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Intensive studies have been conducted to identify the most suitable
architecture for high-performance packet switches. These architec-
tures can be classified by queuing schemes, scheduling algorithms
and switching fabric structures. The crossbar based switching fabric
has been widely agreed to be the most suitable one, for its low cost,
scalability and native multicast support. Large numbers of com-
mercial implementations and literature studies have been conducted
on the unbuffered crossbar switching architecture. Due to the re-
quirement of the centralized scheduler, scheduling algorithms in the
unbuffered crossbar have generally high complexities. This leads to
time-consuming scheduling processes that prevent the unbuffered ar-
chitecture from scaling up with the modern optical link operating at
the Gb/S range. The buffered crossbar architecture has been pro-
posed to overcome the scheduling complexity bottleneck faced by
the unbuffered crossbar. The introduction of cross point buffers de-
couples the centralized scheduling process and lowers the scheduling
complexity. However, the drawback of the buffered crossbar lies in
the fact that it requires N2 expensive on-chip memories, N being
the size of the switch, limiting the scalability of the buffered cross-
bar architecture. To provide the scheduling simplicity brought by

the buffered crossbar while having a cost close to the unbuffered one, the partially buffered crossbar ar-
chitecture has been proposed. With the combination of advantages of the previous two architectures, the
Partially Buffered Crossbar (PBC) is deemed as one of the competitive candidates for next-generation
switching architectures. However, the previously proposed algorithms did not fully exploit its potential. In
this thesis, we: i) propose a unicast scheduling algorithm that further pushes the performance of the PBC
switch under various non-uniform traffic settings, while using as few as 2 internal buffers per output. ii)
study the multicast traffic support by the partially buffered crossbar switch and come up with an effective
multicast scheduling algorithm.
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ric has been widely agreed to be the most suitable one, for its low cost, scalability and native
multicast support. Large numbers of commercial implementations and literature studies have
been conducted on the unbuffered crossbar switching architecture. Due to the requirement of
the centralized scheduler, scheduling algorithms in the unbuffered crossbar have generally high
complexities. This leads to time-consuming scheduling processes that prevent the unbuffered
architecture from scaling up with the modern optical link operating at the Gb/S range. The
buffered crossbar architecture has been proposed to overcome the scheduling complexity bottle-
neck faced by the unbuffered crossbar. The introduction of cross point buffers decouples the
centralized scheduling process and lowers the scheduling complexity. However, the drawback of
the buffered crossbar lies in the fact that it requires N2 expensive on-chip memories, N being the
size of the switch, limiting the scalability of the buffered crossbar architecture. To provide the
scheduling simplicity brought by the buffered crossbar while having a cost close to the unbuffered
one, the partially buffered crossbar architecture has been proposed. With the combination of
advantages of the previous two architectures, the Partially Buffered Crossbar (PBC) is deemed
as one of the competitive candidates for next-generation switching architectures. However, the
previously proposed algorithms did not fully exploit its potential. In this thesis, we: i) propose a
unicast scheduling algorithm that further pushes the performance of the PBC switch under vari-
ous non-uniform traffic settings, while using as few as 2 internal buffers per output. ii) study the
multicast traffic support by the partially buffered crossbar switch and come up with an effective
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Introduction 1
This chapter provides a minimal background and outlines the motivation of this

thesis.

1.1 Overview

The Internet has proven to be the most universal, scalable data communication network
ever. It supports various applications ranging from pure data transmission to real-time
video conferencing. Comparing to telephony networks that use circuit-switching technol-
ogy [1], the Internet employs packet-switching [2] technology and statistical multiplexing
[3] to improve the efficiency of link usage between two nodes. A link is shared among a
number of users and the cost of transmission is cheaper than that of the circuit-switched
networks. However, the share of links leads to a serious problem known as network con-
tention. The policies that solve contention are known as scheduling algorithms, forming
one of the most important research topics in the field of networking. The advances of
scheduling algorithms contribute largely to the prosperousness of the Internet today.

The Internet is growing rapidly. From its early days in the 1960s, the number of
hosts gets doubled every 15 months, and the network traffic load gets doubled every 12
months [4]. The dense wavelength division multiplexing (DWDM) technology available
in mid 90s further powers the Internet transmission link capacity with almost unlimited
bandwidth by allowing different colors of light traveling in the same link. As link speed
reaches the order of Gigabit per Second (Gb/S), the limiting factor of the Internet
performance has shifted to the switching capacity of the routers. Since the Internet is
structured hierarchically (shown in Fig. 1.1), the traffic density aggregates from the end
users along the path to the core routers, demanding the core routers to have immense

Figure 1.1: The hierarchical structure of the Internet.

1



2 CHAPTER 1. INTRODUCTION

switching capacity. As concluded in [4], the maximum capacity of core routers must grow
at the same rate as the growth of Internet traffic. Hence, the switching capacity of core
routers has to be improved continuously to meet the demand of constantly increasing
network traffic.

For the past two decades, different switching architectures have been proposed and
studied [5] [6] [7]. Among them, the crossbar based switching architectures have been
widely agreed as the most suitable ones, hence forming the major focus of literature
studies [8] [9] [10]. Crossbar switches can be characterized by the memory placement
and different queuing strategies. The input-queued (IQ) switches have received intensive
studies due to their simple hardware implementation and low requirement on memory
access rate. The IQ switches with single FIFO per input require almost no scheduling al-
gorithm, however, suffer from the well-known head-of-line (HoL) blocking issue [11]. The
HoL blocking raises when a cell destined to a free port gets blocked by another cell that
goes to a congested output, limiting the throughput of IQ-FIFO switches to only 58.6%
[11]. To address the HoL issue, researchers proposed the queuing scheme known as the
virtual-output-queues (VOQs), where N separate FIFOs are kept at each input port, one
per output. While introducing an affordable hardware overhead, the VOQ completely
eliminates the HoL blocking issue. With the VOQ queuing scheme, the IQ switches need
more complex scheduling policies to resolve packet contention. The maximum-weight-
matching (MWM) algorithms, have proven to achieve 100% throughput and are stable
under any admissible traffic pattern [12]. While delivering the optimum performance,
the MWM algorithms are too complex to be implemented into a hardware circuit and
hence possess only theoretical values. By comparing to the MWM algorithms, maximal
size matching (MSM) algorithms are much simpler and feasible to be translated into a
hardware implementation. Maximal size matching algorithms operate on iterations to
increase the number of connections between the switch inputs and outputs. Represen-
tative examples of MSM algorithms are the parallel iterative matching (PIM) [13] and
the iSLIP [14] algorithm, with corresponding commercial implementations [15] [16]. The
disadvantage of MSM algorithms mainly comes from their poor performance dealing with
non-uniform traffic patterns. In a nutshell, the scheduling algorithms in the IQ switches
are either too complex to be practical or too simple to deliver satisfactory performance.
The combined-input-cross-point-queued (CICQ) architecture is then proposed to over-
come the bottleneck faced by the IQ switches. Through the introduction of the internal
buffers deployed at each fabric cross point, the CICQ switch is enabled with distributed
input schedulers (IS) and output schedulers (OS), operating in parallel to speed up the
scheduling process. Each input scheduler select one cell from N VOQs and transfer it
into the internal cross point buffer, while the output schedulers examine the internal
buffers and move the selected cells to the outgoing links. Various scheduling algorithms
are proposed for the CICQ switch, such as round-robin based input and output sched-
ulers or weighted schedulers that favor long queues or old cells [17]. In general, the
CICQ switch delivers performance beyond that of the IQ switch. Despite the advantages
described just now, the CICQ switch has high hardware cost due to the expensive N2

cross point buffers, where N is the number of ports of the switch, forming a limiting
factor to the scalability of the CICQ architecture.
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Figure 1.2: The parrtially buffered crossbar makes a good compromise between an un-
buffered crossbar and a fully buffered crossbar, resulting in a significantly reduced hard-
ware cost. However, the scheduling algorithm that can take full advantage of the PBC
switch has not yet been addressed.

1.2 Motivation and Problem Statement

On one hand, the IQ switch has the simplest hardware design but a poor performance. On
the other hand, the CICQ switch delivers qualified performance and scheduling simplicity,
but has a poor scalability due to the quadratically increasing requirement of cross point
buffers. Hence both architectures are less appealing in terms of candidate to next-
generation switching architectures. The partially buffered crossbar (PBC) architecture
[18] combines the advantages of both the IQ switch and the CICQ switch, providing
satisfactory performance close to the CICQ switch and a relatively cheap hardware cost
close to the IQ switch (see Fig. 1.2). Instead of maintaining N2 buffers at each cross
point, the PBC switch keeps a small number, B(1 ≤ B � N) of shared internal buffers
at each fabric output, reducing the number of the internal buffers significantly. On the
other hand, these shared internal buffers preserve the feature of distributed schedulers
of the CICQ switch. Due to the fact that the number of the internal buffers is less
than the number of the input ports, a mapping from N to B has to be carried out.
Therefore, the grant schedulers are introduced and in charge of the access to the internal
buffers. The scheduling process in the PBC switch is also a combination of that from
the IQ switch and the CICQ switch. On one hand, input and output schedulers operate
independently and concurrently similar to that of the CICQ switch. On the other hand,
the grant decisions are produced using the request-grant-accept (RGA) handshaking
that resembles the scheduling of the IQ switch. A class of round-robin based algorithms
have been proposed, termed as (distributed-round-robin) DRR, DROP and (prioritized
DROP) DROP-PR [18]. All the three algorithms have round-robin based input and
grant schedulers, and a credit based mechanism to allow communication between input
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schedulers and grant schedulers. Previous study showed that DROP-PR outperforms
the rest and its latency converges to the output-queued (OQ) switch under Bernoulli
i.i.d arrivals. Yet, using 8 internal buffers per output, it also achieves higher throughput
than RR-OCF of the CICQ architecture under non-uniform traffic. However, we argue
that RR-OCF is not the best algorithm of the CICQ architecture. Therefore, we seek
for an algorithm that is capable of achieving a performance close to the LQF-RR, one
of the best algorithms of the CICQ switch, yet using fewer internal buffers. This thesis
addresses this issue and proposes an optimal unicast-scheduling algorithm for the PBC
architecture.

Alongside the unicast scheduling, multicast support by backbone routers is becoming
increasingly important due to the modern development of Internet applications, such
as voice-over-IP (VoIP), network television and video conferencing. There have been
considerable studies done on multicast support by the IQ and the CICQ architectures and
on integration of multicast and unicast schedulers. Yet, little has been said regarding the
multicast capability of the PBC switch. In this thesis, we also conduct an experimental
study of the multicast capability of the PBC switch, and we compare the PBC switch
performance to that of the IQ and the CICQ switch. The results suggest that the PBC
architecture is capable of outperforming the IQ and CICQ architectures with a simple
round-robin based multicast-scheduling algorithm.

1.3 Thesis Organization and Contributions

The layout of this thesis is as follows: in Chapter 2, we review the existing crossbar
based switching architectures, demonstrating their advantages as well as shortcomings.
Chapter 3 studies the unicast scheduling of the PBC switches, in which we propose a
novel algorithm that delivers satisfactory performance under non-uniform traffic with 2
internal buffers required. Chapter 4 presents an experimental study on the multicast
support of the PBC switches, and describes the multicast PBC switching architecture
and a round-robin based scheduling algorithm. Finally Chapter 5 concludes this thesis
and gives an outlook to some future research topics.
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The basic, yet important component to a packet-switching communication network

is the router. The design of routers has evolved for the past two decades, and differ-
ent packet-switching architectures have been extensively studied and implemented

into commercial products. This chapter introduces the packet-switching paradigm, and
describes the existing switching architectures and scheduling algorithms.

2.1 Packet Switching Technology

Communication networks can be classified into two categories: the circuit-switching [1]
and the packet-switching [2] networks. The circuit-switching technology is mostly seen
in the telephone and telegraph network. When a communication initiated, a dedicated
channel (a connection, or a circuit) with a constant bandwidth was established between
two end users through the network. Regardless of the actual usage, the channel will be
reserved until the communication is finished. This type of technology network is efficient
when a constant-rate data is transmitted, for example voice calls and transmission that
has its duration of communication longer than that of establishing the circuit.

Within the packet-switching paradigm, data is segmented and traverses the network
in the form of small units, termed as packets. Upon arrival at the destination, packets
are re-assembled into a meaningful data representation. Fig. 2.1 shows an example of a
packet-switching network. As shown in the Figure, in contrast to the circuit-switching
network, a link is shared among several users by taking the advantage of unused band-
width, known as statistical multiplexing [3]. Multiplexing different users on a single link
improves the efficiency of link bandwidth utilization, however, gives birth to another

Figure 2.1: An example of packet-switching network.
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6 CHAPTER 2. BACKGROUND

Figure 2.2: A 4x4 crossbar switching fabric.

serious problem, known as network contention. Contention rises when multiple packets
desire to travel through a same link at the same time, however only one packet can be
transmitted. Packets that cannot pass through the link in current time slot have to wait
and keep contending in future time slots. Hence the queuing system is required in the
packet-switching network, and the existence of the buffering system is one of the key
differences between circuit-switching and packet-switching networks.

There are two existing packet-switching technologies, the Asynchronous Transfer
Mode (ATM) [19] and the Internet Protocol (IP) [20]. The ATM technology employs
fixed-length packets, named as cell. On the other hand, the IP technology adopts packets
with variable length. The ATM is also known as a connection-oriented technology,
where a virtual circuit is set-up before the actual transmission, therefore quality of
service (QoS) is possible to be achieved with ATM technology. The resemblance to a
circuit-switching network that requires a setup and teardown overhead makes the ATM
technology less efficient in handling short bursts of data. The IP technology, on the
other hand, is completely connectionless, making it the dominating packet-switching
technology adopted in modern data communication networks. Though variable-length
packets are allowed in the IP network, the common implementation of IP routers will
only process fixed-length data unit. Throughout this thesis, unless stated otherwise, we
use the terms cell and packet to refer to the same entity, namely fixed-size data unit.
Variable length packets are segmented into fixed-size units on their entry to the router
and re-assembled back to the original packet at when departing from the switch to the
outgoing link.
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Figure 2.3: An NxN Shared-Memory Switch.

2.2 The Switching Architectures of Routers

The design of switching architectures has evolved over the years, and different architec-
tures have been studied and implemented such as simple bus based switching architec-
tures [21], multi-stage switching [22] architectures and crossbar based architectures. The
crossbar based architectures are regarded as the most suitable ones for their scalability,
non-blocking property, low implementation cost and simple multicast support. Fig. 2.2
depicts a 4x4 crossbar fabric. Similar to what was shown just now, an NxN crossbar
fabric consists of N input and output lines, and N2 crosspoints. A connection between
input i and output j is made simply by closing the crosspoint at (i,j). The placement of
switch queueing mechanism is a crucial factor that determines the performance of cross-
bar switches. In the following sections we will present different crossbar switch designs
featured by their memory placement.

2.2.1 The Shared Memory Switch

As shown in Fig. 2.3, the presented switching architecture is known as shared memory
switch [6], where one single piece of memory is used to store packets. For an NxN
switch, the memory has to be able to store up to N incoming packets and putting
up to N packets to the outgoing line each time slot. Assuming a line rate of R, the
shared memory switch has to be equipped with the memory having the bandwidth of
2NR. The shared memory switch has the advantages such as minimized memory for
congestion buffering, providing performance guarantees [23]. However, it is difficult to
build a high performance router from the shared memory architecture due to the fact that
the memory bandwidth requirement cannot be met by the available dynamic random
access memory (DRAM) technology.
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Figure 2.4: An NxN Output Queued Switch.

2.2.2 The Output Queued Switch

The shared memory architecture just discussed above is an example of a class of switches
called the output queued (OQ) switches [24]. The OQ switch has been considered as the
ideal switching architecture for its unparalleled performance. All the packets arrived at
the switch will be immediately switched and placed to a queue located at each fabric out-
put. The output queued switch is also work conserving, achieving the highest throughput
among all the switching architectures. The switch is said to be work conserving if the
outputs will never be idle when there are packets destined to them. The Switches in
the early time of history were designed using the OQ switching model, and the QoS is
also achievable with the OQ architecture [25]. The major disadvantage is that it takes
extremely fast memory and high-bandwidth fabric to build the OQ switches. Fig. 2.4
depicts an NxN OQ switch, we can see that there are no queues maintained at the inputs,
and total N memories (queues) are deployed after the crossbar fabric, one per output.
Within one time slot, at most N packets can arrive at the switch. And in the case where
N packets are destined to a same output port, the memory at the destination port has
to perform N writes from the inputs and one read to dispatch a packet to the outgoing
link. If we assume the link rate is R, then each of the memory should have a bandwidth
of (N+1)R. While the bandwidth requirement is almost halved comparing to that of the
shared memory switch, it is still a function of the switch size, which prohibits the usage
of the OQ switch constructing the modern backbone routers. This has, in turn, caused
the great interest in the input queued (IQ) switches as discussed in the next section.

2.2.3 The Input Queued Switch

Fig. 2.5 shows the structure of an input queued (IQ) switch with FIFO queuing structure.
Different from the OQ switch, the IQ switch buffers the incoming packets at the input
line cards. The line card is then connected to the crossbar switching fabric. During each
time slot, each input port can send only one cell and each output can receive up to one
cell, resulting in a memory access rate of 2R. The further lowered memory bandwidth
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Figure 2.5: An NxN Input Queued Switch with FIFO queues.

Figure 2.6: Head-of-Line Blocking Issue.

requirement enables the construction of switch, using the IQ architecture to support
higher line rate and larger number of ports.

The type of queuing structure in the IQ switch will greatly affect its performance. The
simple FIFO queuing architecture, as shown in Fig. 2.5, causes the head-of-line (HoL)
blocking issue, limiting the throughput of a switch to only 58.6% [11]. For example, a
4x4 IQ-FIFO switch is shown in Fig. 2.6. Input 3 and input 4 are contending for output
4 (shown in red doted line). If the scheduler decides to make the connection between
input 4 and output 4, then input 3 will be blocked since only one cell can be transmitted
to one output in one time. However, the cell behind the HoL cell of input 3 is destined
to the free output 3, which will remain idle because of the HoL blocking. Through this
example, we see that the HoL reduce the potential throughput of this 4x4 switch from
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Figure 2.7: An NxN Combined Input Output Queued Switch with Speedup of S.

100% to 75%. The HoL issue can be completely eliminated by employing a queuing
architecture known as virtual-output-queues (VOQs) [26]. Another way to overcome the
HoL problem is to employ the CIOQ switching architecture with speedup, as will be
discussed in the next section.

2.2.4 The CIOQ switch

A switch with a speedup of S can remove up to S packets from each input and deliver
up to S packets to each output within a time slot, where a time slot is the time between
packet arrivals at input ports. Therefore, for the OQ switch, the S = N , and hence
there is no need to buffer packets at input port. For the IQ switch, the S is equal to
1, requiring buffers only at the input port. For a switch with the value of S between
1 and N , packet buffers are required before switching as well as after switching. This
architecture is known as combined input output queued (CIOQ) switch, as depicted in
Fig. 2.7. The CIOQ switch with a moderate speedup (1 < S � N) has received extensive
studies. Common conclusions indicate that with a speedup between 4 and 5, the CIOQ
switch with single FIFO queue at each input can achieve 99% throughput under Bernoulli
independent identically distributed (i.i.d) packet arrivals. It is first questioned in [27]
and proved, that the CIOQ can be designed to behave identically to the OQ switch
with an internal speedup of 4. Later, in [28], it is proven that a speedup of (2 − 1/N)
is sufficient to exactly emulate the OQ switch. As appealing as it sounds, the cost of
OQ emulation was the use of a more complex scheduling policy called Critical Cell First
(CCF) [28]. This algorithm requires a push-in queuing structure (PIFO) along with
an insertion policy called Last In Highest Priority (LIHP). An attempt to reduce the
complexity of this algorithm was based on Delay Till Critical (DTC) strategy, to reduce
the number of iterations fromN2 toN , along with an algorithm called Group-By-Virtual-
Output Queue (GBVOQ), to reduce the information complexity. Unfortunately, these
two solutions cannot be combined, since they are mutually exclusive. Therefore, these
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Figure 2.8: An NxN IQ switch with VOQ queueing structure.

Figure 2.9: An example of bipartite matching.

results remained of theoretical nature.

2.2.5 IQ Switch with VOQ

Another simple way to avoid HoL blocking problem is to adopt the queuing scheme known
as the virtual-output-queue (VOQ), the IQ switch with VOQ is shown in Fig. 2.8. Instead
of keeping one FIFO, each input now keeps N separate FIFOs, one per output. The HoL
is completely eliminated because a cell will no longer be held by another cell destined
to a different output port. With the VOQ and an appropriate scheduling algorithm, the
IQ switch can achieve 100% throughput [12].
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Figure 2.10: An example of the longest-queue-first (LQF) scheduling algorithm.

2.2.5.1 Scheduling in VOQ-IQ switches

Scheduling in the IQ switch is modeled as the bipartite matching problem. As shown in
Fig. 2.9, the scheduling algorithms have to solve a bipartite graph to find a conflict-free
matching M , due to the input and output contention. If the input i contains any cell
destined to the output j, an edge between the input i and the output j will be drawn on
the graph, denoted as wi,j . The value of wi,j can be either an integer value to represent
the occupancy of the corresponding VOQ or simply a binary value to represent whether
the queue is empty. And the matching M is said to be conflict-free, if all remaining edges
in the graph, have no common vertices. After the scheduling process, the decisions can
be expressed by a binary service matrix S, in which Si,j = 1 denotes the V OQi,j will be
served, otherwise Si,j = 0.

Extensive research has been done to identify algorithms that lead to high performance
of the IQ switch. Generally, a good algorithm will have the following properties:

• Effeciency: The scheduling decisions can be made fairly fast.

• High Performance: A good algorithm will always minimize the latency experi-
enced by cells, and achieve a high switch throughput.

• Fairness: Each queue will eventually be served.

• Simple Implementation: Feasibility of being translated into hardware imple-
mentations.

The existing algorithms for the IQ switching architecture majorly fall into two cate-
gories: the maximum weight matching (MWM) algorithms and the maximal size match-
ing (MSM) algorithms.

The objective of the maximum weight matching algorithm is to produce the service
matrix Smax such that it maximize the sum of a pre-define weight. The mathematical
expression is given as follows:

Smax = arg max(
∑
i,j

wi,jsi,j)



2.2. THE SWITCHING ARCHITECTURES OF ROUTERS 13

where, wi,j express the weight of V OQi,j , and si,j express the service to the corresponding
VOQ. Existing maximum weight matching algorithms for instance, the longest queue
first (LQF), the oldest cell first (OCF) [12], the longest port first (LPF) and the oldest
port first (OPF) [29] , use queue length and waiting time of HoL cell as the weight,
and achieve 100% throughput under any admissible traffic. The major drawback of the
maximum weight matching algorithms is the high algorithm computation complexity
O(N3logN ), which is too slow to support a high bandwidth switch. An example of the
LQF scheduling is given in Fig. 2.10, where the connections are made such that the total
weight in the terms of queue length is maximum.

Another class of algorithms, known as maximum size matching algorithms, produce
service matrix that maximize the number of connections made every time slot. Intu-
itively, a maximum number of connections will lead to a maximum throughput of the
switch. However, as shown in [26], this class of algorithms may lead to instability and
unfairness under admissible traffic. In addition, the maximum size matching algorithms
have a high computational complexity of O(N

5
2 ) [30], yet it is non-trivial to be imple-

mented into hardware circuit, as maximum size matching involves removing previously
made connections to further increase the number of connections. In a nutshell, maxi-
mum matching schemes generally lead to a lengthy searching and augmenting process
to find the optimum solution. Therefore, researchers compromised to the maximal size
matching algorithms (MSM), which forms the major research interest of the IQ switch
scheduling.

The maximal size matching algorithms iteratively increase the number of connections
made in one time slot. However, unlike the maximum matching schemes, once a connec-
tion is made, it cannot be removed later. Within an iteration, the request-grant-accept
(RGA) handshaking is performed to establish connections. The specification of each step
is as follows:

• Request: Each unmatched input sends requests to the outputs for which it has a
queued cell. The request signal can be simply 1-bit binary value or logN bits value
indicating the length of the queue or the age of the HoL cell.

• Grant: Subject to a scheduling policy, each output send a grant to one of the
requesting input.

• Accept: Each input choose one out of all the granting output in compliance with
a specific scheduling policy.

Numerous maximal size matching algorithms have been proposed and studied [31]
[32] [33]. The parallel iterative matching [13] (PIM) algorithm, developed by DEC
Systems Research Center for a 16 ports, 1Gbps switch, serves as the basis of later-
coming algorithms. Fig. 2.11 shows the operation of PIM within one iteration. In the
grant stage, each output randomly picks an input that is requesting and each input
randomly picks a granting output to setup a connection. In the next iterations, those
unmatched ports will start the RGA again to further increase the number of connections.
There are majorly three advantages of the PIM algorithm: i) it converges to a maximal
connections within O(LogN) iterations, ii) the randomness on the grant and accept
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Figure 2.11: Parallel iterative matching algorithm.

Figure 2.12: Round robin matching algorithm.

stage ensures each flow will eventually be served, and hence fairness is guaranteed, iii)
due to the randomness, no state has to be kept by the scheduler and hence no memory is
required. Though the mentioned advantages, the PIM has significant drawbacks. First
it is difficult to be implemented in hardware with high speed, since the hardware must
be capable of selecting randomly the inputs and outputs. Second, PIM behaves poorly

Figure 2.13: The scheduling process of iSLIP algorithm.
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with a single iteration, achieving only 63% throughput [26].

The round-robin matching (RRM) scheduling algorithms replace the random mech-
anism with the round-robin pointers that prioritize the input/output ports. A single
iteration of RRM is depicted in Fig. 2.12. The pointers at each output port help to
select one of the requesting inputs in the order of starting from the current pointed posi-
tion. Similarly the pointers at the input ports help to select one of the granting outputs.
After each grant or accept is performed, the pointer goes to one location beyond the
granted or accepted port. Comparing with the PIM algorithm, the round-robin scheme
has a lower hardware complexity, as the round-robin pointer can be easily implemented
by a programmable prioritized encoder (PPE). And the rotating priority of the pointer
explicitly ensures the fair allocation of switch bandwidth over all the ports. However,
the throughput achieved by a RRM algorithm is similar to that of PIM with a sin-
gle iteration, due to the issue known as pointer synchronization. As can be seen from
Fig. 2.12, the RR pointer of the output 1 and output 2 are both pointing at position 1
that correspondingly prioritize the input 1. Thus, when the input 1 has cells destined
to the output 1 and 2, both outputs will grant to the input 1. However, only one of the
grants can be accepted later, wasting the bandwidth of the other port unnecessarily.

The well-known iSLIP algorithm is based on RRM with a tiny yet significant mod-
ification to the pointer update scheme to reduce the pointer synchronization problem.
The pointer of output in iSLIP algorithm will get an update only when the grant sent
to an input port is later accepted. An iSLIP iteration is depicted in Fig. 2.13, under
the same traffic pattern as the RRM algorithm, the pointers of output 1 and 2 become
desynchronized after the iteration. The if condition added to the pointer update policy
results in the properties of the iSLIP: i)a recent made connection will become the lowest
priority later, since pointers at both input i, and output j gets simultaneously updated,
ii)fairness, each requesting input will be served within N2 timeslots, iii)when the switch
is heavily loaded, the bandwidth is equally spread over all the inputs [26]. Though the
capability of achieving 100% throughput using only one iteration under Bernoulli i.i.d
arrival, iSLIP behaves poorly under non-uniform traffic patterns that emulates the real
network traffic scenarios.

To summarize, the MWM algorithm provides the optimum performance among all,
however difficult to be implemented in hardware. On the other hands, the maximal
size matching algorithms are more practical and possible to implement in hardware, yet
need a couple of iterations to deliver a certain level of performance. Furthermore, as the
line rate keeps doubling every 22 month, it is getting more difficult for the centralized
scheduler to run multiple iterations of RGA handshaking per time slot. To tackle the per-
formance bottleneck faced by IQ switches, alternative switching architectures have been
studied and the buffered crossbar switching architectures are considered as promising
candidates.

2.2.6 The CICQ switch

The combined-input-cross-point-queued (CICQ) architecture [34] has been proposed to
overcome the performance bottleneck faced by the IQ switch. Fig. 2.14 shows the infras-
tructure of the CICQ architecture. Different from the IQ architecture, the CICQ archi-
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Figure 2.14: An NxN CICQ switch with the VOQs.

tecture introduces a small amount of buffer at each fabric cross point, termed as cross
point (XP) buffers. A cell traversing through the CICQ switch will be first transferred
to the internal buffer belonging to the destined output, where the cell gets transferred to
the outgoing link. Maintaining the cross point buffers mainly bring two advantages: i) a
relaxed output contention, allowing multiple inputs to transfer cells into the same output
in one time slot. ii) a distributed manner of scheduling, allowing the design of simple
and effective scheduling policies. Putting it together, the CICQ architecture leads to a
shortened latency experienced by cells, and decoupled scheduling process that increase
the speed at which the scheduling decisions are produced.

For an NxN CICQ switch, there are N input schedulers and N output schedulers.
The efficient placement of the schedulers has been discussed in [35]. At each time slot,
each input scheduler (IS) chooses a VOQ according to a specific input scheduling policy
and transmits the HoL cell of the selected VOQ into the internal buffer located inside
the crossbar fabric. On the other hand, each output scheduler (OS) selects a cell from
all non-empty XP buffers and moves it outside the switch. There has been extensive
studies on the design of scheduling policies for the CICQ architecture [36] [37] [38].
These algorithms generally exhibited performance beyond that of IQ switch.

The simplicity and high performance of the CICQ switch comes at the expense of N2

internal buffers that grows quadratically with the size of the switch, imposing a limiting
factor on the switch scalability. In the next section, we introduce the partially buffered
crossbar (PBC) switching architecture that combines advantages from both the IQ and
the CICQ switching architectures.

2.2.7 The PBC switch

The partially buffered crossbar (PBC) architecture [18] (depicted in Fig. 2.15) has been
proposed aiming at delivering the optimal performance of the CICQ switch, while main-
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Figure 2.15: The PBC switching architecture.

taining a hardware cost comparable to that of the IQ switch. The PBC switch keeps a
small number, B (B � N) of internal buffers per fabric output, reducing the total num-
ber of internal buffers to NB, instead of N2 in the case of the CICQ switch. Similar to
the CICQ switch, the PBC switch has N input schedulers (IS) and N output schedulers
(OS) located at each fabric input and output. Additionally N grant schedulers (GS) are
introduced managing the access to the internal buffers.

2.2.8 Scheduling in PBC Switches

A scheduling cycle of the PBC switch consists of input and output scheduling phases.
While the output-scheduling phase remains identical to that of the CICQ switch, input-
scheduling phase of the PBC architecture resembles to the scheduling of the IQ archi-
tecture, since the request-grant-accept (RGA) handshaking strategy is adopted to create
a mapping between requesting inputs and available internal buffers. At each time slot,
each input scheduler may request up to N outputs, and requests from all the inputs are
sent to the grant schedulers located at each fabric output. Depending on the scheduling
policy and the availability of internal buffers reported by credit queue (CQ), a grant
scheduler may issue up to B grants to the requesting input ports. Later, each input port
selects and accepts one of the grants and transfers the HoL cell to the internal buffer. In
the mean time, each output scheduler selects a cell from all non-empty internal buffers
in compliance to the output scheduling policy and transfers the cell outside the switch.
While each input can still send one cell in per time slot, the output contention is relaxed
by the presence of internal buffers. Previously, only first-come-first-serve (FCFS) policy
was allowed to be used as the output scheduling policy to secure the in-order delivery of
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Figure 2.16: The input scheduling phase of DRR for a 4x4 PBC switch with B = 2.

cells. In this thesis, we propose a round-robin based output scheduling policy without
compromising the order of delivered cells.

A class of round-robin based input scheduling algorithms have been proposed with an
FCFS output scheduling policy, termed as distributed round robin (DRR), DROP and
prioritized DROP (DROP-PR) [18]. The DRR algorithm adopts fully desynchronized
round-robin pointers on input schedulers, and the grant schedulers behave identically
to the iSLIP algorithm as discussed earlier. The grants issued to an input port, if not
immediately accepted, will be stored and eventually get consumed. The stored credits
then lead to a problem known as credit release delay degrading the performance of DRR
severely. While an input port may receive multiple grants in one time slot, only one
will be returned. It may take up to N time slots before a credit is returned to the
grant schedulers, reducing the rate at which the grant schedulers issue credits to the
other inputs. In Fig. 2.16, both internal buffers of output 4 are empty, yet its credits
are held by input 2 and input 4 but not accepted, resulting in an unnecessary waste of
switch throughput. To reduce the credit release delay, [39] proposed a threshold scheme
that prevent an input port from receiving credits, when the number of stored credits
goes beyond a pre-defined threshold. Furthermore, two augmented versions of DRR
algorithm, DROP and DROP-PR eliminate the credit release delay completely.

As suggested by the name of the algorithms, credits, not accepted by the inputs,
are dropped (forgotten) instead of stored (reset the GQ∗,∗ to zero). Hence, every time
slot each grant scheduler will guarantee to have one credit returned back. Since the
input ports no longer store the credits, the grant scheduler pointers are changed to
be fully desynchronized to avoid performance degradation from pointer synchronization
(also known as static round-robin SRR). The DROP-PR algorithm further improves
the performance of DROP by giving priority to the unloaded output ports. When an
output has no cell in its buffer, its priority bit will be set to 1 and attached to the
credits issued to the input ports. The inputs then favor the credits with priority bit
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Figure 2.17: The input scheduling phase of DROP-PR for a 4x4 PBC switch with B = 2.

being 1 over the normal ones. Hence, empty output ports will have good chances to
become loaded in next time slot. To better show the idea, Fig. 2.17 provides a graphic
view of the DROP-PR input scheduling process. The red dotted arrows represent the
credits with a higher priority. As a result, both the output 1 and output 4, which were
originally empty, become fully loaded after the input scheduling stage. The DROP-PR
algorithm with 8 internal buffers per output converges to the performance of the OQ
switch under Bernoulli i.i.d traffic, regardless of the size of the switch[18]. However, its
performance under non-uniform traffics is less appealing, without a sufficient number
of internal buffers. In the next chapter, we will propose a unicast-scheduling algorithm
that improves the performance of the PBC switch under non-uniform traffic scenarios.

2.3 Multicast Problem

The rapid development of Internet applications, such as IPTV, voice-over-IP (VoiP) and
video conferencing, raises the need of multicast support by the backbone routers. In
contrast to unicast cells, multicast cells may have a number of destinations from 1 to N ,
where N is the number of the output ports of a switch. In fact, supporting multicast
traffic is to design a switch capable of copying one cell to multiple outputs. The crossbar
based switching architectures natively support multicasting, as a cell can be transferred
to multiple output ports simultaneously by closing multiple cross points of the fabric.

The set of destinations of a multicast cell is defined as the fanout set. For an N x
N switch, the total number of possible fanout sets is 2N − 1. Avoiding HoL blocking
completely under multicast context requires 2N − 1 FIFOs per input. This queuing
scheme is known as the multicast VOQ (MC-VOQ) and is impractical to be used in
practice. As a result, researchers proposed to maintain a single FIFO (also referred as
multicast queue ’MQ’) at each input ports. While being a practical scheme, it leads to a
poor performance due to the HoL blocking issue. The k-FIFO queueing scheme is then
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proposed to make a good compromise between 1 and 2N − 1, where a small number, k
of FIFOs are maintained at each input port. It has proven to be an effective solution
that boosts the switch performance with affordable hardware cost. The only overhead
brought by k-FIFO queuing scheme is the introduction of a circuit that maps the total
number of fanout sets into k FIFOs. The mapping is then known as the cell assignment
policy. A good cell assignment policy should have following properties: i) HoL cells
should contain diverse fanout sets that can span over a large number of output ports. ii)
Cells with the same or similar fanout sets should be placed in the same multicast queue.
This reduces the HoL issue and avoids the out of sequence delivery of cells. Different
cell placement policies have been proposed, such as Majority and Split [40], Minimum
Distance Queue (MDQ), Load Balanced Queuing (LBQ) [41], and Modulo [42].

The multicast scheduling algorithms have also been investigated for both the IQ and
the CICQ switching architectures, with either the single FIFO or the k-FIFO queuing
scheme. The idea of fanout splitting was introduced in [43]. When the fanout splitting
is allowed during scheduling, HoL cell in a FIFO is possible to be partially discharged.
Otherwise, the HoL cell can only be discharged when all its destinations are available.
Consider the example in Fig. 2.18. If fanout splitting is allowed, both MQ 1 and MQ 2
can discharge part of the HoL cells, leading to a higher switch throughput. In general,
allowing the fanout splitting will have the switch tend to be more work conserving. The
set of destinations remained after the scheduling is defined as the residue of the fan out
sets. Two disciplines are proposed to deal with the residue distribution, namely the
concentrated and the distributed policies. When the concentrated policy is applied, the
schedule will be made such that the residue will get concentrated onto as few numbers of
ports as possible. When the distributed policy is applied, the residue will be spread over
as many numbers of ports as possible. Take Fig. 2.18 for example, the residue is 2, 3,
if we concentrate it to MQ 1, MQ 2 will discharge the HoL cell completely and expose
the next cell behind. If we distribute the residue over these two MQs, for example 2 on
MQ1 and 3 on MQ2, none of the HoL cells can be fully discharged, limiting the switch
throughput in the next time slot to be 50% only. Apparently, the concentrated policy
will lead to a better performance of the switch, as it tries to fully discharge as many HoL
cells as possible.

Representative multicast scheduling algorithms of the IQ switching architecture are
TATRA [43] and multicast RRM (mRRM) [44]. TATRA is inspired by the popular
block-packing game Tetris and is regarded as one of the state-of-the-art scheduling al-
gorithms. TATRA concentrates the residue and guarantees that at least one cell will be
fully discharged during each time slot. Unfortunately, TATRA is a complex algorithm
and cannot be parallelized, making it impractical to implement in hardware. The mRRM
algorithm, on the other hand, is a simple algorithm that uses round-robin pointers to re-
solve the contention. Different from what we have discussed in the unicast scheduling, the
pointers of mRRM are fully synchronized to concentrate the residue and discharge cells
completely. For the multicast scheduling in CICQ switching architecture, the multicast
cross point round robin (MXRR) algorithm was proposed in [45]. The MXRR employs
fully desynchronized pointers in the input schedulers to provide a diverse exposure of
HoL cells, and uses fully synchronized pointers in the output schedulers to discharge cells
entirely from the internal buffers. While being a simple round-robin based scheduling
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Figure 2.18: A 2x4 crossbar switch with multicast cells.

algorithm, it outperforms the complex TATRA algorithm mentioned above, exhibiting
an unmatched performance.

The recently proposed PBC switching architecture has emerged to be a combination
of optimal performance and low hardware cost when scheduling unicast traffics. However,
its multicast capability has not yet been explored. We will conduct an experimental study
on the PBC multicast capability in Chapter 4 and propose a round-robin based algorithm
to compete with the aforementioned MXRR algorithm of the CICQ architecture.

2.4 Summary

In this chapter, we provided an overview of previous development of crossbar based
switching architectures. The OQ switch can provide optimal performance among all,
but impractical to implement with a high line rate. Therefore, the interest of research
shifted to the IQ architecture where memory bandwidth requirement is much lower.
Since the centralized scheduler of the IQ switch cannot make scheduling decisions fast
enough and with high performance, the CICQ switch emerged to break the bottleneck
confronted by the IQ switch. By introducing the internal buffers and the distributed
schedulers, the scheduling process becomes simple and the performance of the CICQ
switches goes beyond that of the IQ architecture. However, the N2 cross point buffers
inside the fabric limit the scalability of the CICQ architecture, N is the size of the switch.
The PBC switching architecture combines the advantages from the IQ and the CICQ
architectures, and appears to be one of the attractive candidates to the next-generation
router architecture. In the next two chapters, we will study the unicast and multicast
scheduling issues of the PBC switch, and improve its performance.
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Scheduling Unicast Traffic in
PBC switches 3
The partially buffered crossbar (PBC) switch maintains a small number of buffers per

output. While having a cost close to unbuffered crossbars, a PBC switch overcomes
the centralized scheduling complexity by means of distributed schedulers resulting

in high speed switching and simplicity in its scheduling. Previously, a class of round-
robin algorithms has been proposed for the PBC and demonstrated similar performance
to an output queued (OQ) switch under Bernoulli uniform traffic. However, it fails
to deliver satisfactory performance under non-uniform traffic unless a high number of
internal buffers is used. In this chapter, we propose a novel scheduling algorithms, named
ELSRR (Exhaustive-LQF-SRR) that enhances the performance of a PBC switch under
non-uniform traffic. Through experimental study, we show that it is capable of delivering
high throughput under non-uniform traffic with low requirement on the internal buffer
per output; as few as two internal buffers per output irrespective of the switch size.

3.1 Introduction

The crossbar-based architecture has been favored as the high-speeding switching fabric
for its scalability and non-blocking property. Therefore, most commercial implementa-
tion and literature study are based on crossbar architecture with Virtual Output Queues
(VOQs)[26]. The crossbar switching fabric falls into two categories: unbuffered and
internally buffered crossbar switches.

Unbuffered crossbar switches, also known as input queued (IQ) switches, employ a
centralized scheduler to resolve packet contention at the inputs and outputs of the switch.
The Maximum Weight Matching (MWM) and Maximal Size Matching (MSM) algorithms
have been proposed to achieve 100% throughput for an IQ switch [12][14][16][46][47].
However, with ever increasing line rates, scheduling in IQ switches is either too com-
plex to be practical or too simple to deliver satisfactory performance. The Buffered
crossbar (CICQ) architecture[48] has been proposed to effectively address the scheduling
complexity faced by IQ switches. With a small number of buffers at each cross point
of the crossbar fabric, the scheduling in a buffered crossbar is divided into distributed
input and output schedulers at each input and output port of the switch. This de-
sign significantly simplifies the scheduling and reduces the time required to produce a
good configuration of the siwtch. Various scheduling algorithms have been proposed
for buffered crossbars[48][17][49][50], exhibiting performance beyond that of IQ switches.
However, the boost of performance and scheduling simplicity comes at the prices of
expensive cross point buffers that grow quadratically with the switch size.

In order to achieve high-performance while maintaining a cost close to an unbuffered
switch, the Partially Buffered Crossbar switching architecture (PBC) has been proposed
[18], in which B (B � N) shared internal buffers are deployed at each fabric output port.

23
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This design reduces the growth of internal buffers to a linear function of the switch size
N and hence a significantly lower cost compared to the buffered crossbar architecture.
The scheduling process in the PBC architecture is a fusion of that in buffered and
unbuffered crossbar switches: distributed schedulers located at each input and output
(as in CICQ switches) and a request-grant-accept (RGA) input scheduling that maps
requesting inputs into the shared internal buffers (as in IQ switches). A class of round-
robin algorithms has been proposed in [18] that showed optimal performance close to that
of an output-queued(OQ) switch under bernoulli uniform traffic irrespective the switch
size. On the other hand, its performance under non-uniform traffic is less appealing
without the support of internal buffer as much as eight per output. The degradation
of performance under non-uniform is due to the lack of ability to identify a congested
input queue demanding for more bandwidth and the dynamic of internal buffer sharing
scheme without reservation.

In this chapter, we propose the ELSRR algorithm that enhances the performance of
the PBC switch under non-uniform traffic patterns. The motivation is to reserve inter-
nal buffers for congested VOQs until they are emptied and service is equally delivered
between VOQs with reservation at output. Through simulation we show that, with as
few as two internal buffers per output, the proposed algorithm is capable of outperform-
ing the previous algorithms, delivering high throughput and scalability under various
non-uniform traffic scenarios. The reminder of this chapter is organized as follows: in
Section 3.2 we introduce the PBC switching fabric and review the previous scheduling
algorithms. Section 3.3 we describe the proposed ELSRR algorithm and its properties.
Section 4.4 shows the experimental study. In Section 4.5, the hardware design of the
ELSRR is presented, and Section 4.6 summarizes the whole chapter.

3.2 Background

3.2.1 The Switching Model

The infrastructure of a partially buffered crossbar (PBC) switch is shown in Fig. 3.1.
It has N inputs and N outputs, and each input contains N VOQs, one per output.
Incoming packets are segmented into fixed-length cells in order to be processed by the
switch, and cells are later re-assembled back into a packet upon departing the switch. The
PBC switch has 2N distributed schedulers: N input schedulers and N output schedulers
located at each input and output, functioning in parallel and resulting in a simplified,
high-speed scheduling. Due to the fact that the number of internal buffers maintained
per output, B, is much less than the switch size N , an input scheduler of PBC switch
cannot make decision by itself to admit a cell into the fabric. Instead, the decision is
made in coordination with a grant scheduler, which manages the availability of internal
buffers via the information provided by a credit queue (CQ). To make input scheduler
visible to granting information, a grant queue (GQ) is deployed at each input scheduler,
which is a table with N entries, representing the N outputs. For instance, if an input i
is granted by output j, the entry GQi,j will be set to one, otherwise zero.
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Figure 3.1: The PBC switching architecture.

3.2.2 Scheduling in PBC

A scheduling cycle of a PBC switch consists of input and output scheduling phases.
While the output-scheduling phase remains similar to that of a CICQ switch, the input-
scheduling phase resembles to that of unbuffered crossbars, as the request-grant-accept
(RGA) handshaking strategy is adopted. At each time slot, an input scheduler may
request for up to N grant schedulers located at each fabric output. Depending on the
scheduling policy and the availability of internal buffers shown as (CQ), a grant scheduler
may issue up to B grants towards the input ports requesting for it. An input port later
may select and accept one grant and transfer the HoL cell of the selected VOQ to the
internal buffer of the output port granting it. In the mean time, each output scheduler
selects a non-empty internal buffer in compliance to the output scheduling policy and
ejects the cell inside to the output. While each input can send at most one cell per time
slot, the output contention is relaxed by the presence of internal buffers, which means
more than one cells can be received in one time slot resulting in a simpler scheduling.
Previously, the output scheduler uses FCFS policy to ensure the in-sequence delivery
of cells that are coming from a same queue. We will later show that with a different
buffer sharing strategy, the output scheduler can adopt other scheduling algorithms with
in-sequence delivery guaranteed as well.

The DRR, DROP and DROP-PR are a class of pipelined round-robin algorithms
proposed in [18]the PBC switch. Particularly, the DROP-PR algorithm shows the best
performance over the others as it gives priority to unloaded output ports and eliminates
the credit release delay suffered by DRR. The specification of the DROP-PR algorithm
is given below:

Algorithm 1. DROP-PR
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Figure 3.2: A DROP-PR input scheduling cycle for a 4x4 partially buffered crossbar
switch with B = 2. Each input sends requests to all outputs for which the VOQ has a
queued cell. At the grant stage, each grant scheduler issues credits to requesting input
in a round-robin pointer order and inform the granted inputs with its occupancy (shown
in red arrow). When it comes to the accept stage, each input scheduler favors the grant
from a empty output port to balance the workload among all the output ports. Later
the unaccepted credits are dropped to avoid the credit release delay that degrades switch
performance.

Grant Phase:
All grant pointers, gj , are initialized to different positions.
For each grant scheduler, j, do

• Set CQj equal to the number of available internal buffers of output j.

• Set priority bit, P , to the logic OR of CQj entries.

• While there are credits in CQj , do:

– Starting from gj index, send a grant to the first input, i, that requested this
output (set GQi,j = 1 and add bit P).

– Decrement CQj by one.

• Move the pointer gj to location (gj + 1)(mod N).

Input Scheduling Phase
All accept pointers, ai, are initialized into different positions.
For each input scheduler, i, do:

• Starting from ai index, select the first nonempty V OQi,j for which GQi,j = 1 AND
P = 1, send its HoL cell to the internal buffer.

• If no V OQ is selected in the previous step, then
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Figure 3.3: The ELSRR input scheduling cycle for a 4x4 partially buffered crossbar
switch with B = 2.

– Starting from ai index, select the first nonempty V OQi,j and send its HoL
cell to the internal buffer.

• Drop the remaining grants (reset GQ: GQi,∗ = 0).

• Move the pointer ai to location (ai + 1)(mod N).

A graphic demonstration is shown in Fig. 3.2. Both the input scheduler and the
grant scheduler of DROP-PR adopt round-robin algorithm with fully desynchronized
pointers, resulting in a solid fairness amongst all VOQs. However, strong fairness will
leave a congested queue growing indefinitely, and hence its performance under non-
uniform traffic is degraded.

By observing the DROP-PR algorithm, we argue that there are two main reasons
degrading its performance under non-uniform traffic. First, as a fair scheduling algo-
rithm, it cannot identify a congested queue and provide more bandwidth to it. Secondly,
with limited number of internal buffers, service of an output port is still delivered to all
the VOQs, leading to a poor internal buffer management and hence each VOQ can only
receive a small fraction of bandwidth.

3.3 The Proposed Algorithm

With the aforementioned observation, the motivation of the ELSRR is that instead of
sharing B buffers of an output among all N inputs as in the way of DROP-PR, we
explicitly reserve internal buffers to maximum B inputs, one buffer per input. Amongst
these selected inputs, services are equally delivered. The scheduling algorithm should
then be able to identify a congested queue and serve it more frequently. To actually
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fulfill the idea, we first classify all the N2 VOQs into two classes: admitted VOQs and
non-admitted VOQs.

Defination 1: A VOQ is admitted if its destined output reserves one buffer for it.
Being admitted, a VOQ will receive a grant from a grant scheduler as long as the

VOQ has no cell currently stored inside the output. In opposition to the DROP-PR,
this policy ensures that no VOQ can occupy more than one buffer of an output, and
hence a finer buffer management. We say an admission to a VOQ is cancelled when
there is no longer any cell in it. For a non-admitted VOQ, it may receive grants only
when the destined output still has free internal buffers to reserve. On the input scheduler
side, grant priority is given to an admitted VOQ over non-admitted one. To prevent an
input port from being over-admitted and resulting in an unbalanced resource reservation,
no input can have more than B VOQs being admitted at one time. This is done by
introducing an Admission Credit Counter (ACC) at each input scheduler. The ACC
decrements by 1 when a new admitted VOQ is promoted, and incremented by 1when
an admission to a VOQ is cancelled. Once the ACC counts down to zero, the input
scheduler stops posting requests for any of the VOQs, and thus no more admission can
be made to that input. Similar to the GQ maintained at each input port that signals
the input scheduler whether a VOQ is granted, we introduce an Admission Queue AQ
that notifies the input scheduler about the VOQs being admitted by the output ports.
The algorithm specification is given below:
Algorithm 2. ELSRR
Grant Phase:
All grant pointers, gj , are initialized to different locations. For each grant scheduler, j,
do:

• Check all inputs, i, that have AQi,j = 1.

– If V OQi,j is empty, set AQi,j = 0 and ACCi increment by 1.

• Set the CQj equal to the number of available internal buffers of output j.

• Send grants to all inputs, i, with AQi,j = 1 and no cell in the internal buffer.

• while there are credits left in CQj , do

– Starting from gj index, send a grant to the first non-admitted input, i, that
requested this output (set GQi,j = 1).

• Move the pointer ai to location (ai + 1)(mod N).

Input Scheduling Phase:
For each input scheduler, i, do:

• Accept the grant to the longest V OQi,j with AQi,j = 1.

• If no grant is accepted,

– Accept the grant to the longest V OQi,j with AQi,j = 0, Set AQi,j = 1 and
ACCi decrement by 1.
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• Drop the remaining grants (reset GQ: GQi,∗ = 0).

Output Scheduling Phase:
For each output scheduler, j, do:

• Starting from oj index, select the first non-empty internal buffer, i, and ejects the
cell out of the switch.

• Move the pointer oj to location (i+ 1)(mod B)

Note that we adopt a round-robin output scheduler here to move internally buffered cells
out of the switch. This is a crucial as it will help the grant scheduler to grant each of
the admitted VOQs within K − 1 time slots, where K is the number of VOQs admitted
to this output. Recall that a grant scheduler will not issue any grant to a VOQ if that
VOQ already has one cell buffered inside the output port. Therefore it is safe to employ
a round-robin output scheduler while the in-sequence delivery of cells is ensured. This
is simpler than the previously adopted FCFC output scheduling policy.

Fig. 3.3 illustrates an input scheduling phase of the ELSRR for a 4x4 switch with
B = 2 internal buffers per output. Note that the scheduling process is pipelined into
two stages: the request and grant stage and accept stage. Grant decisions made by the
grant schedulers (GS) at time slot (t− 1) will be available for the (IS) in time slot t. In
the Figure, AQ, GQ and IB represent admission queue, grant queue and internal buffer,
while E represents an empty internal buffer. At request stage, each input requests for
non-empty VOQs that are not admitted to corresponding output. Note that input 2
posts no requests even V OQ2,1 and V OQ2,4 are not empty and non-admitted, this is
because there are already two admitted VOQs in input 2, and hence it can no longer
request for more internal buffer reservation. At grant stage, each grant scheduler will
first issue grants to the VOQs that are admitted to the output (i.e. those with AQi,j = 1)
and have no cells currently stored in the internal buffers. For example, grant scheduler 2
issues a grant to input 2 since V OQ2,2 complies to the aforementioned conditions. With
all admitted VOQs served, grant scheduler 2 issues the remaining credit to the requesting
input 1. Note that grant scheduler 3 does not issue a grant to the admitted V OQ3,3,
since there is already a cell from it stored in the buffer. In the accept stage, that happens
in a successive time slot to the request and grant stage, each input scheduler first checks
and accepts the grant to the longest admitted VOQ. If no grant is selected, it accepts
the grant to the longest non-admitted VOQ and marks the VOQ as admitted. Once a
VOQ is admitted, it will always receive a grant from the grant scheduler within (B − 1)
time slots.

3.4 Experimental Result

In this section, we present the performance of the ELSRR algorithm and compare it
to the following algorithms: the DROP-PR of the PBC architecture, the iSLIP of the
IQ architecture and the LQF-RR of the CICQ architecture. The LQF-RR algorithm is
proven to be stable under any admissible uniform traffic; therefore it also serves as an
optimal performance reference in our performance studies. All algorithms are simulated
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Figure 3.4: Performance Under Bernoulli Uniform Traffic.

for 1.000.000 time slots under the following traffic patterns: Bernoulli uniform, Bursty
uniform, Unbalanced Traffic, Double Diagonal Traffic and Logarithmic Diagonal Traffic,
and the performance is evaluated in the term of average cell latency and switch through-
put. More information about the simulation environment and the traffic definitions can
be found in Appendix A.

3.4.1 Uniform Traffic

We test the performance of our proposed algorithm under two uniform traffic scenarios:
Bernoulli uniform and Bursty uniform traffic with burst length of 16.

Fig. 3.4 demonstrates the average cell latency of a 32 × 32 switch under Bernoulli
uniform traffic, running the selected collection of algorithms. We fixed the number of
internal buffers used by our algorithm to two and compare its latency to that of iSLiP
with 2 and 4 iterations, denoted as iSLIP(2) and iSLIP(4), DROP-PR with 2 and 4
internal buffers, denoted as DROP-PR(2) and DROP-PR(4) and LQF-RR. We observed
that our algorithm shows slightly higher latency than iSLIP(2) and DROP-PR(2). Unlike
iSLIP and DROP-PR where fairness of service is guaranteed, the ELSRR only serves B
flows at a time, which implies a weaker fairness of service. Under uniform traffic, leaving
most of the traffic flows unserved translates immediately into a higher latency, although
not significant. For the performance under Bursty uniform traffic, as shown in Fig. 3.5,
our algorithm outperforms iSLIP and DROP-PR, having the best performance that is
very close to LQF-RR. With the ELSRR, a burst of cells, once being admitted to the
output, will be served consecutively. Hence the latency is reduced. Note that, with the
performance close to LQF-RR, there are only 2 buffers deployed at each output port, as
compared to 32 for LQF-RR.
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Figure 3.5: Performance Under Bursty Uniform Traffic.

3.4.2 Nonuniform Traffic

The ELSRR algorithm is tested under three non-uniform traffic scenarios: the unbal-
anced traffic, the double diagonal traffic and the logarithmic diagonal traffic [51]. These
three traffic patterns are considered difficult to schedule, hence a decent benchmark to
evaluate the performance of a scheduling algorithm.

To evaluate the performance of our algorithm in terms of cell latency under unbal-
anced traffic, we fixed the unbalanced coefficient ω to 0.5 corresponding to the most
unbalanced case and vary the input traffic load. Fig. 3.6 shows the result of the experi-
ment. As we can see, with only two buffers per output, our algorithm outperforms both
iSLIP and DROP-PR, while having a inferior performance to that of LQF-RR.

We study the stability of the proposed algorithm by fully loading the switch with a
maximum arrival rate at each input port and varying the unbalanced coefficient ω from
0 to 1 with a step size of 0.1. As shown in the Fig. 3.7, our algorithm is stable within all
the range of ω together with LQF-RR, yet using 960 less internal buffers. Since the input
scheduler always favors the longest granted queue, a congested VOQ will eventually be
admitted to its destined output port and regularly receiving service until the VOQ is
emptied. And this is critical feature for an algorithm to provide good performance under
unbalanced traffic scenarios.

Fig. 3.8 presents the latency performance under double diagonal traffic. This traffic
is known to be critical and hard to schedule since there are only two matching patterns
that are good. While the performance of iSLIP saturates at 0.8 input traffic loads,
both the proposed algorithm and DROP-PR can provide desirable performance. Having
performance same as the LQF-RR, the proposed algorithm has a slightly higher latency
than DROP-PR. We think the extra latency is caused by the weaker fairness provided
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Figure 3.6: Performance Under Unbalanced Traffic.

Figure 3.7: Switch Throughput Under Unbalanced Traffic.

by our algorithm. On one hand, the grant scheduler is fair and spread the grant credit
equally on all admitted VOQs. On the other hand, however, the input scheduler may
not accept a grant to a lightly loaded VOQ.

The throughput under logarithmic diagonal traffic is shown in Fig. 3.9. While the
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Figure 3.8: Performance Under Double Diagonal Tarffic.

Figure 3.9: Performance Under Logarithmic Diagonal Tarffic.

ELSRR with B = 2 achieves 96% throughput, the throughput of DROP-PR(2) saturates
at 80%. The proposed algorithm also surpasses DROP-PR(4) by 1% of throughput at
maximum traffic load. The LQF-RR outperforms the rest, achieving a 99% throughput.
However, comparing the ELSRR to the LQF-RR, we consider loosing 3% throughput for
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Figure 3.10: Performance Under Logarithmic Diagonal Tarffic.

Figure 3.11: Performance Under Unbalanced Traffic.

saving 93.8% internal buffers a fair trade-off. In Fig. 3.10, we see that with a increased
number of internal buffers per output, the ELSRR algorithm is also capable of achieving
99% throughput with a desirable latency very close to that of LQF-RR. The boost of
performance is a result of allowing more VOQs being served by an output with a increased
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Figure 3.12: Hardware Designed of the ELSRR Grant Scheduler.

buffer budget.

Fig. 3.11 presents the scalability of the proposed algorithm in terms of throughput
under the unbalanced traffic with unbalanced coefficient ω = 0.5 and maximum arrival
rate. We conduct the test for switch with N = 16, 32 and 64 and compare the result to
DROP-PR(2). As shown in the figure, the proposed algorithm is able to maintain high
through, which is not sensitive to a growing number of ports. On the other hand, the
throughput of DROP-PR(2) keeps falling as the switch size scaling up.

3.5 Hardware Design

In this section, we present the hardware design of the ELSRR scheduling algorithm,
including the design of the grant schedulers and the input schedulers. The design of
output schedulers is not presented, since it is identical to the plain round-robin scheduler
design that has been discussed in [14]. The design assumes a 32x32 PBC switch with
two internal buffers per output. (B = 2). This means a grant scheduler can issue up to
two grants to the input ports within one time slot. Fig. 3.12 presents a block diagram
of the proposed ELSRR grant scheduler design. The circuit has five inputs, including 1)
the request vector that collects request signals from all the input ports to output j (i.e.
REQ∗,j), 2) the admission vector that collects admission signals from all input ports to
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output j (i.e. AQ∗,j), 3) the occupancy vectors that shows the information of the inputs,
from which cells are sent and stored (i.e. OVi,j = 0 represents there is a cell from input
i currently stored in output j, otherwise ’1’), 4) the B vector showing the number of
the available internal buffers in output j, and 5) an one-hot shift register that records
the highest priority position. The grant scheduler has two data paths that calculate the
grant decisions to non-admitted requesting ports and the decisions to admitted ports in
parallel. In the data path that forms the grant decision to admitted flows, the admission
vector is ANDed with the occupancy vector to ensure that only the admitted flow,
with no cell currently stored inside the internal buffers, is left, filtering out those flows
that are admitted but already having a cell within the port. According the algorithm,
the admitted flows remained from the previous step receive service definitely from the
subscribed port. Hence, the result from the previously described AND operation directly
forms the grant decision to the admitted flows. Then the number of 1s in the admitted
grant decision is calculated and subtracted from the B vector to form the remaining
credits available for non-admitted flows. Using the grant scheduler design of the DROP
algorithm as a building block, the remaining credits, the request vector and the value
from the one-hot shift register are fed into the DROP grant scheduler function block to
generate the grant decisions for the non-admitted flows (we refer the reader to [18] for the
detailed design of a DROP grant scheduler). Final to combine the grant decisions from
these two data paths, an OR operation is performed. Finally, a selection between the
pure admitted decision and combined decision is done by a multiplexer using the least
significant bit (LSB) of the remained credits. We believe the ELSRR grant scheduler can
operate at a comparable speed to that described in [18], as the DROP grant scheduler
dominates the critical path.

Fig. 3.13 shows the design of the ELSRR input scheduler, under the same assumption
of a 32x32 PBC switch with B = 2. The inputs to the input scheduler circuits consist
of the following items, the admission queue (AQ) that records the VOQ being admitted,
the grant queue (GQ) that provides information on received credits and the input buffer
table (IBT) [18] that records the number of cells stored in each of the VOQs. We assume
each entry of the IBT is 32-bit wide, corresponding to 4096 Mega cells storage capacity
per VOQ. Similar to the design of grant scheduler, there are two data paths operating in
parallel. One is used to compute the longest queue index among admitted flows, while
the other calculates the longest queue index among the non-admitted flows. The circuit
works as follows, the GQ vector is ANDed with AQ and the inverted AQ to separately
obtain the received grant credits to admitted and non-admitted flows. The extracted
grant vectors are then used to select out the length of queues belonging to admitted
flows and non-admitted flows in parallel, and feed the length to the maximum index
function to sort out the longest ones of both parts. The maximum index function is
built from multiple stages (5 stages here) of smaller comparison blocks that includes a
carry propagation adder (CPA), with which an addition is carried out between operand
A and inverted operand B, if later the carry bit of CPA becomes ’1’ then operand B <
operand A (details described in [35]). To select the final index to the selected VOQ, we
perform a bitwise OR operation to the result of AND operation between AQ and CQ,
figuring out whether there are admitted queues granted by outputs. If true, then the
index to the longest queue from admitted flows will be selected; otherwise the longest
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Figure 3.13: Hardware Designed of the ELSRR Input Scheduler.

queue index of non-admitted queues will be used.

3.6 Summary

The PBC switching architecture has shown a high potential in being the architecture
of choice for next-generation routers. However, the previously proposed algorithms for
the PBC did not take full advantage of its features. In this chapter, we proposed a
novel-scheduling algorithm (named the ELSRR) for the PBC, which is able to deliver
high-performance. In particular, employing the ELSRR algorithm, a PBC switch: i)
can deliver low cell latency and high throughput under both uniform as well as non-
uniform traffic patterns, while maintaining a very small internal buffer size (B = 2) per
output; ii) can optimally manage the internal buffers (and bandwidth) share amongst
competing flows; and iii) has a simple round-robin based output scheduling as opposed
to the previously required FCFS policy. Extensive simulations have shown that the
ELSRR outperforms previous proposals under various traffic inputs.
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Scheduling Multicast Traffic in
PBC Switches 4
The tremendous increase of multicast traffic applications on the Internet has led to

intensive studies to seek an efficient way to support multicast traffic in Internet
routers and switches. Various solutions have been proposed for the unbuffered

(IQ) and buffered crossbar (CICQ) crossbar switches. However, they were either too
complex to run at high speed or too expensive to be readily implemented in hardware.
The Partially Buffered Crossbar (PBC) has been proposed and shown to achieve the
performance of a buffered crossbars while having a low cost close to that of unbuffered
crossbars under unicast traffic. This chapter conducts the first study on multicast traffic
support in PBC switches and proposes a round-robin based scheduling algorithm termed
MSRR. Through simulations, we show that with the proposed algorithm, a PBC switch
outperforms its unbuffered and buffered counterparts with a small number of internal
buffers, making it highly attractive for next generation networks

4.1 Introduction

Traditionally, Internet routers were designed for point-to-point (unicast) communication
only. However, due to the rapid development of the internet application, such as IPTV,
video conference and voice-over-IP (VoIP), there is an increasing demand for high-speed
routers to support point-to-multipoint (multicast) communication. As a result, different
architectures have been investigated and implemented to effectively support multicast
traffic [52][53][54].

The crossbar switching architecture has been widely considered the most suitable
switching architecture due to its low-cost, scalability and intrinsic multicast support. It
has two variations: unbuffered crossbar (IQ) and buffered crossbar (CICQ). Abundant
research have been conducted on the unbuffered crossbar [43] as well as buffered crossbar
[45] architecture with a single multicast FIFO queue per input. As with the unicast
traffic, the single FIFO strategy suffers from the HoL blocking issue and limits the
potential throughput of a switch. Avoiding the HoL problem mandates using up to
(2N − 1) FIFO queues per input (N is the switch port count), known as the Multicast-
Virtual Output Queuing (MC-VOQ) architecture. The MC-VOQ architecture is clearly
impractical for medium to large switching systems. As a result, researchers have proposed
to use a small number of queues, K(1 ≤ K � 2N − 1) per input [41] [40] to improve the
performance of a switch. As for the switching fabric interconnect, the IQ is attractive
due to its low cost; however it suffers low performance due to its centralized scheduling.
On the other hand, buffered crossbar switches exhibit high-performance with simple
and distributed scheduling but comes at the price of N2 cross point buffers that grows
quadratically with the switch size. Hence, both architectures are less appealing.

In order to achieve high performance while maintaining a cost close to an unbuffered
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Figure 4.1: A 2x4 unbuffered crossbar switch with multicast FIFO queue.

switch, the partially buffered crossbar switching architecture (PBC) has been proposed
[18]. Different from a buffered crossbar switch, a PBC switch maintains B (B � N)
shared internal buffers at each fabric output. This design reduces the growth of internal
buffers to a linear function of the switch size N and hence a significantly lower cost
compared to the buffered crossbar architecture. The scheduling process in the PBC
architecture is a fusion of that in buffered and unbuffered crossbar switches: distributed
schedulers located at each input and output (as in buffered crossbar) and a request-grant-
accept (RGA) input scheduling that maps requesting inputs into the shared internal
buffers (as in unbuffered crossbar). In [18], it is shown that with a small number of
internal buffers per output, the performance of a PBC switch converges to an Output
Queued (OQ) switch under i.i.d arrival traffic. Based on the observation to the unicast
performance, we expect a PBC switch to exhibit desirable performance under multicast
traffic.

In this chapter, we study the multicast capability of a PBC switch and propose a
round-robin scheduling algorithm. It is simple, yet capable of outperforming the existing
algorithms from buffered as well as the unbuffered crossbars. The proposed algorithm
is flexible to be used under single multicast FIFO architecture as well as the K-FIFO
architecture. Furthermore, we explore the trade-off between the number of multicast
queues K and internal buffers per output B.

This chapter is structured as follows: in Section 4.2 we present background knowl-
edge and related work, Section 4.3 introduces the multicast PBC switching architecture
and the proposed MSRR algorithm, Section 4.4 demonstrates an experimental study,
Section 4.5 presents the hardware design of proposed algorithm. Finally, Section 4.6
summarizes this chapter.

4.2 Background

Switch supporting multicast traffic is essentially capable of sending multiple copies of
a same cell to several destinations. Since the crossbar based switching architecture
supports the copy of a cell and multiple-destination transaction intrinsically, intensive
research has been done on unbuffered (IQ) and buffered (CICQ) crossbar switches.
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4.2.1 Queuing Schemes and Cell Placement Policy

Different from an unicast cell, a multicast cell can have a number of destinations ranging
from 1 to N , known as the fan-out set of a cell. The queuing scheme for multicast traffic
has a significant impact on the performance of a switch. As a result, different queuing
structure has been proposed in attempt to effectively buffer multicast cells. Most of the
studies have been based on a single multicast FIFO architecture, where only one queue
is maintained at each input port. While being the most practical buffering scheme, it
suffers from HoL issue and provides a poor performance. To address the HoL problem,
the best solution is known as multicast VOQ (MC-VOQ), where 2N − 1 separate FIFOs
are kept at each input port. With MC-VOQ, the HoL problem is completely eliminated.
However, due the large number of queues required by this scheme, it has a high cost and
scheduling complexity that prevent it from being practically applied to switches even
with small number of ports. In [55], a window-based scheme were proposed allowing
multiple cells at the head of a queue being considered for scheduling. However, it requires
a complicated hardware implementation. The K-FIFO architecture has been proposed
and studied under unbuffered and buffered crossbar context [41] [56] [42], where a small
number, k of multicast queues are maintained at each input. While being a practical
solution, it greatly improved the switch performance comparing to that of using only one
FIFO per input. As the number of multicast queues, k is much smaller than the total
cardinality of fanout set, a mapping from 2N − 1 to k has to be handled. This mapping
is known as a cell placement policy [41] [40] [42] [57]. A good cell assignment policy
should have the following properties: i) HoL cells should contain diverse fanout set that
can span over a large number of output ports for witch the input holds packet. ii) Cells
with the same or similar fanout sets should be placed in the same multicast queue. This
reduces the HoL issue and avoids the out of sequence delivery.

4.2.2 Service and Scheduling Disciplines

Scheduling algorithms supporting multicast traffic have also been studied and proposed.
Since the crossbar fabric operates at the same speed as the external links, during one
time slot an input can send at most one cell and each output can receive only one cell. As
crossbar switching architectures have natural property to support multicast traffic. By
closing multiple cross point of the fabric, a multicast cell transaction can be completed
within a single time slot. However, as a usual case, a cell may not have access to its
entire destination in one time slot. Hence, service disciplines known as no fanout splitting
and fanout splitting have been proposed [43]. When the no fanout splitting discipline
is applied, a cell can only traverse the fabric once, which means the cell will not be
scheduled for a fabric switching if not its entire destination is available.

When the fanout splitting service is used, a cell can be partially transferred to its
destinations. Copies that lose contention to destinations in current time will continue
competing for their destinations in future time slots. Hence, the completion of transac-
tion may spread over multiple time slots. The flexibility of partly switching a cell results
in a higher switch throughput because it is work conserving [58]. Consider the 2x4 un-
buffered crossbar switch with one FIFO per input shown in Fig. 4.1. The fanout of HoL
cells from the two input covers all the output ports. Input 1 is requesting for output
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Figure 4.2: The multicast PBC switching architecture

{1, 2, 3} while input 2 is requesting for output {2, 3, 4}. As both cell wishes to send a
copy to output 2, 3, if no fanout splitting discipline is applied, then only one of the cell
will be discharged in this time slot resulting in 75% throughput. On the other hand, the
switch achieves 100% throughput with fanout splitting enabled, since it allows a cell to
be partially discharged. The remaining destinations of cells are defined as the residue,
in the example the residue is {2, 3}. Depending on the scheduling policy, the residue
can be either concentrated on a smallest number of input ports or spread over a largest
number of input ports. As suggested by [43], adopting a scheduling algorithm that con-
centrates the residue provides a better performance than algorithm that distributes the
residue over multiple inputs. For instance, for a scheduling algorithm that adopts the
concentration strategy, one of the HoL cell from FIFO 1 or FIFO 2 will be completely
discharged leaving another cell bearing the residue of {2, 3}. Otherwise, none of the
two HoL will be completely discharged and each bears one of the destinations from the
residue set.

4.3 The multicast PBC architecture and its scheduling

We consider the PBC switch model depicted in Fig. 4.2. Upon arrival at a switch,
packets are segmented into fixed-length cells and switched by the switch; later cells are
reassembled back to packets when departing the switch. We consider the fanout splitting
service discipline when scheduling the multicast traffic.
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Figure 4.3: An MSRR input scheduling cycle for a 4x4 partially buffered crossbar switch
with B = 2 and K = 2. The dotted arrow shows the future position of a pointer in a
following time slot.

4.3.1 The Multicast PBC Architecture

The proposed switching architecture has N inputs and outputs, each output keeps B
(B � N) shared internal buffers. Similar to the buffered crossbar, there are N input
schedulers (IS) and output schedulers (OS) located at each fabric input and output,
operating separately and in parallel. Additionally, there are N grant schedulers (GS)
deployed inside the fabric, managing the availability of the internal buffers (GQ) and
mapping B out of N requesting ports into the internal buffers. Through the credit queue
(CQ), an input scheduler is notified about whether it receives any credits.

Scheduling process in multicast PBC architecture is split into two phases: input
scheduling phase and output scheduling phases. During the input-scheduling phase,
depending on the multicast FIFO architecture adopted, an input scheduler (IS) may
request for one or more HoL cells and the requests are seen by the grant schedulers
(GS). Subject to the availability of internal buffers (CQ) of an output, a grant scheduler
may issue grants to no more than B inputs. This relaxes the output contention and
allows multiple inputs send copies of HoL cells to the same output within one time slot.
After receiving grants, the input scheduler will transmit a selected HoL cell to its all
desired destinations from which credits have been received. Copying a multicast cell
to multiple destinations is natively supported by crossbar-based architecture, and it is
achieved by simply closing multiple cross point of the crossbar fabric. During the output-
scheduling phase, output schedulers, located at each fabric output, select a non-empty
internal buffer on a first-come-first-serve (FCFS) basis and transfer the cell outside the
switch. Adopting a FCFS policy at output schedulers ensures the in-sequence delivery
of cells.

In the following sections, we present a round-robin based multicast scheduling al-
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gorithm for PBC architecture, and conduct the first study on the capability of a PBC
switch supporting multicast traffic comparing it to the existing crossbar based switching
architectures.

4.3.2 The MSRR Algorithm

The MSRR (Multicast-Static-Round-Robin) is a fair and flexible algorithm that can
provide hard bound on a waiting time experienced by a packet and can function with both
multicast FIFO and K-FIFO queuing architecture. The MSRR uses a fully synchronized
pointer [45] in the grant schedulers that increment regularly in every time slots. This
feature ensures that each input can have a fair chance to discharge a complete cell. On
the other hands, each input scheduler keeps an accept pointer that is used to decide which
multicast queue should be prioritized to discharge a cell. An accept pointer is updated
only when a multicast FIFO discharges a complete cell, which essentially guarantees that
all queues within an input have a fair chance to completely discharge its HoL cell. After
each accept stage, the remaining credits received by an input scheduler will be discarded
to eliminate the credit release delay that otherwise suffered by grant schedulers[18]. The
specification of algorithm is as following:

Algorithm 1: MSRR
Each input scheduler, i, considers all its HoL cell(s) and sends requests to outputs.
Grant Phase:
All the grant pointers gj are, arbitrarily, set to the same initial position and incremented,
in each time slot, by 1 mod N.
For each grant scheduler j, do:

• Set CQj equal to the number of available internal buffers.

• While there are credits in CQj , do:

– Starting from gj index, send a grant to the first input, i, that requested this
output (set GQi,j = 1)

– Decrement CQj by 1.

Input Scheduling Phase:
For each input scheduler i, do:

• Starting from ai index, select the first non-empty multicast queue k, and transmit
its copies to internal buffers of outputs, j that granted input i (with GQi,j = 1).

• If the HoL cell of selected queue k is completely discharged,

– Update ai to (k + 1) mod K.

• Drop credits that are not accepted (Set GQi,∗ = 0).

Fig. 4.3 is an graphic demonstration of a MSRR input scheduling cycle for a 4x4 PBC
switch with two multicast queues per input and two internal buffers (IB) per output.
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The input scheduling cycle is pipelined into two stages, the request and grant stage that
takes place in time slot (t − 1) and the accept stage happens in time slot t. Suppose
that at time slot (t − 1) all internal buffers are available. In the request stage, each
input scheduler considers HoL cells from all its non-empty multicast queues and sends
up to N requests to the the grant schedulers located at each output. Since the pointers
of grant schedulers are synchronized to input 1, it receives full service from all the port
it is requesting. The remaining credits of each grant scheduler may be spent on other
input that are requesting. In this case, beside input1, input 2 also receives grants from
all the output it is requesting and hence able to discharge a complete cell, while input 3
receives only one credit from output 3.

In the successive time slot, each input scheduler select one multicast queue based on
the position of its accept pointer and transmit copies of HoL cell to the internal buffers of
granted outputs. Due to the small number of internal buffers introduced to each output,
a PBC switch can discharge up B HoL cells completely in one time slot. As shown in
the figure, both input 1 and 2 completely discharged one cell from a multicast queue
and the accept pointer is incremented by one beyond the served queue, while input 3
only discharged partly of a HoL cell and the accept pointer is not updated. The round-
robin mechanism of MSRR allows it to be fair and starvation free while maintaining the
simplicity hardware implementation. In the worst case, the latency experienced by a
HoL cell will be no longer than (N ×K + B − 1) time slots, where N is the number of
output ports, K is the number of multicast FIFOs kept within an input and B being the
number of internal buffers at each fabric output.

4.4 Experimental Result

In this section, we present the performance of MSRR with different queueing and switch-
ing configuration. The performance results are collected after 1,000,000 time slots and
from different sizes of the switch, including 8x8, 16x16 and 32x32. The mean fanout size
of a multicast cell is N/2 throughout the simulation, where N is the number of ports of
a switch.

We conduct the performance analysis under two traffic scenarios: Bernoulli uniform
(uncorrelated) traffic and Bursty uniform (correlated) traffic, and experimental results
are arranged into three parts. In the first part, we study the behavior of MSRR algorithm
with a single multicast FIFO per input, and compare its performance to TATRA [43] and
a multicast SLIP-like round-robin algorithm [26], denoted as MSLIP, from the unbuffered
crossbar architecture, and to MXRR [45] from the buffered crossbar architecture. We
consider the buffered crossbar has only one buffer at each crosspoint of the fabric, i.e. N2

total number of internal buffers. In the second part, we study the performance of MSRR
with multiple multicast queues per input; the result is again compared to the MXRR
algorithm from buffered crossbar architecture. In the third part, we focus on MSRR
and the PBC switching architecture, illustrating the switch performance as a function
to the number of multicast queues, K and number of internal buffers per output, B.
For the performance experiments involving multiple multicast FIFOs per input, the cell
assignment policy in [42] is applied.

Fig. 4.4 shows the average latency of TATRA, MSLIP and MXRR comparing to
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Figure 4.4: Average cell latency of switch with one multicast FIFO per input under
bernoulli uniform traffic.
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Figure 4.5: Throughput of switch with one multicast FIFO per input under bernoulli
uniform traffic.
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Figure 4.6: Average cell latency of switch with one multicast FIFO per input under
bursty uniform traffic.
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Figure 4.7: Thoughput of switch with one multicast FIFO per input under bursty uniform
traffic.
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Figure 4.8: Average cell latency of switch with multiple multicast FIFOs per input under
bernoulli uniform traffic.

MSRR with eight internal buffers per output under Bernoulli uniform traffic. The size
of switch is 32x32 and each input has only one multicast FIFO. Note that the higher
latency experienced by MSRR at low arrival rate is due to the pipelining design of a PBC
switch. As the traffic load increase, MSRR outperforms TATRA, MSLIP and maintains
a performance close to MXRR. The introduction of internal buffers to PBC switch allows
more than one HoL cells to be discharged in one time slot, which directly translates into
a lower latency. We also evaluate the performance from the aspect of switch throughput
as shown in Fig. 4.5. MSRR achieves a higher throughput than TATRA and MSLIP,
however the achieved throughput is 1% less than MXRR. If we take into the hardware
factors into the consideration, i.e. the simple multicast FIFO queuing scheme and the
small number of internal buffers maintained per output, it is a fair trade-off between
performance and hardware cost.

With identical switching and queuing configuration, the same trend can be observed
under Bursty uniform traffic with average burst length of 16. As shown in Fig. 4.6 and
Fig. 4.7, MSRR has undistinguishable performance compare to MXRR, while having a
lower latency and higher throughput than TATRA and MSLIP.

Fig. 4.8 and Fig. 4.9 illustrates performance of 32x32 switch with multiple multicast
FIFOs available at each input port. Here, we only consider two and four multicast FIFOs
per input, for the reason that keeping large number of multicast FIFOs is conventionally
undesirable and leads to an increased latency of the cell placement circuit [42]. In Fig. 4.8,
behavior of the MSRR under Bernoulli uniform traffic is studied and compared to that
of MXRR. We can observe that with two multicast queues per input, the MSRR has a



4.4. EXPERIMENTAL RESULT 49

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

T
h

ro
u

g
h

p
u

t

Normalized Output Load

32x32 Switch Under Bursty Uniform Traffic

 

 

MXRR_K(2)

MXRR_K(4)

MSRR_K(2)_B(8)

MSRR_K(4)_B(8)

Figure 4.9: Throughput of switch with multiple multicast FIFOs per input under bursty
uniform traffic.

slightly higher average latency than MXRR. However, when the number of FIFOs per
input increased to four, the MSRR results in a better performance. With an increased
number of multicast queues, the MSRR also yields more performance improvement than
MXRR. Furthermore, the superior performance is achieved with 768 less internal buffers
comparing to a buffered crossbar switch and a affordable number of multicast queues at
each input.

The throughput statistics under Bursty uniform traffic shown in Fig. 4.9 indicates
that while an increased number of multicast queues improves the performance of the
MXRR and the MSRR, the latter achieves a higher throughput than the MXRR with a
same number of queues per input.

In the reminder of this section, we study the effect of varying the number of multicast
queues per input and the size of internal buffers output with different size of switches.
We denote the number of multicast queue as K, and the number of internal buffers at
each output as B. Fig. 4.10 and Fig. 4.11 shows the MSRR under Bernoulli uniform
traffic.

In Fig. 4.10 shows the average cell latency of three different size of switches with
different number of multicast queues and internal buffers. We can observe that irrespec-
tive the size of switch, having more number of internal buffers per output will generally
lead to a lower latency than having more number of multicast queues per input. To con-
firm the observation, in Fig. 4.11 we observer the throughput of switches with different
queuing and internal buffering configuration. As can be seen from the figure, a 32x32
switch with two queues per input and eight internal buffers per output achieves 98%
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Figure 4.10: Average Cell Latency of the MSRR with different MQ numbers, K and
internal buffers, B, under bernoulli uniform traffic.
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Figure 4.11: Throughput of the MSRR with different MQ numbers, K and internal
buffers, B, under bernoulli uniform traffic.
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Figure 4.12: Average Cell Latency of the MSRR with different MQ numbers, K and
internal buffers, B, under bursty uniform traffic.

throughput at maximum traffic arrival rate, while the switch in the same size with eight
queues per input and two internal buffers per output only achieves a throughput of less
than 70%. This observation is within our expectation, since having more internal buffers
per output enables the switch to remove more HoL cell completely in one time slot. On
the other hand, a large number of multicast queues will only provide a increase of the
fanout diversity available to the grant scheduler, which does not directly contribute to
maximum number of cells that can be completed removed/served from the HoL position.

Fig. 4.12 and Fig. 4.13 conducts the same study under Bursty uniform traffic. The
same trend can be observed as switches with larger number of internal buffers achieve a
lower latency and higher throughput comparing to switches with larger number of multi-
cast queues. The result implies that when designing a multicast PBC switch, deploying
more internal buffers at each output and a small number of multicast queues per input
will result in an optimal performance. Also, keeping less number of multicast queues
helps simplify the hardware design of the MSRR scheduler and allows the multicast cell
placement operating in a higher speed.

4.5 Hardware Design

In this section, we present the hardware design of the MSRR input scheduler. Assuming
a 32x32 multicast PBC switch with k multicast FIFOs per inputs. Since the design of
the input scheduler is independent of the number of internal buffers, we do not impose
any specification on the parameter B here. Fig. 4.14 presents the schematic diagram of
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Figure 4.13: Throughput of the MSRR with different MQ numbers, K and internal
buffers, B, under bursty uniform traffic.

the proposed design. The input scheduler circuit consists of the following components,
the input buffer table (IBT) which keeps track of the number of cells in each of the
multicast FIFOs belonging to an input, the multicast queue fanout (MQF) vectors that
represent the fanout of HoL cells, a programmable priority encoder (PPE) implementing
the round-robin prioritization, the grant queue (GQ) that holds the granted credits from
outputs, a register that holds the highest priority position, and different arithmetic units.
The circuit functions as follows: the bitwise OR of each IBT entry is used to express
whether a multicast queue is non-empty and requesting for service, generating the k bits
signals that are fed into the PPE. Depending on the current highest priority, an index to
the maintained k multicast FIFO is computed. With the computed index, we can select
one set of fanout among the k fanout vectors. The selected vector is then ANDed with
the GQ vector to produce the destinations that the selected HoL cell will be copied to.
In order to determine the completion of a cell discharge, we compare the number of the
destinations of the selected HoL cells to the number of granted credits. If there are more
credits than the destinations, the selected HoL cell is considered as fully discharged and
the PPE gets an update on the highest priority position.

4.6 Summary

The PBC switching architecture has shown a high potential in being the architecture of
choice for next-generation routers under the unicast traffic. However, its potential under
multicast traffic has not yet been studied. In this chapter, we conduct the first study on
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Figure 4.14: Block diagram of the MSRR input scheduler.

multicast capability of a PBC switch, and proposed multicast scheduling algorithm for
PBC architecture: MSRR. Through experiments, we show that a PBC switch is capable
of outperforming the unbuffered crossbar switch as well as the buffered crossbar switch,
adopting a simple yet practical distributed round-robin scheduling algorithm and using
up to 75% less of expensive internal buffers.
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Conclusion 5
The PBC switch has been considered an appealing candidate for next-generation

switching architectures. It has distributed input and output schedulers that over-
come the scheduling complexity bottleneck faced by the IQ switch, and it has

significantly lower hardware cost than the CICQ switch to deliver satisfactory perfor-
mance. This thesis studies the unicast-scheduling problem for the PBC switch to further
boost its performance under non-uniform traffic, while maintaining fewer internal buffers
per output. Multicast support by the PBC switch is also studied in the thesis and an
appropriate algorithm is proposed. This chapter is organized as follows: in Section 5.1,
we summarize the content presented in this thesis, in Section 5.2, we conclude the major
contributions to the scheduling in the PBC switch. Finally, in Section 5.3, we provide a
list of open issues to be studied in the future regarding the PBC architecture.

5.1 Summaries

We begin with Chapter 2, a survey of existing crossbar based switching architectures
and scheduling algorithms. By presenting the advantages as well as the shortcomings, we
showed the evolution from the shared-memory switch to the CICQ switch, and eventually
to the PBC switch. The thesis aims at improving the non-uniform performance of the
PBC switch and explores the multicasting support of the PBC switch.

With the aforementioned motivation, we proceed to Chapter 3, in which the ELSRR
algorithm is proposed to improve the performance of a PBC switch, especially aiming
at achieving a higher throughput under unbalanced traffic. Based on observation from
the previously proposed round-robin algorithms, the ELSRR algorithm is designed to be
capable of identifying the congested queue, while maintaining fairness in the bandwidth
allocation. Through extensive simulations, we show that the ELSRR can achieve high
throughput under a collection of unbalanced traffic scenarios, and achieve high stability
in a range of different switch sizes, including 16x16, 32x32 and 64x64 and two internal
buffers per output.

In Chapter 4, we study the multicast capability of the PBC switch, in particular
we: i) proposed the multicast PBC switching architecture, ii) proposed the simple yet
effective scheduling algorithm MSRR, iii) experimentally investigate the performance of
the proposed algorithm compared to the existing algorithms of the IQ and the CICQ
architecture.

5.2 Major Contributions

The major contributions of this thesis are as follows:

55
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• Improving the performance of the PBC switch under non-uniform traf-
fics: we proposed a novel unicast scheduling algorithm that can achieve high per-
formance under non-uniform traffic comparable to the LQF-RR of the CICQ ar-
chitecture, but saving up to more than 90% of the expensive internal buffers. Also,
the output-scheduling algorithm is reduced from the first-come-first serve (FCFS)
policy to round-robin policy, without compromising the in-sequence delivery of
cells. Extensive experiments showed that the proposed algorithm outperforms the
previously proposed round-robin algorithms.

• Study the multicast capability of a PBC switch: we conducted an experi-
mental study on the multicast support by the PBC switch, proposing the multicast
PBC architecture and the round-robin scheduling algorithm MSRR. Particularly
we address the question of whether the multicast PBC switch can provide compa-
rable performance to the multicast CICQ switch. The experimental results suggest
that with simple multicast FIFO queuing structure, the PBC switch can closely
follow the performance of the CICQ switch, and can outperform the CICQ archi-
tecture when k-FIFO queuing structure is adopted.

5.3 Future Work

There is still much left unsaid with regards to the PBC architecture:

• Hardware implementations of the proposed algorithms: In this thesis, we
provided only a high level design of the hardware circuits of the ELSRR and the
MSRR algorithms. The implementation details and the operation speed of designed
schedulers have not been investigated.

• OQ emulation by a PBC switch: The question of whether the PBC switch can
be designed to behave identically to the OQ switch, has not yet been answered.
Though [59] studied the performance guarantees of the PBC switch, there has not
been any research on the OQ switch emulation by the PBC switch.
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Simulation Environment A
The appendix describes the simulation environment used throughout this thesis to

evaluate the performance of different switching architectures. In the first sec-
tion, we introduce the simulation software used to study and evaluate a particular

scheduling algorithm under a particular switching architecture. In the second section,
we provide definitions of different traffic models. Finally, we provide a description of the
parameters used to benchmark the performance of the switch.

A.1 Simulation Tool

We use SIM, a fixed-length packet simulator, developed by computer engineering de-
partment of Stanford University. It is a time-slotted switch simulator written in ANSI-C
and supports simulation of IQ crossbar switching architectures. Its software structure is
shown in Fig. A.1. The traffic generator module will generate virtual cells according to a
traffic model specified by the user, and the generated cells are passed to the input action
module where cells are placed into the input buffers and wait to be switched. Before
the switching of cells, the scheduling module will solve the contention and determine
the cells that will be switched in the later step. Finally, the switching fabric module
switches the scheduled cells from input queues to the output queues, where the statistics
are collected and the virtual cells get destroyed. We have added the PBC switching ar-
chitecture and corresponding scheduling algorithms to the simulator in order to evaluate
its performance.

Figure A.1: The Architecture of SIM.
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A.2 Traffic Models

A.2.1 Uniform Traffic Models

There are two types of uniform traffic scenario used to test the performance of a switch
– bernoulli uniform and bursty uniform traffic. The bernoulli uniform is one of the
most common test cases in literature studies. Cells are generated independently with a
probability of ρ(also known as the normalized switch input load), and the arrival rate is
spread uniformly on all the output ports N .

The bursty uniform traffic is considered an important traffic model due to its re-
semblance to the real Internet traffic pattern [26]. Also, the segmentation of incoming
packets into cells of fixed size will also form a burst of traffic. The bursty uniform traffic
is modeled by a two-state markov chain, denoted as ”BUSY” and ”IDLE”. In the BUSY
state, packets are generated only to a selected output port with a mean length of b,
known as the size of burst, and no packets are generated during the IDLE state.

A.2.2 Non-Uniform Traffic Models

Traffic non-uniformity refers to the variation in the distribution of input traffic over the
destination output ports. Internet traffic is, generally, non-uniform and asymmetric.
Many Internet traffic examples confirm this property, such as client-server applications,
where a number of clients communicate with a small number of servers. Since it is nearly
impossible to simulate all such workloads, there exist some representative and commonly
used non-uniform traffic models. In our simulations, we used three known non-uniform
models which we describe next.

The unbalanced traffic is defined by an unbalanced coefficient ω. For an N × N
switch, the traffic load at each input port is defined by ρ. Then the traffic load on
V OQi,j , ρi,j is given by:

ρi,j =

{
ρ(ω + 1−ω

N ) if i = j,
ρ1−ω

N otherwise.

The double diagonal and logarithmic diagonal traffic matrix is given below for a 4 × 4
switch,

λ(DoubleDiagonal) =
ρ

3


2 1 0 0
0 2 1 0
0 0 2 1
1 0 0 2



λ(LogDiagonal) =
ρ

24 − 1


8 4 2 1
1 8 4 2
2 1 8 4
4 2 1 8
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A.3 Performance Assessment Parameters

There are commonly three metrics to evaluate performance of a switch, the average cell
latency, switch throughput and the input buffer occupancy.

A.3.1 Average Cell Latency

The cell latency refers to the number of time slots a cell waited in a switch. Depending
on the switching architecture, the latency experienced by a cell may consist of the time
spent at the input buffer (for IQ switch), the fabric buffer (for CICQ and PBC) and the
output buffer (for OQ and CIOQ). Note that the latency collected by the simulator is
an average of latency over all the cells generated by the traffic generator module.

A.3.2 Throughput

The switch throughput is defined as the ratio between the output load and the input
load of the switch. The maximum throughput is defined as the maxi- mum input load
after which the switch becomes unstable. Instability means that the input load is higher
than the throughput of the switch, hence queues will keep growing indefinitely. The
maximum throughput is also known as the saturation throughput of the switch and
indicates the switch capacity. If the saturation throughput of a switch with a given
scheduling algorithm equals to one, which is the maximum value due for a speedup of
one, then the given scheduling algorithm is said to achieve 100% throughput.

A.3.3 Input Queues Occupancies

The input queues occupancies can be used to evaluate the stability of a scheduling
algorithm and a switching architecture. We use the Euclidean vector or L2 norm to
express the occupancy. Let the V OQi,j(n) denote the number of cells remained in the
queue, then the input queues occupancies is calculated as following:

||L2(n)|| =

√√√√ n∑
i=1

n∑
j=1

V OQi,j(n)2
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