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Genome analysis
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Abstract
Motivation: Today, we know the function of only a small fraction of the protein sequences predicted from genomic data. This problem is even 
more salient for bacteria, which represent some of the most phylogenetically and metabolically diverse taxa on Earth. This low rate of bacterial 
gene annotation is compounded by the fact that most function prediction algorithms have focused on eukaryotes, and conventional annotation 
approaches rely on the presence of similar sequences in existing databases. However, often there are no such sequences for novel bacterial 
proteins. Thus, we need improved gene function prediction methods tailored for bacteria. Recently, transformer-based language models— 
adopted from the natural language processing field—have been used to obtain new representations of proteins, to replace amino acid sequen-
ces. These representations, referred to as protein embeddings, have shown promise for improving annotation of eukaryotes, but there have 
been only limited applications on bacterial genomes.
Results: To predict gene functions in bacteria, we developed SAFPred, a novel synteny-aware gene function prediction tool based on protein 
embeddings from state-of-the-art protein language models. SAFpred also leverages the unique operon structure of bacteria through conserved 
synteny. SAFPred outperformed both conventional sequence-based annotation methods and state-of-the-art methods on multiple bacterial spe-
cies, including for distant homolog detection, where the sequence similarity to the proteins in the training set was as low as 40%. Using 
SAFPred to identify gene functions across diverse enterococci, of which some species are major clinical threats, we identified 11 previously 
unrecognized putative novel toxins, with potential significance to human and animal health.
Availability and implementation: https://github.com/AbeelLab/safpred.

1 Introduction
With increasing volumes of sequencing data from high- 
throughput technologies, the observed diversity of protein 
sequences is increasing faster than our knowledge of its func-
tion. Given costs and the inability to scale experimental and 
other manual approaches for function prediction, computa-
tional approaches have a critical role in deciphering func-
tional diversity. Most state-of-the-art gene function 
prediction methods have focused on eukaryotes, leaving a 
gap in our understanding of the vast landscape of diversity 
among bacteria, which represent some of the most phyloge-
netically and metabolically diverse taxa.

As with previous tools, we define gene function prediction 
as the process of mapping terms from the Gene Ontology 
(GO) knowledgebase to ORFs where the start and stop posi-
tions have been annotated (Ashburner et al. 2000, Zhou et al. 
2019). Conventional approaches for gene function prediction 
rely on sequence homology. Initial methods employed se-
quence search tools such as BLAST or DIAMOND to query a 
database of known protein sequences and their functions 
(Altschul et al. 1990). While useful, these methods are limited 
by the completeness and fidelity of their databases. 
Furthermore, it is often difficult to determine appropriate 

thresholds, resulting in low sensitivity and specificity (Zhou 
et al. 2019). With increasing data, machine learning techni-
ques have been explored; in the most recent Critical 
Assessment of Functional Annotation (CAFA), a challenge 
established to evaluate the state-of-the-art in automated func-
tion prediction, GOLabeler was the top performer for pre-
dicting molecular function ontologies by integrating sequence 
alignments, domain and motif information, and biophysical 
properties of proteins (You et al. 2018).

More recently, deep learning methods leveraging ideas 
from natural language processing (NLP) have gained atten-
tion. Deep learning-based protein language models were re-
cently used to extract embedding vectors for protein 
sequences that are analogous to word embeddings 
(Heinzinger et al. 2019, Elnaggar et al. 2020, Rives et al. 
2021). These vectors capture core properties of proteins be-
yond primary structure, in a way that is context and species 
agnostic, but relevant to their function in the cell, which 
makes them particularly useful for understudied organisms 
(Hoarfrost et al. 2022). Contextualized word embeddings 
have demonstrated success in predicting GO terms, as well as 
structure and localization prediction, and refining protein 
family clusters (Littmann et al. 2021).
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Compared to eukaryotes, much less has been done to apply 
NLP-based methods to bacterial genes. In a recent CAFA chal-
lenge, methods consistently performed less well on bacteria 
than eukaryotes, suggesting room for improvement. 
Furthermore, the prokaryotic track was heavily biased toward a 
single, well-studied bacterial species, E. coli (Zhou et al. 2019), 
pointing to a need to test methodologies on diverse bacteria. 
However, more recently, Mahlich et al. (2018, 2023) showed 
that with more sophisticated deep-learning methods to study 
bacterial function, an incredible amount of knowledge can be 
gained about remote homologs in novel organisms. Given the 
vast diversity of functional repertoire in bacteria, remote homol-
ogy detection is of utmost importance.

Many functionally related bacterial genes are encoded in 
operons, colocated clusters of genes on the same strand, 
which are often coregulated and cotranscribed. Thus, the 
context of a gene is another means to infer clues to its func-
tion (de Daruvar et al. 2002, Li et al. 2009), as it is a source 
of information complementary to both the sequence and 
embeddings-based representation of a gene. Leveraging gene 
context and interactions was shown to improve prediction 
performance on eukaryotes (Makrodimitris et al. 2020, Yao 
et al. 2021); however, combining information from gene con-
text with embeddings-based gene representations has not yet 
been done for gene function prediction.

We developed Synteny-Aware Function Predictor (SAFPred), 
a novel approach to improve bacterial gene function prediction 
based on protein embeddings and a comprehensive bacterial 
synteny database. To evaluate SAFPred, we performed extensive 
benchmarking using ground truth data and automated function 
prediction standard approaches to show that SAFPred outper-
formed conventional sequence-based bacterial genome annota-
tion pipelines, HMM-based approaches, and a state-of-the-art 
deep learning method, when using gene synteny conservation as 
additional input. As part of a real-world application, we also 
demonstrated SAFPred’s utility to predict protein functions in 
Enterococcus species, including predicting potential novel pore- 
forming toxins related to the delta toxin family that could not 
be recognized using linear sequence or protein domain informa-
tion. SAFPred provides a powerful new tool for gene function 
prediction in bacteria, combining state-of-the-art NLP methods 
with a novel incorporation of syntenic information for bacteria.

2 Materials and methods
2.1 Datasets
2.1.1 SwissProt dataset for benchmarking
We retrieved all the manually reviewed entries from the 
SwissProt Database (release 2021-04, retrieval date 10 

November 2021) (The UniProt Consortium 2018), which 
was filtered to include proteins of length 40–1000 amino 
acids and with at least one experimental GO annotation. We 
selected the evidence codes EXP, IDA, IPI, IMP, IGI, IEP, 
HTP, HDA, HMP, HGI, HEP, IBA, IBD, IKR, IRD, IC, and 
TAS. To reduce redundancy, we clustered the proteins using 
CD-HIT (Li and Godzik 2006) at 95% sequence similarity. 
The final dataset comprised 107 818 proteins in total.

To benchmark the performance of our method, we created 
five benchmarking datasets from SwissProt, one for each of 
the five most numerous bacterial organisms in our dataset 
(Table 1). Each organism’s dataset was split into training and 
test sets. The test was set composed of all proteins from the 
specific bacteria. We also divided each training set in different 
ways to create five sets where the sequence similarity (calcu-
lated using BLASTp) (Altschul et al. 1990) of test to training 
set proteins was at most 40%, 50%, 60%, 70%, and 80%. 
This resulted in a total of 30 benchmarking sets (Table 1 and 
Supplementary Text).

2.1.2 Enterococcus diversity dataset
We applied SAFPred to a set of 61 746 proteins with no ex-
perimental annotations, representing the entire protein con-
tent of 19 Enterococcus species, spanning four Enterococcus 
clades (Lebreton et al. 2017) (Supplementary Table S5). This 
collection of genomes is representative of Enterococcus geno-
mic diversity, hence we refer to it as the Enterococcus diver-
sity dataset. Assemblies were downloaded from the Assembly 
Database in NCBI.

2.2 Building the bacterial synteny 
database, SAFPredDB
SAFPredDB is a comprehensive compilation of bacterial syn-
tenic relationships, designed as a resource for SAFPred. It is 
based on genomic data from the Genome Taxonomy 
Database (GTDB Release 202, retrieved on 31 March 2022) 
(Parks et al. 2021) because GTDB assigns representative 
genomes based on assembly quality and provides a curated 
list of species, with consistent labels and IDs to cross- 
reference to all other databases. Starting with 45 555 repre-
sentative genomes, we extracted all protein sequences from 
the standardized GTDB annotations and clustered them using 
CD-HIT at 95% sequence identity with default parameters, 
keeping only clusters that contained at least 10 genes, result-
ing in 372 308 clusters. Next, we identified synteny by group-
ing clusters if at least one cluster member was located on the 
same contig and strand, within 2000 bp (Fig. 1A). This 
yielded 1 488 249 nonsingleton candidate regions. Finally, 
we removed regions with an intergenic distance >300 bp, or 

Table 1. Total number of proteins in the benchmarking sets generated from the SwissProt dataset to evaluate function prediction tools on 
bacterial organisms.

Organism name No. of proteins  
in the test set

No. of proteins in the training set (for given similarity between training and test sets)

40% 50% 60% 70% 80% 95% (Full)a

Escherichia coli (EC) 3454 87 014 96 471 100 445 102 262 103 229 104 377
Mycobacterium tuberculosis (MT) 1666 95 367 102 531 105 158 105 917 106 114 106 152
Bacillus subtilis (BS) 1636 93 363 101 112 104 325 105 609 106 015 106 182
Pseudomonas aeruginosa (PA) 1014 94 679 101 338 104 644 106 186 106 680 106 804
Salmonella typhimurium (ST) 774 100 928 104 164 105 384 105 980 106 340 107 044

For each organism, the test set remained constant and was composed of all entries from the specific bacterial species, whereas the training set was restricted 
according to the maximum sequence similarity allowed between the test and training sets.

a 95% similarity was chosen to represent the full dataset to avoid redundancy.
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split them into multiple regions if possible (Fig. 1B). At the 
end of this procedure, SAFPredDB consisted of 406 293 
unique nonsingleton regions, and the largest region was 25 
genes long.

We used experimentally determined operons collected in 
the Operon DataBase (ODB v4) (Okuda and Yoshizawa 
2010) to help determine threshold values used when building 
SAFPredDB, and to validate SAFPredDB. We downloaded 
both the ODB known and the ODB conserved operon data-
bases on 31 March 2022. We identified operons in ODB be-
longing to E. coli and B. subtilis, as (i) these two organisms 
form the basis of a large part of the benchmarking of 
SAFPredDB, (ii) we could cross-reference the protein IDs in 
ODB to the locus tags in their respective genome assemblies, 
and (iii) they are two of the most well-represented organisms 
in ODB. The ODB conserved operon database contained 
8235 unique operons, from which we extracted descriptive 
statistics and common patterns found across several operons 
conserved among bacterial organisms. The ODB known op-
eron database was used to model synteny features and deter-
mine thresholds, such as region length, number of genes in a 
region, and the maximum intergenic distance between adja-
cent genes in a region.

To summarize each SAFPredDB entry, we extracted pro-
tein embedding vectors for the representative sequence of 
clusters found in that entry. We used ESM-1b, a transformer- 
based protein language model (Rives et al. 2021) to extract 
the embeddings, and we took the average of these embed-
dings to obtain one embedding vector per operon (Fig. 1C). 
Then, we annotated SAFPredDB entries by assigning GO 
terms, if possible. Since we did not have experimental annota-
tions, we labeled entries based on sequence similarity. We 
used BLASTp (Altschul et al. 1990) to calculate pairwise se-
quence similarity between proteins in SAFPredDB entries and 
the nonredundant SwissProt database with experimentally 
determined GO terms (all 107 818 entries). We transferred 
GO terms from significant hits (e-value <1e-6 and bit score 
>50) using the frequency of each GO term among these hits 
as a predicted score. We could assign at least one GO term to 
295 446 of the 372 308 clusters (79%), which in turn yielded 
388 377 nonsingleton entries (out of 406 293; 96%) anno-
tated with at least one GO term (Supplementary Table S2).

In order to keep our synteny database consistent with our 
benchmarking datasets, where we evaluated SAFPred on 

training subsets with differing sequence similarity to the pro-
teins in the test set, we generated corresponding subsets of 
SAFPredDB with matching sequence similarity thresholds. 
We followed the same procedure as we did to generate sub-
sets of the SwissProt training sets with different sequence sim-
ilarity thresholds: we used BLAST to calculate the pairwise 
sequence identity of each query protein to the protein clusters 
that form our main database. We removed clusters if they 
were more than 40%, 50%, 60%, 70%, 80%, and 95% sim-
ilar to at least one of the query proteins in the test set. Since 
this operation removed or altered the content of the entries, 
we recalculated the intergenic distances for the remaining 
clusters and again split regions where the intergenic distance 
exceeded our 300-bp threshold, as we did when we created 
the main synteny database (Fig. 1B and C).

2.3 Comparison to published function 
prediction methods
2.3.1 Comparison to broadly used function prediction 
methods as baseline
In our SwissProt benchmarks, we compared SAFPred to two 
conventional methods of function prediction: (i) BLAST (v. 
2.12.0) (Altschul et al. 1990), widely used in the literature for 
comparisons to function prediction tools, and (ii) an HMM- 
based approach, as a more sophisticated baseline.

To predict function using the BLAST baseline, we trans-
ferred GO terms from significant BLAST hits also taking 
short sequences into account (e-value <1e-3, -task 

blastp-short) of a query protein with a predicted score of 
the value of the maximum sequence identity. As an alternative, 
we also used the GO term frequency-based approach (Zhou et al. 
2019), but we found the maximum sequence identity scoring 
method performed better in our experiments.

To predict function using the HMM-based approach, we 
ran the hmmscan command from the HMMER package 
(Eddy 2011) with the flags “-E 1e-3—cpu 2—domtblout” 
against the Pfam database and applied the frequency-based ap-
proach to score transferred annotations, i.e. we transferred GO 
terms from all significant HMM hits (e-value <1e-3) to the query 
protein, using the frequency of a GO term (number of times it 
was observed among the significant hits) as the predicted score. 
To compare Pfam outputs quantitatively with those from other 
methods, we used Pfam2GO mapping tables (version date 5 
December 2020) provided by the GO consortium to obtain GO 

Figure 1. Schematic diagram of method used to construct our synteny database, SAFPredDB. Hashed boxes represent genes; solid boxes are numerical 
embedding vectors. (A) 2000-bp-long gene neighborhoods are extracted from all genomes in GTDB; shown is an example with four genes in a single 
genomic neighborhood (hashed grey boxes). (B) After clustering all proteins from GTDB with CD-HIT, we replace the genes with the CD-HIT clusters they 
belong to (hashed orange boxes) using the amino-acid sequence of the representative gene of each cluster in place of their actual amino-acid sequence. 
Then, we trim potential syntenic regions to remove genes separated by > 300 bp, resulting in final syntenic regions (hashed green boxes). (C) Once the 
final syntenic regions are determined, we (i) annotate each region with a set of GO terms, for which we track the corresponding frequency among the 
gene clusters that make up the region (blue rectangles, darker shades mean GO terms are found in more genes within the region), and (ii) extract 
numerical embedding vectors for each region (solid green boxes). We create a new representation for each region, which consists of the average 
embedding vector and a set of GO terms. The final synteny database is a collection of such representative embedding vectors and GO term frequency 
vectors; representations of six example entries are shown here.
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terms corresponding to each Pfam ID in addition to the Pfam 
database (release 32.0) (Mitchell et al. 2015, Mistry et al. 2021). 
Because the Pfam database is independent of the training sets we 
created based on the SwissProt database, we could not evaluate 
its dependence on the similarity threshold examined for 
other tools.

2.3.2 Comparison to a recent state-of-the-art deep 
learning method
We chose DeepGOPlus (v 1.0.1) (Kulmanov and Hoehndorf 
2019) as a recent deep learning-based comparator in our 
experiments. A state-of-the-art tool, it uses a supervised ap-
proach where a deep convolutional neural network model is 
combined with a sequence homology-based method. We used 
the implementation provided by the authors and trained the 
model on the training sets in our experiments with the opti-
mal values reported for the hyperparameters (Kulmanov and 
Hoehndorf 2019). We used the same training set for both the 
BLAST queries and the DeepGOPlus.

2.4 SAFPred algorithm
SAFPred combines two nearest neighbor (nn) methods: 
SAFPred-nn, which is based only on amino-acid level embed-
dings constructed from the SwissProt database, and SAFPred- 
synteny, which leverages syntenic relationships drawn from 
our bacterial synteny database.

In SAFPred-nn, we used the ESM-1b protein language 
model (which we will call ESM) (Rives et al. 2021) to repre-
sent SwissProt entries. To extract amino-acid level embed-
ding vectors, we used bio_embeddings (v 0.2.2) (Dallago 
et al. 2021) with default settings. We obtained protein-level 
embeddings (1280 dimensional vectors for ESM) by averag-
ing over individual amino acid embeddings. In preliminary 
work, we also used the ProtT5-XL-U50 model (Elnaggar 
et al. 2020), but found that embeddings from ESM performed 
better (Supplementary Material).

For each query protein, we identified nearest neighbors in the 
training set based on embedding vector similarity over a thresh-
old, which we calculate separately for each query as the 99th 
percentile among all pairwise similarity values. We transferred 
GO terms from nearest neighbors with a score equal to their co-
sine similarity to the query protein. As the final prediction, we 
keep only the maximum score for each GO term transferred 
from the nearest neighbors. We use cosine similarity to deter-
mine the similarity between any two embedding vectors e1

! and 
e2
! defined as: simðe1

!; e2
!Þ ¼ ðe1

!� e2
!Þ=ðjje1

!jj � jje2
!jjÞ, where e1

!

and e2
! are both real-valued vectors, e1

! � e2
! represents the dot 

product between e1
! and e2

!, and jjei
!jj is the Euclidean norm of 

vector ei
!, for i¼1, 2.

The SAFPred-synteny component comprises two main steps 
(Fig. 2): (i) assigning syntenic regions to a query from the pre-
computed synteny database, SAFPredDB (Fig. 2A) and (ii) 
transferring GO terms from SAFPredDB entries to the query 
(Fig. 2B). SAFPred-synteny follows the same nearest neighbor 
approach as SAPFred-nn to find the most suitable syntenic 
regions in SAFPredDB for each query point. In short, we calcu-
late the pairwise cosine similarity between the query point and 
the average embedding vectors representing database entries. 
We assign a region to the query if the pairwise similarity be-
tween the region and query embeddings is greater than the 99th 
percentile among all pairwise similarity values.

In our current implementation, we do not have any restric-
tions on entries assigned to a query protein: given that the 

most suitable syntenic regions are picked among the same set 
of regions used to calculate the threshold, at least one region 
is assigned to each query point.

For all such entries assigned to the query, we also retrieve GO 
term frequencies. We transfer all GO terms found in the assigned 
entries using the frequency of the terms multiplied by the cosine 
similarity of the query point to the entry as the predicted score. 
For each GO term, the predicted score is the maximum of these 
values. As the final step in our algorithm, we normalize the pre-
dicted scores separately within three GO classes.

SAFPred combines the predictions from SAFPred-nn and 
SAFPred-synteny by taking the average of predicted scores. 
We also evaluated its two component predictors individually. 
Comparing all three methods side by side allowed us to assess 
the individual contributions from embeddings and our syn-
teny database on SAFPred’s performance.

2.5 SwissProt benchmark evaluation
Using our SwissProt benchmarking datasets, we evaluated six 
protein prediction methods: two baselines (BLAST and 
Pfam), DeepGOPlus, SAFPred, and separately its two compo-
nents SAFPred-nn and SAFPred-synteny, representing contri-
butions from the embeddings representation and synteny, 
respectively. In order to make the outputs of all tools compa-
rable to those of DeepGOPlus, we propagated the predicted 
GO term scores based on the GO hierarchy, as done previ-
ously (Kulmanov and Hoehndorf 2019). For each GO term, 
we assigned the highest predicted score from among its chil-
dren. This additional postprocessing step was only imple-
mented in our benchmarking comparisons across tools, and 
not in our function prediction across the Enterococcus genus.

We evaluated these function prediction methods as done 
for the CAFA challenges, using the maximum F1-score (Fmax) 

and the minimum semantic distance (Smin) as described in 
(Zhou et al. 2019). We also report the coverage, defined as 
the percentage of test proteins annotated with at least one 
GO term at the threshold which maximizes the F1-score. We 
use leaf nodes in the GO hierarchy only, and remove all an-
cestor nodes between the leaves and the top of the tree.

2.6 Applying SAFPred to a diverse set of 
enterococcal genomes, including detailed analysis 
of pore-forming toxins
To demonstrate a practical application of SAFPred, we ap-
plied it to the Enterococcus diversity dataset. We ran 
SAFPred in default mode, comparing its output to that from 
three annotation approaches: (i) prokka (v. 1.14.6) (Seemann 
2014), which runs multiple sequence homology-based func-
tion prediction tools; (ii) the Pfam database (release 32.0) 
(Paysan-Lafosse et al. 2023) using the hmmscan command 
from HMMER (v 3.3.2) (Eddy 2011); and (iii) eggNOG 
mapper (v 2.1.10) (Huerta-Cepas et al. 2018). All tools were 
run using default parameters; for HMMER and eggNOG, a 
significant hit was defined as having e-value <1e-3.

When examining potential novel Enterococcus pore- 
forming toxins, we performed additional analyses to assess 
the potential function of query proteins without experimental 
annotations: (i) we performed a large-scale structure search 
using the query protein against AlphaFoldDB and the Protein 
Data Bank (PDB); (ii) we examined their similarity to known 
pore-forming toxins found in Enterococcus or closely related 
genera (Supplementary Table S4), both in terms of structural 
similarity (using Foldseek), as well as in genomic context; 
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and (iii) we assessed the presence of key structural elements, 
including N-terminal signal sequences, a common feature in 
most toxin sequences which guides toxin secretion and trans-
portation outside the cell.

In order to compare syntenic relationships between predicted 
and known toxin genes, we examined five genes upstream and 
downstream of toxin genes predicted by SAFPred, as well as for 
the known delta toxin genes from Supplementary Table S4, 
epx1 and epx4 (Xiong et al. 2022).

To predict the structure of potential novel toxin genes identi-
fied by SAFPred, we used the Fold Sequence public server on 
ESMFold Atlas (Lin et al. 2023) which only allows input 
sequences shorter than 400 amino acids. For longer proteins, 
we used AlphaFold (Jumper et al. 2021) in monomer mode 
with default settings, using the Docker implementation. We 
used Foldseek (van Kempen et al. 2023) for both protein struc-
ture search against databases and structural alignment. While 
the structure database search was performed with default set-
tings, we utilized both the global (—alignment-type 1) and local 
alignment options (—alignment-type 2) of Foldseek. Following 
the guidelines available for running Foldseek, we labeled align-
ments depending on their structural alignment score: highly sig-
nificant (> 0.7), significant (0.6–0.7), nonrandom (0.5–0.6), or 
random (≤ 0.5). To account for large differences in the query 
and target sequence length, we required the alignment probabil-
ity to be >0.8. We predicted the N-terminal signal sequences us-
ing the SMART server (Schultz et al. 1998).

3 Results
To improve gene function annotation for bacteria, we devel-
oped SAFPred, which combines state-of-the-art protein embed-
dings based on NLP algorithms with bacteria-specific 
information about gene function inferred from bacterial synteny 
collected in our database, SAFPredDB, which provides mean-
ingful insight into gene function. This combination outper-
formed conventional gene function prediction tools and a recent 
state-of-the-art method, DeepGOPlus, on bacterial genes. We 
also demonstrated SAFPred’s performance on a real-world ap-
plication where it identified potential novel variants of delta 
toxin in Enterococcus.

3.1 SAFPredDB: a database to leverage functional 
information from syntenic relationships 
across bacteria
To incorporate information about synteny into SAFPred, we 
constructed a large-scale database, SAFPredDB, of over 

400 000 syntenic regions predicted from >45 000 representa-
tive genomes from across the bacterial kingdom (Methods). We 
validated SAFPredDB by comparison to the experimentally de-
termined operons found in the conserved ODB (Okuda and 
Yoshizawa 2010), a similar online database. SAFPredDB is 
larger and more up-to-date than ODB, which is based on a 
smaller, curated list of experimentally determined operons from 
the literature. Overall, SAFPredDB is quantitatively similar 
to the conserved ODB, in terms of region length, number of 
genes in a region and intergenic distance within regions 
(Supplementary Figs S1–S3). SAFPredDB provides an extensive 
catalog of conserved patterns of synteny within the bacterial 
kingdom (Supplementary Table S1).

3.2 SAFPred outperforms other tools in function 
prediction for multiple bacterial species
To assess the performance of SAFPred in assigning GO terms 
to proteins, we first performed benchmarking on the 
SwissProt database, where only the proteins with at least one 
experimentally determined GO annotation were retained. We 
then created benchmarking datasets for five different bacte-
rial species, dividing SwissProt entries into training and 
test sets, thus simulating the real-world scenario of annotat-
ing predicted proteins that lack exact matches to 
database entries.

We benchmarked SAFPred against three previously published 
tools, including (i) a baseline BLAST method; (ii) a basic 
HMM-based approach (HMMER); and (iii) a state-of-the-art 
deep learning method (DeepGOPlus) (Methods). We also com-
pared SAFPred against its two component algorithms run sepa-
rately, SAFPred-nn (which relies solely on protein embeddings) 
and SAFPred-synteny (which relies solely on a database of syn-
tenic relationships from operons), allowing us to assess contri-
butions of the two components. We performed benchmarking 
separately for three categories of GO terms, including Biological 
Process (BPO), Molecular Function (MFO), and Cellular 
Component (CCO), as these are known to present different 
challenges for annotation (Radivojac et al. 2013). Overall, 
SAFPred achieved the highest Fmax scores across all five species, 
for all three GO categories, and on the full SwissProt bench-
marking set, with S. typhimurium being the only exception. On 
this species, DeepGOPlus performed the best for BPO and 
MFO (Table 2 and Supplementary Table S7). We observed sim-
ilar trends in prediction performance using Smin and the area 
under the precision/recall curve (Supplementary Tables S8 and 
S9). The SAFPRed-nn predictor used alone surpassed conven-
tional tools, showing that protein embeddings, even in a simple 

A B

Figure 2. Overview of SAFPred-synteny algorithm: predicting GO terms of a query protein. (A) SAFPred-synteny assigns an entry (or multiple entries) to 
the query protein (red filled rectangle on the left) represented using embeddings from ESM-1b LM, based on cosine similarity. Consistent with Fig. 1, 
green rectangles show synteny embeddings paired with the corresponding GO term frequencies (blue rectangles). In this example, three entries that 
passed the threshold are assigned to the query, and their GO term frequencies are weighted by multiplying by the cosine similarity. (B) All GO terms 
from the assigned entries are transferred to the query, where the final predicted score of a GO term is the maximum of all the multiplied values for 
the term.
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unsupervised model, provided a better representation of protein 
sequence for GO term transfer than both the amino-acid se-
quence itself (BLAST baseline) and the HMM profiles (Pfam 
baseline) (Table 2 and Supplementary Table S7). This agreed 
with recent studies on eukaryotes (Heinzinger et al. 2022). 
SAFPred-synteny used alone performed substantially better 
than SAFPred-nn, highlighting the usefulness of incorporating 
syntenic information. SAFPred-synteny performed almost as 
well as the full SAFPred tool.

3.3 SAFPred surpasses existing tools for annotating 
distant homologs
We were particularly motivated to develop SAFPred to in-
crease the number of annotations for the growing number of 
unannotated bacterial proteins, with few or no homologs in 
existing databases. To emulate gene function prediction of 
distant homologs, we designed additional benchmarking sets 
where the pairs of training and test sets were generated by 
stratifying the full SwissProt dataset based on the maximum 
sequence similarity allowed between protein sequences in the 
training and the test set.

As we did not observe any significant differences between 
the species examined, we report the average Fmax values and 
SD for all five bacteria combined (BPO in Fig. 3). SAFPred 
was consistently the top-performing method. The difference 
in prediction performance (as measured by Fmax) between 
SAFPred and all other methods was greater as the sequence 
similarity between the test and the training sequences (as well 
as the clusters in the synteny database) increased (Fig. 3).

Similar to the full datasets, we observed that protein 
embeddings (SAFPred-nn) far outperformed both conven-
tional predictors, BLAST and Pfam, across the range of se-
quence similarities. Furthermore, as with the full datasets, we 
observed that SAFPred-synteny performed substantially bet-
ter than SAFPred-nn, and almost as well as SAFPred, demon-
strating the large contribution gained by adding information 
from synteny.

In addition, this benchmarking revealed that BLAST perfor-
mance was surprisingly consistent across levels of shared ho-
mology, while the embeddings-based methods showed 
improvement in performance as similarity between the training 
and test sets increased. This trend held for not only the average 
Fmax in the remaining two ontologies (MFO and CCO), but 

also for each bacterial species individually (Supplementary 
Tables S10–S14).

3.4 SAFPred provides more reliable predictions 
compared to other methods
Among the tools we benchmarked, the BLAST and HMM- 
based Pfam baselines had the lowest annotation coverages (i.e. 
the number of test genes that have at least one predicted GO 
term) on both the full SwissProt dataset and the sets with lower 
sequence similarity (Supplementary Tables S15 and S16). 
SAFPred emerged as the all-around top-performing method in 
terms of balancing precision and recall. Furthermore, we found 
that its prediction coverage was in line with other embeddings- 
based nn models on the full SwissProt benchmarking, although 
it occasionally lagged behind the state-of-the-art in terms of cov-
erage on our other benchmark sets. Given that SAFPred 
achieved the best Fmax values across the board, the drop in cov-
erage means SAFPred’s predictions are more reliable compared 
to other methods.

We did observe that SAFPred’s coverage decreased slightly 
for test sets with lower similarity to the training set 
(Supplementary Table S16). In these benchmark tests, 
SAFPredDB is sparsely labeled due to a conservative annota-
tion methodology (Supplementary Text), limiting the annota-
tions that can be transferred based on synteny.

3.5 SAFPred identifies five potential novel 
pore-forming toxins among a diverse set of 
enterococcal genomes
A key goal in the development of SAFPred was predicting 
functions of unannotated genes in bacteria, including those 
associated with key bacterial features of clinical interest such 
as antimicrobial resistance and virulence. Enterococcus is a 
diverse genus of bacteria thought to inhabit the gastrointesti-
nal tracts of all land animals. These organisms have an in-
credibly diverse functional repertoire, yet many of their 
predicted proteins are of unknown function (Lebreton et al. 
2017, Schwartzman et al. 2023). Uncovering this rich func-
tional diversity is of primary interest given the ubiquity and 
importance of this genus. Recent targeted searches have 
reported the discovery of several classes of novel toxins 
within diverse enterococcal species, including the discovery 
of a new family of pore-forming delta toxins in E. faecalis, E. 
faecium, and E. hirae (Xiong et al. 2022) and new botulinum 
toxins in E. faecium (Zhang et al. 2018). All of these newly 
discovered toxins exhibit low sequence similarity to known 
toxin sequences in other bacterial species.

Although the previous studies focused only on three clinically 
relevant species of Enterococcus, we hypothesized that similar 
toxins could also be found in other diverse, less well-studied 
species of Enterococcus, providing insights into other ecologies 
in which these toxins may be advantageous. Thus, to search for 
additional novel toxin genes across the Enterococcus genus, we 
applied SAFPred to a collection of 19 Enterococcus genomes, 
each representing a different species (Lebreton et al. 2017), in-
cluding 16 species not examined by Xiong et al. or Zhang et al. 
We looked specifically for genes that were labeled with a GO 
term describing toxin activity and associated with the conserved 
genomic context of delta toxins (Xiong et al. 2022). SAFPred 
associated 59 genes with the single delta toxin operon from 
SAPdb, consisting of an enterotoxin and a putative lipoprotein 
cluster, found in the unrelated Clostridium and Roseburia spe-
cies (Supplementary Table S5). Of these 59 genes, six were 

Table 2. Fmax scores from our benchmarking for six different function 
prediction tools in the BPO category (MFO and CCO are shown in 
Supplementary Table S7), for each of five bacterial species in our full 
SwissProt benchmarking set.a

Bacterial speciesb

EC MT BS PA ST

Method Fmax scores for BPO

BLAST 0.570 0.543 0.639 0.683 0.852
Pfam 0.610 0.513 0.582 0.579 0.579
DeepGOPlus 0.648 0.669 0.857 0.824 0.928
SAFPred-nn 0.646 0.636 0.828 0.797 0.880
SAFPred-synteny 0.872 0.837 0.915 0.928 0.903
SAFPred 0.876 0.838 0.915 0.929 0.902

a The highest Fmax score in each column is shown in bold.
b EC, Escherichia coli; MT, Mycobacterium tuberculosis; BS, Bacillus 

subtilis; PA, Pseudomonas aeruginosa; ST, Salmonella typhimurium.
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predicted by Pfam to be pore-forming toxins (e-value <1e-3 to 
PF01117 or PF03318), and three were annotated by Prokka as 
“lipoproteins” (Methods). The remaining 50 had no functional 
prediction prior to running SAFPred.

To explore their candidacy as delta toxin encoding, we evalu-
ated each gene’s predicted protein structure and genomic con-
text. Eleven (of 59) had structural similarity to known toxin 
structural folds (Foldseek alignment probability >0.8 and align-
ment score >0.5 to proteins in the AlphaFold and the Protein 
Data Bank (PDB) structure databases), including several with 
highly significant alignments (Supplementary Table S4 and Fig. 
S37). Of these eleven, five were not previously identified as hav-
ing a toxin annotation by either Prokka or Pfam—these were 
detected only by SAFPred. All 11 contained signal peptides at 
similar positions as those in known bacterial toxins. The 
remaining 48 proteins without structural similarity had lower 
SAFPredDB rankings than the 11 with structural similarity 
(Supplementary Text).

In the absence of experimental annotations, we continued 
the analysis with the 11 candidate toxins identified by 
SAFPred to the known pore-forming delta toxin genes previ-
ously reported in Enterococcus, epx1 and epx4; we compared 
their genomic context and their neighborhoods (Xiong et al. 
2022). Seven of the 11 candidate toxin genes were most simi-
lar to epx1 structures from E. faecalis and S. aureus, includ-
ing five from E. haemoperoxidus BAA-382, and two from 
E. pernyi ATCC882. All had surrounding genes with some 
degree of structural similarity to genes within the known 
epx1 genomic neighborhood, including two with highly sig-
nificant matches (Supplementary Fig. S37A). Among the five 
putative toxin genes, the highest amino acid sequence identity 
to epx1 was less than 40% (Supplementary Table S17). 
Furthermore, the gene neighborhood was conserved between 
the five candidates from E. haemoperoxidus BAA-382 
(Supplementary Fig. S37).

Four of the 11 candidate toxin genes were most similar to 
the E. hirae epx4 structure, including one gene from E. hae-
moperoxidus and three genes from E. moraviensis BAA-383 
(Supplementary Fig. S37B). Among the four putative epx4 

genes, the maximum amino acid sequence similarity we ob-
served to epx4 was 60% (Supplementary Table S17). Similar 
to the epx1 context, we observed that the neighboring genes 
of the new epx4-like toxins predicted by SAFPred were struc-
turally similar to one another. Although some of the neigh-
boring genes had lower Foldseek similarity scores, the 
neighborhoods had nonrandom similarity among themselves 
(scores ranging from 0.4 to 0.9).

4 Discussion
In this work, we introduce SAFPred, a novel synteny-aware, 
NLP-based function prediction tool for bacteria. SAFPred is 
distinguished from existing tools for annotating bacteria in 
two ways: (i) it represents proteins using embedding vectors 
extracted from state-of-the-art protein language models, and 
(ii) it incorporates additional functional information inferred 
from a protein’s genomic neighborhood, by leveraging con-
served synteny across the entire bacterial kingdom, tabulated 
in our synteny database SAFPredDB. This allows SAFPred to 
identify coregulated genes that may be part of same func-
tional pathways, but which have completely different se-
quence or protein structure. To our knowledge, SAFPred is 
the only bacterial gene function prediction tool with these 
two features.

While there have been successful uses of protein language 
models for gene function prediction in eukaryotes, these meth-
ods have not yet been extensively applied to bacteria. We con-
firmed that protein embeddings in SAFPred surpass 
conventional sequence homology-based tools, providing a better 
representation of genes to infer gene function (Table 2).

To assess SAFPred’s performance on bacteria, we designed 
a systematic, rigorous benchmarking framework based on 
the SwissProt database, where we further limited our training 
set according to its sequence similarity to the test set, in order 
to evaluate function predictors in the situation where there 
only distant homologs are known. We examined thresholds 
down to 40% sequence similarity, as previous work showed 
that proteins with identity >40% are likely to share 

Figure 3. SAFPred outperformed conventional approaches to function prediction. Data is averaged across five bacterial species, for variable sequence 
identity to proteins in the training set (x-axis). Error bars show SDs. As the Pfam database is not dependent on the % sequence identity to the training 
set, a single value for Fmax for the Pfam baseline is shown (dashed line).
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functional similarity Pearson (2013). However, we know that 
BLASTp is an imperfect method for identifying homologous 
relationships for distantly related proteins, and we thus ex-
pect that distant homologues, including similarities in protein 
folds, will be present in our training set. A strength of our 
tool is its ability to identify functional relationships in distant 
homologs that sequence comparisons are unable to identify. 
As we have observed in our function prediction of enterococ-
cal toxins, SAFPred can identify functional linkages to pro-
teins with structural folds that share less than 30% sequence 
similarity. Thus, we expect that SAFPred’s performance 
would surpass conventional methods when sequence similar-
ity is even lower than the thresholds we implemented in our 
SwissProt benchmarks. Future work will include benchmarks 
where we can evaluate SAFPred’s performance on unseen 
genes and assess its generalizability.

Although bacterial gene neighborhoods have been used 
previously for function prediction, this practice has mostly 
been manual and is absent from current automated annota-
tion tools. We consistently achieved the best performance 
when synteny was used in conjunction with the embeddings 
representation within the SAFPred framework. Either compo-
nent alone resulted in lower performance, while the biggest 
gain in prediction performance came from the use of synteny 
relationships. We demonstrate that conserved synteny and 
protein embeddings provide complementary information for 
predicting gene function, in particular when there are fewer 
homologs available (Fig. 3). We presume the overall improve-
ment in prediction accuracy stems from both more accurate 
function prediction and homolog detection since SAFPred 
consistently outperforms other methods, even when the se-
quence similarity between training and test set is low. In fu-
ture work, a different experiment should be designed to study 
homolog detection specifically in addition to expanding the 
set of comparator tools to provide more insight.

We demonstrated that SAFPred improves homolog detec-
tion for 19 diverse enterococcal species. Following the recent 
discovery of several types of novel toxin genes in enterococci, 
we focused on toxin discovery. SAFPred predicted 11 candi-
date delta toxin genes, which showed low sequence similarity 
to known toxins (<30%) but significant structural homology 
to known toxin protein structural folds. Several of these can-
didates also shared similar genomic neighborhood patterns 
with those of known toxin genes. Although six of these can-
didate toxins could also be identified based on their Pfam 
domains, five of these could not be annotated using any of 
the existing gene prediction tools. These five genes are strong 
candidates for further experimental validation of their toxin 
activities. SAFPred also identified 48 additional genes with 
functional linkages to toxin operons, but without structural 
homology to known toxins. The function of these genes 
should be investigated in future studies as well.

One limitation of SAFPred is its reliance on a predicted 
synteny database, which may contain syntenic linkages that 
do not share a function, in addition to actual operons. Also, 
in the absence of ground truth, both the operon predictions 
and the functions we assigned to these operons are limited by 
the existing databases (Supplementary Text). To minimize 
false positives, we adopted a conservative approach which in 
turn resulted in a sparsely annotated training set, lowering 
the prediction coverage of SAFPred (Supplementary Tables 
S15 and S16). One way to alleviate this problem is to rou-
tinely pick unlabeled entries from our database, prioritizing 

the most common ones, to perform experiments and identify 
their functions. With each new experimental annotation 
available, additional entries can be labeled. We expect this it-
erative approach to rapidly increase the number of labeled 
entries in the database.

Another limitation of the current version of SAFPredDB is 
its focus on broadly conserved patterns; it represents synteny 
across the entire bacterial kingdom. Since our goal was to de-
velop an all-purpose bacterial gene annotation tool, we delib-
erately designed our database to be inclusive and to cover as 
many syntenic regions as possible. Thus, syntenic patterns or 
operons associated with rare traits, or functional pathways 
unique to novel species are not present in the default 
SAFPredDB, but are straightforward to add for specific anal-
yses, as SAFPredDB can be tailored and reconstructed using 
the latest releases of its source databases. We provide scripts 
to customize and keep it up to date. For instance, a version of 
SAFPredDB incorporating metagenomic data could be used 
to study new functions in uncultured bacteria. Or, to design 
an all-purpose annotation pipeline for prokaryotes, 
SAFPredDB could be expanded to cover the diversity of pro-
karyotes. Although we used only GO terms to describe gene 
function, the new database could incorporate additional fea-
tures, such as enzymatic activity and pathways to better cap-
ture functional traits. Finally, different representations of 
synteny vectors in the database, other than taking the average 
of embeddings, could be explored.

Currently, SAFPred assigns every query gene the same 
number of entries, equal to 1% of all entries available in the 
dataset, in order to be as inclusive as possible in learning 
about unannotated genes. To help disambiguate real matches 
from false positives, SAFPred reports a rank for each of the 
matching entries based on their similarity to the query. 
Although we have not determined whether a universal rank-
ing threshold exists, our detailed examination of toxin oper-
ons in Enterococcus suggested this ranking can be a reliable 
proxy for confidence. While SAFPred reported 48 additional 
genes associated with the delta toxin operon, the delta toxin 
operon ranked among the top two entries for only the 11 can-
didate genes that showed structural similarity to the toxin 
fold. Thus, the order of assigned entries could be used as a 
proxy to infer confidence.

We demonstrated that conserved synteny and protein 
embeddings both provide useful information for predicting 
the protein function. SAFPred outperforms conventional 
sequence-based bacterial genome annotation pipelines, as 
well as more sophisticated HMM-based approaches and 
more recently developed deep learning methods. SAFPred can 
not only infer beyond the linear sequence, at the level of pro-
tein fold, but it can also successfully utilize conserved synteny 
among bacterial species to predict gene function.
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