CPD No.

3242

8 2 4

Conceptual Process Design Chemical Process Technology

CONFIDENTIAL

Subject

Integration of a propane dehydrogenation and IPAproduction facility (175 kton/a IPA)

Authors

M.E. Brons M.P. Hoff J.H.M. Jansen E.P.E. Seveke

Keywords

Isopropyl alcohol, IPA, propane dehydrogenation, propylene hydration, Catofin, Veba

Assignment issued	:	21/09/1999
Report issued	:	21/12/1999
Assessment	:	01/02/2000

ERRATA final report CPD3242

"Integration of a propane dehydrogenation and IPA production facility"

- Summary: first paragraph, production capacities are mentioned in ton/a (not kt/a)

- Summary: 4th paragraph last sentence, "...fed back to the dehydrogenation section."

- p.7: production capacities are mentioned in <u>ton/a</u> (not kt/a)

- p.10: 2.5, first paragraph, "... should be able to reach a 81% propylene conversion"

- p.17: "In table <u>18</u> a margin calculation..", (not table 7)

- p.18: "Appendix 9 (table 9.24)"

- p.20: 4.4, first paragraph, "the process consists of two reactors."

- p.21: Table 22, propylene fraction: 85 %

- p.23: Table, reference misses

- p.24: 5.1, end of first paragraph, "(see.. appendix 5.2)" (instead of 5.1)

- p.24: 5.3, second paragraph, "...from the propylene reactor product is, since..."

- p.25: 5.4, second paragraph, reference [17], Coulson & Richardson

- p.26: 5.5, note 3 can be removed

- p.26: 5.6, first part refers to V102, last part to V203

- p.33: 7.5, 4th paragraph, "330 C, additional hot utilities are.." (instead of additive)

- p.34: 8.2, second paragraph, " results in a change in of the conv."

- p.35: Table 29, reference Rob Berger [20] should be [18]

- p.36: 6th paragraph, "overall- design consists of ..." (not exists)

- p.36 - 49: [18] should be *reference [17]* (Coulson & Richardson)

- p.39: second paragraph, " can be found in *table 30* " (not 31)

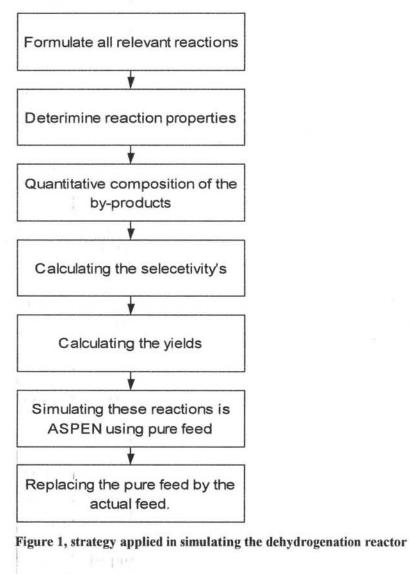
- p.39: 4th paragraph, "..results... are listed in *table 31*" (not 32)

- p.45: "in a run down tank takes a 24 hours"

- p.47: last paragraph "the number in the table must be explained"

Bullet lists should have been used on pages: 13, 30, 41 and 47.

Appendix final report CPD3242 CLARIFICATIONS


SIMULATION OF REACTOR	R1012
INTRODUCTION	2
SIMULATION STEPS	
FORMULATE ALL RELEVANT REACTIONS DETERMINE REACTION PROPERTIES. QUANTITATIVE COMPOSITION OF THE BY-PRODUCTS CALCULATING THE SELECTIVITIES CALCULATING THE YIELDS SIMULATING THESE REACTIONS IS ASPEN USING PURE REPLACING THE PURE FEED BY THE ACTUAL FEED.	3 3 3 FEED
COLUMN DESIGN HISTORY	5
FLOWSHEET SUBDIVISION	5
SECTION 1	5
C101 C102	
SECTION 2	5
C201 V201 C202 C205	
SECTION 3	
C203 C204	
A fact that is a first f	
	Clarifications.1
	Clarineauolis, I

Simulation of reactor R101

Introduction

In simulating the dehydrogenation reaction problems may arise due to the complex reaction mechanisms. In literature large amounts of research is presented, based on a pure propane feed stream.

After reviewing literature we felt that using the reported selectivities ¹would hurt the results of the simulation. The strategy that was used to obtain the most realistic simulation is presented in figure 1.

Every step will be discussed in the following chapters.

Because they were based on pure feed streams

Simulation steps

Formulate all relevant reactions

From literature:

$C_3H_8 \Leftrightarrow C_3H_6 + H_2$	$\Delta_{\rm r} {\rm H}^{298} = 127.7 {\rm kJ/mol}$	(1)
	$\Delta_{\rm r} {\rm H}^{298} = 104.7 {\rm kJ/mol}$	(2)
$C_3H_8 \rightarrow CH_4 + C_2H_4$		(3)
	$\Delta_{\rm r} {\rm H}^{298} = -44.1 \ {\rm kJ/mol}$	(4)
$\mathrm{C_2H_4} + \mathrm{H_2} \Leftrightarrow \mathrm{C_2H_6}$	$\Delta_{\rm r} {\rm H}^{298}$ = -46.3 kJ/mol	(5)

Determine reaction properties

It can be seen that reaction (1) and (5) are equilibrium reactions. The reactants of reaction (5) are being produced by the other reactions.

Quantitative composition of the by-products

The composition (wt%) of the by-products are summarised in table 1 and are as described in literature [i] (hydrogen is not included).

Table 1, selectivities @ 650°C and 0.5 bara.

	Fraction [wt%]		
Ethylene	1.1		
Ethane	2.3		
Methane	3.9		
Carbon	7.7		

Calculating the selectivities

Selectivities of reactions (2), (3), (4) and (5) were calculated² (see table 2) using:

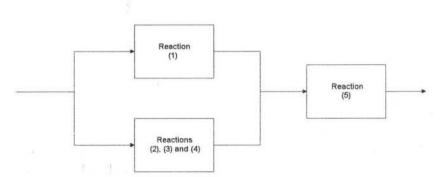
- 1. By-product composition
- 2. Reported conversion and selectivity of reaction (1)

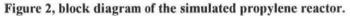
Table 2, reaction characteristics.

	Selectivity	Conversio	Yield	
Reaction 1	0.879	(0.900	0.791	
Reaction 2	0.067	0.900	0.061	
Reaction 3	0.003	0.900	0.003	
Reaction 4	0.051	0.900	0.045	
Reaction 5	0.753	0.900) 0.677	
			/	

 $^{^{2}}$ Note that the amount of cokes formed is the resultant of the by-product composition and the reported selectivity and conversion of reaction (1), and is therefore not a guess.

CPD3242


Calculating the yields


The conversion was arbitrarily set to 0.900. Using the calculated selectivities (table 2), yields were calculated, see table 2.

Simulating these reactions is ASPEN using pure feed

As mentioned before, two equilibrium reactions occur within the propylene reactor. Both equilibrium reactions were simulated in ASPEN using two equilibrium reactors. The equilibrium reaction (5), in which ethylene is converted to ethane, cannot be simulated without taking into account the irreversible reactions for the production of ethylene and hydrogen.

Schematically this looks like:

The ASPEN-reactors were first simulated based on pure propane feed. By adjusting the available simulation parameters, the yields were obtained as reported in table 2.

The equilibrium constants used for the equilibrium reactions are calculated by ASPEN using the Gibbs energies at a specified temperature. A change in temperature at which the constant is calculated, results in a change in of the conversion, using this property the desired yields were obtained.

Replacing the pure feed by the actual feed.

After checking the conversions, selectivities and yields with the results from ASPEN (based on a pure feed), the pure feed was replaced by the actual feed, which contained o.a. propylene and ethane.

The effect of this change on e.g. reaction (1):

This equilibrium reaction was presented with propylene, which is also the product of the reaction. Therefore the amount of propane converted is likely to go down.

For this reason the conversion reported in literature, based on pure propane, is higher than the conversion found by the ASPEN simulation, see table 3.

Table 3, Propane conversion results.

Literature	90.0 %
Result ASPEN based on pure feed	90.0 %
Result ASPEN based on real feed	76.4 %

This result confirmed our initial assumption that selectivities as reported in literature cannot be used when changing the feed composition.

Column design history

Flowsheet subdivision

In order to let the Aspen model converge, the plant was split up in three sections:

Section 1: Unit 100 Section 2: Unit 200 except units C203, V203, C204 and V204 Section 3: The units C203, V203, C204 and V204

How the performance of these sections was calculated will be discussed in the following paragraphs.

Section 1

The thermodynamic models in Aspen Plus sufficed to describe the processes in this section. The whole section was designed using Aspens modelling techniques.

C101

First modelled as Shortcut column, results used as input for Radfrac model. This gave satisfying end results as soon as partial condensor was inserted. Aspen Reports were used as input for column design calculations.

C102

Modelled as Radfrac in Aspen. Initially satisfying mass flows were achieved at pressure of 1 bara. Later recommendations were made to operate the column at 29 bara (see Appendix 12.2). No changes were made to the simulation results (mass balance), however recommended operating conditions were used for column design calculations.

Section 2

Input for section based on output Section 1 (<137>). Columns were modelled separately as Radfrac and later combined to converge with recycles in the section as a whole. Results were used for the mass balance. Based on a (late) call of Shell columns C201 and C202 were altered separately. Resulting changes in mass balance were corrected manually in process stream summary to yield consistent balance over Section 2.

C201

First modelled as Shortcut column, results used as input for Radfrac model. Column design based on specification for bottom stream <202> (ref. Shell). Altered separately in Aspen with new specifications on reflux location (no condensor) and number of stages. Column design calculations based on output of this separate model.

V201

ferst set of the

Thermodynamic models didn't suffice to model V201 as phase separator: no satisfying separation of IPA and NPA was achieved in Aspen. As a result V201 was modelled as ideal separator with split factors (appr. 1 for all components). Separator was included in section as a whole. Design calculation and assumptions as stated in report (Vessels, p.41).

CPD3242

C202

First modelled as Shortcut column, results used as input for Radfrac model. Column design based on specification for side stream <209> (CBM composition). Altered separately in Aspen with new specifications on side stream location, number of stages and new component flow input from separate C201 model (<209>). Column design calculations based on output of this separate model.

C205

First modelled as Shortcut column, results used as input for Radfrac model. Incorporated in section as a whole.

Section 3

Complete section modelled as ideal separator, since thermodynamic models proved inadequate for cyclohexane-water interactions (see Appendix 5.1). Calculation of split factors based on data (or assumptions based on practice) of incoming stream <220>, reflux ratio for C203, required output <221> and cyclohexane recovery. Results as in process stream summary.

C203

Modelled in Aspen as ideal separator with split factors. The number of trays and the relux ratio were provided by Shell. These figures were used to calculated the column dimensions in an ordinary manner. It should be noted that the comlumn dimensions were based on the top section only (as a result of unavailable data).

C204

Modelled in Aspen as ideal separator with split factors. Shell provided the dimension of a similar column.

Height:Was kept the sameNumber of trays:Was kept the sameDiameter:The ratio feed to surface area was assumed to be constantPressure drop:Calculated in a similar manner as the other columns

For more details see the report, p.39.

LITERATURE

bart d. Em

i G.F. Froment and K.C. Waugh et al., Reaction kinetics and the development of catalytic processes: proceedings of the international symposium, Brugge, Belgium, April 19-21, 1999 (paper: Kinetic Based Deactivation Modelling of an Isothermal Propane Dehydrogenation Reactor).

SUMMARY

Shell International Chemicals produces isopropyl alcohol (IPA) by hydration of propylene. IPA is used as a solvent in for example anti-freeze solutions or parfums. Shell is market leader in selling IPA. Worldwide IPA production is 2 million kton/a. Shell produces 600.000 kton/a in six IPA production facilities. Exxon has only one IPA production facility, but produces 300.000 kton/a. Other competitors are Union Carbide and Condena. IPA production is based on propylene feedstock.

and

Propylene is produced as a by-product in catalytic cracking of by steam cracking. Polymer grade propylene (99%) is made available by a PP-splitter (propane-propylene splitter). At 280 US\$/ton it is expensive in comparison with lower purity grades, due to limited PP-splitting capacity. Demand for high purity propylene is expected to grow further in the future. Splitting capacity will grow, which will put extra pressure on the cost of both high purity and dilute propylene. Therefore it is important to look for cheaper alternatives for feedstock.

Propylene is already commercially produced by dehydrogenation of propane. Propane is relatively cheap (120 US\$/ton), since it is produced in large quantities as a by-product in gas extraction. However this process still contains the expensive PP-splitter. The combination of propane dehydrogenation and propylene hydratation may reduce the need of this separation step: propane-propylene/mixtures can be recycled to produce IPA (550 US\$/ton).

This report describes the integration of a propane dehydrogenation unit and an IPA unit on a green field location, yielding an IPA production facility of 175 kton/a. Commercially four existing dehydrogenation processes and three IPA processes are available. Design of the dehydrogenation reactor in this concept is based on the Catofin process. Operating at high temperature and low pressure (650°C, 0.66 bara) it yields high conversion up to 90%. Break-even point for placing a PP-splitter is at a propylene concentration of 70 wt% in the dehydrogenation product stream (Current design contains 84.6 wt% in this stream. Design of the IPA reactor and the purification section is based on the Veba process (already used by Shell). Ninety percent of propane-propylene is recycled over the IPA reactor, the rest is fed back to the dehydrogenation.

The plant is designed for production of 182.5 kton IPA/a based on 8760 theoretical available hrs/a. Operating availability has been set to 8400 hrs/a, the difference including both actual downtime and slowdown of production. Result is a 175 kton/a IPA facility using 147 kton/a propane.

Economical plant life is set at 20 years, excluding 2 additional years for construction and plant start up. Maximum allowable investment is 582.6 M\$. Total investment counts 78.28 M\$. Rate or return is 5% (discount cash-flow-rate of return 1.14 %, POT 19.46 years). The utilities are the most important cost drivers of the process. A cut of 50% in the cost for electrical power would bring the POT to 12 years and the DCFFR above 6%.

Recommendations are made to optimise the performance of the purification section and to further analyse heat integration. Use of more accurate thermodynamic models could improve the design. Reductions should then be made in the use of utilities to make the process economically more viable.

TABLE OF CONTENTS

1 INTRODUCTION	Division of
2 PROCESS OPTIONS & SELECTIONS8	
2.1 PROCESS OPTIONS	l
2.2 DEHYDROGENATION OPTIONS	
2.3 IPA PRODUCTION OPTIONS	
2.4 POSSIBLE RECYCLES)
2.5 PROCESS CONCEPT CHOSEN)
3 BOD	
3.1 DESCRIPTION OF DESIGN	
3.2 BLOCK SCHEMES	
3.3 THERMODYNAMIC PROPERTIES	
3.4 PURE COMPONENT PROPERTIES	
3.5 BASIC ASSUMPTIONS	3
Plant capacity	3
Plant availability	3
Location	3
Utilities	
De la tama i Gastiene 14	1
Product specifications	1
Definition of all in-and outgoing streams	5
3.6 WASTES	, 7
4 THERMODYNAMIC PROPERTIES AND REACTION KINETICS	
4.1 Operating windows	1
4.2 COMPONENT PROPERTIES AND AZEOTROPIC DATA	
4.3 THERMODYNAMIC MODELS AND DATA VALIDATION	
Data accuracy	0
4.4 REACTION KINETICS	
Propylene production2	1
IPA production	2
MAIN REACTION	3
BY-PRODUCT REACTIONS	3
5 PROCESS STRUCTURE & DESCRIPTION	4
5.1 PROPYLENE REACTOR	4
5.2 IPA REACTOR	4
J.Z IF A REACTUR	4
5.2 IFA REACTOR	4
5.3 COLUMNS	4
5.3 COLUMNS	4
5.3 COLUMNS 2 5.4 Heat exchangers 2 5.5 Dryer 2	4
5.3 COLUMNS 2- 5.4 Heat exchangers 2 5.5 Dryer 2 5.6 Decanters, knockout drums 2	4 4 5 6 6
5.3 COLUMNS 2 5.4 Heat exchangers 2 5.5 Dryer 2	.4 .4 .5 .6 .6

Description of UNIT 100, REACTION SECTION Description of UNIT 200, SEPARATION AND PURIFICATION SECTION	26 27
5.10 PROCESS STREAM SUMMARY	28
5.11 HEAT INTEGRATION	28
5.12 UTILITIES	28
5.13 Process Yields	29
6 PROCESS CONTROL	
6.1 BASIC CONTROLS	30
6.2 FOLLOWING THE PROCESS STREAMS	30
6.3 EXPLANATION OF PROCESS STREAMS-REBOILER CONNECTIONS	31
7 MASS AND HEAT BALANCES	
7.1 Overall mass and heat balance	32
7.2 MASS BALANCE	32
7.3 HEAT BALANCE	
7.4 COMPONENT MASS AND HEAT BALANCE	
7.5 HEAT INTEGRATION	
8 PROCESS EQUIPMENT DESIGN	
8.1 INTEGRATION BY PROCESS SIMULATION	34
8.2 Special modelling issues	34
8.3 EQUIPMENT SELECTION AND DESIGN	35
Reactors	35
Distillation columns	36
Absorber	39
Dryer column	40
Vessels	
Heat exchangers, reboilers, condensers	41
Furnace	42
Compressors	45
Pumps	45
Storage tanks	
9 WASTES	46
10 PROCESS SAFETY	
10.1 HAZOP	47
10.2 FIRE AND EXPLOSION INDEX	47
11 ECONOMY	
11.1 CALCULATION OF COSTS	48
DIRECT COSTS	
INDIRECT COSTS	49
11.2 Economic criteria	51
11.3 Conclusion	52
12 CONCLUSIONS AND RECOMMENDATIONS	
IZUUNULUSIUNS AND KEUUWWENDATIONS	

1 Introduction

Shell International Chemicals produces isopropyl alcohol (IPA)¹ by hydration of a propylene feedstock. At this moment Shell is market leader in selling IPA, which is mainly used as a solvent. IPA is a colourless, flammable liquid with a pleasant odour. It is the simplest secondary alcohol and was first prepared in 1885 by Berthelot while working with n-propanol. It was the first industrial chemical synthesized from a petroleum-derived olefin (1920).

Propylene is produced as a by-product in catalytic cracking or by steam cracking. For the production of IPA via direct hydration relatively pure propylene (>95%) is used whereas for indirect hydration a lower purity will suffice (>50%). High purity propylene is normally produced by a <u>PP-splitter</u> and is expensive relative to lower purity propylene due to limited PP-splitting capacity and high demand. The demand for high purity propylene is expected to grow further in the future. With it, splitting capacity will grow, which will put extra pressure on the propylene pricing of not only the pure but also the dilute propylene streams. It is therefore important to look for cheaper alternatives. The most promising option is <u>propane</u>.

Propane is produced in large quantities as a by-product in gas extraction; it is already dehydrogenated and purified to polymer grade propylene commercially. At this moment the production costs of this propylene are still relatively high. The combination of propane dehydrogenation and IPA production may reduce the need of some expensive separation steps, i.e. no PP-splitting capacity is required.

This report describes the integration of a propane dehydrogenation unit and an IPA unit yielding an integrated IPA production facility.

The new unit operates on a 100% propane feedstock for evaluation purposes. The propylene reactor converts the incoming propane to propylene. The light ends in the propylene reactor effluent are then removed by distillation and the process stream is led into the IPA reactor. The incoming propylene is then converted to IPA. Finally IPA is separated from the IPA reactor effluent by a separation section.

Table 1' clearly shows the incentive to make IPA from propane instead of propylene. Other properties of all components can be found in <u>Appendix 5.3</u> 'Pure Component Properties'.

¹ Also known as; 2-propanol, secondary propyl alcohol, per-spirit, isopropanol, dimethylcarbinol, petrohol, avantine

6

Component	Formula	Mole. Weight (g/mole)	Price (US\$/ton)
Propane	C ₃ H ₈	44	120
Propylene	C ₃ H ₆	42	 280 (Polymer grade, 99% propylene) 250 (Chemical grade, 95% propylene) 180 (Refinery grade, 70% propylene)
IPA	C ₃ H ₈ O	60	550

Table 1, Price of main components

Commercial processes for converting propane to propylene and direct hydration of propylene to IPA are widely available, but are licensed to companies other than Shell. See Chapter 2 'Process Options and Selections' for further detail.

The worldwide IPA production is 2 million kton/a of which Shell produces 600.000 kton/a. Shell has six IPA production facilities. Exxon has only one IPA production facility, but produces 300.000(!) kton/a. Other competitors are Union Carbide and Condena.

The total IPA production is based on a propylene feedstock. There is no integrated facility which operates on a propane feedstock.

	C		
	250	240	1520
	120	720	720
lep- groder	160	130	60

7

2 Process Options & Selections

Purpose of the plant to be designed is to produce isopropyl alcohol (IPA) from propane. At this moment, this is done in two different plants: in the first, propane is dehydrogenated to propylene; in the second, propylene is hydrated to IPA. For the dehydrogenation process, there are <u>four</u> commonly used processes, for the hydration process there are two. This chapter will explain which of the 8 possible combinations was chosen and why.

2.1 Process options

In the next section four dehydrogenation options are discussed. In section 2.1.2 a similar discussion is given for the two IPA production facilities. Integration possibilities can also be found in the realisation of recycles as will be discussed in paragraph 2.1.3.

At the end of this chapter a discussion is given of which combination of options yields maximum integration and which combination is chosen.

2.2 Dehydrogenation options

Commercially available processes for the production of the propylene are:

Oleflex	(UOP)[1]
Catofin	(ABB Lummus Crest)[2]
STAR	(Phillips Petroleum)[3]
FBD-4	(Snamprogetti-Yarsintez) [4]

In appendix 14.1 facts are compared for all options, this has resulted in the pro's and con's summarised in table 2.

	Oleflex	Catofin	STAR	FBD-4
Equipment	-	+	-	-
Reaction temperature	+	-	-	-
Reaction pressure	+	Ä	+	+
Conversion		(++)		?
Selectivity	+	+	+	?
PP-splitter needed	-	++	-	?

Table 2, comparison of dehydrogenation plants.

Based on table 2 it can be seen that the Catofin option has a high conversion. This is due to the fact that the operating pressure is sub atmospheric, which will be costly. On the other hand, the high conversion may make a PP-splitter unnecessary, which would be a big money saver. Besides the low pressure, Catofin operates at high temperature to create optimum conditions for the equilibrium dehydrogenation reaction.

2.3 IPA production options

The commercially available processes[5] for the direct hydration of propylene to isopropyl alcohol are:

Texaco	(Deutsche Texaco)
Veba	(Veba-Chemie)
Tokuyama-Soda	(Tokuyama Soda Co., Ltd.)

However the extreme process conditions of the <u>Tokuyama-Soda</u> process make this option liable to be left out from the discussion. Indirect hydration with sulphuric acid (H_2SO_4) has not been examined because of its obsolete technology.

In appendix 14.2 facts for the two relevant options are summarised.

Some other considerations:

5.6%

The Veba process needs voluminous recycles due to its low <u>conversion of 5</u>% per pass. It seems that the recycle will easily grow larger at higher propane/propylene ratios. An advantage of the Veba process is that <u>Shell has knowledge</u> about this process and will therefore be able to better evaluate the surplus value of the integration itself.

The Veba process employs a <u>clay catalyst with phosphoric acid</u>. The acid slowly leaches off, so the catalyst needs to be <u>soaked every 2 years</u>. The Texaco process uses an ion exchange catalyst (surface couple of 100 m³) which should be replaced every nine months.

The Texaco process uses 3 times more reactor volume than Veba does, this has a negative effect on the fixed capital for the Texaco option. Due to this and other factors, such as the licence, the capital cost needed for the Texaco option will end up 40% more expensive. Coupled with capital cost, maintenance costs are higher (2% of capital/a). Because of the large recycle around the Veba rector, energy costs will be higher. However, high-pressure steam (12 bar) can be used twice: for the compressors (12 to 8 bar) and the distillation columns.

In table 3, all pros and cons are summarised.

Table 3,	comparison	of	IPA	plants.	
and the second second	A State of the sta				

	Veba	Texaco
Knowledge	++	-
Capital cost	++	-
Operational cost	=	=
Performance (yield, quality)	=	=
Feedstock flexibility	-	+
Comparison with existing facilities	+++	-
Catalyst	+	-
Internal recycle		++
Conversion per pass		++
Pressure	+	-
Reaction temperature	-	+
Minimal propylene/propane ratio	-	+
Water to propylene ratio	+	÷

2.4 Possible recycles

Currently operated IPA processes are based on a high quality grade propylene, which is recycled around the reactor. To prevent a build-up of inerts, such as propane, part of the recycle is vented. Increasing the propane concentration would result in higher recycles around the IPA reactor and a larger vent. This vent contains valuable propane which can also be recycled to the dehydrogenation reactor.

2.5 Process concept chosen

As mentioned before, integration should result in a reduction in the use of energy and/or utilities and preferably equipment. From experience, Shell knows that the break-even point for placing a PP-splitter is at a propylene concentration of about 70 wt% in the outlet flow of the dehydrogenation section. The Catofin process is the only dehydrogenation process that is able to meet this, according to literature it should be able to reach a <u>81%</u> propylene (see appendix 14.1). For this reason, the Catofin process was taken as the basis for the dehydrogenation process.

Although arguments may favour the Texaco process, the Veba process is chosen for <u>strategical reasons</u>: the added value of the better opportunities for comparing the outcome to existing plants outweigh the chance of a better overall solution.

From the PFS it can be seen that an increasing recycle back to the dehydrogenation reactor will effect relatively more units than sending it back to the IPA reactor. This means that minimising the recycle back will have a positive effect on the total investment required.

A split factor α can be instituted at the split point: a fraction α goes to one recycle, a fraction $(1-\alpha)$ to the other. In appendix 8 a summary is given of the mass balances at different recycle ratios.

$$\alpha = \frac{R_{Internal}}{R_{Internal} + R_{External}}$$
[2.1]

 $R_{Internal} =$ recycle over the IPA reactor, kg/h

 $R_{External} =$ recycle back to the Propylene reactor.kg/h

The results showed that α should be chosen as high as possible, only limited by the bleed that shouldn't become too large.

Because of these considerations the concept will be a Catofin-Veba process with optimal recycles.

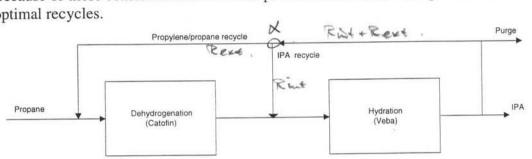
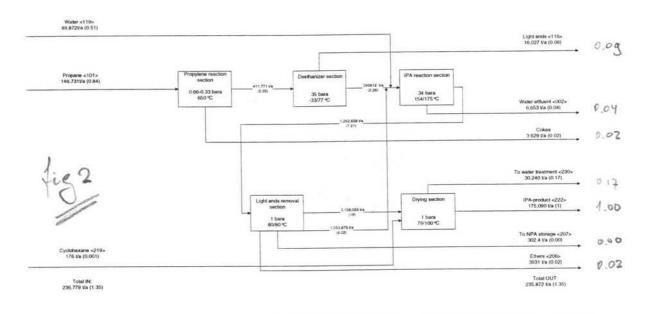


Figure 1, the chosen concept schematically presented.

12

3 BOD


3.1 Description of Design

In chapter 2, several options for combining different processes have been discussed and the option of combining the Catofin process and the Veba process has finally been selected. Although the combination of the Catofin process with the Deutsche <u>Texaco process</u> also looks very promising, it was not chosen because of Shell's inhouse expertise on the Veba process, which is already employed in three of the six Shell IPA facilities and offers a better opportunity to compare this design with these facilities.

The process uses a 100% propane feedstock (for evaluation purposes). This feedstock (stream <101>) is mixed with the overall recycle and then enters the propylene reactor (R101), where propane is converted to propylene under sub-atmospheric conditions. The reactor effluent (stream <107>) is then compressed to <u>34 bara</u> and the light ends are removed in C101. Stream <122> then enters the IPA reactor, where only <u>5%</u> of the ingoing propylene is converted to IPA. The IPA reactor therefore has a fairly large recycle. The IPA-water mixture and the propylene-propane mixture are then separated. 90% of the propylene-propane mixture is recycled back to the IPA reactor (stream <131>) and 10% is recycled back to the propylene reactor (stream <134>). The IPA-water mixture enters the separation section through stream <137>, IPA and water are separated and through stream <222> premium grade IPA enters the run down tanks for specification analysis.

3.2 Block schemes

Two levels of block schemes have been made. Figure 1 gives an overall view of the process. Figure 2 shows the process in more detail, all major equipment is also represented. In fig 2 the equipment coding and stream numbers correspond to the coding and numbers used in the Process Flow Scheme in appendix 1. N.B.: Numbers between brackets () are t/t values.

Figure 2, Extended block scheme of the integrated process

3.3 Thermodynamic properties

An extensive collection of possible thermodynamic models is present in process simulators. The model that was used throughout the whole design is the Non Random Two Liquid method (Redlich Kwong, NRTL-RK). All needed parameters were estimated in Aspen Plus with the Unifac method. For further details see appendix 5.1.

3.4 Pure component properties

A list of pure component properties is given in appendix 5.3 'Pure Component Properties'.

3.5 Basic assumptions

Plant capacity

Plant capacity is set to 175 kton per year. This was done after consulting Shell Chemical Nederland BV. The plant will operate 8400 h/a, therefore all streams are based on a production of 20.81 ton/h IPA. The plant life is taken 22 years.

Plant availability

Theoretical technical availability of the plant: 365 days/yr * 24 hrs/day = 8760 hrs/yr. However, operating availability has been set at 8400 hrs/yr (= 23 hrs/day) for two reasons.

Technical unavailability: this is actual downtime. Equipment is under construction or being repaired. There is no production.

Production slowdown. Production is slowed down in order to meet certain (product) specifications. This can also be expressed in downtime.

In order to make up for this down time, the plant has been designed for a production of 182.5 kton IPA/year. Operating production will be 182.5 * (8400/8760) = 175 kton IPA/year.

Table 4, plant availability

	Theoretical	In practice	Efficiency	
Availability [h/a]	8760	8400	0.96	5
Annual production [kton/a]	182.5	175	0.96	

Location

Utilities

During this design study a green field location in Malaysia will be assumed to be the location.

Because of the green field location, utilities will be assumed to be the same as on other Shell locations. For a complete overview of the available utilities and their conditions see appendix 11 'BOD Utility conditions'.

Product specifications

The product stream contains 99,8% IPA and is the only desired product of this process. Other products, which are formed, are considered by-products.

Table 5. IPA-product specifications.

IPA product purity	>99.8%	
Water%	<0.1%	
Acidity	<0.002 mg/l	

Definition of all in-and outgoing streams

There are three ingoing streams:

Table 6 , ingoing streams, stream <101>

Stream number	<101>	
Stream name	PROPANE FEED	
Composition [wt%]	Propane 100%	
Mass stream [kg/h]	17468	
Mass stream [kton/a]	147	
Pressure [bara]	15	
Temperature [°C]	35	
Phase S/L/V	L	
Costs [US\$/ton]	120	
Remarks	100% propane for evaluation purposes of Sheel of ore	

Table 7, ingoing streams, stream <119>

Stream number	<119>
Stream name	MAKE UP WATER
Composition [wt%]	Water 100%
Mass stream [kg/h]	10699
Mass stream [kton/a]	90
Pressure [bara]	1
Temperature [°C]	25 10-
Phase S/L/V	E F
Costs [US\$/ton]	(1.25)
Remarks	Process water

Table 8, ingoing streams, stream <219>

Stream number	<219>	
Stream name	MAKE UP CYCLO HEXANE	
Composition [wt%]	Cyclohexane . 100%	
Mass stream [kg/h]	21	
Mass stream [kton/a]	0.18	
Pressure [bara]	1	
Temperature [°C]	25	
Phase S/L/V		
Costs [US\$/ton]	n.a. ("miscellaneous materials")	
Remarks	Azeonrope agent	

There are seven outgoing streams:

Table 9, outgoing streams, stream <116>

Stream number	<116>	
Stream name	FROM ACCUMULATOR C101	
Composition [wt%]	HYDROGEN METHANE ETHYLENE ETHANE ETHANOL PROPYLEN PROPANE	42.7 15.4 11.2 13.6 0.0 15.8 1.3
Mass stream [kg/h]	1900	
Mass stream [kton/a]	15.96	
Pressure [bara]	34	
Temperature [°C]	-33	
Phase S/L/V	T	
Price [US\$/ton]	(120)	
Remarks	Used as fuel gas	

Table 10, outgoing streams, stream <206>

Stream number	<206>
Stream name	VENT
Composition [wt%]	PROPYLEN 52.8
composition (111)	PROPANE 12.7
	ACETONE 16.9
	DIPE 17.6
Mass stream [kg/h]	452
Mass stream [kton/a]	3.8
Pressure [bara]	ITE I
Temperature [°C]	24
Phase S/L/V	X)
Price [US\$/ton]	(120)
Remarks	Used as fuel gas

Table 11, outgoing streams, stream <207>

Stream number	<207>
Stream name	TO NPA STORAGE
Composition [wt%]	NPA 100
Mass stream [kg/h]	19 0.16 0 liamin'
Mass stream [kton/a]	0.16
Pressure [bara]	1 1 1 1 1 1
Temperature [°C]	34
Phase S/L/V	L J
Price [US\$/ton]	120
Remarks	Used as fuel/gas if it can not be sold at a higher price

Table 12, outgoing streams, stream <222>

Stream number	<222>	Design
Stream name	IPA PRODUCT	
Composition [wt%]	IPA NPA Water	99.8 0 99.8 0 P
Mass stream [kg/h]	20845	ag- <u>1</u>
Mass stream [kton/a]	175	
Pressure [bara]	1	
Temperature ["C]	30	
Phase S/L/V	E	
Price [US\$/ton]	(550)	
Remarks	Main product	

Table 13, outgoing streams, stream <230>

Stream number	<230>		
Stream name	TO WATER TREATMENT		
Composition [wt%]	Cyclohexane 0.6 Water 0.94		
Mass stream [kg/h]	3584		
Mass stream [kton/a]	30		
Pressure [bara]	1 ()		
Temperature [°C]	30		
Phase S/L/V	1 2 2 1 SP . P.C.		
Costs [US\$/ton]	1.67 > Ry. Steele.		
Remarks	Waste water		

Table 14, outgoing streams, stream <001>

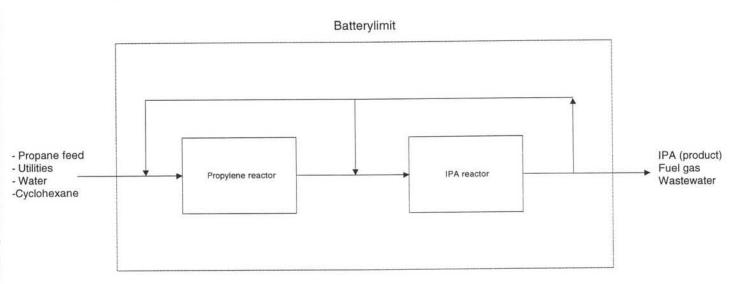
Stream number	<001>		
Stream name	COKES		
Composition [wt%]	C 100		
Mass stream [kg/h]	432		
Mass stream [kton/a]	3.6		
Pressure [bara]	0.5		
Temperature ["C]	650		
Phase S/L/V	S		
Price [US\$/ton]	n.a.		
Remarks	Used to heat the bed during regeneration		

Table 15, outgoing streams, stream <002>

Stream number	<002>
Stream name	WATER EFFLUENT
Composition [wt%]	100
Mass stream [kg/h]	800
Mass stream [kton/a]	6.7
Pressure [bara]	1
Temperature [°C]	35
Phase S/L/V	L
Costs [US\$/ton]	10.5
Remarks	Waste, evaporated during regeneration of zeolite

The amounts and conditions of the utilities used can be found in appendix 11 'BOD utility conditions'.

3.6 Wastes


Only stream <230> TO WATER TREATMENT and stream <002> WATER EFFLUENT are considered waste streams. Stream <230> needs water treatment to remove the small amount of cyclohexane, stream <002> is evaporated into the open air.

3.7 Battery limit

originating .

The next figure shows the battery limit that was set after consulting Shell Nederland BV. Everything within these boundaries is designed. Streams coming from outside the battery limit are considered to be constantly available; Streams leaving the battery limit are left out of the design as soon as they cross the battery limit.

Figure 3, battery limit

Economic margin

Table 16, raw materials

As discussed in detail previously, the aim of this project is to design a plant producing IPA based on a propane feedstock. In table 7 a margin calculation is given based on an annual production of 175,000 tons.

Flow Prices Total [\$/ton] [k\$/a] ton/a 17610 146748 120.00 Propane Process Water 89880 1.25 112 Total cost 17722

Table 17, products

	Flow	Prices	Total
	[kton/a]	[\$/ton]	[k\$/a]
IPA	175	550	96142
Self made fuel gas	15.96	120	1915
NPA	0.17	120	20
Total			98057

Table 18, margin

	Total
	[million \$/a]
Products	98
Raw materials	18
Margin [million \$/a]	80

The economical margin is positive. Based on this margin the project seems to be economically feasible.

The economical plant life is set for 20 years, excluding 2 additional years for construction and plant start up. Appendix 9 (table 24) shows the calculation of the maximum allowable investment based on this economical plant life, an earning power of 10% and an annual cash flow equal to the economic margin. It can be found that the maximum allowable investment is equal to 582.6 M\$.

4 Thermodynamic Properties and Reaction Kinetics

For reliable simulations regarding the reaction and separation sections in the process, adequate kinetics and algorithms are needed. This chapter indicates the applied models and the assumptions that were made. It describes the reaction kinetics used for the reactor design.

4.1 Operating windows

Regarding the operating conditions the process flow scheme can be divided in three main parts, containing respectively the propylene reactor, IPA reactor and separation units C201 to C205. Operating windows regarding temperature and pressure for these sections are tabulated below.

 Table 19. Operating windows for different process sections (listed by main containing equipment)

Name	Temperature [°C]	Pressure	[bara]
Propylene reactor	650	0.66 .	
IPA reactor	175	34 .	
Purification section	30-80	1	1
	Propylene reactor IPA reactor	Propylene reactor650IPA reactor175	Propylene reactor6500.66IPA reactor17534

4.2 Component properties and azeotropic data

In appendix 5.3 pure component properties are shown. Table 20 contains enthalpies and Gibbs energies of formation for selected components. Pressure-temperature dependencies were calculated based on data from Reid and Prausnitz [6] for the design of shortcut separation columns.

Table 20, thermodynamic properties

Component	ΔH_{f}^{0} [kJ/kg]	∆G _f [kJ/kg]	Cp [kJ/kgK]
HYDROGEN	0,00	0,00	
METHANE	-4,68	-3179,38	2,24
ETHYLENE	1,87	-1176,79	1,57
ETHANE			
ETHANOL	-5,11	-3660,87	1,44
PROPYLEN	0,49	1494,29	1,54
PROPANE	-2,36	-533,86	5 1,71
ACETONE			
IPA	-4,54	-2891,67	1,55
NPA	-4,28	-2698,33	1,46
CYCLOHEXANE			
N-HEXANE			
DIPE			
WATER	-13,44	-12711,11	1,87
CARBON			
	enthalpies of f operties of the apacities of th	e ideal gas sta	ite

The IPA process deals with an IPA-water azeotrope, i.e. IPA and water at a certain composition cannot be separated in a normal distillation column. However making

use of cyclohexane as an entrainer makes it possible to obtain almost pure IPA with azeotropic distillation. Liquid-liquid inmiscibility of cylohexane and water enables the recovery of the entrainer (concept according to Perry, p.13-74 6 [7]). Table 21 shows the azeotropic compositions of the involved components.

Components		Azeotropic data				
A	B	С	B.P. [°C]	Wt.% A	Wt.% B	Wt.% C
Water	IPA		80.3	12.6	87.4	
Water	Cyclohexane		68.95	9	91.	
IPA	Cyclohexane		68.6	33	67.	
Water	IPA	Cyclohexane	64.3	7.5	18,5	74

Table 21. Azeotropi	compositions for	or water-IPA-c	vclohexane [7]
---------------------	------------------	----------------	----------------

4.3 Thermodynamic models and data validation

An extensive collection of possible thermodynamic models is present in process simulators. The model that was used throughout the whole design is the <u>Non Random</u> <u>Two Liquid</u> method (Redlich Kwong, NRTL-RK). All needed parameters were estimated in Aspen Plus with the Unifac method.

To evaluate if this model gives good descriptions of the behaviour of the mixtures in the operating windows, temperature-composition pressure-composition diagrams were checked on validity (appendix 5.1).

It can be seen that the interactions of cyclohexane and water are not properly estimated by the NRTL-RK method. Using the Peng-Robinson method or importing Dechema parameters in the process simulator gave no improvements [8]. Parameter estimation with the ASOG method (Analytical Solution Of Groups) was not possible since the procedure does not apply for the combination of cycloalkanes and water [9]. All separation units treating mixtures of cyclohexane and water were thus modeled as ideal separators with split factors based on practice.

Data accuracy

All property parameters were estimated with the <u>Unifac method</u>. Appendix 51 (p A.5.1-2&3) shows calculation of the vapour liquid equilibrium of selected mixtures with Unifac [10]. Results are plotted against experimental data. Accuracy of the estimations is within limits of 5%.

4.4 Reaction kinetics

As can be seen in de PFS, the process consist of two reactors. The first dehydrogenates propane to produce propylene. The second hydrates propylene to obtain IPA. The reactions that take place, in both reactors, will be discussed in the following section.

Propylene production

Reactions that take place in the dehydrogenation reaction [11]:

$C_{3}H_{8} \Leftrightarrow C_{3}H_{6} + H_{2}$	$\Delta_{\rm r} {\rm H}^{298}$ = 127.7 kJ/mol		(1) 4
$C_3H_8 \rightarrow 3C + 4H_2$	20.9		(2)
$C_3H_8 \rightarrow CH_4 + C_2I_1$	$H_4 \Delta_r H^{298} = -7.2 \text{ kJ/mol}$		(3)
$C_{3}H_{8} \rightarrow 2CH_{4} + C$	$\Delta_{\rm r} {\rm H}^{298}$ = -44.1 kJ/mol		(4)
$C_2H_4 + H_2 \Leftrightarrow C_2H_6$	20.9	S	(5)

It can be seen that reaction (1) and (5) are equilibrium reactions. The reactants of reaction (5) are being produced by the other reactions. In section 8.1 a more detailed report is given on the configuration used in Aspen to simulate these reactions.

Calculations concerning the selectivity and yields of the reactions (2)-(5) are discussed in appendix 5, the conversion was reported to be 0.90[12] All calculations are based on the 'by-product' composition as reported by Stitt[13], see table 22. A summary of the selectivity's and conversions of the reactions are presented in table 23 at 650 °C and 0.5 bara.

Table 22, selectivity's @ 650°C and 0.5 bara.

	Fraction [wt%]
Ethylene	1.1
Ethane	2.3
Methane	3.9
Carbon	7.7
Propylene	/
Total	100.0

Table 23.	reaction	charac	teristics.
-----------	----------	--------	------------

	Selectivity	Conversion	Yield
Reaction 1	0.879	0.900	0.791
Reaction 2	0.067	0.900	0.061
Reaction 3	0.003	0.900	0.003
Reaction 4	0.051	0.900	0.045
Reaction 5	0.753	0.900	0.677

The selectivity of the main reaction (1) lies within the range as reported[12]. These calculated yields determine the product composition which is given in table 22.

It should be noted that these results are based on a pure propane feed, which is not used in this design as feedstock for the propylene reactor (see appendix 2).

Confidential

Literature [2] suggests equation 4.1, which means that lowering the pressure will increase the conversion of propane.

$$K_{p} = \frac{\xi^{2} \cdot P}{(1 - \xi^{2})}$$
 [4.1]

 $K_P =$ Equilibrium constant, Pa

 ξ = Conversion of propane, --

P =Reaction pressure, Pa

The equilibrium constant is temperature dependent, and can be found in literature [14]

$$K_p \propto 10^{\sum \left(\frac{\nu_i K_i}{RT}\right)}$$
[4.2]

 $v_i =$ Stoichiometric coeffcient, --

 K_i = Equilibrium constant of the formation of compound i

R = Gas constant

T = Temperature

In this case the latter equation implies that an increase in temperature will have a positive effect on the position of the equilibrium. The other reactions will also favour from a temperature rise but less than the main equilibrium, which results in a positive effect on the selectivity.

IPA production

Inside the IPA reactor a vapour and solid phase are present. The solid phase is the phosphoric catalyst and the vapour phase contains the steam and the propylene/propane feed stream. Propylene and steam are converted to IPA in a thin layer of liquid H_3PO_4 , which forms inside the capillaries of the catalyst-sphere, when steam enters the catalyst. The rate determining step is the diffusion of water and propylene into the thin layer of liquid H_3PO_4 .

The limiting factor will probably be the diffusion of the propylene in the condensed water phase. It can be seen that the kinetics for the production of IPA are very complex, and are therefore not used. Instead reported conversions have been used.

Reactor temperature	175 °C
Reactor pressure	34 bar
Conversion/pass on C3H6	0.0574
Main product	IPA
Byproducts	Acetone / Coke / DIPE / n-propanol / Propane / Polymer
Water/propylene ratio (moles)	0.3-0.35
Deactivation of catalyst	± 2 years
Phases in the reactor	V/S

Table 24 Operating Conditions of the IPA reactor

Assumptions for by-products and their selectivity.

Main reaction Isopropyl alcohol	C_3H_6 + H_2O	→	C ₃ H ₈ O	(1)
By-product reactions				
Acetone Di-Isopropyl Alcohol 1-Propanol (NPA)	$C_{3}H_{6} + H_{2}O$ 2 $C_{3}H_{8}O$ $C_{3}H_{6} + H_{2}O$	+ + + +	$C_{3}H_{6}O + H_{2}$ $C_{6}H_{14}O + H_{2}O$ $C_{3}H_{8}O$	(2) (3) (4)

Some by-products, which are formed, are not included in this model. The forming of propane, cokes and polymer are not included as selectivity data could not be found.

Product/by-product	Selectivity C2				
IPA	0.97500				
Acetone	0.00375 0.99405				
DIPE	0.00530 1.000				
n-propanol	0.01000) 7				
Polymer	No data available				
Propane	No data available				
Coke	No data available				

2

5 Process Structure & Description

In chapter 2 the process concept was presented. However this did not reveal the details about the selected unit operations, which will be discussed in this chapter.

5.1 Propylene reactor

In the propylene reactor propane is converted to propylene by catalytic dehydrogenation. The design of the reactor is based on the configuration used in the Houdry Catofin process [15]. The reactor consists of a fixed bed containing a chromium oxide catalyst. Reactions take place at a low pressure (average 0.5 bara), selected to achieve an optimum between product selectivity and energy consumption. The reaction is largely endothermic. Three reactors are placed parallel for frequent regeneration of the catalyst bed. Burning of cokes in the regeneration cycle provides heat for the reaction; in this design fuel gas is led through the bed to heat it to the final temperature (different ways of providing the heat of reaction are proposed in several patents, see appendix 13). Every 7 minutes the bed needs to be regenerated. Large power-operated valves are placed to enable this swing operation under vacuum. Operation temperature of the dehydrogenation reaction is 650°C; under these conditions a high conversion of 90% can be achieved. Selectivity to propylene is 87.9% (see chapter 4 and appendix 5.1). The vessel designed to operate under vacuum can withstand an equivalent pressure of 3.6 bara.

5.2 IPA Reactor feet

Operating at 175°C and 34 bara the IPA reactor converts propylene to isopropyl alcohol. This exothermic reaction has a low conversion per pass of 5.7%, asking for large recycles around the reactor. The recycle is split in two: one going around the IPA reactor, the other flowing back to the propylene reactor. Split fraction was set to 0.9 in direction of the IPA reactor cycle (see appendix 8 for recycle mass flows against split factor 'alpha').

Kinetics for the production of IPA are rather complex. The catalyst in the fixed bed reactor consists of <u>porous particles with H_3PO_4 </u> acid deposited on them. The steam entering the reactor will condense in the particle, as a result some acid will dissolve in the condensed water. When the propylene also dissolves in the condensed water the reaction can take place.

5.3 Columns

The separation columns in the process are sieve plate columns. R101 effluent leaves the reactor at 650°C and 0.33 bara. To limit the loss of product through polymerisation the product gas pressure is raised to $\frac{36}{26}$ bara. This pressure level is also required to achieve temperatures above -50° C in the partial condenser of C101.

Deethanizer column C101 removes hydrogen and light ends. Hydrogen must be removed from this stream since it is an explosive gas; leakage of hydrogen would invoke the reverse Joule-Thompson effect creating heat for explosion. Keeping hydrogen gas in the R102 feed stream would ask for the use of stronger vessel materials. It is required to separate the light ends from the propylene reactor product is, since too much light alkenes in the IPA reactor feed will cause high levels of ethanol and di-ethylether in the product stream. Ethanol spec in IPA product should be less than <u>50 ppm</u>. C4 and C6 alcohols in IPA product stream give trouble with the strict odour specifications.

Refrigeration duty at -33° C in the condenser of C101 is delivered by a heat pump. The closed heat pump cycle contains a propane/propylene mixture in the same ratio as the C101 bottom stream. A valve causes the stream of 34 bara of 40°C to drop adiabatically to 1 bara and -47° C, arriving at the right temperature level to deliver cooling duty. Compressor K103 brings this stream back at 34 bara, after which it is cooled from 140°C to 40°C with cooling water (E110).

Reactor effluent from the IPA reactor still contains vast amounts of propane and propylene. These components are separated from the IPA product stream in the washing column C102. This column functions as an absorber, a fixed bed in which water strips the stream from IPA product. Propane and propylene are recycled. Pressure difference over compressor K104 is 5 bar. The absorber should work at 29 bara and $30^{\circ}C^{2}$

The separation section works under at<u>mospheric conditions</u>. Light ends column C201 operates at 1 bar and removes DIPE and NPA over the top. The bottom product <202> should contain 15% IPA in water. Therefore, a sufficient part of water stream <213> is recycled to the light ends column, which enters in the top (no condenser needed). A wet distillation is needed in order to meet odour specifications (higher alkanes would affect the specs). Aromatic compounds would leave the columns with DIPE and light ends over the top because of the high activity coefficient.

However water forms an azeotrope with IPA; water is removed in distillation column C202 such that the side stream contains 85% of IPA and 15% water (azeotropic condition). The azeotrope is separated with the aid of cyclohexane as entrainer in C203. The IPA product stream <222> contains maximum 0.05% NPA and 0.1% water. The reflux of the cyclohexane rich stream from vessel V203 counts 4 over feed.

5.4 Heat exchangers

Two types of heat exchangers were used: fixed tube sheets and floating head. According to guidelines [18] fixed tube sheets were placed for the lower temperature differences and lower pressures (ΔT <30°C, P<8 bar), for other exchangers floating heads were used which allow higher pressures and temperature differences.

Air was selected as cooling medium if hot stream end temperatures exceeded 60°C. For other streams cooling water was used. As a design practice cooling water was located in the tubes (being the stream with biggest chance on fouling) because these can be easily removed and cleaned. Exceptions on this rule are the exchangers with the hydrocarbon streams at high pressures. Allocating the high pressures to the tube side is cheaper than high-pressure shells.

²However it should be noted that in the process simulation this absorber was modelled at a pressure of 1 bar. This causes the duty of compressor K104 to increase unrealistically. Therefore in the design of the equipment operating conditions were assumed that are indicated in appendix 12A (Recommended flow scheme).

Confidential

5.5 Dryer

The recycle from washing column C102 contains water. This water should be removed since it would freeze in the condenser of C101 and could damage the catalyst in R101. Furthermore the risk of formation of gas hydrates should be minimised. Gas hydrates are ice structures containing light alkanes. Alcohols function as inhibitor for gas hydrate³ formation. Gas hydrates are formed at temperatures below 10°C [16]. Dryer D101 is placed in the recycle stream to the propylene reactor in order to minimise the volume flow through the dryer bed. The dryer contains molecular sieves (zeolite) that absorb water. Two beds are placed parallel to allow frequent regeneration; heating it with burning fuel gas dries the bed.

5.6 Decanters, knockout drums

In the first section a high-pressure knockout drum is used to separate the liquid phase from the vapour phase. This was done to minimise the load on the absorber. Top stream from the light ends column C201 and the bottom from the NPA-recovery column C205 are fed to the three-phase-decanter (V201). In this vessel the ethers (gas), the NPA as dispersed phase and an inorganic as the continuous phase are separated. The last decanter is used to separate the azeotropic agent (cyclohexane) from the water phase. The azeotropic agent is sent back to the IPA drying column.

5.7 Pumps

All pumps are centrifugal pumps. These pumps are widely used in the process industry and can be used for the operating conditions of this process. In two cases a multi stage pump is necessary (P102 and P103) this is due to the large head, which has to be met; exact specifications to be determined by experts. The pump P203 used to transfer the NPA from decanter V201 has to be able to pump very small volumetric flow rates; this may be done through by-passing the pump.

5.8 Compressors

Besides the 'centrifugal compressor' two other types of compressors are used within the chemical industry. If a high capacity is desired an *axial flow compressor* is used, therefore compressor K104 in the recycle around the IPA reactor has been chosen to be such a compressor ($\Delta P = 5$ bar). There is a big pressure change between the two reactors. Another constraint is the vacuum, which is desired within the propylene reactor section. A normal centrifugal compressor cannot obtain this. For this reason the pressure difference is achieved by installing a *reciprocal compressor* to create the vacuum. A second *multi stage centrifugal compressor* produces the large increase in pressure from 0.57 to 36 bar within three stages (pressure ratio of 4).

5.9 Process Flow Scheme (PFS)

Appendix 1 contains the complete process flow scheme.

Description of UNIT 100, REACTION SECTION

The propane feedstock enters the process at 15 bara in stream <101>. After letting the pressure off, it is mixed with the so-called overall-recycle, stream <134>. It is then

⁴ Note that in the PFS the vessel is a flash vessel, but due to the improved configuration a decision was made to insert a knock out drum at high pressure. See appendix 12A 'Recommended process flow scheme'

warmed up by the reactor effluent, stream <108>, and heated in the furnace (F101). It enters the dehydrogenation reactor (R101), where it is converted to propylene. (R101) consists of 3 reactors, of which one is used, one is being regenerated and one is standby. After being cooled by the aforementioned feed-product heat exchange, the stream <109> is brought up to 0.67 bara by compressor (K101), and again to 36 bara by compressor (K102). After both compressors, cooling is used. Stream <114> enters the deethanizer (C101), where the light ends are removed. The bottom stream <118> is mixed with some make-up water and the IPA-recycle stream <132>, which is to be discussed later. The resulting stream <121> is, after heating, conducted to the hydration reactor (R102), where propylene is converted to isopropyl alcohol (IPA). In the high pressure separator (V102), most of the C3s are removed; the remaining C3s are stripped off in the washing column (C102) with the water stream <129>, which has it origin in Unit 200 and will be discussed there. The top of C102, stream <130> which contains mainly unconverted propylene and some unconverted propane, is split in two: one part to the overall-recycle (stream <133>, which is dried over a zeolite bed before it is mixed with the feed), and the greater part to the so-called IPA-recycle, stream <131>. This stream is compressed and mixed with the C101 effluent. The bottom of column C102 and separator V102, stream <134>, is led to Unit 200, the separation and purification section.

Description of UNIT 200, SEPARATION AND PURIFICATION SECTION

Stream <137>, consisting of impure IPA and water, is fed to the light ends column (C201). The stream <203>, which leaves the top, is mixed with stream <234>, which leaves the bottom of the NPA recovery column (C205) and contains mainly n-propylalcohol (NPA). The resulting stream <204> is completely condensed and fed to the phase separator vessel (V201). Light ends and ethers are removed as a gas, stream <206>; NPA is tapped off as the organic phase in stream <207; and the aqueous phase with IPA in it is mixed up with the feed of column (C201).

The bottom stream <202> of column (C201) enters the IPA CBM column (C202). This column has as a top product some light ends, ethers and NPA in stream <212>, which is fed to the NPA recovery column (C205), which is to be discussed later. The bottom stream <213> consists of pure water and is split in three: a part is led back to column (C102), another part to the IPA reactor (R102) and the remaining part is used as reflux in column (C201). The side stream <209> of column (C202) consists of an almost azeotropic mixture of IPA and water and gives the column its name (CBM = Constant Boiling Mixture). It is mixed with a make-up stream of cyclohexane <219> and enters the last separation step.

This combined stream <220> enters the IPA drying column, where the IPA/water azeotrope is broken with the aid of an azeotropic agent, cyclohexane. The product IPA is recovered at 99.9% purity at the bottom of this column, in stream <221> which becomes, after cooling, stream <222> which leads to the storage tanks. The top stream <223> is condensed and fed to the phase separation vessel (V203), where cyclohexane with some IPA in it is recovered as the organic phase (stream <224>) and water with some IPA in it as the aqueous phase (stream <225>). The former stream is used as the reflux for column (C203); the latter is fed to the cyclohexane recovery column (C204), where almost clean water leaves the bottom in stream <229> and is led to the waste treatment to have the remaining organic impurities removed. Stream <228> leaves the top of (C204) and is mixed with the feed of the (C203) column.

Finally, the aforementioned NPA recovery column (C205) essentially separates NPA (bottom) and IPA (top), which are led back respectively in stream <234> to separator (V201) and in stream <233> to column (C201).

5.10 Process Stream Summary

The process stream summary is indispensable for a good understanding of the process flows. It indicates pressure, temperature, enthalpy, phase and composition for each stream. The stream summary can be found in appendix 2.

5.11 Heat integration

Heat integration is usually performed with the main process streams. The diagram in Appendix 10.1 shows a graphical representation of the process streams that have to be cooled or heated.

Only the two feed streams to the reactors need heating. According to practice it seems plausible to place product-feed exchangers ([ref [6], [18]). However to heat the R101 feed stream <103> from 5°C to 650°C in one exchanger would ask for expensive equipment because of the high end temperature and large temperature difference. Therefore medium pressure steam of 15 bar and 300°C is produced by exchanging the R101 product stream <107> with boiling feed water. This stream is then further exchanged with stream <103>. A furnace is required to bring the R101 feed to the entrance temperature of 650°C (see process flow scheme). This also improves temperature control around the reactor.

The use of a product-feed exchanger around reactor R102 proved to be unfavourable during the design, since the small temperature difference asks for a very large heat exchange area and thus expensive equipment. It was decided to heat the reactor feed <121> with hot utilities.

To make use of further available heat in the process streams, exchangers E107 and E113 were placed to form the reboilers of respectively C203 and C201. Evaluation of the heat integration regarding control options and pinch analysis follows in respectively chapter 6 and 7.

5.12 Utilities

Major consumers of utilities in the process are the compressors (K101 to 104), reboilers of the columns (e.g. the reboiler for C202 asking for 58MW) and the coolers. Large quantities of air and cooling water are used for cooling process streams and providing the necessary duties for the condensers.

Compressors K101 to 103 use electricity, under the assumption that power is sufficiently available (investment is included in cost). Compressor K104 however is driven by MP steam of 15 bar) that is produced in the plant (E105). After being used for the compressor this steam exits as low-pressure steam on 5 bar and is employed for heating of the reboilers of columns C101 and C204; 0.38 t/h is left over and appears as net steam production.

Fuel gas is used for the regeneration of the catalyst in the propylene reactor and for drying the fixed bed of dryer D101.

~~

Optimisation of operating conditions and connections between unit operations could reduce temperature differences and thus cooling and heating duties.

5.13 Process Yields

Tables below present the yields of product, feed, by-products, process chemicals and utilities. Appendix 4.2 shows the results in a block diagram.

Process Yields - Streams								
Name	Ref.	kg/s		t/h		t/t IPA Product		
	Stream	IN I	OUT	IN ,	OUT	IN [OUT	
Propane feed	<101>	4.85		17 47		0 84		
Make up water	<119>	2,97		10.70		9.51		
Make up cyclohexane	<219>	0.01		0.02		0.001	1	
Light ends from C101	<116>		0 53		1.90		0-08	
Vent	<206>		0 13		0.45	1	0,02	
To NPA storage	<207>		0 0 1		0.02		0.00	
IPA product stream	<222>		5 78	1	20.81		1,00	
To water treatment	<230>		1.00		3.58		0 1	
Cokes	<001>		0.12		0.43		0.02	
Water effluent	<002>	2	0.22	(0.80		00	
Total		7 830	7.778	28.188	28.000	1.3543	1/345	

Table 25, process yields of the streams

-0.052

Table 26, process yields of the utilities

		Process Yie	lds – Utilit	ies			
Name	Ref. Stream	kg/s	kW	t/h	kWh/h	t/t IPA Product	kWh/t IPA Prod.
LP Steam (1)	- Olieani	-0.11		-0.38		-0.02	
MP Steam		6.80		24.48		1.18	
HP Steam	-	50.00		180.00		8.65	
Fuel Gas	-	0.70		2.51		0.12	
Cooling Water	-	2045.86		7365.11		353.92	
Air		4321.90		15558.84		747.66	
Electricity	-		17954.72		17954.7	2	862.8
	Remarks: (1)	LP steam is		ed in the pro	ocess		

The yield with respect to propane feed of 0.84 t/t is higher than the reported value. 0.82 t/t ref [5]

6 Process Control

In this chapter, the basic control of the process will be described.

6.1 Basic controls

Some basic control that appears at several units is described below; exceptions will be mentioned in the text.

The temperature of the outgoing stream of a heater/cooler is controlled by a TC controlling the valve of the heating/cooling medium. The pressure control after compressors and pumps is usually done by varying the bypass over the unit.

The level control of vessels is done by controlling the valve after the discharge pump. With a two-liquid-phases separation vessel, the level of the lightest fluid, which flows over the baffle, is controlled by a level control as described above. The interface level, and thus the level of the heaviest fluid, is controlled by an interface controller connected to a valve after the other pump.

The control around most distillation columns has the following basic configuration: top stream condenser temperature control over cooler reflux flow control over the reflux (left) pump accumulator level control over the remaining (right) pump reboiler temperature control over the reboiler heater liquid level control after the discharging pump.

6.2 Following the process streams

The feed stream is preheated by exchanging heat with the product stream, in heaters E101 through E104. The temperature is controlled by letting a TC control the bypass of E104.

The stream is then heated in the furnace F101. The outgoing temperature is kept constant by a TC controlling the furnace fuel and air feed.

There are two types of control in the reactors R101A/B/C. In the reactor that is on stream, the pressure has to be controlled. This is done by controlling the compressor K101. The reactor that is being regenerated needs a temperature control by controlling the inflow of air and fuel gas.

The pressure after compressor K102 is controlled by K102s bypass. At the top section of column C102, there is an exception to the standard configuration: while there is only one pump, reflux as well as accumulator liquid level will have to be controlled by it. To flatten out fluctuations to ensure a smooth operation, a cascade control with a TC- and a FC- control is used here.

At reactor 102, the risk of a runaway reaction exists. There is a temperature control at heater E112, but would a runaway occur, it can be quenched with water by letting a TC open the valve after P102.

Arriving at Unit 200, we see a reboiler temperature control not by varying a heating medium flow but by varying the bypass over the heat exchanger E113.

The liquid level of column C202 is controlled by a valve in stream <218>, because the flow controls in streams <214> and <216> have the priority: first, a sufficient stream must be led to C102 respectively C201; then, with the remaining stream, the level can be controlled.

As with C201, the reboiler temperature of C203 is controlled by the bypass over a heat exchanger.

From now, control is straightforward, as described under "Basic Controls".

6.3 Explanation of process streams-reboiler connections

Exchangers E107 and E113 were placed to form the reboilers of respectively C203 and C201. Although this is usually unfavourable in terms of process control, measures can be taken to avoid problems. Changing cooling duties of E106 and E108, in order to secure enough energy for the reboilers of C203, could control temperature differences in stream <112>. However temperature allowances for compressor K102 limit this control loop. Placing a by-pass over E113 could provide control over temperature differences in R102 effluent, so that the reboiler of C201 runs on constant duty. Normally heat exchangers for steam would be added in the reboiler cycle to complement required duty.

7 Mass and Heat Balances

In this chapter the mass and heat balances are presented. For mass and heat flows that cross the battery limit, in- and outgoing amounts should be equal. Assessing the mass and heat balance forms a good evaluation tool for the design. This chapter also demonstrates an analysis of the heat integration possibilities in the process.

7.1 Overall mass and heat balance

Table 28 shows the overall mass and heat balance. Data for the streams is taken from the Process Stream Summary, appendix 2.

	Over	all mass and	heat balance	ce	
		Mass		Heat	
Name	Ref.	kg/s	;	kW	
	Stream	IN	OUT	IN	OUT
Propane feed	<101>	4.85		13160.49	
Make up water	<119>	2.97		35537.36	
Make up cyclohexane	<219>	0.01		10.21	
Light ends from C101			0.53		763.25
Vent	<206>		0.13		143.91
To NPA storage	<207>		0.01		17.02
IPA product stream	<222>		5.79		34,980.91
To water treatment	<230>		1.00		15,795.21
Cokes	<001>		0.12		6,460.86
Water Effluent	<002>		0.22		2,979.72
Hot utility				152,189.59	
Cold Utility					223,682.80
Power ⁽¹⁾				16,021.51	
TOTAL		7.83	7.79	216,919.16	284,823.68
Error [%]			_0.55	23.84	
Remarks: (1) Includes	theoretical of	luties of pum	os and compres	sors

Table 27, overall mass and heat balance

7.2 Mass balance

The overall mass balance indicates a small deviation of 0.55%. This is due to reduced convergence accuracy that was required to run the simulation in Aspen. Maximum relative error that was allowed counted 1%.

7.3 Heat balance

In the heat balance a rather large error of 23.84% is encountered. Three possible reasons for this deviation can be found. First is that the separation columns C203 and C204 were simulated as ideal separators (no adequate thermodynamic models were available), resulting in deviations in enthalpy of the streams. Second cause of errors in the heat balance could be found in the fact that column C201 was simulated separately (correction of feed stages and way of reflux). Third is that the flow scheme was split into three sections in order to complete the simulation. Rounding errors in the input of the connecting streams may have contributed to the deviation. Exact reasons should be closer investigated during future design.

7.4 Component mass and heat balance

An overall component mass balance and stream heat balance is included in the appendix (appendix 4).

7.5 Heat integration

A pinch analysis follows to evaluate design decisions of the heat integration (see chapter 5). Pinch technology [Linhoff et al 17, p.100] is used for the efficient design of heat exchanger networks and can lead to reduction in energy requirements. Reboilers and condensers were left out of the calculation of the pinch. Table 29 shows the hot and cold streams that were taken into account.

Table 28, hot and cold streams used for heat integration analysis

	Hot stre	ams			Cold s	treams	
Stream nr.	Duty [kW]T	(in) [°C]T	(out) [°C]	Stream nr.	Duty [kW]	T (in) [°C]	T (out) [°C]
<107>		650	100	<103>	24097	5	650
⁽²⁾ <112>		180	30	<121>	14061	140	160
(2)<123>		180	90)			
<126>	39427	90	30)			
(2)<216>	6809	90	30				
(2)<204>		80	30)			
<222>	4765	80	30)			
Rem	arks: (1) St	ream <229	9> left out	of discussi	ion becaus	e of small	duty
				tervals for e			E

From this data composite curves can be calculated and plotted on a temperatureenthalpy diagram (appendix 10.2). The cold composite curve is shifted on the enthalpy axis below the hot composite with a minimum temperature difference of 10°C.

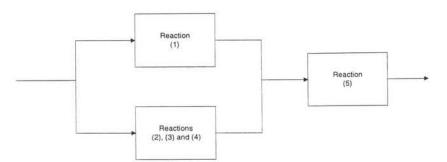
Hot utility requirements are relatively small, <u>1185 kW</u>, but cold utilities should at least provide <u>92000 kW</u> of cooling duty. From this diagram the Grand Composite curve can be drawn (appendix 10.3). The pinch temperature is found to be 145°C.

The grand composite shows that all cold streams between $650 \,^{\circ}\text{C}$ and $145 \,^{\circ}\text{C}$ can be heated with process streams. However if heating capacity is used to form MP steam of $300 \,^{\circ}\text{C}$, additive hot utilities are required ($\pm 12500 \,\text{kW}$).

Evaluation with pinch analysis demonstrates that heat flows across the pinch in exchanger E101; this will cause the consumption of utilities to be greater than the minimum values that could be achieved. An improvement could be to increase the duties of furnace F101 and E105, respectively to heat stream <104> and cool stream <107>.

8 Process equipment Design

In this chapter the use of the simulation tools will be discussed and explained. Simulation problems and calculations concerning the equipment from the PFS will be presented. The 'Design Specification Sheets' (and their summary) can be found in appendix 6. In this appendix the results of the simulation and sizing calculations per piece of equipment are summarised.


8.1 Integration by Process Simulation

The process is simulated with the process flow sheet simulator ASPEN+ version 10. ASPEN combines a graphical flow sheet interface with thermodynamic model calculations to simulate the different process units and streams. For other simple calculations the spreadsheet program Excel was used (MS Office2000).

8.2 Special modelling issues

As mentioned in chapter 4, two equilibrium reactions occur within the propylene reactor. Both equilibrium reactions are simulated in Aspen using two equilibrium reactors. The equilibrium reaction, in which ethylene is converted to ethane, cannot be simulated without taking into account the irreversible reactions for the production of ethylene and hydrogen. $(5) \approx (3)$

Schematically this looks like:

Figure 4, block diagram of the simulated propylene reactor.

The reactors were first simulated based on a pure propane feed. By adjusting the available simulation parameters, the yields were obtained as calculated in <u>chapter 4</u>. The equilibrium constants used for the equilibrium reactions are calculated by Aspen using the Gibbs energies at a specified temperature. A change in temperature at which the constant is calculated, results in a change in of the conversion.

Within the purification section (Unit 200), a lot of ideal separation blocks have been used. This was due to problems with the thermodynamic models, as mentioned in chapter 4.

Because of the large numbers of circular calculations (due to the recycles) ASPEN had difficulties converging. The decision was made to split the total process up into three sections.

Section 1; up to the absorber Section 2; columns C201, C202 and C205 Section 3: columns C203 and C204

8.3 Equipment Selection and Design

Reactors

Propylene reactor R 101)

For the design of the propylene reactor assumptions had to be made and these are stated in table 30.

Assumptions	Ground for assumption				
$d_p = 5.3 \text{ mm}$	Same as IPA-catalyst; Rob Berger[18] says this is a common diameter.				
Cat. Cost: 20 DM/kg	Educated guess after consulting Rob Berger [20] [18]				
Void fraction $= 0.4$	Common value; same as in IPA reactor				
$GSHV = 4000 \text{ m}^3$ gas/m ³ cat/hr	Interpreted from fig.2, article of EH Stitts[13]				
Viscosity of gas in reactor = $2e-5 \text{ Ns/m}^2$	This is the average value of the viscosity's of propylene and propane at 1 bara and 500 °C.				

Table 29. Assumptions made for the design of the propylene reactor

The Gas Hourly Space Velocity enables one to calculate the amount of catalyst needed for the volumetric rate of the gas entering the reactor.

$$m^{3}_{cat,required} = \frac{Volumerate}{GHSV}$$
[8.1]

The amount of catalyst determines the required reactor volume. Reactor dimensions can then be determined. Usually L/D equals 4, however the propylene reactor operates at sub atmospheric conditions and therefore a maximum pressure drop of 0.33 bara is allowed. So the pressure drop then determines the height of the bed. Ergun's equation[19] gives the maximum height of the catalyst bed:

$$\frac{\Delta p}{\rho L} = \frac{v_0^2}{d_p} \frac{1-\varepsilon}{\varepsilon} (170 \frac{v}{v_0 d_p} (1-\varepsilon) + 1.75)$$
[8.2]

Once L (= height of the catalyst bed) has been determined, the diameter of the catalyst bed can be calculated, which is also the diameter of the reactor. L/D for the propylene reactor equals 1.3 instead of 4. This is not unusual for propane dehydrogenation reactors, which are reported to have large cross sectional areas.[15]. The results are summarised in appendix 6, in the 'Design Specification Sheets'

IPA reactor

The design of the IPA reactor has been done according to the IPA reactor, operated by Shell on their Pernis site. The GHSV of the Pernis IPA reactor has been calculated and this GHSV has been used to determine the dimensions of this IPA reactor.

In Aspen a stoichiometric reactor models the IPA reactor, where the reactions occur in series. All reactions and conversion of propylene are known. Selectivity for the main (product forming) reaction is also known. Catalyst deactivation and coke deposition have not been modelled because little literature data was available and because of time limitation.

The dimensions of the propylene reactor were calculated with the same method used to calculate the dimensions of the propylene. For the IPA reactor L/D has been set to 4, which is a common value. For comparison, the L/D of the Shell IPA reactor equals 3.67. The results are summarised in appendix 6 'Design Specification Sheets'.

Distillation columns

In this section the procedures will be discussed as they have been used for design of the distillation columns. An example calculation and the results can be found in appendix 8. For the symbols used, see the 'List of symbols' at the end of the report.

Design considerations

The operating range of a distillation column is determined by weeping, flooding and entrainment. These three parameters are used in the design procedure[18, chapter 11], in which the following steps are taken:

- Determining the diameter
- Determining the interior
- Check for weeping
- Determine pressure drop per plate
- Check flooding/downcomer
- Check entrainment

External design

A column is normally divided into two sections, the top- or rectifying section and the bottom- or stripping section (with respect to the feed stage). As a consequence the overall-design exists of the stripper design and the rectifying design. The procedure and relationships are the same for both sections.

The first step is to determine the liquid-vapour flow factor[18], FLV, see equation 8.3

$$F_{LV} = \frac{\phi_{mL}}{\phi_{mV}} \cdot \sqrt{\frac{\rho_V}{\rho_L}}$$
[8.3]

Using this liquid-vapour flow factor and the chosen plate spacing (t_s) , K_1 can be obtained[18, fig. 11.27]. This constant is used to determine the flooding velocity[18, p509], see equation 8.4.

$$u_{f} = K_{1} * \sqrt{\frac{\rho_{L} - \rho_{V}}{\rho_{V}}}$$
 [8.4]

The upper limit of the vapour velocity determines the column diameter. In this case 90 % of the flooding velocity is taken as design value.

To calculate the column diameter an estimate of the net area is required. This follows easily from the mass flow and the design value for flooding velocity calculated above. The net area. A_{net} , must be corrected for the downcomer area in the column. Typically, 15 % of the total area is taken as initial design value. This leads to the following column diameter:

$$D_{col} = \sqrt{\frac{4}{\pi}} \cdot A_{col}$$
[8.5]

with:

$$A_{col} = \frac{A_{net}}{0.85}$$
[8.6]

The number of theoretical plates has to be corrected for plate inefficiencies, due to the fact that the thermodynamic equilibrium is not completely reached. This is corrected using the column efficiency, see equation 8.7.

$$N_{actual} = \frac{N_{theoretical}}{E_{col}}$$
[8.7]

The length of the column is estimated using equation 8.8

$$L_{col} = (N_{actual} - 1) \cdot t_s \cdot 1.15$$
[8.8]

The next step is the design of a provisional plate. Some methods to estimate parameters like weir dimensions, active area, hole size, number of holes and the hole pitch are given in [18, sec. 11.13].

With the results calculated and estimated above one still has to justify the practical operability of the column. At first weeping is considered, then plate pressure drop, downcomer back-up and finally entrainment is checked.

Weeping

The lower limit of the operating range occurs when liquid leakage through the plate holes becomes excessive. The minimum design vapour velocity through the holes is given by equation[18, p513] 8.9:

$$u_{h,min} = \frac{\left(K_2 - 0.9 * (25.4 - D_h)\right)}{\sqrt{\rho_V}}$$
[8.9]

The hole diameter, d_h , is chosen arbitrarily in the provisional plate design. K_2 is a constant, depending on the depth of clear liquid on the plate [18, fig. 11.30]. The clear liquid depth equals the weir height h_w plus the crest of liquid over the weir h_{ow} . The latter can be estimated using the Francis weir formula for segmental downcomers:

Confidential

$$h_{ow} = 750 * \left(\frac{\phi_{mL}}{\rho_{L} * l_{w}}\right)^{\frac{2}{3}}$$
[8.10]

The weir length, l_w , is estimated from [18, p515]. Weeping will not occur if vapour velocity exceeds the required minimum vapour velocity. Otherwise the provisional plate design has to be adjusted.

Plate pressure drop

The total plate pressure drop h_t , expressed in mm liquid, is as follows: $h_t = h_{ow} + h_w + h_d + h_r$ [8. 11]

The dry plate pressure drop, h_d, is given by:

$$h_{d} = 51 * \frac{\rho_{v}}{\rho_{L}} * \left(\frac{u_{h}}{C_{o}}\right)^{2}$$
[8.12]

 C_o is called the orifice coefficient and is a plate property; u_h is the hole velocity. The residual head, h_r , is given by:

$$h_{r} = \frac{12500}{\rho_{L}}$$
[8.13]

Downcomer

The level of liquid and froth in the downcomer should be well below the top of the outlet weir on the plate above to prevent flooding. The downcomer liquid back up (h_b) is defined as follows:

$$h_b = h_{ow} + h_w + h_t + h_{dc}$$
[8. 14]

The head loss in the downcomer, h_{dc} , results from resistance to flow in the downcomer and can be estimated using the following equation:

$$h_{dc} = 166 * \left(\frac{\phi_{m,L}}{\rho_L * A_{ap}}\right)^2$$
[8.15]

To account for the froth density in the downcomer, the liquid back up (h_b), calculated from equation 8.14, should satisfy the following condition: $h_b < 0.5 * (t_s + h_w)$ [8.16]

Finally, the residence time in the downcomer must be sufficient for the entrained vapour to disengage from the liquid stream. A residence time of at least of 3 seconds is recommended. The residence time is given by:

$$t_{s} = \frac{A_{d} * h_{b} * \rho_{L}}{\phi_{m,L}}$$
[8.17]

Entrainment check

With the entrainment check the amount of liquid flowing up with the vapour is calculated. The flow factor F_{LV} is correlated with the fractional entrainment and the percentage flooding. Typically, the fractional entrainment should fall below 0.1 in order to neglect entrainment effects on plate efficiency.

A special case was the design of the distillation column C204, which could not be designed in an ordinary way because no thermodynamic model was available. Data form a similar column, was provided by Shell, and can be found in table 31.

Feed	(kg/hr)	2000
L	(m)	19
D	(m)	0.9
A		0.64
R	(m3/hr)	5.2

Table 30, data from a similar column as C204

The ratio of the provided feed and our feed was used to determine the surface area needed in our column. The length is kept the same. Using the same equations as used for the other columns an estimation was made for the column dimensions.

The general results of the column design are listed in table 32. A more detailed result can be found in appendix 6 'Design Specification Sheets'.

In the design of the columns weeping almost occurred; due to this the minimum vapour velocity is high. Columns were modelled using sieve plates, in future design it is recommended to use valve plates.

		C101	C201	C202	C203	C204	C205
Diameter							
-Top	[m]	2.34	2.67	2.51	2.60	1.34	2.68
-Bottom	[m]	2.61	3.03	2.84	n.a.	n.a.	2.68
Column height	[m]	31.05	31.05	39.68	23.29	19.00	18.98
Plate spacing	[m]	0.60	27.00	0.60	0.45	0.45	0.60
Downcomer area	[m2]	0.80	0.58	0.95	0.80	n.a.	0.85
Total plate pressure drop							
-Top	[Pa]	1168	2368	1122	1135	1000	1192
-Bottom	[Pa]	1160	2301	1776	n.a.	1000	1192
Number of trays (actual)	[-]	45	45	58	45	35	28

Table 31, summary column design

Absorber

Sizing an absorber starts similar to sizing a distillation column. The F_{lv} is determined, see equation 8.3. Using this liquid-vapour flow factor two constants are determined[18, fig.11.44], K₄ at flooding and K₄ at a certain pressure drop per meter

packed height. Using equation 8.18 the gas mass flow-rate per unit column crosssectional area can be calculated.

$$V_{W}^{*} = \left[\frac{K_{4} \cdot \rho_{v} \cdot (\rho_{L} - \rho_{v})}{13.1 \cdot F_{p} \cdot (\mu_{L}/\rho_{L})^{0.1}}\right]^{\frac{1}{2}}$$
[8. 18]

 $V_w^* =$ gas mass flow - rate per unit column cross - sectional area, kg/m²s

 $F_{\rm m} = {\rm packing factor, m^{-1}}$

 $\mu_I =$ liquid viscosity, Ns/m²

Dividing the actual mass flow rate through the V_w^* will result in the required area, and thus lead to the column diameter. This is summarised in equation 8.19.

$$D_{absorber} = \sqrt{\frac{4}{\pi} \cdot \frac{\phi_{m,gas}}{V_w^*}}$$
[8.19]

The length of the column depends on the packing used in the column. To obtain a reasonable column diameter, a structured packing was chosen (Mellapak). For an absorber with structured packings, the length of the column can be calculated using equation 8.20.

$$L_{absorber} = N_{theoretical} \cdot HETP \cdot 1.15$$
[8. 20]

The HETP will depend on the packing, but a conservative estimate is said[18, p538] to be 0.5m. This results in the figures as summarised in table 32, for a more detailed summary can be found in appendix 6 Design Specification Sheets'.

		C102
Diameter	[m]	2.78
Length	[m]	8.63
Packing	[-]	Mellapak 250 _x
Theoretical plates	[-]	15

Table 32, summary of the general results of the absorber

Dryer column

The dryer has been designed using similar calculations used to calculate the dimensions of both reactors. The following assumptions were made:

- The zeolite used can absorb 15 wt-% water.
- The zeolite is regenerated to 3 wt-% water.
- The zeolite bed has a weight of 50 tons.
- Density of the zeolite is 750 kg/m³

The amount of water, which has to be removed was taken from the stream summary, appendix 2, stream <002>. The weight of the zeolite bed then determines the onstream time of the first dryer, before the second dryer has to take over and the first dryer can be regenerated. Regeneration has to take place within the on-stream time of the second dryer. The regeneration time for each dryer was set to 6 hours, leaving two hours for other activities or allowing the dryer to be put on-stream earlier in case more water has to be removed. Theoretically, a dryer should be on-stream for 8 hours.

Because the weight and density of the catalyst have been set, the volume of the zeolite bed and thus the size of the dryer are easily calculated. L/D has been set to 4. For a summary of the results see appendix 6.

Vessels

The phase separator and accumulator vessels have been designed in the following way:

horizontal cylindrical vessels were used because of the large volume flows the relation L/D was taken at 4

the liquid level was supposed to be at half the vessel height

it was demanded that the pumps after the vessel would not run dry for 15 minutes when the supply would stop; this 15 minutes is the required holdup time for half the vessel volume.

From these data and the throughput, the volume, L and D of the vessel were calculated:

 $V [m^3] = 2 * (throughput [m^3/min]) * (holdup time [min])$

Now that the volume is known, we can obtain the length and diameter of the vessel – at the given L/D=4 – by using the Goal Seeker in Excel.

Exceptions made to above guidelines:

- for V102, L/D=2.5 was taken because of the large gas flow which needs a large area rather than a large volume
- for V101, V202 and V205 (all accumulators), the calculated volumes were too big; a required holdup of 5 instead of 15 minutes was taken. As a consequence, tripping systems will have to be installed on pumps P101, P205 and P215.

Heat exchangers, reboilers, condensers

Heat exchangers were designed according to Coulson & Richardson [18,chapter 12]. Results can be found in the design sheets, appendix 6.2.

The general equation for heat transfer across a surface is:

$$Q = UA\Delta T_m$$
[8.21]

The logarithmic mean temperature is calculated from the temperature differences between the hot and cold medium:

$$\Delta T_{lm} = \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln \frac{(T_1 - t_2)}{(T_2 - t_1)}}$$
[8.22]

Confidential

To find the true mean temperature difference, the logarithmic mean temperature is multiplied with the temperature correction factor (F_t) .

$$\Delta T_m = F_t \Delta T_{lm} \tag{8.23}$$

This factor F_t is correlated as a function of two dimensionless temperature ratios, R and S.

$$R = \frac{(T_1 - T_2)}{(t_2 - t_1)}$$
[8.24]

$$S = \frac{(t_2 - t_1)}{(T_1 - t_1)}$$
[8.25]

Graphs were used to determine F_t [18, fig. 12.19 and 12.20]. Number of tube and shell passes were chosen according to the results of ratios R and S.

Heat duties for the exchangers were taken from process simulation. Average heat capacity for the streams was calculated with:

$$Q = \phi_M c_P (T_{out} - T_{in})$$

$$[8.26]$$

Overall heat transfer coefficients U were estimated with tabulated typical values [18, table 12.1]. Necessary heat transfer areas were calculated by completing formula 8.21 with Q, ΔT_m and estimated U. The results are summarised in appendix 6 'Design Specification Sheets'.

Furnace

For the furnace design certain assumptions have been made:

- 80% of the combustion heat is transferred into the radiant section
- No convection takes place, so pressure drop can be neglected
- the burner is fed with fuel gas and 20% excess of air
- Thermal efficiency is 80%. (This is a common value, the thermal efficiency for modern heaters lies between 80 and 90%)
- A heat flux of 30 kW/m² is used in order to make an estimate of the required tube area
- The heat of combustion of the fuel gas is 40 MJ/kg

The tube area is calculated with the next equation:

$$A_{tubes} = \frac{\Delta H_{flow}}{Q_{rad}}$$
[8. 27]

The number of tubes can now be calculated:

$$N_{tubes} = \frac{\Phi_{v,gas}}{A_{\perp} v_{gas}}$$
[8.28]

[8.30]

Tube sizes normally used are between 75 and 150 mm diameter, 150 mm is assumed. Typical tube velocities are 1 to 2 m/s, 1.5 m/s will be taken.

So, the tube pitch is 150 mm. The length of the tubes can be calculated. Next, the number of tube passes can be calculated, so that the length and width of the furnace chamber are of the same magnitude.

The amount of fuel gas required is then calculated:

$$\Phi_{m,fuel} = \frac{\Delta H_{flow}}{0.8 * \Delta H_{comb}}$$
[8. 29]

The results are summarised in appendix 6, in the 'Design Specification Sheets'

Compressors

Within the chemical industry three types of compressors are normally used. The choice will depend on the capacity and compression ratio. The three types:

- Reciprocal compressor
- Centrifugal compressor
- Axial flow compressor

The operating window of the reciprocating compressor enables it to be used at sub atmospheric conditions. The axial compressor is able to handle large volumetric flow-rates. The exact range of each type can be found in lit. [6 &18, fig. 10.60].

In order to determine the number of stages(n) of the compressor, the following constraint has to be met:

$$\left(\frac{P_{out}}{P_{in}}\right)^{1/n} \langle 5$$

In table 33 a summary is given of the chosen compressors. The results also are

In table 33 a summary is given of the chosen compressors. The results also al summarised in appendix 6, in the 'Design Specification Sheets'

Compressor number	Type ⁵	Number of stage	Compressio n ratio stage	Efficien cy [%]	Work done [kW]
K01	Reciprocal	1	3.35	72	2400
K02	Centrifugal	3	3.98	72	8015
K03	Centrifugal			72	4488
K04	Axial flow	1	1.17	72	900

Table 33, summary of the compressors

Pumps

With capacities that range from 0.25 up to 1000 m^3 /h and the typical head is 10 up to 50 m of water (per stage), centrifugal pumps will normally be the first choice for

⁵ The reasons for these choices can be found in chapter 5.

pumping process fluids. The power required for pumping an incompressible fluid is given by [18, p427]:

$$Power = \frac{\Delta PQ_p}{\eta_p} \times 100$$
[8.31]

 ΔP = pressure difference, Pa Q_p = flow rate, $\frac{m^3}{s}$ η_p = pump efficiency, --

The pump efficiency will depend on the capacity [18, fig. 10.62].

The transport of a bottom product is not possible without a bottom pump. For the design of these pumps a pressure drop of two bar is assumed. Most pumps are simple, standard centrifugal pumps, except for pumps P102, P103 and P203. Pumps P102 and P103 have to be multi stage centrifugal pumps to meet the desired head. The volume flow rate of P203 is very small which will become a problem for a normal centrifugal pump. For a summary of the pumps see table 34 and for a more detailed report see appendix 6.

Pump number	P _{in}	Pout	ϕ_{v}	η_p	Theoretical Power	Actual Power
	[Bara]	[Bara]	$[m^3/h]$	[%]	[kW]	[kW]
P101	35.00	36.8	99.36	77%	5.52	7.17
P102	1.00	34.0	31.24	70%	28.64	40.91
P103	1.00	29.00	94.20	76%	73.26	96.40
P201	1.40	3.39	418.48	85%	23.25	27.35
P202	1.00	3.00	72.80	75%	4.04	5.39
P203	1.00	3.00	0.02	40%	0.00	0.00
P204	1.50	3.50	375.96	84%	20.89	24.87
P205	0.70	2.66	219.72	80%	12.21	15.26
P206	0.70	2.66	54.93	75%	3.05	4.07
P207	0.7	2.67	32.42	70%	1.80	2.57
P208	1.30	3.25	27.41	70%	1.52	2.18
P209	1.00	3.00	4.45	50%	0.25	0.49
P210	1.00	3.00	131.46	80%	7.30	9.13
P211	1.20	3.17	3.60	45%	0.20	0.44
P212	0.80	2.82	3.96	45%	0.22	0.49
P213	0.80	2.82	0.86	40%	0.05	0.12
P214	1.10	3.11	28.68	70%	1.59	2.28
P215	0.80	2.77	52.58	75%	2.92	3.89
P216	0.80	2.77	26.29	70%	1.46	2.09

Table 34, summary of the chosen pumps

Storage tanks

IPA is produced continuously and is then transported with ships. This implies the need for an IPA storage facility. IPA in stream <222> first enters a run down tank where it's specifications are analysed. If the IPA is below the required specifications it is pumped into the off-spec tank, where it is stored until it can be mixed with IPA which is above specifications. In this way IPA of a constant quality can be sold. The main storage tank is capable of storing a quarter of the annual IPA production (= 44 kton).

The assumption has been made that 2% of the annual production will be off spec. Analysis of the IPA in a run down tank takes a 24 hours. Therefore, four run down tanks are required to be able to store IPA on a continuous basis.

	Run down tank	Off spec. tank	On spec. tank	Sales tank
Number of tanks	4	1	1~	1
Max. $V_{IPA} [m^3]$	203	4901	54618	25618
V _{tank} [m ³]	224	4901	-60080	28008
L [m]	4.68	14.51	27.27	21.1481 /
D [m]	7.80	20.74	52.96	41.06 /
L/D	0.60	0.70	0.52	0.52

Table	35,	Storage	tanks and	d their	dimensions
-------	-----	---------	-----------	---------	------------

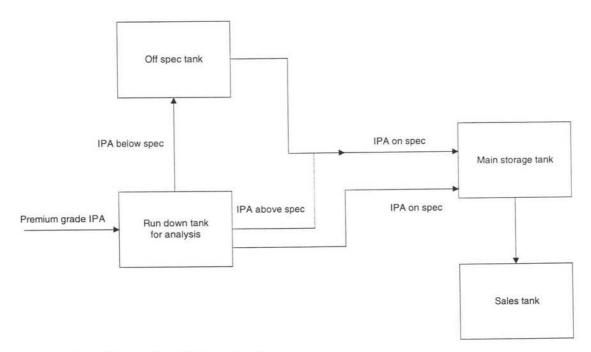


Figure 5, schematic overview of storage tanks

9 Wastes

Seven streams leave this process. Table 36 shows which streams are considered waste streams and which solutions have been found for them. Table 36 shows the future use of the other streams which leave this process and are not considered waste streams.

Table 36, Waste streams.

Waste stream	Ref.nr.	t/a	Remarks	Solution
To water treatment	<230>	30240	Contains cyclohexane	To-water treatment
Water effluent	<002>	6720	Evaporated from dryer catalyst bed	Discharge in open air

Stream name	Ref.nr.	t/a	Classification	Future use
Light ends from C101	<116>	15960	Light ends	Fuel gas
Vent	<206>	(1620)	Light ends	Fuel gas
To NPA storage	<207>	168	By -product	Sale/Fuel gas
IPA product stream	<222>	174804	Product	Sale
Cokes	<001>	3612 /	Solids	Heating catalyst bed

Table 37, Other streams leaving the process.

10 Process Safety

10.1 HAZOP

A hazard and operability study (HAZOP)[18] has been carried out for the most critical units: both the reactor units and the C101 column, which operates under high pressure. The results can be found in Appendix 7, tables 7.1, 7.2 and 7.3. The most important risks identified are:

 BLEVE potential at the top section of column C101, because liquid propulene is present here

- Risk of autoignition of material inside R101, when oxygen leaking inside occurs

- Risk of runaway in R102, caused by propylene polymerisation, when an occurring temperature fluctuation is not adequately quenched with water.

10.2 Fire and Explosion Index

Also, for both reactor units and column C101, a Fire and Explosion Index (FIE20) has been calculated. The detailed calculation sheet can be found in Appendix 7. In general, straightforward following the Dow guidelines led to the results. At some points, however, assumptions had to be made:

- the distance between the R101 reactor and the F101 furnace was estimated at about 30 m (105 ft)
- the distance between the C101 column and the F101 furnace was estimated at about 50 m (150 ft)
- the distance between the R102 reactor and the F101 furnace was estimated to be larger than 70 m (210 ft)
- although in mass there is not so much material present, a penalty of 0.10 is given at "G. Quantity of flammable material"
- for the "L. Rotating equipment" risk at R101, compressor K101 is taken into consideration; for R102, K102; for C101, K103.

The most important results are the following:

Process Unit	Propylene Reactor	IPA Reactor	C101 Column
Unit Hazard Factor [-]	3.30	4.51	3.72
Material Factor [-]	21	21	21
Damage Factor [-]	0.61	0.70	
F&E Index [-]	69.3	94.8	78.2
Exposure Radius [m]	17.7	24.3	20.0
Degree of Hazard	Moderate	Moderate	moderate

Table 38, FEI analysis basic results

The F&E indices vary from 70 to 95; this classifies the degree of hazard for the process as moderate[21].

The numbers in the table must explained as follows: e.g. the propylene reactor has a damage factor of 0.61 and an exposure radius of 17.7 m. This means that, when a fire or explosion incident occurs, there is a 61% damage probability to objects within 17.7 m distance of the reactor (990 m² surrounding area).

11 Economy

With a price of 120 US\$ for propane and 550 US\$ for IPA there appears to be an interesting margin. In this chapter cost and income will be estimated in order to determine if the margin is as attractive as it may appear.

In the first section the total fixed capital will be estimated based on the equipment as has been designed. Using this fixed capital we are able to determine the operating costs, and thus the net cash flow. Using this cash flow, the economic criteria are calculated. At the end of the chapter a conclusion will be drawn whether the project is economically viable.

11.1 Calculation of Costs

The total investment cost is the sum of the fixed capital and working capital. Fixed capital is the total cost of the plant ready for start-up, which is a once-only cost. Working capital is the additional investment needed, over and above the fixed capital, to start the plant up and operate it to the point when income is earned.

Fixed Capital

The fixed capital can be estimated with the factorial method of Lang. The fixed capital cost of the project is given as a function of the total purchase equipment cost by the equation[18, p216]:

$$C_F = f_L * C_E$$

[11.1]

 $C_F =$ Fixed capital

 f_{I} = Lang factor, which depents on the type of the process

 C_E = Total delivered cost of all major equipment

The contribution of different items to the total capital cost is calculated by multiplying the total Purchase Cost of Equipment (PCE) by an appropriate factor. Typical factors are found in the table below.

Table 39, Lang Factors

Item	fo	Lang factor
Direct costs		
Equipment erection	f ₁	0.4
Piping	f ₂	0.7
Instrumentation	f ₃	0.2
Electrical	f ₄	0.1
Buildings, process	f ₅	0.15
Storage	f ₆	0.15
Ancillary buildings	f ₇	0.15
$(f_1 + + f_7) + I$		1.85 -> 2.85
Indirect costs		-1
Design and engineering	f ₈	0.3
Contractor's fee	f9	0.05
Contingency	f ₁₀	0.1
$(f_8+f_9+f_{10}) + 1$		0.45 -> 1.45

The total Physical Plant Cost (PPC) can be calculated based on the direct costs, as can be seen in equation 11.2.

$$PPC = [1 + f_1 + \dots + f_7] \cdot PCE = 2.85 \cdot PCE$$
[11.2]

The Fixed Capital (FC) should include the direct costs and the indirect costs that are made, see equation 11.3.

$$FC = [1 + f_8 + f_9 + f_{10}] \cdot PPC = 1.45 \cdot PPC = 4.43 \cdot PCE$$
[11.2]

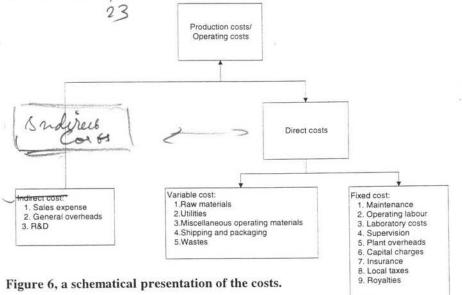
The purchase costs of equipment can be found, in appendix 9, to be 16.47 million US\$, these calculations were based on the DACE[22] price guide and Coulson & Richardson's [48, chapter 6]. The catalyst is also placed in this table, this because of traditional reasons. There are no placed-spares taken into account due to company policy.

Now the total fixed costs can be calculated:

$$C_F = f_L \cdot C_E = 4.13 \cdot PCE = \underline{68.07} \text{ M}\$.$$
[11. 3]

Working capital

23


The working capital can be estimated with a typical [48, p218] figure for petrochemical plants, which is 15 per cent of the fixed capital. In table 40 the total investment is given, by adding the working capital to fixed capital

		Results
		[M\$]
Fixed capital [million \$]	CF	68.07
Working capital	0.15* C _F	10.21
Total investment	1.15* C _F	78.28

Table 40, summary of fixed, working capital and the total investment.

Operating Costs

The operating costs (or production costs), the costs of producing the product after the plant has been built, are divided in direct and indirect costs. The direct costs can be divided in variable and fixed cost. In the block scheme a summary is given of the cost that are included [18].

Variable costs

41

1

In appendix 9 the build up of these variable cost are given, which are summarised in table 40. As a rough guide the miscellaneous will be taken as ten per cent of the total maintenance costs. Storage tanks have been included in the fixed capital and therefore no other shipping and packing cost have been taken into account.

Fixed costs and Indirect costs

To estimate the fixed and the indirect costs, standard guidelines are used [18] see table 39. 23

In table 41 a summary is given of the variable, fixed and indirect production costs (this can also be found in appendix 9, table 18).

10%

Costs M\$/a]	Remarks	do	
		4	
17 70		10	
17.72			
0.68	10% of maintenance	6	
31.81		2010	
0.05			
50.27			
6.81	10% of fixed capital		
2.00			
0.50	25% of operating labour		
0.40	20% of operating labour		
2.00	100% of operating labour		
10.21	15% of fixed capital		
0.68	1% of fixed capital		
1.36	2% of fixed capital		
0.68	1% of fixed capital		
24.64			
74.91			
18.73	25 % of direct prod. costs		
18.73			
93.63			
535.65			
	31.81 0.05 50.27 6.81 2.00 0.50 0.40 2.00 10.21 0.68 1.36 0.68 24.64 74.91 18.73 18.73 93.63	31.81 0.05 50.27 6.81 10% of fixed capital 2.00 0.50 25% of operating labour 0.40 20% of operating labour 2.00 100% of operating labour 10.21 15% of fixed capital 0.68 1% of fixed capital 1.36 2% of fixed capital 0.68 1% of fixed capital 1.36 2% of fixed capital 1.36 2% of fixed capital 1.37 25 % of direct prod. costs 18.73 25 % of direct prod. costs	31.81 ?.5% 0.05 50.27 6.81 10% of fixed capital 2.00 0.50 25% of operating labour 0.40 20% of operating labour 0.40 20% of operating labour 10.21 15% of fixed capital 0.68 1% of fixed capital 0.68 1% of fixed capital 0.68 1% of fixed capital 1.36 2% of fixed capital 1.36 2% of fixed capital 1.36 2% of fixed capital 1.37 25 % of direct prod. costs 18.73 93.63

Table 41, summary of production costs.

11.2 Economic criteria

The economic evaluation parameters are the rate of return (ROR), the pay-out-time (POT) and the discount cash-flow rate of return (DCFRR).

Rate of return

The ROR is the ratio of annual profit to investment and is based on the average income over the life of the project and the original investment. This can be calculated using equation 11.4:

$$ROR = \frac{\sum CF_i}{LP \cdot IC_0}$$
[11.4]

 CF_i = Cash flow generated in the year i.

LP = Life of the project.

 IC_0 = Total investment valued at the first year.

The cash flow is the difference between the annual production costs and the annual income and can be found in appendix 9, table 20. It is assumed that the invested

capital will be spent linear over the two construction years. As mentioned before the plant life has been set to 22 years including a construction period.

Pay-out-time

The POT is the time required after the start of the project to reach break even. The POT can be calculated using equation 11.5.

$$POT = \frac{1}{ROR}$$
[11.5]

Discount cash-flow-rate of return

The DCFRR is the interest rate at which the cumulative net present worth at the end is zero. It is a measure of the maximum rate that the project can pay and still break even at the end of the project.

In appendix 9 calculations can be found that are needed to determine the economic evaluation parameters. These parameters are summarised in table 42:

Table 42, results of economic evaluation parameters

	Results	
ROR	0.05	
POT	19.46	
DCFRR	1.14 %	

11.3 Conclusion

The utilities are the most important cost drivers of the process⁶ which implies that it may be interesting to investigate whether the use or costs of utilities can be reduced. The total fixed capital was based on the equipment. Heat exchanger and compressors are the main cost drivers concerning the equipment, this is due to the large energy changes within the process. A deeper investigation into these two cost drivers may result in a more interesting concept.

Although the economic criteria will probably benefit from an investigation into the main cost drivers, alternative use of the capital will decide whether the project is attractive. These figures are based on the conservative estimate of a plant life of 22 years. Changing this plant life to 30 years including construction will result in a increase of the ROR, DCFRR (resp. 0.2% and 1.5%) and a reduction of the POT of 3.8 months.

⁶ A decrease of 50% of the electrical costs will bring the POT to 12 years and the DCFFR above 6%.

12 Conclusions and Recommendations

The objective of this design was to integrate a propane dehydrogenation unit and a IPA production unit. This was done in order to save <u>unit operations</u> and <u>energy/utilities</u>. Several commercial processes for dehydrogenation and propylene hydration have been investigated. Finally the option combining the Catofin process with the Veba process has been selected (see chapter Process Options & Selection). In this combination the usual separation units after the propylene reactor are not needed; the PP-splitter and several other unit operations are left out.

The new design has been simulated using Aspen Plus 10. Due to inaccuracies in the thermodynamic models the units for the azeotropic distillation were modeled as ideal separators. Performance of the distillation could be optimized.

Conversion of the propylene reactor was satisfying. Product of the dehydrogenation section contains 84.6 wt% propylene, enough to leave the PP splitter out (minimum 70 wt%). IPA is produced on specification, containing at most 0.05% NPA and 0.1% water.

Heat integration was also performed in this design. Utilities were saved mainly by steam generation and feed-product exchangers. Nonetheless, utility consumption is still quite high. Heat integration could be further analysed.

Finally, the economic analysis has been made. This design has a rate on return of 5% (discount cash-flow-rate of return of 1.14%) and a pay-out-time of 19.5 years.

Based on the outcome of this report, the following recommendations are made:

- Utilities are the cost drivers for this process. Reduction in use of electricity could improve the economic profitability. Performance of the purification section could be optimised by using more accurate thermodynamic models in the design and further heat integration analysis.
- 2) Propylene and propane is lost in Unit 200. This is due to the fact that some unit operations are simulated at sub-optimal conditions of temperature and pressure. Appendix <u>12B shows a recommended flow scheme</u>. Adjusted temperatures and pressures for some of the unit operations after the IPA reactor should be used in future design (sizing and cost estimation was already based on these adjusted figures).
- 3) The fixed bed used in the propylene reactor is a common cylindrical fixed bed. Because of the small pressure drop allowed, the catalyst bed has a fairly large cross-sectional area. Another option would be the use of a radial flow fixed bed.
 - Attention should be paid to the packing of the bed. If it is not done correctly, the resistance of the bed may be lower at a certain spot and more gas will pass the bed at that spot. This speeds up catalyst deactivation at that spot and conversions drops. Calculations have to determine if the use of a radial flow fixed bed would be preferable.
- 4) Attention should be paid to the diameter of the catalyst used in the propylene reactor. It has been set at 5.3 mm for this design. However, it should be investigated if transport-limitation within the catalyst sphere does not appear.

LITERATURE

1 B.V. Vora, P.R. Pujado and R.F. Anderson, Oleflex:C₂-C₅ Dehydrogenation Updated, *Energy* Progess, **6** N° 3, Sept. <u>1986</u>

2 R.A. Meyers et al., Handbook of Petroleum Refining Processes, McGraw-Hill, New York, 1986.

3 Phillips et al., US Patent 4,458,096, Jul. 1984

4 D. Sanfilippo, Dehydrogenation in a fluidized bed: An East-West collaboration, Chemtech, Aug. <u>1993</u>

5 P.L. Morse, Synthetic ethanol and isopropanol, Process economics program, Stanford research institute (SRI), Menlo Park, California, <u>1974</u>.

6 R.H. Perry, DW Green, Perry's Chemical Engineerings' handbook, 7thed., McGraw Hill, New York, <u>1998</u>.

7 L.H. Horsley, Azeotropic data, Advances in Chemistry Series, vol. 6, American Chemical Society, Washington, <u>1952</u>.

8 J. Gmehling et al., Vapor-liquid equilibrium data collection, Chemistry data series, Dechema, 1984.

9 K. Kojima, K. Tochigi, Prediction of vapor-liquid equilibria by the asog method, Kodansha Tokyo/Elsevier Amsterdam, <u>1979</u>.

10 A. Fredenslund et al, Vapor-liquid equilibria using Unifac, Elsevier, Amsterdam, <u>1977</u>. 11 G.F. Froment and K.C. Waugh et al., Reaction kinetics and the development of catalytic processes : proceedings of the international symposium, Brugge, Belgium, April 19-21, <u>1999</u>. (paper: Kinetic Based Deactivation Modelling of an Isothermal Propane Dehydrogenation Reactor).

12 P.L. Morse, Synthetic ethanol and isopropanol, Process economics program, Stanford research institute (SRI), Menlo Park, California, <u>1974</u>.

13 Kinetic Based Deactivation Modelling of an Isothermal Propane Dehydrogenation Reactor, E. Hugh Stitts et al., Synetix Research Technology and Engineering Group, United Kingdom.

14 F.D. Rossini et al., Selected Values of Properties of Hydrocarbons, API Project 44, Carnegie Press, Pittsburh, 1953.

15 S. Gussow et al, Dehydrogenation links LPG to more octanes, Oil & Gas Journal, dec. 8, 1980.

-16 E. Berecz, Gas hydrates, Studies in Inorganic chemistry 4, Elsevier 1983.

17 RK Sinnott, Coulson & Richardson's Chemical Engineering, Volume 6, 2th ed., Pergamon, Oxford, 1993.

18 Rob Berger, Post-doc at Catalysis Engineering, Delft University of Technology. -19 Transport phenomena, W.J. Beek & K.M. Mutzall, Amsterdam, <u>1975</u>, p. 114, equation II.80.

20 Dow's Fire & Explosion Index Hazard Classification Guide, Sixth Ed., AIChE, <u>1987</u>.
21 Dow's Fire & Explosion Index Hazard Classification Guide, Fifth Ed., AIChE, <u>1981</u>.
22 DACE-prijzenboekje, kosten gegegevens t.b.v. ramingen 19^e ed., Webci & Wubo, Leidschendam 1997.

List of Symbols

Symbols are listed in the order of appearance in the report.

Cha	pter	4:

Reactio	n kinetics	
K _p	Equilibrium constant	Pa
ξ	Conversion	
P	Reaction pressure	Pa
ν_{I}	Stoiciometric coefficient	
R	Gas constant	J/mol/K
Т	Temperature	K

Chapter 8:

Reactor des	sign	3
m ³ cat, required	Amount of catalyst needed	m
GHSV	Gas Hourly Space Velocity	m ³ gas/m ³ cat/h
Δp	Pressure drop	Bara
ρ	Density	kg/m ³
L	Height of catalyst bed	m
υ_0	Superficial gasvelocity	m/s
d _p	Particle diameter	m
3	Void fraction	
ν	kinematic viscosity	Ns/m ²

Columns sizing and design

F_{LV}	Liquid-vapour flow factor	-
ϕ_{mL}	Liquid mass flowrate	kg/s
ϕ_{mV}	Vapour mass flowrate	kg/s
ρν	Vapour density	kg/m ³
ρL	Liquid density	kg/m ³
u _f	Flooding vapour velocity	m/s
K ₁	Flooding velocity constant	m/s
D_{col}	Column diameter	m
A_{col}	Column cross-sectional area	m ²
A _{net}	Net area for vapour-liquid disengagement	m^2
Nactual	Actual number of trays	
Ntheoretical	Theoretical number of trays	
E _{col}	Column efficiency	
L _{col}	Length of the column	m
ts	Residence time	S
u _{h,min}	Minimum vapour velocity through holes	m/s
K ₂	Constant depending on clear liquid depth	$kg^{1/2}/m^{5/2}/s$
D _h	Hole diameter	m
how	Weir crest	mm liquid
l_w	Weir length	m
ht	Total plate drop	mm liquid
$h_{\mathbf{w}}$	Weir height	mm

h _d	Dry plate drop	m liquid
h _r	Residual head	mm liquid
u _h	Vapour velocity through holes	m/s
C_0	Orifice coefficient	÷
h _b	Downcomer back-up	mm liquid
h _{dc}	Head loss in downcomer	mm liquid
A _{ap}	Clearance area under apron	m^2
$egin{array}{c} \mathbf{h}_{\mathrm{dc}} \ \mathbf{A}_{\mathrm{ap}} \ \mathbf{A}_{\mathrm{d}} \end{array}$	Downcomer cross-sectional diameter	m

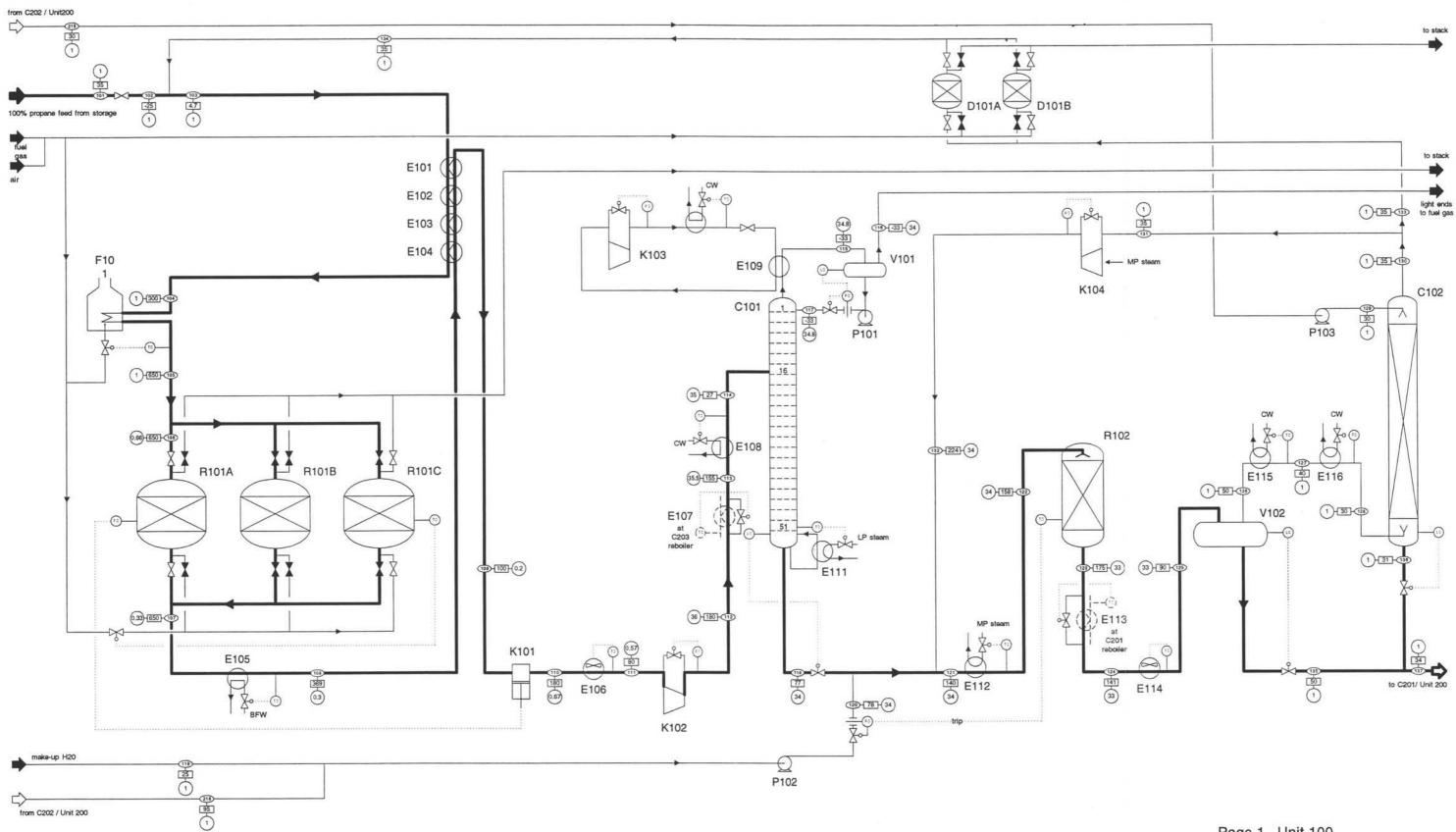
Separation Theory (absorber)

Vw*	Gas mass flowrate per unit column cross-sect. area	kg/m ² s
Fp	Packing factor	m ⁻¹
μ_L	Liquid viscosity	Ns/m ²
ρν	Vapour density	kg/m ³
ρL	Liquid density	kg/m ³
K_4	Constant	1. 7.7 .
Dabsorber	Absorberdiameter	m
ф _{M,gas}	Mass flow	kg/s
Labsorber	Length of the absorber	m
HETP	Height Equivalent of a Theoretical Plate	m

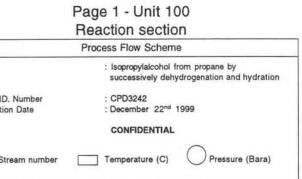
Heat Exchangers

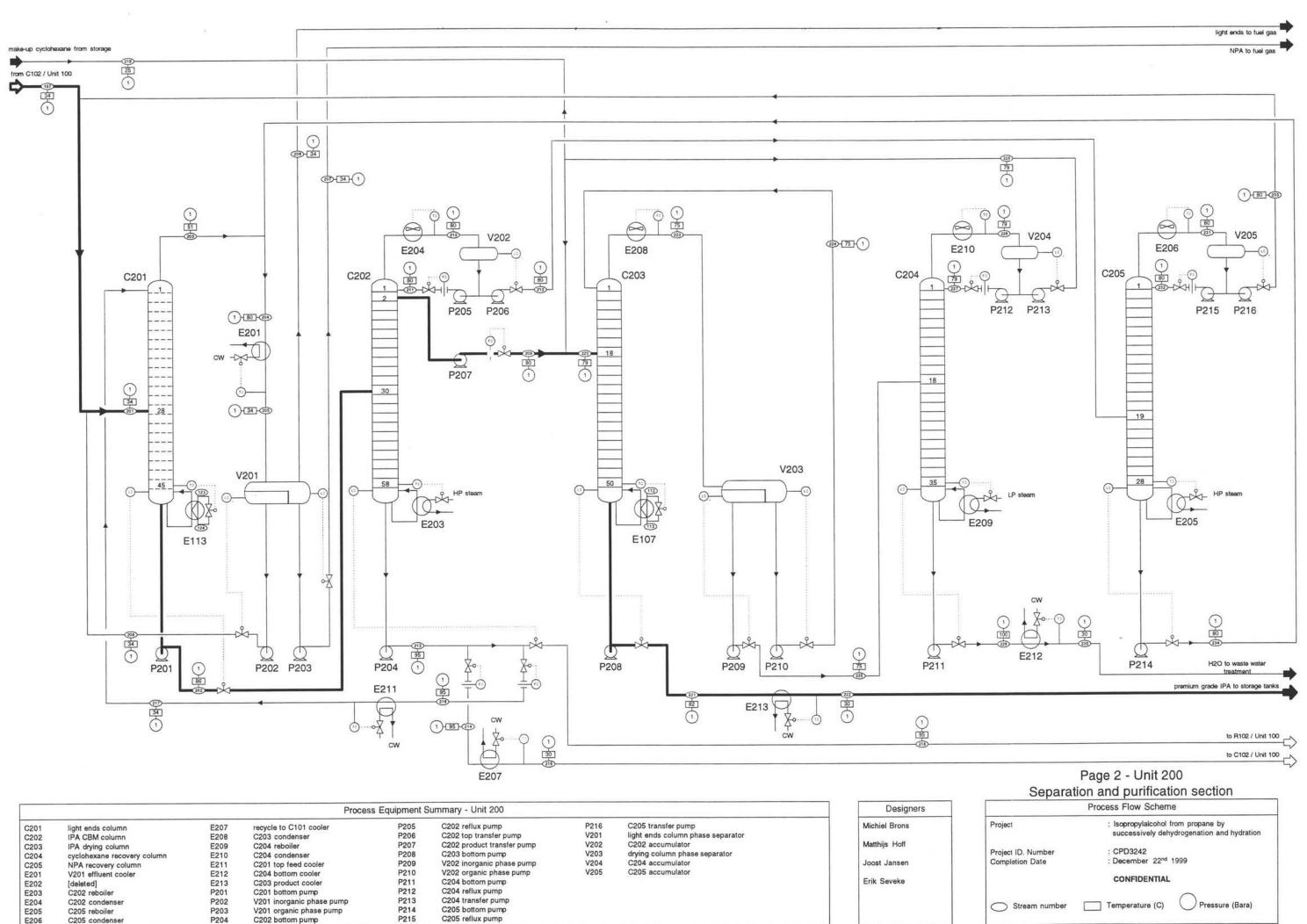
Q	Heat transferred per unit time	W
Ũ	Overall heat transfer coefficient	W/m ² °C
A	Heat transfer area	m ²
ΔT_{M}	Mean temperature difference	°C
ΔT_{lm}	Log mean temperature difference	°C
Ft	Temperature correction factor	-
R	Dimensionless temperature ratio	
T ₁	Inlet shell-side fluid temperature	°C
T ₂	Outlet shell-side fluid temperature	°C
t ₁	Inlet tube-side temperature	°C
	Outlet tube-side temperature	°C
t ₂ S	Dimensionless temperature ratio	-
φ _M	Mass flow	kg/s
C_p	Heat capacity	J/kg °C
Tout	Outgoing temperature	°C
T _{in}	Ingoing temperature	°C
ΔH_{vap}	Heat of vaporization	kJ/kg

Air Coolers


t ₁	Inlet air temperature	°C
t ₂	Outlet air temperature	°C
Ū	Overall heat transfer coefficient	W/m ² °C
T_2	Outlet temperature process stream	°C

Total tube area	m ²
Heat change of flow	J/s
Heat flux to tubes	kW/m ²
Number of tubes	-
Flow through tubes	m ³ /s
Cross section tubes	m ²
Velocity in the tube	m/s
Flow of fuel oil	kg/s
Heat of combustion	MJ/kg
	Heat change of flow Heat flux to tubes Number of tubes Flow through tubes Cross section tubes Velocity in the tube Flow of fuel oil


ΔP	Pressure differential across the pump	bar
Qp	Flow rate	m ³ /h
η_p	Pump efficiency	%


APPENDICES: TABLE OF CONTENTS

APPENDIX 1: PROCESS FLOW SCHEME
APPENDIX 2: PROCESS STREAM SUMMARY A.2-1
APPENDIX 3: UTILITY SUMMARY
APPENDIX 4.1: OVERALL COMPONENT MASS AND HEAT BALANCE
APPENDIX 4.2: PROCESS YIELDS
APPENDIX 5.1: THERMODYNAMIC DATA A.5.1-1
APPENDIX 5.2: REACTION KINETICS FOR THE PROPYLENE REACTOR
APPENDIX 5.3: PURE COMPONENT PROPERTIES A.5.3-1
APPENDIX 6.1: EQUIPMENT DATA SUMMARY A.6.1-1
APPENDIX 6.2: EQUIPMENT DATA SHEETS A.6.2-1
APPENDIX 7.1: HAZOPA.7.1-1
APPENDIX 7.2: FIRE AND EXPLOSION INDEX
APPENDIX 8: CALCULATIONS RECYCLE SPLIT FACTOR
APPENDIX 9: ECONOMICS
APPENDIX 10.1: HEAT INTEGRATION - SCHEME A.10.1-1
APPENDIX 10.2: HEAT INTEGRATION - COMPOSITE CURVES
APPENDIX 10.3: HEAT INTEGRATION - GRAND COMPOSITE
APPENDIX 11: BOD UTILITY CONDITIONS A.11-1
APPENDIX 12.1: RECOMMENDATIONS FOR THE PFS
APPENDIX 12.2: RECOMMENDED PROCESS FLOW SCHEME
APPENDIX 13: CATOFIN PATENTS
APPENDIX 14.1: DEHYDROGENATION PROCESSES A.14.1-1
APPENDIX 14.2: IPA PROCESSES

			Process	s Equipment Sur	nmary - Unit 100	Designers	
C101	deethanizer	E109	C101 condenser	K103	C101 heat pump compressor	Michiel Brons	Project
C102	washing column	E110	E101 condenser heat pump	K104	R102 recycle compressor		
D101A/B	dryer	E111	C101 reboiler	P101	C101 reflux pump	Matthijs Hoff	
E101	R101 feed-effluent A	E112	R102 feed preheater	P102	R102 water feed pump		Project ID.
E102	R101 feed-effluent B	E113	C201 reboiler	P103	C102 absorbent feed pump	Joost Jansen	Completion
E103	R101 feed-effluent C	E114	R102 effluent cooler	R101A/B/C	propylene reactor		
E104	R101 feed-effluent D	E115	C102 feed cooler A	R102	IPA reactor	Erik Seveke	
E105	R101 effluent-steam	E116	C102 feed cooler B	V101	C101 accumulator	Control is registering	
E106	K101 effluent	F101	R101 feed furnace	V102	HP separator		
E107	C203 reboiler	K101	R101 vacuum compressor				◯ Stree
E108	C101 feed cooler	K102	R102 HP compressor				

			Process	s Equipment S	Summary - Unit 200			Designers	
C201	light ends column	E207	recycle to C101 cooler	P205	C202 reflux pump	P216	C205 transfer pump	Michiel Brons	Project
C202	IPA CBM column	E208	C203 condenser	P206	C202 top transfer pump	V201	light ends column phase separator	and the second second second second	
C203	IPA drying column	E209	C204 reboiler	P207	C202 product transfer pump	V202	C202 accumulator	Matthijs Hoff	
C204	cyclohexane recovery column	E210	C204 condenser	P208	C203 bottom pump	V203	drying column phase separator		Project ID. Number
C205	NPA recovery column	E211	C201 top feed cooler	P209	V202 inorganic phase pump	V204	C204 accumulator	Joost Jansen	Completion Date
E201	V201 effluent cooler	E212	C204 bottom cooler	P210	V202 organic phase pump	V205	C205 accumulator		1
E202	[deleted]	E213	C203 product cooler	P211	C204 bottom pump			Erik Seveke	
E203	C202 reboiler	P201	C201 bottom pump	P212	C204 reflux pump				
E204	C202 condenser	P202	V201 inorganic phase pump	P213	C204 transfer pump				<u> </u>
E205	C205 reboiler	P203	V201 organic phase pump	P214	C205 bottom pump				Stream nun
E206	C205 condenser	P204	C202 bottom pump	P215	C205 reflux pump				

PROCESS STREAM SUMMARY

STREAM nr.:		<001>	OUT	<002>	CONSCRIPTION AND	<101>	/ IN
Name:		COKES		WATER EF		PROPANE	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr		kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLENE	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	397.00	17468
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	0.00	0	0.00	0	0.00	0
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	C
DIPE	102.00	0.00	0	0.00	0	0.00	C
WATER	18.00	0.00	C	44.46	800	0.00	C
CARBON	12.00	36.00	432	0.00	0	0.00	C
Total		36.00	432	44.46	800		17468
Enthalpy (MW)		6.46		-3.52		-13.16	
Phase		S		L		L	
Pressure (bara)		0.50		1.00		15.00	
Temperature C		650		35		35	

STREAM nr.:		<001>	Out	<002>	one	<101>	
Name:		COKES	, in the second	WATER EFI	FLUENT	PROPANE	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	100.0	100.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00		0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0
WATER	18.00	0.0	0.0	100.0	100.0	0.0	0.0
CARBON	12.00	100.0	100.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		6.46		-3.52		-13.16	
Phase		S		L		L	
Pressure (bara)		0.50		1.00		15.00	
Temperature C		650		35		35	

STREAM SUMMAR		<102>		<103>		<104>	·
Name:		FROM VAL	VE	TO E101		TO FURNA	CE
COMP	Mw	kmol/hr	kg/hr		kg/hr	kmol/hr	. kg/hr
HYDROGEN	2.00	0.00	0	1.34	3	1.34	3
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.14	4	0.14	4
ETHANE	30.00	0.00	0	0.80	24	0.80	24
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	589.37	24754	589.37	24754
PROPANE	44.00	397.00	17468	517.43	22767	517.43	22767
ACETONE	58.00	0.00	0	0.38	22	0.38	22
IPA	60.00	0.00	0	18.14	1088	18.14	1088
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.00	0	7.76	791	7.76	791
WATER	18.00	0.00	0	0.00	0	0.00	0
CARBON	12.00	0.00	0	0.00	0		0
Total		397.00	17468	1135.35	49452		49452
Enthalpy (MW)		-6.30		-8.55		-6.93	
Phase		V/L		V/L		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		-25		5		300	

STREAM nr.:		<102>		<103>		<104>	
Name:		FROM VALV	Έ	TO E101		TO FURNAC	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.1	0.0	0.1	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.1	0.0	0.1	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00		0.0	51.9	50.1	51.9	50.1
PROPANE	44.00		100.0	45.6	46.0	45.6	46.0
ACETONE	58.00	And the second sec	0.0	0.0	0.0	0.0	0.0
IPA	60.00		0.0	1.6	2.2	1.6	2.2
NPA	60.00		0.0		0.0	0.0	0.0
CYCLOHEXANE	84.00		0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	and the second sec	0.0	1	0.0	0.0	0.0
DIPE	102.00	2 S S S S S S S S S S S S S S S S S S S	0.0	5	1.6	0.7	1.6
WATER	18.00		0.0	760 8810	0.0	0.0	0.0
CARBON	12.00		0.0		0.0	0.0	0.0
Total	12.00	100.0	100.0		100.0		100.0
Enthalpy (MW)		-6.30		-8.55		-6.93	
Phase		V/L		V/L		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		-25		5		300	

PROCESS		n	54				
STREAM SUMMAR	Y	11					
STREAM nr.:		<105>		<106>		<107>	X
Name:		FROM FU	RNACE	TO R101		R101 EFFL	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	1.34	3	1.34	3	405.82	812
METHANE	16.00	0.00	0	0.00	0	18.26	292
ETHYLENE	28.00	0.14	4	0.14	4	7.72	216
ETHANE	30.00	0.80	24	0.80	24	9.39	282
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	589.37	24754	589.37	24754	955.82	40145
PROPANE	44.00	517.43	22767	517.43	22767	122.11	5373
ACETONE	58.00	0.38	22	0.38	22	0.38	22
IPA	60.00	18.14	1088	18.14	1088	18.14	1088
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	7.76	791	7.76	791	7.76	791
WATER	18.00	0.00	0	0.00	0	0.00	0
CARBON	12.00	0.00	0	0.00	0	0.00	0
Total		1135.35	49452	1135.35	49452	1545.40	49020
Enthalpy (MW)		7.99		11.15		22.75	
Phase		V		V		V	
Pressure (bara)		1.00		0.66		0.33	
Temperature C		650		650		650	

STREAM nr.:		<105>		<106>		<107>	
Name:	FROM FUR	NACE	TO R101		R101 EFFLUENT		
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.1	0.0	0.1	0.0	26.3	1.7
METHANE	16.00	0.0	0.0	0.0	0.0	1.2	0.6
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.5	0.4
ETHANE	30.00	0.1	0.0	0.1	0.0	0.6	0.6
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	51.9	50.1	51.9	50.1	61.8	81.9
PROPANE	44.00	45.6	46.0	45.6	46.0	7.9	11.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	1.6	2.2	1.6	2.2	1.2	2.2
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.7	1.6	0.7	1.6	0.5	1.6
WATER	18.00	0.0	0.0	0.0	0.0	0.0	0.0
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		7.99		11.15		22.75	
Phase		V		V		V	
Pressure (bara)		1.00		0.66		0.33	
Temperature C		650		650		650	

STREAM SUMMAR	1	<108>		<109>		<110>	
		FROM E105		TO K101		FROM K101	
Name:	R.A.w	kmol/hr	kg/hr		kg/hr		kg/hr
COMP	Mw				812		812
HYDROGEN	2.00		812				
METHANE	16.00	18.26	292	The Article State	292		292
ETHYLENE	28.00	7.72	216	7.72	216	S2762522	216
ETHANE	30.00	9.39	282	9.39	282	1	282
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	955.82	40145	955.82	40145	955.82	40145
PROPANE	44.00		5373	122.11	5373	122.11	5373
ACETONE	58.00	ALC: 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22	0.38	22	0.38	22
IPA	60.00	14	1088	18.14	1088	18.14	1088
NPA	60.00	0.00	C	0.00	0	0.00	C
CYCLOHEXANE	84.00	0.00	C	0.00	0		C
N-HEXANE	86.00	0.00	C	0.00	0	0.00	C
DIPE	102.00	7.76	791	7.76	791	7.76	791
WATER	18.00	0.00	C	0.00	0	0.00	C
CARBON	12.00		C	0.00	0	0.00	C
Total		1545.40	49020	1545.40	49020	1545.40	49020
Enthalpy (MW)		10.25		1.07		3.47	
Phase		V		V		V	
Pressure (bara)		0.30		0.20		0.67	
Temperature C		369		100		180	

PROCESS STREAM SUMMARY

STREAM nr.:		<108>		<109>		<110>	
Name:		FROM E105		TO K101		FROM K101	
COMP	Mw	mol%	wt%	mol%	wt%		wt%
HYDROGEN	2.00	26.3	1.7	26.3	1.7	26.3	1.7
METHANE	16.00	1.2	0.6	1.2	0.6		0.6
ETHYLENE	28.00	0.5	0.4	0.5	0.4	and the second se	0.4
ETHANE	30.00	0.6	0.6	0.6	0.6	0.6	0.6
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	61.8	81.9	61.8	81.9		81.9
PROPANE	44.00	7.9	11.0	7.9	11.0	7.9	11.0
ACETONE	58.00	0.0	0.0	0.0	0.0		0.0
IPA	60.00	1.2	2.2	1.2	2.2	1.2	2.2
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.5	1.6	0.5	1.6	0.5	1.6
WATER	18.00	0.0	0.0	0.0	0.0	0.0	0.0
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		10.25		1.07		3.47	
Phase		V		V		V	
Pressure (bara)		0.30		0.20		0.67	
Temperature C		369		100		180	

PROCESS	
STREAM SUMMARY	

STREAM nr.:		<111>		<112>		<113>	
Name:		FROM E10	6	FROM K102	2	FROM E107	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	405.82	812	405.82	812	405.82	812
METHANE	16.00	18.26	292	18.26	292	18.26	292
ETHYLENE	28.00	7.72	216	7.72	216	7.72	216
ETHANE	30.00	9.39	282	9.39	282	9.39	282
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	955.82	40145	955.82	40145	955.82	40145
PROPANE	44.00	122.11	5373	122.11	5373	122.11	5373
ACETONE	58.00	0.38	22	0.38	22	0.38	22
IPA	60.00	18.14	1088	18.14	1088	18.14	1088
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	7.76	791	7.76	791	7.76	791
WATER	18.00	0.00	0	0.00	0	0.00	0
CARBON	12.00	0.00	0	0.00	0	0.00	0
Total		1545.40	49020	1545.40	49020	1545.40	49020
Enthalpy (MW)		0.51		3.09		2.26	
Phase		V		V		V	
Pressure (bara)		0.57		36.00		35.50	
Temperature C		80		180		155	

STREAM nr.:	3	<111>		<112>		<113>	
Name:		FROM E106		FROM K102		FROM E107	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	26.3	1.7	26.3	1.7	26.3	1.7
METHANE	16.00	1.2	0.6	1.2	0.6	1.2	0.6
ETHYLENE	28.00	0.5	0.4	0.5	0.4	0.5	0.4
ETHANE	30.00	0.6	0.6	0.6	0.6	0.6	0.6
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	61.8	81.9	61.8	81.9	61.8	81.9
PROPANE	44.00	7.9	11.0	7.9	11.0	7.9	11.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	1.2	2.2	1.2	2.2	1.2	2.2
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.5	1.6	0.5	1.6	0.5	1.6
WATER	18.00	0.0	0.0	0.0	0.0	0.0	0.0
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		0.51	5	3.09		2.26	÷.
Phase		V		V		V	
Pressure (bara)		0.57		36.00		35.50	
Temperature C		80		180		155	

STREAM SUMMARY	Y					11	
STREAM nr.:		<114>		<115>		<116>	OUT
Name:	1	TO C101		FROM TOP		FROM ACC	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr		kg/hr
HYDROGEN	2.00	405.82	812	405.82	812		812
METHANE	16.00	18.26	292	44.99	720	A State State State	292
ETHYLENE	28.00	7.72	216	38.13	1068	1	212
ETHANE	30.00	9.39	282	63.05	1892		259
ETHANOL	46.00	0.00	0	0.00	0		0
PROPYLEN	42.00	955.82	40145	788.46	33115	17 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	301
PROPANE	44.00	122.11	5373	72.13	3174		25
ACETONE	58.00	0.38	22	0.00	C	0.00	0
IPA	60.00	18.14	1088	0.00	C	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 ())))))))))	0
NPA	60.00	0.00	0	0.00	C	Contraction of the second	0
CYCLOHEXANE	84.00	0.00	0	0.00	C		0
N-HEXANE	86.00	0.00	C	0.00	C		0
DIPE	102.00	7.76	791	0.00	C		0
WATER	18.00	0.00	C	0.00	C		0
CARBON	12.00	0.00	C	0.00	0		C
Total		1545.40	49020	1412.59	40780		1900
Enthalpy (MW)	8	-4.57		-16.38		-0.76	
Phase		V/L		V/L		V	
Pressure (bara)		35.00		34.80		34.00	
Temperature C		27		1		-33	

PROCESS

STREAM nr.:		<114>		<115>		<116>	
Name:		TO C101		FROM TOP	C101	FROM ACC.	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	26.3	1.7	28.7	2.0	90.6	42.7
METHANE	16.00		0.6	3.2	1.8	4.1	15.4
ETHYLENE	28.00	181252	0.4	2.7	2.6	1.7	11.2
ETHANE	30.00	253333	0.6	4.5	4.6	1.9	13.6
ETHANOL	46.00		0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00		81.9	55.8	81.2	1.6	15.8
PROPANE	44.00		11.0		7.8	0.1	1.3
ACETONE	58.00	and the second second	0.0		0.0	0.0	0.0
IPA	60.00	1	2.2	1	0.0	0.0	0.0
NPA	60.00		0.0		0.0	0.0	0.0
CYCLOHEXANE	84.00		0.0	1 2 2 4 1 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4	0.0	0.0	0.0
N-HEXANE	86.00		0.0		0.0	0.0	0.0
DIPE	102.00		1.6		0.0		0.0
WATER	18.00	200	0.0	and the second second	0.0		0.0
CARBON	12.00		0.0		0.0	0.0	0.0
Total	12.00	100.0	100.0		100.0		100.0
Enthalpy (MW)		-4.57		-16.38		-0.76	
Phase		V/L		V/L		V	
Pressure (bara)		35.00		34.80		34.00	
Temperature C		27		1		-33	

STREAM SUMMAR	Y				6.1		/
STREAM nr.:		<117>		<118>	()	<119>	V IN
Name:		REFLUX C	101	BOTTOM C	2101	WATER N	a second and the second se
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	0.00	. 0	0.00	0	0.00	0
METHANE	16.00	26.73	428	0.00	0	0.00	
ETHYLENE	28.00	30.55	855	0.13	4	0.00	
ETHANE	30.00	54.43	1633	0.77	23		
ETHANOL	46.00	0.00	0	0.00	0	0.00	
PROPYLEN	42.00	781.30	32815	948.67	39844		
PROPANE	44.00	71.57	3149	121.55	5348	0.00	0
ACETONE	58.00	0.00	0	0.38	22	0.00	0
IPA	60.00	0.00	0	18.14	1088	0.00	0
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.000	
DIPE	102.00	0.00	0	7.76	791	A 1997 March 1998 March 1998 Aug	
WATER	18.00	0.00	0	0.00	0		
CARBON	12.00	0.00	0	0.00	C	0.00	
Total		964.59	38880	1097.40	47120	594.39	10699
Enthalpy (MW)		-15.62		-3.08		-35.54	P.
Phase		L		L		L	-
Pressure (bara)		34.80		34.00		1.00	
Temperature C		-33		77		25	>

STREAM nr.:		<117>		<118>		<119>	
Name:		REFLUX C101		BOTTOM C	101	WATER MA	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	2.8	1.1	0.0	0.0	0.0	0.0
ETHYLENE	28.00	3.2	2.2	0.0	0.0	0.0	0.0
ETHANE	30.00	5.6	4.2	0.1	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	81.0	84.4	86.4	84.6	0.0	0.0
PROPANE	44.00	7.4	8.1	11.1	11.4	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	0.0	0.0	1.7	2.3	0.0	0.0
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00		0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.7	1.7	0.0	0.0
WATER	18.00		0.0	0.0	0.0	100.0	100.0
CARBON	12.00	200.000 C	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-15.62		-3.08		-35.54	
Phase		L		L		L	
Pressure (bara)		34.80		34.00		1.00	
Temperature C		-33		77		25	

PROCESS		PROCESS STRE	EAM				
STREAM SUMMARY STREAM nr.:		<120>	V	<121>		<122>	
Name:		FROM P102		TO E112		TO R102	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	0.00	0	12.10	24	12.10	24
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	1.39	39	1.39	39
ETHANE	30.00	0.00	0	7.96	239	7.96	239
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	6251.04	262544	6251.04	262544
PROPANE	44.00	0.00	0	1205.63	53048	1205.63	53048
ACETONE	58.00		0	3.77	218	3.77	218
IPA	60.00		0	181.12	10867	181.12	10867
NPA	60.00		0	0.01	0	0.01	0
CYCLOHEXANE	84.00	in the second second	0	0.00	0	0.00	0
N-HEXANE	86.00		0	0.00	0	0.00	0
DIPE	102.00	35477.531444	C	77.02	7856	77.02	7856
WATER	18.00	2012 C 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	41940	2730.06	49141	2730.06	49141
CARBON	12.00		C	0.00	0	0.00	C
Total		2330.00	41940	10470.09	383976		383976
Enthalpy (MW)		-174.52		-214.70		-200.70	
Phase		L		V/L		V	
Pressure (bara)		34.00		34.00		34.00	
Temperature C		78		140		158	

STREAM nr.:		<120>		<121>	1	<122>	
Name:		FROM P102		TO E112		TO R102	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.1	0.0	0.1	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.1	0.1	0.1	0.1
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	59.7	68.4	59.7	68.4
PROPANE	44.00	0.0	0.0		13.8	11.5	13.8
ACETONE	58.00	0.0	0.0		0.1	0.0	0.1
IPA	60.00	0.0	0.0		2.8	1.7	2.8
NPA	60.00		0.0	2000	0.0	0.0	0.0
CYCLOHEXANE	84.00		0.0		0.0	0.0	0.0
N-HEXANE	86.00	12.8 TR.1	0.0	1	0.0		0.0
DIPE	102.00	1	0.0	in the second	2.0		2.0
WATER	18.00		100.0	2	12.8		12.8
이 안 건강을 받았다. 영양배를 걸렸는	12.00	1	0.0		0.0		0.0
CARBON	12.00	100.0	100.0		100.0		100.0
Total		-174.52	100.0	-214.70	100.0	-200.70	
Enthalpy (MW) Phase		L		V/L		V	
Pressure (bara)		34.00		34.00		34.00	
Temperature C		78		140		158	

PROCESS STREAM

PROCESS				s'			
STREAM SUMMAR	Y		105	/			
STREAM nr.:		<123>	Nº C	<124>		<125>	
Name:		TO E113 [']	VK2.	FROM E11	3	TO V102	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	13.40	27	13.40	27	13.40	27
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	1.39	39	1.39	39	1.39	39
ETHANE	30.00	7.96	239	7.96	239	7.96	239
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	5899.40	247775	5899.40	247775	5899.40	247775
PROPANE	44.00	1205.63	53048	1205.63	53048	1205.63	53048
ACETONE	58.00	5.07	294	5.07	294	5.07	294
IPA	60.00	528.30	31698	528.30	31698	528.30	31698
NPA	60.00	0.51	30	0.51	30	0.51	30
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	78.34	7991	78.34	7991	78.34	7991
WATER	18.00	2379.75	42835	2379.75	42835	2379.75	42835
CARBON	12.00	0.00	0	0.00	0	0.00	0
Total		10119.75	383976	10119.75	383976		383976
Enthalpy (MW)		-185.24		-205.42		-231.25	1
Phase		V		V/L		V/L	
Pressure (bara)		32.86		32.86		32.86	
Temperature C		175		141		90	

STREAM nr.:		<123>		<124>		<125>	
Name:		TO E113		FROM E113		TO V102	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.1	0.0	0.1	0.0	0.1	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.1	0.1	0.1	0.1	0.1	0.1
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	58.3	64.5	58.3	64.5	58.3	64.5
PROPANE	44.00	11.9	13.8	11.9	13.8	11.9	13.8
ACETONE	58.00	0.1	0.1	0.1	0.1	0.1	0.1
IPA	60.00	5.2	8.3	5.2	8.3	5.2	8.3
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.8	2.1	0.8	2.1	0.8	2.1
WATER	18.00	23.5	11.2	23.5	11.2	23.5	11.2
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-185.24		-205.42		-231.25	
Phase		V		V/L		V/L	
Pressure (bara)		32.86		32.86		32.86	
Temperature C		175		141		90	

STREAM nr.:		<126>		<127>		<128>	
Name:		FROM V10	2	TO E116		TO C102	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	.kg/hr
HYDROGEN	2.00	13.40	27	13.40	27	13.40	27
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	1.39	39	1.39	39	1.39	39
ETHANE	30.00	7.96	239	7.96	239	7.96	239
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	5898.90	247754	5898.90	247754	5898.90	247754
PROPANE	44.00	1205.53	53043	1205.53	53043	1205.53	53043
ACETONE	58.00	4.96	288	4.96	288	4.96	288
IPA	60.00	503.55	30213	503.55	30213	503.55	30213
NPA	60.00	0.46	28	0.46	28	0.46	28
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	C
N-HEXANE	86.00		0	0.00	0	0.00	C
DIPE	102.00		7989	78.32	7989	78.32	7989
WATER	18.00		19399	1077.73	19399	1077.73	19399
CARBON	12.00		0	0.00	0	0.00	C
Total		8792.19	359017	8792.19	359017	8792.19	359017
Enthalpy (MW)		-116.90		-127.48		-130.45	
Phase		V		V/L		V/L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		50		40		30	

PROCESS
STREAM SUMMARY

STREAM nr.:		<126>		<127>		<128>	
Name:		FROM V102		TO E116		TO C102	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.2	0.0	0.2	0.0	0.2	0.0
METHANE	16.00	0.0	0.0	0.0	0.0		0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.1	0.1	0.1	0.1	0.1	0.1
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	67.1	69.0	67.1	69.0	1	69.0
PROPANE	44.00	13.7	14.8	13.7	14.8		14.8
ACETONE	58.00	0.1	0.1	0.1	0.1	and the second se	0.1
IPA	60.00	5.7	8.4	5.7	8.4	5.7	8.4
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	1	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.9	2.2	0.9	2.2	0.9	2.2
WATER	18.00	12.3	5.4	12.3	5.4	12.3	5.4
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-116.90		-127.48		-130.45	
Phase		V		V/L		V/L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		50		40		30	

STREAM nr.:		<129>		<130>		<131>	
Name:		TOP FEED	C102	TOP C102		TO K104	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr		kg/hr
HYDROGEN	2.00	0.00	0	13.40	27	12.06	24
METHANE	16.00	0.00	. 0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	1.39	39	1.25	35
ETHANE	30.00	0.00	0	7.96	239	7.16	215
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	5893.72	247536	5304.35	222783
PROPANE	44.00	0.00	0	1204.33	52990	1083.89	47691
ACETONE	58.00	0.00	0	3.75	218	3.38	196
IPA	60.00		0	181.38	10883	163.24	9795
NPA	60.00		0	0.01	0	0.01	0
CYCLOHEXANE	84.00	and the second second	0	0.00	0	0.00	0
N-HEXANE	86.00	1	0	0.00	0	0.00	0
DIPE	102.00		0	77.56	7911	69.81	7120
WATER	18.00		94197	444.64	8003	400.17	7203
CARBON	12.00		C	0.00	C	0.00	0
Total		5233.15	94197	7828.13	327847	7045.31	295062
Enthalpy (MW)		-399.05		-52.35		-47.11	
Phase		L		V		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		30		35		35	

STREAM nr.:	1	<129>		<130>		<131>	
Name:		TOP FEED	2102	TOP C102		TO K104	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.2	0.0	0.2	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.1	0.1	0.1	0.1
ETHANOL	46.00	0.0	0.0		0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	and the second se	75.5	75.3	75.5
PROPANE	44.00	0.0	0.0	(a) (1) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	16.2	15.4	16.2
ACETONE	58.00	0.0	0.0		0.1	0.0	0.1
IPA	60.00	0.0	0.0		3.3	2.3	3.3
NPA	60.00	-10.00 State	0.0		0.0	0.0	0.0
CYCLOHEXANE	84.00	1	0.0	1	0.0		0.0
N-HEXANE	86.00		0.0	22 C C C C C C C C C C C C C C C C C C	0.0	RIC-Set	0.0
DIPE	102.00		0.0		2.4	1 2 2 2 2 2	2.4
WATER	18.00		100.0		2.4		2.4
CARBON	12.00	100000000000000	0.0		0.0		0.0
Total	12.00	100.0	100.0		100.0		100.0
Enthalpy (MW)		-399.05	,00.0	-52.35		-47.11	
Phase		L		V		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		30		35		35	

STREAM SUMMARY			11			101	
STREAM nr.:		<132>	V	<133>		<134>	D TOY OL
Name:		IPA RECY		TO DRYER		OVERALL	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr		kg/hr
HYDROGEN	2.00	12.06	24	1.34	3	1.34	3
METHANE	16.00	0.00	: 0	0.00	0	0.00	0
ETHYLENE	28.00	1.25	35	0.14	4	0.14	4
ETHANE	30.00	7.16	215	0.80	24		24
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	5304.35	222783	589.37	24754	The Parties and an arrest	24754
PROPANE	44.00	1083.89	47691	120.43	5299	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5299
ACETONE	58.00	3.38	196	0.38	22	1	22
IPA	60.00	11 Area 6 Area 10 Area Area 10 Area 10 Are	9795	18.14	1088	1	1088
NPA	60.00	0.01	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	C	0.00	0	0.00	0
DIPE	102.00	69.81	7120	7.76	791	and the second sec	791
WATER	18.00	400.17	7203	44.46	800	100 CONTRACTOR 100 CONTRA	0
CARBON	12.00	0.00	C	0.00	C		0
Total		7045.31	295062	782.81	32785		
Enthalpy (MW)		-19.30		-5.23		-2.25	
Phase		V		V		V	
Pressure (bara)		34.00		1.00		1.00	
Temperature C		224		35		35	

PROCES	S
STREAM	SUMMARY

STREAM nr.:		<132>		<133>		<134>	
Name:		IPA RECYCL	E	TO DRYER		OVERALL	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.2	0.0	0.2	0.0	0.2	0.0
METHANE	16.00		0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	1	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	1	0.1	0.1	0.1	0.1	0.1
ETHANOL	46.00		0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00		75.5	75.3	75.5	79.8	77.4
PROPANE	44.00		16.2	100000000	16.2	16.3	16.6
ACETONE	58.00		0.1		0.1	0.1	0.1
IPA	60.00		3.3		3.3	2.5	3.4
NPA	60.00	3 SS32	0.0		0.0	0.0	0.0
CYCLOHEXANE	84.00	6	0.0	and the second se	0.0	0.0	0.0
N-HEXANE	86.00		0.0		0.0	0.0	0.0
DIPE	102.00		2.4	2.033	2.4	1.1	2.5
WATER	18.00		2.4		2.4	0.0	0.0
CARBON	12.00	200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	0.0	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	0.0	0.0	0.0
Total	12.00	100.0	100.0		100.0	100.0	100.0
Enthalpy (MW)		-19.30		-5.23		-2.25	
Phase		V		V		V	
Pressure (bara)		34.00		1.00		1.00	
Temperature C		224		35		35	5

STREAM nr.:		<135>		<136>		<137>	
Name:		BOTTOM	HP SEPA	BOTTOM		TO UNIT 20	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr		. kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	· 0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.01	0	0.01	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.50	21	5.18	217	5.68	239
PROPANE	44.00	0.10	4	1.20	53	1.30	57
ACETONE	58.00	0.11	6	1.21	70	1.32	76
IPA	60.00	24.71	1483	322.17	19330	346.88	20813
NPA	60.00	0.04	З	0.46	27	0.50	30
CYCLOHEXANE	84.00	0.00	C	0.00	0	0.00	0
N-HEXANE	86.00	0.00	C	0.00	0	0.00	0
DIPE	102.00	0.02	2	0.76	77		80
WATER	18.00	1301.62	23429	5866.24	105592	1	129021
CARBON	12.00	0.00	C	0.00	C	0.00	0
Total		1327.11	24949	6197.21	125368		150316
Enthalpy (MW)		-104.77		-477.15		-583.28	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		50		31		34	

PROCESS	
STREAM SUMM	ARY

STREAM nr.:		<135>		<136>		<137>	
Name:		BOTTOM HP	SEPA	BOTTOM /	ABSORB	TO UNIT 200	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.1	0.1	0.2	0.1	0.2
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.1	0.0	0.1
IPA	60.00	1.9	5.9	5.2	15.4	4.6	13.8
NPA	60.00	1	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00		0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00		0.0	0.0	0.0	0.0	0.0
DIPE	102.00	2.5 4	0.0	0.0	0.1	0.0	0.1
WATER	18.00		93.9	94.7	84.2	95.3	85.8
CARBON	12.00	Charles and a section of the	0.0	1	0.0	0.0	0.0
Total		100.0	100.0		100.0	100.0	100.0
Enthalpy (MW)		-104.77		-477.15		-583.28	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		50		31		34	

STREAM SUMMAR		<201>		<202>		<203>	
			0001	BOTTOM	1001	TOP C201	
Name:		FEED TO					ka/hr
COMP	Mw	kmol/hr	kg/hr		kg/hr		kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.01	0	0.00	0	0.01	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	5.68	239	0.00	0	5.68	239
PROPANE	44.00	1.30	57	0.00	0	1.30	57
ACETONE	58.00	1.32	76	0.00	0	1.31	76
IPA	60.00	939.33	56360	939.33	56360	0.00	0
NPA	60.00	0.50	30	0.50	30	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.78	80	0.00	0	0.78	80
WATER	18.00	7487.83	134781	17753.83	319569	1.24	22
CARBON	12.00		0	0.00	0	0.00	0
Total		8436.75	191623	18693.66	375959	10.33	474
Enthalpy (MW)		-630.31		-1423.90		-0.21	
Phase		L		L		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		34		86		51	

STREAM nr.:		<201>		<202>		<203>	
Name:		FEED TO C	201	BOTTOM C2	201	TOP C201	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.1	0.1
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.1	0.1	0.0	0.0	55.0	50.3
PROPANE	44.00	0.0	0.0	0.0	0.0	12.6	12.1
ACETONE	58.00	0.0	0.0	0.0	0.0	12.7	16.1
IPA	60.00	11.1	29.4	5.0	15.0	0.0	0.0
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	7.6	16.8
WATER	18.00	88.8	70.3	95.0	85.0	12.0	4.7
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-630.31		-1423.90		-0.21	
Phase		L		L		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		34		86		51	

PROCESS

STREAM nr.:		<204>		<205>		<206>	OUT
Name:		TO E201		TO V201	(VENT)	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	. 0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.01	0	0.01	0	0.01	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	5.68	239	5.68	239	5.68	239
PROPANE	44.00	1.30	57	1.30	57	1.30	57
ACETONE	58.00	1.31	76	1.31	76	1.31	76
IPA	60.00	306.49	18389	306.49	18389	0.00	0
NPA	60.00	0.32	19	0.32	19	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.78	80	0.78	80	0.78	80
WATER	18.00	175.56	3160	175.56	3160	0.00	0
CARBON	12.00	0.00	0	0.00	0		0
Total		491.45	22020	491.45	22020	9.09	452
Enthalpy (MW)		-99.71		-102.36		-0.14	
Phase		V/L		V/L		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		80		34		34	

STREAM nr.:		<204>		<205>		<206>	
Name:		TO E201		TO V201		VENT	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.1	0.1
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	1.2	1.1	1.2	1.1	62.5	52.8
PROPANE	44.00	0.3	0.3	0.3	0.3	14.3	12.7
ACETONE	58.00	0.3	0.3	0.3	0.3	14.5	16.9
IPA	60.00	62.4	83.5	62.4	83.5	0.0	0.0
NPA	60.00	0.1	0.1	0.1	0.1	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.2	0.4	0.2	0.4	8.6	17.6
WATER	18.00	35.7	14.4	35.7	14.4	0.0	0.0
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-99.71		-102.36		-0.14	
Phase		V/L		V/L		V	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		80		34		34	

PROCESS		٨					
STREAM SUMMARY		<207>	OUT	<208>		<209>	
STREAM nr.: Name:		TO NPA STO		- Charles and the second second	C201	SIDE STRE	AM C20
COMP	Mw	kmol/hr	kg/hr		kg/hr	and the second se	kg/hr
HYDROGEN	2.00		0	0.00	0	0.00	0
METHANE	16.00		0	0.00	0	0.00	0
ETHYLENE	28.00		0	0.00	0	0.00	0
ETHANE	30.00		0	0.00	0	0.00	0
ETHANOL	46.00		0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00		0	0.00	0	0.00	0
ACETONE	58.00		0	0.00	0	0.00	0
IPA	60.00	0.00	0	306.49	18389	346.88	20813
NPA	60.00	0.32	19	0.00	0	0.19	11
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	C
N-HEXANE	86.00	0.00	0	0.00	0	0.00	C
DIPE	102.00	0.00	0	0.00	0	0.00	C
WATER	18.00	0.00	C	175.56	3160	199.10	3584
CARBON	12.00	0.00	C	0.00	0	0.00	C
Total		0.32	19	482.05	21549	546.17	24408
Enthalpy (MW)		-0.02		-112.14		-41.34	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		34		34		80	

STREAM nr.:		<207>		<208>		<209>		
Name:		TO NPA STORAGE		TOP FEED C201		SIDE STREAM C20		
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%	
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0	
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0	
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0	
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0	
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0	
IPA	60.00	0.0	0.0	63.6	85.3	63.5	85.3	
NPA	60.00	100.0	100.0	0.0	0.0	0.0	. 0.0	
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0	
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0	
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0	
WATER	18.00	0.0	0.0	36.4	14.7	36.5	14.7	
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0	
Total		100.0	100.0	100.0	100.0	100.0	100.0	
Enthalpy (MW)		-0.02		-112.14		-41.34		
Phase		L		L		L		
Pressure (bara)		1.00		1.00		1.00		
Temperature C		34		34		80		

PROCESS

STREAM SUMMAR	Y						
STREAM nr.:		<210>		<211>		<212>	
Name:		OVERHEA	D C202	REFLUX C	202	DITILLATE	C202
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	1934.67	116080	1342.22	80533	592.45	35547
NPA	60.00	0.94	56	0.62	37	0.32	19
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.00	0	0.00	0	0.00	0
WATER	18.00	1042.57	18766	723.84	13029	318.73	5737
CARBON	12.00	0.00	0	0.00	0		0
Total		2978.19	134903	2066.69	93600	911.50	41303
Enthalpy (MW)		-246.68		-171.16		-75.53	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		80		80		80	

STREAM nr.:		<210>		<211>		<212>	
Name:		OVERHEAD C202		REFLUX C202		DITILLATE	C202
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	65.0	86.0	64.9	86.0	65.0	86.1
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0
WATER	18.00	35.0	13.9	35.0	13.9	35.0	13.9
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-246.68		-171.16		-75.53	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		80		80		80	

STREAM SUMMAR	1	<213>		<214>		<215>	
Name:				TO E207		TO PUMP	P103
COMP	Mw	kmol/hr	kg/hr		kg/hr	-	kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	: 0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	0.00	0	0.00	0	0.00	0
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.00	0	0.00	0	0.00	0
WATER	18.00	17236.00	310248	5233.15	94197	Contraction of the second s	94197
CARBON	12.00		0		0	0.00	0
Total		17236.00	310248	5233.15	94197		94197
Enthalpy (MW)		-531.47		-392.49		-399.05	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		95		95		30	

STREAM nr.:		<213>		<214>		<215>		
Name:		BOTTOM C202		TO E207		TO PUMP P103		
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%	
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0	
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0	
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0	
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0	
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0	
IPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0	
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0	
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0	
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0	
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0	
WATER	18.00	100.0	100.0	100.0	100.0	100.0	100.0	
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0	
Total		100.0	100.0	100.0	100.0	100.0	100.0	
Enthalpy (MW)		-531.47		-392.49		-399.05		
Phase		L		L		L		
Pressure (bara)		1.00		1.00		1.00		
Temperature C		95		95		30		

STREAM nr.:		<216>		<217>		<218>	V
Name:		TO E211		TO TOP C	201	WATER RE	ECYCLE
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	0.00	. 0	0.00	0	0.00	0
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	0.00	0	0.00	0	0.00	0
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	0	0.00	0
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.00	0	0.00	0	0.00	0
WATER		10266.00	184788	10266.00	184788	1735.61	31241
CARBON	12.00	0.00	0	0.00	0	0.00	0
Total		10266.00	184788	10266.00	184788	1735.61	31241
Enthalpy (MW)		-799.95		-812.85		-138.98	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		95		34		95	

STREAM nr.:	,	<216>		<217>		<218>	
Name:		TO E211		TO TOP C20)1	WATER RE	CYCLE
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0
WATER	18.00	100.0	100.0	100.0	100.0	100.0	100.0
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-799.95		-812.85		-138.98	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		95		34		95	

•

PROCESS					2209> 21	1408		
STREAM SUMMAR	Y	010					<221>	
STREAM nr.:		<219>	V	IN	Contraction of the second s		HOT IPA	
Name:		MAKE UP			FEED C203	1 //		les /br
COMP	Mw	kmol/hr	kç	g/hr		kg/hr		kg/hr
HYDROGEN	2.00	0.00		0	0.00	0	0.00	0
METHANE	16.00	0.00	8	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00		0	0.00	0	0.00	0
ETHANE	30.00	0.00		0	0.00	0	0.00	0
ETHANOL	46.00	0.00		0	0.00	0	0.00	0
PROPYLEN	42.00	0.00		0	0.00	0	0.00	0
PROPANE	44.00	0.00		0	0.00	0	0.00	0
ACETONE	58.00	0.00		0	0.00	0	0.00	0
IPA	60.00	0.00		0	358.01	21481	346.88	20813
NPA	60.00	0.00		0	0.19	11	0.19	11
CYCLOHEXANE	84.00	0.25		21	2.65	223	0.00	0
N-HEXANE	86.00	0.00		0	0.00	0	0.00	0
DIPE	102.00	0.00		0	0.00	0	0.00	0
WATER	18.00	0.00		0	199.10	3584	1.16	21
CARBON	12.00	0.00		0	0.00	0	0.00	0
Total		0.25		21	559.96	25299	348.23	20845
Enthalpy (MW)		-0.01			-46.23		-30.22	
Phase		L			V/L		L	
Pressure (bara)		1.00			1.00		1.00	
Temperature C		25			79		82	

STREAM nr.:		<219>		<220>		<221>	
Name:		MAKE UP		FEED C203		HOT IPA	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	0.0	0.0	63.9	84.9	99.6	99.8
NPA	60.00	0.0	0.0	0.0	0.0	0.1	0.1
CYCLOHEXANE	84.00	100.0	100.0	0.5	0.9	0.0	0.0
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0
WATER	18.00	0.0	0.0	35.6	14.2	0.3	0.1
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-0.01		-46.23		-30.22	
Phase		L		V/L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		25		79		82	

PROCESS

		*					
STREAM SUMMAR	Y	/				004	
STREAM nr.:		<222>	OUT	<223>		<224>	
Name:				TOP C203		TOP FEED C203	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	·kg/hr
HYDROGEN	2.00	0.00	. 0	0.00	0	0.00	0
METHANE	16.00	0.00	. 0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	346.88	20813	38.41	2305	27.28	1637
NPA	60.00	0.19	11	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	1152.65	96823	1150.00	96600
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.00	0	0.00	0	0.00	0
WATER	18.00	1.16	21	197.94	3563	0.00	0
CARBON	12.00	0.00	0	0.00	0	0.00	0
Total		348.23	20845	1389.01	102690	1177.28	98237
Enthalpy (MW)		-34.98		-62.33		-50.67	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		30		75		75	

STREAM nr.:		<222>		<223>		<224>	
Name:		IPA PRODU	JCT	TOP C203		TOP FEED	C203
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	99.6	(99.8) 2.8	2.2	2.3	1.7
NPA	60.00	0.1	0.1	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	0.0	0.0	83.0	94.3	97.7	98.3
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0
WATER	18.00	0.3	0.1	14.3	3.5	0.0	0.0
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-34.98		-62.33		-50.67	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		30		75		75	

STREAM nr.:		<225>				<227>	
Name:		FEED C204		OVERHEAD C204		REFLUX C2	
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	0.00	0	0.00	0		0
METHANE	16.00	0.00	: 0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0		0
ETHANE	30.00	0.00	0	0.00	0		0
ETHANOL	46.00	0.00	0	0.00	0	(14 (4) # (4) (4)	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	11.13	668	61.93	3716	1	3052
NPA	60.00	0.00	0	0.00	0		C
CYCLOHEXANE	84.00	2.65	223	13.36	1123		922
N-HEXANE	86.00	0.00	0	0.00	C	0.00	C
DIPE	102.00	0.00	0	0.00	C	0.00	C
WATER	18.00	197.94	3563	0.00	C	0.00	C
CARBON	12.00	0.00	0	0.00	0	0.00	C
Total		211.73	4454	75.29	4838	61.85	3974
Enthalpy (MW)		-16.65		-5.93		-4.86	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		75		79		79	

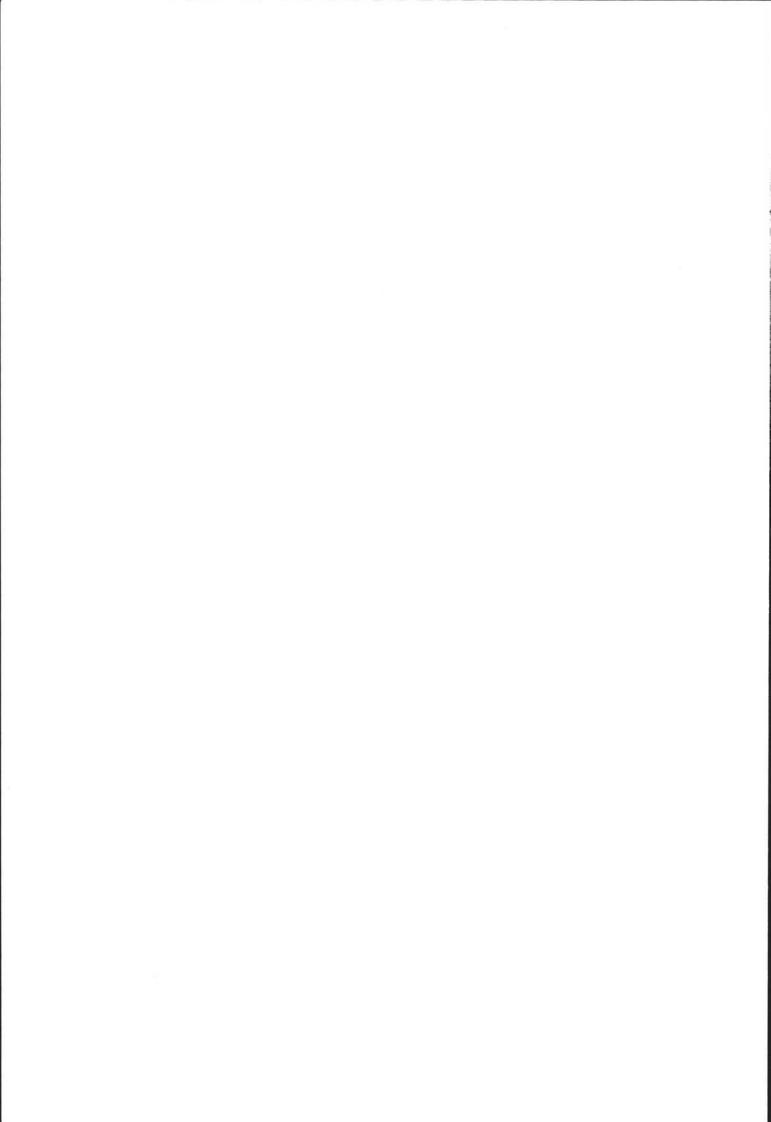
STREAM nr.:	STREAM nr.:			<226>		<227>	
Name:		FEED C204		OVERHEAD C204		REFLUX C204	-
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	5.3	15.0	82.3	76.8		76.8
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	1.3	5.0	17.7	23.2	17.7	23.2
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0
WATER	18.00	93.5	80.0	0.0	0.0	0.0	0.0
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-16.65		-5.93		-4.86	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		75		79		79	

PROCESS	
STREAM SUMMARY	

STREAM nr.:		<228>	-	<229>		<230>	OUT
Name:		C204 DIST	ILLATE	TO E212		TO WATER	TREAT
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	· kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	11.13	668	0.00	0	0.00	0
NPA	60.00	0.00	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	2.40	202	0.25	21	0.25	21
N-HEXANE	86.00	0.00	0	0.00	0	0.00	0
DIPE	102.00	0.00	0	0.00	0	0.00	0
WATER	18.00	0.00	0	197.94	3563	197.94	3563
CARBON	12.00	0.00	0		0	0.00	0
Total		13.54	870	198.19	3584	198.19	3584
Enthalpy (MW)		-1.06		-15.60		-15.80	
Phase		L		L		LL	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		79		100		30	

STREAM nr.:		<228>		<229>		<230>	
Name:		C204 DISTII	LLATE	TO E212		TO WATER	TREAT
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0
IPA	60.00	82.3	76.8	0.0	0.0	0.0	0.0
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	84.00	17.7	23.2	0.1	0.6	0.1	0.6
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0
WATER	18.00	0.0	0.0	99.9	99.4	99.9	99.4
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0
Total		100.0	100.0	100.0	100.0	100.0	100.0
Enthalpy (MW)		-1.06		-15.60		-15.80	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		79		100		30	

STREAM nr.:		<231>		<232>		<233>	
Name:		OVERHEA	D C205	REFLUX (205	DISTILLAT	E C205
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	. 0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	0	0.00	0	0.00	0
IPA	60.00	857.88	51473	571.92	34315	285.96	17158
NPA	60.00	0.01	0	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	0	0.00	C	0.00	C
N-HEXANE	86.00	0.00	0	0.00	C	0.00	C
DIPE	102.00	0.00	0	0.00	C	0.00	C
WATER	18.00	433.24	7798	288.83	5199	144.41	2599
CARBON	12.00	0.00	0	0.00	C		C
Total		1291.13	59272	860.75	39514.33	430.38	19757
Enthalpy (MW)		-95.48		-63.65		-31.83	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		80		80		80	


STREAM nr.:		<231>		<232>		<233>		
Name:		OVERHEAD	C205	REFLUX C2	05	DISTILLATE	C205	
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%	
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0	
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0	
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0	
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0	
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0	
ACETONE	58.00	0.0	0.0	0.0	0.0	0.0	0.0	
IPA	60.00	66.4	86.8	66.4	86.8	66.4	86.8	
NPA	60.00	0.0	0.0	0.0	0.0	0.0	0.0	
CYCLOHEXANE	84.00	0.0	0.0	0.0	0.0	0.0	0.0	
N-HEXANE	86.00	0.0	0.0	0.0	0.0	0.0	0.0	
DIPE	102.00	0.0	0.0	0.0	0.0	0.0	0.0	
WATER	18.00	33.6	13.2	33.6	13.2	33.6	13.2	
CARBON	12.00	0.0	0.0	0.0	0.0	0.0	0.0	
Total		100.0	100.0	100.0	100.0	100.0	100.0	
Enthalpy (MW)		-95.48		-63.65		-31.83		
Phase		L		L		L		
Pressure (bara)		1.00		1.00		1.00		
Temperature C		80		80		80		

PROCESS

STREAM nr.:		<231>		<232>		<233>	
Name:		OVERHEA	D C205	REFLUX (205	DISTILLAT	E C205
COMP	Mw	kmol/hr	kg/hr	kmol/hr	kg/hr	kmol/hr	. kg/hr
HYDROGEN	2.00	0.00	0	0.00	0	0.00	0
METHANE	16.00	0.00	0	0.00	0	0.00	0
ETHYLENE	28.00	0.00	0	0.00	0	0.00	0
ETHANE	30.00	0.00	0	0.00	0	0.00	0
ETHANOL	46.00	0.00	0	0.00	0	0.00	0
PROPYLEN	42.00	0.00	0	0.00	0	0.00	0
PROPANE	44.00	0.00	0	0.00	0	0.00	0
ACETONE	58.00	0.00	C	0.00	0	0.00	0
IPA	60.00	857.88	51473	571.92	34315	and the second se	17158
NPA	60.00	0.01	C	0.00	0	0.00	0
CYCLOHEXANE	84.00	0.00	C	0.00	0	0.00	0
N-HEXANE	86.00	0.00	C	0.00	0	0.00	0
DIPE	102.00	0.00	C	0.00	0	0.00	0
WATER	18.00	433.24	7798	288.83	5199	144.41	2599
CARBON	12.00	0.00	C				0
Total		1291.13	59272	860.75	39514.33		19757
Enthalpy (MW)		-95.48		-63.65		-31.83	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		80		80		80	

STREAM nr.:		<231>		<232>		<233>	
Name:		OVERHEAD	C205	REFLUX C2	05	DISTILLATE	C205
COMP	Mw	mol%	wt%	mol%	wt%	mol%	wt%
HYDROGEN	2.00	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	16.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	28.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	30.00	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	46.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	42.00	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	44.00	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	58.00		0.0	0.0	0.0	0.0	0.0
IPA	60.00		86.8	66.4	86.8	66.4	86.8
NPA	60.00		0.0		0.0	0.0	0.0
CYCLOHEXANE	84.00	and the second se	0.0		0.0	0.0	0.0
N-HEXANE	86.00		0.0		0.0	0.0	0.0
DIPE	102.00		0.0		0.0	0.0	0.0
WATER	18.00		13.2		13.2	33.6	13.2
CARBON	12.00		0.0		0.0		0.0
Total		100.0	100.0		100.0	100.0	100.0
Enthalpy (MW)		-95.48		-63.65	2.5 C	-31.83	
Phase		L		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature C		80		80		80	

Streen 22347 ?

						SUMN	MARY OF U		es						I
	EQUIPMENT						01	ILITIES							DEMON
				Heating				Cool			Power			REMARKS	
Nr.	Name	Load		Consum	otion (t/h)		Load		nsumption (t/		Actual		mption (t/h,		
				Steam		Fuel		Cooling	Air	BFW	Load	Steam		Electr.	
		kW	LP	MP	HP	Gas	kW	Water			kW	HP	MP	kWh/h	
E105	R101 effluent cooler						12498.00			17.17					Generates MP steam
E106	K101 effluent cooler						2986.00		351.36		7.99			7.99	Air cooler
E108	C101 feed cooler						6830.00	392.04							
E109	C101 condenser						5394.00	86.04							Medium: propylene
E110	C101 cond. heat pump						11599.00	665.64							
E111	C101 reboiler	6240.00	9.24												Self generated
E112	R102 feed heater	14061.00		24.48											
	R102 effluent cooler						25824.00		3038.04		98.55			98.55	Air cooler
	C102 feed cooler A						36459.00	2093.35							
	C102 feed cooler B						2967.50	511.15	*						
	V201 feed cooler						2615.00	150.12							
000.	C202 reboiler	58308.00			99.72										
	C202 condenser						50799.00		5976.36		498.15			498.15	Air cooler
	C205 reboiler	46950.00			80.28										
	C205 condenser						46950.00		5523.48		383.67			383.67	Air cooler
	Recycle to C101 cooler						6809.00	390.96							
	C203 top cooler						690.00		81.36		8.21			8.21	Air cooler
	C204 reboiler	5100.00	7.56												Self generated
	C204 condenser						5000.00		588.24		51.40			51.40	Air cooler
	C201 Top feed cooler						12899.30	2221.89							
	C204 bottom cooler						197.00	33.84							
	C203 product cooler						4765.00	820.08							
	Furnace catofin inlet	14918.00				1.69									
	TRANSPORT	145577.00	16.80	24.48	180.00	1.69	235281.80	7365.11	15558.84	17.17	1047.97			1047.97	
			and a second												
					Designer	s :	M.E. Bron	S	M.P. Hof	f	Project I	ID Numb	er :	CPD324	2
							J.H.M. Jan	sen	E.P.E. Se	eveke	Completi	ion Date	:	Decemb	er 16 th 1999

						SUMN	ARY OF		S						[
	EQUIPMENT						UT	ILITIES							
	EQUITIBLE		I	leating				Cool	ing			Pow			REMARKS
	Norma	Load		Consumpl	tion (t/h)		Load	Co	nsumption (t	/h)	Actual	Consun	nption (t/h, l	cWh/h)	
Nr.	Name	Load		Steam	1	Fuel		Cooling	Air	BFW	Load	Steam	(t/h)	Electr.	
		kW	LP	MP	НР	Gas	kW	Water			kW	HP	MP	kWh/h	
		145577.00	16.80	24.48	180.00	1.69	235281.80	7365.11	15558.84	17.17	1047.97			1047.97	
-	TRANSPORT	6612.59	10.00			0.75									
R101	Regeneration Catofin	617.17				0.07									
D101	Regeneration dryer	017.17													
											2400.00			2400.00	
	R101 vacuum compressor										8015.00			8015.00	
K102	R102 HP compressor	3		1							6233.88			6233.88	
	Refrigeration compressor										900.00		17.17		Self generated
K104	R102 recycle compressor														
											7.17			7.17	
P101	C101 reflux pump										40.91			40.91	
P102	R102 Water feed pump										96.40			96.40	
P103	C102 absorbent feed pump										27.35			27.35	
P201	C201 bottom pump										5.39			5.39	
P202	V201 inorganic phase pump										0.00				Duty = 2.3 W
P203	V201 organic phase pump										24.87			24.87	
P204	•										15.26			15.26	
P205	2000 B 0000 B										4.07	1 1		4.07	
	C202 top transfer pump										2.57			2.57	
P207	C202 product transfer pump										14.95			14.95	
P208	C203 bottom pump													0.49	
P209	V203 inorganic phase pump										0.49			9.13	
P210											9.13			0.44	
P211											0.44			0.44	
	C204 reflux pump										0.49			0.43	
P213											0.12	1			
P213											2.28	1		2.2	
	C205 reflux pump										3.89			3.8	
											2.09			2.0	
P216	C205 transfer pump TOTAL	152807	17	24	180	3	235282								
11111		152807	0	24	180	3	235282	7365	15559	17	18855	0	(1795	5
mity r	equired										T				10
					Designer	·s :	M.E. Bro	ns	M.P. Ho	ff	Project	ID Numb	per :	CPD32	
					C		J.H.M. Ja	nsen	E.P.E. S	eveke	Comple	tion Date	:	Decemb	ber 16 th 1999

1

STREAM nr.:		<001>		alance & Stream		<101>	
Name:		COKES		WATER EFFLUENT	001	PROPANE FEED	IN
COMP	Mw	kmol/s	kg/s		kg/s		kg/s
HYDROGEN	2.00	0.00	0.00		0.00		0.00
METHANE	16.00	0.00	0.00	0.00	0.00		0.00
ETHYLENE	28.00	0.00	0.00	0.00	0.00	0.00	0.00
ETHANE	30.00	0.00	0.00	0.00	0.00	0.00	0.00
ETHANOL	46.00	0.00	0.00	0.00	0.00		0.00
PROPYLEN	42.00	0.00	0.00	0.00	0.00		0.00
PROPANE	44.00	0.00	0.00	0.00	0.00	(100 KB) (100 KB)	4.85
ACETONE	58.00	0.00	0.00	0.00	0.00	0.00	0.00
IPA	60.00	0.00	0.00	0.00	0.00	0.000.000.000	0.00
NPA	60.00	0.00	0.00	0.00	0.00	1000000	0.00
CYCLOHEXANE	84.00	0.00	0.00	0.00	0.00		0.00
N-HEXANE	86.00	0.00	0.00	0.00	0.00	0.00	0.00
DIPE	102.00	0.00	0.00	0.00	0.00	0.00	0.00
WATER	18.00	0.00	0.00	0.01	0.22	0.00	0.00
CARBON	12.00	0.01	0.12	0.00	0.00	0.00	0.00
Total		0.01	0.12	0.01	0.22	0.11	4.85
Enthalpy (kW)		6461		-3520		-13160	
Phase		S		L		L	
Pressure (bara)		0.50		1.00		15.00	
Temperature °C		650		35		35	

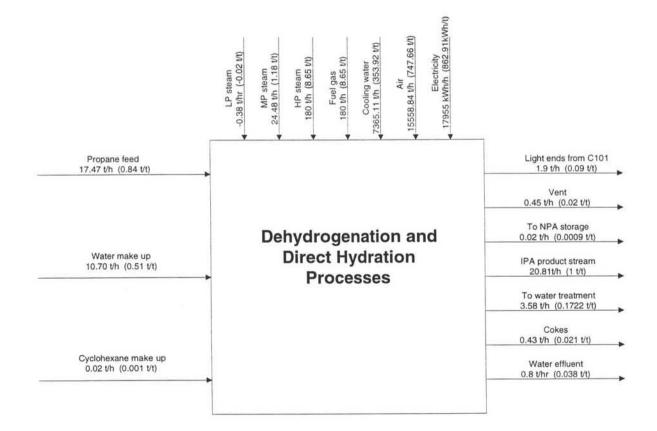
STREAM nr.:		<116>	OUT	<119>	IN	<120>	OUT
Name:		FROM ACC. C101		WATER MAKEUP		FROM P102	001
COMP	Mw	kmol/s	kg/s	kmol/s	kg/s	10 CONTRACTOR 10 CONT	kg/s
HYDROGEN	2.00	0.11	0.23		0.00		0.00
METHANE	16.00	0.01	0.08		0.00	1	0.00
ETHYLENE	28.00	0.00	0.06		0.00		0.00
ETHANE	30.00	0.00	0.07		0.00		0.00
ETHANOL	46.00	0.00	0.00		0.00		0.00
PROPYLEN	42.00	0.00	0.08		0.00		0.00
PROPANE	44.00	0.00	0.01	0.00	0.00		0.00
ACETONE	58.00	0.00	0.00	0.00	0.00		0.00
IPA	60.00	0.00	0.00	0.00	0.00		0.00
NPA	60.00	0.00	0.00	0.00	0.00		0.00
CYCLOHEXANE	84.00	0.00	0.00		0.00	a contract of the second se	0.00
N-HEXANE	86.00	0.00	0.00		0.00		0.00
DIPE	102.00	0.00	0.00	6.6255	0.00	0.000	0.00
WATER	18.00	0.00	0.00	0.17	10699.11		11.65
CARBON	12.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.12	0.53	0.17	10699.11		11.65
Enthalpy (kW)		-763		-35537		-174522	11.00
Phase		V		L		I. I.	
Pressure (bara)		34.00		1.00		34.00	
Temperature °C		-33		25		78	

Overal	l Comp	onent]	Mass E	Balance	& Stream H	eat Ba	lance-C'nto	1
STREAM nr.: Name:		<206> VENT			<207> TO NPA STORAG		<219> MAKE UP	IN
COMP	Mw	kr	nol/s	kg/s	kmol/s	kg/s	kmol/s	kg/s
HYDROGEN	2.00		0.00	0.00	0.00	0.00		0.00
METHANE	16.00		0.00	0.00	0.00	0.00	0.00	0.00
ETHYLENE	28.00		0.00	0.00	0.00	0.00	0.00	0.00
ETHANE	30.00		0.00	0.00	0.00	0.00	0.00	0.00
ETHANOL	46.00		0.00	0.00	0.00	0.00	0.00	0.00
PROPYLEN	42.00		0.00	0.07	0.00	0.00	0.00	0.00
PROPANE	44.00		0.00	0.02	0.00	0.00	0.00	0.00
ACETONE	58.00		0.00	0.02	0.00	0.00	0.00	0.00
IPA	60.00		0.00	0.00	0.00	0.00	0.00	0.00
NPA	60.00		0.00	0.00	0.00	0.01	0.00	0.00
CYCLOHEXANE	84.00		0.00	0.00	0.00	0.00	0.00	0.01
N-HEXANE	86.00		0.00	0.00	0.00	0.00	0.00	0.00
DIPE	102.00		0.00	0.02	0.00	0.00	0.00	0.00
WATER	18.00		0.00	0.00	0.00	0.00	0.00	0.00
CARBON	12.00		0.00	0.00	0.00	0.00	0.00	0.00
Total			0.00	0.13	0.00	0.01	0.00	0.01
Enthalpy (kW)			-144		-17		-10	
Phase			V		L		L	
Pressure (bara)			1.00		1.00		1.00	
Temperature °C			34		34		25	

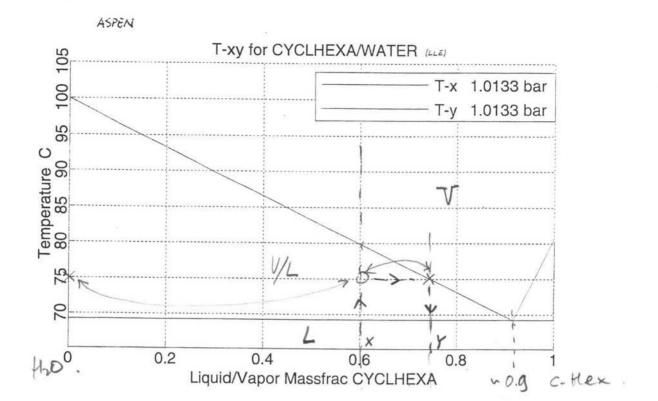
STREAM nr.:		<222>	OUT	<230>	OUT	
Name:		IPA PRODUCT		TO WATER TREATMENT		
COMP	Mw	kmol/s	kg/s	kmol/s	kg/s	
HYDROGEN	2.00	0.00	0.00	0.00	0.00	
METHANE	16.00	0.00	0.00	0.00	0.00	
ETHYLENE	28.00	0.00	0.00	0.00	0.00	
ETHANE	30.00	0.00	0.00	0.00	0.00	
ETHANOL	46.00	0.00	0.00	0.00	0.00	
PROPYLEN	42.00	0.00	0.00	0.00	0.00	
PROPANE	44.00	0.00	0.00	0.00	0.00	
ACETONE	58.00	0.00	0.00	0.00	0.00	
IPA	60.00	0.10	5.78	0.00	0.00	
NPA	60.00	0.00	0.00	0.00	0.00	
CYCLOHEXANE	84.00	0.00	0.00	0.00	0.01	
N-HEXANE	86.00	0.00	0.00	0.00	0.00	
DIPE	102.00	0.00	0.00	0.00	0.00	
WATER	18.00	0.00	0.01	0.05	0.99	
CARBON	12.00	0.00	0.00	0.00	0.00	
Total		0.10	5.79	0.06	1.00	
Enthalpy (kW)		-34981		-15795		
Phase		L		L		
Pressure (bara)		1.00		1.00		
Temperature °C		30		30		

	- comp			& Stream He	Constant of	Contraction of the second s	10.20
STREAM nr.:		<206>	OUT	<207>		<219>	IN
Name:		VENT		TO NPA STORAGE	(MAKE UP	
COMP	Mw	kmol/s	kg/s	kmol/s	kg/s	kmol/s	kg/s
HYDROGEN	2.00	0.00	0.00	0.00	0.00	0.00	0.00
METHANE	16.00	0.00	0.00	0.00	0.00	0.00	0.00
ETHYLENE	28.00	0.00	0.00	0.00	0.00	0.00	0.00
ETHANE	30.00	0.00	0.00	0.00	0.00	0.00	0.00
ETHANOL	46.00	0.00	0.00	0.00	0.00	0.00	0.00
PROPYLEN	42.00	0.00	0.07	0.00	0.00	0.00	0.00
PROPANE	44.00	0.00	0.02	0.00	0.00	0.00	0.00
ACETONE	58.00	0.00	0.02	0.00	0.00	0.00	0.00
IPA	60.00	0.00	0.00	0.00	0.00	0.00	0.00
NPA	60.00	0.00	0.00	0.00	0.01	0.00	0.00
CYCLOHEXANE	84.00	0.00	0.00	0.00	0.00	0.00	0.01
N-HEXANE	86.00	0.00	0.00	0.00	0.00	0.00	0.00
DIPE	102.00	0.00	0.02	0.00	0.00	0.00	0.00
WATER	18.00	0.00	0.00	0.00	0.00	0.00	0.00
CARBON	12.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		0.00	0.13	0.00	0.01	0.00	0.01
Enthalpy (kW)		-144		-17		-10	
Phase		V		L		L	
Pressure (bara)		1.00		1.00		1.00	
Temperature °C		34		34		25	

STREAM nr.:		<222>	OUT	<230>	OUT	
Name:		IPA PRODUCT		TO WATER TREATMENT		
COMP	Mw	kmol/s	kg/s	kmol/s	kg/s	
HYDROGEN	2.00	0.00	0.00	0.00	0.00	
METHANE	16.00	0.00	0.00	0.00	0.00	
ETHYLENE	28.00	0.00	0.00	0.00	0.00	
ETHANE	30.00	0.00	0.00	0.00	0.00	
ETHANOL	46.00	0.00	0.00	0.00	0.00	
PROPYLEN	42.00	0.00	0.00	0.00	0.00	
PROPANE	44.00	0.00	0.00	0.00	0.00	
ACETONE	58.00	0.00	0.00	0.00	0.00	
IPA	60.00	0.10	5.78	0.00	0.00	
NPA	60.00	0.00	0.00	0.00	0.00	
CYCLOHEXANE	84.00	0.00	0.00	0.00	0.01	
N-HEXANE	86.00	0.00	0.00	0.00	0.00	
DIPE	102.00	0.00	0.00	0.00	0.00	
WATER	18.00	0.00	0.01	0.05	0.99	
CARBON	12.00	0.00	0.00	0.00	0.00	
Total		0.10	5.79	0.06	1.00	
Enthalpy (kW)		-34981		-15795		
Phase		L		L		
Pressure (bara)		1.00		1.00		
Temperature °C		30		30		

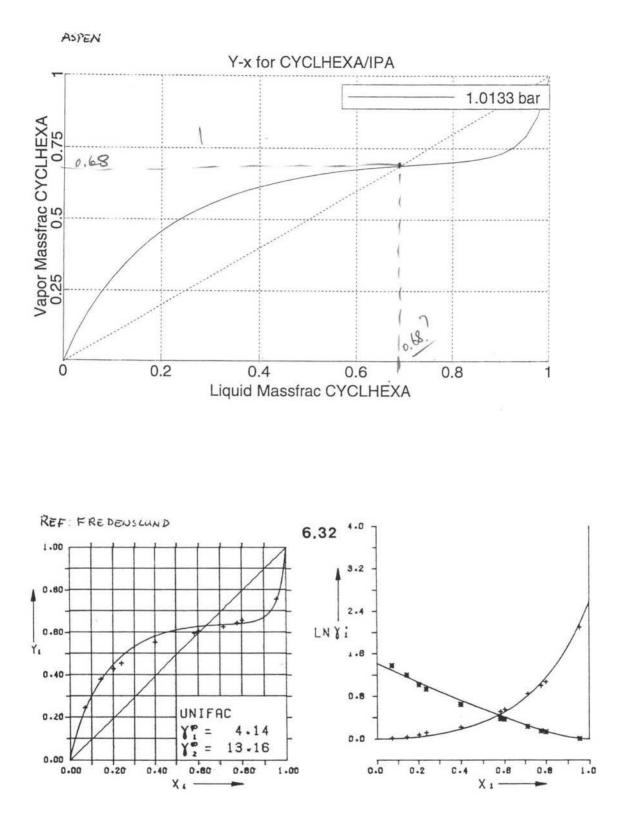

CPD3242 CONFIDENTIAL

Appendix 4.2: Process Yields

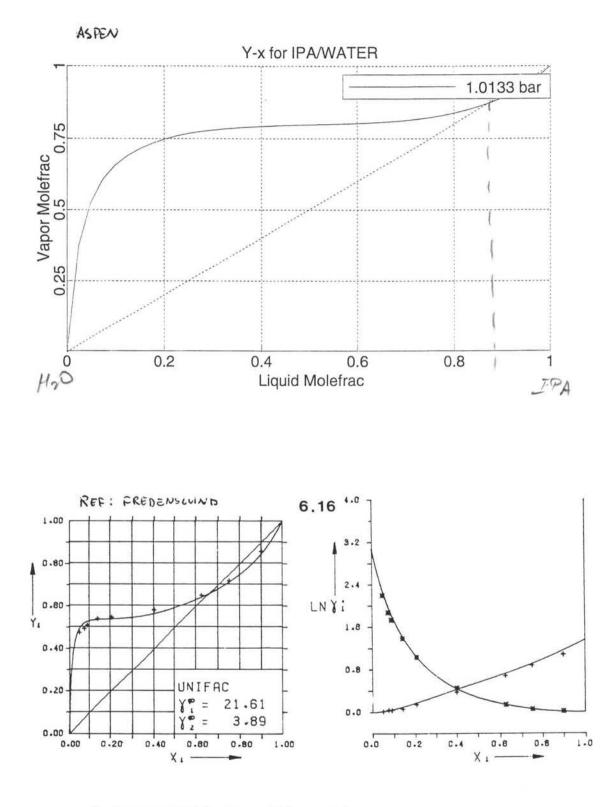

		Proc	ess Yields - S	Streams			
Name	Ref.	kg/s	3	t/h		t/t IPA Product	
	Stream	IN	OUT	IN	OUT	IN ,	OUT
Propane feed	<101>	4,85		17,47		0,84	
Make up water	<119>	2,97		10,70		9,51	
Make up cyclo hexane	<219>	0,01		0,02		0,001	1
Light ends from C101	<116>		0,53		1,90	5	0.09
Vent	<206>		0,13		0,45		0,02
To NPA storage	<207>	830	0,01		0,02		0 001
IPA product stream	<222>	228	5,78		20,81		1,00
To water treatment	<230>	52	1,00		3,58		0,17
Cokes	<001>	0,0	0,12		0,43		0,02
Water effluent	<002>		0,22		0,80		0.04
Total		7,830	7,778	28,188	28,000	1 3543	1 3453

-> \$ > 188 kg/h

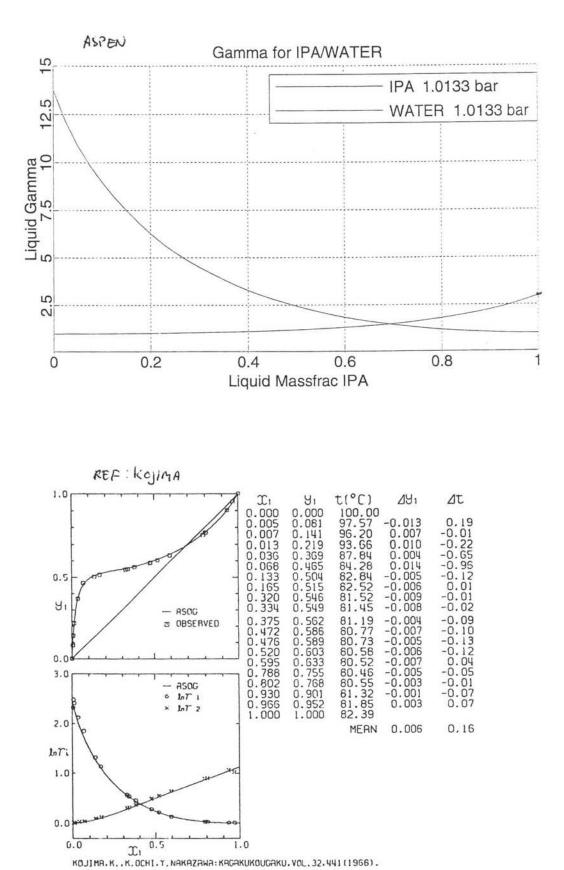
Process Yields - Utilities								
Name	Ref. Stream	kg/s	ĸW	t/h	kWh/h	t/t IPA Product	kWh/t IPA Prod.	
LP Steam (1)	-	-0,11		-0,38		-0,02		
MP Steam		6,80		24,48		1,18		
HP Steam	355	50,00		180,00		8,65		
Fuel Gas		0,70		2,51		0,12		
Cooling Water		2045,86		7365,11		353,92		
Air		4321,90		15558,84		747,66		
Electricity	-		17955,00		17955,00		862,81	


A.4.2-1

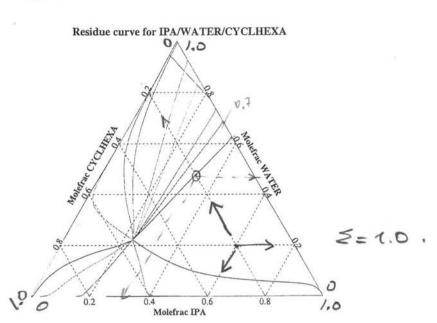
REF : DECHEMA


		REF	TEMP DEG C	SOLUBILIT MOLE PCT (1)IN(2) (.	OF	MODEL PARAMETERS IN KELVIN (PROCESSED DATA) AND LITERATURE CITATION (FOR ORIGINAL DATA) UNIQUAC NRTL(ALPHA=.2) A12 A21 A12 A21
(1)	C6H12	CYCLOHEXANE				R = 4.0464 Q = 3.240
(2)	Н 20	WATER				R = 0.9200 Q = 1.400
		*	25.0	0.120E-02	0.580E-01	1247.3 540.36 1806.5 2840.8
		1	14.00		0.2335E-01	TARASSENKOV D.N., POLOSHINZEVA E.N.
		1	19.00		0.4670E-01	BER.DTSCH.CHEM.GES, 65(1932)184
		1	28.50		0.7004E-01	
		1	32.50		0.9336E-01	
		1	38.00		0.1447	
		1	53.00		0.2332	
	14	2	20.00		0.4669E-01	BLACK C., JORIS G.G., TAYLOR H.S. J.CHEM.PHYS. 16(1948)537
		3	16.00	0.1337E-02		DURAND R. C.R.HEBD.SEANCES ACAD.SCI. 226(1948)409
		4	25.00	0.1177E-02		MCAULIFFE C. NATURE(LONDON) 200(1963)1092
		5	10.00		0.3129E-01	ENGLIN B.A. ET AL.
		5	20.00		0.5697E-01	KHIM.TEKHNOL.TOPL.MASEL (1965)9,42
		5	30.00		0.9057E-01	
		5 5 5 5	40.00		0.1479	
		5	50.00		0.2285	4
		6	25.00		0.2594E-01	JOHNSON J.R., CHRISTIAN S.D., AFFSPRUNG H.E. J.CHEM.SOC. A(1966)77
		7	25.00		0.3728E-01	RODDY J.W., COLEMAN C.F. TALANTA 15(1968)1281

A.5.1-1



Cyclohexane(1)-2-Propanol(2) at 760 mm Hg L.A.J. Verhoeye, J.Chem.Eng. Data, 13(1968)462.


A.5.1-2

2-Propanol(1)-Water(2) at 760 mm Hg L.A.J. Verhoeye, J.Chem.Eng. Data, 13(1968)462.

A.5.1-4

ASPEN

REF : DECHEMA

(2) C3H80 (3) C6H12	2-PROPANOL CYCLOHEXANE			60.		\backslash			
ERHOEYE L.A.	······ ·		•••••	50		/			
. CHEM . ENG . DA	TA 13(1968)462								
TEMPERATURE .	25.0 DEG C	TYPE OF SYS	TEN = 1	€ ^{40.}	100		/		
EXPERIMENTAL	TIE LINES IN H	OLE PCT			1		~ \		
LEFT P	HASE	RIGHT PHA		0	(1 20-		
(1) (2) (3)	(1) (2)	(3)	20.				1	
93.903 5.9		0.462 2.63	96.908	HOLE FER CENT OF				11	
87.677 12.0	74 0.249	1.336 12.679	85.985	5					
83.905 15.7 76.401 21.8		2.174 18.245 5.676 23.966		← 10.				1	
70.379 26.8		8.022 27.409		2 -					1
60.317 33.4		13.168 31.909		운 이 나					2
1 J AIJ	UWIQUAC AJI	AIJ	AJ1	DP.TIE LINE DR.C. SINCOL DR.C. PLAIT P	UNIQUED		5*) *	UN10(CD)	••
UNIQUAC (SPEC	1009.2 -432.15 R2 = 2.7791 Q2 = 2.508	5) 1.58 5) 2.12		0151h18L/1104 Re110 F 09 (2)					

g

Reaction kinetics for the propylene reactor

The compositions (wt%) of the by-products are summarised in table 5.2-1. Values are as described in literature [I] at four temperatures (hydrogen is not included).

(in rector efflecer	18 1
----------------------	------

Table 5.2-1. By-product composition as reported in literature [1].

Temperature[°C]	500	550	600	650
Ethylene [wt%]	0.04	0.12	0.40	1.00
Ethane [wt%]	0.09	0.40	2.00	2.10
Methane [wt%]	0.18	0.80	3.00	3.50
Total.	0.31	1 20	510	6.60

Circumstances as described in literature and those discussed in this report are not exactly the same, but they probably are the best estimate. Operation temperature of the dehydrogenation reaction was set on 650°C because high conversion can then be achieved.

The figures of table 5.2-1 are used to calculate the <u>selectivity of the reactions</u>. Next a brief summary of the manner of calculation is discussed per reaction (see chapter 4):

Reaction 5:

Ethane can only be formed by reaction (5).

Reaction X: 3

Because ethane can only be produced by reaction (5), it can be seen that the total amount of ethylene formed by reaction (4) equals the amount of ethylene in the product stream plus the amount of ethylene used to produce ethane.

Vin Cz

Reaction 3:4

Because of the foregoing, one knows the amount of methane produced by reaction (4). From the product composition, table 5.2-1, the total amount of methane can be found. From these two facts it can be concluded how much propane is converted by reaction (3).

Reaction 2:

From the product, table 5.2-1, and from the amount of cokes formed by reaction (4) it can be calculated how much cokes is formed by reaction (2).

These calculations lead to the values as reported in table 5.2-2.

Table 5.2-2. Summary of the calculated selectivitiess, conversions and yields.

	Selectivity	Conversion C3 >C2=	Yield
Reaction 1	0.879	0.900	0.791
Reaction 2	0.067	0.900	0.061
Reaction 3	0.003	0.900	0.003
Reaction 4	0.051	0.900	0.045

An interesting question is whether the amount of cokes formed is enough to make up for the heat consumed by the reactions. This calculation will be shown here.

Table 5.2-3. Summary of the propane conversion.

Θ	kmol/h
Propane in \$101	517.43
Propane out c101	122.11
Amount of propane converted	395.32

		Enthalpy of reaction [kJ/mol]	Enthalpy of reaction [kJ/kg]	Selectivity []	Energy consumed [kJ/mol]
1	Propane<=>Propylene+Hydrogen	124.7	2834	0.6286	78
2	Propane<=>Propylene+Hydrogen	104.7	2380	0.2708	28
3	Propane => 2CH4 + C	-44.1	-1002	0.0061	0
4	Propane => Methane + Ethylene	-7.2	-164	0.0946	-1
5	Ethylene H2 <=> Ethane	-46.3	-1654	0.0046	0
	Total energy consumed				106

Table 5.2-4. Calculation of the heat of reaction in the pr	ropylene reactor.
--	-------------------

41734		Minimal amount heat needed [MJ/h]
	36.00	Cokes formed [kmol/h]
	-393.5	heat of combustion of cokes [kJ/mol]
	80	Efficiency [%]
-17709		Energy released by combustion [MJ/h]
24024		Heat needed [MJ/h]
	40	Heat of combustion of fuel gas [MJ/kg]
	80	Efficiency [%]
750		Fuel gas needed [kg/h]

In a number of reports it has been described that regeneration and heating by burning of the cokes is preferred over the use of fuel gas, due to efficiency reasons. Therefore it may be interesting to know the minimal amount of cokes needed for the reactor to be self-sufficient. This can be calculated be done by solving the calculation below:

Minimal amount heat needed [MJ/h]		41734	
Energy released by combustion of cokes [MJ/h]	-41 ⁻		
Heat needed [MJ/h]		0	
heat of combustion of cokes [kJ/mol]	-393.5		
Efficiency [%]	80		
Cokes formed [kmol/h]		106.06	

Therefore it can be concluded that if the reported amount of cokes is formed, a substantial amount of fuel gas is needed (751 kg/h). Only if (at least) three times as much cokes is formed no fuel gas is needed.

⁽I) G.F. Froment and K.C. Waugh et al., Reaction kinetics and the development of catalytic processes: Proceedings of the international symposium, Brugge, Belgium, April 19-21, 1999 [paper: Kinetic Based Deactivation Modelling of an Isothermal Propane Dehydrogenation reactor].

		PURE COMPON							
		Technological Data				Medical Data			
Design	Component Name Systematic	Formula	Molecular Weight g/mol	Boiling Point (1) °C	Melting Point (1) °C	Density Liquid (2) kg/m ³	MAC Value mg/m ³	LD50 Oral g	Notes
Paraffins Methane Ethane Propane IPA NPA Olefins Ethylene Propylene Other hydrocarbons		CH4 C2H6 C3H8 C3H8O C3H8O C2H4 C3H6	16.04 30.07 44.10 60.10 60.10 28.05 42.08	-161.5 -88.6 -42.1 82.3 -103.7 -47.6 56.3	-182.5 -182.8 -187.6 -89.5 -169.0 -185.2 -94.7	160.0 544.6 585.3 785.5 567.8 505.0 913.1	none	none	 (3) (3) (4) (5) (6) (7) (8)
Acetone Cyclohexane Ethers DIPE Inorganic Compoun Carbon Hydrogen Water	Acetone Cyclohexane propane-2,2-oxybis Charcoal, activated Hydrogen Water	C3H6O C6H12 C6H14O C H2 H2O	58.08 84.16 102.18 12.01 2.02 18.02	80.7	-94.7 6.5 -86.8 -259.3 0.0	913.1 789.4 724.1 88.0 997.0		8470 mg/kg none none none	(9)
Notes: (1) At 101.3 kPa (2) Density at 15.56 °C (3) Density at -89 °C (4) Density at -45 °C (5) Density at 20 °C (6) Density at -104 °C (7) Density at 25 °C (8) Density at 20 °C	from H2O at 4 °C C	(8) Density (9) Density (10) Values		purity			n.a. = not a	available	
		Designers ·	ME Brons	M.P. Ho	off	Project ID N	Jumber :	CPD3242	

Designers : M.E. Brons	M.P. Hoff	Project ID Number :	CPD3242
J.H.M. Jansen	E.P.E.Seveke	Completion Date :	December 22nd 1999

Delft, University of Technology Process Systems Engineering

REACTORS, COLUMNS & VESSELS - SUMMARY

EQUIPMENT NR. NAME	:	R101 Propylene reactor	R102 IPA reactor	C101 Deethanizer	C102 Washing column
		Horizontal	Horizontal	Tray column	Absorber
Temperature ¹ [°C] ¹		650/650	158/175	-33/77	35/31
Pressure [bara]		0.66/0.33	34/32.86	34.8/35.4	29.0/29.1 ³
Volume [m ³]		100.93	142.63	45.67	45.67
Diameter [m]		4.62	3.57	2.6	2.73
L or H [m]		6.01	14.27	35.5	8.6
Internals					
- Tray Type		n.a.	n.a.	Sieve	0
- Tray Number	:	n.a.	n.a.	51	15 (theor.)
- Fixed Packing					
Туре	:	n.a.	n.a.	n.a.	n.a.
Shape	:	n.a.	n.a.	n.a.	Structured
-Catalyst		10 m			
Туре	:	Chromium oxide	H3PO4	n.a.	n.a.
Shape	:	Spherical	Spherical	n.a.	n.a.
Number					
- Series	:	-	-	1	-
- Parallel	:	3	1	1	1
Materials of					
Construction ²		2		0.0	CS
-Column	:	C.S. ²	C.S.	C.S.	C.S.
-Tray	:				

2. CS is carbon steel.

3. Based on recommended flow scheme

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

Delft, University of Technology Process Systems Engineering

REACTORS, COLUMNS & VESSELS - SUMMARY

EQUIPMENT NR.	:	C201	C202	C203	C204 Cyclohexane
NAME	:	Light ends column	IPA CBM column	IPA drying column	recovery column
		Tray column	Tray column	Tray column	Tray column
Temperature ¹ [°C] ¹	:	51/86	86/95	75/82.3	78.6/100
Pressure [bara] ¹	:	0.34/1.39	0.66/1.50	0.80/1.25	0.82/1.17
Volume [m ³]	:	0	0	0	0
Diameter [m]		3.03	2.84	2.6	1.34
L or H [m]		31.1	39.7	23.29	19
Internals					
Trou Tupo		Sieve	Sieve	Sieve	Sieve
- Tray Type - Tray Number		45	58	50	35
- Fixed Packing	•	45	50		I Sociality
Туре	:	n.a.	n.a.	n.a.	n.a.
Shape	:	n.a.	n.a.	n.a.	n.a.
-Catalyst					and the second second
Туре	:	n.a.	n.a.	n.a.	n.a.
Shape	:	n.a.	n.a.	n.a.	n.a.
Number					
- Series	:	-	-	-	-
- Parallel	:	1	1	1	1
Materials of Construction ²					
-Column	:	C.S. ²	C.S.	C.S.	C.S.
-Tray	:		105 # 3701 A	-	
Remarks:					

Remarks:

Top / bottom temperature or pressure.
 CS is carbon steel.

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

REACTORS, COLUMNS & VESSELS - SUMMARY

EQUIPMENT NR. NAME	: :	C205 NPA recovery column	V101 C101 accumulator	V102 HP Separator	V201 Light ends column phase separator
		Tray column	Horizontal	Horizontal	Horizontal
Temperature ¹ [°C] ¹	:	80/80	-33	90	34
Pressure [bara] ¹	:	0.77/1.11	34.8	32/30	1
Volume [m ³]	:	0	16.83	31.91	46.63
Diameter [m]	:	2.68	1.75	2.5	2.5
L or H [m]	:	19	7	6.5	9.5
Internals					
- Tray Type	:	Sieve	n.a.	n.a.	n.a.
- Tray Number	:	28	n.a.	n.a.	n.a.
- Fixed Packing					
Туре	:	n.a.	n.a.	n.a.	n.a.
Shape	:	n.a.	n.a.	n.a.	n.a.
-Catalyst					
Type	1	n.a.	n.a.	n.a.	n.a.
Shape	:	n.a.	n.a.	n.a.	n.a.
Number					
- Series	:	-	-	-	-
- Parallel	:	1	1	1	1
Materials of			54		
Construction ²					
-Column	:	C.S. ²	C.S.	C.S.	C.S.
-Tray					

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
<u> </u>	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

REACTORS, COLUMNS & VESSELS - SUMMARY

EQUIPMENT NR. NAME	:	V202 C202 accumulator	V203 Drying column	V204 C204 accumulator	V205 C205 accumulator
			phase separator		
		Horizontal	Horizontal	Horizontal	Horizontal
Temperature ¹ [°C] ¹	:	80	75	90	80
Pressure [bara] ¹	:	0.66	1	0.82	0.77
Volume [m ³]	÷	47.86	65.34	2.39	13.07
Diameter [m]	:	2.5	2.75	0.9	1.6
L or H [m]	:	9.75	11	3.75	6.5
Internals					
- Tray Type	:	n.a.	n.a.	n.a.	n.a.
- Tray Number	3	n.a.	n.a.	n.a.	n.a.
- Fixed Packing					
Туре	:	n.a.	n.a.	n.a.	n.a.
Shape	:	n.a.	n.a.	n.a.	n.a.
-Catalyst					
Туре	:	n.a.	n.a.	n.a.	n.a.
Shape	:	n.a.	n.a.	n.a.	n.a.
Number					
- Series	1	-	-	-	-
- Parallel	:	1	1	1	1
Materials of					
Construction ²		2			
-Column	:	C.S. ²	C.S.	C.S.	C.S.
-Tray	:				

Remarks:

8. Top / bottom temperature or pressure.

9. CS is carbon steel.

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

REACTORS, COLUMNS & VESSELS - SUMMARY

EQUIPMENT NR.	:	T201	T202	T203	T204	D101
NAME	:	A/B/C/D Run down tank	Off spec tank	On spec tank	Sales tank	Dryer in overall recycle
		Vertical	Vertical	Vertical	Vertical	Horizontal
Temperature ¹ [°C] ¹	:	30	30	30	30	35
Pressure [bara]	:	1	1	1	1	15^{3}
Volume [m ³]	:	224	4902	60080	28008	76.68
Diameter [m]	:	7.8	20.74	52.96	41.06	2.9
L or H [m]	:	4.68	14.51	27.27	21.14	11.6
Internals						
- Tray Type	:	n.a.	n.a.	n.a.	n.a.	n.a.
- Tray Number	:	n.a.	n.a.	n.a.	n.a.	n.a.
- Fixed Packing						
Туре	:	n.a.	n.a.	n.a.	n.a.	Drying agent
Shape	:	n.a.	n.a.	n.a.	n.a.	Spherical
-Catalyst					1	
Type	:	n.a.	n.a.	n.a.	n.a.	
Shape	;	n.a.	n.a.	n.a.	n.a.	
Number						
- Series	:	-	-	-	-	2 m
- Parallel	:	4	1	1	1	2
Materials of Construction ²						
-Column -Tray	:	C.S. ²	C.S.	C.S.	C.S.	C.S.
Remarks:						

Remarks:

10. Top / bottom temperature or pressure.

11. CS is carbon steel

12. Based on recommended flow scheme

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
-	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

HEAT EXCHANGERS & FURNACE- SUMMARY

EQUIPMENT NR.	:	E101	E102	E103	E104	E105
NAME	:	R101 Feed-	R101 Feed-	R101 Feed-	R101 Feed-	R101
		Effluent A	Effluent B	Effluent C	Effluent D	Effluent -
						Steam
Туре	:	HTXR	HTXR	HTXR	HTXR	HTXR
Substance						
- Tubes	:	Propylene	Propylene	Propylene	Propylene	Steam
- Shell	:	Propane/	Propane/	Propane/	Propane/	Propylene
		Propylene	Propylene	Propylene	Propylene	
Duty [kW]	:	1625	2816	2562	2176	12498
Heat exchange area						
[m ²]	1	92	204	217	189	62
Number of passes						
- Tubes		2	2	2	2	2
- Shell	:	1	1	1	1	1
Pressure [bara]						
- Tubes	:	0,3	0,3	0,3	0,3	15,0
- Shell	1	2,0	2,0	2,0	2,0	0,3
Temperature [°C]						
- Tubes In	:	147,6	230,0	305,0	368,7	100,0
Out	:	100,0	147,6	230,0	305,0	300,0
- Shell In	;	4,7	57,0	147,6	230,0	650,0
Out	1	57,0	147,6	230,0	300,0	368,7
Special materials						
of construction		107.01 (2No	2012 200			
-Tubes	:	C.S.	C.S.	C.S.	C.S.	C.S.
-Shell	:	C.S.	C.S.	C.S.	C.S.	C.S.
Other	:					
Remarks:						

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
C	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

HEAT EXCHANGERS & FURNACE- SUMMARY

EQUIPMENT NR.	3	E106	E107	E108	E109	E110
NAME	:	K101	C203	C101 Feed	C101	C101
		Effluent	Reboiler		Condenser	Condenser
						Heat pump
Туре	:	Cooler	HTXR Reboiler	Cooler	Condenser	Cooler
Substance						
- Tubes	:	Propylene	Propylene	Propylene	H2/Light ends	Propylene
- Shell	:	Air	IPA	Cooling water	Propylene	Cooling water
Duty [kW]	:	2986	825	6830	5394	11599
Heat exchange area [m ²]		50	49	522	1065	394
Number of passes	:	50	47	522	1005	
- Tubes		1	2	4	2	2
- Shell	•	n.a.	1	2	1	1
Pressure [bara]	•	11.64.				
- Tubes		0,7	36,0	35.5	34,8	36,0
- Shell	÷	1,0	1,0	1,0	1,0	1,0
Temperature [°C]						
- Tubes In	:	180,0	180,3	155,0	-33,0	144,8
Out	:	80,0	155,0	26,9	-33,0	40,0
- Shell In	3	30,0	82,3	25,0	-47,6	25,0
Out	:	60,0	82,3	40,0	-40,0	40,0
Special materials						
of construction					201	
-Tubes	;	C.S.	C.S.	C.S.	C.S.	C.S.
Cl 11	:	C.S.	C.S.	C.S.	C.S.	C.S.
-Shell						

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

HEAT EXCHANGERS & FURNACE- SUMMARY

EQUIPMENT NR.	:	E111	E112	E113	E114	E115
NAME	:]	C101	R102 Feed	C201	R102	C102 Feed
		Reboiler	heater	Reboiler	Effluent	cooler A
					cooler	
Туре	:	Reboiler	Heater	Reboiler	Cooler	Cooler
Substance						
- Tubes	:	Propylene	Propylene/	IPA/	IPA/	IPA/
			IPA	Propylene	Propylene	Propylene
- Shell	:	LP Steam	MP Steam	IPA/water	Air	Cooling
						water
Duty [kW]	:	6240	14061	20201	25824	36459
Heat exchange area						
[m ²]	:	139	475	945	614	1706
Number of passes						
- Tubes	1	2	2	2	1	4
- Shell	1	1	1	1	n.a.	2
Pressure [bara]					11	
- Tubes	1	35,4	34,0	32,9	32,9 ¹	30,21
- Shell	:	4,7	15,0	1,4	1,0	1,0
Temperature [°C]						
- Tubes In	:	77,1	139,7	175,0	141,3	90,0
Out	÷	77,1	158,0	141,3	90,0	40,0
- Shell In	:	196,8	200,0	85,6	30,0	25,0
Out	:	100,0	175,0	85,6	60,0	40,0
Special materials						
of construction		The Part of the Pa	Contraction of the Contraction o			
-Tubes	;	C.S.	C.S.	C.S.	C.S.	C.S.
-Shell	:	C.S.	C.S.	C.S.	C.S.	C.S.
Other	:					

1. Based on recommended flow scheme

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

HEAT EXCHANGERS & FURNACE- SUMMARY

EQUIPMENT NR.	:	E116	E201	E202	E203	E204
NĂME	:	C102 Feed	V201 Feed	DELETED	C202	C202
		cooler B	cooler		Reboiler	Condenser
Туре	;	Cooler	Cooler		HTXR Reboiler	Condenser
Substance						
- Tubes	:	IPA/	Cooling		HP Steam	IPA/water
		Propylene	water			
- Shell	:	Cooling	Water/IPA		Water	Air
		water				
Duty [kW]	:	2968	2615		58308	50799
Heat exchange area						
[m ²]	:	645	185		742	3103 ²
Number of passes						a
- Tubes	:	2	4		2	1
- Shell	4	1	2		1	n.a.
Pressure [bara]						
- Tubes		29,7 ¹	1,0		18,0	0,7
- Shell	:	1,0	1,0		1,5	1,0
Temperature [°C]						
- Tubes In	1	40,0	25,0		225,0	80,0
Out	:	30,0	40,0		175,0	80,0
- Shell In	:	25,0	79,8		95	30,0
Out	:	30,0	34,3		95	60,0
Special materials						
of construction					1000	
-Tubes	:	C.S.	C.S.		C.S.	C.S.
-Shell	1	C.S.	C.S.		C.S.	C.S.
Other	:					

1. Based on recommended flow scheme

2. In practice 6 air coolers would be placed

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

HEAT EXCHANGERS & FURNACE- SUMMARY

EQUIPMENT NR.	:	E205	E206	E207	E208	E209
NAME	:	C205	C205	Recycle to	C203	C204
		reboiler	Condenser	C101	Condenser	Reboiler
Туре	:	Reboiler	Condenser	Cooler	Condenser	Reboiler
Substance						
- Tubes	:	HP Steam	IPA/water	Cooling	Cyclohex-	LP Steam
				water	ane/water	
- Shell	:	NPA	Air	Water	Air	Water
Duty [kW]	:	46950	46950	6809	690	5100
Heat exchange area			100			
[m ²]	:	496	2390 ¹	473	51	380
Number of passes						
- Tubes	:	2	1	4	1	1
- Shell	:	1	n.a.	2	n.a.	2
Pressure [bara]					12 12 13	00/044
- Tubes	:	18,0	0,8	1,0	0,8	4,7
- Shell	1	1,1	1,0	1,0	1,0	1,0
Temperature [°C]						
- Tubes In	:	225,0	80,0	25,0	74,7	196,8
Out	:	175,0	80,0	40,0	74,7	101,0
- Shell In	:	80,0	30,0	95,0	30,0	100,0
Out	ः	80,0	60,0	30,0	60,0	100,0
Special materials						
of construction						
-Tubes	:	C.S.	C.S.	C.S.	C.S.	C.S.
-Shell	:	C.S.	C.S.	C.S.	C.S.	C.S.
Other	:					

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

HEAT EXCHANGERS & FURNACE- SUMMARY

EQUIPMENT NR.	:	E210	E211	E212	E213	F101
NAME	:	C204	C201 Top	C204	C203	R101 Feed
		Condenser	Feed Cooler	Bottom	Product	Furnace
				cooler	cooler	
Туре	:	Condenser	Cooler	Cooler	Cooler	Furnace
Substance						
- Tubes	:	Cyclohex-	Cooling	Cooling	Cooling	Propane/
		ane	water	water	water	Propylene
- Shell	:	Air	Water	Water	IPA	Fuel gas
Duty [kW]	:	5000	12899	197	4765	14918
Heat exchange area						
[m ²]	:	320	634	11	350	497
Number of passes						
- Tubes	:	1	4	2	2	1
- Shell	:	n.a.	2	1	1	1
Pressure [bara]						
- Tubes	:	0,8	1,0	1,0	1,0	2'
- Shell		1,0	0,8	1,2	1,3	1
Temperature [°C]					100 A	
- Tubes In	:	78,6	25,0	25,0	25,0	300
Out	:	78,6	30,0	30,0	30,0	650
- Shell In	:	30,0	95.0	100,0	82,3	900
Out	:	60,0	34.0	30,0	30,0	900
Special materials						
of construction			1			
-Tubes	;	C.S.	C.S.	C.S.	C.S.	C.S.
-Shell	:	C.S.	C.S.	C.S.	C.S.	C.S.
Other	1					

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	
-	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

EQUIPMENT NR.	:	K101	K102	K104
NĂME		R101 vacuum	R102 HP	R102 recycle
		compressor	compressor	compressor
Туре	:	Reciprocating	Centrifugal	Axial flow
Number	:	1	1	1
Medium transferred	:	Propane/Propylene/ Light ends	Propane/Propylene/ Light ends	Propane/Propylene/ Water/IPA
Capacity [m ³ /s].	:	24.2	0.42	1.17
Density [kg/m ³]	:	0.056403907	3.253968254	69.90
Pressure				
In [bara]	:	0.2	0.57	29 ²
Out [bara]	:	0.67	36	34
difference [bara]	:	0.47	35.43	5
Temperature				
Out [°C]	1	180	180	224
Power [kW]				
- Theor.	:	1728.32	5770.50	648.00
- Actual	:	2400.44	8014.58	900.00
- Efficiency	:	72%	72%	72%
Number				
- Theor.	:	1	1	
- Actual	:	2	2	2
Special Materials of Construction	:	C.S.	C.S.	C.S.

COMPRESSORS SUMMARY

Remarks:

1. K103 in closed heat pump cycle is left out of design, but is included in the economical analysis.

2. Based on recommended flow scheme

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

EQUIPMENT NR.	:	P101	P102	P103	P201
NAME		C101 Reflux pump	R102 Water feed pump	C102 Absorbent feed pump ¹	C201 Bottom pump
Туре	:	Centrifugal	Multi stage centrifugal	Centrifugal	Centrifugal
Number	:	1	1	1	1
Medium transferred		Propane/Propylen e	Water	Water	Water/IPA
Capacity [m ³ /s].	:	2.76E-02	8.68E-03	2.62E-02	1.16E-01
Density [kg/m ³]	:	391.0	1000.0	1000.0	898.1
Pressure					
In [bara]	:	34.8	1.0	1.0	1.4
Out [bara]	:	36.8	34.0	29.0	3.4
difference [bara]	4	2.0	33.0	28.0	2.0
Temperature					54 (2)
In $(= Out) [^{\circ}C]$		-33	77.6	30	86
Power [kW]					The state of the state
- Theor.	;	5.52	28.64	73.26	23.25
- Actual	;	7.17	40.91	96.40	27.35
- Efficiency	3	77%	70%	76%	85%
Number					
- Theor.	:				
- Actual	:	1	1	1	1
Special Materials of		CS	CS	CS	CS
Construction	:				

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

phase pumpphase pumppumppumpType:CentrifugalCentrifugalMulti stage centrifugalCentrifuNumber:1111Medium transferred:Water/IPANPAWaterIPA/NPCapacity $[m^3/s]$.:2.02E-024.61E-061.04E-016.10E-0Density $[kg/m^3]$:296.01156.01000.0753.7PressureInI.01.01.50.7Out [bara]::3.03.03.52.7difference [bara]::2.02.02.02.0TemperatureIn (= Out) [°C]::349580Power [kW]20.8912.21- Actual::5.392.3E-0324.8715.26- Efficiency:75%40%84%80%	eflux
Number:111Medium transferred:Water/IPANPAWaterIPA/NPCapacity $[m^3/s]$.:2.02E-024.61E-061.04E-016.10E-0Density $[kg/m^3]$:296.01156.01000.0753.7PressureIn1.01.01.50.7Out [bara]:1.01.01.52.7difference [bara]:2.02.02.02.0TemperatureIn (= Out) [°C]:34349580Power [kW]-Theor.:4.049.2E-0420.8912.21- Actual:5.392.3E-0324.8715.26- Efficiency:75%40%84%80%	
Medium transferred:Water/IPANPAWaterIPA/NPCapacity $[m^3/s]$.:2.02E-024.61E-061.04E-016.10E-0Density $[kg/m^3]$:296.01156.01000.0753.7Pressure1.01.01.00.0753.7In [bara]:1.01.01.50.7Out [bara]:3.03.03.52.7difference [bara]:2.02.02.02.0TemperatureIn (= Out) [°C]:34349580Power [kW] Theor.:4.049.2E-0420.8912.21- Actual:5.392.3E-0324.8715.26- Efficiency:75%40%84%80%	ugal
Medium transferred:Water/IPANPAWaterIPA/NPCapacity $[m^3/s]$.:2.02E-024.61E-061.04E-016.10E-0Density $[kg/m^3]$:296.01156.01000.0753.7PressureIn [bara]:1.01.01.50.7Out [bara]:3.03.03.52.7difference [bara]:2.02.02.02.0TemperatureIn (= Out) [°C]:34349580Power [kW] Theor.:4.049.2E-0420.8912.21- Actual:5.392.3E-0324.8715.26- Efficiency:75%40%84%80%	1
Capacity $[m^3/s]$.: $2.02E-02$ $4.61E-06$ $1.04E-01$ $6.10E-0$ Density $[kg/m^3]$: 296.0 1156.0 1000.0 753.7 Pressure	PA/Water
Density $[kg/m^3]$:296.01156.01000.0753.7PressureIn [bara]:1.01.01.50.7Out [bara]:3.03.03.52.7difference [bara]:2.02.02.0TemperatureIn (= Out) [°C]:343495Power [kW] Theor.:4.049.2E-0420.89- Actual:5.392.3E-0324.87- Efficiency:75%40%84%Number)2
PressureIn [bara]:1.01.01.50.7Out [bara]:3.03.03.52.7difference [bara]:2.02.02.02.0Temperature $In (= Out) [^{\circ}C]$:34349580Power [kW] $In (= 1000) [^{\circ}C]$:4.049.2E-0420.8912.21 $- Theor.$:5.392.3E-0324.8715.26 $- Efficiency$:75%40%84%80%	
In [ourd]1.101.003.0 3.5 2.7 Out [bara]: 3.0 3.0 3.5 2.0 difference [bara]: 2.0 2.0 2.0 2.0 Temperature 34 34 95 80 In (= Out) [°C]: 34 34 95 80 Power [kW] $-$ Theor.: 4.04 $9.2E-04$ 20.89 12.21 $-$ Actual: 5.39 $2.3E-03$ 24.87 15.26 $-$ Efficiency: 75% 40% 84% 80%	
Out [bara]: 3.0 3.0 3.5 2.7 difference [bara]: 2.0 2.0 2.0 2.0 TemperatureIn (= Out) [°C]: 34 95 80 Power [kW] Theor.: 4.04 $9.2E-04$ 20.89 12.21 - Actual: 5.39 $2.3E-03$ 24.87 15.26 - Efficiency: 75% 40% 84% 80%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Power [kW] - Theor. : 4.04 9.2E-04 20.89 12.21 - Actual : 5.39 2.3E-03 24.87 15.26 - Efficiency : 75% 40% 84% 80%	
- Actual : 5.39 2.3E-03 24.87 15.26 - Efficiency : 75% 40% 84% 80% Number	
- Efficiency 75% 40% 84% 80% Number	
Number	
- Theor. :	
- Actual : 1 1 1 1	
Special Materials of CS CS CS CS	
Construction :	
Remarks:	

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
-	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

EQUIPMENT NR. NAME	:	P206 C202 Top transfer pump	P207 C202 Product transfer pump	P208 C203 Bottom pump	P209 V203 Inorganic phase pump
Type Number	: .	Centrifugal	Centrifugal	Centrifugal 1	Centrifugal 1
Medium transferred	:	IPA/NPA/Water	IPA/Water	IPA	Water/Cyclohexa ne
Capacity [m ³ /s].	•	1.53E-02	9.00E-03	7.61E-03	1.24E-03
Density [kg/m ³]	:	753.7	755.2	761.9	1000.0
Pressure In [bara] Out [bara] difference [bara]	:	0.7 2.7 2.0	0.7 2.7 2.0	1.3 3.3 2.0	1.0 3.0 2.0
Temperature In (= Out) [°C]	:	80	80	82.3	75
Power [kW] - Theor. - Actual - Efficiency		3.05 4.07 75%	1.80 2.57 70%	1.52 2.18 70%	0.25 0.49 50%
Number - Theor. - Actual	: :	1	1	1	1
Special Materials of Construction	:	CS	CS	CS	CS
Remarks:					

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

EQUIPMENT NR. NAME	:	P210 V203 Organic phase pump	P211 C204 Bottom pump	P212 C204 Reflux pump	P213 C204 Transfer pump
Type Number	:	Centrifugal	Centrifugal	Centrifugal	Centrifugal 1
Medium transferred	:	Cyclhexane	Water/Cyclhexan e	Cyclohexane/Wat er	Cyclohexane/Wat er
Capacity [m ³ /s].	:	3.65E-02	1.00E-03	1.10E-03	2.40E-04
Density [kg/m ³]		747.6	1000.0	1000.0	1000.0
Pressure In [bara] Out [bara] difference [bara]		1.0 3.0 2.0	1.2 3.2 2.0	0.8 2.8 2.0	0.8 2.8 2.0
Temperature In (= Out) [°C]	:	75	100	78.6	78.6
Power [kW] - Theor. - Actual - Efficiency	: : :	7.30 9.13 80%	0.20 0.44 45%	0.22 0.49 45%	0.05 0.12 40%
Number - Theor. - Actual	:	1	1	1	1
Special Materials of Construction Remarks:	:	CS	CS	CS	CS

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

EQUIPMENT NR.		P214	P215	P216
NAME	•	C205 Bottom pump	C205 Reflux pump	C205 Transfer pump
Туре	:	Centrifugal	Centrifugal	Centrifugal
Number	:	1	1	1
Medium transferred	1	IPA/Water/NPA	IPA/Water	IPA/Water
Capacity [m ³ /s].	:	7.97E-03	1.46E-02	7.30E-03
Density [kg/m ³]	:	753.2	753.2	753.2
Pressure				8002056
In [bara]	:	1.1	0.8	0.8
Out [bara]	:	3.1	2.8	2.8
difference [bara]	:	2.0	2.0	2.0
Temperature				59
In $(= Out) [^{\circ}C]$:	80	80	80
Power [kW]				
- Theor.	:	1.59	2.92	1.46
- Actual	:	2.28	3.89	2.09
- Efficiency	:	70%	75%	70%
Number				
- Theor.	:			
- Actual	:	1	1	1
Special Materials of		CS	CS	CS
Construction	_:			
Remarks:				

Designers:	M.E. Brons	M.P. Hoff	Project ID-number	: CPD 3242
	J.H.M. Jansen	E.P.E. Seveke	Date	: 22 nd December 99

Process Systems			SDECIEIO	CATION SH	JEET		
EQUIPMENT NUN	ABER	: R101 A	B/C	ATION SP		Serie	
NAME		: Propyle	ne reactor		~		60:3
			General	Data	ls	parau	ev: 5
Function		• _	Reaction	Data			
Туре			Fixed bed				
Column Type			Horizontal				
Internals			Fixed-bed				
Heating / Cooling n	nedium		Closed				
-Type				rn-off during	catalyst re	reneration	
21			Heating v	vith fuel gas	during cat	reg (0.211	(a/c)
-Quantity	[kg/s]			el gas (=min			(g/s)
-Press./Temp.'s	[bara/°		ot applical		innum requ	nement)	
Vessel Diameter	[ouiu		62	bie			
Vessel Height	[m]		01				
Vessel Total Volum			0.93				
Vessel Material	1 ,,	: C					
Pressure Drop	[ba		33	•			
0			ocess Con	ditions			
Stream Data ¹		Feed	the con	Effluent		Coke form	ning
Temperature [°C]	650	1.là	650		650	mg
and the second difference of the second s	bara]	0.66 10	R	0.33		0.5	
	kg/m ³]	-	X	-		0.5	
	kg/s]	-	3	-		÷.	
	kg/m ³]	0.3	t	0.21		-	
	kg/s] /	13.74)	T	13.62		0.12 (solid	11)
Components (lumps		Mol%	Wt%	Mol%	Wt%	Mol%	Wt%
HYDROGEN		0.1	0.0		1.7	0.0	0.0
METHANE		0.0	0.0		0.6	0.0	0.0
ETHYLENE		0.0	0.0		0.4	0.0	0.0
ETHANE		0.1	0.0	94 - 133° 39 - 1	0.6	0.0	0.0
ETHANOL		0.0	0.0	the second second	0.0	0.0	0.0
PROPYLEN		51.9	50.1	61.8	81.9	0.0	0.0
PROPANE		45.6	46.0		11.0	0.0	0.0
ACETONE		0.0	0.0	C	0.0	0.0	0.0
IPA		1.6	2.2		2.2	0.0	0.0
NPA		0.0	0.0	- 1 K - 1	0.0	0.0	0.0
CYCLOHEXANE		0.0	0.0		0.0	0.0	0.0
N-HEXANE		0.0	0.0		0.0	0.0	0.0
DIPE		0.7	1.6		1.6	0.0	0.0
WATER		0.0	0.0	n la construction la	0.0	0.0	0.0
CARBON		0.0	0.0	2.1	0.0	100.0	100.0
		N N	essel Inte	ernals			
Catalyst				Beds			
Catalyst type		: Chrom Oxide	ium	Nr. of Beds	:	1	
Catalyst shape		: Spheri	cal	V_{Bed}	$[m^{3}]$	70.65	
	mm]	: 5.3		ined			
	kg/m ³]	: 750					
말 것 것 않 봐 없	kg]	: 31793					
Remarks:							

Designers:	ME Brons	JHM Jansen	Project ID-number	1	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUMBER	: R102		Das	oria: 1x
NAME	: IPA reactor		Sa	porcella: -
	Gene	ral Data		
Function	: - Reacti			
Туре	: - Fixed	bed		
Column Type	: - Horizo			
Internals	: - Fixed-			
Heating / Cooling medium	: - None			
-Type				
-Quantity [kg/s]				
-Press./Temp.'s [bara/	°C1 :			
Vessel Diameter [m				
Vessel Height [m				
Vessel Total Volume [m				
Vessel Material	: CS			
	ara] : 1.14			
		Conditions		
Stream Data ¹	Feed	- on artiono	Effluent	
Temperature [°C]	158		175	
Pressure [bara]	34		32.86	
Liquid Density [kg/m ³]	-		-	
Liq. Mass Flow [kg/s]	-		-	
Gas Density [kg/m ³]	45.37		37.16	
Gas Mass Flow [kg/s]	106.66		106.66	
Components (lumps) (1)	Mol%	Wt%	Mol%	Wt%
HYDROGEN	0.1	0.0	0.1	0.0
METHANE	0.0	0.0	0.0	0.0
ETHYLENE	0.0	0.0	0.0	0.0
ETHANE	0.1	0.1	0.1	0.1
ETHANOL	0.0	0.0	0.0	0.0
PROPYLEN	59.7	68.4	58.3	64.5
PROPANE	11.5	13.8	11.9	13.8
ACETONE	0.0	0.1	0.1	0.1
IPA	1.7	2.8	5.2	8.3
NPA	0.0	0.0	0.0	0.0
CYCLOHEXANE	0.0	0.0	0.0	0.0
N-HEXANE	0.0	0.0	0.0	0.0
DIPE	0.7	2.0	0.8	2.1
WATER	26.1	12.8	23.5	11.2
CARBON	0.0	0.0	0.0	0.0
	Vessel	Internals		
Catalyst		Beds		
Catalyst type	: H ₃ PO ₄ cataly	And the second second second	$[m^3]$: 99	.84
Catalyst shape	: Spherical			
Particle size [mm]	: 5.3			
Catalyst density [kg/m ³]	: 743			
	: 74183			
Catalyst load [kg] Remarks: Heat is released in				

Designers: ME Brons	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUMB		101						
NAME	: E	Deethaniz	er eneral I	lata				
Service			distillation					
				on				
Column Type			ray					
Tray Type ¹			sieve					
	retical	: 30						
Actua		: 51						
Feed	(Actual)	: 10	5				127	
Tray Distance (HETP)	[m]	: 0	.600	Tray N	laterial		CS^2	
Column Diameter	[m]	: 2.	6	Colum	n Materia	al :	CS^2	
Column Height	[m]	: 35	5.5					
Heating		: -1	reboiler					
		Proc	ess Con	ditions				
Stream Details	Feed		Тор		Bottom		Reflux	
Temp. [°C]	27		-33		77		-33	
Pressure [bara]	35		34.8		35.4		34.8	
Density [kg/m ³]	89.8		36.2		391		391	
Mass Flow [kg/s]	13.6		0.5		13.1		10.8	
Composition	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%
HYDROGEN	26.3	1.7	90.6		0.0	0.0	0.0	0.0
METHANE	1.2	0.6	4.1	15.4	0.0	0.0	2.6	1.1
ETHYLENE	0.5	0.4	1.7	11.2	0.0	0.0	3.2	2.2
ETHANE	0.6	0.6	1.9	13.6	0.1	0.0	5.6	4.2
ETHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	61.8	81.9	1.6	15.8	86.4	84.6	81.1	84.4
PROPANE	7.9	11.0	0.1	1.3	11.1	11.4	7.4	8.1
ACETONE	0.0	0.0	0.0	174722 S.A.	0.0	0.0	0.0	0.0
IPA	1.2	2.2	0.0	1000 million 1000 mi	1.7	2.3	0.0	0.0
NPA	0.0	0.0	0.0	Network Street	0.0	0.0	0.0	0.0
CYCLOHEXANE	0.0	0.0	0.0	10000000	0.0	0.0	0.0	0.0
N-HEXANE	0.0	0.0	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	0.0	0.0	0.0
DIPE	0.5	1.6	0.0	1000331010	0.7	1.7	0.0	0.0
WATER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Trays		Col	umn Int			N-4	andia-bl-	1
Number of			1.00	Packing		NOT A	pplicable	
sieve holes		1164		Type Motorial				
	[m2]		1220	Material	F31	•		
Active tray area	[m ²] :	3.75		Volume	[m ³]	1		
Weir Length	[m] :	2.12		Length	[m]	1		
Diameter of		220		Width	[m]	;		
chute pipe / hole /	[mm] :	5		Height	[m]	1		

DISTILLATION COLUMN - SPECIFICATION SHEET

Tray numbering from top to bottom
 CS = Stainless Steel

3. To prohibit weeping, the total hole area was minimised, this resulted in a strain on the down comer design. This can be avoided by using valves instead of ordinary sieve plates.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

ABSORBER- SPECIFICATION SHEET

			ashing c	Genera	l Data				
Service			: - ab	sorption					
Column Type	2		: - pa	cked					
Tray Type			: - n.:						
Tray Number	Theore	etical	: 15						
Tray Distance (HETP) [m] : 0.5)	Packing Ma	terial	: CS	5	
Column Diameter [m] : 2.7				28	Column Ma	terial	: CS	5	
Column Heig	ght	[m]	: 8.63	3					
Heating			: - nc	one					
			Pr	ocess C	onditions				
Stream Detai		Feed		Тор		Bottom		Absorbe	nt
Temp.	[°C]	30 ³		35		31		30	
Pressure	[bara]	29.13		29		29.1		29.1	
Density	$[kg/m^3]$	1.8		1.7		983.9		947.4	
Mass Flow	[kg/s]	99.7		91.1		34.8		26.2	
Composition		Mol%	Wt%	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%
HYDROGEN	Z	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0
METHANE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0
ETHANOL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN		67.1	69.0	75.3	75.5	0.1	0.2	0.0	0.0
PROPANE		13.7	14.8	15.4	16.2	0.0	0.0	0.0	0.0
ACETONE		0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.0
IPA		5.7	8.4	2.3	3.3	5.2	15.4	0.0	0.0
NPA		0.0	0.0	0.0		0.0	0.0	0.0	0.0
CYCLOHEX		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE		0.0	0.0	0.0	_52586	0.0	0.0	0.0	0.0
DIPE WATER		0.9	2.2	1.0		0.0	0.1	0.0	0.0
WATER		12.3	5.4	5.7	2.4	94.7	84.2	100.0	100.0
			C	olumn	Internals				
Trays		Not A	pplicabl	e I	Packing				
Number of			2-12 T		Гуре		: Struc	tured Mel	lapak
caps / sieve l		:		1	Material		: Steel		
Active tray a		$[m^2]$:			Volume bed	[m ³]	: 45.66	51	
Weir Length		[m] :			Length	[m]	: n.a.		
Diameter of					Width	[m]	: n.a.		
chute pipe /	hole /	[mm] :		1	Height	[m]	: n.a.		
Richard	son's of 0.5	ōm.			a typical HT low packing			oulson &	

3. Based on recommended flowscheme.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUMBER		201						
NAME	: L	ight ends	neral Da	to				
Service			stillation	la				
Column Type		: - tra	7. S					
Tray Type		: - sie	eve					
and the second	oretical	: 36						
Actu		: 45						
Feed	l (Actual)	: 28		ch phase				
		: 1	Water	rich phase				
Tray Distance (HETP)	[m]	: 0.6	0	Tray Mate	rial	: CS		
Column Diameter	[m]	: 3.03	3	Column M	laterial	: CS	5	
Column Height	[m]	: 31.1	l [°]					
Heating		: - rel	boiler					
0		Proce	ss Cond	itions				
Stream Details	IPA rich	n feed	Water r	ich feed	Тор		Bottom	
Temp. [°C]	34		34		51		86	
Pressure [bara]	1.00		1.00		0.34		1.39	
Density [kg/m ³]	917.7		984.8		1.711		898.1	
Mass Flow [kg/s]	53.2		51.3		0.1		104.4	
Composition	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%
HYDROGEN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0
ETHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	0.1	0.1	0.0	0.0	57.6	53.4	0.0	0.0
PROPANE	0.0	0.0	0.0	0.0	13.2	12.8	0.0	0.0
ACETONE	0.0	0.0	0.0	0.0	8.6	11.0	0.0	0.0
IPA	11.1	29.4	0.0	0.0	0.0	0.0	5.0	15.0
NPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	0.0	0.0	0.0	0.0	7.9	17.8	0.0	0.0
WATER	88.8	70.3	100.0	100.0	12.6	5.0	95.0	85.0
		Colu	ımn Inte	ernals				
Trays			10.252	Packing		Not A	oplicable	
Number of				Гуре		:		
sieve holes		3310)5 I	Material		:		
Active tray area	$[m^2]$:	6.01	1	Volume	$[m^{3}]$:		
Weir Length	[m]	2.12	1	Length	[m]	:		
Diameter of				Width	[m]	:		
chute pipe / hole /	[mm]	: 5		Height	[m]	:		
endle piper noier	Linni			E.C.	[]			

DISTILLATION - SPECIFICATION SHEET

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

NAME	: .	IPA C	BM colu	ımn						
			Gei	neral I	Data					
Service		:	- distilla	tion						
Column Type		:	- tray							
Тгау Туре			- sieve							
CALL AND	retical		46							
Actua			58							
	(Actual)		30							
	stream		2							
Tray Distance (HETP)			0.60	T	ay Mate	arial	: C	S		
Column Diameter	[m]	:	2.84			Aaterial	: C			
Column Height	[m]		39.68	C	Siumi N	laterial	. C	5		
Heating	[m]									
meaning			- reboile		ditions				_	
Stream Details	Feed			is Con	ditions		0:1		DC	
Temp. [°C]	86		Тор		Botton	n	Side st	ream	Reflux	_
	1.		80		95		80		80	
	1		0.66		1.50		0.67		0.66	
Density [kg/m ³]	898.0		753.7		884.5		755.2		753.7	
Mass Flow [kg/s]	104.5		11.5		86.2	1	6.8		46.0	
Composition	Mol	Wt	Mol	Wt	Mol	Wt%	Mol	Wt%	Mol	Wt%
	%	%	%	%	%		%		%	
HYDROGEN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
METHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
ETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
ETHANE ETHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
PROPYLEN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
PROPANE	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.00	0.00
ACETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.00	0.00
IPA	5.0	15.0	65.0	86.1	0.0	0.0	63.5	85.3	64.93	86.04
NPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.03	0.04
CYCLOHEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.04
N-HEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
DIPE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
WATER	95.0	85.0	35.0	13.9	100.0	100.0	36.5	14.7	35.04	13.92
							-			
			Colur	-	ernals					
Trays				Pacl			Not	Applica	ble	
Number of				Тур	e		:			
sieve holes		: 2:	5465		erial		5			
Active tray area	$[m^2]$: 4	.44	Vol	ume	$[m^3]$:			
Weir Length	[m]	: 2	.30	Len	gth	[m]				
Diameter of	20 R			Wid		[m]	:			
chute pipe / hole /	[mm]	: 5		Hei		[m]	:			
Remarks:						[]	-			

DISTILLATION - SPECIFICATION SHEET

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	1	December 22 nd , '99

EQUIPMENT NUMBER NAME		203 PA drvin	g column					
			eral Dat					
Service		: - dis	stillation					
Column Type		: - tra	iy					
Ггау Туре		: - sie	-					
Tray Number Theore	etical	: 40						
Actual		: 50						
	Actual)	: 18	IPA ri	ch phase				
		: 1		hexane ricl	h phase			
Fray Distance (HETP)	[m]	: 0.4		Tray Mate		:	CS	
Column Diameter	[m]	: 2.60		Column M		:	CS	
Column Height	[m]	: 23.2						
Heating	[]		boiler					
Touring			s Condi	tions				
Stream Details	IPA rick		Cyclohe		Тор		Bottom	
			rich fee		F			
Temp. [°C]	79		74.7	-	74.7		82.3	
Pressure [bara]	1		0.80		0.80		1.25	
Density [kg/m ³]	761.9		747.6		11.9		761.9	
Mass Flow [kg/s]	7.0		27.3				5.8	
Composition	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%
HYDROGEN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA	63.9	84.9	2.3	1.7	2.8	2.2	99.6 0.1	99.8 0.1
NPA CYCLOHEXANE	0.0	0.0	0.0 97.7	0.0 98.3	83.0	94.3	0.1	0.0
N-HEXANE	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	35.6	14.2	0.0	0.0	14.3	3.5	0.3	0.
		Colu	mn Inter	rnals				1
Trays				Packing		Not Ap	plicable	
Number of				Гуре		:		
sieve holes	:	1892	2.6	Material		:		
Active tray area	$[m^2]$:	0.37		Volume	[m ³]	:		
Weir Length	[m]	: 2.11		Length	[m]	4		
Diameter of			N	Width	[m]	3		
chute pipe / hole / [mm]		: 5	F	Height	[m]	:		

DISTILLATION - SPECIFICATION SHEET

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

DISTILLATION - SPECIFICATION SHEE

EQUIPMENT NU		C204						
NAME	: (Cyclohex			nn			
Comina			General 1					
Service			stillation					
Column Type		: - tra						
Tray Type			eve					
	Theoretical	: 28						
	Actual	: 35						
	Feed (Actual)	: 18 ²						
Tray Distance (HI		: 0.4		Tray Ma		: C		
Column Diameter	: 1.3		Column	Material	: C	S		
Column Height	[m]	: 19.						
Heating			boiler					
0		Pro	cess Con	ditions	-			
Stream Details	Feed		Тор		Bottom		Reflux	
Temp. [°C]	1.91		78.6		100		78.6	
Pressure [bar			0.82 ³		1.17^{3}		0.82^{3}	
Density [kg/	Compared and the second s		1000		1000		1000	
Mass Flow [kg/		Love	0.24		1.00		1.104	
Composition	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%
HYDROGEN	0.0	735575	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	0.0	1000	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	0.0		0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	0.0		0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	0.0	0.22253	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	0.0		0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	0.0		0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	0.0	1 A S S A S S	0.0	0.0	0.0	0.0	0.0	0.0
IPA	5.3	15.0	82.3	76.8	0.0	0.0	82.3	76.8
NPA	0.0	1	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANI		5.0	17.7	23.2	0.1	0.6	17.7	23.2
N-HEXANE	0.0	0.000100	0.0	0.0	0.0	0.0	0.0	0.0
DIPE WATER	0.0		0.0	0.0	0.0	0.0	0.0	0.0
WATER	93.5	80.0	0.0	0.0	99.9	99.4	0.0	0.0
		Co	lumn In	ternals				1
Trays				acking		Not A	oplicable	
Number of			10.7	ype		:		
caps / sieve holes	/	:		Aaterial		:		
Active tray area	[m ²]	: (⁵)	1	/olume	$[m^{3}]$:		
Weir Length	[m]	: (5)	1	Length	[m]	:		
Diameter of	10000	N 20		Vidth	[m]	:		
chute pipe / hole /	[mm]	: (⁵)		leight	[m]	:		
Remarks due to in	sufficient info	ormation:						

1. It has been assumed that ratio surfaces is equal to the ratio of the feed

Feed stage is assumed to be in the middle (stage 18).
 Pressure drop per stage has been set to 1000 kPa.

4. Based on pump capacity.

5. Not enough data available.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUMBI		205						
NAME	: N	IPA reco						
Service			Seneral stillation					
				n				
Column Type		: - tra						
Tray Type		: - si	eve					
Tray Number Theor		: 22						
Actua		: 28						
	(Actual)	: 19					-	
Tray Distance (HETP)	[m]	: 0.6 : 2.6		Tray Ma		: C		
	Column Diameter [m]			Column	Material	: C	S	
Column Height	[m]	: 18.						
Heating			boiler					_
1201		Pro	1	nditions				
Stream Details	Feed		Тор		Bottom		Reflux	
Temp. [°C]	80		80		80		80	
Pressure [bara]	1		0.77		1.11		0.77	
Density [kg/m ³]	753.7		753.2		754.9		753.2	
Mass Flow [kg/s]	11.5		5.5		6.0		11	
Composition	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%	Mol%	Wt%
HYDROGEN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	0.0	0.0	0.0		0.0	0.0	0.0	0.0
ETHYLENE	0.0	0.0	0.0	1	0.0	0.0	0.0	0.0
ETHANE	0.0	0.0	0.0	C 1	0.0	0.0	0.0	0.0
ETHANOL	0.0	0.0	0.0		0.0	0.0	0.0	0.0
PROPYLEN PROPANE	0.0	0.0	0.0		0.0	0.0	0.0	0.0
ACETONE	0.0	0.0	0.0	the second se	0.0 0.0	0.0	0.0	0.0
IPA	65.0	86.1	66.4	211111111111111111111111111111111111111	63.7	85.3	66.4	86.8
NPA	0.0	0.0	0.0		0.1	0.1	0.0	0.0
CYCLOHEXANE	0.0	0.0	0.0		0.0	0.0	0.0	0.0
N-HEXANE	0.0	0.0	0.0		0.0	0.0	0.0	0.0
DIPE	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0
WATER	35.0	13.9	33.6	13.2	36.2	14.6	33.6	13.2
		Co	lumn In	iternals				
Trays				Packing		Not A	oplicable	
Number of				Гуре		:	····	
sieve holes	:	3565		Material		:		
Active tray area	$[m^2]$:	3.95		Volume	$[m^{3}]$:		
Weir Length	[m] :	2.17		Length	[m]	:		
Diameter of	10.770 S			Width	[m]			
chute pipe / hole /	[mm] :	5		Height	[m]	-		
Remarks:	tunit .	5		ine Em	[m]			

DISTILLATION - SPECIFICATION SHEET

1. During the sizing of the column it was found that figures from ASPEN couldn't be correct. Therefore it has been assumed that the reflux ratio is about two. This assumption does make the number of plates doubtful.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

DECANTER - SPECIFICATION SHEET

EQUIPMEN	IT NUME	BER :	V10					
NAME		:	HPS	eparator	10			
Function					al Data			
Column Typ			÷.	 Separation Horizont 				
Internals	ic .				ai			
	oling	diama	÷	- none				
Heating / Co	oning me	dium	•	- none				
-Type		[]/.]	•	n.a.				
-Quantity		[kg/s]	. :	n.a.				
-Press./Te		[bara/°C		n.a.		2 - 2	202	
Vessel Diam		[m]			Vessel Mater	rial : 0	CS	
Vessel Heigh		[m]		6.5				
Vessel Tot.	Volume	[m ³] :	31.9				
a			_	Process C				
Stream Data		Feed			Тор		Bottom	
Temp.	[°C]	90.0			90.0 ²		90.0 ²	
Pressure	[bara]	32			30		30	
Density	[kg/m ³]				1.54		953.4	
Mass Flow	[kg/s]	106.6			99.7		6.9	
Components		Mol9	6	Wt%	Mol %	Wt%	Mol%	Wt%
HYDROGE	N		0.1	0.0	0.2	0.0	0.0	0.0
METHANE			0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	Ξ		0.0	0.0	0.0	0.0	0.0	0.0
ETHANE			0.1	0.1	0.1	0.1	0.0	0.0
ETHANOL			0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	n in the second s		58.3	64.5	67.1	69.0	0.0	0.1
PROPANE			11.9	13.8	13.7	14.8	0.0	0.0
ACETONE			0.1	0.1	0.1	0.1	0.0	0.0
IPA			5.2	8.3	5.7	8.4	1.9	5.9
NPA			0.0	0.0	0.0	0.0	20.010	0.0
CYCLOHEX	KANE		0.0	0.0	0.0	0.0		0.0
N-HEXANE	3		0.0	0.0	0.0	0.0	0.0	0.0
DIPE			0.8	2.1	0.9	2.2	0.0000000	0.0
WATER			23.5	11.2	12.3	5.4		93.9
					nternals		1	
Coils		Not Ap	plical	the second se	Feed Insert			
Number of t	ubes		:		-Type		Tube	
Tube shape			:		-Position		Тор	
Tube diam		$[m^2]$:		-Diameter		Determined b	v expert
Tube length		[m]	:		-Length	[m] :	-	Jenpen
Tube surf.		$[m^2]$:		-Material		CS	
Remarks:								

Remarks:

Complete phase separation is not necessary in this vessel; nonetheless, the vapour velocity is
probably still too high. This is because the sizing calculation has been carried out mainly
with respect to the liquid phase. A much larger vessel would result if one would aim for a
low vapour velocity; perhaps it would then be preferable to insert demisting pads or mesh,
although this would increase the pressure drop.

2. Based on recommended flow scheme.

Designers:	ME Brons	JHM Jansen	Project ID-number	2	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

DECANTER - SPECIFICATION SHEET

		G	eneral Da	ta				
Function		: - Sep	aration					
Column Type		: - Hor	rizontal					
Internals		: - non	e					
Heating / Cooling med	ium	: - non	e					
-Type		: n.a.						
	[kg/s]	: n.a.						
	[bara/°C]	: n.a.						
Vessel Diameter	[m]	: 2.5	Vesse	el Materia	1 :	CS		
Vessel Height	[m]	: 9.5						
Vessel Tot. Volume	[m ³]	: 46.6						
		Proc	ess Condi	tions				
Stream Data	Feed		Тор		Middle		Bottom	
Temp. [°C]	34		34		34		34	
Pressure [bara]	1		1		1		1	
Density [kg/m ³]	0.84		1.71		1156		269	
Mass Flow [kg/s]	6.12		0.12		0.01		5.99	
Components	Mol%	Wt%	Mol %	Wt%	Mol	Wt%	Mol%	Wt%
HYDROGEN	0.0	0.0	0.0	0.0	% 0.0	0.0	0.0	0.0
METHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
PROPYLEN	1.2	1.1	62.5	52.8	0.0	0.0	0.0	0.0
PROPANE	0.3	0.3	14.3	12.7	0.0	0.0	0.0	0.0
ACETONE	0.3	0.3	14.5	16.9	0.0	0.0	0.0	0.0
IPA	62.4	83.5	0.0	0.0	0.0	0.0	63.6	85.3
NPA	0.1	0.1	0.0	0.0	100	100	0.0	0.0
CYCLOHEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-HEXANE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	0.2	0.4	8.6	17.6	0.0	0.0	0.0	0.0
WATER	35.7	14.4	0.0	0.0	0.0	0.0	36.4	14.7
			ssel Inter					1
Coils	Not Appli	the second s	the second se	d Insert		1 - Landard (1, 1997) - Landard (1, 1997)		
Number of tubes	:		-Ty	pe	:	Tube		
Tube shape	;		-Pos	sition	:	Тор		
Tube diam	$[m^2]$:				[m] :	Deterr	nined by a	expert
Tube length	[m] :				[m] :			
Tube surf.	$[m^2]$:		-Ma	iterial	:	CS		
D 1								
Remarks:								

Designers:	ME Brons	JHM Jansen	Project ID-number	1	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

		Genera	l Data			
Function	1	- Separatio	on			
Column Type	:	- Horizont	al			
Internals	:	- none				
Heating / Cooling med	dium :	- none				
-Type	:	n.a.				
-Quantity	[kg/s] :	n.a.				
-Press./Temp.'s	[bara/°C] :	n.a.				
Vessel Diameter	[m] :	2.75	Vessel Mater	ial : C	S	
Vessel Height	[m] :	11				
Vessel Tot. Volume	[m ³] :	65.3				
	[] ·	Process C	onditions			
Stream Data	Feed		Тор		Bottom	
Temp. [°C]	75		75		75	
Pressure [bara]	1		1		1	
Density [kg/m ³]	787		752		973	
Mass Flow [kg/s]	28.5		27.3		1.2	
Components	Mol%	Wt%	Mol %	Wt%	Mol%	Wt%
HYDROGEN	0.0	0.0	0.0	0.0	0.0	0.0
METHANE	0.0	0.0	0.0	0.0	0.0	0.0
ETHYLENE	0.0	0.0	0.0	0.0	0.0	0.0
ETHANE	0.0	0.0	0.0	0.0	0.0	0.0
ETHANOL	0.0	0.0	0.0	0.0	0.0	0.0
PROPYLEN	0.0	0.0	0.0	0.0	0.0	0.0
PROPANE	0.0	0.0	0.0	0.0	0.0	0.0
ACETONE	0.0	0.0	0.0	0.0	0.0	0.0
IPA	2.8	2.2	2.3	1.7	5.3	15.0
NPA	0.0	0.0	0.0	0.0	0.0	0.0
CYCLOHEXANE	83.0	94.3	97.7	98.3	1.3	5.0
N-HEXANE	0.0	0.0	0.0	0.0	0.0	0.0
DIPE	0.0	0.0	0.0	0.0	0.0	0.0
WATER	14.3	3.5	0.0	0.0	93.5	80.0
		Vessel I	nternals			
Coils	Not Applical	ble	Feed Insert			
Number of tubes	:		-Type	: 1	Tube	
Tube shape			-Position	: S	Side	
Tube diam	$[m^2]$:		-Diameter	[m] : [Determined b	y expert
Tube length	[m] :		-Length	[m] : -		
Tube surf.	$[m^2]$:		-Material		CS	

DECANTER - SPECIFICATION SHEET

3. In the stream tables, there is still some vapor in the feed stream. This is not meant to be, and therefore the density of an all liquid feed stream is used to design the vessel.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

General Data Function : - Storage Column Type : - Vertical Internals : - None Heating / Cooling medium : - None -Type : - None -Quantity [kg/s] : -Press./Temp.'s [bara/°C] : Vessel Diameter [m] : 7.80 Vessel Height [m] : 4.68 Vessel Total Volume [m³] : 224 Vessel Material : CS Pressure Drop [Bara] Process Conditions	
Column Type- VerticalInternals: - NoneHeating / Cooling medium: - None-Type:-Quantity[kg/s]::-Press./Temp.'s[bara/°C]::Vessel Diameter[m]::Vessel Height[m]::<	
Internals : - None Heating / Cooling medium : - None -Type : -Quantity [kg/s] : -Press./Temp.'s [bara/°C] : Vessel Diameter [m] : 7.80 Vessel Height [m] : 4.68 Vessel Height [m] : 4.68 Vessel Total Volume [m ³] : 224 Vessel Material : CS Pressure Drop [Bara] :	
Heating / Cooling medium:- None-Type:-Quantity[kg/s]-Press./Temp.'s[bara/°C]Vessel Diameter[m]:7.80Vessel Height[m]:4.68Vessel Total Volume[m³]:224Vessel Material::CSPressure Drop[Bara]	
-Type:-Quantity[kg/s]-Press./Temp.'s[bara/°C]'Pressel Diameter[m]'[m]:7.80Vessel Height[m]'[m3]:224Vessel Material:'[m3]:'[m3]:224Vessel Material:'[m3]:	
-Quantity[kg/s]:-Press./Temp.'s[bara/°C]:Vessel Diameter[m]:7.80Vessel Height[m]:4.68Vessel Total Volume[m³]:224Vessel Material:CSPressure Drop[Bara]	
-Press./Temp.'s[bara/°C]Vessel Diameter[m]:7.80Vessel Height[m]:4.68Vessel Total Volume[m³]:224Vessel Material:CSPressure Drop[Bara]	
-Press./Temp.'s[bara/°C]Vessel Diameter[m]:7.80Vessel Height[m]:4.68Vessel Total Volume[m³]:224Vessel Material:CSPressure Drop[Bara]	
Vessel Diameter[m]:7.80Vessel Height[m]:4.68Vessel Total Volume[m³]:224Vessel Material:CSPressure Drop[Bara]:	
Vessel Height[m]:4.68Vessel Total Volume[m³]:224Vessel Material:CSPressure Drop[Bara]:	
Vessel Total Volume[m³]: 224Vessel Material: CSPressure Drop[Bara]	
Vessel Material : CS Pressure Drop [Bara] :	
Process Conditions	
ricecos conditions	
Stream Data ¹ Feed Effluent	
Temperature [°C] 30 30	
Pressure [bara] 1 1	
Liquid Density [kg/m ³] 761.9 761.9	
Liq. Mass Flow [kg/s]	
Gas Density [kg/m ³] n.a. n.a.	
Gas Mass Flow [kg/s] 0 0	
Remarks:	

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	1	December 22 nd , '99

	General Data		
Function	: - Storage		
Column Type	: - Vertical l		
Internals	: - None		
Heating / Cooling medium	: - None		
-Type			
-Quantity [kg/s] :		
-Press./Temp.'s [bara			
Vessel Diameter [n	A STATE AND A STAT		
Vessel Height [n	n] : 14.51		
Vessel Total Volume [n	n ³] : 4901		
Vessel Material	: CS		
Pressure Drop [E	Bara] :		
	Process Condition	ons	
Stream Data ¹	Feed	Effluent	
Temperature [°C]	30	30	
Pressure [bara]	1	1	
Liquid Density [kg/m ³]	761.9	761.9	
Liq. Mass Flow [kg/s]	-	-	
Gas Density [kg/m ³]	n.a.	n.a.	
Gas Mass Flow [kg/s]	0	0	
Remarks:			

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

Function	General Data	
anotion	: - Storage	
Column Type	: - Vertical	
nternals	: - None	
Heating / Cooling medium	: - None	
-Type	:	
-Quantity [kg/s] :	
-Press./Temp.'s [bara	/°C] :	
Vessel Diameter [r	n] : 52.96	
Vessel Height [r	n] : 27.27	
Vessel Total Volume [1	n^3] : 60080	
Vessel Material	: CS	
Pressure Drop []	Bara] :	
	Process Conditio	
Stream Data ¹	Feed	Effluent
remperature [°C]	30	30
Pressure [bara]	1	1
Liquid Density [kg/m ³]	761.9	761.9
Liq. Mass Flow [kg/s]	-	-
Gas Density [kg/m ³]	n.a.	n.a.
Gas Mass Flow [kg/s]	0	0

Designers:	ME Brons	JHM Jansen	Project ID-number	2	CPD3242
107.	MP Hoff	EPE Seveke	Date		December 22 nd , '99

	General Data	1	
Function	: - Storage		
Column Type	: - Vertical		
Internals	: - None		
Heating / Cooling media	ım : - None		
-Type	1		
	.g/s] :		
	para/°C] :		
Vessel Diameter	[m] : 14.06		
Vessel Height	[m] : 21.15		
Vessel Total Volume	$[m^3]$: 28008		
Vessel Material	: CS		
Pressure Drop	[Bara] :		
	Process Conditi		
Stream Data ¹	Feed	Effluent	
Temperature [°C]	30	30	
Pressure [bara		1	
Liquid Density [kg/1		761.9	
Liq. Mass Flow [kg/s			
Gas Density [kg/n		n.a.	
Gas Mass Flow [kg/s	s] 0	0	

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
0	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUMBER :	D101 A/B			
NAME		ll recycle stream		
TURNE .	and the second se	ral Data		
Function	: - Dryer	ai Data		
Туре	: - Fixed I	bed		
Column Type	: - Horizo			
Internals	: - Fixed-			
Heating / Cooling medium	: - None	bed		
	· - None			
-Type	•			
-Quantity [kg/s] -Press./Temp.'s [bara/°	C1 .			
Vessel Diameter [m]				
Vessel Height [m]				
Vessel Total Volume [m ³				
Vessel Material	: CS			
Pressure Drop [Ba				
Flessule Diop [Da		Conditions		
Stream Data ¹	Feed	Conditions	Effluent	
Temperature [°C]	35		35	
Pressure [bara]	15 ³		1	
Liquid Density [kg/m ³]	-		12	
Liq. Mass Flow [kg/s]	-		-	
Gas Density [kg/m ³]	1.65		1.71	
Gas Mass Flow [kg/s]	9.11		8.88	
Components (lumps) (1)	Mol%	Wt%	Mol%	Wt%
HYDROGEN	0.2	0.0	0.2	0.0
METHANE	0.0	0.0	0.0	0.0
ETHYLENE	0.0	0.0	0.0	0.0
ETHANE	0.1	0.1	0.1	0.1
ETHANOL	0.0	0.0	0.0	0.0
PROPYLEN	75.3	75.5	79.8	77.4
PROPANE	15.4	16.2	16.3	16.6
ACETONE	0.0	0.1	0.1	0.1
IPA	2.3	3.3	2.5	3.4
NPA	0.0	0.0	0.0	0.0
CYCLOHEXANE	0.0	0.0	0.0	0.0
N-HEXANE	0.0	0.0	0.0	0.0
DIPE	1.0	2.4	1.1	2.5
WATER	5.7	2.4	0.0	0.0
CARBON	0.0	0.0	0.0	0.0
	Vesse	l Internals		
Catalyst		Beds	2	
Catalyst type	: Drying ager	nt V _{Bed}	$[m^3]$: 60	5.67
Catalyst shape	: Spherical			
Particle size [mm]	: 5.3			
Catalyst density [kg/m ³]	: 750			
Catalyst load [kg]	: 50000			
Remarks:				
1. Dryer has to be reg				
2. Regeneration duty			MJ and regenerat	ion time is 6 hr.
3. Based on recomme	nded flow scheme	е.		

Designers: M	IE Brons	JHM Jansen	Project ID-number	:	CPD3242
M	IP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data	í		
Service :	- Heat excha	inge	r	
Туре :	- Floating he	ead		
Position :	- Horizontal			
Capacity	[kW]	:	1625	(Calc.)
Heat Exchanging Area	[m ²]	:	92	(Calc.
Overall Heat Transfer Coefficient	$[W/m^2 \cdot C]$:	200	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	93	
Passes Tube Side		1	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	0.95	
Corrected LMTD	[°C]	:	88	
P	rocess Conditi	ons		
			Shell Side	Tube Side
Medium		1	Propane/Propyle	Propylene
			ne	
Mass Stream	[kg/s]	:	13.7	13.6
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	;		
Average Specific Heat	[kJ/kg·⁰C]	:	2.26	2.51
Heat of Evap./Condensation	[kJ/kg]	1		
Temperature IN	[°C]	\$	4.7	147.6
Temperature OUT	[°C]	:	57.0	100.0
Pressure	[bara]	:	2.0	0.3
Material		:	C.S.	C.S.
Remarks:				
1.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	eed-Effluent B General Data			
Service	: - Heat exch			
			ſ	
Гуре Position	: - Floating h			
	: - Horizonta	_	2017	(0.1
Capacity	[kW]	:	2816	(Calc.
Heat Exchanging Area	$[m^2]$		204	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:		(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	•	86	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)			0.80	
Corrected LMTD	[°C]		69	
	rocess Conditi	ions		
			Shell Side	Tube Side
Medium		:	Propane/Propyle	Propylene
			ne	15
Mass Stream	[kg/s]		13.7	13.6
Mass Stream to Evaporize	[kg/s]	:2		
Mass Stream to Condense	[kg/s]	1		
Average Specific Heat	[kJ/kg·°C]	:	2.26	2.51
Heat of Evap./Condensation	[kJ/kg]	1		
remperature IN	[°C]	1	57.0	230.0
Femperature OUT	[°C]	:	147.6	147.6
Pressure	[bara]	:	2.0	0.3
Material		:	C.S.	C.S.
Remarks:				
2.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

Service	General Data : - Heat excha		r	
Туре	: - Floating he			
Position	: - Horizontal	luu		
Capacity	[kW]		2562	(Calc.
Heat Exchanging Area	$[m^2]$		217	(Calc.
Overall Heat Transfer Coefficient	[W/m ² .°C]	1	200	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	3	79	() pprovi
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)			0.75	
Corrected LMTD	[°C]	:	59	
P	rocess Condition	ons		
			Shell Side	Tube Side
Medium		:	Propane/Propyle	Propylene
			ne	
Mass Stream	[kg/s]	1	13.7	13.6
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:	2.26	2.51
Heat of Evap./Condensation	[kJ/kg]	;	14 14 14 14 14 14	
Temperature IN	[°C]	1	147.6	305.0
Temperature OUT	[°C]	;	230.0	230.0
Pressure	[bara]	÷	2.0	0.3
Material		1	C.S.	C.S.
Remarks:				
3.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	;	December 22 nd , '99

	General Data			
Service :	- Heat excha		r	
Type :	- Floating he	ad		
Position :	- Horizontal			
Capacity	[kW]	:	2176	(Calc.
Heat Exchanging Area	[m ²]	:	189	(Calc.
Overall Heat Transfer Coefficient	$[W/m^2 \cdot C]$:	200	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	72	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	0.80	
Corrected LMTD	[°C]	:	57	
Pr	ocess Condition	ons		
			Shell Side	Tube Side
Medium		ž	Propane/Propyle	Propylene
			ne	
Mass Stream	[kg/s]	•	13.7	13.6
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:	2.26	2.51
Heat of Evap./Condensation	[kJ/kg]	;		
Temperature IN	[°C]	1	230.0	368.7
Temperature OUT	[°C]	:	300.0	305.0
Pressure	[bara]	:	2.0	0.3
Material		:	C.S.	C.S.
Remarks:				
4.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	;	December 22 nd , '99

	General Data			
Service :	- Heat excha		r	
Туре :	- Fixed Tube			
Position :	- Horizontal			
Capacity	[kW]	:	12498	(Calc.
Heat Exchanging Area	[m ²]	:	62	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	700	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	308	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		÷	0.94	
Corrected LMTD	[°C]	;	289	
Pr	ocess Conditio	ons		
			Shell Side	Tube Side
Medium		:	Propylene	Steam
Mass Stream	[kg/s]	:	13.6	4.8
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:	3.26	
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	3	650.0	100.0
Temperature OUT	[°C]	:	368.7	300.0
Pressure	[bara]	:	0.3	15.0
Material		- 3	C.S.	C.S.
Remarks:				
5.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Cooler			
Туре :	- Finned tube	S		
Position :	- Horizontal			
Capacity	[kW]	:	2986	(Calc.
Heat Exchanging Area	$[m^2]$;	50	(Calc.
Overall Heat Transfer Coefficient	[W/m ² .°C]	:	750	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	80	
Passes Tube Side		:	1	
Passes Shell Side		:	n.a.	
Correction Factor LMTD (min 0.75)			1.00	
Corrected LMTD	[°C]		80	
	ocess Conditio	ns	00	
	occas conditio	AAC	Shell Side	Tube Side
Medium		:	Air	Propylene
Mass Stream	[kg/s]		97.6	13.6
Mass Stream to Evaporize	[kg/s]		2110	
Mass Stream to Condense	[kg/s]	•		
Average Specific Heat	[kJ/kg·°C]	÷	1.02	2.19
Heat of Evap./Condensation	[kJ/kg]		1010000000	- 1 (1) (1) (1) (1)
Temperature IN	[°C]	:	30.0	180.0
Temperature OUT	[°C]	:	60.0	80.0
Pressure	[bara]	:	1.0	0.7
Material		:	C.S.	C.S.
Remarks:				
6. Fan duty: 7.99 kW				
6. Fan duty: 7.99 kW				

Designers:	ME Brons	JHM Jansen	Project ID-number	•	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data	i			
Service :	- Reboiler				
Type :	- Thermosyp	hon			
Position :	- Vertical				
Capacity	[kW]	:	825		(Calc.
Heat Exchanging Area	[m ²]	:	49		(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	200		(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	85		
Passes Tube Side		1	2		
Passes Shell Side		:	1		
Correction Factor LMTD (min 0.75)		:	1.00		
Corrected LMTD	[°C]	:	85		
Pro	ocess Conditi	ons			7.e
			She	ell Side	Tube Side
Medium		:		IPA	Propylene
Mass Stream	[kg/s]				13.6
Mass Stream to Evaporize	[kg/s]	:			
Mass Stream to Condense	[kg/s]	:			
Average Specific Heat	[kJ/kg·°C]	:			2.40
Heat of Evap./Condensation	[kJ/kg]	:			
Temperature IN	[°C]	:		82.3	180.3
Temperature OUT	[°C]	:		82.3	155.0
Pressure	[bara]	:		1.0	36.0
Material		:		C.S.	C.S.
Remarks:					

Designers:	ME Brons	JHM Jansen	Project ID-number	1	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Cooler			
Type :	- Floating he	ad		
Position :	- Horizontal			
Capacity	[kW]	:	6830	(Calc.
Heat Exchanging Area	[m ²]	:	522	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	500	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	28	
Passes Tube Side		÷	4	
Passes Shell Side		:	2	
Correction Factor LMTD (min 0.75)		2	0.95	
Corrected LMTD	[°C]	:	26	
Pr	ocess Conditio	ns		
			Shell Side	Tube Side
Medium		\$	Cooling water	Propylene
Mass Stream	[kg/s]	:	108.9	13.6
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·⁰C]	:	4.18	3.90
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	:	25.0	155.0
Temperature OUT	[°C]	:	40.0	26.9
Pressure	[bara]	:	1.0	35.5
Material		:	C.S.	C.S.
Remarks:				
8.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Condenser			
Туре :	- Floating he	ad		
Position :	- Horizontal			
Capacity	[kW]	:	5394	(Calc.
Heat Exchanging Area	$[m^2]$:	1065	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	500	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	10	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	0.99	
Corrected LMTD	[°C]	:	10	
Pr	ocess Conditio	ns		
			Shell Side	Tube Side
Medium		:	Propylene	H2/Light ends
Mass Stream	[kg/s]	:	23.9	11.3
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:	29.70	
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	:	-47.6	-33.0
Temperature OUT	[°C]	:	-40.0	-33.0
Pressure	[bara]	:	1.0	34.8
Material	30 - C.F	:	C.S.	C.S.
Remarks:				
9.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	;	December 22 nd , '99

EQUIPMENT NUMBER E110 : C101 Condenser Heat pump NAME **General Data** Service : - Cooler : - Floating head Type : - Horizontal Position [kW] Capacity : 11599 (Calc.) $[m^2]$ (Calc.) Heat Exchanging Area 394 : $[W/m^2 \cdot C]$ 750 (Approx.) **Overall Heat Transfer Coefficient** 2 Log. Mean Temperature Diff. (LMTD) 46 [°C] Ξ. Passes Tube Side • 2 Passes Shell Side : 1 Correction Factor LMTD (min 0.75) 0.85 : [°C] 39 Corrected LMTD : **Process Conditions** Shell Side Tube Side Propylene Medium : Cooling water 23.9^{1} 184.9 Mass Stream [kg/s] : Mass Stream to Evaporize [kg/s]: Mass Stream to Condense [kg/s] • Average Specific Heat [kJ/kg.⁰C] 4.18 4.60 : Heat of Evap./Condensation [kJ/kg] : Temperature IN [°C] 25.0 144.8 : 40.0 [°C] 40.0 Temperature OUT : 36.0 Pressure [bara] : 1.0 C.S. Material : C.S. Remarks: 10. Closed heat pump cycle not included in stream summary.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
-	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data	l		
Service :	- Reboiler			
Туре :	- Thermosyp	hor	1	
Position :	- Vertical			
Capacity	[kW]	5	6240	(Calc.)
Heat Exchanging Area	[m ²]	:	139	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	800	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	;	59	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	0.96	
Corrected LMTD	[°C]	;	56	
Pro	ocess Condition	ons		
			Shell Side	Tube Side
Medium		2	LP Steam ¹	Propylene
Mass Stream	[kg/s]	:	2.6	1212
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	\$		
Average Specific Heat	[kJ/kg·°C]	\$		
Heat of Evap./Condensation	[kJ/kg]	š.		
Temperature IN	[°C]	:	196.8	77.1
Temperature OUT	[°C]	\$	100.0	77.1
Pressure	[bara]	1	4.7	35.4
Material		÷	C.S.	C.S.
Remarks:				
11. From compressor K104; self produce	ed.			

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
6.8	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Heater ¹			
Туре :	- Floating he	ad		
Position :	- Horizontal			
Capacity	[kW]	:	14061	(Calc.
Heat Exchanging Area	$[m^2]$		475	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² ·°C]		800	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	39	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	0.96	
Corrected LMTD	[°C]	:	37	
Pr	ocess Conditio	ons		
			Shell Side	Tube Side
Medium		:	MP Steam	Propylene/IPA
Mass Stream	[kg/s]	:	6.8	106.7
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:		7.20
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	;	200.0	139.7
Temperature OUT	[°C]	:	175.0	158.0
Pressure	[bara]	:	12.0	34.0
Material		:	C.S.	C.S.
Remarks:				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
0	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data	1		
Service :	- Reboiler			
Туре :	- Thermosy	ohon		
Position :	- Vertical			
Capacity	[kW]	:	20201	(Calc.)
Heat Exchanging Area	[m ²]	:	945	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	1	300	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	71	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	1.00	
Corrected LMTD	[°C]	:	71	
Pi	rocess Conditi	ons		245
			Shell Side	Tube Side
Medium		:	IPA/water	IPA/Propylene
Mass Stream	[kg/s]	:		106.7
Mass Stream to Evaporize	[kg/s]	1		
Mass Stream to Condense	[kg/s]	1		
Average Specific Heat	[kJ/kg·°C]	:		5.60
Heat of Evap./Condensation	[kJ/kg]	3		10000 10000 1000
Temperature IN	[°C]	\$	85.6	175.0
Temperature OUT	[°C]	2	85.6	141.3
Pressure	[bara]	2	1.4	32.9
Material		- 3	C.S.	C.S.
Remarks:				
13.				

Designers:	ME Brons	JHM Jansen	Project ID-number	-	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Cooler			
Гуре :	- Finned tub	65		
Position :	- Horizontal	C. P. C. Carlos		
Capacity	[kW]	:	25824	(Calc.
Heat Exchanging Area	$[m^2]$	÷	614	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	600	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	70	(reprov.
Passes Tube Side		:	1	
Passes Shell Side		:	n.a.	
Correction Factor LMTD (min 0.75)		:	1.00	
Corrected LMTD	[°C]	:	70	
Pr	ocess Conditio	ons		
			Shell Side	Tube Side
Medium		;	Air	IPA/Propylene
Mass Stream	[kg/s]	:	843.9	106.7
Mass Stream to Evaporize	[kg/s]	;		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·⁰C]	:	1.02	4.70
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	:	30.0	141.3
Temperature OUT	[°C]	:	60.0	90.0
Pressure	[bara]	:	1.0	32.9 ²
Material		:	C.S.	C.S.
Remarks:				
14. Fan duty: 98.55 kW				
15. Based on recommended flow scheme	2			

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	2	December 22 nd , '99

Type : - I Position : - I Capacity [k Heat Exchanging Area [n Overall Heat Transfer Coefficient [V Log. Mean Temperature Diff. (LMTD) [% Passes Tube Side Passes Shell Side Correction Factor LMTD (min 0.75) [%	Cooler Floating head Horizontal (W] : n ²] : W/m ² .ºC] : C] : C] : SS Conditions	29 4 2 0.98 28	(Calc.) (Calc.) (Approx.)
Position : -] Capacity [k] Heat Exchanging Area [n] Overall Heat Transfer Coefficient [V] Log. Mean Temperature Diff. (LMTD) [%] Passes Tube Side [%] Passes Shell Side [%] Correction Factor LMTD (min 0.75) [%] Proces [%]	Horizontal (W] : m ²] : W/m ² .ºC] : (C] : (C] : (C] :	1706 750 29 4 2 0.98 28	(Calc.)
Position : -] Capacity [k] Heat Exchanging Area [n] Overall Heat Transfer Coefficient [V] Log. Mean Temperature Diff. (LMTD) [%] Passes Tube Side [%] Passes Shell Side [%] Correction Factor LMTD (min 0.75) [%] Proces [%]	Horizontal (W] : m ²] : W/m ² .ºC] : (C] : (C] : (C] :	1706 750 29 4 2 0.98 28	(Calc.
Heat Exchanging Area [n Overall Heat Transfer Coefficient [V Log. Mean Temperature Diff. (LMTD) [% Passes Tube Side Passes Shell Side Correction Factor LMTD (min 0.75) Corrected LMTD [% Proces	m ²] : W/m ² .ºC] : C] : : :	1706 750 29 4 2 0.98 28	(Calc.
Overall Heat Transfer Coefficient [W Log. Mean Temperature Diff. (LMTD) [% Passes Tube Side [% Passes Shell Side [% Correction Factor LMTD (min 0.75) [% Corrected LMTD [% Proces [%	W/m ^{2.} °C] : 'C] : : : : : :	750 29 4 2 0.98 28	(Calc.
Overall Heat Transfer Coefficient [W Log. Mean Temperature Diff. (LMTD) [% Passes Tube Side [% Passes Shell Side [% Correction Factor LMTD (min 0.75) [% Corrected LMTD [% Proces [%	W/m ^{2.} °C] : 'C] : : : : : :	29 4 2 0.98 28	(Approx.)
Log. Mean Temperature Diff. (LMTD) [% Passes Tube Side Passes Shell Side Correction Factor LMTD (min 0.75) <u>Corrected LMTD [%</u> Proces	°C] : : : : : : :	4 2 0.98 28	
Passes Shell Side Correction Factor LMTD (min 0.75) Corrected LMTD [% Proces		2 0.98 28	
Correction Factor LMTD (min 0.75) Corrected LMTD [% Proces		2 0.98 28	
Corrected LMTD [° Proces		28	
Proces		255.80F	
	ss Conditions		
Madium			
Medium		Shell Side	Tube Side
Medium	:	Cooling water	IPA/Propylene
Mass Stream [k	kg/s] :	581.5	99.7
Mass Stream to Evaporize [k	kg/s] :		
Mass Stream to Condense [k	kg/s] :		
Average Specific Heat [k	kJ/kg·°C] :	4.18	7.3
	kJ/kg] :		he and
Temperature IN [°	°C] :	25.0	90.0 ¹
Temperature OUT [°	°C] :	40.0	40.0
Pressure [b	bara] :	1.0	30.2 ¹
Material	:	C.S.	C.S.
Remarks:			
16. Based on recommended flow scheme			

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
U	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Cooler			
Туре :	- Floating he	ad		
Position :	- Horizontal			
Capacity	[kW]	:	2967	(Calc.
Heat Exchanging Area	$[m^2]$:	645	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	750	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	7	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		÷	0.85	
Corrected LMTD	[°C]	:	6	
Pı	rocess Conditio	ns		
			Shell Side	Tube Side
Medium		3	Cooling water	IPA/Propylene
Mass Stream	[kg/s]	:	142.0	99.7
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:	4.18	2.98
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	:	25.0	40.0
Temperature OUT	[°C]	:	30.0	30.0
Pressure	[bara]	:	1.0	29.7 ¹
Material		:	C.S.	C.S.
Remarks:				
17. Based on recommended flow schem	ie			

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

G	General Data			
Service :	- Cooler			
Туре :	- Fixed Tube	She	eets	
Position :	- Horizontal			
Capacity	[kW]	:	2615	(Calc.)
Heat Exchanging Area	[m ²]	:	185	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·℃]	:	750	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	21	
Passes Tube Side		:	4	
Passes Shell Side		:	2	
Correction Factor LMTD (min 0.75)		:	0.90	
Corrected LMTD	[°C]	:	19	
Pro	cess Conditio	ns		
			Shell Side	Tube Side
Medium		3	Water/IPA	Cooling water
Mass Stream	[kg/s]	:	6.0	41.7
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:	9.60	4.18
Heat of Evap./Condensation	[kJ/kg]	;		
Temperature IN	[°C]	;	79.8	25.0
Temperature OUT	[°C]	:	34.3	40.0 ¹
Pressure	[bara]	:	1.0	1.0
Material		:	C.S.	C.S.
Remarks: 18. Temperature cross: in practice this exc	changer would	l be	split in two.	

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	;	December 22 nd , '99

EQUIPMENT NUMBER NAME	:	E202 DELETED		
IVANIL	•	General Data	-	
	_		_	
	_		-	
			_	
			-	
t.				
			_	1

Designers:	ME Brons	JHM Jansen	Project ID-number		CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data	1		
Service :	- Reboiler			
Туре :	- Thermosyp	ohon	0	
Position :	- Vertical			
Capacity	[kW]	:	58308	(Calc.
Heat Exchanging Area	$[m^2]$:	742	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	800	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	98	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	1.00	
Corrected LMTD	[°C]	:	98	
Pr	ocess Conditi	ons		
			Shell Side	Tube Side
Medium		:	Water	HP Steam
Mass Stream	[kg/s]	2		27.7
Mass Stream to Evaporize	[kg/s]	3		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg.⁰C]	3		
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	:	95	225.0
Temperature OUT	[°C]	:	95	175.0
Pressure	[bara]	1	1.5	18.0
Material		:	C.S.	C.S.
Remarks:				
19.				

Designers:	ME Brons	JHM Jansen	Project ID-number	1	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Condenser			
Туре :	- Finned tube	es		
Position :	- Horizontal			
Capacity	[kW]	:	50799	(Calc.
Heat Exchanging Area	$[m^2]$:	3103 ²	(Calc.
Overall Heat Transfer Coefficient	[W/m ² .°C]	:	500	(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	33	
Passes Tube Side		:	1	
Passes Shell Side		÷	n.a.	
Correction Factor LMTD (min 0.75)		:	1.00	
Corrected LMTD	[°C]	;	33	
Pr	ocess Conditio	ons		
			Shell Side	Tube Side
Medium		:	Air	IPA/water
Mass Stream	[kg/s]	:	1660.1	
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg.⁰C]	÷	1.02	
Heat of Evap./Condensation	[kJ/kg]	:		a.g. a.
Temperature IN	[°C]	:	30.0	80.0
Temperature OUT	[°C]	:	60.0	80.0
Pressure	[bara]	:	1.0	0.7
Material		1	C.S.	C.S.
Remarks:				
20. Fan duty: 498.15 kW				
21. In practice 6 air coolers would be pla	aced			

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
c	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
ervice	: - Reboiler			
ype	: - Thermosyp	hon		
osition	: - Vertical			
apacity	[kW]	:	46950	(Calc.
eat Exchanging Area	[m ²]	4	496	(Calc.
verall Heat Transfer Coefficient	[W/m ² .ºC]	:	800	(Approx.
og. Mean Temperature Diff. (LMTD)	[°C]	:	118	
asses Tube Side		:	2	
asses Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	1.00	
orrected LMTD	[°C]		118	
	rocess Conditi	ons		
			Shell Side	Tube Side
fedium		:	NPA	HP Steam
lass Stream	[kg/s]	:		22.3
lass Stream to Evaporize	[kg/s]	:		
lass Stream to Condense	[kg/s]	:		
verage Specific Heat	[kJ/kg·°C]	:		
leat of Evap./Condensation	[kJ/kg]	:		
emperature IN	[°C]	:	80.0	225.0
emperature OUT	[°C]	:	80.0	175.0
ressure	[bara]	:	1.1	18.0
Aaterial		- 3	C.S.	C.S.
Remarks:				
2.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
C	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data	£		
Service :	- Condenser			
Гуре :	- Finned tube	es		
Position :	- Horizontal			
Capacity	[kW]	:	46950	(Calc.)
Heat Exchanging Area	$[m^2]$	•	2390 ²	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	600	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	33	
Passes Tube Side		:	I	
Passes Shell Side		:	n.a.	
Correction Factor LMTD (min 0.75)		:	1.00	
Corrected LMTD	[°C]	:	33	
Pr	ocess Condition	ons		
			Shell Side	Tube Side
Medium		1	Air	IPA/water
Mass Stream	[kg/s]	:	1534.3	
Mass Stream to Evaporize	[kg/s]	1		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg.⁰C]	:	1.02	
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	:	30.0	80.0
Temperature OUT	[°C]	\$	60.0	80.0
Pressure	[bara]	:	1.0	0.8
Material		:	C.S.	C.S.
Remarks:				
23. Fan duty: 383.67 kW				
24. In practice 5 air coolers would be pla	aced			

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Cooler			
Type :	- Fixed Tube	e Sh	eets	
Position :	- Horizontal			
Capacity	[kW]	:	6809	(Calc.)
Heat Exchanging Area	$[m^2]$:	473	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	750	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	21	
Passes Tube Side		:	4	
Passes Shell Side		:	2	
Correction Factor LMTD (min 0.75)			0.92	
Corrected LMTD	[°C]	:	19	
	rocess Conditi	ons		
			Shell Side	Tube Side
Medium		:	Water	Cooling water
Mass Stream	[kg/s]	:	8.7	108.6
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:		4.18
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	12	95.0	25.0
Temperature OUT	[°C]	:	30.0	40.0
Pressure	[bara]	:	1.0	1.0
Material		:	C.S.	C.S.
Remarks:				
25.				

Designers:	ME Brons	JHM Jansen	Project ID-number	1	CPD3242
0	MP Hoff EPE Seveke Date	Date	13	December 22 nd , '99	

	General Data				
Service :	- Condenser				
Туре :	- Finned tube	es			
Position :	- Horizontal				
Capacity	[kW]	:	690		(Calc.
Heat Exchanging Area	$[m^2]$	2	51		(Calc.
Overall Heat Transfer Coefficient	[W/m ² .°C]	5	500		(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	27		• •
Passes Tube Side		:	1		
Passes Shell Side		:	n.a.		
Correction Factor LMTD (min 0.75)		2	1.00		
Corrected LMTD	[°C]	1	27		
Pr	ocess Conditio	ons			
			She	ll Side	Tube Side
Medium		;		Air	Cyclohexane/wa ter
Mass Stream	[kg/s]	1	2	22.6	
Mass Stream to Evaporize	[kg/s]	:			
Mass Stream to Condense	[kg/s]	:			
Average Specific Heat	[kJ/kg·°C]	:		1.02	
Heat of Evap./Condensation	[kJ/kg]	:			
Temperature IN	[°C]			30.0	74.7
Temperature OUT	[°C]	:	(50.0	74.7
Pressure	[bara]	:		1.0	0.8
Material		:		C.S.	C.S.
Remarks:					
26. Fan duty: 8.21 kW					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Reboiler			
Type :	- Thermosyp	hon		
Position :	- Vertical			
Capacity	[kW]	:	5100	(Calc.)
Heat Exchanging Area	$[m^2]$:	380	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² .°C]	:	800	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	21	
Passes Tube Side		:	4	
Passes Shell Side		:	2	
Correction Factor LMTD (min 0.75)		:	0.80	
Corrected LMTD	[°C]	:	17	
Pr	ocess Conditi	ons		
			Shell Side	Tube Side
Medium		:	Water	LP Steam
Mass Stream	[kg/s]	:		2.1
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	:		
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	2	100.0	196.8
Temperature OUT	[°C]	:	100.0	101.0
Pressure	[bara]	:	1.0	4.7
Material		:	C.S.	C.S.
Remarks:				
27.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
U	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Condenser	-		
Туре :	- Finned tube	es		
Position :	- Horizontal			
Capacity	[kW]	:	5000	(Calc.)
Heat Exchanging Area	$[m^2]$:	320	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	500	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	31	
Passes Tube Side		:	1	
Passes Shell Side		;	n.a.	
			1.00	r.
Correction Factor LMTD (min 0.75)		:	1.00	
Corrected LMTD	[°C]	:	31	
Pr	ocess Conditio	ons	01 11 01 1	Tube Side
			Shell Side	
Medium	ri ()	:	Air	Cyclohexane
Mass Stream	[kg/s]	:	163.4	0.2
Mass Stream to Evaporize	[kg/s]	:	1	
Mass Stream to Condense	[kg/s]	•	1.02	
Average Specific Heat	[kJ/kg·°C]	:	1.02	
Heat of Evap./Condensation	[kJ/kg]	:	20.0	70 (
Temperature IN	[°C]	÷	30.0	78.6
Temperature OUT	[°C]	:	60.0	78.6
Pressure	[bara]	÷	1.0	0.8
Material		- 2	C.S.	C.S.
Remarks:				
28. Fan duty: 51.4 kW				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service :	- Cooler			
Гуре :	- Fixed Tube	e Sh	eets	
Position :	- Horizontal			
Capacity	[kW]	:	12899	(Calc.)
Heat Exchanging Area	[m ²]	:	633	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	750	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	28	
Passes Tube Side		:	4	
Passes Shell Side		:	2	
Correction Factor LMTD (min 0.75)		:	0.96	
Corrected LMTD	[°C]	:	27	
Pr	ocess Conditi	ons		
			Shell Side	Tube Side
Medium		:	Water	Cooling water
Mass Stream	[kg/s]	:	51.3	617.2
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:	100000	Applied Dr.
Average Specific Heat	[kJ/kg·°C]	:	4.20	4.18
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	1	95	25
Temperature OUT	[°C]	1	34	30
Pressure	[bara]	:	1	1
Material		:	C.S.	C.S.
Remarks:				
29.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data	8			
Service :	- Cooler				
Туре :	- Fixed Tube	e Sh	eets		
Position :	- Horizontal				
Capacity	[kW]	:	197		(Calc.
Heat Exchanging Area	[m ²]	:	11		(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	750		(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:	25		
Passes Tube Side		:	2		
Passes Shell Side		:	1		
Correction Factor LMTD (min 0.75)		:	1		
Corrected LMTD	[°C]	:	24		
Pı	ocess Conditi	ons			
			Sh	ell Side	Tube Side
Medium		:	1	Water	Cooling water
Mass Stream	[kg/s]	:		1.0	9.4
Mass Stream to Evaporize	[kg/s]	:			
Mass Stream to Condense	[kg/s]	:			
Average Specific Heat	[kJ/kg·°C]	;		2.83	4.18
Heat of Evap./Condensation	[kJ/kg]	\$			
Temperature IN	[°C]	:		100.0	25.0
Temperature OUT	[°C]	•		30.0	30.0
Pressure	[bara]	:		1.2	1.0
Material		:		C.S.	C.S.
Remarks:					
30.					

Designers:	ME Brons	JHM Jansen	Project ID-number	2	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

3	General Data			
Service :	- Cooler			
Гуре :	- Fixed Tube	Sh	eets	
Position :	- Horizontal			
Capacity	[kW]	:	4765	(Calc.
Heat Exchanging Area	[m ²]	:	350	(Calc.
Overall Heat Transfer Coefficient	[W/m ² ·°C]	:	750	(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	:	20	
Passes Tube Side		:	2	
Passes Shell Side		:	1	
Correction Factor LMTD (min 0.75)		:	1	
Corrected LMTD	[°C]	:	18	
Pro	ocess Conditio	ons		
			Shell Side	Tube Side
Medium		:	IPA	Cooling water
Mass Stream	[kg/s]	:	5.8	228.0
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·⁰C]	:	15.74	4.18
Heat of Evap./Condensation	[kJ/kg]	:		
Temperature IN	[°C]	:	82.3	25.0
Temperature OUT	[°C]	:	30.0	30.0
Pressure	[bara]	:	1.3	1.0
Material		3	C.S.	C.S.
Remarks:				
31.				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

	General Data			
Service	: - Cooler			
Туре	: - Fixed Tube	Shee	ets	
Position	: - Horizontal			
Capacity	[kW]	:		(Calc.
Heat Exchanging Area	$[m^2]$:		(Calc.
Overall Heat Transfer Coefficient	[W/m ² .°C]	:		(Approx.
Log. Mean Temperature Diff. (LMTD)	[°C]	:		0 1815 - S
Passes Tube Side		:		
Passes Shell Side				
Correction Factor LMTD (min 0.75)		:		
Corrected LMTD	[°C]	:		
I	Process Condition	ons		
			Shell Side	Tube Side
Medium		2	Water	Cooling water
Mass Stream	[kg/s]	:		
Mass Stream to Evaporize	[kg/s]	:		
Mass Stream to Condense	[kg/s]	:		
Average Specific Heat	[kJ/kg·°C]	3		
Heat of Evap./Condensation	[kJ/kg]	:		1
Temperature IN	[°C]	:	95	25
Temperature OUT	[°C]	:	34	40
Pressure	[bara]	:		
Material		:		C.S.
Remarks:				
32.				

Designers:	ME Brons	JHM Jansen	Project ID-number	1	CPD3242
C	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

In Parallel s 4918 497.27 1.a. 1.a.	: - (Calc.)
4918 197.27 1.a.	(Calc.
4918 197.27 1.a.	(Calc.)
4918 197.27 1.a.	(Calc.
197.27 1.a.	(Calc.
197.27 1.a.	(Calc.
n.a.	
04.000A	
n.a.	
¢	
Shell Side	Tube Side
Combustion gas	Process stream
0.47	13.73
n.a.	n.a.
0.000	300
900	650.0
900 900	2^{1}
	900

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

RECIPROCAL COMPRESSOR - SPECIFICATION SHEET

EQUIPMENT NUM	BERS	: K101		Operating		:	1
NAME			vacuum compressor	Installed S	Spare	:	0
	uum comp						
· · · · · · · · · · · · · · · · · · ·	iprocating	1					
Number : 1							
		Operating C	onditions & Physics				
Compressed gas		:	Propane/Propylene	Light ends			
Temperature (T)	[°C]	:	180				
Density (p)	$[kg/m^3]$:	0.056				
			Power				
Capacity	(\$ _V)	$[m^{3}/s]$: 24.2				
Suction Pressure	(11)	[bara]	: 0.2				
Discharge Pressure		[bara]	: 0.67				
Pressure Difference	(Δp)	[bara]	: 0.47				
Theoretical Power	(-P)	[kW]	: 1728				
Pump Efficiency		[-]	: 72%				
Power at Shaft		[kW]	: 2400				
			struction Details				
RPM	:	3000	Nominal diar	neter			
Drive		Electric	 Managements in a supply 		:		
Type electrical		2.000110	Discharge				
motor	-		2 to children Be	[]			
Tension	[V] :	380	Cooled Beari	ngs	:	Ye	es/No
Rotational direction		Clock	Cooled Stuff		:		es/No
Foundation Plate	:	Combir			:	Ye	es/No
Flexible Coupling		Yes	If Yes				
Pressure Gauge			- Seal Liq	uid	;	Ye	es/No
Suction			- Splash R		:	Ye	es/No
Pressure Gauge	:	Yes	- Packing	-	:		
Discharge			- Mechani		:	Ye	es/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	:		
above p _v /p _m	130 IS		$\{=p_{m}, \rho, g\}$				
		Con	struction Materials				
Pump House		: CS ²	Wear Ri		:		
Pump Rotor		: CS	Shaft Bo		4		
Shaft		: CS		58 A.Y. (1			
		:					
	[bara]	:	Test Pre	ssure [bara]	:		
Special Provisions Operating Pressure Remarks:	[bara]	:	Test Pre				

1. The reciprocal type is chosen because of the low pressure desired at the entrance.

2. CS is carbon steel

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
•	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

CENTRIFUGAL COMPRESSOR - SPECIFICATION SHEET

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Number : 1Operating Conditions & Physical DataCompressed gas : Propane/Propylene/Light endsTemperature (T) [°C] : 180Density (ρ) [kg/m³] : 3.25PowerCapacity (ϕ_v) [m³/s] : 0.42Suction Pressure[bara] : 0.57Discharge Pressure[bara] : 35.43Theoretical Power[kW] : 5771Pump Efficiency[-] : 72%Power at Shaft[kW] : 8015Construction DetailsRPM: 3000Drive: ElectricalDischarge Nozzle [] :Upge electrical: S000Nominal diameterTorsion[V] : 380Cooled Bearings: Yes/NoFoundation Plate: CombinedFlexible Coupling: YesPressure Gauge: NoPressure Gauge: NoPressure Gauge: YesOptician: Seal LiquidPressure Gauge: YesOptician: Yes/NoSuction: Seal LiquidPressure Gauge: YesOptician: Yes/NoSuction: Seal LiquidPressure Gauge: YesOhn Overpressure [bar] :: YesOptician: Yes/NoSuction: Yes/NoConstruction: Yes/NoPressure Gauge: YesOptician: Yes/NoOptician: YesOptician: Yes/NoOptician: Yes/NoConstruction: Yes/NoO	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{tabular}{ c c c c c c } \hline Density (\rho) [kg/m^3] & : 3.25 \\ \hline \hline Power \\ \hline Capacity (\phi_v) [m^3/s] & : 0.42 \\ \hline Suction Pressure [bara] & : 0.57 \\ \hline Discharge Pressure [bara] & : 36 \\ \hline Pressure Difference (\Delta p) [bara] & : 35.43 \\ \hline Theoretical Power [kW] & : 5771 \\ \hline Pump Efficiency [-] & : 72\% \\ \hline Power at Shaft [kW] & : 8015 \\ \hline $	
PowerCapacity (ϕ_V) $[m^3/s]$: 0.42 Suction Pressure $[bara]$: 0.57 Discharge Pressure $[bara]$: 36 Pressure Difference (Δp) $[bara]$: 35.43 Theoretical Power $[kW]$: 5771 Pump Efficiency $[-]$: 72% Power at Shaft $[kW]$: 8015 Construction DetailsRPM: 3000 Nominal diameterDrive:ElectricalSuction Nozzle $[]$:Type electrical::Discharge Nozzle $[]$:motorTension[V]:380Cooled Bearings:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesYes/NoSuction:YesIf YesYes/NoPressure Gauge:No- Seal Liquid:Yes/NoSuction:YesYes/NoSuction:YesYes/NoSuction:YesYes/NoSuction:YesYes/NoSuction:YesYes/NoSuction:YesYes/No <td< td=""><td></td></td<>	
Capacity (ϕ_v) $[m^3/s]$: 0.42 Suction Pressure $[bara]$: 0.57 Discharge Pressure $[bara]$: 36 Pressure Difference (Δp) $[bara]$: 35.43 Theoretical Power $[kW]$: 5771 Pump Efficiency $[-]$: 72% Power at Shaft $[kW]$: 8015 Construction DetailsRPM: 3000 Nominal diameterDrive:ElectricalSuction Nozzle[]Type electrical:Usicharge Nozzle[]:motor380Cooled Bearings:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesYes/No.Splash Rings:Yes/NoSuction:YesIf YesPressure Gauge:No-Seal Liquid:Yes/NoSuction:Yes:-Packing Type:Pressure Gauge:Yes:-Splash Rings:Yes/No <td< td=""><td></td></td<>	
Suction Pressure[bara]: 0.57 Discharge Pressure[bara]: 36 Pressure Difference(Δp)[bara]: 35.43 Theoretical Power[kW]: 5771 Pump Efficiency[-]: 72% Power at Shaft[kW]: 8015 Construction DetailsRPM: 3000 Nominal diameterDrive:ElectricalSuction Nozzle[]Type electrical::Discharge Nozzle[]motor:Cooled Bearings:Yes/NoFension[V]:380Cooled Stuffing Box:Foundation Plate:CombinedSmothering Gland:Pressure Gauge:No-Seal Liquid:Pressure Gauge:Yes:-Discharge:Yes:-Min. Overpressure[bar]:Min. Overpressure[bar]:	
Discharge Pressure[bara]:36Pressure Difference(Δp)[bara]:35.43Theoretical Power[kW]:5771Pump Efficiency[-]:72%Power at Shaft[kW]:8015Construction DetailsRPM:3000Drive:ElectricalSuction NozzleDrive:ElectricalSuction Nozzle[]Type electrical:]:Discharge Nozzlemotor]:]:Tension[V]:380Cooled Bearings:Foundation Plate:CombinedSmothering Gland:Flexible Coupling:YesIf YesPressure Gauge:No-Seal Liquid:Pressure Gauge:Yes-Seal Liquid:Discharge:Yes]:Discharge:Yes]::Discharge:Yes]::Discharge:Yes]::Min. Overpressure[bar]:]:	
Pressure Difference Theoretical Power[bara]:35.43Theoretical Power[kW]:5771Pump Efficiency[-]:72%Power at Shaft[kW]:8015Construction DetailsRPM:3000Nominal diameterDrive:ElectricalSuction Nozzle[]Type electrical:Discharge Nozzle[]:motorCooled Bearings:Yes/NoFoundation Plate:ClockCooled Stuffing Box:Yes/NoFlexible Coupling:YesIf YesPressure Gauge:No-Seal Liquid:Yes/NoSuctionDischarge:YesMin. Overpressure[bar]:Min. Overpressure	
Theoretical Power[kW]:5771Pump Efficiency[-]:72%Power at Shaft[kW]:8015Construction DetailsRPM:3000Nominal diameterDrive:ElectricalSuction Nozzle[]Type electrical:Discharge Nozzle[]:motorDischarge Nozzle[]:Tension[V]:380Cooled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Yes/NoFlexible Coupling:YesIf YesYes/NoPressure Gauge:No- Seal Liquid:Yes/NoPressure Gauge:Yes- Seal Liquid:Yes/NoPressure Gauge:Yes- Seal Liquid:Yes/NoDischarge:Yes- Packing Type:Min. Overpressure[bar]:[m]:	
Pump Efficiency Power at Shaft[-]:72% 8015Construction DetailsRPM:3000Nominal diameterDrive:ElectricalSuction Nozzle[]Type electrical:Discharge Nozzle[]:Torive:BlockCooled Bearings:Yes/NoTension[V]:380Cooled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesYes/NoSuction:YesIf YesYes/NoPressure Gauge:No- Seal Liquid:Yes/NoDischarge:Yes- Packing Type:·Discharge:Yes- Packing Type:·Min. Overpressure[bar]:·.[m]:	
Power at Shaft[kW]:8015Construction DetailsRPM:3000Nominal diameterDrive:ElectricalSuction Nozzle[]Type electrical:Discharge Nozzle[]motorImage: Stress of the	
Construction DetailsRPM:3000Nominal diameterDrive:ElectricalSuction Nozzle[]Type electrical:Discharge Nozzle[]motor:Ocoled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Foundation Plate:CombinedSmothering Gland:Flexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Pressure Gauge:Yes- Packing Type:Discharge:Yes- Mechanical Seal:Min. Overpressure[bar]:- N.P.S.H.[m]	
RPM:3000Nominal diameterDrive:ElectricalSuction Nozzle[]:Type electrical:Discharge Nozzle[]:motorDischarge Nozzle[]:Tension[V]:380Cooled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Yes/NoSuctionPressure Gauge:YesDischarge:YesMin. Overpressure[bar]:Min. Overpressure[bar]:	
Drive:ElectricalSuction Nozzle[]:Type electrical:Discharge Nozzle[]::motor::Discharge Nozzle[]:Tension[V]:380Cooled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf Yes'Pressure Gauge:No- Seal Liquid:Yes/NoSuction:Yes- Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:.Discharge:Yes- Mechanical Seal:Yes/NoMin. Overpressure[bar]::[m]:	
Type electrical:Discharge Nozzle[]:motorTension[V]:380Cooled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Yes/NoSuction-Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:Discharge:Yes- Mechanical Seal:Yes/NoMin. Overpressure[bar]:	
motor[V]:380Cooled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Yes/NoSuction-Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:Discharge:Yes- Nechanical Seal:Yes/NoMin. Overpressure[bar]:-N.P.S.H.[m]:	
Tension[V]:380Cooled Bearings:Yes/NoRotational direction:ClockCooled Stuffing Box:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Yes/NoSuction-Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:Discharge:Yes- Nechanical Seal:Yes/NoMin. Overpressure[bar]:[m]:	
Rotational direction:ClockCooled Stuffing Box:Yes/NoFoundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Yes/NoSuction-Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:Discharge-Mechanical Seal:Yes/NoMin. Overpressure[bar]:-N.P.S.H.[m]	
Foundation Plate:CombinedSmothering Gland:Yes/NoFlexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Yes/NoSuction-Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:DischargeMechanical Seal:Yes/NoMin. Overpressure[bar]:-N.P.S.H.[m]:	
Flexible Coupling:YesIf YesPressure Gauge:No- Seal Liquid:Yes/NoSuction-Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:Discharge-Mechanical Seal:Yes/NoMin. Overpressure[bar]:-N.P.S.H.[m]	
Pressure Gauge:No- Seal Liquid:Yes/NoSuction-Splash Rings:Yes/NoPressure Gauge:Yes- Packing Type:Discharge-Mechanical Seal:Yes/NoMin. Overpressure[bar]:-N.P.S.H.[m]	
Suction- Splash Rings: Yes/NoPressure Gauge: Yes- Packing Type:Discharge- Mechanical Seal: Yes/NoMin. Overpressure[bar]:- N.P.S.H.[m]	
Pressure Gauge:Yes- Packing Type:Discharge- Mechanical Seal:Yes/NoMin. Overpressure[bar]:- N.P.S.H.[m]	
Discharge- Mechanical Seal: Yes/NoMin. Overpressure[bar]:- N.P.S.H.[m]	
Min. Overpressure [bar] : - N.P.S.H. [m] :	
above p_{n}/p_{m}	
Construction Materials	
Pump House : CS ¹ Wear Rings :	
Pump Rotor : CS Shaft Box :	
Shaft : CS	
Special Provisions :	
Operating Pressure [bara] : Test Pressure [bara] :	_
Remarks:	
3. CS is carbon steel	

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
-	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

CENTRIFUGAL COMPRESSOR - SPECIFICATION SHEET

EQUIPMENT NUMI NAME	BERS	:	K104 R102 recycl	e compressor	Operating Installed Sp	are	: 1 : 0	
	cle com	Tessor		e compressor	instancu S	are	. 0	
	al flow ¹	103301						
Number : 1	111000							
		Oner	ating Conditi	ons & Physical Da	ata			
Compressed gas		oper		bane/Propylene/Wa				
Temperature (T)	[°C]		: 224					
Density (p)	[kg/m	31	: 69.9					
Density (p)	[Kg/III	1		ower				
Capacity	(4)		[m ³ /s] :	1.17				
Suction Pressure	(\$v)		[bara] :	29 ³				
Discharge Pressure			[bara] :	34				
Pressure Difference	(1-)		[bara] :	5				
Theoretical Power	(Δp)		[kW] :	648				
Pump Efficiency			[K W] :	72%				
Power at Shaft			[+] . [kW] :	900				
rower at slialt				tion Details				
RPM			3000	Nominal diameter				
Drive		•	MP Steam	Suction Nozzle				
Type electrical		•	WII Steam	Discharge Noz		:		
motor		1 0		Disenarge 1102	210 []			
Tension	[V]		380	Cooled Bearings		8	Yes/No	
Rotational direction	1.1	-	Clock	Cooled Stuffing E	Box	-	Yes/No	
Foundation Plate			Combined	Smothering Gland			Yes/No	
Flexible Coupling		i i	Yes	If Yes				
Pressure Gauge		-	No	- Seal Liquid		:	Yes/No	
Suction				- Splash Rings		:	Yes/No	
Pressure Gauge		1	Yes	- Packing Type		:		
Discharge				- Mechanical S		:	Yes/No	
Min. Overpressure	[bar]	:		- N.P.S.H.	[m]	:		
above p_v/p_m				$\{=p_{m}, \rho, g\}$				
				ion Materials				
Pump House		:	CS^2	Wear Rings		:		
Pump Rotor		:	CS	Shaft Box		5		
Shaft		:	CS					
Special Provisions		:		100 March 100 Ma	144			
Operating Pressure	[bara]	:		Test Pressure	e [bara]	:		
Remarks:								
		chosen	because of th	e high volume flow	r.			
5. CS is carbon ste	el							

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM NAME	BERS :	P101 C101 Poflux		erating	: 1 : 0
	lux pump	C101 Reflux	pump ms	talled Spare	. 0
	ntrifugal				
Type : Cen Number : 1	innugai				
Number : I	0				
D	0	the second se	litions & Physical Da	ta	
Pumped liquid	1001		pane/Propylene		
Temperature (T)	[°C]	: -33			
Density (p)	[kg/m ³]	: 391			
	201 202		Power		
Capacity	(¢v)	[m ³ /s] :	2.76E-02		
Suction Pressure		[bara] :	34.8		
Discharge Pressure		[bara] :	36.8		
Pressure Difference	(Δp)	[bara] :	2.0		
Theoretical Power		[kW] :	5.52		
Pump Efficiency		[-] :	77%		
Power at Shaft		[kW] :	7.17		
		Constr	uction Details		
RPM	:	5017-01	Nominal diameter		
Drive	:	Electrical	Suction Nozzle	[] :	
Type electrical	2		Discharge Nozzle	[] :	
motor					
Tension	[V] :	380	Cooled Bearings	:	Yes/No
Rotational direction	:	Clock	Cooled Stuffing Box	ι :	Yes/No
Foundation Plate	:	Combined	Smothering Gland	:	Yes/No
Flexible Coupling	:	Yes	If Yes		
Pressure Gauge	:	No	- Seal Liquid	:	Yes/No
Suction			- Splash Rings	:	Yes/No
Pressure Gauge	:	Yes	- Packing Type	:	
Discharge			- Mechanical Sea	1 :	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m] :	
above p _v /p _m			$\{=p_m.\rho.g\}$		
			ction Materials		
Pump House		: CS ¹	Wear Rings	:	
Pump Rotor		: CS	Shaft Box	:	
Shaft		: CS			
Special Provisions		:			
Operating Pressure	[bara]	:	Test Pressure	[bara] :	
Remarks:					
7. CS is carbon ste	el				
8. The V101 accum	mulator has	heen designed	to have a holdup time	of 5 instand	of 15 minuton

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	;	December 22 nd , '99

EQUIPMENT NUMI	BERS :	P102	-	rating		: 1
NAME		R102 Water f	eed pump Insta	alled Spar	e	: 0
	er feed pur	np				
· ·	trifugal					
Number : 1						
	Op	and the second	itions & Physical Dat	a		
Pumped liquid	-0	: Wat				
Temperature (T)	[°C]	: 77.6				
Density (p)	$[kg/m^3]$: 100	0.0			
			Power			
Capacity	(\$v)	$[m^{3}/s]$:	8.68E-03			
Suction Pressure		[bara] :	1.0			
Discharge Pressure		[bara] :	34.0			
Pressure Difference	(Δp)	[bara] :	33.0			
Theoretical Power		[kW] :	28.64			
Pump Efficiency		[-] :	70%			
Power at Shaft		[kW] :	40.91			
		Constr	uction Details			
RPM	:		Nominal diameter	12 21		
Drive	:	Electrical	Suction Nozzle	[]	:	
Type electrical	:		Discharge Nozzle	[]	:	
motor			1271 A 112221 AT			
Tension	[V] :	380	Cooled Bearings			Yes/No
Rotational direction	:	Clock	Cooled Stuffing Box			Yes/No
Foundation Plate	:	Combined	Smothering Gland		:	Yes/No
Flexible Coupling	:	Yes	If Yes			N (N)
Pressure Gauge	:	No	- Seal Liquid			Yes/No
Suction			- Splash Rings			Yes/No
Pressure Gauge	:	Yes	- Packing Type		:	Vee/NI-
Discharge	ri		- Mechanical Seal		1	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]		
above p _v /p _m		C	$\{=p_m.\rho.g\}$			
D II			ction Materials			
Pump House		$: CS^1$	Wear Rings		1	
Pump Rotor		: CS	Shaft Box			
Shaft		: CS				
Special Provisions	[hors]		Test Pressure	[hara]		
Operating Pressure	[bara]	K	Test Pressure	[bara]		
Remarks:	1					
9. CS is carbon ste	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	-	CPD3242
C	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P103		Derating	:	
	orhant faad		ent feed pump In	nstalled Spar	e :	0
영양소의 비원보험	orbent feed	pump				
Type : Cen Number : 1	trifugal					
Number : 1	0-	and in a Card				
Pumped liquid	Up	: Wat	itions & Physical E	Pata		
Temperature (T)	[°C]	: 30	ler			
	$[kg/m^3]$: 100	0.0			
Density (p)	[kg/m]					
Capacity	(¢v)	[m ³ /s] :	Power 2.62E-02			
Suction Pressure	(ψν)	[bara] :	1.0			
Discharge Pressure		[bara] :	29.0 ²			
Pressure Difference	(4n)	[bara] :	28.0			
Theoretical Power	(Δp)	[bala] . [kW] :	73.26			
Pump Efficiency		[K VV] . [-] :	76%			
Power at Shaft		[^r] . [kW] :	96.40			
Tower at Shart			uction Details			
RPM		Constr	Nominal diameter			
Drive		Electrical	Suction Nozzle	[]	:	
Type electrical		Lieethear	Discharge Nozz		:	
motor			Discharge 11022			
Tension	[V] :	380	Cooled Bearings		:	Yes/No
Rotational direction	:	Clock	Cooled Stuffing B	ox	:	Yes/No
Foundation Plate	:	Combined	Smothering Gland		:	Yes/No
Flexible Coupling	:	Yes	If Yes			
Pressure Gauge	:	No	- Seal Liquid		:	Yes/No
Suction			- Splash Rings		:	Yes/No
Pressure Gauge	:	Yes	- Packing Type		:	
Discharge			- Mechanical Se	eal	:	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	:	
above p _v /p _m			{=p _m .p.g}			
		the second se	ction Materials			
Pump House	1	$: CS^{1}$	Wear Rings		:	
Pump Rotor		CS	Shaft Box		:	
Shaft		CS				
Special Provisions		5				
Operating Pressure	[bara]		Test Pressure	[bara]	:	
Remarks:						
10. CS is carbon stee						
11. Based on recomm	mended flor	w scheme				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P201		rating		: 1
NAME		C201 Bottom	pump Insta	alled Spa	re	: 0
	tom pump					
	trifugal					
Number : 1				_		
Dumped liquid	OF		itions & Physical Data er/IPA	a		
Pumped liquid Temperature (T)	[⁰ C]	: wat : 86	eniPA			
	[°C]		1			
Density (p)	[kg/m ³]	: 898				
Capacity	(4)	[m ³ /s] :	Power 1.16E-01			
Suction Pressure	(\$ _V)		1.4			
		[bara] :	3.4			
Discharge Pressure Pressure Difference	(A)	[bara] :	2.0			
	(Δp)	[bara] :				
Theoretical Power Pump Efficiency		[kW] :	23.25 85%			
Pump Efficiency Power at Shaft		[-] :				
Fower at Shart		[kW] :	27.35 action Details		-	
RPM		Constru	Nominal diameter			
Drive	•	Electrical	Suction Nozzle	r 1		
Type electrical		Electrical	Discharge Nozzle	[] []	2	
motor	•		Discharge Nozzie	[]		
Tension	[V] :	380	Cooled Bearings			Yes/No
Rotational direction	[*] ·	Clock	Cooled Stuffing Box		*	Yes/No
Foundation Plate		Combined	Smothering Gland			Yes/No
Flexible Coupling		Yes	If Yes			2001210
Pressure Gauge	:	No	- Seal Liquid		:	Yes/No
Suction			- Splash Rings			Yes/No
Pressure Gauge	:	Yes	- Packing Type		:	
Discharge			- Mechanical Seal			Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]		
above p _v /p _m			$\{=p_{m}.\rho.g\}$			
A. A. M.		Constru	ction Materials			
Pump House		: CS ¹	Wear Rings		:	
Pump Rotor		: CS	Shaft Box		:	
Shaft		: CS				
Special Provisions		:				
Operating Pressure	[bara]	:	Test Pressure	[bara]	:	
Remarks:						
12. CS is carbon ste	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P202		Operating	:	1
NAME	17 824 C #303454 # 160444		ic phase pump	Installed Span	re :	0
	ganic phase	e pump				
	trifugal					
Number : 1						
0 11: 11	Op	and the second se	itions & Physica	l Data		
Pumped liquid	1907		er/IPA			
Temperature (T)	[°C]	: 34	0			
Density (p)	[kg/m ³]	: 296				
~ .			Power			
Capacity	(\$v)	[m ³ /s] :	2.02E-02			
Suction Pressure		[bara] :	1.0			
Discharge Pressure		[bara] :	3.0			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	4.04			
Pump Efficiency		[-] :	75%			
Power at Shaft		[kW] :	5.39			
		Constru	uction Details			
RPM	:	_	Nominal diame			
Drive	:	Electrical	Suction Nozz		:	
Type electrical motor	:		Discharge No	ozzle []	:	
Tension	[V] :	380	Cooled Bearing	S	:	Yes/No
Rotational direction	:	Clock	Cooled Stuffing		:	Yes/No
Foundation Plate	:	Combined	Smothering Gla	ind	:	Yes/No
Flexible Coupling	:	Yes	If Yes			
Pressure Gauge	:	No	- Seal Liquid	l	:	Yes/No
Suction			- Splash Ring	gs	:	Yes/No
Pressure Gauge	:	Yes	- Packing Ty	pe	:	
Discharge			- Mechanical		:	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	3	
above p _v /p _m			$\{=p_{m}.\rho.g\}$	475		
			ction Materials			
Pump House		: CS ¹	Wear Ring	S	\$	
Pump Rotor		: CS	Shaft Box		:	
Shaft		: CS				
Special Provisions		:				
Operating Pressure	[bara]	:	Test Pressu	ire [bara]	3	
Remarks:			di -			
13. CS is carbon ste	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P203		Operating	:	1
NAME		V201 Organie	c phase pump	Installed Spare	e :	0
Service : Org	anic phase	pump				
Type : Cen	trifugal	n				
Number : 1						
	Op		itions & Physical	Data		
Pumped liquid	111200-0	: NP.	A			
Temperature (T)	[°C]	: 34				
Density (p)	[kg/m ³]	: 115				
			Power			
Capacity	(\$ v)	$[m^{3}/s]$:	4.61E-06			
Suction Pressure		[bara] :	1.0			
Discharge Pressure		[bara] :	3.0			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	0.00			
Pump Efficiency		[-] :	40%			
Power at Shaft		[kW] :	2.3E-03			
		Constr	uction Details			
RPM	:		Nominal diamet			
Drive	:	Electrical	Suction Nozz		;	
Type electrical motor	6		Discharge No	ozzle []	:	
Tension	[V] :	380	Cooled Bearing	2		Yes/No
Rotational direction		Clock	Cooled Stuffing			Yes/No
Foundation Plate		Combined	Smothering Gla		2	Yes/No
Flexible Coupling		Yes	If Yes			
Pressure Gauge		No	- Seal Liquid		:	Yes/No
Suction			- Splash Ring	S		Yes/No
Pressure Gauge	:	Yes	- Packing Ty		:	
Discharge			- Mechanical		:	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	:	
above p_v/p_m	2 (5)		$\{=p_{m}.\rho.g\}$	5		
			ction Materials			
Pump House		$: CS^1$	Wear Rings	\$:	
Pump Rotor		: CS	Shaft Box		:	
Shaft		: CS				
Special Provisions		:				
Operating Pressure	[bara]	:	Test Pressu	re [bara]	:	
Remarks:						
14. CS is carbon stee	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUMI	BERS :	P204		erating	:	1
NAME		C202 Bottom	pump Inst	alled Spar	e :	0
	om pump					
	trifugal					
Number : 1						
	Op	the second se	itions & Physical Dat	a		
Pumped liquid	12.00	: Wat	er			
Temperature (T)	[°C]	: 95				
Density (p)	$[kg/m^3]$: 100	0.0			
			Power			
Capacity	(\$ _V)	[m ³ /s] :	1.04E-01			
Suction Pressure		[bara] :	1.5			
Discharge Pressure		[bara] :	3.5			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	20.89			
Pump Efficiency		[-] :	84%			
Power at Shaft		[kW] :	24.87			
		Constru	uction Details			
RPM	:		Nominal diameter			
Drive	:	Electrical	Suction Nozzle	[]	1	
Type electrical	:		Discharge Nozzle	[]	1	
motor						
Tension	[V] :	380	Cooled Bearings		:	Yes/No
Rotational direction	:	Clock	Cooled Stuffing Box		:	Yes/No
Foundation Plate	:	Combined	Smothering Gland		:	Yes/No
Flexible Coupling	:	Yes	If Yes			
Pressure Gauge	:	No	- Seal Liquid		:	Yes/No
Suction			- Splash Rings		:	Yes/No
Pressure Gauge	:	Yes	- Packing Type		:	221 222
Discharge			- Mechanical Seal		:	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	•	
above p _v /p _m			$\{=p_{m},\rho,g\}$			
D			ction Materials			
Pump House		: CS ¹	Wear Rings		:	
Pump Rotor		: CS	Shaft Box		:	
Shaft		: CS				
Special Provisions	ri 1	:		n		
Operating Pressure	[bara]		Test Pressure	[bara]	:	
Remarks:	1					
15. CS is carbon stee	-1					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

CENTRIFUGAL PUMP - SPECIFICATION SHEET

EQUIPMENT NUMBERS	: P205		rating	:	1
Service : Reflux pur	C202 Reflux	pump insta	Iled Spare		0
Type : Centrifuga					
Number : I					
Nulliber . I	Oneretine Could	24' 0 DL			
D		litions & Physical Data	1		
Pumped liquid		/NPA/Water			
Temperature (T) [°C]	: 80				
Density (p) [kg/s					
		Power			
Capacity (ϕ_V)	$[m^{3}/s]$:	6.10E-02			
Suction Pressure	[bara] :	0.7			
Discharge Pressure	[bara] :	2.7			
Pressure Difference (Δp)	[bara] :	2.0			
Theoretical Power	[kW] :	12.21			
Pump Efficiency	[-] :	80%			
Power at Shaft	[kW] :	15.26			
	Constr	uction Details			
RPM	:	Nominal diameter			
Drive	: Electrical	Suction Nozzle	[]	:	
Type electrical	1	Discharge Nozzle	[]	:	
motor					
Tension [V]	: 380	Cooled Bearings		:	Yes/No
Rotational direction	: Clock	Cooled Stuffing Box		:	Yes/No
Foundation Plate	: Combined	Smothering Gland		:	Yes/No
Flexible Coupling	: Yes	If Yes			
Pressure Gauge	: No	- Seal Liquid		:	Yes/No
Suction		- Splash Rings		:	Yes/No
Pressure Gauge	: Yes	- Packing Type		:	
Discharge		- Mechanical Seal		:	Yes/No
Min. Overpressure [bar]	3	- N.P.S.H.	[m]	:	
above p _v /p _m		$\{=p_m.\rho.g\}$			
	Constru	ction Materials			
Pump House	: CS ¹	Wear Rings		:	
Pump Rotor	: CS	Shaft Box		:	
Shaft	: CS			<u>81</u>	
Special Provisions	:				
Operating Pressure [bara]		Test Pressure	[bara]	8	
Remarks:		restricted	[Januar]		

17. The V202 accumulator has been designed to have a holdup time of 5 instead of 15 minutes; as a consequence, a tripping system must be installed on this pump.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM NAME	BERS :	P206		Operating		: 1
	· · · · C	C202 Top tra	nster pump 1	nstalled Spa	are	: 0
	transfer p	ımp				
	ntrifugal					
Number : 1						
D	0		itions & Physical I	Data		
Pumped liquid	1007		/NPA/Water			
Temperature (T)	[°C]	: 80				
Density (p)	[kg/m ³]	: 753				
a		the second se	Power			
Capacity	(¢ _V)	[m ³ /s] :	1.53E-02			
Suction Pressure		[bara] :	0.7			
Discharge Pressure		[bara] :	2.7			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	3.05			
Pump Efficiency		[-] :	75%			
Power at Shaft		[kW] :	4.07			
		Constru	uction Details			
RPM	:		Nominal diameter			
Drive	:	Electrical	Suction Nozzle		:	
Type electrical	:		Discharge Nozz	zle []	:	
motor						
Tension	[V] :	380	Cooled Bearings		:	Yes/No
Rotational direction	:	Clock	Cooled Stuffing B			Yes/No
Foundation Plate	:	Combined	Smothering Gland	l.	:	Yes/No
Flexible Coupling	:	Yes	If Yes			
Pressure Gauge	:	No	- Seal Liquid		\$	Yes/No
Suction			- Splash Rings		:	Yes/No
Pressure Gauge	:	Yes	- Packing Type		:	
Discharge			- Mechanical S	eal	:	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	:	
above p _v /p _m			$\{=p_{m}.\rho.g\}$			
			ction Materials			
Pump House		: CS ¹	Wear Rings		:	
Pump Rotor		: CS	Shaft Box		:	
Shaft		: CS				
Special Provisions		:				
Operating Pressure	[bara]	:	Test Pressure	[bara]	:	
Remarks:						
18. CS is carbon stee	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUMI	BERS :	P207	1.24	Operating		: 1
NAME			transfer pump	Installed Spa	re	: 0
Service : Proc	luct transfe	r pump				
Гуре : Cen	trifugal					
Number : 1						
	Op		itions & Physica	l Data		
Pumped liquid			/Water			
Temperature (T)	[°C]	: 80				
Density (p)	[kg/m ³]	: 755	.2			
			Power			
Capacity	(\$ _V)	[m ³ /s] :	9.00E-03			
Suction Pressure		[bara] :	0.7			
Discharge Pressure		[bara] :	2.7			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	1.80			
Pump Efficiency		[-] :	70%			
Power at Shaft		[kW] :	2.57			
		Constr	uction Details			
RPM	:		Nominal diame			
Drive	:	Electrical	Suction Noz		:	
Type electrical	:		Discharge N	ozzle []	:	
motor						N/ D1
Tension	[V] :	380	Cooled Bearing		1	Yes/No
Rotational direction	1	Clock	Cooled Stuffing		:	Yes/No
Foundation Plate	:	Combined	Smothering Gla	and	9	Yes/No
Flexible Coupling	:	Yes	If Yes		22.1	V AL
Pressure Gauge		No	- Seal Liquid		•	Yes/No
Suction		Maria	- Splash Rin		۲	Yes/No
Pressure Gauge	:	Yes	- Packing Ty			Yes/No
Discharge	[]]		- Mechanica			i es/ino
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	•	
above p_v/p_m		Creation	$\{=p_m.\rho.g\}$			
Dumm House		1	ction Materials	10		
Pump House			Wear Ring Shaft Box	,5	1	
Pump Rotor Shaft		CS CS	Shalt Box		•	
		: CS				
Special Provisions	[hara]		Test Press	ure [bara]	×	
Operating Pressure Remarks:	[bara]	•	1 est riess			
19. CS is carbon ste	al					
19. Co is carbon ste						

Designers:	ME Brons	JHM Jansen	Project ID-number	1	CPD3242
C	MP Hoff	EPE Seveke	Date	3	December 22 nd , '99

EQUIPMENT NUM	BERS :	P208		perating	:	1
NAME		C203 Bottom	pump In	stalled Spare	: :	0
	tom pump					
	ıtrifugal					
Number : 1					_	
Dummed liquid	OI		itions & Physical Da	ata	_	
Pumped liquid	1001	: IPA				
Temperature (T)	$\begin{bmatrix} {}^{0}C \end{bmatrix}$: 82.3				
Density (p)	[kg/m ³]	: 761	925			
Capacity	(+)		Power			
	(\$ _V)	[m ³ /s] :	7.61E-03			
Suction Pressure		[bara] :	1.3			
Discharge Pressure Pressure Difference	()	[bara] :	15.0			
	(Δp)	[bara] :	13.8			
Theoretical Power		[kW] :	10.47			
Pump Efficiency		[-] :	70%			
Power at Shaft		[kW] :	14.95			
RPM		Constru	action Details			
Drive	·	Electrical	Nominal diameter			
		Electrical	Suction Nozzle	[]		
Type electrical motor			Discharge Nozzl	e []	:	
Tension	[V] :	380	Cooled Bearings			Yes/No
Rotational direction		Clock	Cooled Stuffing Bo	v		Yes/No
Foundation Plate		Combined	Smothering Gland			Yes/No
Flexible Coupling		Yes	If Yes		0	103/110
Pressure Gauge		No	- Seal Liquid			Yes/No
Suction			- Splash Rings			Yes/No
Pressure Gauge	:	Yes	- Packing Type			100/110
Discharge			- Mechanical Sea	al		Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]		
above p _v /p _m	<u> </u>		$\{=p_m.\rho.g\}$	L 3		
		Construe	ction Materials			
Pump House		CS ¹	Wear Rings		:	
Pump Rotor		: CS	Shaft Box		:	
Shaft		: CS				
Special Provisions		:				
Operating Pressure	[bara]	:	Test Pressure	[bara]	:	
Remarks:						
20. CS is carbon stee	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P209		Operating	:	1
NAME		V203 Inorgan	nic phase pump	Installed Span	re :	0
Service : Inor	ganic phase	e pump				
Type : Cen	trifugal					
Number : 1						
	Op		itions & Physica	l Data		
Pumped liquid			ter/Cyclohexane			
Temperature (T)	[°C]	: 75				
Density (p)	$[kg/m^3]$: 100	0.0			
			Power			
Capacity	(ϕ_V)	[m ³ /s] :	1.24E-03			
Suction Pressure		[bara] :	1.0			
Discharge Pressure		[bara] :	3.0			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	0.25			
Pump Efficiency		[-] :	50%			
Power at Shaft		[kW] :	0.49			
		Constr	uction Details			
RPM	:		Nominal diame			
Drive	:	Electrical	Suction Noz		:	
Type electrical motor	•		Discharge N	ozzle []	1	
Tension	[V] :	380	Cooled Bearing	re l		Yes/No
Rotational direction		Clock	Cooled Stuffing			Yes/No
Foundation Plate		Combined	Smothering Gla			Yes/No
Flexible Coupling	;	Yes	If Yes		•	2 001210
Pressure Gauge	-	No	- Seal Liquid	ł	:	Yes/No
Suction			- Splash Rin		:	Yes/No
Pressure Gauge	:	Yes	- Packing Ty		:	
Discharge			- Mechanica		:	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	:	
above p _v /p _m			$\{=p_{m}.\rho.g\}$			
			ction Materials			
Pump House		: CS^1	Wear Ring	S	:	
Pump Rotor		: CS	Shaft Box		:	
Shaft		: CS				
Special Provisions		2	1000			
Operating Pressure	[bara]	:	Test Press	ure [bara]	1	
Remarks:						
21. CS is carbon ste	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
1454	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P210		Operating		: 1
NAME	and a share	V203 Organic	c phase pump	Installed Spa	re	: 0
	anic phase	pump				
·····	trifugal					
Number : 1	0			10.4		
Disman ed lieusid	Op		itions & Physica	li Data		
Pumped liquid	1°C1	: Cyc : 75	lhexane			
Temperature (T)	[°C]	: 73	6			
Density (p)	[kg/m ³]	23 - 34 - M.S.				
Consoltu	(1.)	[m ³ /s] :	Power		_	
Capacity	(φ _V)		3.65E-02			
Suction Pressure		[bara] :	1.0			
Discharge Pressure	<i></i>	[bara] :	3.0			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	7.30			
Pump Efficiency		[-] :	80%			
Power at Shaft		[kW] :	9.13			
		Constru	uction Details	2		
RPM		51	Nominal diame			
Drive	:	Electrical	Suction Noz			
Type electrical motor	• • • • •		Discharge N	ozzle []	:	
Tension	[V] :	380	Cooled Bearing	76	•	Yes/No
Rotational direction		Clock	Cooled Stuffin			Yes/No
Foundation Plate		Combined	Smothering Gl			Yes/No
Flexible Coupling		Yes	If Yes		1.00	100110
Pressure Gauge		No	- Seal Liquid	1		Yes/No
Suction			- Splash Rin			Yes/No
Pressure Gauge	:	Yes	- Packing Ty			
Discharge			- Mechanica			Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]		
above p _v /p _m			$\{=p_m.\rho.g\}$			
		Constru	ction Materials			
Pump House		CS ¹	Wear Ring	(S		
Pump Rotor		: CS	Shaft Box	ens.	:	
Shaft		: CS			1.50	
Special Provisions		:				
Operating Pressure	[bara]	:	Test Press	ure [bara]	:	
Remarks:						
22. CS is carbon stee	el					
	1916					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P211		erating	: 1
NAME		C204 Bottom	pump Inst	talled Spare	: 0
	tom pump				
	trifugal				
Number : 1					
D 11: 11	01		itions & Physical Dat	ta	
Pumped liquid	10.00		er/Cyclhexane		
Femperature (T)	[°C]	: 100			
Density (p)	[kg/m ³]	: 100			
-		the second se	Power		
Capacity	(\$ _V)	$[m^{3}/s]$:	1.00E-03		
Suction Pressure		[bara] :	1.2		
Discharge Pressure		[bara] :	3.2		
Pressure Difference	(Δp)	[bara] :	2.0		
Theoretical Power		[kW] :	0.20		
Pump Efficiency		[-] :	45%		
Power at Shaft		[kW] :	0.44		
		Constru	uction Details		
RPM	:		Nominal diameter		
Drive	:	Electrical	Suction Nozzle	[] :	
Гуре electrical motor	:		Discharge Nozzle	[] :	
Tension	[V] :	380	Cooled Bearings	:	Yes/No
Rotational direction	:	Clock	Cooled Stuffing Box	. :	Yes/No
Foundation Plate	:	Combined	Smothering Gland	:	Yes/No
Flexible Coupling	:	Yes	If Yes		
Pressure Gauge	:	No	- Seal Liquid	:	Yes/No
Suction			- Splash Rings	:	Yes/No
Pressure Gauge	:	Yes	- Packing Type	:	
Discharge			- Mechanical Seal	l :	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m] :	
above p _v /p _m			$\{=p_{m}, \rho, g\}$		
			ction Materials		
Pump House		$: CS^1$	Wear Rings	:	
Pump Rotor		: CS	Shaft Box	:	
Shaft		: CS			
Special Provisions		:			
Operating Pressure	[bara]	:	Test Pressure	[bara] :	li
Remarks:					
23. CS is carbon stee	el				

Designers:	ME Brons	JHM Jansen	Project ID-number	5	CPD3242
	MP Hoff	EPE Seveke	Date	1	December 22 nd , '99

EQUIPMENT NUM	BERS :	P212		erating	: 1
NAME		C204 Reflux	pump Inst	alled Spare	: 0
	tom pump				
• •	ntrifugal				
Number : 1	0				
Down of Barris	0		itions & Physical Dat	ta	
Pumped liquid	r ⁰ C1		lohexane/Water		
Temperature (T)	[°C]	: 78.6			
Density (p)	[kg/m ³]	: 100	610 M		
o :-	(1.)		Power		
Capacity	(\$ v)	[m ³ /s] :	1.10E-03		
Suction Pressure		[bara] :	0.8		
Discharge Pressure	a a 18	[bara] :	2.8		
Pressure Difference	(Δp)	[bara] :	2.0		
Theoretical Power		[kW] :	0.22		
Pump Efficiency		[-] :	45%		
Power at Shaft		[kW] :	0.49		
		Constru	uction Details		
RPM	:	1200 B 100	Nominal diameter		
Drive	:	Electrical	Suction Nozzle	[]	:
Type electrical	:		Discharge Nozzle	[]	•
motor					22 22
Tension	[V] :	380	Cooled Bearings		: Yes/No
Rotational direction	:	Clock	Cooled Stuffing Box		: Yes/No
Foundation Plate	:	Combined	Smothering Gland		: Yes/No
Flexible Coupling	:	Yes	If Yes		
Pressure Gauge	:	No	- Seal Liquid		: Yes/No
Suction			- Splash Rings		: Yes/No
Pressure Gauge	÷	Yes	- Packing Type		
Discharge			- Mechanical Sea		: Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	
above p _v /p _m		~	$\{=p_m,\rho,g\}$		
DU		Long Delineterior Activity	ction Materials		
Pump House		: CS ¹	Wear Rings		
Pump Rotor		: CS	Shaft Box		1
Shaft		: CS			
Special Provisions	These 1	2	Track D	(h	
Operating Pressure	[bara]		Test Pressure	[bara]	•
Remarks:					
24. CS is carbon stee	ei				

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P213		erating	Ì	: 1
NAME	C	C204 Transfe	r pump Ins	talled Spare	e	: 0
	nsfer pump					
	trifugal					
Number : 1						
D 11: 11	Op		itions & Physical Da	ta		
Pumped liquid	1000		lohexane/Water			
Temperature (T)	[°C]	: 78.6				
Density (p)	[kg/m ³]	: 100				
a			Power			
Capacity	(\$ _V)	[m ³ /s] :	2.40E-04			
Suction Pressure		[bara] :	0.8			
Discharge Pressure		[bara] :	2.8			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	0.05			
Pump Efficiency		[-] :	40%			
Power at Shaft		[kW] :	0.12			
		Constru	uction Details			
RPM	:		Nominal diameter	1427 1491		
Drive	:	Electrical	Suction Nozzle	[]	:	
Type electrical	:		Discharge Nozzle	: []	:	
motor						
Tension	[V] :	380	Cooled Bearings		•	Yes/No
Rotational direction	:	Clock	Cooled Stuffing Box	(:	Yes/No
Foundation Plate	:	Combined	Smothering Gland			Yes/No
Flexible Coupling	:	Yes	If Yes			
Pressure Gauge	:	No	- Seal Liquid		:	Yes/No
Suction			- Splash Rings		:	Yes/No
Pressure Gauge		Yes	- Packing Type	1	2	N7 (N1
Discharge	ri - 1		- Mechanical Sea	75	:	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	:	
above p _v /p _m		G	$\{=p_m.\rho.g\}$			
Dumm Howar			ction Materials			
Pump House			Wear Rings		1	
Pump Rotor		CS CS	Shaft Box		•	
Shaft		CS				
Special Provisions	[horo]		Test Pressure	[hore]		
Operating Pressure Remarks:	[bara]		Test Pressure	[bara]		
25. CS is carbon stee	-1					
25. CS is carbon stee	51					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
0.7.1	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

EQUIPMENT NUM	BERS :	P214		erating		: 1
NAME		C205 Bottom	pump Ins	talled Spar	e	: 0
	tom pump					
	trifugal					
Number : 1						
D 11'	OF		itions & Physical Da	ta		
Pumped liquid	1000		/Water/NPA			
Temperature (T)	[°C]	: 80				
Density (p)	[kg/m ³]	: 753			_	
Connector	(1.)		Power			
Capacity	(\$ _V)	[m ³ /s] :	7.97E-03			
Suction Pressure		[bara] :	1.1			
Discharge Pressure	<i></i>	[bara] :	3.1			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power		[kW] :	1.59			
Pump Efficiency		[-] :	70%			
Power at Shaft		[kW] :	2.28			
RPM		Constru	uction Details			
Drive		Electrical	Nominal diameter	r 1		
	:	Electrical	Suction Nozzle	[]	:	
Type electrical motor	:		Discharge Nozzle	e []	:	
Tension	[V] :	380	Cooled Peeringe			Yes/No
Rotational direction	[V] .	Clock	Cooled Bearings Cooled Stuffing Bo		9	Yes/No
Foundation Plate	:	Combined	Smothering Gland	X	1	Yes/No
Flexible Coupling		Yes	If Yes		•	165/100
Pressure Gauge		No	- Seal Liquid			Yes/No
Suction		NO	- Splash Rings		2	Yes/No
Pressure Gauge		Yes	- Packing Type		;	165/100
Discharge		103	- Mechanical Sea	1	÷	Yes/No
Min. Overpressure	[bar] :		- N.P.S.H.	[m]	94 194	105/140
above p_v/p_m	[our] .		$\{=p_m.\rho.g\}$	Lini		
accie py pm		Constru	ction Materials			
Pump House		: CS ¹	Wear Rings			
Pump Rotor		CS	Shaft Box			
Shaft		: CS	Shart Don		30	
Special Provisions						
Operating Pressure	[bara]		Test Pressure	[bara]		
Remarks:					-	
26. CS is carbon stee	el					

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

CENTRIFUGAL PUMP - SPECIFICATION SHEET

EQUIPMENT NUMBE NAME	ERS :	P215 C205 Reflux		rating alled Spar	P	: 1 : 0
and the second	x pump	C205 Renux	pump mste	incu opai	0	. 0
Type : Centri						
Number : 1	ugui					
	Or	erating Cond	itions & Physical Data	a		
Pumped liquid	U.	the second se	/Water			
Temperature (T)	[°C]	: 80				
Density (p)	$[kg/m^3]$: 753	2			
Density (p)	[Kg/m]	5 042458	Power			
Capacity	(\$ _V)	[m ³ /s] :	1.46E-02			
Suction Pressure	(40)	[bara] :	0.8			
Discharge Pressure		[bara] :	2.8			
Pressure Difference	(Δp)	[bara] :	2.0			
Theoretical Power	(Pb)	[kW] :	2.92			
Pump Efficiency		[-] :	75%			
Power at Shaft		[kW] :	3.89			
rower at bhart			uction Details			
RPM	:		Nominal diameter			
Drive	:	Electrical	Suction Nozzle	[]	:	
Type electrical	:		Discharge Nozzle	[]	:	
motor			0			
Tension [V] :	380	Cooled Bearings		2	Yes/No
Rotational direction	:	Clock	Cooled Stuffing Box		:	Yes/No
Foundation Plate	:	Combined	Smothering Gland		:	Yes/No
Flexible Coupling	:	Yes	If Yes			
Pressure Gauge	:	No	- Seal Liquid		:	Yes/No
Suction			- Splash Rings		:	Yes/No
Pressure Gauge	:	Yes	- Packing Type		:	
Discharge			- Mechanical Seal		:	Yes/No
Min. Overpressure [[bar] :		- N.P.S.H.	[m]	:	
above p_v/p_m			$\{=p_{m}.\rho.g\}$	- tar		
			ction Materials			
Pump House		$: CS^1$	Wear Rings		:	
Pump Rotor		: CS	Shaft Box		;	
Shaft		: CS				
Special Provisions		:				
Operating Pressure [[bara]		Test Pressure	[bara]		

28. The V205 accumulator has been designed to have a holdup time of 5 instead of 15 minutes; as a consequence, a tripping system must be installed on this pump.

Designers:	ME Brons	JHM Jansen	Project ID-number	:	CPD3242
-	MP Hoff	EPE Seveke	Date	:	December 22 nd , '99

Hazard and Operability Study (HAZOP)

Guide Word	Deviation	Possible Causes	Consequences	Action Required			
Not, No	NO PROPANE FEED FLOW	 No propane feed outside battery limit 	Loss of feed to reaction section. Process on whole plant is halted.	 (a) Ensure good communications with operator outside battery limit 			
		(2) Line blockage(3) Line rupture	As for (1) As for (1), propane discharged into industrial area, possible explosion risk.	 (b) Institute regular inspection and maintenance of piping (c) As for (b); remain in close contact with fire brigade 			
	NO CATALYST REGENERATION	(4) No fuel gas feed outside battery limit	Too little heat for reaction; too little catalyst activity for reaction; process halted.	(d) As for (a)			
		(5) Line blockage	As for (4)	 (e) Institute regular inspection and maintenance of piping 			
		(6) Line rupture	As for (4), fuel gas discharged into industrial area	(f) As for (c)			
More	MORE PROPANE FEED FLOW	 (7) Increase of propane feed outside battery limit 	Lower residence times in reactor, off spec production	(g) As for (a)			
	MORE T	 (8) Autoignition of material inside reactor due to leakage of air / oxygen 	As for (3)	 (h) Institute regular inspection and maintenance of vacuum seals 			
	MORE P	 (9) Vacuum seals failure (10) Compressor K102 failure 	Conversion drop, ultimately resulting in large overall recycles As for (8)	 (i) As for (h) (j) Institute regular inspection and maintenance of compressor K102 			
Less	LESS PROPANE FEED FLOW	(11) Decrease of propane feed outside battery limit	Higher residence times in reactor, higher conversions	(k) As for (a)			
	LESS T	(12) Too little fuel gas stream to pre-reactor furnace F101	Lower temperature in the reactor, lower conversions.	(l) As for (a) and (e)			

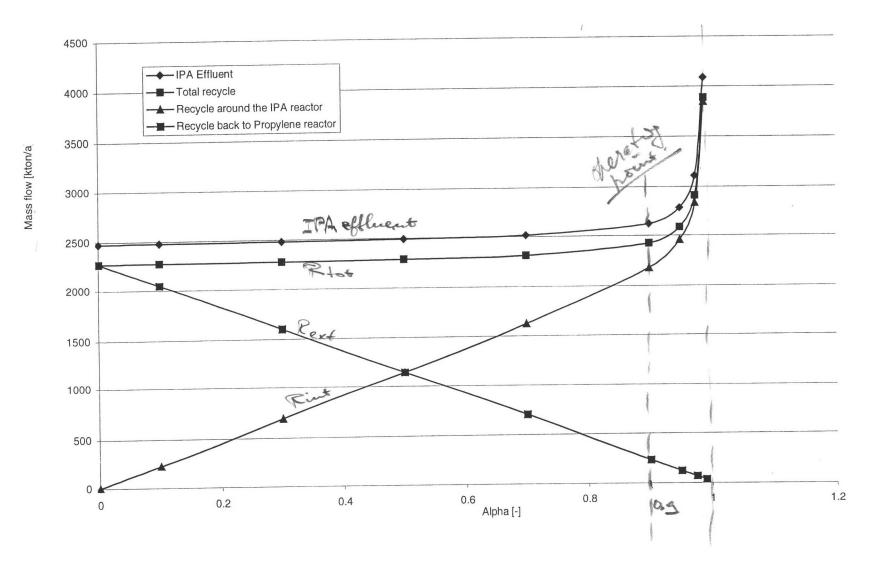
 Table 7.1-1: HAZOP study for the dehydrogenation reactor R101

 Vessel – Reactor

Table 7.1-2: HAZOI	study for the ligh	t ends column C101
--------------------	--------------------	--------------------

	- Light ends col	or the light ends column C10 umn		
Intentio	m – removal of li	ight ends, 35 bara, -33/	+77 °C	
Guide	Deviation	Possible Causes	Consequences	Action Required
Word Not, No	NO FEED FLOW (1) K101 or K102 failure		Column runs dry. Pumps run dry. Downstream process halted.	 (a) Institute regular inspection and maintenance of compressors K101 and K102
		(2) Line blockage	As for (1)	(b) Institute regular inspection and maintenance of piping
		(3) Line rupture	As for (1), propane and propylene at high pressure discharged into industrial area	(c) As for (b), remain in close contact with fire brigade
	NO EFFLUENT FLOW	(4) Downstream line blockage	Liquid level rises, downstream process has to be stopped.	(d) As for (b)
	NO REFLUX FLOW	(5) Pump P101 failure	Rectification section runs dry; column operates at lower efficiency	(e) Have spare pump ready
		(6) Malfunctioning of K103 in condenser loop	As for (5), no condensation so all top product leaves V101 as gas	 (f) Institute regular inspection and maintenance of compressor K103
More	MORE FEED FLOW	(7) Non-suppressed upstream fluctuations	Risk of weeping; column probably operates at lower efficiency	(g) Have adequate flow control system
	MORE T	(8) Insufficient cooling by E108	Probably loss of efficiency	(h) Have cooling overcapacity at E108
	MORE P	(9) K102 pressure control failure	Hardly any, within reasonable pressure differences	(i) None
Less	LESS FEED FLOW	(10) As for (7)	Risk of column running dry and thus loosing efficiency	(j) As for (g)
	LESS T	(11) Too much cooling by E108	Relative position of feed stage no longer optimal, loss of efficiency	(k) Have adequate control at E108
	LESS P	(12) Compressor K102 failure	As for (9)	(l) As for (f)
		(13) Pressure leakage through high- pressure seals failure	As for (9)	(m) Institute regular inspection and maintenance of seals
		(14) Line rupture in top section	Risk of BLEVE explosion due to ignition of expanding liquid propylene	(n) As for ©

or the hydration reactor R102
or the hydration reactor R102


Guide Word	Deviation	Possible Causes	Consequences	Action Required		
Not, No	NO PROPYLENE FEED FLOW	(1) Problem at upstream units	Operation must be stopped. Downstream process is halted.	 (a) See possible problem analysis with solutions for upstream units (previous tables) 		
		(2) Line blockage	As for (1)	(b) Institute regular inspection and maintenance of piping		
		(3) Line rupture	As for (1), propane and propylene discharged into industrial area, possible explosion risk.	 (c) As for (b); remain in close contact with fire brigade 		
	NO CATALYST ACTIVITY	 (4) Catalyst wash out due to too much water flow 	No or almost no reaction	(d) Have adequate water flow control installed		
More	MORE PROPYLENE FEED FLOW	(5) Non-suppressed upstream fluctuations	Lower residence times in reactor, off spec production	(e) Have adequate flow controls upstream		
	MORE T	(6) E112 control failure	Risk of polymerisation of propylene, which is even more exothermic and can cause a runaway	 (f) Have adequate control at E112; have sufficient H₂O supply and adequate control to quench starting runaway 		
	MORE P	(7) K102 pressure control failure	No problem, probably even better conversion	(g) None		
Less	LESS PROPYLENE FEED FLOW	(7) As for (5)	Higher residence times in reactor, higher conversions	(g) None		
	LESS T	(8) As for (6)	Lower temperature in the reactor, lower conversions.	(h) As for (f)		
	LESS P	(9) As for (7)	Conversion drops, even larger recycle	(i) Institute regular inspection and maintenance of K102		

A.7.1-3

Fire and Explosion Index

ocation	Date	1			
<i>Valaysia</i> Plant	December 20th, 1999	1			
IPA from	Process units	Evalu	ated by	Revie	ewed by
propylene	propylene and IPA reactors, deethanizer	CPL	03242		
	Materials and	process			
Materials in process	unit , propane, light ends, impurities				
State of operation	propulse, light chief, imperiode				
	-down [x] Normal operation		asic material(s) hydrogen, prop		
Material factor			21	21	21
		Factorrange	Propylene Reactor Penalty used	IPA Reactor Penalty used	C101 Column Penalty used
1. General process	hazards				
Base factor A. Exothermic chemi	cal reactions	1.00	1.00	1	
B. Endothermic proc		0.30 to 1.25		0.30	
C. Material handling		0.20 to 0.40	0.20	1	1
D. Enclosed or indoo		0.25 to 1.05			1
E. Access	process units	0.25 to 0.90		1	
F. Drainage and spill	control	0.20 to 0.35			1
General process haz		0.25 to 0.50			-
2. Special process Base factor	hazards		1.00	1.00	0 1.00
A. Toxic material(s)		0.20 to 0.80	0.20	0.20	0.2
	pressure (<0.67 bar)	0.50	0.50	0.8	7
the second s	ear flammable range [] Inerted [x] Not inerted	t		-	-
	Tanks farms storage flammable liquids	0.50		-	-
	Process upset or purge failure	0.30		- 0.3	0.3
	Always in flammable range	0.80		-	-
D. Dust explosion		0.25 to 2.00		-	-
E. Pressure Operati	ing pressure	0.15 to 1.10		- 0.8	7 0.8
F. Low temperature		0.20 to 0.30		-	- 0.2
	nable material: W: lbs, Hc: 2500 BTU/lb				
1.1	iquids, gases and reactive materials in proces	^S 0.15 to 3.00	0.1	d 0.1	d 0.1
	Liquids or gases in storage	0.10 to 1.60		-	
	Combustible solids in storage, dust in process	0.10 to 4.00		•	-
H. Corrosion and er	osion	0.10 to 1.50	0.1	a 0.1	a 0.1
I. Leakage-Joints ar		0.10 to 1.50	0.1	d 0.3	od 0.3
J. Use of fired heate		0.10 to 1.00	0.2	0.1	<u>0 0.1</u>
K. Hot oil heat exch		0.15 to 1.15		•	•
L. Rotating equipme		0.50	0.5	id 0.5	0.5
Special process haz			2.7	75 3.4	3.7
Unit hazard factor (I	F1*F2=F3)	1.00 to 8.00	3.3	4.5	3.7
Fire and explosion i	index (F3*MF=F&EI)	0 to 200	69.3	94.7	76 78.2
L		0 10 200		54.1	70.2

Economic evaluation

Assumptions:

• Due to company policy no installed spares for equipment will be used.

~ ~ ~

The make up of cyclohexane, is considered to be miscellaneous material. .

& Raw Mat!

Currency

	Dfl/\$	DE	2.00				
	Dfl/pond		3.50				
	Dfl/DM		1.14	~			
	\$/Pound		1.75	X			
	\$/Dfl		0.50	1			
	\$/DM		0.57				
	pound/DM		0.33				
Inflation		%			20		1
	Inflation correction	n from 1970 1.03	2.36		9 =	2.36	29 lun 2 = lun 2.36 lux= lun 2.36
	Inflation correction	n from 1992 \.03	1.23				ture - 200
	Inflation correction	from 1997 1.03	1.06				29
Note that	the inflation corre			a year.	e e		X = e 23

Table 9.1. Reactors

		Number [-]	Bare vessel [kPound]	Material factor [-]	Pressure factor [-]	Cost of the catalyst [DM/kg]	Reactor load [kg]
R101	Propylene reactor	3	3 30	1		1 20	31793
R102	IPA reactor		1 50	1	1.	6 12	74183
Total							

Total

Table 9. 2. Columns

	Bare vessel [kPound]	Material factor [-]	Pressure factor [-]	Cost of a plate [Pound]	Number of plates	Total [kPound]
C101 Deethanizer	50	1	1.6	650	51	
C201 Light ends column	80	1	1	700	45	112
C202 IPA CBM column	90	1	1	675	58	129
C203 IPA drying column	25	1	1	650	50	58
C204 Cyclohexane recovery column	14	1	1	250	35	5 23
C205NPA recovery column	35	1	1	700	28	55
Total Columns Table 9. 3. Absorber 2 Column	!					489

·		Bare vessel [kPound]	Material factor [-]	Pressure factor [-]	Packing cost [kPound/m3]	Volume packing [m3]	Total [kPound]
C102	Washing column	18		1 1.4	1.0	45.661	76
Total							76

Table 9. 4. Vessels

		Bare vessel [kPound	Material factor	Pressure factor [-1	Vess costs [kPoi	5
V101	C101 accumulator		1	1	1.6	18
V102	HP Separator	-	0	1	1.6	16
V201	Light ends column phase sep.	2	22	1	1	22
V202	C202 accumulator	2	25	1	1	25
V203	Drying column phase sep.	2	25	1	1	25
V204	C204 accumulator		4	1	1	4
V205	C205 accumulator	5	0	1	1	10
Total	Vessels					120

Table 9. 5. Dryer

	Number [-]	Bare vessel [kPound]	factor	Cost of the dryer [DM/kg]	Dryer load [kg]	Total [kPound]
D101 A/B/C Recycle dryer		2 25	1.2		2 50000	182
Total						182

Table 9. 6. Heat exchangers

Equip.	Continuent norma	T	A	Deve	T	Pressure	Tatal
number	Equipment name	i ype	Area [m2]	[kPound]	Type factor	factor [-]	Total
E101	R101 Feed-Effluent A	FH	<u>[m2]</u> 92		[-]	1	[kPound] 12
E101	R101 Feed-Effluent B	FH	204			4	22
E102	R101 Feed-Effluent C	FH	204			1	22
E103	R101 Feed-Effluent D	FH	189			1	22
E104	R101 Effluent - Steam	FTS	62			1.1	9
E105	K101 Effluent	AIR	* 02	10	0.0	1.1	13
E100	C203 Reboiler	TS	49	9	1.3	1.3	
E107	C101 Feed	FH	522			1.3	
E109	C101 Condenser	FH	1065			1.3	
E110	C101 Condenser Heat pump	FH	394			1.3	
E111	C101 Reboiler	TS	139			1.3	
E112	R102 Feed heater	FH	475			1.3	
E112	C201 Reboiler	TS	945			1.3	
E114	R102 Effluent cooler	AIR	*		1.0	1.0	223
E115	C102 Feed cooler A	FH	1706	135	1	1.3	
E116	C102 Feed cooler B	FH	645			1.25	
E201	V201 Feed cooler	FTS	185			1.20	
E203	C202 Reboiler	TS	742			. 1.1	
E204	C202 Condenser	AIR	*		1.0		439
E205	C205 reboiler	TS	496	6 40	1.3	1.1	
E206	C205 Condenser	AIR	2390				406
E207	Recycle to C101	FTS	473		0.8	1	
E208	C203 Condenser	AIR	*			1	
E209	C204 Reboiler	TS	380) 36	6 1.3		-
E210	C204 Condenser	AIR				-	
E211	C201top feed cooler	FTS	634	4 60	0.8	-	48
E212	C204 Bottom cooler	FTS	11		3 0.8		
E213	C203 Product cooler	FTS	350				

Total KE's * Calculated according to a rule of thumb:

0.001Dfl/MJ

2218

Table 9. 7. Furnace

		driver power [kW]	Constant [kPound]		Total [kPound]	
F101	R101 Feed furnace	149	18 29	0 0.7	7	474
Total						474

Table 9. 8. Boiler

	Steam flow [kg/hr]	Constant [kPounds]	Index [-]	Total [kPounds]
Not mentioned in Flow Scheme	17700) 30	0.8	75
Total				75

Table 9. 9. Pumps

		Actual power [kW]	Total cost [kPound]
P101	C101 Reflux pump	7.17	
P102	R102 Water feed pump	40.91	
P103	C102 Absorbent feed pump	96.40	101195
P201	C201 Bottom pump	27.35	91200
P202	V201 Inorganic phase pump	5.39	24310
P203	V201 Organic phase pump	0.00	18130
P204	C202 Bottom pump	24.87	62700
P205	C202 Reflux pump	15.26	46300
P206	C202 Top transfer pump	4.07	24310
P207	C202 Product transfer pump	2.57	21540
P208	C203 Bottom pump	2.18	21540
P209	V202 Inorganic phase pump	0.49	18130
P210	V202 Organic phase pump	9.13	32800
P211	C204 Bottom pump	0.44	18130
P212	C204 Reflux pump	0.49	18130
P213	C204 Transfer pump	0.12	2 18130
P214	C205 Bottom pump	2.28	21540
P215	C205 Reflux pump	3.89	24310
P216	C205 Transfer pump	2.09	21540
Total			701430

Table 9. 10. Compressors

	Number	Driver power [kW]	Constant [Pound]	Index [-]	Total [kPound]
K101 R101 vacuum compressor	1	2400	700	0.8	3 354
K102 R102 HP compressor	1	8042	500	0.8	666 4
K103 C101 heat pump compressor	1	4.488	500	0.8	3 417
K104 R102 recycle compressor	1	900	500	0.8	3 115
Total					1553

Table 9. 11. Turbine

		Number	driver power [kW]	Constant [Pound]	Index [-]	Total [kPound]
T101	Steam turbine	1	900	3200	0.5	5 96
Total						96

Table 9. 12. Storage tanks

		Number	Volume [m3]	Constant [kPound]	Index [-]	Total [kPound]
T201 A/B/C/D	Run down tank	4	224	1500	0.55	118
T202	Off spec tank	1	4902	1500	0.55	161
T203	On spec tank	1	60080	1500	0.55	637
T204	Sales tank	1	28008	1500	0.55	419
Total						1335

Table 9. 13. Physical plant cost

Equipment	Price [million \$]
Reactors	1.96
Columns	1.18
Vessels	0.26
Dryer	0.32
Heat exchangers	4.77
Boiler	0.16
Furnaces	1.02
Pumps	0.37
Compressors (incl. K103)	3.34
Turbine	0.21
Storage Tanks	2.87
PPC [million \$]	16.47
Lang factor direct costs	2.85
Lang factor indirect costs	1.45
Total Lang factor	4.13

Table 9. 14. Summary of fixed, working capital and the total investment

Results [M\$]		
C _F	68.07	
0.15* C _F	10.21 4	
1.15* C _F	(78.28)	
	[M: <i>C_F</i> 0.15* <i>C_F</i>	

Table 9. 15. Raw materials

	1.15 OF	10.2	0/
Table 9. 15. Raw materials	Flow ton/a	Prices [\$/ton]	Total [k\$/a]
Propane 2017	146748	120.00	17610
Propane 2017 Process Water (10)	89880	1.25	112
Total cost			17722

CPD3242 CONFIDENTIAL

Table 9. 16. Utility costs

Utility	[unit]	Amount [unit/a]	Costs [k\$/unit]	Tota [k\$/a	
Steam LP	kton		-3	7	-22
Steam MP	kton	20	06	9	1851
Steam HP	kton	151	12	12	18144
Electricity	MWh	15082	22	0.04	6033
Fuel gas	kton	2	21	120	2532
Cooling Water	kton	6186	57	0.05	3093
BFW	kton	(14	14 /	1.25	180
Total		C			31811

Table 9. 17. Waste

	Flow	Treatment costs	1	Total	
	[ton/a]*	[\$/ton]*	[k\$/a]	
Water <230>	176.4		300	53 4	
Total				53	

* ton is measured in weight of organic substances

Table 9. 18. Summary of production costs

	Costs [M\$/a]	Remarks
Variable costs		
Raw materials	17.72 -	
Miscellaneous materials	0.68 4	10% of maintenance
Utilities	31.81 4	
Waste	0.05 0	
Subtotal A	50.27	
Fixed costs		
Maintenance	6.81	10% of fixed capital
Operating labour	2.00	
Laboratory costs	0.50	25% of operating labour
Supervision	0.40	20% of operating labour
Plant overheads	2.00	100% of operating labour
Capital charges	10.21	15% of fixed capital
Insurance	0.68	1% of fixed capital
Local taxes	1.36	2% of fixed capital
Royalties	0.68	1% of fixed capital
Subtotal B	24.64	
Direct prod costs (A+B)	74.91	
Sales expense	18.73	25 % of direct prod. costs
General overheads		
Research and		
development		
Indirect costs (C)	18.73	
Annual prod costs (A+B+C)	93.63	
Production cost [\$/ton]	535.65	

Table 9. 19. Products

		Flow [kton/a]	Prices [\$/ton]	Total [k\$/a]
IPA	(222)	174.80	550	96142
Self made fu	uel gas <1167	15.96	120	1915
NPA	22077	0.17	120	20
Total	(2067? LE	3.00	<u> </u>	→ 98057 → 456

Table 9. 20. Net cash flow

Results [M\$/a]		
j/a]		
98.06		Gross income
93.63		Production costs
(4.42		Net Cash Flow
		Net Cash Flow

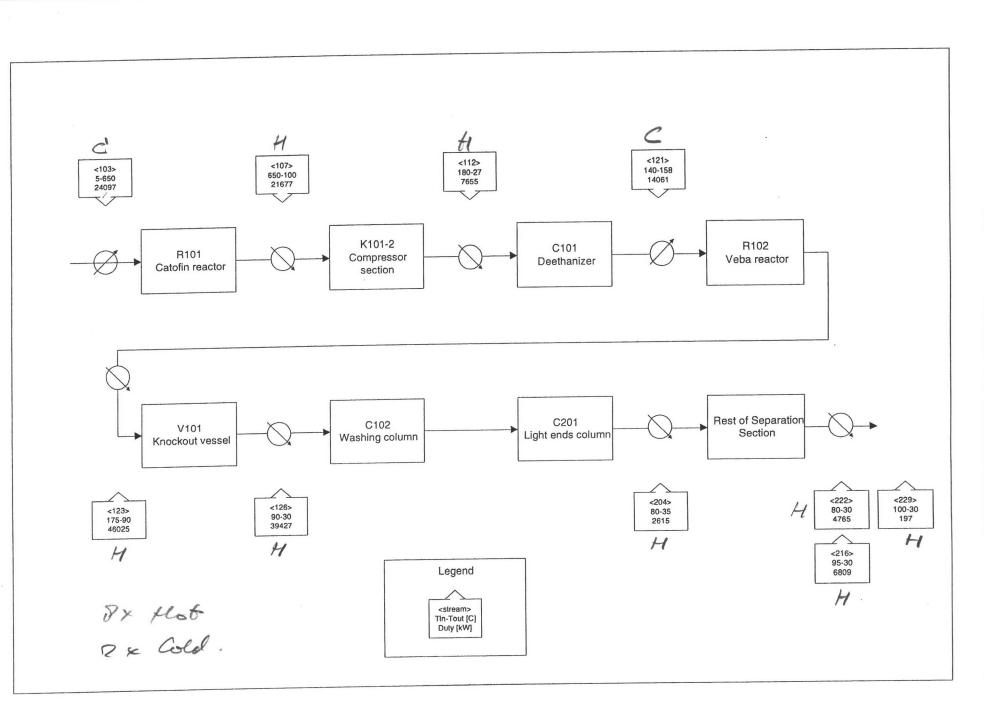
Table 9. 21. DCFRR determination

Year	Cash flow [million \$]	DCFRR [-]	Net Cash flow [million \$]	
0	20.1	1.00	20.1	2 0
2	-39.1 -39.1	1.00		hzrears
3	4.4			
	and the second se	0.98		7
4	4.4	0.97		
5	4.4	0.96	and the second se	
6	4.4	0.94		
7	4.4	0.93		
8	4.4	0.92		1
9	4.4	0.91		
10	4.4	0.90		
11	4.4	0.89	9 4.0	
12	4.4	0.88	3 3.9	1 204000
13	4.4	0.87	3.9	loyea
14	4.4	0.86	3.8	1
15	4.4	0.85	5 3.8	
16	4.4	0.84	4 3.7	
17	4.4	0.83	3 3.7	
18	4.4	0.82	2 3.6	
19	4.4	0.82		
20	4.4	0.8	1 3.6	
21	4.4	0.80		
22	4.4	0.79		<u> </u>
Fotal		1.14%		

Table 9. 22. Results

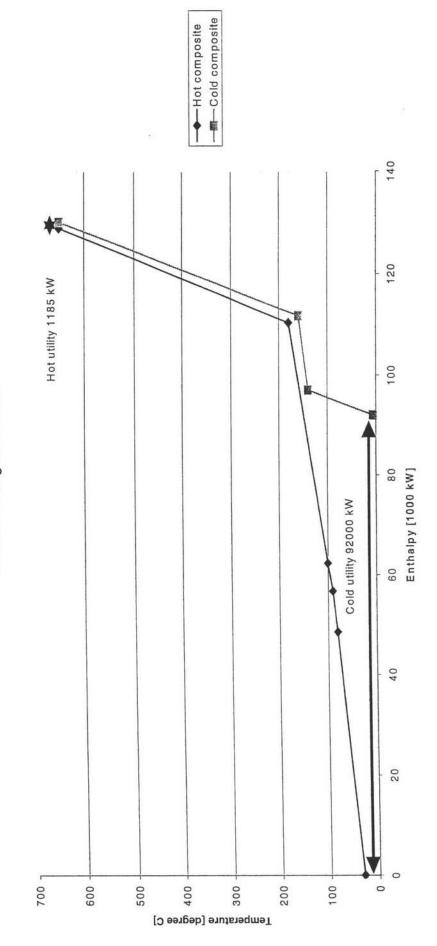
	Results	
ROR	0.05	
POT	19.46	
DCFRR	1.14%	

•


Table 9. 23. Margin

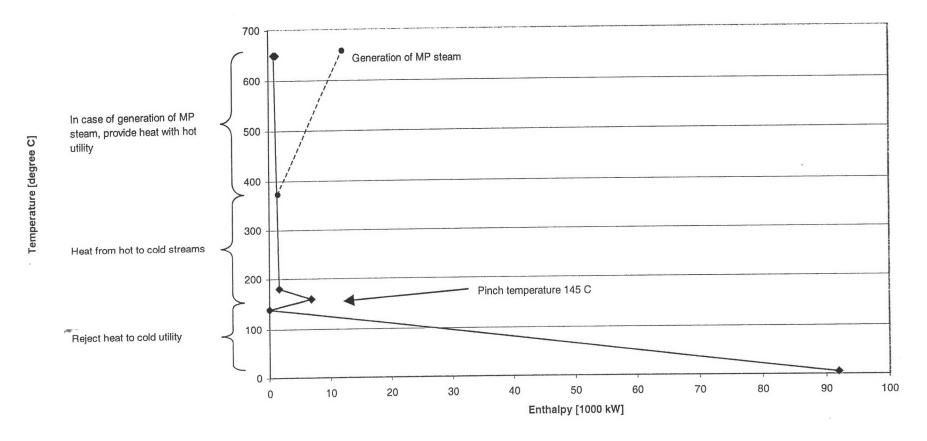
	Total [million \$/a]
Products	98
Raw materials	18
Margin [million \$/a]	80

Table 9. 24. Maximum allowable investment.


Year	Net Annual Cash flow [million \$]	NPW (10%)	NPW [million \$]	NPW [million \$]
0	0.0	1.00	0.0	-39.1
2	0.0	0.91	0.0	-39.1
3	80.3	0.83	66.4	27.3
4	80.3	0.85	60.4	87.6
4 5	80.3	0.75	54.9	142.5
6	80.3	0.62	49.9	192.4
7	80.3	0.56	45.3	237.7
8	80.3	0.51	41.2	278.9
9	80.3	0.47	37.5	316.4
10	80.3	0.42	34.1	350.5
11	80.3	0.39	31.0	381.5
12	80.3	0.35	28.2	409.6
13	80.3	0.32	25.6	435.2
14	80.3	0.29		458.5
15	80.3	0.26	Contract Table 1	479.6
16	80.3	0.24	100 million -	498.9
17	80.3	0.22	17.5	516.3
18	80.3	0.20	15.9	532.2
19	80.3	0.18	14.4	546.7
20	80.3	0.16	13.1	559.8
21	80.3	0.15	11.9	571.8
22	80.3	0.14	10.9	582.0
Total				582.6

A.10.1-1

CPD3242 CONFIDENTIAL


Appendix 10.1: Heat integration - Scheme

A.10.2-1

A.10.3-1

Available Utilities

a. Steam

Conditions	Steam Class			
	High pressure	Medium Pressure	Low Pressure	
P [Bara]	18	12	4	
T (superheated) [degree C]	225	200	150	
T (condensation) [degree C]	207	188	144	

b. Electricity

Electricity is assumed to be available without restrictions [electricity cost includes investment costs]

c. Water

	T (in) [degree C] T (out)	[degree C] P [Bara] cp [l	(J/kg K]
Cooling water	25	40	3	4.18
	e in heat exchangers assumed to	o be 1 Bara		

d. Air

	T (in) [degree C] T (max) [degree C] P [Bara]
Air	30 40

e. Utility costs

Utility costs

ounty ocoto	Units		LHV	Unit Costs [\$/unit]	
Utility	Quant.	Energy	Energy Per Quant	Quant.	Energy
Steam LP	ton			7	
Steam MP	ton			9	
Steam HP	ton			12	
Electricity		kWh			0,04
Fuel gas	kg	MJ	40	0,12	0,003
	ton	GJ	40	120	3
Cooling Water	m3	100404		0,05	
BFW/Process w.	m3			1,25	

et

Recommended PFS after the IPA reactor.

In the current design the knockout drum V102 operates as a flash vessel and pressure is reduced from 34 bara to 1 bara. The absorber column C102 also operates on atmospheric escohe pressure. This was done because of modelling problems with Aspen 10, where the knockout drum V102 was finally modelled as a flash vessel. However, according to information provided by Shell¹, the pressure in these two vessels should be kept at 34 bara for an optimal separation. Knockout drum V102 then behaves as a high-pressure separator and the separation of IPA/water from propylene/propane is much better, in fact it becomes almost ideal. In the case of the high pressure all propylene and propane leaving the IPA reactor come over the top of the absorber column. And less water and no IPA leave the absorber column over the top. on his accep

This has consequences:

The dryer in the overall recycle becomes smaller and loss of water is reduced.

will be

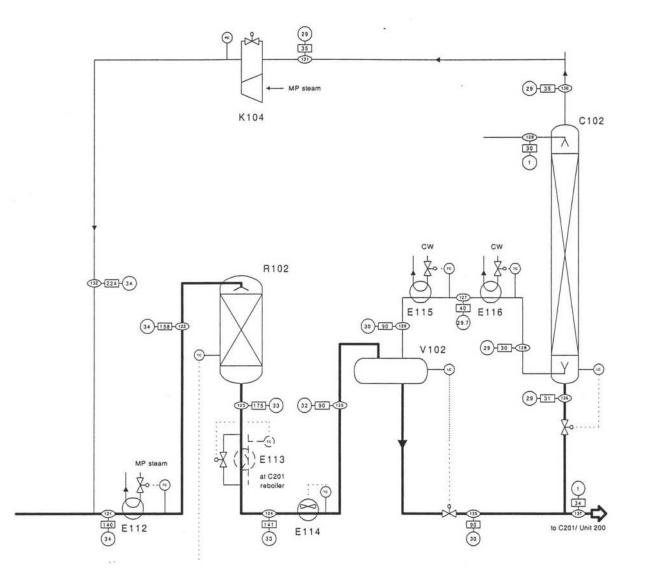
- Compressor K104 becomes much smaller because the IPA recycle enters the compressor at 29 bara and exits at 34 bara. (instead of 1 to 34 bara).
- There is no propylene or propane loss. -
- There is a strong driving force to transport the overall recycle back to the propylene reactor.

These consequences have a large impact on heat integration, utility consumption and the economic analysis.

No adjustments were made to the process stream summary in appendix 2. The data in the process stream summary has been taken from the Aspen models and have not been adjusted. However the use of utilities, design of units operations and the heat integration are based on other pressures and temperatures than are given by the Aspen models in order to give a more realistic design. The adjusted values for pressure and temperature are stated in the next table:

Stream number	Stream name	T in PSS	P in PSS	Adjusted T	Adjusted P
<xx></xx>		[⁰ C]	[Bara]	[⁰ C]	[Bara]
<123>	TO E113	175	33	175	32.9
<124>	FROM E113	141	33	141.3	32.9
<125>	TO V102	90	33	90	32
<126>	FROM V102	50	1	90	30
<127>	TO E116	40	1	40	29.7
<128>	TO C102	30	1	30	29
<130>	TOP C102	35	1	35	29
<131>	TO K104	35	1	35	29
<132>	IPA RECYCLE	224	1	224	34
<133>	TO DRYER	35	1	35	29
<135>	BOTTOM HP	50	1	90	30.2
	SEPARATOR				
<136>	BOTTOM ABSORBER	31	1	31	29.1

Table 12.1-1. Adjusted PFS values used for economics and design.


These adjusted values have consequences for the duties of several unit operations:

Unit operations	Aspen duty	Aspen duty Adjusted duty	
Code	[kW]	[kW]	
E113	-20201	-20201	
E114	-25824	-25824	
E115	-13589	-36459	
E116	0	-2968	
K104	27890	900	

Table 12.1-2. Adjusted duties for equipment used for economics and design

The adjusted temperatures, pressures and duties were used for equipment design, heat integration and the economical analysis. A corrected part of the total Process Flow Scheme can be found in appendix 12.2 'Recommended Process Flow Scheme'.

ⁱ Park L. Morse, Synthetic ethanol and isopropanol, report No. 53, Process Economics program, Stanford Research Institute, Menlo Park, California, october 1969

Catofin: Patent & literature searches			
Author, Article / patent	Title – Description		
Houdry, US XXX, 1943	Original Catofin patent [?]		
Houdry, US 2419997, 1947	Original Catofin patent [?]		
Hydrocarbon Proc., Sep. 1976	Catadiene process summary		
Craig (Air Prod.), CEP, Feb. 1997, p. 62	The Catadiene process Subtitle: Improved economics, selectivity, and conversion are extending the life of this mature process \rightarrow General process description.		
Gussow (Air Prod.), Oil & Gas J., Dec. 8 1980, p. 96	Dehydrogenation links LPG to more octanes → Catofin process description, including yields and economics		
Bhatt (Air Prod.), US 4581339, 1985	Catalytic dehydrogenation reactor cycle \rightarrow Tackle problem of thermal gradient by successive oxidation and reduction with air and hydrogen in regeneration step		
Spence (Air Prod.) , US 4560824, 1985	Heat balance control in catalytic dehydrogenation of isobutane → Mix n-butanes in feed to invoke more coke deposition, more exothermic energy available in regeneration		
Feldman (ABB Lum.), US 5315056, 1992	Catalyst regeneration in a dehydrogenation process → Reduce needed regeneration air; pass regenerating air through two off-stream reactors in series, replace 1 reactor at a time; employ air for preheating dehydrogenation feed and/or steam generation		
Gartside (ABB Lum.), US 5510557, 1994	Endothermic catalytic dehydrogenation process → Minimise activity differences over reactor axis by a) applying regeneration gas countercurrent to feed, b) varying catalyst activity in the reactor		

Feed spec

Pretreatment / heating

Reactor section

Number of reactors Kind of reactor Heat operation Heating Continuous/Swing Pressure Temperature Conversion Selectivity Catalyst Active compound Activity Catalyst life **Regeneration unit** Kind of equipment Utility Separation from reactor Cycle time

Product treatment

Product separation **By-product** Columns

Special equipment

Special utilities Wastes Remarks

Oleflex C3 C5 Desulphurised Demoisterised Deoxygenated Mixed with hydrogen recycle Heat exchanged

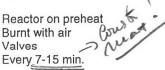
> 4 side by side Radial flow Adiabatic Interstage heating [furnace] Continuous Superatmospheric 400-500 °C [Robin] 40-50% ~90%

Platinum Uniform profile > 1 yr

CCR unit as for naphta cracker Oxygen needed [?] Wth hoppers Continuous: 2-7 days n

Dried in molecular sieve

Hydrogen recovery Light ends column PP splitter


Compressor after reactor section Hoppers

Nitrogen consumption minimised Avoid C4 accumulation in recycle

Catofin Cy Vaporised with steam Furnace Heat exchanged

3 parallel Fixed bed [?] Adiabatic Preheated reactor Swing Vacuum [0.33-0.66 atm.] 525 - 635 °C 85-95% 75-90%

Chromium oxide Decreases with T 2 yr

Dried by flashing water off ~ `

Hydrogen recovery in PSA [?]

Fuel gas / propene splitter

Product compressor Cold box [?] Air cooler

Steam for feed

STAR Ch

Feed vaporised, steam added Heat exchanged Furnace

8 parallel Parallel tubes with catalyst Isothermal Cocurrently heated by flue gas Swing 1-20 atm 510-620°C 45-55% 85-95%

Platinum

1-2 yr

Burnt with air (1 hour)

Every 7 hours

Dried by flashing water off (molecular sieve)

Same as Catofin (2 extra flash drums)

Same as Catofin

Steam for feed

FBD-4 Cly Feed vaporised Heat exchanged

1 Fluidised bed Isothermal Heat capacity from regen. cat Continuous' 1.2-1.5 atm 525-590 °C

Chromium oxide Uniform profile [?]

Regenenator f.b. Burnt with air Filter Continuous

Dried in molecular sieve

Same as Catofin

Same as Catofin Filters High eff. cyclone system Water scrubber Pneumatic conveying

Cat. is very toxic!

CPD3242

CONFIDENTIAL

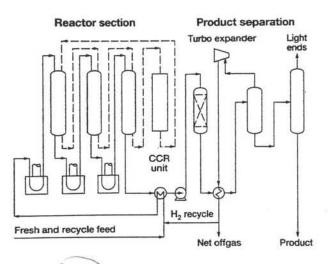


Fig. Dehydrogenation process for producing etherification feedstock from isobutane. proprietary Oleflex

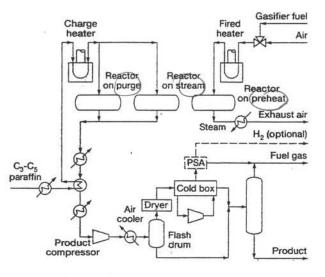


Fig. Proprietary Catofin dehydrogenation process for producing etherification feedstock.

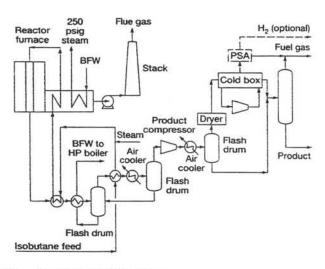
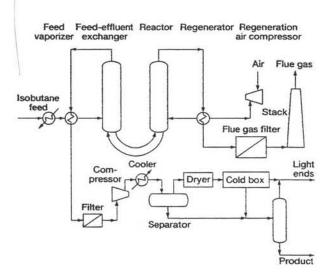
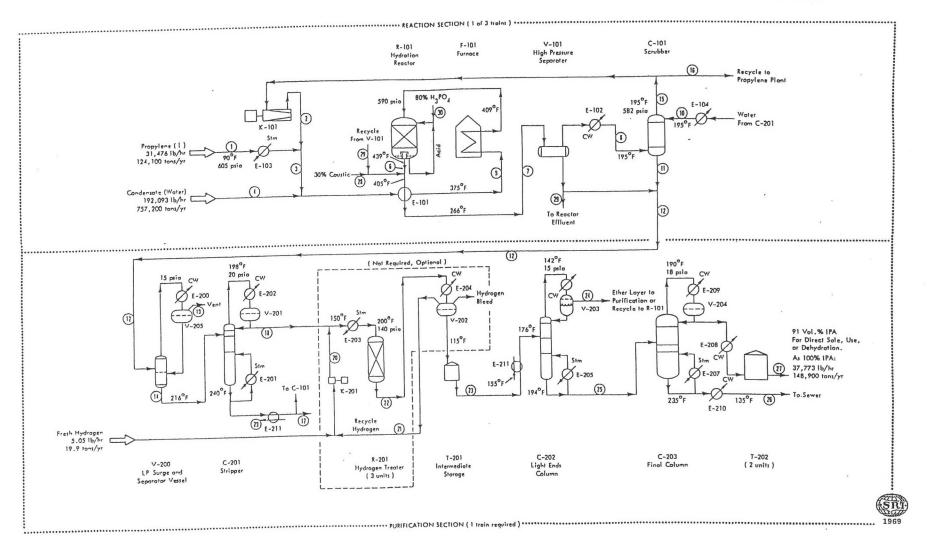


Fig. Proprietary STAR process.




Fig. Proprietary FBD-4 process for producing etherification feedstock—initially developed in Russia.

Overview of IPA processes

Overview of IPA processes			
	Veba <u>T</u>	exaco	
Reactor section			
Number of reactors	3 Parallel	4 Parallel	
Type of reactor	Fixed bed	d Trickle flow	
Phases	G/S	G/L/S	
Cooling	Non	Internal quench	
Continuous/Swing	Continuous	Continuous	
Pressure [bar]	40,7	82,7	
Temperature [°C]	218	138,9	
Conversion per pass [%]	5,6) > (75,3)	
Selectivity [%]	97,5	96	
Minimal propylene/propane ratio	0,8499	0,8	
Molar ratio of water to propylene	0,94	13,8	
Reactor space-time-yield [g IPA/(hr X Litre)]	103	108	
Utilities per kg of IPA			
Steam HP/LP [kg]	4,58	6,1	
Cooling water [m3]	0,41	0,23	
Electricity [kWh]	0,0286	0,026	
Natural gas [J]	5	0.	
Nitrogen [m3]	0,2		

FIGURE . . +

ISOPROPANOL BY DIRECT HYDRATION OF PROPYLENE-VAPOR PHASE

A.14.2-2

Appendix 14.2: IPA processes

CPD3242

CONFIDENTIAL