C̃ ′m(~k′ +m~p)∑
~k′ |C̃0(~k′)|2

∣∣∣∣∣ , (2-26)

where ~k′ is the overlapping region of the C̃ ′0 and C̃ ′±1 (shown in Figure 2-14), |·| refers to the
absolute value.

2-4 Summary

In this chapter, the introduction of both the basic concept of the optical imaging and the
principle of the super resolution technique have been made. As this thesis is focus on the SIM,
the principle of the image formation and image restoration of the SIM system are described
in detail. In the next chapter, we will talk about the TIP algorithm a novel blind image
deconvolution algorithm.
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2-4 Summary 17

Figure 2-14: The overlapping spectrum. The blue arrow indicates the wave vector ~p, by which
the information component C̃ ′

1 is shifted back to its correct position. As shown, there is an
overlap region. The two spectrum in this overlap region is differ by a complex number. When
a0 = 1, the absolute value of this complex number is the modulation depth (See Eq.2-26).
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Chapter 3

TIP algorithm

In Chapter 2, the concept of the optical imaging is introduced. In practice, most of the time,
the only thing we can obtain from an optical imaging system is the image. The PSF and the
observed sample are always unknown, which make the image restoration a blind deconvolution
problem. In this chapter,both the blind multi-frame deconvolution by tangential iterative
projections [3] and the blind single-frame deconvolution by tangential iterative projections [4]
developed by Wilding et al. are going to be explained in depth. The explanation of the TIP
algorithm follows the reasoning in [3, 4] and the same notations are used.

Most of the current blind deconvolution algorithms are using the iterative method. Compared
with the non-iterative method, the iterative blind deconvolution algorithms have higher effi-
ciency in handling the large-scale problems and is more convenient to incorporate the known
prior knowledge, like the non-negativity of both the object and the PSF [36]. The iterative
blind deconvolution algorithm proposed by the Ayers et al. [37] is one of the typical method
to solve the blind deconvolution problem. Starting with an arbitrary non-negative value of
the image, this algorithm estimate the object and the PSF iteratively. After each iteration,
zero is assigned to all the negative values in estimated object or PSF.

However, It is not possible to completely reconstruct an object with the Ayers’s algorithm due
to the spatial frequency loss caused by the aberration [3]. Therefore, a method by acquiring
multi frame images with different aberrations is proposed. As not all the images suffer from the
same aberration, if we have a sufficient image set, the object can be reconstructed completely
and the PSF can be obtained. This method was first demonstrated by Schulz in 1993 [38],
after a short while, Yaroslavsky and Caulfield also did the demonstration [39].

A multi-frame blind deconvolution is an ill-posed inverse problem which can be solved by
minimize the following cost function [15] (cited in [3]):

{
ĥn, ô

}
= arg min

hn,o

N∑
n=1
||in − o ∗ hn||2 + λoQ(o) + λhR({h}), (3-1)

recall that hn describes the set of the PSF, o is the observed sample, in is the aquired images,
λo and λh are the coefficient which are used to get a trade-off between the regularization terms
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and the fidelity of the reconstruction as well as the Q(o) and R({h}) are the regularization
terms for object and PSF respectively.

The implementation of the blind deconvolution can be solved using the alternative minimiza-
tion framework, where the problem is split into two sub-problems, the ’o-step’ and ’h-step’:

”o− step” : ôk+1 = min
o

F (o,
{
hkn

}
) +Q(o) (3-2)

and
”h− step” :

{
ˆhk+1
n

}
= min

hn
F (ok+1, {hn}) +R({hn}), (3-3)

where F represents the formulation
∑N
n=1 ||in−o∗hn||2 which is the loss of the system and Q

and R are regularization terms. For each step either the PSF h or the object distribution o is
fixed, which makes the problem a standard non-blind deconvolution problem. By calculating
the global minimization of each sub-problem in each iteration, the global minimization of the
original function Eq. 3-1 which contains two unknown parameters, will be reached after several
iteration[15, 40]. However, the implementation of the regularization term will increase the
computational complexity and the incorrect parameters will lead to the blind deconvolution
algorithm converging to a wrong result.

3-1 Multi-frame TIP

Wilding et al. propose a noise robust, quick multi-frame blind deconvolution framework,
called blind multi-frame deconvolution by tangential iterative projections (TIP), which do
not require the implementation of regularization terms. The cost function of multi-frame TIP
deconvolution describe in [3] is:

arg min
Hn,O

N∑
n=1
||In −O ·Hn||2, s. t. Hn ∈ H, O ∈ O (3-4)

where, H andO are the constraints of the PSF and object respectively. The problem described
in Eq. 3-4 is a non-convex problem which do not have an unique solution [40] (cited in [3]).
The aim of the TIP is to use the simplest operation and the minimum prior information to
get a close enough estimation of the object. TIP makes use of the alternative minimization
framework. The input of the TIP algorithm is a set of images in with different PSFs hn of
the same object o. For the k-th iteration, the estimated object spectrum can be obtained by
projecting the result of the linear deconvolution towards the feasible set of the object:

Õ(k) =
∑N
n=1 In(Ĥ(k−1)

n )∗∑N
n=1 |Ĥ

(k−1)
n |2

, n = 1,...,N. (3-5)

Then the spectrum of the OTF can be obtained by:

H̃(k)
n = In

Ô
(k)
n

. (3-6)

The linear deconvolution process shown in Eq. 3-5 and Eq. 3-6 is unconstrained, thus the
result obtained from these functions may contain some unfeasible value. In order to remove
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the unfeasible value in it, the projection process which project the linear deconvolution result
into its feasible set is done. Then the estimated object spectrum becomes:

Ô(k) = PO
[
Õ(k)

]
, (3-7)

where PO is the projection operation of the object spectrum. Similarly, the estimated OTF
also needs to be projected to its feasible set to get the feasible result with the projection PH

Ĥ(k)
n = PH

[
H̃(k)
n

]
. (3-8)

During the projection process, the PSF (or object) is calculated from OTF(or object spectrum)
with the inverse Fourier transform. Physically, the intensity of the PSF (or the object) is non-
negative and real. Therefore, only the real part of the inverse Fourier transform is taken and
0 is assigned to all the pixels in the object and PSF which having negative value.
The flowchart of this algorithm is shown in Figure 3-1. There are four steps in this flowchart.
The X defines the support size of the PSF which is a tunable area defined by user. The δ-
function are assigned to the PSFs and used as the initial value of the PSF set. The description
of each step is shown in Table 3-1

Figure 3-1: The diagram of the multi-frame TIP. This framework contains 4 steps. P1 and P3
are linear deconvolution. P2 and P4 are the projection to the feasible set O and H respectively
[3].

3-2 Single-frame TIP

After a set of images of an object is obtained, using multi-frame TIP framework, the PSF
set and the object can be restored. However, this framework only works with the multi-
frame problem due to the limit prior information in the single-frame image [3]. Thus, this
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Step/Projection Process Description

Step 1—— P1 Õ =
∑N

n=1(Ĥn)∗In∑N

n=1 |Ĥn|
2

Multi-frame linear deconvolution

Step 2—— P2

ô = F
{
Õ
}

õ = 0, if õ ≤ 0∑
õ = 1

Ô = F−1 {õ}

Fourier Transform
Non-negativity Threshold

Normalisation
Inverse Fourier Transform

Step 3—— P3 H̃n = In
Ô

Single-frame linear deconvolution

Step 4—— P4

ĥn = F
{
H̃n

}
h̃n = 0, if x /∈ X
h̃n = 0, if h̃n ≤ 0∑

h̃n = 1
Ĥn = F−1

{
h̃n
}

Fourier Transform
Finite Support Constraint
Non-negativity Threshold

Normalization
Inverse Fourier Transform

Table 3-1: The description of each step of the TIP algorithm [3]

framework is not suitable to estimate the PSF of a blurred image. Later, some modifications
to this algorithm were done by Wilding, and the algorithm works on the single-frame problem
[4].

The idea of the single-frame TIP comes from the multi-frame TIP. The single-frame image
can be converted into multi-frame image by splitting it into several patches, which take place
of the multi-frame input images. These patches are labeled with ip of which the corresponding
object is represented by op. Assume the isoplanatic imaging condition, the PSF h of all these
patches are the same. Then the cost function of this problem becomes:

arg min
H,Op

P 2∑
p=1
||Ip −Op ∗H||2, s. t. H ∈ H, Op ∈ O, (3-9)

where H and O are the constraints of the PSF and object respectively. In this case, the
patches can be considered as the images of different objects convolved with a time-invariant
PSF. Compared with the case described in [3] that the images are the convolution result of
the constant object and different PSFs, the role of the PSF in the SF-TIP is the same as the
role of the object in the MF-TIP. Similarly, the role of the object in SF-TIP is the same as
the PSF in the MF-TIP.

Mathematically, if the same constraint is used in the algorithm, the idea that estimate the
object based on a set of images with different PSFs and the idea which find the PSF with a
set of images from different objects is equivalent. The patches Ip used in SF-TIP are created
by masking the image i with several non-binary masks mp in spatial domain (see Figure 3-2),
thus Ip = I ? Mp, in which Mp is the Fourier transform of the mp and ∗ is the convolution
operator. The performance of the algorithm is influenced by the choice of the non-binary
mask, as the non-binary mask will decide the regions of the image which are used as the
input. A good non-binary mask can lead to Op ≈ O ∗Mp. Hence, acquiring the image of
multiple objects can be replaced by splitting one image into several patches.
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Figure 3-2: The illustration about how to split the single-frame image into several patches [4].

The SF-TIP start with the linear deconvolution of the OTF:

H(k) = PH
∑p2

p=1 Ip · Ô
(k)
p∑p2

p=1 |Ô
(k)
p |+ ε

. (3-10)

Then the object spectrum can be obtained by

O(k)
p = PO

Ip
H(k) .

= PO
I ∗Mp

H(k)

(3-11)

Figure 3-3 shows the steps of the single-frame TIP, and the description of these step are shown
in Table 3-2. The SF-TIP algorithm also requires the user-defined support size of PSF, which
need to be tuned carefully.

3-3 Summary

In this chapter, the TIP algorithm is discussed in depth. The TIP algorithm works on both
the single-frame and multi-frame scenarios. The process of the TIP algorithm follows the
scheme of the alternative minimization. The algorithm works in both the Fourier domain and
the spatial domain. The support constraint is implemented in the spatial domain, to remove
the unrealistic data. The basic constraint in the TIP algorithm for both the PSF and object
are the non-negative and real.

The TIP algorithm hasn’t been applied to the SIM image deconvolution before. Whether this
algorithm is suitable for the PSF estimation of the SIM images is not known. In the next
chapter, how to implement the TIP algorithm in the SIM will be shown and the performance
of the TIP algorithm in SIM will be analyzed.
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24 TIP algorithm

Figure 3-3: The diagram of the single framework. This framework contains 5 steps. The first
one is the image preparation while the other four steps are the projection steps. P1 and P4 are
linear deconvolution. P2 and P3 are the projection to the feasible set H and O respectively [4]

Step/Projection Process Description
Step 1—— Preparation I. ∗Maskp split images into patches

Step 2—— P1 H̃ =
∑N

p=1(Ôp)∗Ip∑N

p=1 |Ôp|
2

multi-frame linear deconvolution

Step 3—— P2

h̃ = F
{
H̃
}

h̃ = 0, if h̃ ≤ 0∑
h̃ = 1

Ĥ = F−1
{
h̃
}

Fourier Transform
Non-negativity Threshold

Normalisation
Inverse Fourier Transform

Step 4—— P3 Õn = In
Ĥ

Single-frame linear deconvolution

Step 5—— P4

ôn = F
{
Õn
}

õn = 0, if x /∈ X
õn = 0, if õn ≤ 0∑

õn = 1
Ôn = F−1 {õn}

Fourier Transform
Finite Support Constraint
Non-negativity Threshold

Normalization
Inverse Fourier Transform

Table 3-2: The description of each step of single-frame TIP algorithm
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Chapter 4

PSF Estimation with TIP Algorithm in
SIM

The ability that the TIP can retrieve the PSF and object from blurred images are discussed
in Chapter 3. In this chapter how to implement the TIP in SIM will be discussed. According
to the simulation of the SIM discussed in Appendix A, there are two type of images we can
obtain from the SIM: the nine raw images and the wide-field image. Based on these two kind
of images the method to implement the TIP deconvolution algorithm in SIM is divided into
two types. The first one is the multi-frame TIP with the SIM raw images, the second one is
the single-frame TIP with the wide-field image.

4-1 TIP with raw images

According to Chapter 2, the obtained images of SIM before being processed with a specialized
algorithm are the nine raw images of which the high-frequency information are not in their
proper position. The image formation can be considered as the convolution between the PSF
and the dot-product result of the object and the sinusoidal illumination patterns (Eq. 2-12).
Therefore, the formation of the nth raw image can be written as:

Dn = (S · In) ∗ h+m, n = 1, ...9, (4-1)

where Dn is the m-th raw image, In is the corresponding sinusoidal illumination pattern, S
is the observed sample, h is the PSF, and m is the Poisson noise. If the illuminated sample
is considered as a single unit which means the term S · In is considered as a single unit, the
nine raw images of the SIM can be regarded as the images of different objects. To simplified
the expression below, the illuminated object D · In is replaced by Wn, then the Eq.(4-1) can
be rewritten as:

Dn = Wn ∗ h+m., n = 1, ...9 (4-2)

Therefore the problem here becomes how to retrieve a constant PSF from the images of a set
of objects. Compared with the MF-TIP algorithm introduced in 3, which aims to retrieve the
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unknow object from a set of images generated with different PSFs, the role of the PSF and
object in the problem described by Eq. (4-2) are reversed. The simple linear deconvolution
among the objects and the images cannot get a effective PSF estimate. Like the MF-TIP
algorithm, the finite support region is also needed in this case to make the solution convergent.
Mathematically, if the constraints used here are the same as the constraints used in multi-
frame TIP algorithm in Chapter 3, the problem restore the object from the images with
multiple PSFs and the problem retrieve the PSF from the image of multiple objects are equal.
Therefore a multi-frame TIP algorithm can be implemented.

The flowchart of the algorithm is similar to the flowchart shown in Figure 3-1. The difference
is that instead of doing the multi-frame linear deconvolution with image set and the PSF set,
here the PSF set is replaced by the object set. Figure 4-1 is the flowchart showing the steps
of the algorithm.

Figure 4-1: The flowchart of the MF-TIP algorithm in SIM. Four projection steps are shown in
flowchart and the corresponding operations are shown by the lines between the boxes. P1 is the
multi-frame linear deconvolution, P2 is the projection to the feasible set of the PSFs, P3 is the
linear deconvolution for each frame, P4 is the projection to the feasible set of the object. ∇R is
the first derivation of the resolution.

The algorithm starts with the normalization of the input images, and then an apodization
window are implemented on these images, which is used to create a sharp edge of the images
and reduce the edge effect of the Fourier transform. The δ-function is assigned to object as
the initial value of it. The process of the main loop is described by 4 operators P1, P2, P3
and P4. The purpose of these four steps are the same as the description in Table 3-2. In step
P2, a modification is introduced. A new constraint for the OTF which is described by mask
in Figure 4-1 is introduced. This constraint will be discussed later in this chapter.
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4-2 TIP with wide-field image 27

4-2 TIP with wide-field image

In SIM, except the 9 raw images, another type of image, the wide-field image, can be obtained.
The wide-field image of SIM is the sum of the nine raw images, which can be described as:

D =
9∑

n=1
(S · In) ∗ h+m. (4-3)

Based on the distributivity of the convolution, the Eq.(4-3) can be rewritten as:

D = (
9∑

n=1
S · In) ∗ h+m

= (S · Ĩ) ∗ h+m,

(4-4)

where Ĩ is the sum of all illumination patterns. In this case, the problem becomes using
single frame image to retrieve the object and the PSF, which satisfy the requirement of the
single-frame TIP algorithm. The object will be retrieved here is the sum of all the illuminated
samples S · Ĩ.

The algorithm starts with multiplying the normalized image with several non-binary masks
which are used to do the image-splitting and apodization. The split patches together with
the δ-function (the initial value of the object ) are used as the input of the main loop. The
main loop of this algorithm contains 4 steps, two linear deconvolution and 2 projections. The
framework of the SF-TIP algorithm which use the wide-field image to retrieve the PSF is
similar to the framework shown in Figure 4-2. The difference is that an constraint for the
OTF is introduced between the P1 and P2.

Figure 4-2: The flowchart of the SF-TIP algorithm in SIM . The image is first split into several
patches to create the images for the different objects. Then the multi-frame linear deconvolution
is done in the P1. In P2, the PSF estimate is projected to its support region to get the estimated
PSF. Then the linear deconvolution is done in P3. Finally, the projection process for the estimate
object is done in P4. ∇R is the first derivation of the resolution.
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28 PSF Estimation with TIP Algorithm in SIM

4-3 Constraints

In the chapter 3, the frameworks of both the SF-TIP and MF-TIP are introduced. Even
though the cost function of the TIP is a non-convex function, by introducing the suitable
projection constraints, a close enough object and PSF can be obtained. The main projection
constraints P used in the algorithm are:

• Po: o(o ≤ 0) = 0. This constraint is defined based on the physical reality of the object
that the intensity of an object is non-negative.

• Ph: h(h ≤ 0) = 0. This constraint remove all the negative value in the estimated PSF,
since the negative value is physically impossible.

• PRe: x = Re(F−1(X)). During the projection process in the TIP algorithm, the inverse
Fourier transform is done to calculate the object or the PSF from its Fourier domain
counterpart. The result of the inverse Fourier transform contain complex values in
it which is physically impossible. Therefore, only real values in the inverse Fourier
transform result are taken. All the complex parts are removed.

• Pnorm(h): h = h∑
h
. Normalized the PSF during the iteration, since the total intensity

of the PSF is 1.

In an optical imaging system, based on the setup of this system, the diffraction limit of this
system can be calculated. The ideal PSF of an optical system is the Airy disk caused by
the diffraction limit. However, in practice, due to the aberration, the PSF is always larger
than the ideal one in spatial domain. Thus, in Fourier domain, the diameter of the OTF is
always smaller than the diameter of the diffraction limit OTF. Therefore, a new constraint is
introduced in the Fourier domain.

• PH : H(H /∈ HOTF ) = 0, HOTF is the support region of the OTF generated based on
the diffraction limit. In order to remove the high frequency disturbance in the OTF,
a binary mask is created for which all the frequencies out of the support region of the
OTF is set 0. The radius of the diffraction limit is calculated by Eq. 2-10, and then
based on this radius, a circular mask is generated. The mask is shown in Figure 4-3.
This mask can remove the out-of-band noise of the OTF, which has the impact on both
the convergence rate and the convergence result. The use of this mask won’t really help
in the performance of the PSF estimation, but this mask can used to help find a proper
stop criterion for the TIP algorithm, which will be discussed later in 4-4 Stop Criterion.
The diffraction limit OTF is also tested here using as a support region for the OTF to
remove the out-of-band noise and smooth the estimated OTF. However, it turned out
that with the implementation of this kind of mask, the estimated OTF will converge to
an incorrect result.

The performance of the PSF estimation can be described by the Peak Signal-to-Noise Ratio
(PSNR) which is used in [4]. The higher the PSNR value is, the better the PSF estimate is.
The PSNR can be obtained by:

PSNR = −10log10

{ 1
N

∑∣∣∣h− ĥ(k)
∣∣∣} , (4-5)
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Figure 4-3: The binary mask generated based on the diffraction limit. The radius of this mask
is d = λ

2NA

where N is the number of pixel in an image, h is the simulated PSF and ĥ(k) is the PSF estimate
of the k-th iterations.The comparison of the PSNR curves for the estimated PSF with and
without the binary mask are shown in Figure 4-4. According to the Figure 4-4, the PSNR of
the TIP framework with the binary mask is more stable and have less fluctuation compared
with the PSNR of the TIP framework without the binary mask, since the standard derivation
of the former is smaller. However, the use of the binary mask reduces the convergence rate.

The PSNR shows how close the estimated PSF is to the actual PSF. In a noise-free condition,
the quality of the restored image depends on the accuracy of the estimated PSF, thus the
PSNR can be used to determine the quality of the restored image. But, in our case, the
noise cannot be ignored, and the noise may introduce the error in the illumination pattern
parameter estimation which will be finally reflected in the resolution of the restored image.
To measure the relationship between the PSNR and the resolution of the restored image,
for each iteration, the resolution of the image restored with the estimated PSF is calculated
by measuring the Fourier ring correlation of that image which is introduced in Appendix C,
and the result are shown in Figure 4-5. With the increase of the number of the iterations,
the resolution of the restored image doesn’t keep increasing. After several iterations, the
resolution is nearly stable.

Due to the PSF estimate which has the highest PSNR may not be the PSF which can
achieve the highest performance in the image reconstruction. To compare the performance
of the different TIP frameworks, the distribution of the minimum resolution of the images
restored from 160 image-PSF pairs with different aberration strengths in 100 iterations is
drawn (Shown in Figure 4-6). According to the distribution shown in the Figure 4-6, the
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30 PSF Estimation with TIP Algorithm in SIM

Figure 4-4: The mean PSNR of the PSF for 160 different image-PSF pairs deconvolved using
the four TIP frameworks. The label of each curve are shown at the bottom right corner in the
figure. The errorbar shows the standard derivation.

Figure 4-5: The relationship between the mean resolution and the number of iteration of the
TIP algorithm.

performance of the four TIP frameworks are similar.
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Figure 4-6: The distribution of the minimum resolution of the images restored from the 160
image-PSF pairs with different RMS in 100 iterations.

4-4 Stop Criterion

With the increase of the number of iteration, although the PSNR of the estimated PSF
still shows a increase trend (Figure 4-4), the resolution of the restored image is not always
improved, and sometimes, the resolution of the restored image even become worse (Figure
4-5). Therefore, a stop criterion is need to reduce the execution time and avoid the algorithm
stopping at the iteration where the estimate may cause the outlier. In this work, the feature
of the resolution of the restored image is used to stop the algorithm.

From the resolution measurement in Figure 4-5, it is evident that the resolution of the restored
image will fluctuate around a fixed value after several iterations. Therefore, we want to see,
if the resolution of the restored image can be used to stop the iteration of the TIP algorithm,
and found out that the first derivative of the resolution curve is a good feature to stop the
iteration, since it shows the relationship between the change rate of the resolution and the
number of the iterations. Commonly, the algorithm is supposed to stop at the iteration where
the image reaching the maximum resolution, i.e., the derivative ∇Resolution at that iteration
is zero. However, this threshold is not suitable in this work.Whether PSF will converge to a
constant result is not known, since the TIP algorithm is empirical convergence and whether
the TIP algorithm is convergent has not been proven mathematically [3]. But it is obvious
that reaching the best PSF estimate will take a long time (See Figure 4-4), and only a little
improvement is made in the resolution (See Figure 4-5). As a result, another threshold is
needed.

In order to find a proper threshold, three possible threshold were tested. The three possible
threshold were −2 ≤ ∇Resolution, −1 ≤ ∇Resolution and −0.2 ≤ ∇Resolution. The
performance of these three threshold are shown in Figure 4-7, Figure 4-8 and Figure 4-9
respectively. Compared with the first two threshold which stop the TIP algorithm when
most of the resolution improvement are made, the third threshold -0.2 stops the algorithm
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32 PSF Estimation with TIP Algorithm in SIM

Figure 4-7: The deconvolution result of the SIM data for four TIP frameworks and the first
derivative ∇Resolution of these deconvolution result respectively. The dash line shows the
corresponding iteration for each TIP framework when -2 is used as threshold.

Figure 4-8: The deconvolution result of the SIM data for four TIP frameworks and the first
derivative ∇Resolution of these deconvolution result respectively. The dash line shows the
corresponding iteration for each TIP framework when -1 is used as threshold.

when the resolution of the restored image is nearly complete convergence. Thus, -0.2 is chosen
as the threshold for the first derivative of the resolution. Beside -0.2, the 0 is also used as
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Figure 4-9: The deconvolution result of the SIM data for four TIP frameworks and the first
derivative ∇Resolution of these deconvolution result respectively. The dash line shows the
corresponding iteration for each TIP framework when -0.2 is used as threshold.

a threshold, to make sure that the resolution curve shows a decrease trend. Therefore, the
threshold used in this work is −0.2 ≤ ∇Resolution ≤ 0.

Figure 4-10: The comparison of the distribution of the minimum resolution of the SF-TIP and
the resolution of the image restored with the PSF estimate at the stop criterion.

According to Figure 4-10 and Figure 4-11 as well as the Table 4-1, the SF-TIP algorithm
with the binary mask for the OTF shows a better performance when the threshold −0.2 ≤
∇Resolution ≤ 0 are used to stop the algorithm. The performance of SF-TIP algorithm with
the implement of the binary mask here is more stable and more accuracy compared with other
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Figure 4-11: The comparison of the distribution of the minimum resolution of the MF-TIP and
the resolution of the image restored with the PSF estimate at the stop criterion.

error (nm) error <5 5 ≤ error < 10 10 ≤ error

Probability

SF-TIP with mask 77.5 % 21.25 % 1.25 %
SF-TIP without mask 45% 29.375% 25.625%
MF-TIP with mask 80.625% 13.75 % 5.625%

MF-TIP without mask 66.25% 25% 10%

Table 4-1: The probability of the error between the minimum resolution and the resolution of
the image restored with the PSF estimated at the stop criterion.

algorithms. Thus, the SF-TIP with the binary mask is more suitable for the PSF estimation
in SIM.

4-5 Summary

In this chapter, how to implement the TIP algorithm in the SIM is discussed. Compared with
the basic TIP algorithm, some modification are made. A new constraint for OTF created
based on the diffraction limit are introduced in the TIP loop. Besides, a threshold for the first
derivative of the resolution of the restored image are used here as the stop criterion, which
avoid the unnecessary iterations.

X. Liu Student Master of Science Thesis



Chapter 5

Result

This chapter shows the result of SIM simulation and the PSF retrieval with simulated SIM
image using TIP algorithm which is introduced in Chapter 4.

5-1 SIM image generation

The experimental parameters used to simulate the optical system were: numerical aperture
NA = 1.4, refractive index of medium refmed = 1.47, refractive index of cover slip refcov =
1.512, refractive index of immersion medium refimm = 1.512, emission wavelength ewave-
lengths = 610 nm, excitation wavelength wavelengthex = 565 nm. The pixel size of the final
SIM images is 78nm. No camera offset and gain are considered.

The illumination patterns are generated with three different orientations (−134.3◦, −74.8◦, 165.5◦)
and the ideal pattern phases are (0◦, 120◦, 240◦). By using the different number of photons il-
luminated on the sample, using the Poisson noise, several images with different signal-to-noise
(SNR) ratio are generated. Here 7 SIM images are generated with the number of photons
1e8∼1e14. For each pixel in the image, a 20 photons background noise is added.

The object used in the simulation is Siemens star which is shown in Figure 5-1 and the
example of the illumination patterns in three orientations are shown in Figure 5-2.

The Zernike polynomials are used to describe the aberration in the PSF. The strength of the
aberration is described by the root mean square (RMS) of the aberration coefficients. To
measure the impact of the aberration strength on the performance of the TIP algorithm, the
images for 80 PSFs with different RMS of aberrration coefficient are generated. The example
of the PSF and corresponding OTF are shown in Figure 5-3

The example of the raw images in three orientations generated by the illumination patterns
shown in Figure 5-2 are demonstrated in Figure 5-4. To make the image more close to the
image of an optical system, the Poisson noise is added. The comparison of the widefield image
and the input object are shown in Figure 5-5.
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Figure 5-1: The object used in simulation

Figure 5-2: The illuminations in three orientations

5-2 The impact of SNR on PSF estimation

Most of the blind image deconvolution algorithm have requirement about the SNR of the
image. The low SNR can cause the failure of the PSF estimation and object retrieval. To
avoid the error caused by the low SNR, the influence of the SNR on the PSF estimation is
analyzed. In order to show the relation between the PSF estimation and the SNR of the
image. The PSNR of the PSF obtained from the image with different SNRs are generated,
and the resolution of the corresponding restored image are measured. The SNR of an image
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Figure 5-3: The example of the PSF and its corresponding OTF

Figure 5-4: The example of simulated raw images in three orientations

Figure 5-5: From left to right are the object, the wide-field image and the reconstructed image.

is defined in the following manner:

SNR = 10log10

√
Nph

N ∗Nbg
(5-1)

where Nph is the number of the photons for the whole object, Nbg refers to the number of
the background photon for each pixel, and N is the number of pixel in an image.
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The PSNR curves for the PSF obtained from the wide-field images with different SNRs are
shown in Figure 5-6. Based on the PSNR curve and the resolution of the image with the
retrieved PSF, the TIP algorithm works well in the low SNR case. Although it works well
with the low SNR image, a sufficient contrast is still required between the photon per pixel
and background noise per pixel. If they have the same order of magnitude, the algorithm
didn’t work, since the background noise will be considered as part of the object, and the code
will crash.

Figure 5-6: The PSNR curve for the PSF retrieve from the widefied image with different SNR
using SF-TIP.

5-3 The impact of the aberration strength of the PSF on the PSF
estimation

According to Chapter 4, SF-TIP is more applicable than the MF-TIP, in this section the
PSF is obtained by the SF-TIP algorithm. The convergence of the TIP algorithm itself
is not proved, but the convergence of the performance of the image restoration is shown.
With the increase of the quality of the restored PSF, the resolution of the image restored
with the PSF won’t keep increase. In other to avoid the unnecessary iterations and reduce
the execution time, after analyzing the feature of the obtained data, a stop criterion that
−0.2 ≤ ∇Resolution ≤ 0 is introduced.

According to the principle of the SIM image reconstruction introduced in Chapter 2 and the
simulation of the SIM image reconstruction described in Appendix A, the PSF-based SIM
image reconstruction process can be split into two steps: the parameter estimation and the
image recombination. The shift phase (see to Eq. 2-16 and Eq. 2-17) is the main parameter
related to the image reconstruction. Before analyzing the quality of restored image, the
performance of the phase estimation is measured by calculating the mean and the std of 160
PSF-image pairs, which is shown in the Figure 5-7. With the increase of the amplitude of the
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aberration, the error of the phase estimation becomes larger. At the low aberration strength
case, the error of the phase estimated with the TIP PSF is close to the phase estimated with
the actual PSF, the difference between the phase estimated with these two PSF are similar.
However, with the increase of the aberration strength, the difference between these two phase
estimation error increases.

Figure 5-7: The mean and standard deviation of the error of phases estimation. With the increase
of the aberration strength, both the mean and the std of the phase estimation error increase.

The phases estimated in the parameter estimation step are then used to shift the informa-
tion components of the SIM image back to their original position. By recombining all the
information components in the Fourier domain, the image reconstruction is achieved. Figure
5-8 illustrate the distribution of the resolution of the wide-field images and restored images
with different aberration strength respectively. In Figure 5-8, to make the figure readable,
the outliers which are higher than 800nm are removed.

With the increase of the aberration strength, the image becomes more and more blurred.
Compared with the wide-field images, the resolution of the restored image shows a significant
improvement. According to the boxplot in Figure 5-8, the resolution of these images shows an
improvement over 300nm. The mean factors of the resolution improvement for the restored
images are shown in Figure 5-9. In the high aberration strength condition, the shape of the
PSF is complex, sometimes it is difficult to get an accurate enough estimate, as a result, both
the performance of the phase estimation and the image deconvolution is not stable.

5-4 Compare the SF-TIP with the Gaussian curve fitting

In previous section, the performance of TIP algorithm are discussed. In this section, the
performance of the TIP algorithm will be compared with the performance of another PSF
retrieval method, Gaussian curve fitting method. To measure the PSF of the SIM, the images
with several individual beads are generated. The position of these beads are recorded and a
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Figure 5-8: The distribution of the resolution of the wide-field images and their corresponding
restored images. The resolution of the restored image shows a more than 300nm increase. To
make the figure more readable, the outliers for the boxplot which is larger than 800nm are removed.

Figure 5-9: The mean factor of the resolution improvement of 160 image-PSF pairs with 8
aberration strength. Errorbar shows the standard derivation of the factor.

small region of interest (ROI) is extracted around each recorded position. Then the image of
each beads is centered to the middle of the ROI. By summing all the bead images together,
the wide-field image is obtained. Then a Gaussian curve is used to model the PSF[2]. Figure
5-10 shows the comparison of the phase estimation error of the Gaussian fitted PSF, the TIP
PSF estimate and the actual PSF.

In the low aberration strength condition, the phase estimation errors of these three kinds of
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Figure 5-10: The comparison of the mean and standard deviation of the phases estimation error
for three different kinds of PSF. In the low aberration strength condition, the performance of these
three kinds of PSF are similar. With the increase of the aberration strength, the performance of
both the Gaussian PSF and the TIP PSF become worse.

PSF are similar. Both the phase estimated with the TIP PSF and the Gaussian PSF are close
to the phase estimated with the actual PSF. With the increase of the RMS of the Zernike
coefficients, the shape of the PSF becomes more and more complex, and the Gaussian curve is
not good enough to model the aberration in the PSF. For the RMS of the Zernike coefficients
larger than 0.12, the performance of the phase estimation with the Gaussian PSF becomes
worse than the performance of the phase estimation with the TIP PSF. Besides, both the
stability of the phase estimation with the Gaussian PSF and the TIP PSF reduce with the
increase of the aberration strength.

The limitation of the Gaussian fitting PSF is also shown in the resolution of the restored
image, more precisely, in the image deconvolution. In high aberration case, though both
the image restored with the TIP PSF and the image restored with the Gaussian PSF shows
the resolution improvement compared with the widefield image, the resolution of the image
restored with the TIP algorithm is always better than the resolution of the image restore
with Gaussian PSF. The comparison of the resolution of the images restored with these two
methods are shown in Figure 5-11. Based on the distribution of the resolution for the image
restored with these two kinds of PSF, the TIP algorithm performs better than the Gaussian
fitting method. The performance of the image reconstruction with TIP PSF is similar to the
performance of the image reconstruction with actual PSF. With the increase of the amplitude
of the aberration, the performance of the image reconstruction with Gaussian PSF becomes
bad, it is not suitable to be used to do the image reconstruction. The mean factor of the
resolution improvement for the image restored with these three kinds of PSF are shown in
Figure 5-12. The factor of the resolution improvement for the TIP PSF is close to the factor
of the resolution improvement of actual PSF, while the resolution improvement factor for the
Gaussian PSF is much smaller than the resolution improvement factor of the TIP PSF, and
shows a significant decrease trend with the increase of the aberration strength.
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Figure 5-11: The distribution of the resolution of the restored images. The red boxes represent
the data for the images restored with the actual PSF, the green boxes are the data for the image
restored with the TIP PSF, and the blue boxes are the data for the images restored with the
Gaussian PSF. With the increase of the intensity of the aberration, the performance of Gaussian
PSF is decreased, and this kind of PSF is not suitable for image reconstruction.

Figure 5-12: The mean factor of the resolution improvement. With the increase of the aberration
strength, the stability of the performance of the TIP algorithm decreases. But the mean factor
of the TIP PSF is closer to the mean factor for the Actual PSF compared with the factor of the
Gaussian PSF

To analysis why the image reconstruction of these three PSFs are different. The example of
these three PSFs are visualized. Figure 5-13 shows the actual PSF, the PSF estimated by
TIP algorithm and the PSF measured by Gaussian curve respectively. The PSF estimated
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by the TIP algorithm is not pixel perfect, but it can retrieve the aberration and the noise in
the imaging system, which is better than the Gaussian fitted PSF.

Figure 5-13: The example of the actual PSF and the estimated PSFs. Compared with the
Gaussian fitting method, the TIP algorithm performance better in the PSF estimation, since the
TIP algorithm is better at retrieving the aberration in the PSF.

In practice, both these two algorithm may calculate wrong PSF. This problem become more
intense with the increase of the aberration strength. Since the shape of the PSF is too complex
and the size of the PSF is difficult to guess with a high aberration strength. According to
Figure 5-10, in the high aberration strength condition, the estimated phase will be far from
the actual shift phase. Thus, the information component in the SIM wide-field image will be
shift to a incorrect position. Besides, with an incorrect PSF, the image of a point source can
not be recovered to a point. As a result, the resolution becomes big. In my experiment, most
of the time, the factor of the resolution improvement is larger than 1.5, for the resolution
improvement factor which is smaller than 1.5, the image restoration is considered incorrect,
in other word, the PSF estimation algorithm fail to obtain the effective PSF. The error of
the Gaussian fitting PSF occurs in the high aberration intensity cases, for the low aberration
strength case, the Gaussian can be used to obtain an effective PSF. The performance of the
TIP algorithm is stable, but it is still possible to obtain an ineffective PSF when the PSF
contains too many aberrations. After the RMS of the Zernike polynomials reaches 1.4, the TIP
algorithm may obtain an ineffective PSF. The overall success rate of the two PSF estimation
methods calculated with these 160 images are shown in Table 5-1. Therefore, compared with
the Gaussian fitting method the SF-TIP algorithm is more suitable to be implemented to
retrieve an effective PSF from the SIM data.

5-5 Summary

In this chapter, the performance of the image restoration with the PSF estimated by TIP
algorithm are talked about. It is obvious that TIP algorithm is a simple, fast way to retrieve
the PSF from the SIM image. The performance of PSF estimated by the TIP algorithm are
compared with both the performance of the Gaussian fitted PSF and the performance of the
actual PSF, the performance of the TIP PSF is close to the actual PSF which is much better
than the Gaussian PSF.
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TIP algorithm Gaussian fitting
RMS = 0.08 100% 100%
RMS = 0.09 100% 100%
RMS = 0.10 100% 100%
RMS = 0.11 100% 100%
RMS = 0.12 100% 90%
RMS = 0.13 100% 70%
RMS = 0.14 95% 65%
RMS = 0.15 85% 25%
All data 97.5% 81.25%

Table 5-1: The success rate of the image reconstruction using the PSF estimated with different
algorithms.
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Chapter 6

Conclusion and Future work

6-1 Conclusion

The aim of this thesis is to estimate the PSF of the structured illumination microscopy with
TIP algorithm. This thesis shows the implementation of the TIP algorithm with the SIM
images. TIP is an algorithm not only suitable for the multi-frame blind image deconvolution
problem but also suitable for the single-frame blind deconvolution problem. And both the
framework for the SF-TIP with wide-field image and the framework for the MF-TIP with
raw images are introduced in Chapter 4. The performance of PSF estimation with SF-TIP
algorithm and MF-TIP algorithm are discussed in Chapter 4. To avoid the over-fitting of
the estimated PSF and reduce the execution time of the TIP algorithm a stop criterion are
introduced. The result of the PSF estimation with TIP in SIM is illustrated in Chapter 5.
And the result shows that TIP is a simple method to retrieve an effective PSF from the SIM
data. It is easy to implement and can work with low SNR data.

The implementation of the algorithm requires the user-defined PSF size, to create a support
area of the PSF in the spatial domain. This parameter has an impact on the convergence
result of the algorithm which need to be defined carefully. Another constraint for the PSF
are the support area calculate by the diffraction limit in the Fourier domain, for which all
the pixels outside this area in the OTF is assigned 0. This constraint does not help with
improving the quality of the PSF estimate, it only helps to find when to stop the iteration.
As the intensity of both the PSF spectrum and object spectrum cannot lower than 0, the
non-negative constraint is used for these two parameters. The implementation of the SF-
TIP with the wide-field SIM image is similar to the framework introduced in [4], except the
normalization of the object in the original SF-TIP flowchart is removed, as the split patches
are not normalized. Both the MF-TIP and the SF-TIP can help to retrieve the PSF from
the SIM data and the performance of them are similar. However, after introducing the stop
criterion, the performance of the SF-TIP is better than the performance of the MF-TIP, since
the measured resolution of the SF-TIP is closer to the best resolution that can be obtained
in the image restoration.
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The aberration strength is a factor which has impact on the performance of the algorithm.
In optical system, the shape of the PSF is modified by the aberrations. Too many aberration
will lead to the shape of the PSF too complex, and it is difficult to reconstruct this kind of
PSF with the TIP algorithm. With an inaccuracy PSF, the error of phase shift estimation is
large. The information component of SIM image is shifted to wrong position. The use of the
inaccuracy PSF also cause problem in image deconvolution. Thus, the TIP algorithm may
not work well for the images generated with a too complex PSF. According to Table 5-1, in
the high aberration strength cases, the image reconstruction with the TIP PSF may fail.

Hence, if the optical imaging system is well designed, or some aberration removal methods
are used in the imaging process of an optical system, in other word, if there are not too many
aberrations in the imaging system, TIP algorithm can be used to do the PSF estimation in
structured illumination microscopy, and the performance of it is good. If the optical system
has too many aberrations, the performance of the TIP algorithm is not stable.

6-2 Future work

The next step for this thesis might find how to define an accurate support region for the PSF.
Now, the PSF size is defined based on the user’s experience. After testing a set of different
PSF sizes, the best one is chosen as the PSF size used to provide the support region of the
PSF. The next step might find a method to estimate the PSF size directly based on the SIM
data.
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Appendix A

Simulation of the Structured
Illumination Microscopy

The Simulation of the Structured Illumination Microscopy is done inMATLAB (matrix labo-
ratory), an easy-to-use environment and higher performance programming language developed
by MathWork, which allows the technical computing, data visualization and user interface
creation. Beside, the DIPlib and DIPimage toolbox are also used. DIPlib, a platform
independent scientific image processing library written in C, is interfaced to MATLAB
through the DIPimage toolbox. The MATLAB functions used to create the necessary
parameters of the SIM are created by Sjoerd Stallinga.

In this chapter, the simulation of the SIM image formation and SIM object restoration are
introduced.

A-1 SIM Image generation

SIM works by using the patterned illumination to illuminate the sample. The pattern used
in this thesis is strip. The position and the orientation of the strip patterns are changed a
number of times, and the image of the sample is recorded for each one of these changes. The
main steps of the SIM system simulation are described below. All the parameters used in the
simulation were chosen in such a manner that tried to make the simulation result closest to
the actual optical system.

A-1-1 Object preparation

The simulation of the SIM started with the preparation of the object. First a normalized
grayscale image is loaded into the workspace which is used as the object. In order to model
a fluorescent sample, this object is multiplied by the number of photons. Besides, It is
found that the raw SIM images acquired from an optical system contain several background
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fluorescence blur. Even though the intensity of the light is weak, it still have impact on the
imaging. To make the observed sample as close as possible to the real optical system, for
each pixel in this fluorescent sample the background photons was added. The mathematical
expression of this process is

E = O ·Nph+Nbg (A-1)

where E denotes the emission distribution of the sample, Nph refers to the number of the
photons in the sample and Nbg is the number of the photons in the background. Both the
Nph and Nbg are user-defined parameters depending on the situations. Figure A-1 shows the
prepared object.

Figure A-1: Prepared object for which Nph = 1e16 and Nbg = 20. The size of this object is
512*512.

A-1-2 PSF generation

PSF plays an important role in an imaging system, as it shows the response of this system to a
point source. In an aberration free optical system, the intensity distribution of a PSF is Airy
pattern. In the case of a real optical system, the PSF is affected by the aberration. In this
simulation, the PSF is generated by a set of 12 Zernike polynomials. The Zernike coefficient
of these polynomials are generated randomly from -0.05 to 0.05. Before the simulation of
the PSF, some parameters of this optical system, like the refractive indices, the NA of the
objective lens and the wavelength of the emission light, etc.,need to be defined.
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The simulation of the PSF is done with 5 main functions. First, the function get_pupil_matrix
is called to get the pupil matrices, which give the electric field component proportional to
its corresponding dipole vector component. The output of this function together with the
NA, wavelength (in nm),nominal emitter position as well as the sampling points in both the
pupil plane and the image space, are used as the input of the function get_field_matrix
to calculate the field matrices, which describe the proportion from electric field component
to the dipole vector component. Then the fixed dipole PSF can be defined using the function
get_psf. The example of the PSF is shown in Figure A-2.

Figure A-2: The simulated PSF

Then the through focus OTF is calculated. In an optical system, the maximum radius of
the OTF is limited by the diffraction limit. Therefore a binary mask defined based on the
diffraction limit is implemented to remove the out-of-band noise in the OTF. Zero is assigned
to all the pixels out of this binary mask. This is done by using the functions get_otf and
do_OTFmasking2D. The example OTF are demonstrated in Figure A-3

A-1-3 Illumination pattern

The illumination pattern used in this simulation is strip. To generate the illumination pat-
terns, the strength of the illumination, the phase and the orientation of the pattern are
required. All of them are user-defined parameters which are given at the beginning of the
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Figure A-3: The example of the OTF of which the out-of-band noise is removed.

code. Eq. 2-11 is the mathematical model of the illumination pattern. The size of the illumi-
nation pattern matrix is the same as the object. And then base on this size the coordinates of
a rectangular grid is obtained by the function meshgrid which is used as the ~r in Eq. 2-11.
The vector ~p is calculated by the given orientation. The example of illumination patterns in
three orientations are shown in Figure A-4

Figure A-4: The illuminations in three orientations
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A-1-4 Image Acquisition

In the case of the incoherent imaging, the intensity of the image captured by the sensor is the
convolution of the intensity of the emission light from the object and the incoherent PSF. In
order to simulate the image formation process, the object is first multiplied by the illumination
pattern and then convolved by the PSF. The intensity of the light (or the number of photons)
detected by the imaging sensor is fluctuated. The fluctuation of the detected intensity follows
the Poisson distribution. Therefore, the formation of each raw image can be written as:

rawimg = noise((object · pattern) ∗ PSF, ′Poisson′) (A-2)

Where ∗ is the convolution operator. These steps are done in the function get_images.
To achieve a 2D-SIM image reconstruction, 9 raw images are required (3 orientations × 3
phases), while for 3D-SIM image reconstruction, 15 raw images are required (3 orientations
× 5 phases). Figure A-5 is one of the output raw images from the function get_images.
Then by summing entire raw images together, the wide-field image of this object is obtained
(shown in Figure A-6).

Figure A-5: The example of the SIM raw image.

A-2 Image reconstruction

The process of the image restoration can be split into two main steps: the unknown parameters
estimation and the information component recombination with the Wiener filter. The PSF
here is a known parameter which is obtained from TIP algorithm.
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Figure A-6: The wide-field image of the SIM which is the sum of 9 SIM raw images.

A-2-1 Parameters estimation

There are three parameters need to be estimated: the illumination spatial frequency ~p, the
initial phase φ and the modulation depth am .
The determination of the illumination pattern vector ~p and the initial phase φ is an iterative
optimal process. The iteration starts with finding the peaks of the Fourier Transform of the
SIM images. Then using the sub-pixel peak detection method introduced in 2 to increase
the precision of the localization of the peaks. For each iteration, the localization of the peak
will be modified and a new vector is obtained, when the angle between the current vector
and the previous vector reaches the threshold, the iteration will stop. Then by analyzing the
auto-correlation of the filtered Fourier images and calculating the phase angle of the complex
value (Eq. 2-23), the phase shift estimate is obtained. The estimation of the wave vector ~p
and the shift phase φ are done in the function estimate_qvector.
After getting the illumination spatial frequency ~p and the shift phase φ, the laterally shifted
copies of the OTF are created. The OTF is shifted to the same location as the location
of the information components in the Fourier space. Figure A-7 shows the shifted Fourier
components and their corresponding shifted OTFs.
Then the modulation strength can be calculated based on the method introduced in chapter
2. The modulation depth estimation is done by implementing the functions get_orders2D,
get_ordershift2D, and get_orderstrengths_overlap2D in turn.

A-2-2 Reconstruction with Wiener filter

The SIM image reconstruction is done by recombining all the information components together
in the Fourier domain using a weight-averaging, generalized Wiener filter. The Wiener filter
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Figure A-7: The shifted Fourier components and the shifted OTF in one orientation.

may introduce ring artifact. The hard edge of the OTF is the main reason of this kind of
artifact. To reduce the ring artifact in the reconstructed image apodization filter described in
[31], which is introduced in Chapter 2 is applied (shown in Figure A-8). In order to remove
the out-of band noise in the OTF, a support region of OTF is defined. This support region
is based on the diffraction limit, and zero is assigned to the pixel outside this support region
of the SIM-OTF. These two filters are generated in get_apodization2D.

Based on the estimated spatial frequency and the shift phase, the information component
is unmixed by being shift back to their original location in the Fourier domain. Then
the corresponding shifted OTFs, which have the same locations as the shifted information
components are calculated. This shifted OTFs are used to generate a filter for its corre-
sponding information component in Fourier domain, and then by summing up all the fil-
tered information components together and implement the Wiener filter, the restored image
is obtained.The main functions used here are: get_reconfuncs2D, get_orderfilters2D,
get_preWiener2DSIMrecon. The comparison of the wide-field image and the restored
image are demonstrated in Figure A-9.
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Figure A-8: The possible apodization filters. The LukoszBound is more bennign than the tranglex
filter for the optimizing the contrast.

Figure A-9: The comparison of the wide-field image and the restored image. The maximum
radius of circle in the wide-field image (left) is larger than the maximum radius of the circle in
the restored image (right).
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Appendix B

User-defined parameters

The SF-TIP used in this thesis has three real parameters that can be tuned for result. These
three parameters are: the number of patches, the circular mask size of the PSF and the size of
the Gaussian Apodization mask applied to the patches. The definition and some suggestions
about how to define these parameters are described below.

• The number of patches: this parameter determines the number of sub-images in each
direction. It depends on the size of the images. Based on my experience, I would like
to use the patches which size is 256 px*256 px.

• PSF Size: This parameter is the diameter used to generate a circular mask which is
used to create a finite support region of the PSF in spatial domain. The value of it
should be restrict in a range where the convergence of the PSF is possible. A diameter
that is too small or too big can cause problem in PSF estimation. The diameter of the
circular PSF mask should be significantly smaller than the patch size. Another factor
need to be considered is the aberration strength, The higher the aberration strength is,
the larger the PSF size should be.

• The Gaussian apodization mask: This mask will help to extract the area of the patches
used to do the image deconvolution. The size of this area should be between 40%-60%
of each patch.

The implementation of the SF-TIP algorithm start with the testing of these three parameters
and then get a balance among them. A small Apodization mask will lead to a information
loss of the image, which will cause the failure of the PSF estimation. The PSF size need to
be tuned carefully to avoid the lose of the convergence of the algorithm.
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Appendix C

Measure the resolution of the image

C-1 Measure the quality of the restored image

To measure the quality of the image, the Fourier Ring Correlation (FRC) is introduced
[41, 42, 43]. The FRC is a commonly used metric for super resolution image which is applied
to the gray-scale images. It measures the normalized cross-correlation between two images
in the Fourier domain. The FRC calculation requires two images of the same region with
independent noise. In order to get these two images, the binomial random distribution is
used to split the super resolution image (shown i.n Figure C-1) into two sub-images (shown
in Figure C-2)

Figure C-1: The restored Siemens star image.

Then a series of concentric rings are created on the spatial spectrum of these two images
in Fourier domain. Next the correlation between the pixels located on the rings with same
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Figure C-2: The two sub-images of the Figure C-1 split using binomial random distribution.

radius in two Fourier transform images are calculated resulting in an FRC curve, which shows
the decrease of the correlation with the increase of the spatial frequency.

FRC =
∑
r∈RO(r)∗ · Õ(r)√∑

r∈R |O(r)|2
∑
r∈R |Õ(r)|2

, (C-1)

where ∗ denotes the complex conjugate of O, Õ is the estimated object in Fourier domain, r
is the pixel in the ring R. The resolution of the image is the real space distance of the spatial
frequency where the FRC value drops below the 1

7 (shown in Figure C-3) [41].

Figure C-3: The example of the FRC curve and the 1/7 threshold to get the resolution. The
real space distance of the x axis value of th cross is the resolution of the image.
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