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Abstract

To this day, 16% of the world’s population still has little or no access to electricity. The majority of which is
located in rural regions of developing countries, such as India and most countries in sub-Saharan Africa. As
a part of the Sustainable Energy for All (SE4All) initiative, a multi-tier framework that aims to categorize and
quantify the electricity access of households and rural regions to reach the sustainable development goals by
2030.

Solar Home Systems (SHS) is a potential solution that has emerged to cater for the lighting and power needs
of these remote households. SHSs consist of a small stand-alone DC system which are composed of a PV array,
battery, and power electronics that are designed to meet the load of a single household. The aim of this study
is to propose a universal, optimal sizing methodology for the SHS with respect to cost, reliability (LLP) and
battery lifetime for any household in the mutli-tier energy ladder. Moreover, the study aims to anticipate to
which extend a stand-alone architecture remains a feasible solution.

In this thesis, a practical model for each of the Solar Home System components was built using MAT-
LAB, then two optimization methods: a classical iterative method, and the Genetic Algorithm, an evolutionary
method were used to perform a multi-objective optimization on three case studies in different locations. The
results obtained showed that for the lower energy tiers, with a load profile up to a peak load of 155 W, the stand-
alone approach is optimal. With an LLP≤2%, an average total upfront cost of 1600$, and a lead-acid battery
lifetime of 6.5 years. The results from the higher tiers however show proved that as the household moves up
the energy ladder, the stand-alone approach becomes unaffordable and less reliable.

An alternate approach to solve this issue was examined, where several households are interconnected
forming a minigrid to share their energy generation and load. The outcome of this study showed that house-
holds with sub-optimal sized Solar Home Systems were able to greatly increase their system reliability, the LLP
was recorded to drop by up to 50% in some scenarios with an increasing number of interconnected house-
holds. The LLP drop however reached a saturation point beyond 25 households.

On this basis, it is recommended that further work should be done to increase the complexity of the com-
ponent models, notable the battery. Moreover, a more extensive study should be conducted on the intercon-
nected approach, with a multitude of scenarios to optimize the system size in a mini-grid architecture.
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1
Introduction

1.1. Energy Scenario

In the past decades, energy has been key for a nation’s economic growth, prosperity, social equity. Access to
energy has lead to technological advancement, improved public health, increased education, and social em-
powerment. Moreover, the energy transition towards renewable sources has been a revolutionary, but neces-
sary milestone towards a sustainable future [86]. In recent years, research and development, firm learning, and
economies of scale have been majors factors in the technological development of renewable energy sources,
particularly solar and wind. For example, the cost of replacing a coal-fired electricity plant with a solar PV farm
has fallen 85% since 2000 [80].

However, even with this technological breakthrough and decreasing trend in energy and renewable source
costs, there are still 1.2 billion people around the world that lacked access to electricity in 2011, some 85%
of them in rural areas, the majority of them living in Sub-Saharan Africa where the electrification rate is only
31% [43]. This has lead to the formation of the Paris conference in 2015, where 193 members states of the
United Nations agreed on ensuring access to reliable and affordable energy for all by the year 2030. Since
then, electrification efforts have been increasing where more than 100 million people per year have gained
electricity access. The International Energy Agency’s (IEA) World Energy Outlook report expects a decline to
only 674 million people without access to electricity by 2030, out of which 600 million are in rural areas in
Sub-Saharan Africa [1].

Figure 1.1: Population without access to electricity, Adapted from [1].

In several countries, household income and electricity cost are the major concerns for the poorest house-
holds, but several other factors contribute to the lack of electrification such as insufficient policy and lack of
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infrastructure. In sub-Saharan Africa, around 120 million people live above the poverty line, but still have no
access to electricity, and even when they do, the electricity is unreliable as illustrated in figure 1.2.

Figure 1.2: Some households that are above the poverty line still lack energy access due to poor infrastructure [1].

Recently, with the emerging of renewable sources and technological innovations, new business models
started to take advantage for the situation. Several countries have provided subsidies and policy efforts in order
to help the rise of of renewable energy sources, and to the decentralized energy distribution designs. Decen-
tralized energy provides a solution to the long term infrastructure problems, and provides a local and reliable
electricity supply source [45]. Many decentralized system architectures and designs have become available,
from single household stand-alone pico-grids, to larger micro and mini-grids. These decentralized systems
are able to fill the energy gap in most remote and urban areas.

1.2. Role of Solar Energy in Rural Electrification

With the world focusing more on investment and innovations in renewable energy sources, there has been a
large increase in their total installed capacity. Wind and solar installed capacity has doubled every three years
on average over the past three decades, exceeding the expectations and projections of the IEA [80].
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Figure 1.3: Renewable energy generation 2011-2017, Adapted from [39].

Solar power notably, has been the leading renewable energy source in terms of installed capacity, PV ca-
pacity grew from 6.1 GW to 291 GW between 2006 and 2016. The deployment of new technologies and im-
plementation of new projects allowed manufacturers and to gain experience as they produce the technology,
and that was a major factor in increasing the efficiency and improving the production methods which led to
the reduction of their cost. Moreover, the global awareness in climate-change issues has led many households
to shift towards clean and affordable energy sources. Solar PV was the ideal solution as it can be mounted
on the roof of homes, reducing the energy bill costs and CO2 emissions. Residential and commercial rooftop
PV installations grew by around 50% per year from 2008 - 2014 [6, 39]. Figures 1.4 and 1.5 show the increasing
grid-connected worldwide installed PV capacity and decrease in the module price for different PV technologies
respectively.
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Figure 1.4: Cumulative grid-connected PV capacity 2006 - 2016, Adapted from [39].

Figure 1.5: Decline in module price for different technologies [39]

The rapid decrease in cost, increased efficiency and reliability of PV modules made the technology ideal in
remote and urban areas as a back-up for unreliable grid supply, or as the sole electricity generation source for
households. Rural areas in regions with developing countries such as India or sub-Saharan Africa, having low
demand density and sparse households, make investment in grid infrastructure and maintenance unattrac-
tive, and not a feasible possibility in the coming few years. For these areas, developing off-grid solar systems
seems like the most promising and immediate solution for electrification.
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Solar Home Systems

Solar Home Systems (SHS) are stand-alone photovoltaic systems that emerged as a solution for off-grid house-
holds to cater their lighting and power needs. In rural areas, where grid connection is not feasible, SHSs are
typically designed to meet the desired load of a single household and are in the capacity range of 35-100 Wp.
A Solar Home System always consists of a PV array, a battery, a charge regulator, and the load consisting of
lights and sockets or appliances. In India and sub-Saharan Africa SHS can be considered as an alternative to
conventional fuels such as kerosene and candles [19, 71].

To support the rise of SHSs, recent appliance manufacturers have also gained high interest in developing
innovative and highly efficient appliances that greatly reduce electricity consumption costs. Figure 1.6 below
shows that the use of highly-efficient appliances, even though more expensive themselves, reduce the annual
discounted cost by 32%

Solar home systems consists of a PV array, battery storage and Balance of System (BoS) that can be built at
any scale to meet the needs of a household.

Figure 1.6: Annual discounted cost reductions with the use of highly-efficient appliances [39]

In the following sections, the use of stand-alone SHSs for the electrification of rural areas will be explained.

1.3. Multi-tier framework

With the increasing urgency of action against climate change, and dedication towards reaching a sustainable
future and allowing sustainable for 4 all (SE4ALL), a Global Tracking Framework (GTF) call has been made as
a call for action for leaders to track, plan and take action in delivering sustainable energy and meeting the
sustainable development goals set in the Paris conference in 2015. As per the GTF, a multi-tier framework
has been made to categorize households and regions according to their access to electricity. This framework
helps quantify both the quality and quantity of electricity access for households. Table 1.1 below shows the
classification of the different tiers [81].

Table 1.1: Multi-Tier Framework classification, Adapted from [81]

Attribute Tier 0 Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Services
Task Light Lighting Tier 2 + Tier 3 + Tier 4 +

- Phone charging TV Other low Medium power High power
Radio Fan power appliances appliances appliances

Peak power
- >1 W >20/50 W >200 W / 500 W >2,000 W >2,000 W

capacity
Duration - >4 hrs >4 hrs >8 hrs >16 hrs >16 hrs

Evening supply - >2 hrs >2 hrs >2 hrs >4 hrs >4 hrs
Quality [Voltage] - - - X X X

The smallest SHSs, known also as Pico solar installations, comprise a solar panel, battery, one or more LED
lamps and mobile phone charging port. Although it is very low, it nonetheless provides significant benefits to
those previously without any access such as going from tier 0 to tier 1. This breakthrough from no electricity

5



access to tier 1 is a low-cost way for people to secure an immediate improvement in their quality of life. How-
ever, to provide a significant improvement in the household quality of life, higher energy supplies are needed
to feed several appliances that could improve productivity such as refrigerator or televisions. As can be seen
from table 1.1, there is a large gap between tier 1 & 3 of over a hundred times in magnitude in peak power
capacity. This would require a significantly larger SHS that would be able to sustain these loads at a better volt-
age quality without compromising system reliability (very few or no blackouts, no-over use of the components
and wear prevention). Hence, systems of various sizes and characteristics are needed for each tier, and only
through going up the energy ladder can the households reach a significant improvement in quality of life.

1.4. Importance of modular sizing

As mentioned in the previous section, it is only through going up to the higher levels (tier 3 and above), will
the households be able to have a significant improvement in their quality of life and increase productivity.
However, this poses a problem for the household. On the one hand, after moving from tier 0 to tier 1, with this
new access to electric power, households will quickly be eager to increase their investments in more appliances
that will help them in their daily life. Nevertheless, the use of the extra appliances will be exceeding the peak
power capacity and make the original SHS unfeasible or unreliable. On the other hand, investing in a larger
SHS system from the start is not a possibility for most households due to the large increase in the system
upfront cost. A tier 1 SHS costs roughly ≤ 50$, while a tier 3 system is in the order of a 1000$, hence out of the
budget of many households living in poverty. A promising solution for this issue, is the design of flexible and
modular SHSs. The basic idea behind these systems is that they consist of blocks of a predetermined SHS with
a specific peak power, consisting PV and battery capacity along with the Balance of System (BoS). These basic
SHS blocks can be gradually combined together as needed by the household to go from tier to the next, hence,
climbing up to the top of the energy ladder.

1.5. Thesis Objective

The objective of this thesis is to design a system that would be optimal for the household in each tier, as they
go up the energy ladder. The system needs to maintain optimal performance and reliability, without the com-
promise of higher cost which would make it unaffordable. Hence, the main objective of this project is to design
a SHSs, that will operate at its optimum during the gradual increase in load demand, eventually leading to a
large improvement in the quality of life of the household. In short the thesis objective is:

• Propose an optimal sizing methodology for a SHS with respect to cost, LLP, energy dump and lifetime
that would be applicable for the varying load demands in the energy ladder.

1.5.1. Research Questions

Finding a universal sizing methodology for an optimal SHS is a challenge, and needs to address several issues:

1. What are the best modeling and optimization strategies to optimize the size of a SHS.

(a) What are the most important parameters that need to be optimized during the sizing process?
(b) What are the best optimization methods that can be used in the sizing methodology?

2. What is the methodology that can be applied to all tiers to obtain the optimal system size that will be able
to cope with the household demand? And at what point does the SHS stand-alone approach become
unfeasible?

1.5.2. Contributions

Upon achieving the goal of this thesis, some unique contributions were made during the process that can be
implemented during the design of stand-alone Hybrid Renewable Energy Systems (HRESs) as follows:

• A multi-objective optimization approach that incorporates several parameters of the SHS to find the best
modular system size taking into account:

– Maximizing battery lifetime
– Maximizing the reliability through a minimum LLP
– Minimizing the upfront cost considering replacement costs and future cost projections.

• A feasibility study between the stand-alone SHS architecture and household interconnectivity for the
different tiers.
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1.6. Layout of the Thesis

Chapter 1 - Introduction

This chapter consists of a short overview of the thesis topic and defining the objective and research questions
as well as the unique contributions of this work.

Chapter 2 - Literature Review

In this chapter, a literature review on the various sizing methodologies of Solar Home System available in stud-
ies is presented. Moreover, the critical system parameter as well as the most popular optimization methods
during the system sizing are addressed.

Chapter 3 - Modeling & Sizing Methodology

The theory applied to model the different components of the SHS is explained, along with some simulation re-
sults to illustrate the performance of each. Then, the system control architecture and performance parameters
are presented.

Chapter 4 - Stand-alone SHS sizing

In this chapter, the methodology for the sizing optimization for each tier as the household escalates up the
multi-tier energy ladder is explained. Then, two optimization methods: the iterative method and the Genetic
Algorithm are used in three case studies to present the findings and results.

Chapter 5 - Sizing interconnected SHS

In chapter 5, a different approach is examined for optimizing the performance of the system over the different
tiers. The method consists of a microgrid architecture where several households are interconnected in order
to share their electricity generation and demand, hence increasing overall reliability.

Chapter 6 - Conclusions & Recommendations

In the final chapter, the main conclusions drawn from this study are presented, along with recommendations
for future works and studies.
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2
Literature Review

This chapter introduces the existing research and work done on the topic of off-grid electrification. The typical
architecture of a standalone PV system is introduced, followed by determining the most important sizing param-
eters of the system and component selection. Finally, the existing system sizing and optimization methodologies
will be discussed.

2.1. Solar Home Systems Architecture

Renewable energy systems can be split into two types: grid-connected systems and off-grid systems. The
majority of residential grid-connected systems include large scale solar and and wind farms, hydro-plants,
and most of the residential PV systems, where the surplus energy is sent or sold to the grid [2]. However,
remote areas that are located out of the reach of the electricity grids, households have to rely on self-sufficient
and standalone Hybrid Renewable Energy Systems or HRESs [70].

2.1.1. HRES Combination

Several studies have been conducted on off-grid HRES combination designs that would work in a reliable and
efficient manner. In some studies such as [32, 85], a sizing methodology was presented for HRESs consisting of
PV, Battery storage and a diesel generator in Northern Australia and Brazil respectively. The aim was to design
a self-sufficient standalone system while minimizing the use of the diesel generator. Other studies, such as
[5, 50, 64], did a study on PV, wind turbine and battery storage combinations, making the system completely
made out of renewable energy sources, and having the storage system act as a buffer to keep up with the
constant load demand during low energy production days. However, a lot of studies such as [9, 18, 89] are
focused on the simple combination of a PV array as an energy source, and a battery bank to account for the
load fluctuations, night time, and cloudy days.

As the goal of this thesis is the electrification of rural areas through simple, flexible and affordable systems,
the Solar array/battery storage combination seems the most promising one. Moreover, these areas such as
India and Sub-Saharan Africa are mostly abundant in solar irradiance and have few cloudy days.

2.1.2. Electrical Configuration

Renewable energy systems need to be implemented in a specific interface or architecture following the nature
of the energy sources, loads, and battery storage. Typically, there are 3 topologies for a stand-alone renewable
energy system [78]:

• DC-coupled Configuration: Where the renewable energy sources are connected to the main DC feeder
either directly or through a DC/DC converter. The DC feeder connects to the various loads and to the
energy storage through DC/AC and DC/DC converters as needed.

• AC-coupled Configuration: Where the energy sources (DC or AC) are connected to an AC feeder through
AC/AC or DC/AC converter. The AC feeder connects the various sources to the loads and storage devices.

• Hybrid Configuration: Where there are two AC and DC feeders connected by a AC/DC converter. AC
and DC renewable sources are connected to the AC and DC feeders respectively. The two feeders are
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connected by an AC/DC converter. This topology reduces conversion losses if the loads, sources and
storage devices are scattered and vary between AC and DC.

The three topologies are shown in figure 2.1 below:

Figure 2.1: (a)DC-Coupled Configuration. (b) AC-Coupled Configuration. (c) Hybrid Configuration [78].

As the Solar Home System consists uniquely of DC components, being solar modules, batteries, and DC
loads, the simple DC topology was selected as the system architecture. The power electronics in this architec-
ture consist uniquely of a charge controller that is responsible for regulating the battery charge/discharge and
adjusting the voltage of the PV modules and batteries to the DC load. The typical architecture of the proposed
system is as shown in figure 2.2 below.
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Figure 2.2: SHS architecture, with a possibility of interconnecting several households for a modular growth option.

2.2. System Parameters

With the basic system architecture identified, the system parameters or criteria on which the system needs
to be sized have to be identified. Most research discusses optimal sizing of the integrated SHS to find a good
trade-off between system performance and reliability, and initial cost. Some studies such as [7] and [9] focused
mainly on the economic analysis of the system, for example, [9] presented a methodology for the proper sizing
of a PV unit and storage through an economic point of view by optimizing the system size according to the
payback period and net present value. While [70] tried to determine the effectiveness of the SHS solution of
different households falling in different tiers by comparing the monthly cost to a regular subscription to the
grid in Uttar Pradesh and Bahar in India, which have less than 40% household electrification rate.

Table 2.1: Monthly cost of grid connected systems VS SHS for different tiers, adapted from [70]

Tier
Grid Solar Home System

Comp
eting

Capacity Monthly Capacity Lifetime
Specs

Monthly
Shortage [%] cost [USD] Shortage [%] [years] cost [USD]

0 81,8
UP: 24,92/43,04 10 15 PV: 111W 2,39

Yes
Bihar: 23,33/25,65 15 10 PV: 101 W 2,29

1 78
UP: 27,68/45,21 10 15 PV: 175 W 3,35

Yes
Bihar: 25,94/27,82 15 10 PV: 155 W 3,13

2 57
UP: 46,23/53,91

40 15 PV: 579 W 7,58 No
Bihar: 50,58/52,46

3 21
UP: 102,75/43,04

40 15 PV: 2180 W 22,04 No
Bihar: 87,10/41,88

While other studies focused both on reliability and on costs. In the study in [37], an optimal sizing on a
HRES consisting of PV modules, a wind turbine and fuel cells in Iran to achieve a highly reliable system at the
best cost of energy or COE. The system reliability was measured by a parameter called the Loss of Load Prob-
ability or LLP. Battery lifetime is also an important parameter that was the main focus of some studies. In [17]
an economic analysis was performed on a system consisting of PV-Diesel Generator-Batteries was performed.
The goal was to find a trade-off between minimizing the full system cost, and hence the diesel generator op-
erating cost and the number of battery replacements. The more the battery was being used, the faster it was
degrading leading to the need to change it more frequently. Following the studies introduced above, the main
parameters, or design criteria that need to be met in the proposed SHS are the following:
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Loss of Load Probability

The loss of load probability (LLP) is the essential parameter for quantifying the overall system reliability. The
LLP value indicates the the relative period of time in which the PV and battery combination failed to satisfy
the load demand over the studied period [79]. A higher LLP value means a less reliable system. For example,
an LLP of 0.05 or 5% in a year, means that throughout this year, the system was down during 5% of the time, or
18 days. This LLP is defined as the Level of Autonomy (LA) in some studies, where it is expressed as one minus
the LLP. Hence, a higher LA means a more reliable system [25]. Other studies such as [48] define the LLP as the
fraction of the load that is not supplied by a stand-alone system over the whole yearly load. The equations of
both definitions are shown in equations 2.1 and 2.2 below.

LLP = tdowntime

Ttotal
(2.1)

LLP = Efail∫
year PL(t)dt

(2.2)

LA = 1− Tdowntime

TTotal
(2.3)

In this study, the interest in reliability is focused more on simply supplying the load at all times, and not at
the amount of load that is supplied. So the first definition and equation 2.1 will be used for the LLP from here
on-wards.

System Cost

The system cost is another important parameter that needs to be addressed in the sizing optimization. A focus
on cost minimization eliminates the need to oversize the system components just to make the system reliable.
There are multiple ways to calculate the system cost [11, 22], the chosen method consists of calculating the
system capital cost and component replacement replacement cost over the lifetime of the system, which is
usually equal to the lifetime of the PV module, being the longest of around 20 years [49].

Qsystem = Qcap +Qrep (2.4)

Qcap = NPV.QPV +CB.QB +SC.QC (2.5)

Qrep = CB.QB.
TB∑

n=1

1

(1+ i)TL×n
+SC.QC.

TC∑
n=1

1

(1+ i)TL×n
(2.6)

Where the different variables are shown in table 2.2 below.

Table 2.2: System cost variables

Variable Definition
Qsystem System cost

Qcap Capital cost
Qrep Replacement cost
NPV Number of PV modules
QPV Cost of PV module
CB Battery capacity
QB Cost per kWh
SC Converter/inverter size
QC Converter cost per kW
TB Battery lifetime
TL System lifetime
i inflation rate

TC Converter lifetime

As shown in equations 2.4 to 2.6, the smaller the system size, being number of PV modules, converter
size and battery capacity, the lower the cost. Moreover, the longer each component lasts, the lower are the
replacement costs.

11



Battery lifetime

Batteries degrade and experience capacity loss as they age. This is due to the irreversible chemical and physical
changes that occur with usage[10]. Each battery type is affected by different aging processes. Some of the
causes for aging for Li-ion and lead-acid batteries are discussed below:

• Li-ion batteries: Different processes contribute to their aging such as electrolyte decomposition, and
the formation of surface films on both electrodes [69].

• Lead-acid batteries: Over-charge in lead-acid batteries leads to anodic corrosion, and positive active
mass degradation and loss of adherence are caused by high cycles and increased depths of discharge
[73].

In a stand-alone SHS, batteries or energy storage systems are typically the most expensive component [61],
their lifetimes vary greatly from one project to another. Proper use and maintenance of batteries could increase
their lifetime considerably, while poor maintenance and charging/discharging could reduce the lifetime to
even less than 1 year. Lead-acid batteries typically have a rated lifetime of around 4 years, but if they perform
at low charge/discharge cycles their lifetime could increase to up to 15 years [23]. Li-ion batteries on the
other hand, have a higher typical lifetime. In fact, most electric vehicle car manufacturers give nowadays give
a lifetime of 8 - 10 years for the Li-ion batteries in their EVs [82]. The figure below shows the overall cost
distribution of an off-grid SHS where the battery accounts for 14 - 69% of the total installed costs of the various
SHSs that are below 1 kW [38].

Figure 2.3: Normalized total installed cost for various < 1 kW off-grid Solar Home Systems in Africa [38].

2.3. Existing Sizing methods

In general, to find the size of a stand-alone system, the main data required are the system load data, and the
meteorological data of the location. Based on that, the different components can be sized accordingly. In
literature, different sizing methods have been used, and are categorized as either intuitive methods, or opti-
mization methods.
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2.3.1. Intuitive Methods

Intuitive methods rely on quick and simple "rule-of thumb" calculations to size the SHS. This method employs
the use of average daily, monthly or yearly meteorological data, and the use of safety factors during design to
estimate the size of the PV arrays and batteries [47]. This method gives and idea about the order of the system
size, but has the disadvantage of over or under sizing the system due to the many assumptions.

In this method, the performance and efficiency of the different components are assumed as constants, and
does not take into account the dynamic interaction between them. The size of the PV array and batteries can
be calculated via:

PPV = ELoad

ηPV.ηC.ESH
.Sf (2.7)

CB = ELoad.DOA

VB.DoD.ηB
(2.8)

Where ELoad is average daily load, S f , VB and DoD are the battery voltage and depth of discharge respec-
tively. ηPV ,ηC and ηB are the efficiencies of the PV, power electronics and batteries respectively. The factor
ESH means the Equivalent Sun Hours, which depends on the location. The safety factor S f and battery Days
of Autonomy (DOA) are chosen according to the users preferences. The DOA accounts for how many days will
the battery be sized to run during days with no energy generation, such as cloudy days, winter, and nights.
Typically, the DOA is taken to be 2-5 days depending on the sun abundance of the location, and S f is usually
chosen to be 10% [79]. This intuitive method was used in various studies to size stand-alone PV systems, in
[13, 26, 77], average daily load demand and solar radiation has been used to size the PV system and batteries
while limiting system cost over the life cycle as explained in equation 2.4. However, the system performance
and reliability cannot be taken into account in this method. The average daily irradiance and loads do not
account for seasonal and daily variations, which make the system design very rough. Moreover, the DOA and
S f are subjective values, and can lead to an undersized or highly over sized system compromising reliability
and cost.

2.3.2. Optimization Methods

Optimization is the defined as the "discipline which is concerned with finding the maxima and minima of
functions, possibly subject to constraints [33]". The optimization problem can be defined by specifying a set
of optimization or decision variables, an objective function to be minimized or maximized while abiding to a
set of constraints. Designing efficient SHSs is a tough task, due to the intermittent power production from the
energy sources such as solar and wind, finding an appropriate battery storage size, as well as the relatively high
present cost of investment are the main challenges encountered during the design stage. This led to numerous
research on finding and forming optimal sizing methodologies for off-grid renewable energy systems.

A thorough overview on the currently available optimization techniques for SHSs was preformed in [2] and
categorized in the following manner:

• Classical Techniques: These techniques are very useful to obtain the optimal solution of problems with
continuous and differentiable functions. These methods are usually analytical and employ iterative,
probabilistic and graphical methods. Differential calculus is usually employed to derive and find the
maximum and minimum points for both constrained and unconstrained continuous objective functions
[2, 28].

• Modern Techniques: Modern methods use heuristic search and can determine the global optimum sys-
tem even in non-linear functions. In modern techniques, a better convergence rate has been achieved
that leads to more accurate, global optimum solutions.

• Computer software: Optimization software are tools that employ a mix of classical and modern tech-
niques and are specific for designing and optimizing HRESs are becoming popular and widely used.
These tools can find the optimal design for different locations worldwide, and subjecting it to various
environmental, reliability and social constraints. HOMER and iHOGA which employ hybrid and genetic
optimization algorithms are two of the most popular software.

Classical Techniques

Most of the studies that have been to optimize off-grid HRESs using classical techniques employ numerical
and iterative methods. In [12, 74] for example, iterative methods were used to design a HRESs at a minimum
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cost while maintaining a very low loss of power, or low LLP. The mathematical formulation of the problem was
defined as follows:

-Objective Function: Minimize the cost Ob j = mincost where the cost function is as defined in equation 2.4
-Constraint: Maintain a low LLP value, such as 2% as in the study done by [12].
These analytical and iterative methods have proven to have given accurate optimum results, but have not

been widely used in recent years due to the fact that they require long computational time to find the solutions.

Modern Techniques

Modern techniques have been implemented in several recent studies due to their numerous advantages, no-
tably the fact that they can handle multi-objective optimization problems, where there is a set of objective
functions that are sometimes conflicting. Artificial techniques are thus able to provide an optimal solution set
as opposed to a single solution.

The Genetic Algorithm (GA) is powerful heuristic optimization algorithm that has been widely used in
studies to optimize HRESs [63, 88]. For example, the optimization of the allocation of the different renewable
sources consisting of a wind turbine, solar panels, a diesel generator and a storage system to solve a multi-
objective optimization by minimizing the cost, and maximizing the penetration of renewable sources (RF) in
the system was done in [88]. A similar study performed in [14] used another well known multi-object algorithm
called Multi Objective Particle Swarm Optimization (MOPSO) to optimize the allocation of a system consisting
of PV panels, wind turbines and a diesel generator, the problem had 3 objective functions which are.

COE(
$

kWh
) = Total Net Present Cost($)

EYearly Load(kWh)
(2.9)

LLP =
∑

(Pload −PPV −Pwind +PBattery +PDiesel)∑
Pload

(2.10)

RF(%) = (1−
∑

Pdiesel∑
PPV +∑

Pwind
)×100 (2.11)

Equations 2.9 through 2.11 ensure that the allocation of the different sources results in a highly reliable system
at a minimal cost, while also minimizing the use of the diesel generator as shown in 2.11.

Some of the most recent techniques employ hybrid algorithms, which are a combination of two or more
single classical or modern techniques to achieve even faster and more accurate results [2], they have been
also widely used in stand-alone systems that have multitudes of renewable energy sources leading to a more
complex solution. Notable studies are [44] in which a combination of GA and exhaustive-search technique
was used, and in [24] a mix of Multi-objective evolutionary algorithm and GA were used to optimize their
stand alone renewable energy systems.

Computer Software

Several licensed software tools that specialize in optimizing renewable energy systems in a specific location
given a set of data are being used. HOMER, the most popular software, is able to optimize systems in both
grid-connected and standalone modes using meteorological data. The software runs the simulation over a
year at a 1 hour interval, and the output is includes the optimal size allocation of the components, monthly
demand limits, and advanced battery analysis. Moreover, it can be connected to MATLAB making it highly
versatile. The main disadvantage of this software is that it performs only single objective optimization which
is cost minimization. iHOGA is another popular software, that uses the genetic algorithm to find the optimal
system size using single or multi-objective optimization techniques [2]. Finally, Mathworks developed an op-
timization toolbox for MATLAB which includes several optimization algorithms from linear programming to
multi-objective genetic algorithms.

2.3.3. Chosen optimization method: The Genetic Algorithm

The Genetic Algorithm (GA) is the selected optimization technique used in this study, it was chosen as it is a
power artificial optimization technique, that can handle multi-objective optimization problems [2], and has
been used in many studies for optimizing hybrid renewable energy systems and Solar Home Systems with great
computational speed and accuracy in reaching the global optimum. The terminologies and working principle
of the GA algorithm used will be explained in the following sections.
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Genetic Algorithm: Definition

The GA takes the working principle of natural selection in genetics that stimulates biological evolution. It
belongs to the class of Evolutionary Algorithms (EA) and is able to generate accurate solutions to optimiza-
tion and multi-objective optimization problems using bio-inspired operators such as mutation, selection, and
crossover. The GA can handle several optimization problems that classical techniques are not able to solve
such as non-differentiable, stochastic or non linear function. Following the process of natural selection, the
population of solutions evolves towards an optimal solution [20, 52, 53].

Genetic Algorithm: Terminologies

• Fitness function: Which is the function, or set of functions that the algorithm has to optimize. It is also
known as the objective function in classical optimization methods. In our study, the fitness functions
consist of a set of 3 functions [20, 53]:

1. The system cost function
2. The system reliability or LLP
3. The battery lifetime

• Population: Which is the set of individuals, or candidate solutions to the problem. The size of the pop-
ulation is assigned by the user initially.

• Generation: After each iteration, the computations made on the initial population produce a new pop-
ulation, this new population is called a new generation, or a new set of candidate solutions.

• Diversity: The diversity in a population is the average distance between the set of individuals in the
population. Initially, the population has a high diversity and tends to decrease with newer generations
at each iteration as illustrated in figure 2.4.

• Crossover: Genetic crossover, or recombination is a genetic operator in the GA is a way to stochastically
generate a new "child" solution from two "parent" solutions from the previous generation.

• Mutation: Which is another genetic operator that randomly alters the values some of the "child" popu-
lation values to maintain some variability.

• Best Fitness Value: At each iteration, when the algorithm determines the fitness value of every individual
in the population, the best fitness value is the smallest fitness value for one of the individuals in that
population.

• Dominance: The term dominate is equivalent to the term ’inferior’. An individual ’x’ in the population
dominates ’y’ when:

– fi (x) ≤ fi (y) for all i
– f j (x) ≤ f j (y) for some j

Dominating individuals have a higher chance of selection during the calculations for the newer genera-
tion.

• Pareto set: The Pareto set of solutions, is the set of individuals with fitness functions that are non-
dominated by any other individual in the search space as shown in figure 2.5 below.

• Spread: Which is the measure of the movement of the pareto set of dominating solutions, with each iter-
ation, the spread becomes smaller as the dominating individuals get closer to the best fitness function,
and stopping the algorithm iterations.
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Figure 2.4: Population diversity: Low diversity population (Red) VS High diversity population (Blue) [53]

Figure 2.5: Pareto front in the feasible region where f1 and f2 are the objective functions to be minimized

With the basic terminologies of the GA defined, the principle of operation and the steps taken during each
iteration are explained in the section below.

Genetic Algorithm: Working principles

1. Initialization: The process of creating an initial random population is the first step in the GA. The pop-
ulation size is set by the user, and the population is randomly created to fit within the bounds and con-
straints of the search space.

2. Selection: At each generation, some of the individuals in the population are selected for the new gen-
eration. Individuals with the most optimal fitness functions and are within the defined constraints are
more likely to be selected.
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3. Crossover and mutation: From each pair of "parents" solutions selected in step 2, a "child" solution is
produced using crossover and mutation. Hence, the new generation created shares many of the proper-
ties from the parents, with some slight changes due to the genetic operators.

4. Fitness evaluation of the children: The fitness values of the children are evaluated just as was done to
the initial population, and from which a new generation is created.

5. Stopping conditions: The iteration in the GA keeps happening until one of the following stopping con-
ditions occur:

• Maximum number of generations that was set by the user is reached.
• The relative change in the spread of the solutions becomes smaller than as set by the user.
• No feasible solution or set of solutions found.
• Time limit exceeded.

Genetic Algorithm: Numerical example

In order to explain mathematically explain the working principle of the GA, a numerical example is presented
in this section. Let us suppose a function of x and y for which we have to find the minimum for 0 ≤ x ≤ 10 and
0 ≤ y ≤ 10 :

f (x, y) = x sin3x +2y sin2y (2.12)

The first step is to set the initial population, which will be composed of 10 individuals or chromosomes,
each with n parameters as such: chromosome = [p1,p2..pn]. In this case, since there are only two variables,
each chromosome will have two parameters: chromosomei = [xi,yi]. The initial x and y values of each individ-
ual are generated randomly, then the fitness of each is calculated using equation 2.12. The initial population
along with its fitness is presented in table 2.3 below:

Table 2.3: GA numerical example: Initial population

Individual x y Fitness f (x, y)
1 6,78 6,94 20,18
2 7,58 3,17 -4,80
3 7,43 9,5 0,66
4 3,92 0,34 -2,40
5 6,55 4,39 9,98
6 1,71 3,82 5,90
7 7,06 7,65 11,19
8 0,32 7,95 -2,77
9 2,77 1,87 0,38

10 0,46 4,89 -2,95

Following that, the selection process of the parent individuals takes place to produce the offspring. Each
set of two parents produces two offspring, hence, to keep the population at 10 individuals, only 50% of the
initial population is chosen and these are the fittest individuals being:

Table 2.4: GA numerical example: Surviving population

Rank x y Fitness f (x, y)
1 7,58 3,17 -4,80
2 0,46 4,89 -2,95
3 0,32 7,95 -2,77
4 3,92 0,34 -2,40
5 2,77 1,87 0,38

The probability of the chromosomes of the table above for being selected as a parent depends on its rank-
ing, the highest rank having the highest probability and so on. Following that, the crossover between the two
parent chromosomes takes place to produce the offspring. One method to achieve this is through Haupt’s
method [16, 35]. Taking two chromosomes d and m as parent chromosomes, with values:

d = [xd , yd ] (2.13)
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m = [xm , ym] (2.14)

The x values of the offspring are:
xnew1 = (1−β)xm +βxd (2.15)

xnew2 = (1−β)xd +βxm (2.16)

Where β is a random value between 0 and 1. The remaining parameter y of the offspring is same value as the
parents. Taking the first two ranking chromosomes for example with a β value of 0.312 we will have:

offspring1 = [(1−0.312)×7.58+0.312×0.46,3.17] = [2.54,3.17] (2.17)

offspring2 = [(1−0.312)×0.46+0.312×7.58,3.17] = [4.76,4.89] (2.18)

Hence, offspring from the parents are generated until a new population of 10 individual is obtained. The GA
continues repeats the above steps until either the number of preset generations is reached, or if the fitness
value of the highest ranking chromosome remains the same for several generations, meaning that the solu-
tion converged to the global minimum [16, 35]. Using MATLAB’s optimization toolbox, the genetic algorithm
was used for a multi-objective optimization to find the minimum system cost, LLP, while maximizing battery
lifetime as will be shown in chapters 4 & 5.

2.4. Conclusions

Through the literature review performed, a clear framework of the SHS design and optimization process was
identified. The system in study consists of PV modules, a storage system, and the power converters in a DC
coupled configuration. The main system parameters and design objectives were also identified, being the
minimization of the system cost while not compromising reliability through maintaining a low LLP value, and
maximizing the battery lifetime. Finally, following a thorough review on the currently used optimization meth-
ods, two techniques seemed to be the most promising and flexible for implementation: the classical iterative
technique, and the Genetic Algorithm, an evolutionary technique that is inspired by the process of natural se-
lection for multi-objective optimization problems. Through these objectives and optimization techniques, an
affordable, reliable and robust SHS can be sized.
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3
Modeling & Sizing Methodology

In order to find an optimal solution for the SHS size, the components that compose the system, as well as the
interconnection between them needs to be modelled accurately. In this chapter, the yearly household load profile
used to develop the component models is introduced first, then the mathematical model for the PV module, bat-
tery and power converter built using MATLAB is discussed in detail, finally the performance analysis to evaluate
the obtained results is shown.

3.1. General methodology

The general sizing methodology from extracting the load and meteorological data to finding the system size
will be explained in this section. First, the yearly load profile for the household is obtained for every minute of
the year, and is used as the load for the SHS system to feed. Then, the geographical location for the household
is selected, and from that the meteorological data is extracted using Meteonorm. Following that, the irradiance
data is used as an input for a MATLAB algorithm to obtain the output of the PV array along with its dynamic
efficiency. Finally, the battery storage and power electronics are sized according to the system peak power and
performance criteria. The overall methodology is shown in figure 3.1 below.

Figure 3.1: General sizing methodology flowchart

3.2. Load profile

Following the introduction to the multi-tier load profiles and households in section 1.3. One of the main inputs
required to construct working mathematical models for the SHS components, and evaluate their performance,
is the load profile. The load profile consists of the yearly energy consumption of a household through the use of
typical household appliances, such as lights, phone charging, television, etc. These appliances are used during
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different times of the day to simulate the behavior of the residents of an actual household. The power ratings
for the appliances used, and the obtained yearly load profile characteristics are shown in the tables below.

Table 3.1: (a) Load profile appliances power rating. (b) Load profile characteristics.

Appliance Power Rating [W]
Fan 15
Fridge 21
Laptop 60
Led lights 10
Phone Charger 3
Radio 5
Tab 18
TV 12

Load profile data
Data resolution Minute
Data length 525600
Peak load [W] 185.0
Yearly energy consumption [kWh] 453.2
Average daily consumption [kWh] 1.2

This load profile will serve as the testing ground for the modeling of the components, as well as the evalu-
ation and sizing metrics of the system. The load profile over a typical week is shown in figure 3.2 below.

Figure 3.2: Test case: load profile over a typical week

3.3. Components

The dynamic model for each of the main performance components was obtained through literature and im-
plemented in MATLAB in the form of functions at a first stage. These different components were linked at later
stage to obtain the system size and parameters for a given load profile and input meteorological data.

3.3.1. Photovoltaic Module

The working principle of a solar cell is based on the photovoltaic effect, where a potential difference is gener-
ated across the cell following electromagnetic radiation [79]. The amount of power that a PV module depends
on the incoming solar irradiation and on the module’s characteristics. In the following sections, the steps for
sizing the solar module and computing its net output will be explained as summarized in figure 3.3 below.

Figure 3.3: Methodology for PV module modeling
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Modeling the Irradiance on the PV Module

The irradiance on a PV module is composed of 3 components:

• Direct Irradiance: which is the direct irradiance that is directly striking the PV module.
• Diffuse irradiance: which is the scattered light that hits the module due to the earth’s atmosphere.
• Ground Irradiance: which is the irradiance reflected from the ground on the module.

The total irradiance arriving on the module is then GTot =Gdi r +GDi f f +GGr nd .
Gdi r , Gg r nd , and GDi f f can be found through the following equations is the product of the Direct Normal

Irradiance (DNI) and the angle of incidence γ which is defined as [79]:

Gdir = DNI×cosγ (3.1)

γ= cos−1[sin(θM)cos(as)cos(AM −AS)+cos(θM)sin(aS)] (3.2)

Ggrnd = GHI×α× (1−SVF) (3.3)

Gdiff = DHI×SVF (3.4)

SVF = 1+cosθM

2
(3.5)

Table 3.2 below summarizes the different variables used.

Table 3.2: Irradiance Parameters

Symbol Description
DNI Direct Normal Irradiance
γ Angle of Incidence
θM Module tilt angle
AM Module azimuth
as Solar altitude
AS Solar Azimuth

GHI Global Horizontal Irradiance
α surface albedo

DHI Diffuse Horizontal Irradiance
SVF Sky View Factor

Power output modeling

The power output of a PV array is found via

Pout[W] = N×GTot ×AreaM ×ηM (3.6)

Where AM and ηM are the module’s area and efficiency respectively, and N is the number of modules in the
array. The efficiency of the module is directly related to the module temperature, which fluctuates over the
course of the day. The efficiency given by the manufacturer on the module data-sheet is typically the effi-
ciency value during Standard Test Conditions (STC) at 1000W /m2 and 25oC module temperature. However,
during the day, and during warmer months, the irradiance on the module increases its temperature, and hence
reducing its efficiency. A fluid dynamic (FD) model was developed based on [30] for estimating the module
temperature at each time interval given various meteorological data as input such as: ambient temperature,
wind speed, ground temperature, etc. as in the following equation:

TM = α.G+hc.Ta +hr,sky.Tsky +hr,gr.Tgr

hc +hr,sky +hr,gr
(3.7)

ηM = ηM,STC.(1−κ.(TM −25)) (3.8)
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Table 3.3: Module efficiency parameters

Symbol Description
α Absorptivity coefficient
G Irradiance
hc Back side convection
Ta Ambient temperature

hr,sk y Air convection coefficient
Tsk y Sky temperature
hr,g r Ground convection coefficient
Tg r Ground temperature
TM Module temperature
ηM Module efficiency

ηM ,STC Module efficiency at STC

Meteoroligical data

Besides the detailed mathematical model for the module performance, credible and exhaustive meteorological
data had to be obtained in order to estimate the module and system’s performance correctly throughout the
year. In this research, the meteorological data was obtained from Meteonorm, which offers access to data
from ground stations and satellites. It also offers unique access to the Global Energy Balance Archive (GEBA),
which meets the quality criteria of the World Meteorological Organization (WMO) [54]. Moreover, the user has
a choice of extracting data over a year ranging from a monthly basis, to a minute basis. In the models used in
this research, all the calculations were done minute by minute over a year. Hence, all the fast variations of the
irradiance during the day were taken into account, making the obtained optimum size more accurate.

In this chapter, the meteorological data used for the testing and evaluation of the developed were taken
from the weather station in Pune, India through Meteonorm. This location was chosen due to the fact that
it is located in India, hence it has very similar meteorological data as the remote villages in the case studies.
Moreover, the data extracted is highly accurate to the presence of the weather station at its location. The data
extracted are arrays representing the various irradiance and meteorological data at every minute over a year.
The coordinates at the location are 73o 50’ 60"N and 18o 31’ 58.8"E.

Module Orientation

As mentioned previously, the direct irradiance incoming on the PV array depends on γ, the angle of incidence
of the sun rays on the module. As seen in equation 3.2, γ depends on the position of the sun at each instant
and on the tilt angle and orientation of the module. The module tilt angle and orientation can be adjusted
depending its geographical location in order to receive the maximum amount of direct irradiance over the year.
For example, the rule of thumb for the module or array orientation is to point south in the north hemisphere,
and north in the southern hemisphere in order to be directed towards the sun [79]. The tilt angle however,
depends greatly on the latitude on longitude of the location of the module, and leads to a large variation in the
total energy yield of the array. In order to find the optimal angle and orientation at which the PV array needs
to be placed, an iterative algorithm was developed on MATLAB that calculated the yearly energy yield for all
the different combinations of module azimuth and tilt angle. First, the position of the sun is computed as in
[79] for every minute at the given latitude and longitude, then the direct irradiance is found at that instant, in
order to obtain the total energy yield at each specific angle as shown in equation 3.9

Yield(θM,i,AM,j) =
525600∑

t=1
GTott ×Areamodule (3.9)

The module azimuth ranges from 0o (North) to 180o (South), while the tilt angle ranges from 0o where it’s flat
on the ground to 90o being perpendicular to the ground. Figure 3.4 illustrates the angles that characterize a PV
module’s orientation.
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Figure 3.4: The angles characterizing a PV module (θM , AM ) [79]

In figure 3.5 below, the total yearly irradiance as a function of the module azimuth and tilt angle is shown.
The module is located in Pune, India as mentioned in section 3.3.1, with the load profile shown earlier. As
can be shown in the figure, the optimal module azimuth and tilt angle are 180o and 13o respectively. This
procedure will be followed for each of the locations of the study cases in section 4.3.

Figure 3.5: Total Irradiance as a function of module Azimuth and tilt angle in Pune, India. Optimal tilt angle azimuth: 13o and 180o .

Module Characteristics

In order to accurately find the optimal size of the PV array for a given load profile, smaller modules are preferred
in order to decrease the Watt Peak increment of the system. The Watt Peak (Wp) is defined as the power
generated by the PV array at STC [79]. Hence, a 20 Wp solar module was selected, from which the PV array
power output will consist of N ×20W p. The main module characteristics are found in table 3.4 and taken from
the manufacturers datasheet [72]. Figures 3.6 to 3.9 below show the module temperature, efficiency, and net
output for the selected module.
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Table 3.4: Renogy 20 Wp module characteristics

Electrical and Mechanical Data
Maximum Power at STC [W] 20
Optimum Operating Voltage (Vmpp ), [V] 17.5
Optimum Operating Current (Impp ), [A] 1.14
Module Efficiency [%] 12.33
Dimensions [mm3] 345 x 470 x 25
Nominal Operating Cell Temperature (NOCT) [oC ] 47
Lifetime [years] 25

Figure 3.6: Incoming irradiance over a week in the summer and winter

Figure 3.7: Module temperature over a week in the summer and winter

24



Figure 3.8: Module efficiency over a week in the summer and winter

Figure 3.9: Module net output over a week in the summer and winter

3.3.2. Batteries

Batteries are a crucial component in a solar home system, as previously mentioned in section 2.2. Having a low
lifetime of 4 - 8 years compared to the typical system lifetime of 25 years and having the largest cost among the
system components, makes modeling and sizing batteries an important task. To reproduce a battery model,
the important parameters that affect the behavior of the battery are identified at first, then followed by the
proposed model. Finally, the battery aging and lifetime estimation models are presented.

Battery Parameters

This section discusses the main parameters that represent the dynamic operation of the battery, and that will
be used during the modeling.
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State of Charge The battery State of Charge, commonly referred to as SoC, represents the relative capacity
of the battery at a certain moment. For example, a 10,000 Ah 75% SoC means that a battery is at three-quarters
of its full capacity, or at 7,500 Ah [75]. A common method for calculating the SoC is the Ampere hour counting,
which depends on the withdrawn current during discharge, and intake current during charge [68]:

SoC = SoC0 + 1

CB

∫ t

t0

(Ibatt − Iloss)dτ (3.10)

Where SoC0 is the initial battery SoC, IB is the battery current, and Il oss is the lost current due to the battery
side reactions.

In practical applications a simpler way is commonly used via the following equation [79]:

SoC = CB,t

CNom
(3.11)

Where CB ,t and CNom are the battery capacity at time ’t’ and the rated battery capacity respectively. The
latter equation will be used in this study. It is generally recommended by manufacturers to keep the battery
15% < SoC < 20% in order to avoid damage during excessive charge or discharge, hence preserving the battery
health and extending its lifetime.

Depth of Discharge The Depth of Discharge (DoD) indicates the relative amount of which the battery has
been discharged, a 100% means that the battery is completely empty. Knowing the battery SoC, the DoD can
be easily found via [79]:

DoD = 1−SoC = 1− CB,t

CB,Nom
(3.12)

Life cycle The life expectancy of batteries is rated using the number of cycles that battery can perform.
These cycles refer to the number of times the battery can be charged and discharged before it reaches its end
of life (EoL). The battery reaches its EoL usually when its capacity reaches 80% of its initial nominal capacity
[60].

Energy Throughput The energy throughput is the total amount of energy that is processed by the battery,
in other words, it is the sum of the energy intake and discharge by the battery [56, 60].

Voltage efficiency Which is the ratio between the charging and discharging voltage of the battery and is
defined via:

ηV = Vdischarge

Vcharge
(3.13)

Coulombic efficiency Which is the total charge extracted from the battery to the charge input to the bat-
tery:

ηC = Qdischarge

Qcharge
(3.14)

Battery efficiency The battery round-trip efficiency, is defined at the ratio of energy output to the energy input.

It is the product of the voltage efficiency and the coulombic efficiency. The battery efficiency equation is
derived as follows [79]:

ηbatt = ηV ×ηC = Vdischarge

Vcharge
.
Qdischarge

Qcharge
= Eout

Ein
(3.15)

However, in this study, the battery round-trip efficiency will be used as a constant value for practicality.
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Battery Lifetime

In stand-alone solar home systems, particularly in small scale systems, the battery storage usually takes the
largest share in the total system cost [67]. In the figure below, the breakdown of the SHS retail price for different
types of appliances is shown, for a household with standard appliances in 2014, the battery takes one third of
the price of the whole system.
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Figure 3.10: Renewable energy generation 2011-2017, Adapted from [39].

Moreover, batteries typically are the component with the lowest lifetime in the SHS, table 3.5 below shows
the typical lifetime of the two most available batteries types on the market [3].

Table 3.5: Lifetime of Lead-acid and Li-ion batteries [3, 51]

Lead-acid 25oC Lead-acid 33oC Lithium-ion
Size [kWh] 100 100 62.5
Cycle Life 1,000 @ 50% DoD 500 @ 50% DoD 1,900 @ 80% DoD

Calendar life [Years] 4-6 3-5 6-8

The SHS lifetime is equal to the lifetime of the solar array, which is typically 20 - 25 years. This means
that the number of battery replacements during the project lifetime is around 4 - 5 times for lead-acid and 3 - 4
times for Li-ion batteries. In order to maximize the battery lifetime during the simulation and optimization, an
accurate algorithm and lifetime model has to be constructed first to simulate the battery capacity degradation
and calendar life. In [60], a practical methodology is used to model and estimate the battery lifetime. The
methodology used in the study takes into account the two main factors that influence the battery lifetime: the
cell temperature, and the DoD range of operation during battery cycling. Figure 3.11 below shows the effect of
each of the two factors on the battery lifetime.
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Figure 3.11: Effect of DoD and cell temperature on battery lifetime [60]

The first step in this method consists of extracting the relevant lifetime data from the datasheets given by
the battery manufacturers. These datasheets, similar to figure 3.11, give the lifetime of the battery with respect
to the temperature and DoD. The battery curves are extracted from the datasheet, and using a curve-fitting
tool, a polynomial function can be obtained to approximate the lifetime based on the battery DoD in the
SHS. As shown in figure 3.11, there is a linear dependency of the life cycle for temperature variations. Hence,
during the simulation, a linear factor is added to interpolate the battery cycle life for temperatures in the range
20−45oC . A 4th degree polynomial was found to be a good fit for calculating the cycle life accurately, resulting
in the following equations [60, 65]:

n(T,DoD) = n(Tr e f ,DoD)− f (Tav g Dn(DoD) (3.16)

n(Tr e f ) = p4D4 +p3d 3 +p2d 2 +p1d +p0 (3.17)

f = pl1Tav g +pl0 (3.18)

Dn = pd4Dd4 +p3d d3 +p2d d2 +pd1d +pd0 (3.19)

Table 3.6: Variable description for fitting polynomial

Variable Description
n(T,DoD) Cycle life for a given T and DoD

f Linear factor for temperature dependency
Dn Difference between two temperature curves

p0 −p4 Polynomial fitting coefficients at Tr e f

pl1, pl0 Coefficients for determining linear factor
pd0 −pd4 Fitting coefficients for temperature difference curves

Tav g Average battery operating temperature
Tr e f Reference operating temperature

d Battery DoD

Now that the cycle life can be calculated using the battery operating temperature and DoD as inputs, the
next step is to find the average DoD during operation. The study discusses two approaches to obtain the DoD,
the coarse average approach, and the zero-crossing approach, which proved to be more accurate and reliable.
Thus, in this study, the zero-crossing approach will be used as follows.

The zero-crossing approach is based on only recording the micro-cycles where the battery is charging and
discharging. It is based on considering only the active battery DoD and not taking into account the time inter-
vals where the battery is not in operation. This results in fewer effective cycles than the coarse DoD method
that is employed in most other studies. The micro-cycle where the active DoD is recorded, is the period be-
tween two consecutive zero-current crossings as illustrated in figure 3.12 below. Hence, the total average DoD
is calculated by summing only the average DoD in every cycle as shown in equation 3.20 [57, 60].
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Figure 3.12: Battery current waveform showing the micro-cycles during charge and discharge [60]

DOD =
∑N

i=1 DODi.Ethr,i∑N
i=1 Ethr,i

(3.20)

Where DOD is the combined average active DOD due to all the micro-cycles, DODi : Average active DOD in
the i th micro-cycle, Ethr,i is the total energy throughput in the i th micro-cycle and N is the total number of
ZC-based micro-cycles.

The same principle can be applied for calculating the average cell temperature by summing up the tem-
perature at each micro-cycle as in the following equation:

T =
∑N

i=1 Ti.TZC,i∑N
i=1 TZC,i

(3.21)

Finally, once DOD and Tav g are known, equations 3.16 through 3.19 can be used to find the cycle life of the
battery. The battery calendar life in years (L) can then be found through [57]:

L = n×DOD× 2×Enom∑N
i=1 Ethr,i

(3.22)

Battery Model

Through the parameters and equations from the previous sections, two sets of parameters were used to model
the battery as a charge counter with a chosen energy capacity CNom . The two models are for lead-acid and
Li-ion batteries, the characteristics, parameters and lifetime data were extracted from [60, 65] and are summa-
rized in appendix A in table A.1. Figure 3.13 below shows the battery degradation and life for their SUN valve
regulated lead-acid (VRLA) batteries:
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Figure 3.13: Endurance in cycles of sun VRLA batteries depending on DoD and temperature [36]

Using the curves above, a curve reconstruction was made and a 4th degree polynomial algorithm was built
on MATLAB to find the number of cycles over which the battery will operate before it reaches its EoL, or 80%
of its original nominal capacity.

Battery cost

The upfront battery cost consists of the largest part of the total upfront SHS cost. Moreover, being the com-
ponent with typically the shortest lifetime, both the upfront and replacement costs of the battery during the
system need to be taken into account [58]. The upfront cost is the cost of purchase of a battery of a certain size
and technology and can be defined as:

Qupfront = Q0.Cnom (3.23)

Where Q0
T is the battery cost in $/Wh at year 0, and Cnom is the nominal capacity.

The replacement costs occur at a later stage when the installed battery reaches its EoL. However, the cost of
the battery during its replacement after some years depends on two factors: the discounting of future replace-
ment cost to the present, and the forecasting of the future battery technology costs. Discounting future costs
depends on the discounting factor r that varies according to the location’s macroeconomic climate as follows
[58]:

Qpresent = Qfuture

(1+ r
100 )n (3.24)

As the battery costs trends are showing a general decline, the future replacement costs will be lower or
equal to the initial cost at t=0. In order to estimate the purchase cost of the batteries at later years, a the data
from a future costs projections for the years 2015 - 2040 based on experience rates was used. Figure 3.14 below,
which was adapted from [76], shows a projection in a decrease in the costs of the lead-acid and Li-ion batteries
for the upcoming two decades which is due to the increase in total installed capacity worldwide, and gained
experience from manufacturers. The curves were fitted into a 3r d degree polynomial using MATLAB, and a
cost function was used to find the cost at that year. Taking into account the discounting factor mentioned
previously, the total upfront battery cost including future replacements is:

QTotal
upfront = Q0.CB +

n∑
i=1

Qfuture,i.CB

(1+ r
100 )n (3.25)
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Figure 3.14: Future cost forecast for lead-acid and Li-ion batteries, Adapted from [76].

3.3.3. Power Electronics

The power electronics are the core of a solar home system. They are the main connection between the PV array,
batteries and load. For the standalone, DC coupled architecture SHSs that are under study in this research, the
main power electronics devices needed are charge controllers and DC/DC converters [79]. The converters in
the system serve the following purposes:

• The charge controller connected to the PV array regulates the voltage output and current output of the
array to ensure that it is always running at the Maximum Power Point (MPP ) [46].

• The converter connected to the load regulates the output voltage from the array and battery as required
by the loads.

• The controller connected to the battery controls their charging and discharging to prevent damage
through under or over charge.

Hence, a converter working properly increases the reliability and efficiency of the whole system, as well as pre-
venting damage to the components [34]. In figure 3.15 below, the household converters are shown connected
to their respective components, first the Maximum Power Point Tracker (MPPT) ensures the PV array operates
at its optimal output, then the power output feeds the DC loads and battery depending on the system state
[31].
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Figure 3.15: Typical DC house with DC/DC converters. Adapted from [31].

DC/DC converter parameters

All controllers have the same basic parameters that are provided by manufacturers. The most important pa-
rameters in sizing a converter are its operation limits, such as the peak power and voltage input from the PV
array or battery, the maximum load currents, and possible load operation voltage. The controller also has set
points that control the charging and discharging of the battery, most importantly the following [34]:

• Voltage Regulation set point (VR): which is the maximum allowable voltage value to be reached by the
battery. After reaching this value, the battery is disconnected to prevent overcharge.

• Low Voltage Disconnect (LVD): The minimum voltage the battery is allowed to reach while discharging
before being disconnected, to prevent excessive discharge. This voltage defines the minimum allowable
State of Charge of the Battery.

In this study, the set points of the charge controller are assumed to be implemented according to the battery
specifications, while the characteristics and operation limits are chosen according to the system size and load
profile and summarized in table 3.7 below.

Table 3.7: Converter main characteristics

Converter characteristics
PV DC input voltage [V] PPV

Max PV input current (A) IDC ,max

Nominal input power [W] Pconv,N

DC/DC converter model

In literature, the papers discussing the power electronics modeling in renewable energy or solar home systems
assume a constant operation efficiency for the the charge controller and DC converters, and in case of the use
of AC loads or grid-connection, use an inverter model for the DC to AC conversion. However, both inverters
and DC converters have very similar efficiency curves, with peak efficiencies ranging from 90 to 98% as shown
in figure 3.16 below where the output efficiency of each is shown as a function of the normalized Pi n

PNomi nal
ratio.

Hence, in this study, the converters were assumed to have the same behavior as an inverter, and were modeled
using the available models in literature.
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Figure 3.16: Efficiency curve of a typical inverter and charge controller Adapted from [15, 55]

The performance and sizing of the converter depends on two main parameters: the efficiency ηC and the
nominal input power Pconv,N . Sizing the charge controller commonly depends on the sizing Ratio RS [83]:

RS =
PPV,P

Pconv,N
(3.26)

Where PPV ,P is the peak power (Wp) of the PV array. Under-sizing the converter than the PV capacity (RS >1)
usually leads to better economy especially if the duration of peak irradiance values is low and therefore the
higher rating of the converter is rarely used. Moreover, ηC depends on the instantaneous input and is typically
lower at partial loads, hence affecting the performance[66]. Figure 3.16 illustrates the typical ηC VS the DC
input PPV . It is clear that higher, ideal operating efficiencies are achieved at higher partial loads or full loads
(0.3 - 1), hence a highly oversized converter is not desired.

Converter efficiency

For practical modeling purposes, the converter power losses can are divided into a constant self-consumption
loss (b0), a linear load dependent loss (b1) and losses dependent on the output power (b2) as in the following
equation [21, 66, 83]

ηconv = b0.
Pconv,N

Pmp(t)
+b1 +b2.

Pmp(t)

Pconv,N
(3.27)

Jantsch et al. [42] gathered a set of 35 commercial inverters, and studied their efficiency and performance
through a various set of loads to obtain a range of practical and usable values for b0, b1 and b2, these values
were adopted in other studies such as [21, 66, 83] for the converter modeling and sizing for renewable energy
systems. Table 3.8 below shows the values of the parameters for 3 different inverter classes.

Table 3.8: Parameter values for different converter classes

b0 b1 b2

Low efficiency converter -0,05 0,915 -0,15
Average efficiency converter -0,02 0,975 -0,08
High efficiency converter -0,0035 0,995 -0,01

Hence, the output power of the converter can be expressed as:

(b0.
Pconv,N

Pmp(t)
+b1 +b2.

Pmp(t)

Pconv,N
).Pmp(t) f or 0 < Pmp(t) < Pconv,N (3.28)

(b0 +b1 +b2).Pconv,N f or Pmp(t) > Pconv,N (3.29)

Equation 3.29 above shows that any input power from the PV array that is above the rated power is rejected. In
this study, for the practical use and sizing of the converter, the equation 3.27 will be used with the parameter
values of a high efficiency converter to model the converter performance.
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PV array converter sizing

In some studies, such as [40], under sizing the converter for the PV array is recommended for low power sys-
tems. The study consists of calculating the yearly energy yield of the system while varying the converter size.
The reason behind undersizing the inverter is that during the year, the frequency of the PV array reaching its
maximum output capacity is very low, hence, sizing the inverter according to those occasional peaks results
in a high cost to energy yield ratio. In the study, it is concluded that if the sizing is decreased from 1.25 to 1
(increasing the inverter size by 20%), the energy yield will increases by a mere 2% as indicated in figure 3.17.

Figure 3.17: Energy yield VS sizing ratio for various inverters [40].

Another study also examined the energy yield of the inverter through a range of sizing ratios experimentally,
it was found that the optimal sizing ratio range in terms of yearly energy yield is between 0.85 and 1.18, with a
peak yield at 1.08 as shown in figure 3.18 below [15].

Figure 3.18: Obtained values of Yield Y f as a function of RS [15].
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Both studies come to the same conclusion of undersizing the inverter, however, there is no absolute opti-
mal RS that can be chosen, it depends both on the PV array size and the meteorological data. Hence, in this
study, the same approach is proposed: for each location, and system size, a preliminary iterative algorithm
is to be built and run to find the optimal sizing ratio in terms of yearly energy yield and inverter cost. The
methodology is as follows: for a chosen PV array capacity (Wp ) the yearly energy yield is to be computed over
a range of converter sizes ranging from 0.7Wp < Pconv,N < 2Wp , or a sizing ratio 0.5 < RS < 1.4. Following that,
the optimal converter size with respect to energy yield and cost is chosen. The iterative algorithm was per-
formed on the 20 Wp module mentioned before, at the chosen location in Pune using the yearly irradiation
data. The probability of occurrence of the various output values of the module throughout the year are shown
in figure 3.19 below.

Figure 3.19: Probability density function for the 20 Wp module power output

The figure shows that during the year, the probability of the PV module having an output equal or larger
than its rated Wp is very low (<1%). Hence proving the reason for undersizing. Table 3.9 below summarizes the
occurrence probability of some irradiance values.

Table 3.9: Irradiance probability of occurrence

Module output Probability of occurrence
20 W or higher <1%

>14 W (70% of Wp ) 6%
>15 W (75% of Wp ) 3.8%
>16 W (80% of Wp ) 1.4%

Figure 3.20 below shows the normalized yearly energy yield as a function of the sizing ratio Rs for the given
module. The maximum energy yield at an Rs = 1.14 is 5% higher than the yield at Rs = 1.38 or PNom = 72%.Wp .
Hence, an increase in the converter size by 15% leads to only a 5% increase in yield.
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Figure 3.20: Normalized yearly energy yield as a function of the sizing ratio RS

The converter can thus be chosen to be at 72% the capacity of the PV array, saving 28% of the cost with a
less than 5% compromise to energy yield. This procedure to size the charge controller will be followed at the
beginning of the optimization methodology in each of the locations in the case studies discussed in section
4.3.

Sizing the converter for the DC loads

The DC/DC converter that feeds the loads is responsible of adjusting the input voltage to the desired output
load voltage, and stabilizes the power flow to prevent any damage to the appliances. The sizing of this con-
verter depends on the load profile of the household, the converter should always be able to supply enough
power to feed the load, hence, PNom,Load should be at least equal to the yearly peak load in the load profile.

PNom,Load = max(Loadhousehold) (3.30)

With the rated power known, the same equations and procedure described in section 3.3.3 can be used to
obtain the converter efficiency curve, and the dynamic operating efficiency during the year according the the
load.

Sizing the converter for the battery

As shown in the control strategy in figure 3.22, the battery’s role is to supply the load deficit during the time
instances where the PV array cannot meet the demand, and to charge and store the excess energy when the
array is over-producing. Hence, at each instant i, the energy equations are as follows:

PVOutpout,i − Loadi

ηConv,Load,i
> 0 Pexcess,i; Battery charges (3.31)

PVOutpout,i − Loadi

ηConv,Load,i
< 0 Pdeficit,i; Battery discharges (3.32)

Using the above equations, the highest value of Pdeficit and Pexcess can be found, which correspond to the
highest amount of power the battery will be charging or discharging at an instant i during the year. The higher
value of these two needs to be met by the battery converter in order to avoid power clipping and shortage.
Hence:

PNom,Battery = max(max(Pdeficit),max(Pexcess)) (3.33)

After obtaining the rated power for the battery converter, the dynamic efficiency of the power converter can
be obtained from each of the Pdeficit and Pexcess arrays to obtain ηConv,discharge and ηConv,charge. The flowchart
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3.21 below shows the overall sizing methodology going from the meteorological and load data as input to
obtaining the sizing parameters of the various power converters.

Figure 3.21: Converter sizing methodology flowchart

3.4. Complete System Design

After modeling the different components in the SHS on MATLAB, the different functions were compiled to-
gether in a larger code with a control strategy that simulates the behavior of the whole system. The model is
designed in a way to take the location meteorological data and component characteristics as input for a given
PV and battery size or range of sizes, and output the different performance parameters for each combination.
The important parameters are the yearly energy dump and deficit, and the LLP as mentioned in section 3.5.

3.4.1. Control Strategy

The system control strategy designed is an iterative algorithm over the 526600 time steps, representing the
minutes in a year, where the power output from the PV array is computed, and an energy balance is performed
whether the load requirement is met with excess or deficit. The control strategy is illustrated in figure 3.22.
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Figure 3.22: SHS control strategy flowchart

At every time step, the battery capacity is calculated, whenever the battery is completely depleted or full,the
LLP, EDump and E f ai l are recalculated. At the end of the simulation, the system size can be evaluated by the
user by assessing the before mentioned parameters.

3.5. System Performance/size Analysis

Now that a MATLAB model for each of the main system components has been constructed, the next step is to
assess the performance and feasibility of a given system size or set of system sizes. A set of different parameters
can help classify the system, whether it is oversized, undersized, or optimal. In this section, some of the most
common sizing strategies will be discussed and analyzed.

3.5.1. LLP as a reliability measurement tool

As mentioned in section 2.2, the LLP is the most commonly used parameter to assess the reliability and per-
formance of a stand-alone renewable energy system over a certain duration. The LLP value, which indicates
the amount of system downtime, is normally set by the user as a constraint, such as in [12] where the value
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was set to 2% of a year. This is equivalent to a downtime of 7.3 days. In this study, the LLP was obtained as a
summation of every minute where there was a blackout over the total amount in a year as follows:

LLP =
∑N

i Tdowntime,i

N
(3.34)

Where Tdownti me,i has a value of 1 at instant i if there is a blackout, and 0 if the load is being fulfilled. N has
a value of 525,600 which is the total number of minutes in a year. The LLP value is directly affected by the PV
array and battery size. A higher PV array output allows meeting the load demand during the day, and a higher
battery capacity makes it more possible to supply the energy deficit at night or in the absence of sun. Figure
3.23 and 3.24 show the LLP over a year as a function of the battery size and PV array capacity respectively for
the load profile discussed earlier.

Figure 3.23: Influence of battery size on LLP.

Figure 3.24: Influence of PV array capacity on LLP.

From the figures, it can be concluded that although increasing the capacity of only one of the components
decreases the LLP, but it does reach a plateau. So in order to reach a low and desired LLP value without over
sizing one of the components, an optimal combination of both has to be selected.
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Figure 3.25: Contour showing different values of LLP for PV/battery combinations

In figure 3.25 above, the contour plot shows the various possible combinations of PV and battery for a
certain LLP value, ranging from 1% to 10%. The lower the LLP value needed, the higher the PV and battery
capacities need to be.

3.5.2. Energy Dump

Energy dump is another useful parameter for evaluating the size of a PV system. Energy dump is the yearly
amount of excess energy that was produced by the PV array in excess to the load, and could not be stored by
the battery due to being fully charged.

EDump =
N∑
i

Eexcess,i (3.35)

Where Eexcess,i is the excess energy at each minute i during the year. Energy dump is also directly related to
the capacity of the PV and batteries. A combination high PV array capacity with a low battery storage results
in lots of dumped energy that cannot be stored by the battery. Thus, in order to have an efficient system and
prevent over sizing, the yearly energy dump should be minimized. In this study, to have a more tangible feel
about the amount of energy dump in each system, the parameter relative dump is introduced which is

ERelDump [%] = EDump

EY ear l y Load
×100 (3.36)

In this manner, the energy dump value is relative to the load profile and system size, and not just an absolute
value. Figure 3.26 below shows a contour plot of the relative yearly energy dump for the same system described
in 3.5.1.
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Figure 3.26: Relative dump for different battery and PV capacities

The amount of energy dump is shown to be rapidly increasing with increased PV array capacity, and stabi-
lizing when the battery capacity increases.

3.5.3. Days of Autonomy

The Days of Autonomy (DOA) parameter, is a popular intuitive sizing parameter as described in section 2.3.1.
This parameter involves multiplying the size of the battery by the number of days the system is expected to
run autonomously in case of adverse weather conditions. The size of the battery for one day of operation is
found through equation 2.8, and multiplied by the DOA according to rules of thumb or the user preferences. To
illustrate the impact of this parameter, a the battery size for the given system and load profile was calculated for
different DOAs. Figure 3.27 below, similarly to 3.25, shows the LLP values at different PV and battery capacities,
the LLP contour lines range from 0.01 to 0.05. The vertical lines represent the size of the battery at different
DOAs. For DoD = 80% and ηB = 90%, 1 DOA = 1724 Wh.

Figure 3.27: LLP at different PV and battery capacities using Days of Autonomy

The large gap between the DOAs shows that this method follows rough sizing and can lead to over or under
sizing of the two components. For example, if 1 DOA is chosen during sizing, a very large PV array size is
needed to keep the LLP within boundaries. Moreover, following the typical 2-3 DOA rule, the battery bank
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capacity increases greatly, with little reduction in PV size. It also be seen that over a certain DOA value, 3 in this
case, the LLP reaches a plateau making the battery storage highly over sized. The optimal size for the PV and
battery storage for all LLP values falls somewhere between the 1 and 2 Days of Autonomy, where the smallest
capacity combination of battery and PV can be used while maintaining the required value of LLP. In order to
accurately find locate minimum, a numerical, more precise method needs to be used.

3.5.4. Night of Autonomy

As the Days of Autonomy sizing approach proved to be a very rough approach that leads mostly to over sizing
the storage, an attempt was made to increase the accuracy of this approach, and shorten the large capacity
gaps between each day of autonomy. The parameter behind this approach is called Night of Autonomy (NOA).
The idea behind this approach, is that on any night the battery bank is the only source of power, should be able
to satisfy the load during that time reliably. Hence, the battery size should be sized according to the average
load during the night, and not during both day and night, especially that the typical households in this study
are in areas with year round sunlight abundance. Thus, equation 2.8 can be reformulated into:

CB = ENightLoad

VB.DoD.ηB
.NOA (3.37)

Where ENi g ht Load is the average load during the night and NOA is an integer that is subjective to the user,
and represents the number of average nights the battery should be capable of. The average night load was
obtained by summing up the load at all the instants where there was 0 irradiance on the module over the
whole year, and finding the daily average.

Figure 3.28 below shows the difference in the sizing gaps between different DOAs and NOAs for the same
system and load profile. One NOA is equal to 111.5 Wh. The amount of NOAs as indicated in vertical blue lines
over the capacity range of the battery (0 - 1,200 Wh) is more than the double of the DOAs as indicated in red
lines. From the figure, one can conclude that using the average night load only as a basis for sizing the battery
capacity leads to a more correct result, and reduces over sizing. However, the gap between two NOAs is still
large for any desired LLP. Hence, this method can also be refuted for optimizing the system sizing.

Figure 3.28: LLP at different PV and battery capacities using Nights of Autonomy

3.5.5. Bundled Parameter

The various parameters described above depend highly on the user preferences, whether it is the maximum
allowable LLP and energy dump values by the system, or the number of NOAs or DOAs. Moreover, the conflict
between the LLP and energy dump leads to a large increase in one of the parameters whenever the other is
minimized. i.e. A very low LLP leads to a very high energy dump, and a system with low energy dump leads to
an unreliable system with high LLP. Hence, in this study, an attempt at combining these parameters has been
made by creating a unit-less bundled parameter U.
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U = EDump

1−LLP
(3.38)

Using the LLP definition from equation 2.2, the equation above can be reformulated to:

U = EDump

EYearlyLoad −Efail
(3.39)

As can be seen from the equation above, the bundled parameter is unit-less and with the EDump and E f ai l

values both needing to be minimized, an optimized and reliable system size is expected to be obtained. In fig-
ure 3.29 below, the bundled parameter is plotted for the system in study for different battery and PV capacities.

Figure 3.29: Bundled parameter at different PV and battery capacities

Figure 3.30: Bundled parameter and LLP at different PV and battery capacities

As shown in figure 3.30, an optimal sizing range for the PV and battery capacity using the LLP and U contour
lines. The user needs to simply choose the desired maximum LLP and U values, and obtain a small range of
the possible system sizes to be used. For example, if the desired system criteria are to have an LLP ≤ 2% and
a U ≤ 0.6, the user can choose any of the PV/battery combinations that are in the dashed area shown in the
figure below.
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Figure 3.31: Bundled parameter and LLP at different PV and battery capacities with range of system sizes.

The graphical methods shown in this section are very useful to narrow down or find the optimal system
sizes following the required design criteria. However, these methods, relying mostly on graphical interpreta-
tion, can only handle optimizing up to two parameters at a time. Optimizing a system with respect to upfront
cost, LLP, energy dump and battery lifetime cannot be done graphically, as it results in highly inaccurate and
poorly represented results. To be able to optimize the system accurately while taking multiple parameters into
account, a multi-objective optimization method is required as will be discussed in chapter 4.

3.5.6. Design Assumptions and Limitations

The designed system is able to provide an accurate and reliable solution due to the use of minute based data,
dynamic efficiency for the module and power converters, and battery lifetime.Nonetheless, several assump-
tions were made during the component modeling and system design phase and are listed below:

• The MMPT tracker of the charge controller is assumed to be ideal, hence the PV array output is always
at Pmpp .

• The self-discharge of the battery is not considered.
• The battery itself is assumed to be an energy counter, where the capacity is just dependent on the energy

balance and not the voltage and charging/discharging current.
• The modeling of the DC/DC converters in the system is based mostly on the modeling of inverters found

in literature.
• The battery temperature was assumed to be the ambient temperature during the lifetime modeling due

to the lack of experimental data.

3.6. Conclusions

In this chapter, the methodology for modeling, sizing and conducting the performance analysis for each of the
SHS components was done. Then the effect of the component sizes on the system metrics was analyzed:

• The system LLP greatly depends on the battery capacity, but saturates after a certain limit.
• The energy dump increases with the increase of PV capacity.
• The battery lifetime increases largely with the increase of capacity, and decreases when the PV capacity

increases.
• The conventional sizing methods, such as the DOA provide very rough and over-sized system estima-

tions, and are far from being useful in optimization.

Moreover, at the end of this chapter, it became clear that the complexity of the different metrics makes it
difficult to find optimal system sizes using graphical methods. To be able to assess the effect of the system size
on the different metrics simultaneously, a multi-objective optimization approach needs to be used to address
the following metrics:
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1. LLP: The overall system LLP needs to be minimized and is defined as:

• LLP = Tdowntime
TTotal

2. Cost: The total system upfront cost needs to be minimized and is defined as:

• Qsystem = QPV.CPV +QConv.CConv +Q0.CB +∑n
i=1

Qfuture,i.CB

(1+ r
100 )n

3. Battery Lifetime: The battery lifetime, as mentioned earlier, depends greatly on the operating tempera-
ture and the number of cycles it undergoes. Typically, the larger the battery, the higher its lifetime. The
battery lifetime needs to be maximized, minimizing the number of replacements and hence the overall
system cost.

4. Energy dump: The yearly energy dump by the system needs to be minimized, hence avoiding an over-
sized system.

With the above criteria in mind, chapter 4 discusses two multi-objective approaches used in this study to find
the optimal SHS size.
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4
Stand-alone SHS sizing

In this chapter, the multi-tier framework will be discussed, where the different household load profiles for each
tier will be introduced. Then, the procedure for finding the optimal system size at each tier will be elaborated
using two optimization methods, an iterative method and the Genetic Algorithm, which is one of the many
evolutionary algorithms discussed in 2.3.2. Finally, the optimization methods will be evaluated through three
case studies at different locations where rural electrification is in great need.

4.1. Multi-tier framework

The International Energy Agency (IEA) and the World Bank were able to measure and quantify the energy
access of different households and countries by combining the average country’s electrification rate with the
average residential electricity consumption. The proposed household categorization methods is the multi-tier
framework. This method is able the access to electricity supply of households through attributes such as: peak
available capacity, evening supply, affordability, etc.Moreover, it measures the electric services used of each tier
based on the ownership of different levels of household appliances. For example, tier 1 has access to the basic
and essential appliances such as lighting and phone charging, and the ownership of appliances increases from
tier 2 and above. Tier 0 corresponds to no access to electricity, where many households use kerosene lamps
and stove for lighting and cooking, or other forms of solid biomass which emit harmful pollutants. Tables 4.1
and 4.2 below summarize the attributes and appliances used in each tier [4].

Figure 4.1: Electricity supply attributes for different tiers [4]
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Figure 4.2: Electricity supply appliances for different tiers [4]

In the following section, the load data used for each tier in the energy ladder will be elaborated.

4.1.1. Load Data for each tier

With the multi-tier household classification method, in the study done in [59]were stochastic methods were
used to construct load profiles for each tier using different household DC appliances. The load profiles were
used in this thesis to size the optimal SHS for each tier. The load profile for a typical week of each tier is shown
in the figures below.
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Figure 4.3: Typical weekly load profile for tier 1-3 [59]
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Figure 4.4: Typical weekly load profile for tiers 4 and 5 [59]

From the load profile data, the main characteristics of the load profile of each tier is summarized in table
4.1 below.

Table 4.1: Load profile summary for the different tiers

Tier Peak power [W] Yearly energy consumption [kWh] Average daily load [Wh]
1 12 18.1 49.6
2 51 79.5 217.9
3 154 358.2 981.5
4 1670 1442.6 3952.5
5 3081 3478.8 9530.9

From table 4.1, it is shown that there is a large gap between the load profiles between tier 2 and 3, and an
even larger gap between tiers 3, 4 and 5. This larger increase in electricity consumption can be linked to the
ownership of high consumption appliances by the household such as refrigerators, washing machines, etc. as
summarized in figure 4.2 before. This large increase in yearly energy load will reflect in the SHS size, which is
also expected to have a similar rate of increase.
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4.2. Modeling

In this section, the modeling methodology and optimization methods used will be explained, in sections 3.3
and 3.4.1, the component modeling was detailed, and the performance of a single system size was evaluated
in section 3.5. However, the optimal size in regards of performance, cost, and battery lifetime requires an
optimization process to be obtained as will be disclosed below.

4.2.1. Methodology

The optimization methodology consists of five steps starting from choosing a location, up until finding the
optimal SHS size and are as follows:

Step 1: Choosing the Location

The first step in the optimization method is the choice of the location in which the SHS size needs to be op-
timized for the load profiles in each of the 5 tiers. The location choice is important as the meteorological
data vary greatly from one geographical location to another. As a first step, to elaborate on the performance
of the energy algorithm the same location used in section 3.3.1 with the meteorological data extracted from
Meteonorm will be used.

Step 2: Obtain output of the solar module

Using the meteorological data as an input, the yearly net power output of a single 20 Wp solar module using
the irradiance data and dynamic efficiency model. The capacity of the PV array for the system to be optimized
will consist of a multitude of the 20 Wp modules, hence the total nominal capacity becomes Nmodul e ×20Wp .

Step 3: Selection of capacity range for the PV array and batteries

In order to narrow down the possibilities during the optimization, a range of capacities for both the PV array
and battery storage for the given load profile has to be selected. This has two advantages, first, it eliminates
all the PV/battery combinations that are insignificant. For example, having a SHS combination of PV/Battery
of 40 Wp / 100 Wh for the load profile in tier 5 is highly irrelevant, as the system will be unreliable (LLP > 0.6).
Secondly, with the narrowing of the range of possibilities, the MATLAB optimization algorithm becomes less
time consuming. The intuitive methods discussed in 2.3.1 are a great tool that can be used to obtain a rough
and preliminary system size, from which the capacity range for each of the two components can be found. The
equations used to find the rough minimum system size are repeated below for convenience.

PPV,min = ELoad

ηPV.ηcon.ESH
Sf (4.1)

Cbatt,min = ELoad.NOA

Vbatt.DoD.ηbatt
(4.2)

The safety factor is taken to be unity for finding the minimum PV array size, and the NOA approach ex-
plained in section 3.5.4 is used to find the battery size, as it proved to provide a more accurate size than the
DOA method. For each of the two components, the maximum capacity is taken to be 4 times the minimum
calculated capacity, hence limiting the range of possible combinations.

Step 4: Finding the optimal size of the DC/DC converters

As mention in section 3.3.3, the optimal sizing of the converters depends greatly on the meteorological data,
the PV module output, and the load profile, which affects its efficiency. Hence, the size of the converters needs
to be obtained. In this case, as seen previously the converter sizes are:

• PV array converter: 72% the PV array capacity.
• Load converter: Peak load power.
• Battery converter: Peak energy deficit or excess
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Step 5: Running the optimization algorithm

The fifth and final step is using the above mentioned data as inputs for the optimization algorithm to find the
best PV/battery combination for each tier. The optimization algorithm aims to find the best combination in
terms of reliability by minimizing LLP, affordability by minimizing cost, and battery lifetime which means a
fewer number of replacements during the system lifetime. The two optimization strategies used in this study
will be explained below, along with the results obtained for the default system case used previously. The 5 steps

of the optimization methodology are summarized in the figure below:

Figure 4.5: Modeling and optimization methodology

4.2.2. Iterative Optimization Method

The first optimization method employed in this study, is a classical iterative technique as discussed in section
2.3.2. The iterative technique consists of a nested for loop that runs the control strategy discussed in 3.4.1
over the whole range of both the battery size, and PV capacity. The increments in PV and battery capacity
used are 20Wp and 10 Wh respectively, in order to increase the accuracy of the solution, while abiding by the
standard component sizes found in the markets and by manufacturers. The resulting output of this iterative
approach is a set of matrices of dimensions N ×C corresponding the range of PV capacity and battery size
ranges respectively. The set of arrays will be the LLP, energy dump, system capital cost, and bundled parameter
for each PV/Battery combination. The results are then plotted in order to select the optimal system size. The
results for the system case used previously are shown below.

Iterative Method: Example study

The iterative method was first tested on the load profile and location mentioned in section 3.2, using equations
4.1 and 4.2, the minimum PV and battery capacity for the iteration range were obtained, and are as follows:

• PPV : minimum value = 220 W; maximum value = 880 W at 20 W increments.
• CB : minimum value = 670 Wh; maximum value = 2680 Wh at 20 Wh increments.

Then the cost of the different components was added as an input to the algorithm to compute the total system
cost of every combination, the costs used are summarized in table 4.2 below. The iterative algorithm was run
to obtain the LLP, battery lifetime and system upfront cost of each of the combinations and was plotted on
MATLAB using contour lines as shown in the figures below.

Table 4.2: Normalized cost of solar home system components [29, 36, 65, 80]

Component Normalized cost
PV array 1 $/Wp

Lead-acid battery 1.1 $/Wh
LiFePO4 battery 1.5 $/Wh

Charge controller 0.15 $/W

Figure 4.6 shows the LLP contour plot for the different PV and battery capacities, the LLP values from 0.01
to 0.05 are emphasized to put a threshold on the minimum reliability of the system, and to examine the change
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in cost/capacity for each 1% decrease in LLP. The figure also shows the point with the minimum system cost
for each LLP, along with the system size. The results are summarized in table 4.3.

Figure 4.6: Iterative method example study: LLP for PV and battery combinations with optimal cost

In figure 4.7, the lead-acid battery lifetime is shown for increasing values of PV and battery capacities.
It is clear that for increasing PV capacity, the battery lifetime decreases drastically which is due to the large
increase in battery energy throughput. An increase in battery capacity however, increases its lifetime but not
as severely. Hence, it can be concluded that for maximizing the lifetime, a low PV capacity and large battery
should be selected, but it shouldn’t be at the expense of the LLP, as shown in figure 4.8

52



Figure 4.7: Iterative method example study: Battery lifetime for PV and lead-acid battery combinations

In the figure below, both the lifetime and LLP contours are plotted to illustrate the effect of system size on
both parameters simultaneously. As mentioned before, a system with low PV and large battery seems like the
ideal combination in terms of battery lifetime and cost, however, to maintain system reliability, the LLP should
be 0.05 or lower. The colored scatter shows the minimum cost for each LLP as summarized table 4.3.

Figure 4.8: Example study iterative method: lead-acid battery Lifetime and LLP for PV and battery combinations

Table 4.3: Optimization values summary

LLP Values PV Capacity [Wp] Battery Capacity [Wh] Cost ]USD] Lifetime [Years]
0,01 330 1270 5100 5.8
0,02 270 120 4764 5.5
0,03 230 1160 4553 5
0,04 230 1110 4405 4.6
0,05 200 1100 4272 4.8
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As shown in the table and figure 4.9 above, with the iterative algorithm, an optimal system size can be
found with respect to the cost. However, in this method, one of the parameters has to be fixed initially, and
then optimize the other two parameters accordingly. In this case, the LLP value was fixed at first, with a value
ranging from 0.01 to 0.05 as shown in table 4.3, then the optimal cost for each was obtained using the the
cost function discussed in chapter 3. However, this method failed to provide optimal solutions taking all the
parameters into consideration. Moreover, the computational time needed to run all the iterations proved to
be excessively long. The Genetic Algorithm discussed in the following section was able to eliminate those
restrictions, and was used to optimize the size for all tiers in the case studies.

4.2.3. Genetic Algorithm

Genetic Algorithm method: Example study

The GA was first run on the same example study as the iterative method, the algorithm was initialized with
a population size of 50 particles, over 500 generations. The system objective functions and constraints are as
follows:

• Decision variables:

– PV array capacity in Wp: Wp,PV

– Battery capacity in Wh: CB

– Converter rated capacity in W: SC ,B at ter y ;SC ,PV ;SC ,Load ;

• Objective functions:

– Minimize cost: Wp,PV ×QPV +CB ×QB + (SC,Battery +SC,PV +SC,Load)×QC

– Minimize LLP: LLP = tdownti me
Ttot al

– Maximize Battery lifetime: From battery lifetime polynomial.

• Constraints:

– LLP ≤ 10%
– EDump ≤ 2×Yearly load

As mentioned in section 3.3.3, the charge controller chosen rated capacity is optimized at first using an iterative
method, hence, it is a fraction of the PV array capacity, this allows the cost objective function to be reduced to:
Wp,PV .(QPV + f ×QC )+CB ×QB +QC .(SC ,B at ter y +SC ,Load ), where f = 1

Rs
. After running the GA, a scatter plot of

the obtained data points that represent the pareto front between pair of the three objective functions is plotted
to illustrate the optimal points as shown below. Figure 4.10 shows the pareto front between the LLP and cost
objective functions. Naturally, for a system with a lower LLP, a higher upfront cost is needed. The PV/battery
combinations for each of the scatter points is also represented in the figure.

Figure 4.10: Test Case: Pareto front of LLP VS Cost with the PV/Battery combinations
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In figure 4.13, the lead-acid battery lifetime VS LLP is shown. Unlike the LLP vs cost pareto front, in this
plot, no clear pattern can be obtained. A high lifetime can be obtained even at low LLP values (≤ 5%) and vice
versa.

Figure 4.11: Test Case: Pareto front of lifetime VS LLP with the PV/Battery combinations

The lifetime VS cost pareto front in figure 4.12 doesn’t show a clear pattern between the two objectives
either.

Figure 4.12: Test Case: Pareto front of lifetime VS Cost with the PV/Battery combinations

To get a better representation of all three objective functions, a contour plot using the scatter data was
made where the LLP values were plotted as elevations for different lifetime and cost combinations. The data
along with the SHS component sizes is summarized in table ?? in appendix ??.
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Figure 4.13: Test Case: Contour plot showing the different LLP levels at various lifetime and cost combinations

4.3. Case Studies

In this section, the optimization algorithms explained and tested will be implemented on case studies in three
different locations. The optimal SHS sizing will be performed for each location over the load profiles of the
five tiers discussed in section 4.1. The locations selected are in rural regions of developing countries where the
electrification rates are some of the lowest worldwide. Moreover, these locations, as most rural un-electrified
regions, have an abundance in solar irradiance making the implementation of SHS an even more attractive
solution.

The first two locations of the case studies are the district of Pune and East Khasi Hills in India, where the
overall electrification status of the country was 67% in 2011. Even after the launch of the Rajiv Gandhi Grameen
Vidyutikaran Yojana (RGGVY) program in 2005, which is the scheme initiated by the government to supply
continuous power to rural India, 17% of the households today still lack supply to electricity, and even more
to continuous and reliable power supply [41, 62, 87]. According to the Times of India [62], the amount of un-
electrified households is so high although it is claimed that India has already reached 100% electrification, is
due to the simple definition of village electrification by the government. As of 2004, a village is considered
electrified if the following occurs:

1. The public places in a village such as schools and hospitals have electricity access.
2. At least 10% of households have electricity.

With that definition, a village is considered electrified by the government even if up to 90% of households
still lack access to reliable electricity. Table 4.4 below shows the states with more than 20% household un-
electrification in India.
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Table 4.4: States with over 20% un-electrified households in India, Adapted from [62]

State Rate of un-electrified households [%]
Jharkhand 48

Uttar Pradesh 56
Assam 57
Odisha 64

Arunachal 66
Meghalaya 70

Tripura 72
Nagaland 74

Bihar 74
Manipur 77

Rajasthan 79
Jammu and Kashmir 79

Figure 4.14: Photovoltaic solar potential in India in kWh/kWp [84]

The third location is chosen to be the city of N’Djamena in the country of Chad, which is one of the coun-
tries with the least electrification rate worldwide, going from 0% in 1990 to 8.8% in 2016. The region, having
on of the highest solar potentials worldwide makes the use of Solar Home Systems highly beneficial.

4.3.1. East Khasi Hills - Meghalaya

The first location for the case studies are the East Khasi hills, in the state of Meghalaya in India. The state is
located in the north-east of India, and as shown in table 4.4 has 70% of its households still un-electrified. The
figure below shows the electrical potential of Meghalaya as taken from the Solar Atlas map [84].
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Figure 4.15: Photovoltaic solar potential in the district of the East Khasi Hills in kWh/kWp [84]

The East Khasi hills was selected as a location due to the large amount of rural villages, and due to its
presence near Shillong, a strong and well established city where a weather station is located. Due to the high
similarity in meteorological data and solar insolation as shown in figure 4.15, the meteorological data of Shil-
long was extracted using Meteonorm, and was assumed to be the same for the whole district.

Solar module output

The solar module output for the East Khasi Hills was obtained using Meteonorm from the weather station in
Shillong. At first, the optimal module orientation and tilt was found using the iterative method described in
section 3.3.1, then the module output at this optimal point was calculated for the whole year. This output will
be used to find the optimal size of the charge controller and SHS for each of the five tiers and is shown in figure
4.17. The optimal tilt angle and orientation found are 24 and 180 respectively as shown in figure 4.16

Figure 4.16: Optimal module orientation and tilt in East Khasi Hills: Azimuth: 180, Tilt: 24
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Figure 4.17: Module output in East Khasi Hills over a typical week

Optimal size of converters

From the module output and meteorological data, the optimal sizing ratio RS for the PV converter was ob-
tained as shown in 4.18. The maximum yield is obtained at RS = 1.14, while 95% of that normalized maximum
is obtained at RS = 1.43.

Figure 4.18: East Khasi Hills: Normalized energy yield VS Rs

As the rated size of the load converter depends on the maximum load during the tier, the size can be taken
from the load data characteristics table 4.1 and is shown below.

Table 4.5: Converter PNom for different load tiers

Tier Load converter PNom [W]
1 12
2 51
3 155
4 1670
5 3081

Capacity range of PV and battery

With the meteorological data, charge controller size, and PV module net output, the capacity range for the PV
array and battery storage for each of the tiers can be found using equations 4.1 and 4.2 and are summarized
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in table 4.6 below. For tiers 1 & 2, the maximum Wp was taken to be 10W instead of 20 since the loads are
significantly smaller than in the last tiers, hence the smaller Wp increment increases the system size accuracy.

Table 4.6: East Khasi hills: Minimum and maximum PV and battery capacity range

PV capacity [W] Battery capacity [Wp]
Tier Min Max Min Max

1 10 40 30 120
2 40 160 120 480
3 170 680 460 1840
4 690 2760 1430 5720
5 1650 6600 2550 10200

Running the optimization

Results: Tier 1

The figures below display the pareto fronts obtained after running the GA optimization algorithm for tier 1.
Each figure shows the pareto front of two of the three objectives. Each scatter point in the pareto front repre-
sents a PV/battery combination as labeled in the figure. The component sizes are of the form Wp,Wh.

Figure 4.19: East Khasi Hills: Lifetime VS Cost (T1, GA, Lead-acid)
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Figure 4.20: East Khasi Hills: LLP VS Cost (T1, GA, Lead-acid)

Figure 4.21: East Khasi Hills: LLP VS Lifetime (T1, GA, Lead-acid)

From the figures, a trend can be noticed in all the pareto fronts. The major contributor to the increase in
cost, lifetime and decrease in LLP is the battery size. The PV capacities for all points are either 20 or 30 Wp ,
while the battery capacity ranges from 50 to 120 Wh. Moreover, the increase in price to go from 3.5% to almost
0% LLP is very low (around 20%).

Results: Tier 2

Tier 2 shows similar trends in the pareto fronts for the pairs of objectives that were obtained in tier one. The
PV array capacity ranges from 80 to 150 Wp , while the battery capacity ranges from 200 to 480 Wh. The LLP
VS Cost scatter shows an almost linear relation between the two objectives until LLP = 0.02 where the curve
flattens to a plateau.
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Figure 4.22: East Khasi Hills: Lifetime VS Cost (T2, GA, Lead-acid)

Figure 4.22 above shows that there is a broad range of LLPs that can be obtained for almost the same life-
time ≈ 6 years. To obtain higher battery lifetime, the PV array needs to tend towards the lower limits while the
battery needs to be high. So a low PV, high battery combination is needed. However, this reflects greatly on the
system cost as the battery is the most expensive component.

Figure 4.23: East Khasi Hills: LLP VS Cost (T2, GA, Lead-acid)
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Figure 4.24: East Khasi Hills: LLP VS Lifetime (T2, GA, Lead-acid)

Results: Tier 3

Tier 3 shows the same behavior as the previous two years, where the battery capacity ranges from 400 to 1780,
while the PV ranges from 360 to 680. It is worth noting that in these higher tiers, the broader capacity range
initialized previously allows for more 20Wp/10Wh combinations, hence the pareto fronts plotted have more
individuals than in the previous tiers.

Figure 4.25: East Khasi Hills: Lifetime VS Cost (T3, GA, Lead-acid)
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Figure 4.26: East Khasi Hills: LLP VS Cost (T3, GA, Lead-acid)

Figure 4.27: East Khasi Hills: LLP VS Lifetime (T3, GA, Lead-acid)

The pareto plots with the cost curves also show a steep increase in the system cost in this tier compared to
tiers 1 & 2. While tier 1 had a system cost of 245$ for an LLP of 0.009 and a battery lifetime of 10 years, tier 3 has
a system cost of 5000$ for an LLP or 0.009 and a battery lifetime of 9 years. This steep increase in cost trend
becomes even more drastic in the remaining two tiers.
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Results: Tier 4

Figure 4.28: East Khasi Hills: Lifetime VS Cost (T4, GA, Lead-acid)

Figure 4.29: East Khasi Hills: LLP VS Cost (T4, GA, Lead-acid)
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Figure 4.30: East Khasi Hills: LLP VS Lifetime (T4, GA, Lead-acid)

Results: Tier 5

In the last tier, the SHS cost increases drastically, the upfront cost ranges from 28000 to 40000 $ for a maximum
battery life values of 7 years. The LLP VS Cost curve in figure 4.32 also shows an almost linear relation between
the two objectives. Hence to decrease the LLP from 0.08 to 0.03, the cost increases by 20%.

Figure 4.31: East Khasi Hills: Lifetime VS Cost (T4, GA, Lead-acid)
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Figure 4.32: East Khasi Hills: LLP VS Cost (T4, GA, Lead-acid)

Figure 4.33: East Khasi Hills: LLP VS Lifetime (T4, GA, Lead-acid)

General results

In order to find the optimal system size for each tier, the LLP VS cost curve was examined. For most tiers, the
curve has a steep slope for the lower cost values, and tends to flatten out at the end. Hence, the slope δLLP

δCost at
each point of this curve was calculated and plotted as shown in the figure below.
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Figure 4.34: East Khasi Hills: LLP VS Cost with slope (T2, GA, Lead-acid)

In figure 4.34 showing the LLP VS cost for tier 2, the orange scatter points representing the slope seem
to flatten out as the LLP reaches 0.02. Hence, at this point, the LLP becomes much less sensitive as the cost
and system size increases. At each tier, the point where the slope flattens out, or where the LLP becomes
less sensitive to the size increase, was considered as the chosen optimal point. The system size and objective
function values were extracted from the GA matrix for these points for each tier and are shown in the table
below.

Table 4.7: East Khasi Hills: Optimal SHS size per tier summary

Tier
PV Battery PV conv. Load Battery Cost LLP Lifetime

[Wp ] [Wh] [W] conv. [W] conv. [W] [USD] [-] [Years]
1 30 80 26 12 25 230 0,010 9,4
2 80 460 69 51 67 991 0,025 12,5
3 580 1060 498 154 467 3824 0,020 7,1
4 1940 5400 1666 1670 1701 16001 0,031 8,4
5 5100 7850 4381 3081 4255 33392 0,052 5,9

4.3.2. District of Pune

The district of Pune in the state of Maharashtra has been chosen as the second location due to the fact that
it has a large diversity in populations, some areas having access to reliable electricity, while some others have
very low quality or no power supply. Moreover, The availability of the weather station in Pune allowed the
retrieval of highly accurate yearly minute based data from Meteonorm, which increases the validity of the
sizing done in the model. Figure 4.35 shows the solar abundance in the area, making it a great location for the
use of SHSs.
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Figure 4.35: Photovoltaic solar potential in the district of Pune in kWh/kWp [84]

Solar module output

The meteorological data used in the district of Pune is the same as was used in chapter 3 with the test case load
profile. Hence, the net solar module output is also the same as the one in figure 3.9, it is shown again in the
figure below for convenience.

Figure 4.36: Module net output over a week in the summer and winter

Optimal size of converters

The PV converter optimal size is also dependent on both the meteorological data and solar module output,
since those are the same as in the test case used in section 3.3.3, the optimal size is also chosen to be 72% of
the PV array Wp size, or in other words RS = 1

0.72 = 1.39. As for the load converter, table 4.5 shown in the East
Khasi Hills case study shows the sizes for all the tiers.
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Capacity range for PV array and batteries

Following the optimal sizing of the charge controller, the optimization range for the two other components:
PV array and battery storage was performed as was done for the East Khasi Hills. The capacity range is shown
in table 4.8 below.

Table 4.8: District of Pune: Minimum and maximum range of PV and battery capacities

PV Array [W] Battery Storage [Wh]
Tier Min Max Min Max

1 10 40 30 120
2 30 120 110 440
3 140 560 450 1800
4 580 2320 920 3680
5 1400 5600 1500 6000

Running the optimization

Results: Tier 1

Figure 4.37: District of Pune: Lifetime VS Cost (T1, GA, Lead-acid)
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Figure 4.38: District of Pune: LLP VS Cost (T1, GA, Lead-acid)

Figure 4.39: District of Pune: LLP VS Lifetime (T1, GA, Lead-acid)
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Results: Tier 2

Figure 4.40: District of Pune: Lifetime VS Cost (T2, GA, Lead-acid)

Figure 4.41: District of Pune: LLP VS Cost (T2, GA, Lead-acid)
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Figure 4.42: District of Pune: LLP VS Lifetime (T2, GA, Lead-acid)

Results: Tier 3

Figure 4.43: District of Pune: Lifetime VS Cost (T3, GA, Lead-acid)
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Figure 4.44: District of Pune: LLP VS Cost (T3, GA, Lead-acid)

Figure 4.45: District of Pune: LLP VS Lifetime (T3, GA, Lead-acid)
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Results: Tier 4

Figure 4.46: District of Pune: Lifetime VS Cost (T4, GA, Lead-acid)

Figure 4.47: District of Pune: LLP VS Cost (T4, GA, Lead-acid)
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Figure 4.48: District of Pune: LLP VS Lifetime (T4, GA, Lead-acid)

Results: Tier 5

Figure 4.49: District of Pune: Lifetime VS Cost (T5, GA, Lead-acid)
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Figure 4.50: District of Pune: LLP VS Cost (T5, GA, Lead-acid)

Figure 4.51: District of Pune: LLP VS Lifetime (T5, GA, Lead-acid)

The results from the five tiers in the previous figures show the same pattern observed for the case of the East
Khasi Hills. There is a slow increase in the cost of the optimal system in the lower tiers, and then increases
rapidly for the higher tiers with a certain loss in reliability (LLP of 1% in tier 1 VS 3$ in tier 5). Moreover, the
same analysis to find the optimal system size was performed. Figure 4.52 below shows the δLLP

δCost for tier 1.
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Figure 4.52: District of Pune: Lifetime VS Cost with changing slope (T1, GA, Lead-acid)

From the figure, a sudden gap in the slope is observed, and it is at the point of this gap that the optimal
system size is taken. Table 4.9 in the general results below shows the optimal system size obtained for each
tier.

General results

Table 4.9: District of Pune: Optimal SHS size per tier summary

Tier
PV Battery PV conv. Load Battery Cost LLP Lifetime

[Wp ] [Wh] [W] conv. [W] conv. [W] [USD] [-] [Years]
1 30 90 25.71 12 25 255.3 0.002 9.0
2 110 260 94.29 51 93 922.6 0.012 6.4
3 430 1040 368.58 154 340 3689.5 0.010 6.3
4 1870 2920 1602.89 1670 1697 12689.3 0.020 5.6
5 3900 5740 3342.93 3081 3237 25299.3 0.052 5.5

4.3.3. N’Djamena, Chad

The third location for the case studies is the city of N’Djamena in Chad, a country located in central Africa,
that despite being one of the countries with the strongest solar potential, has reached only 8.8% electrifica-
tion rate in 2016 [8, 27]. Figures 4.53 and 4.54 show the geographical location of N’Djamena and increase of
electrification rate in Chad from 1990 to 2016. Moreover, another reason for choosing N’Djamena as a case
study location, is the fact that there is a large weather station located in Zalingei, Sudan, around 1,000 Km
away and at a very similar latitude. The availability of the weather station allowed the retrieval of very accurate
meteorological data using Meteonorm, and was assumed to be the same for both locations.
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Figure 4.53: Geographical location of N’Djamena and Zalingei

Figure 4.54: Electrification rate in Chad 1990 - 2016 As Adopted from [8]

Solar module output

With the location and meteorological data set, the output of a single 20 Wp solar module can be obtained for
the whole year. This output will be used to find the optimal size of the charge controller in the next step, and
as the unit for finding the optimal system size in later steps.
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Figure 4.55: Module output in D’Jamena over a typical week

Optimal size of converters

After obtaining the module output, the optimal size of the PV converter can be found, prior to starting with
the optimization simulations to find the best PV/battery size. Using the same method as in section 3.3.3, the
normalized yearly energy yield of the module was obtained for charge controller 70%×20Wp ≤ PNom ≤ 200%×
20Wp as shown in figure 4.56. The figure shows that for a sizing ratio RS = 1.25 or for a PNom = 80%×20Wp ,
the energy yield is 95% that of the maximum energy yield at an RS = 0.91. Hence, a 27% decrease in the charge
controller size and cost, only a 5% in energy yield is compromised. As for the load converters, the table 4.5
used previously is used.

Figure 4.56: N’Djamena: Normalized energy yield VS Rs

Capacity range for PV array and batteries

With the meteorological data, charge controller size, and PV module net output, the capacity range for the PV
array and battery storage for each of the tiers can be found using equations 4.1 and 4.2 and are summarized in
table 4.10 below.

Table 4.10: N’Djamena: Minimum and maximum PV and battery capacity range

PV Array [W] Battery Storage [Wh]
Tier Min Max Min Max

1 10 40 30 120
2 20 80 120 480
3 110 440 460 1840
4 460 1840 970 3880
5 1100 4400 1550 6200
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Running the optimization

Results: Tier 1

Figure 4.57: N’Djamena: Lifetime VS Cost (T1, GA, Lead-acid)

Figure 4.58: N’Djamena: LLP VS Cost (T1, GA, Lead-acid)
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Figure 4.59: N’Djamena: LLP VS Lifetime (T1, GA, Lead-acid)

Results: Tier 2

Figure 4.60: N’Djamena: Lifetime VS Cost (T2, GA, Lead-acid)
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Figure 4.61: N’Djamena: LLP VS Cost (T2, GA, Lead-acid)

Figure 4.62: N’Djamena: LLP VS Lifetime (T2, GA, Lead-acid)
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Results: Tier 3

Figure 4.63: N’Djamena: Lifetime VS Cost (T3, GA, Lead-acid)

Figure 4.64: N’Djamena: LLP VS Cost (T3, GA, Lead-acid)
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Figure 4.65: N’Djamena: LLP VS Lifetime (T3, GA, Lead-acid)

Results: Tier 4

Figure 4.66: N’Djamena: Lifetime VS Cost (T4, GA, Lead-acid)
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Figure 4.67: N’Djamena: LLP VS Cost (T4, GA, Lead-acid)

Figure 4.68: N’Djamena: LLP VS Lifetime (T4, GA, Lead-acid)
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Results: Tier 5

Figure 4.69: N’Djamena: Lifetime VS Cost (T5, GA, Lead-acid)

Figure 4.70: N’Djamena: LLP VS Cost (T5, GA, Lead-acid)
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Figure 4.71: N’Djamena: LLP VS Lifetime (T5, GA, Lead-acid)

General results

In N’Djamena, the optimal system size resulted in a somewhat constant LLP throughout all tiers (around 0.013
%), and a battery lifetime of 6 years. The cost shows the same pattern as the previous locations. The large
increase in cost is mostly due to the battery capacity, for which 4 replacements are required throughout the
system lifetime.

Table 4.11: N’Djamena: Optimal SHS size per tier summary

Tier
PV Battery PV conv. Load Battery Cost LLP Lifetime

[Wp ] [Wh] [W] conv. [W] conv. [W] [USD] [-] [Years]
1 20 60 19 12 19 209,6 0,017 6,3
2 70 250 67 51 66 851,2 0,012 6,3
3 280 1010 268 154 242 3707,8 0,012 6,1
4 1420 3240 1361 1670 1657 12076,6 0,013 6,3
5 3800 6090 3642 3081 3531 24486,3 0,015 6,3

4.4. System performance with Li-ion battery

As mentioned earlier in table 4.2, the major contributors to the cost of the SHS are the PV and battery, which are
1$/Wp and 1.1$/Wh respectively. Throughout this study, lead-acid batteries have been the choice of battery
technology as they are the cheapest and most widely used for SHSs. In this section however, a performance
analysis will be conducted to illustrate the change in system cost when changing the battery technology to Li-
io that has a cost of 1.5$/Wh. By changing the technology, the upfront cost will change because of two factors:
first, the Li-ion has a higher cost per Wh. Secondly, it has also typically a higher lifetime than the lead-acid
batteries. The result of these changes are shown for the district on Pune in tier 3 in figures 4.72 through 4.74,
East Khasi hills in tier 2 in figures 4.75 through 4.77.
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District of Pune: Cost sensitivity using different battery technologies

Figure 4.72: District of Pune: LLP VS Cost for different battery technologies (T3, GA, Lead-acid VS Li-ion)

Figure 4.73: District of Pune: LLP VS Lifetime for different battery technologies (T3, GA, Lead-acid VS Li-ion)

Figure 4.74: District of Pune: Lifetime VS Cost for different battery technologies (T3, GA, Lead-acid VS Li-ion)

The figures above show that for the district of Pune in tier 3, the use of Li-ion batteries proves to be a better
choice. Even though the battery price increased from 1.1 to 1.5 (36%), the large improvement in battery life
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reduced the total system upfront cost greatly, making it an even more affordable choice than with the lead-acid
batteries. This fact is specifically highlighted in figure 4.74, where the battery lifetime VS cost curve shows that
for the same cost range, the battery lifetime is 15-20 years for Li-ion, while being 5-10 years for lead-acid.

East Khasi Hills: Cost sensitivity using different battery technologies

The same comparison was done in the East Khasi Hills case study for tier 2.

Figure 4.75: East Khasi Hills: LLP VS Cost for different battery technologies (T2, GA, Lead-acid VS Li-ion)

In figure 4.75 above, the choice of Li-ion appears to be also the preferable choice, although the variation of
the total cost depending on the LLP is much smaller than in the case of Pune.

Figure 4.76: East Khasi Hills: Lifetime VS Cost for different battery technologies (T2, GA, Lead-acid VS Li-ion)

In the figure above however, the difference in battery lifetime is also highlighted greatly between the two
technologies. The system cost of both systems is scattered around 1000$, but the battery life for Li-ion ranges
from 20-30 years while it ranges from 5-10 years for lead-acid.
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Figure 4.77: East Khasi Hills: LLP VS Lifetime for different battery technologies (T2, GA, Lead-acid VS Li-ion)

District of Pune: Cost sensitivity using with a variation of PV module price

In this section, a sensitivity analysis was performed after variating the price of the PV module from 1 to 2$/Wp.
As the PV module has the highest lifetime in the system, which is equivalent to the system lifetime of 25 years,
the increase in the PV module cost is especially highlighted in figure 4.78 below, where the total system cost
shows a constant shift to the right.

Figure 4.78: District of Pune: LLP VS Cost for different PV module prices (T5, GA, Lead-acid)
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Figure 4.79: District of Pune: Lifetime VS Cost for different PV module prices (T5, GA, Lead-acid)

Figure 4.80: District of Pune: LLP VS Lifetime for different PV module prices (T5, GA, Lead-acid)

4.5. Conclusions

In this chapter, two optimization methods were tested on three different case studies to optimize the size of
the stand-alone SHS while going up the 5 tier energy ladder. The first approach, using the iterative method,
provided some insight on the optimal system size, but proved to require long computational time and required
at least one of the three objectives to be fixed. The Genetic Algorithm however, an evolutionary heuristic
algorithm, was able to plot the pareto fronts to optimize all three objectives simultaneously. Using the results
obtained, the optimal system size for each tier was selected using the δLLP

δCost equation. Using this method, the
sensitivity of the LLP to the system cost proved to be high at first for lower system cost and high LLPS, and
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gradually decreased as the LLP Vs Cost curve flattened out, showing that to decrease the LLP requires a large
increase in cost beyond a certain point. The point in which the curve shows a large shift was selected as the
optimal point. Tables 4.7, 4.9 &4.11 show the optimal size for each case in each of the cases.

In this chapter, it was also concluded that the stand-alone architecture is feasible in the lower tiers, up until
tier 3, but becomes expensive and less reliable in the higher tiers. This can be deducted from the summary
tables mentioned above, where the total system cost shows a drastic increase between tiers 3 & 4, and tiers 4 &
5. For example, in the case of N’Djamena:

Tier Upfront cost [$] LLP
1 230 0,01
2 991 0,025
3 3824 0,02
4 16000 0,03
5 33390 0,05

This large gap in total system cost, going from under 5000$ to more than 15000$, at an even higher LLP
makes the stand-alone architecture unfeasible for households with limited income who are trying to improve
their quality of life.

Another method, the interconnectivity approach, where households interconnect and share their electric-
ity was examined in chapter 5, and proved to be a potential solution to the problem.
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5
Sizing interconnected SHS

In this chapter, an alternative approach towards full household electrification is presented. As seen in chapter 4,
the upfront installation cost of stand-alone SHSs shows a substantial increase in the higher energy tiers. Hence,
another option, household interconnectivity is analyzed. The modeling and methodology of this approach are
presented at first, followed by the results and findings.

5.1. An Alternative Approach: Household interconnectivity

In chapter 4, it was concluded that the stand-alone SHS architecture is feasible in the lower tiers, but became
less and less feasible in the higher tiers due to the large increase in cost and decrease in reliability (Higher
LLP). In this approach, the overall system reliability and energy dump were examined in scenarios where sev-
eral households are interconnected, hence sharing their energy in order to minimize dump and eliminate the
energy deficit. The main idea is to compare the system’s performance over a year as the number of intercon-
nected households increases, to the performance of a single household over several tiers.

5.2. Modeling

The architecture and modeling of the interconnected households differs from the modeling of a single house-
hold. Due to the sharing of electricity between households, the number and rating of the converter increases
to a safe and efficient power flow between the components in each household, and among the different house-
holds. In this section, the system topology and modeling of the components is explained.

5.2.1. System architecture

To interconnect different households, a common high voltage DC-bus needs to be installed to handle the accu-
mulated power generation from the various PV arrays, the low voltage generated by each household is boosted
to a higher voltage through a bi-directional HV/LV DC/DC converter. Meanwhile, within each household, a
DC/DC converter connected to every component regulates and stabilizes the power flow to keep the system
running at the best efficiency. Figure 5.1 below shows the typical topology for a household in an interconnected
approach.
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Figure 5.1: Household system topology during interconnectivity

5.2.2. System sizing

The first step in the performance modeling of interconnected households is to select the size of each based
on certain criteria. In the previous chapter, an optimal size was obtained for each tier based on the δLLP

δCost
slope showing that at a certain point, and was chosen as the operating system size. However, the pareto front
obtained showed that there is a certain flexibility given to the user depending on which of the three objectives
is the most important. For example, if the LLP is required to be 0% by the user, a certain optimal system size
can be selected from the pareto front, at the expense of a high system upfront cost. If a high battery lifetime is
the most crucial criteria, then the PV and battery combination with the highest battery lifetime can be chosen.

In this study, the component sizing for the interconnected approach was based on selecting the SHS size
for each household where in the stand-alone case, an LLP = 10%, is achieved. The 10% LLP, which is the limit of
the constraint set in section 4.2.3, is expected to drop as the number of households increase due to electricity
sharing. The tables below show the system sizes for each location for all tiers where an LLP = 0.1 is obtained.

Table 5.1: District of Pune: System sizes with 0.1 LLP for all tiers

Tier
PV Battery PV conv. Load Battery LLP

[Wp ] [Wh] [W] conv. [W] conv. [W] [-]
1 20 60 17 12 17 0.08
2 80 190 69 51 67 0.097
3 350 680 300 154 273 0.095
4 1450 2510 1243 1670 1697 0.1
5 3450 5240 2957 3081 2859 0.1
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Table 5.2: East Khasi Hills: System sizes with 10% LLP for all tiers

Tier
PV Battery PV conv. Load Battery LLP

[Wp ] [Wh] [W] conv. [W] conv. [W] [-]
1 30 50 26 12 25 0,088
2 100 200 86 51 85 0,093
3 360 850 3010 154 282,0 0,092
4 1570 3330 1350 1670 1700 0,096
5 4150 6750 3565 3081 3455 0,099

Table 5.3: N’Djamena: System sizes with 10% LLP for all tiers

Tier
PV Battery PV conv. Load Battery LLP

[Wp ] [Wh] [W] conv. [W] conv. [W] [-]
1 20 50 19 12 19 0,093
2 70 190 67 51 66 0,089
3 280 690 268 154 242 0,097
4 1230 2430 1179 1670 1659 0,100
5 3020 5010 2894 3081 2797 0,101

Hence, in the case studies, the component sizes of each household were selected as shown in the tables, to
study the effect of the interconnectivity on the system performance.

5.2.3. Control strategy

The main idea behind the interconnected approach, is to allow sharing of the electricity generated. This ben-
efits the household community in several ways. First the energy dump that was getting produced by a house-
hold during the stand-alone case discussed in chapter 4, can now be sent to the DC HV-bus, and supply an
other household that is at an energy deficit at that moment. Moreover, as the battery are also able to supply
electricity, even if the aggregated energy dump by the households at a certain moment t is not able to satisfy all
the energy deficits, the batteries from all the households can help satisfying it. As a result, at each time instant
t, less households will be at an energy deficit, thus reducing their LLP. The equations and control methodology
used in this approach are shown below:

Figure 5.2: Interconnected approach: Case initialization flowchart

In flowchart 5.2 above, the first few steps in the algorithm are shown. First, the net output of the PV module
Pout is obtained from the location and meteorological data. Then, the load profile for the tier and the number
of households are taken as inputs to generate the diversified load profiles for each household. Finally, using the
load profiles, module output, and PV array size for each household, the excess and deficit arrays at each instant
’t’for each household can be obtained as shown in the stand-alone case. The rated power of the converter for
the battery, PV array and DC loads is also obtained for each household.
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Figure 5.3: Interconnected approach: Iterative flowchart for parameter outputs

After the initialization of the model, the iterative loop over the range of time steps begins. As shown in 5.3,
at every minute ’t’, the LLP, energy dump and energy fail Efail for each household ’h’ is calculated. The Efail, as
explained in flowchart 3.22, is the amount of energy deficit remaining that neither the household’s PV array
nor the battery Ebatt can supply.

For : Pout,t +Ebatt,t −Loadt < 0; Efail,t = Loadt − (Pout,t +Ebatt,t) (5.1)

Hence, every household that is not able to satisfy the whole load at that instant ’t’, while output a certain
amount of Efail 6= 0, and an LLP value of 1 at that instant. Then, at that same time step, the energy surplus by the
households is equalized with the energy deficits to reduce the energy dump and avoid having any household
with a Efail 6= 0 in the community, minimizing the average LLP. The equalization algorithm is explained below.
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Figure 5.4: Interconnected approach: Energy surplus and deficit equalization flowchart

The energy equalization algorithm shown in the figure above is the most important step, and is the essence
of the interconnected households topology. In this step, the energy sharing between households to zero-out
the overall energy surplus and deficit is modeled. First, the different parameters that were calculated for each
household in the previous step are taken as an input. Then, the dump of all the households is summed and acts
as the primary measure to eliminate the energy deficit. In the modeled control strategy, an iterative approach
is used where the energy dump feeds the households with an energy deficit in ascending order.

E f ai l = [E f ai l ,1,E f ai l ,2, ...E f ai l ,h]; W her e E f ai l ,i ≤ E f ai l ,i+1 (5.2)

Thus, the household with the lowest energy deficit is the first to be supplied with the surplus to zero-out its
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Efail and then check the next household. Prioritizing the households with the lowest Efail minimizes the total
number of households with an energy deficit, hence have an LLP = 0 at that instant. The secondary approach
is employed when the total energy dump is consumed before all the energy deficit is satisfied. In this step, the
available battery storage of the households that are able to supply energy is used to cover the remaining deficit.
The household with the highest available energy in their battery is prioritized in energy supply.

Ebat t = [Ebat t ,1,Ebat t ,2, ...Ebat t ,h]; W her e Ebat t ,i ≥ Ebat t ,i+1 (5.3)

The equalization process ends either when the Efail of all households is zeroed-out, or when Ebatt reaches
its lower limit and cannot supply any more. At that point, any household that still has an energy deficit keeps
an LLP = 1, while the others have an LLP = 0. The process is then repeated for the next time step.

In figure 5.5 below, the performance of the control strategy is shown for a community of two households
over a period of 1000 minutes, or 16 hours. The figure, split into 3 synchronized graphs. The top graph shows
the change in battery capacity for each household Ebatt1 & Ebatt2, as the load of each household changes.
The dynamic output of the PV modules is also plotted in green to evaluate the behaviour of the batteries. The
middle graph simply represents the SoC of each of the batteries, where the lower limit is 0.2 as was set by the
battery model. The bottom graph illustrates the output parameters of each household, which are the energy
dump and energy fail E f ai l .

Figure 5.5: District of Pune: Graph showing the energy sharing between two households in tier 3

In the first part of the timeline, from minute 331200 to 331600, the PV output is zero, as it is night time.
However, both households have a certain load represented by the blue and orange lines. The battery capacity
and SoC of both batteries is decreasing until reaching the lower limit, where the energy fail goes from zero
in the bottom graph to the same value of the load (blue and orange lines in the bottom graphs). On minute
331700, when the PV output becomes higher than the loads, E f ai l drops to 0, and both batteries start charging
using the excess energy. At time = 332000, both batteries reach full capacity, and the energy dump can be seen
rising from its 0 value to match the value of excess energy (purple and yellow curves).
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5.2.4. Assumptions
The interconnected architecture modeled in this study was based on the practical modeling of each of the
components as shown in chapter 3, the control strategy explained in the previous section shows how the en-
ergy sharing takes place. However, some assumptions had to be taken during the modeling process and are as
follows:

• No transmission losses were taken into account.
• No priority for energy sharing was given to houses in direct proximity, the hierarchy was based as shown

in figure 5.4.
• The battery & battery converter efficiency were assumed to be constant.
• The battery lifetime was not taken into consideration.

5.3. Case Studies

In this section, some case studies were made to illustrate and analyze the effect of interconnectivity on the
overall sizing, performance, and cost of the interconnected systems of the different households. The purpose
of these studies is to examine the variation in the average system size and LLP of the different households when
they are part of a microgrid as opposed to the stand-alone situation, and how the increase in the number of
households affects the above-mentioned parameters.

5.3.1. Homogeneous inter-connected households

The first case study involves a set of n households that are all part of the same energy tier. For example, a
microgrid consisting of 5 households that all have a tier 4 load profile as discussed in section 4.1. In order
to avoid having the same load peaks and load profiles, the load profile was shifted by a number of days for
each day, hence maintaining the same characteristics, but avoiding common peak points and patterns, hence
creating some diversity in the household community. Figure 5.6 below shows an example of two weekly load
profiles where the load was shifted by two days.

Figure 5.6: Two tier 4 households with a shift of a few days in the load profile
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In the figures below, LLP, energy dump and E f ai l are represented for the case of the district of Pune for each
of the tiers. As summarized in table 5.1, the value of the households’ SHS size for each tier was set to have an
LLP of 10% in the stand-alone case to evaluate the change as the number of households grows until 50.

Figure 5.7: Homogeneous community Tier 1: LLP, Edump & Efail VS No. Households
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Figure 5.8: Homogeneous community Tier 2: LLP, Edump & Efail VS No. Households

Figure 5.9: Homogeneous community Tier 3: LLP, Edump & Efail VS No. Households

103



Figure 5.10: Homogeneous community Tier 4: LLP, Edump & Efail VS No. Households

Figure 5.11: Homogeneous community Tier 5: LLP, Edump & Efail VS No. Households
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Figures 5.7 through 5.11 show the same trend in the average LLP per household, average energy dump
and E f ai l . The LLP in all tiers decreases by around 30-40% from the range of 1 households up until 15-20
households. The average energy dump and E f ai l show the same decreasing trend. However, the average
energy dump decreases very little (maximum decrease of 5% in tier 2), which E f ai l ranges greatly between 3 to
45%. Another important point is the saturation point of all parameters as the number of household increases.
In all tiers, all three parameters seem to stabilize after reaching 25 households, showing that even with an
even large community, the LLP and E f ai l do not reach 0. A possible interpretation for this behavior is the
high similarity between the household loads. The load profile is the same for all households, with a shift
of a few days in between each. After a certain number of households, the aggregated load profile reaches a
homogeneous pattern that even the load shift cannot diversify it greatly.

Figure 5.12: Load comparison between 1 household and 50 households.

Figure 5.12 above shows that pattern over a week. In blue, the aggregated shifted load of all households is
plotted, while in orange, the load of one household is shown. Both load profiles show the same overall pattern
where the single load is a fraction of the larger load, however, the peaks take place at almost the same time.
Hence, the 50 household community can be compared to one large household with the aggregated load profile,
explaining the reason for the saturation of the parameters.

5.3.2. Heterogeneous households

In this case study, an analysis on a set of interconnected and heterogeneous households is conducted. The case
is similar to the homogeneous case, but in this situation, each of the households in the community is assigned
a random load profile from the 5 tiers, and the system size to achieve a 10% LLP in that tier in a stand-alone
architecture. As observed previously, the LLP and energy dump reach a saturation point after a certain No. of
households. Hence, in this case, the number of households was limited from 1 to 15.
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Figure 5.13: Heterogeneous interconnected case: average LLP and Efail for 1 - 15 households.

In the top graph in figure 5.13, the orange curve shows the average tier Ti per household. For example, for 5
households where two are of tier 2, and three are of tier 5, the average tier is Ti = 19

5 = 3.8. The blue curve shows

the average LLP per household. The average LLP seems to increase with an increasing Ti for a low number of
households, but then stabilizes even if Ti increases when the No. of households is above 10. The same trend
can be observed for E f ai l , which is heavily affected by Ti at first, but then declines irrespective of the value of

Ti.

5.4. Conclusions

The interconnected methodology presented in this chapter showed that energy sharing among households,
especially in the higher tiers, is highly beneficial. The homogeneous case study of the district of Pune, where
the LLP, energy dump and E f ai l were observed as the number of same-tier households increases showed a
decrease in the average LLP per household, as well as the average E f ai l . The decrease rate was the highest
for tiers 4 & 5, where the LLP dropped by 30 and 45% respectively. Moreover, E f ai l dropped by 28% in tier 5.
In the higher tiers, this architecture proved to be a good alternative for the stand-alone approach. In tier five,
in a stand-alone topology, a 3900 Wp array and 5920 Wh battery capacity is required to achieve a 6% LLP at a
cost of 25500$. While a combination of 3450 Wp/5240 Wh, only is needed in an interconnected topology to
achieve the same reliability while reducing the cost by 10%. The heterogeneous case showed similar results as
the homogeneous study. Although, in this case, due to the variation of the household tiers, the average LLP
and E f ai l were highly affected by the average tier Ti when the total number of households is below 10.
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6
Conclusions & Recommendations

In this thesis, two optimization methods were examined to optimize the SHS size in the multi-tier framework.
Case studies were made to analyze the effect of the meteorological data on the system. Furthermore, the feasibility
of the stand-alone SHS approach was examined for all the tiers, followed by a different approach: household
interconnectivity. In this chapter, the conclusions of the study are presented, followed by recommendations for
further research.

6.1. Conclusions

The conclusions of this thesis are drawn by answering the research questions raised in chapter 1:

What are the best modeling and optimization strategies to optimize the size of a SHS vis-à-vis the most
important parameters, and optimization methods?

1. After having examined several electrical topologies used in renewable energy systems, the DC-coupled
topology was opted for as the most feasible, due to the fact that all the system components in a SHS are
DC, notably the PV array and battery storage. Moreover, most appliances nowadays are becoming highly
efficient, DC powered devices.

2. The most important parameters identified in terms of optimizing the system were:

• The system upfront cost, including the replacement costs throughout the project lifetime.
• The system’s reliability, quantified via the loss of load probability or LLP.
• The battery lifetime, which takes the largest fraction of the system upfront cost.
• The energy dump, which needs to be minimized to avoid over-sizing the system.

3. Conventional sizing methods typically rely on tough estimations based on the user’s expertise, such as
the sizing factor Sf and the Days of Autonomy (DOA). These methods were proved to be highly unreliable
ineffective when proper system sizing is required as highlighted in section 3.5. The test study case in
figure 3.27 showed that for 2 DOAs, a battery size of 3450 Wh is needed. During the optimization in
chapter 4, the optimal battery size for a 1% LLP was found to be 1270 Wh, hence a decrease of 63%.

4. Two optimization methods were demonstrated in this study, the classical iterative technique, and an
evolutionary heuristic multi-optimization technique called the Genetic Algorithm (GA). The iterative
method, although more effective than conventional methods, became complicated when increasing the
system sizing complexity and addition of parameters. Moreover, this approach proved to require a lot of
computational time which depicted its impracticability. On the other hand, using the GA, the multiple
parameters along with the constraints were implemented to find the optimal size that would abide to all
the desired criteria.

What is the methodology that can be applied to all tiers to obtain the optimal system size that will be able
to cope with the household demand? And at what point does the SHS stand-alone approach become unfea-
sible?

1. The methodology to obtain an optimal system size for the different tiers was organized as follows:
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• Building practical models for the different components in the SHS which consist of the PV array,
battery storage, and DC/DC converters.

• Designing a control strategy that links the different components and tests their performance over
a yearly simulation to obtain the desired system parameters: LLP, dump, cost, and battery lifetime.
As shown in flowchart 3.22.

• Formulate the objective functions and constraints for the system optimization:

– Objective functions:

¦ Minimize cost: Wp,PV ×QPV +CB ×QB + (SC,Battery +SC,PV +SC,Load)×QC

¦ Minimize LLP: LLP = tdownti me
Ttot al¦ Maximize Battery lifetime: From battery lifetime polynomial.

– Constraints:

¦ LLP ≤ 10%
¦ EDump ≤ 2×Yearly load

• Implementing the control strategy and system functions into the GA, through which the objective
functions were targeted to find the optimal system size.

2. The optimal system sizes obtained from the three case studies, summarized in tables 4.7, 4.9 & 4.11
show that for the lower tiers, a stand-alone SHS is ideal to improve the quality of life of households at
an affordable cost. While for higher tiers, due to the large increase in loads, this approach is unfeasible
due to the large price and lower reliability. The table below highlights the results obtained. It can also be
noted that the system sizes differ in each of the tiers due to the difference in sun abundance. N’Djamena,
which has an ESH of 6.4, the highest among the areas, requires a smaller SHS compared to East Khasi
Hills and Pune, which have an ESH of 4.7 and 5.6 respectively.

Table 6.1: Stand-alone SHS sizing summer for all locations in tiers 2 & 5

PV Battery PV conv. Battery Cost LLP Lifetime
[Wp ] [Wh] [W] conv. [W] [USD] [-] [Years]

Tier 2
N’Djamena 70 250 67 66 851,2 0,012 6,3

Pune 110 260 95 93 922,6 0,012 6,4
East Khasi hills 80 460 69 67 991 0,025 12,5

Tier 5
N’Djamena 3800 6090 3642 3531 24486,3 0,015 6,3

Pune 3900 5740 3345 3237 25299,3 0,052 5,5
East Khasi hills 5100 7850 4381 4255 33392 0,052 5,9

3. The interconnectivity approach, was tested as an alternative to the stand-alone architecture, where sev-
eral households are connected together to share their electricity generation and demand. This method
proved to be very feasible in terms of reducing both the average LLP and energy dump among the house-
holds. Hence, for smaller SHS sizes per household, a more reliable and energy efficient system was ob-
tained.

• The homogeneous case where all the household community had the load profile from the same
tier showed that for system sizes where 10% LLP would be achieved in a stand-alone architecture,
the LLP could drop by as much as 45% and E f ai l by 28% when energy sharing takes place.

• In the heterogeneous case where the load tier of each household was set randomly and was differ-
ent from the others, the average LLP and E f ai l showed a low sensitivity to the number of house-

holds and high dependence on the average tier Ti when their total number is below ten, but then
exhibited a similar behaviour to the homogeneous case.

6.2. Recommendations and future work

In the following section, recommendations on further research on the topic of SHS optimization are presented:

• First, in further work, it would be recommended to increase the complexity of the component models
such as the battery storage, to improve the accuracy of their performance.

• The transmission and miscellaneous losses should be modeled in future works to improve the perfor-
mance of the model.

• More cases should be examined in the interconnected approach, notable in the heterogeneous case,
where not only the number of households is being changed, but also the load profile tiers and system
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size of each household. The Genetic Algorithm could be also applicable in this case, where the optimal
size of each household is obtained to minimize the average LLP, dump, E f ai l and overall cost.

• The battery lifetime should be taken into account in the interconnected approach, which is expected to
endure a large variation to the increase in throughput due to the energy sharing.

• The upfront cost depends heavily on the discount rate, and cost forecast for the battery technologies. A
more accurate system cost study should be conducted where these two factors are addressed in more
detail.

• A more elaborate cost sensitivity analysis should be performed, where the effect of changing the prices
of the different system components would be analyzed.
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A
Battery lifetime coefficients

Table A.1: Polynomial coefficients for Lead-acid and LifePO4 batteries lifetime curves [65].

Coefficients Flooded Lead-acid LifePO4
p0 2,08E+04 5,00E+04
p1 -9,83E+04 -7,03E+04
p2 2,13E+05 2,13E+05
p3 -2,19E+05 3,09E+05
p4 8,66E+04 -1,56E+05
pl0 -3,911 -2,81
pl1 0,197 0,154
pd0 2,45E+03 6,49E+03
pd1 -1,17E+04 -9,14E+03
pd2 2,54E+04 -1,69E+04
pd3 -2,64E+04 4,02E+04
pd4 1,07E+04 -2,03E+04
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