Extracting Building Exterior Envelopes from Building Information Models

Thesis Presentation Geomatics

Lan Yan

First supervisor: Dr. Ken Arroyo Ohori Second supervisor: Jasper van der Vaart Co-reader: Dr. Roderik Lindenbergh

Buildings: sheltering places

- Advance of technologies
- Higher standards for indoor and outdoor environments

More applications

Energy demand estimation

Kaden et al. (2013)

Solar potential estimation

Gassar et al. (2013)

More applications

Wind simulations

Garcia-Sánchez et al. (2021)

Shadow analysis

Noise propagation

Yunus et al. (2023)

Rafiee et al. (2014)

Sources for extracting building envelopes

detailed geometric and semantic information

Point Cloud

Satellite images

New source: building information models

- Useful for various applications
- Extracted building envelope useful throughout the building's whole life cycle
 - Design phase: energy and environmental analysis

Research gap BIM-based building envelope extraction state of art

- Identify exterior objects by relative positions
 - Fan et al. (2009)
- Footprint generation and intersection
 - Benner et al. (2015)
- Ray casting
 - Deng et al. (2016)
 - Karydakis (2018)

Identifying the exterior building objects

- Limited applicabilities
- Computationally Expensive

Failing to identify all the exterior building objects

How can we extract building envelopes from different types of BIM models both accurately and efficiently?

Research questions

Convert to a point cloud geometry reconstruction problem

- How to extract a point cloud from a BIM model that is suitable for building envelope reconstruction?
- How can we develop a building envelope extraction method, that can reconstruct the building envelope both accurately and efficiently?
- How to measure the quality of the extracted building envelope?
- What are the factors that influence the reconstructed building envelope quality?

Methodologies

Methodologies

Methodologies Point cloud extraction

BIM model
Grid Sampling

Methodologies Point cloud extraction: filtering of IFC data

What is the subset of IFC Data suitable for extracting point cloud?

Methodologies Point cloud extraction: sampling

Point cloud requirements

- Big enough: preserve the geometry
- Small enough: within the reconstruction capacity

Extract points

Vertices ×

Sampling?

- Random sampling ×
- > Grid sampling $\sqrt{}$

Methodologies Point cloud extraction: grid size

Grid size

Point density on building surfaces

Grid size requirement

- > minimum size of building objects
 - o 0.5m
- < reconstruction capacity
 - **0.1m**

Methodologies Point cloud simplification

Uniform point densities within surface?

- Random simplification ×
- Grid simplification ×
 - Too big grid size: information loss
 - Too small grid size: minor simplifications
- Hierarchy simplification ×
 - split point cloud into smaller subsets
- Weighted locally optimal Projection (WLOP) simplification $\sqrt{}$
 - define another set of projected points
 - minimize a similarity-measure parameter between the projected and original points
 - \circ Uniform distribution $\sqrt{}$

Difference between sampled point cloud and Lidar point cloud

What makes an appropriate geometry reconstruction method?

- Extract outer boundary
- Preserve geometric details

Point cloud-based geometry reconstruction methods

- Voxel-based method
- Footprint projection and extrusion
- Possion Surface reconstruction
- 3D Alpha shape

Voxel-based method Voxelization

- Calculate bounding box
- Construct 3D grid
- Segment point cloud

Marching cube

Extract outer boundary × Small holes and gaps ×

Voxelized point cloud (Wang et al. 2015)

Footprint projection and extrusion

Extract outer boundary ? Preserve geometric details × Door and windows ×

Possion surface reconstruction

- Compute a indicator function
- extracting iso-surfaces

Extract outer boundary × Preserve geometric details $\sqrt{}$

Possion surface reconstruction algorithm (Kazhdan et al. 2006)

3D alpha shape

Working principle of alpha shape (source.CGAL)

Method name	Extract outer boundary	Preserve geometric details
Voxel-based method	×	\checkmark
Footprint projection and extrusion	?	×
Possion Surface reconstruction	×	\checkmark
3D Alpha shape	\checkmark	\checkmark

Use 3D alpha shape as the reconstruction method

Alpha value

Alpha value

- < Minimum size of building objects
- > grid size

Hole on the reconstructed

Edge collapse

Edge collapse

What edge collapse method to choose?

- Stop condition
 - number of edges ×
 - length of edges ×
 - \circ Ratio of the current number of edges and the original number of edges $\sqrt{(1\%)}$
- Cost and placement strategy
 - \circ Lindstrom-Turk strategy $\sqrt{}$
 - minimize the change in area and volume
 - Garland-Heckbert strategy ×
 - minimize the deviation between original and simplified surfaces

Implementations

Implementations Used dataset

Implementations Used dataset

Rich variety Different types of roofs Small scale objects Different levels of complexity

Implementations Used software and packages

IfcOpenShell

CGAL

OpenIFCViewer

Open IFC Viewer

Blender

Results and discussions

Extracted building envelope from BIMcollab ARC model, front view

BIMcollab ARC model, front view

Extracted building envelope from BIMcollab ARC model, left view

BIMcollab ARC model, left view

Extracted building envelope from BIMcollab ARC model, top view

Extracted building envelope from BIMcollab ARC model, top view

Discussion Quality assessments

Quality assessments of reconstructed geometry

- Geometric accuracy
- topological accuracy
- Simplicity
- Time efficiency

Quality assessments of this research

- Geometric accuracy
- Simplicity
- Time efficiency

.ifc file

Mean and standard deviation of the reconstruction errors

Mean value 100% < 2cm 85.7% <1.2cm

High reconstruction accuracy

Simple models: higher accuracy Complex models: lower accuracy

standard deviation

>2*mean
Spread out distribution

walls and roofs

- very high geometric accuracy
- <0.1cm

windows and doors

- Relatively low geometric accuracy
- 0.1m to 0.3m

why?

Spatial distribution of the reconstruction error (Mauer BmB model, front view)

smallest possible grid size: 0.1m

Discussion quality assessments: geometric simplicity

Geometric simplicity

Number of vertices

• 100% removed more than 90% vertices

Number of faces

- 85.71% removed more than 85% faces
- triangulation ×

Discussion quality assessments: time efficiency

Most models Reconstruction time > sampling time

Discussions Parameters

Cell size of the sampling grid

- Bigger cell size for simple models
- Smaller cell size for complex models

Percentage of retained points during point cloud simplification

• Simplification ×

Discussions Parameters

Alpha value of the alpha shape reconstruction algorithm

• Only slightly bigger than grid size

Percentage of retained edges during mesh simplification

- Simple model: 1%
- Complex model: 10%

Appropriate parameter settings

- differ from building to building
- Trial and error

Discussions Limitations

- Big IFC models ×
- Geometry only
 - Semantic information
 - Topological information
- Depend heavily on fine-tuning parameters
- inevitable geometric errors

Conclusions and future work

Conclusions and future work Conclusions

How to extract a point cloud from a BIM model that is suitable for building envelope reconstruction?

• Grid sampling using fine grid size

From the extracted point cloud, how can we develop a building envelope extraction method, that can reconstruct the building envelope both accurately and efficiently?

- 3D alpha shape, outer boundary with great detail
- Alpha value: slightly bigger than grid size

Conclusions and future work Conclusions

How to measure the quality of the extracted building envelope?

• geometric accuracy, simplicity, and processing speeds

What are the factors that influence the reconstructed building envelope's quality?

- Parameters
 - Grid size
 - Retained percentage of points
 - Alpha value
 - Retained percentage of edges
- characteristics of the input IFC models

Conclusions and future work Future work

- Improving the processing capacity
- Geometry segmentation
- Semantic information reconstruction
- topological information reconstruction
- Converting building envelope to CityGML format

Garcia-Sanchez, C. et al. (Oct. 2021). "THE IMPACT OF LEVEL OF DETAIL IN 3D ´ CITY MODELS FOR CFD-BASED WIND FLOW SIMULATIONS". In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-4/W4-2021, pp. 67–72. DOI: 10.5194/isprs-archives-xlvi-4-w4-2021-67-2021.

Gassar, Abdo Abdullah Ahmed and Seung Hyun Cha (June 2021). "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales". In: Applied Energy 291, p. 116817. DOI: 10.1016/j.apenergy.2021.116817.

Kaden, Robert and Kolbe, Thomas H (2013). "City-wide total energy demand estimation of buildings using semantic 3D city models and statistical data". In: Proc. of the 8th International 3D GeoInfo Conference. Rafiee, Azarakhsh et al. (2014). "From BIM to Geo-analysis: View Coverage and Shadow Analysis by BIM/GIS Integration". In: Procedia Environmental Sciences 22, pp. 397–402. DOI: 10.1016/j.proenv.2014.11.037. Yunus, Furkat et al. (2023). "Efficient prediction of airborne noise propagation in a non-turbulent urban environment using Gaussian beam tracing method". In: The Journal of the Acoustical Society of America 153.4, pp. 2362–2362.

Thank you! Questions?