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ABSTRACT
As travel demand grows in many cities around the world, overcrowding in
public transport systems has become amajor issue and has many negative
effects for both users and operators. Measures to address on-board conges-
tion span from large-scale strategic investments (e.g. increasing infrastruc-
ture capacity), through tactical planning (e.g. stopping pattern) to real-time
operational measures (e.g. information provision, gate and escalator con-
trol). Thus there is a need to evaluate the impact of these measures prior
to their implementation. To this end, this study aims at capturing the effec-
tive capacity utilization of the train, by considering passengers’ distribution
among individual train cars into an agent-based simulation model. The
developedmodel is validated and applied to a case study for the Stockholm
metro network. The findings suggest that an increase in peak hour demand
leads to a more even passenger distribution among individual train cars,
which partially counteracts the increased disutility caused by the higher
passenger volumes. Interestingly, the closure of themost popular entrance
point at one of the stations leads to lower train crowding unevenness at
the downstream stops and consequently reduces passengers’ experienced
discomfort. We find that the user cost is significantly underestimated when
passenger distribution among cars is not accounted for.
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1. Introduction

Many public transport systems are subject to overcrowding during peak periods. On-board crowd-
ing is associated with many negative effects on passengers, such as increased discomfort and stress,
delays and denied boarding (Tirachini, Hensher, and Rose 2013) as well as perceived insecurity (Tira-
chini et al. 2017; Márquez, Alfonso, and Poveda 2019). There is a need to address on-board congestion
through infrastructure or operational measures in order to improve system performance and the level
of service. This calls for the development of models that are able to adequately capture the impacts of
alternative interventions on on-board congestion level and the distribution thereof.

Passenger loads can be highly unevenly distributed along platforms and in individual cars of trains
andmetros even during peak hours (TRB 2014; Zhang, Jenelius, and Kottenhoff 2017). Kim et al. (2014)
investigated the causes behind the unevenpassenger distribution between train cars, concluding that
passengers’ motivation for minimizing the walking distance at the destination is the most decisive
factor for choosing a specific train car. Some studies aim to reduce the unevenness of passenger dis-
tribution through tactical planning methods, by determining the optimal train stop location along a
platform (Sohn2013), by installing anone-waygate on themiddle of theplatform to control passenger
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car boarding choices (Muñoz et al. 2018), or through real-time crowding information system (Zhang,
Jenelius, and Kottenhoff 2017).

Transit assignment models (TAM) are used for describing how passengers are distributed in the
public transport network, predicting passengers’ travel route decisions and modeling platform and
on-board crowding. However, these models usually do not evaluate crowding distribution among
individual cars of a train. These models implicitly assume that train cars are evenly crowded, hence
yielding an unrealistic vehicle capacity utilization and result with an underestimation of user cost.
Since strategies to reduce crowding in transit vehicles require considerable infrastructure or opera-
tional investments, it is important to develop tools that can capture the vehicle capacity utilization
in a more realistic manner and evaluate the effectiveness of such strategies in advance to smooth
crowding between train cars.

The objective of this study, motivated by the aforementioned shortcoming of the state-of-the-art
TAM, is to propose a quantitative methodology for analyzing capacity utilization of individual train
cars. The main contributions of the paper are:

• The development of a quantitative approach for describing passengers’ car-specific boarding
choices and evaluating crowding in individual train cars.

• Incorporating thepassengerpath choicemodeling inadynamic and stochastic TAMwhichcaptures
train car choices.

• The developed model accounts for day-to-day learning, where passengers’ decisions are made in
a repetitive way, taking the impact of car-specific crowding into account. This allows to embed the
‘local’ train car loadings into the ‘global’ passenger route choice.

• The validity of the model is investigated by comparing the simulated output against an empirical
data set.

• The effect of demand and infrastructure changes on crowding distribution among individual train
cars is investigated using simulation scenarios.

In the proposedmodel, transit stops (i.e. rail platforms) are divided into sections, each correspond-
ing to a specific train car. Each car is modeled as a separate unit with a corresponding seating and
total capacity. Using an agent-based simulationmodel, the distribution of passengers among individ-
ual cars is dynamically and stochastically modeled. The rapid rise of information and communication
technologies enables the collection ofmassive and continuousmobility data that facilitate calibration
and validation of car-specific transit assignment models.

The remainder of the paper is structured as follows. In Section 2, we review the relevant literature.
The dynamic model for evaluating the distribution of crowding in a multi-car vehicle is presented in
Section 3. Next, we present in Section 4 the application of the proposed model to a case study in
Stockholm, followed by the presentation of results in Section 5. Section 6 concludes with a discussion
of the key findings, reflecting on the limitations of the study and providing an outline of directions for
further research.

2. Literature review

Public transport users make travel decisions considering a variety of factors, namely travel time,
the number of transfers, comfort level, station physical layout characteristics and topological factors
(Raveau et al. 2014). To avoid on-board crowding, passengers make trade-offs, i.e. choose an alterna-
tive travel path, board a less crowded train car, wait for the next train service or adapt their departure
time to ensure a seat (Pownall, Prior, and Segal 2008; Kim et al. 2015). The skewness of passengers
distribution along the station platform and eventually among individual cars of the train is closely
related to the physical layout of the station and the location of entrance and exit points (Szplett and
Wirasinghe 1984; Krstanoski 2014; Liu, Li, and Wang 2016). Data-driven approaches for studying the
behavioral aspects of passengers’ boarding choices find that passengers choose a specific train car
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to board aiming to minimize the walking distance and on-board discomfort (Kim et al. 2014; Peftitsi,
Jenelius, and Cats 2020).

A variety of models exist which describe the assignment of passengers to a transit network, predict
travelers’ decisions and model crowding at station and inside transit vehicles. The growing litera-
ture on TAM which are broadly classified into frequency-based and schedule-based approaches for
modeling transit path choice, is reviewed by Fu, Liu, and Hess (2012). Frequency-based models rep-
resent transit services at the line level. Spiess and Florian (1989) proposed the first frequency-based
assignment framework based on passengers’ optimal strategies for minimizing the generalized travel
time. Frequency-based approaches for congested networks were presented by Lam et al. (1999),
accounting for the total passenger travel cost and by Cepeda, Cominetti, and Florian (2006), account-
ing for service capacity. Schmöcker, Bell, and Kurauchi (2008) introduced a dynamic frequency-based
transit assignment model, considering passengers that fail to board due to insufficient remaining
capacity.

Schedule-based assignmentmodels represent individual train trips that their availability is dictated
by timetables. A schedule-basedmodel, presented by Nuzzolo, Russo, and Crisalli (2001), accounts for
on-board congestion by using a passenger discomfort factor. Vehicle capacity constraints were intro-
ducedbyNguyen, Pallottino, andMalucelli (2001), Papola et al. (2009), Khani, Hickman, andNoh (2015),
Cats, West, and Eliasson (2016) and Ranjbari, Hickman, and Chiu (2020), to model boarding passen-
gers considering the residual capacity of the vehicle and the possibility of denied boardings. Poon,
Wong, and Tong (2004) used a schedule-based traffic assignment model for congested transit net-
works with capacity constraints, to predict the queuing time per passenger, assuming that passengers
are queuing according to the first-in-first-out (FIFO) rule. Anothermodel that takes into account transit
schedules and vehicle capacity to assign passengers to paths and model the impact of priority rules
was proposed by Hamdouch and Lawphongpanich (2008). On-board passengers have priority and
waiting passengers are assumed to board the vehicle in an FIFO or at a random manner. Seat capac-
ity constraints have been considered to model the effect of on-board discomfort on the sitting and
standing passengers (Sumalee, Tana, and Lam 2009; Leurent 2010).

Agent-based simulationmodels mimic individual passengers’ behavior and choices and allow thus
to model dynamic congestion effects. Wahba and Shalaby (2005) were among the first to propose a
framework based on the assumption that individual passengers adjust their travel behavior based on
their experience. Zhang, Han, and Li (2008) developed an agent-based simulation model to capture
passenger boarding and alighting movements at stops. Hänseler et al. (2020) presented a model for
describing the interaction between passenger movements on platform and inside the train. Rexfelt
et al. (2014) have focused on modeling the behavior of individual passengers at stops and on-board
buses, assessing the effect of vehicle layout on boarding and alighting passenger movements. A
dynamic and stochastic TAM, which captures congestion and crowding effects (denied boarding, on-
board crowding and service irregularity), was proposed by Cats, West, and Eliasson (2016). Cats and
Hartl (2016) compared the ability of schedule-based and agent-based TAM to model on-board con-
gestion, finding that the latter is more sensitive to variations in demand. Although tools for modeling
and predicting passenger flows in public transport networks are widely used, there is limited knowl-
edge on how tomodel crowding distribution among individual cars of a train. Thismotivates the need
for developing a dynamic model to capture passengers’ boarding choices of individual train cars and
evaluate the effects of crowding unevenness.

3. Methodology

Modeling the distribution of passengers on-board multi-car trains involves changes to both supply
and demand representation and processes. From the supply side, transit vehicles and station plat-
forms representation requires the identification of car units and platform sections, respectively, to
enablemodeling thedistributionof passengers inside the vehicles. From thedemand side, path choice
modeling in an existing public transit simulation model requires extension to capture passengers’ car
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boarding choices. The developedmodel takes the effect of car-specific crowding through a day-to-day
learning process into account.

3.1. Simulationmodeling approach

A dynamic agent-based public transport operations simulationmodel, BusMezzo, is used in this study
formodeling the congestion effects on-board transit vehicles, considering vehicle capacity constraints
(Cats 2013). Crowding is evaluated at the vehicle level and the distribution of passengers over vehi-
cle units (e.g. train cars) is not captured. The model simulates individual passenger path decisions
and the movements of individual transit vehicles. The movement of transit vehicles between stops is
modeled within amesoscopic simulationmodel including traffic dynamics and public transport oper-
ation (Toledo et al. 2010). Different public transportmodes, i.e.metro, commuter rail, bus and tram, are
modeled using different vehicle types with distinct capacity characteristics and dwell time functions.
A set of trips is assigned to each vehicle type and hence, BusMezzo models also the propagation of
delays caused by trip chaining.

The transit network in BusMezzo includes a set of transit stops S and a set of transit lines L. Each
transit stop s ∈ S represents a rail platform which may be served by more than one transit line. In
this study, we extend model functionality to allow for modeling passenger distribution over trains.
To enable modeling passenger distribution over trains, each transit stop s is divided into Ks sections.
Each transit line l, defined by an Origin–Destination (OD) pair and a sequence of stops Sl , is served by
a set of trips denoted by Jl . Each train serving trip j ∈ Jl consists of Ij cars. It is assumed that all transit
lines serving a given transit stop have the same number of car units per train (i.e. Ij = Ks for all s ∈ Sl
and j ∈ Jl) and hence, each platform section corresponds to a car unit. Similarly, transit stops that are
served by the same transit line have the same number of platform sections.

3.2. Passenger path choicemodeling

Passengers are generated stochastically according to Poisson processes based on OD matrices. Each
origin and destination is specified as a pair of platform sections located at certain stations. Through-
out the simulation, each passenger makes a sequence of path decisions, namely boarding, alighting
and walking decisions, that combined yield the realization of a path. The path decisions are described
with random utility discrete choice models. Each alternative is associated with a utility, evaluated
based on the passenger’s preferences and expectations, which are shapedby prior knowledge, gained
experience and available provided information (Cats and Gkioulou 2017).

In BusMezzo, each transit path alternative a, which connects an origin location o to a destination d
and is included in path set Aod , is defined as a combination of stops, lines andwalking links (Cats, West,
and Eliasson 2016). To capture crowding in individual cars of a train, the path alternative is further
defined in this study as an ordered combination of transit stops associated with a platform section,
transit lines associated with a car unit and a set of walking links between stops as well as platform
sections.

Each feasible path alternative a is associated with a utility; the deterministic part of the utility for
passenger y of a feasible path a is:

vy,a = β inv
y tinvy,a + βwait

y twaity,a + βwalk
y twalky,a + βtransfer

y Ntransfer
y,a ∀y ∈ Y , a ∈ Aod (1)

where tinvy,a is the expected total perceived in-vehicle time, twaity,a is time-dependent waiting time that

depends on passenger arrival process and service frequency, twalky,a is the expected total walking time
that includes access and egress walking time as well as on-platform walking time between platform
sections, Ntransfer

y,a is the number of transfers included in the path alternative and β ’s are the corre-
sponding utility function coefficients. The expected total perceived in-vehicle time tinvy,a depends on
passenger’s accumulated experienced in-vehicle time that reflects the on-board crowding conditions.
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For each journey leg, the perceived in-vehicle travel time is computed as the nominal in-vehicle time
weighted by the respective on-board crowding factor. The value of the latter is defined as a non-linear
function of the car load factor, given as the ratio of on-board car passenger load to the car seated
capacity, and varies between sitting and standing passengers (Wardman and Whelan 2011).

In order to obtain passenger loads in individual train cars, we need to incorporate the train car
choice into thedynamic individual path choicemaking. In the following,wedetail how thepath choice
model accounts for train car choice and related travel attributes. Any decision in the simulationmodel
involves a passengermaking a decision regarding the following element, i.e. stop associatedwith plat-
form section, line associated with car unit and walking link, considering all the expected future travel
attributes of the path alternatives that are associated with the specific element. When passengers
reach the end of a path element, they choose the next path element that maximizes their expected
utility. The utility that passenger y associates with a path element c (c ∈ C), denoted by uy,c, is given as
composite utility of all path alternatives Acd .

uy,c = ln
∑
a∈Acd

evy,a (2)

The probability that a passenger y will choose the next path element c is then

Py,c = euy,c∑
c∈C euy,c

(3)

The multinomial logit (MNL) model assumes the independence of irrelevant alternatives (IIA) prop-
erty, while transit route choice might violate this property. The choice-set generation model applied
in BusMezzo partially mitigates this shortcoming by merging overlapping paths – for example corri-
dors with common lines and lines with common transfer locations – which exercise high correlations
into single hyperpaths (Cats et al. 2011; Cats and West 2020). Furthermore, passengers do not choose
between paths or hyperpaths in the choice process in BusMezzo but rather choose between travel
actions (e.g. boarding vs staying), further offering a remedy for unaccounted correlations stemming
from the IIA property of the MNL model. The choice structure partially mitigates this problem, as the
most correlated alternatives (i.e. same visited stops) will be in the same branch of the tree.

Passenger path choices involve three types of decisions as described in the following.
Walking decision: The passenger path choice process starts with the walking decision. Passenger

y ∈ Y decides whether to stay at the origin location or to walk to platform section k of a nearby tran-
sit stop s. Each time a passenger alights from a transit vehicle, a new origin location is set and another
walkingdecisionneeds tobemade. Thewalkingutility is basedon thewalkingdistance to agivenplat-
form section of the first stop that the passenger wants to walk to and on the expected downstream
travel attributes, including in-vehicle, walking and waiting times as well as the number of transfers
for all path alternatives between this section and traveler’s final destination. The total walking dis-
tance of the downstream walking links includes the on-platform walking distance at the destination
stop. This allows capturing travelers’ choice to minimize walking time at the downstream stop while
waiting, depending on the location of the desired exit. In the current model implementation, section-
to-section walking distances are computed based on the shortest section-to-section walking path
available between any pair of sections, within the same station or belonging to different stations.

Boardingdecision: Each time a train j arrives at transit stop s, passenger ymakes a boarding decision;
board the train or stay on the platform. In the boarding decision process, the utility associated with
boarding is compared to the utility associated with staying and waiting for other train. Expected in-
vehicle, walking and waiting times as well as the number of transfers are involved in the boarding
utility function. The number of passengers boarding car i of train run j at stop s, denoted by qboardijs , is
given by the number of passengers that make a positive boarding decision if the car has not reached
its total capacity; otherwise, the number of boarding passengers is equal to the remaining capacity of
the car. If the car, that is adjacent to the waiting platform section sk , has reached its total capacity, the
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passenger boards the next closest car if this has residual capacity, otherwise the passenger stays on
the same platform section waiting for subsequent vehicles. If the passenger is denied from boarding
one of themiddle cars of the train, they randomly choose one of the two adjacent cars to board if both
offer residual capacity.

Alighting decision: Upon boarding train j, passenger y decides at which downstream transit stop to
alight. The platform section k, that the passenger will alight at, is already determined by the car i that
the passenger has boarded, under the assumption that passengers do not move between cars (this
may also not be possible for some vehicle configurations). The number of passengers alighting from
car i at stop platform section sk equals to the total number of passengers thatmake a positive alighting
decision.

The number of passengers on-board car i of train run jwhen the train departs from stop s, denoted
by qonboardijs is a function of alighting and boarding flows to and from car i.

Figure 1 illustrates the path alternative definition for passengers that start their trip at origin loca-
tion o and aim to reach destination location d. For illustration, it is assumed that the transit stops are
served by 3-car trains and hence, the platforms are divided into three sections. The passenger, starting
at o, has three alternative connection choices that can be accessed by walking; the first, second and
third platform sections of transit stop s1, denoted by s1,1, s1,2 and s1,3, respectively. The stop is served
by the transit line l1, while each platform section is served by the corresponding train car unit of the
line, denoted by i1,1, i1,2 and i1,3 for the first, second and third cars, respectively. A transit user that
decides to make a walking connection to the first section of the stop s1,1 will board the first car unit
i1,1, if they make a boarding decision, considering car capacity constraints, and will alight at the first
platform section of the transfer transit stop s2,1, which is then set as a new origin transit location. From
the alighting platform section, the passenger makes a new walking decision to a platform section of
the same or different stop. For the origin–destination pair illustrated in Figure 1, nine path alternatives
are available.

3.2.1. Perceived in-vehicle travel time
The developed model accounts for day-to-day dynamics, where an iterative within-day network
loading, with constant daily passenger demand, is performed to mimic passengers’ adaptive travel
behavior in the real world (Cats and West 2020). The dynamic and stochastic interaction between
transit vehicles and passenger demand is simulated in the within-day loop, yielding passenger car
assignment which is used as an input to the day-to-day simulation loop. This allows passengers to
store information about on-board crowding in individual train cars based on the experience gained
on a day-to-day basis and to alter their expectations and travel strategy accordingly. Car-specific
on-board crowding level affects the perception of in-vehicle travel time in individual train cars and
the expected total in-vehicle time tinvy,a which is part of Equation (1). Passenger’s expectation about the
perception of in-vehicle travel time in a train car on the current day is based on the expected and

Figure 1. Illustration of path alternative definition (Dashed lines – walking links).
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experienced in-vehicle travel time on the previous day. The nominal in-vehicle travel time is weighted
using an on-board crowding multiplier. According to a meta-study by Wardman and Whelan (2011),
the crowdingmultipliers depend on the ratio of car occupancy to the car seated capacity, andwhether
the passenger is sitting or standing. In BusMezzo passengers are allocated to seats assuming a First-
In-First-Out (FIFO) rule, where seats of each car are filled sequentially and standing passengers exist
when the car seated capacity has been reached (Cats, West, and Eliasson 2016). Seated passengers
are assigned with crowding multipliers between 0.95 and 1.71 when the ratio of car occupancy to the
car seated capacity increases from 50% to 200%. The multipliers for standing passengers range from
1.78 to 2.69 and are only considered when all seats are occupied. The simulation terminates when the
day-over-day change of perceived in-vehicle time is considered negligible.

On the first simulated day, in the absence of past experience, passengers choose a platform section
and thereby a train car based solely on the walking distance to the section and on the expected util-
ities of the path alternatives available between this section and the desired exit at the destination,
i.e. passengers expect equally utilized cars of the next arriving train. Performing an iterative network
loading, car boarding choice is also affected by passenger’s expectations about car crowding. In this
case, perceived in-vehicle travel times, weighted with the car-specific crowding factor based on pas-
senger’s gained accumulated experience, are included in the utility associated with a path alternative.
Consequently, passengers expect different crowding levels on-board individual train cars.

3.3. Performance evaluation

The impact of alternative scenarios on the performance of the system is evaluated by considering
the average on-board crowding unevenness across the vehicle, the average boarding passengers
unevenness and the average generalized travel cost per passenger.

3.3.1. Passenger distribution unevenness
Having a singlemetric for measuring crowding unevenness facilitates comparisons between different
passenger distributions. The distribution of passenger load among the cars i ∈ I of a train run j upon
departure from stop s is systematically measured using the Gini coefficient Gjs.

Gjs = 1

2|I| ∑I
i=1 q

onboard
ijs

I∑
i=1

I∑
i′=1

|qonboardijs − qonboardi′ js | (4)

where qonboardijs and qonboardi′ js denote the passenger occupancy of car i and car i′, respectively, of a train
run j upon departure from stop s. This train crowding unevennessmetricmeasures howmuch the pas-
senger load distribution deviates from the totally even distribution, i.e. when all train cars are equally
utilized. Themetric takes the value 0 in case of perfect evenness in the train, i.e. passengers are equally
distributed over all train cars – and the value 1 in case of perfect unevenness, i.e. passengers are filling
cars in succession.

On-board train crowding distribution is based on passengers’ boarding behavior at the stop and
hence it is essential to evaluate the performance of the system by considering the distribution of
boarding passengers. Similarly, the distribution of the boarding passengers among individual train
cars i ∈ I of train j at stop s is given by

Gboard
js = 1

2|I| ∑I
i=1 q

board
ijs

I∑
i=1

I∑
i′=1

|qboardijs − qboardi′ js | (5)

where qboardijs and qboardi′ js denote the number of passengers boarding car i and car i′, respectively, of a
train run j upondeparture from stop s. Themetric takes the value 0whenboarding passengers are per-
fectly evenly distributed among train cars and the value 1 when all passengers waiting on a platform
board the same car.
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3.3.2. Generalized travel cost
The generalized travel cost per passenger is defined as the weighted sum of all travel path attributes,
i.e. in-vehicle, walking and waiting times as well as the number of transfers.

The disutility of in-vehicle time reflects on-board passenger discomfort. The discomfort experi-
enced by a passenger is given as the summation of the nominal in-vehicle travel time of each trip
segment weighted with the corresponding user-specific parameter for in-vehicle time β inv, which
reflects the value of uncrowded in-vehicle time, and the crowding multiplier for the same trip seg-
ment. The crowding multiplier value depends on the car occupancy and whether this passenger has
a seat or not (Wardman and Whelan 2011).

Walking andwaiting times are weightedwith the corresponding user-specific parameters for walk-
ing βwalk and waiting time βwait, respectively. Walking time valuation is assumed to be the same for
walking to/from a transit stop and on-platform walking. Each transfer is penalized with the corre-
sponding user-specific parameter for transfers βtransfer. Based on the time valuations reported in the
literature,walking andwaiting times are valuedas twice the valueof in-vehicle time inuncrowdedcon-
ditions,while the transfer penalty is valued five times the in-vehicle time and they are set to:β inv = −1,
βwalk = βwait = 2 · β inv = −2, βtransfer = 5 · β inv = −5 (Wardman 2004).

3.4. Data and computational requirements

Advances in information and communication technologies in public transport enable the generation
of big data sources, such as cell phone data, social media data or smart-card data, that can be utilized
for modeling travel behavior and predicting passengers’ movements as well as investigating travel
patterns (Chen et al. 2016).

For model application, the platform section-level OD information is required to represent the pas-
senger demand for each pair of platform sections of a given OD pair. If this information is not readily
available, three types of data are required to represent the demand.

Average station-to-station travel demand data for each OD pair describe the average number of
trips between a given origin and destination. Such data may be obtained through cell phone data
(Alexander et al. 2015; Toole et al. 2015; Bachir et al. 2019) or automated fare collection (AFC) data.
AFC data play an increasingly important role in estimating travel demand in public transport systems
(Munizaga and Palma 2012; Alsger et al. 2016).

Pedestrian incoming and outgoing flows at each access point of the station are useful to describe
the passengermovements at the entrance level and can be used to estimate the probability that a pas-
senger initiates or ends the trip at a certain section of the platform. This information may be obtained
through passenger counts, AFC data that has been utilized in Ingvardson et al. (2018) to model pas-
sengers’ arrival patterns and in Peftitsi, Jenelius, and Cats (2020) to analyze how passengers make
metro car boarding choices or cell phone data that has been used in Aguiléra et al. (2014) to measure
passenger flows in a public transit system.

The physical infrastructure characteristics of the network, including the dimensions of the plat-
form and location of entrance and exit points, are also required to define the stop characteristics and
walking distances within stations as well as between stops.

For model validation, passenger load data for each car unit, describing the crowding level
on-board individual cars, are required. Car load data may be collected from car weight measurements
or obtained through sensors installed at the car doors.

Since the transit simulation model BusMezzo is stochastic, each simulated scenario needs to be
evaluated based on a number of simulation replications. The number of replications required N(m),
givenm initial runs, as it is given in Cats et al. (2010), is determined by

N(m) =
(

σ(m)tm−1,1− α
2

μ(m)ε

)2

(6)

where σ(m) is the standard deviation of the average generalized travel cost per passenger of m
simulation runs, tm−1,1− α

2
is the critical value of the t-test for m−1 degrees of freedom and level of
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significance α, μ(m) is the mean generalized travel cost per passenger of m simulation runs and ε is
the allowed error. Given significance level and allowed error of 5%, 10 simulation runs were found
sufficient, yielding a maximum error of 5%.

4. Application

4.1. Case study description

The proposedmodeling framework is applied to a case study for themetro network in Stockholm. The
Stockholm metro system is used by more than 1 million passengers per workday. Although passen-
ger loads are close to capacity during peak hours, passengers are often unevenly distributed among
train cars and 20% of the seats remain unoccupied during the morning peak hour (SL 2017). The
model is applied to the southbound segment of metro line 14 between Mörby centrum (MÖR) and
Stadion (STD), which operates with a planned headway of 5 minutes during the morning peak period
(06:00–09:00 am). The segment exhibits high average on-board passenger load. The studied area is
shown in Figure 2.

The passenger distribution on-board the trains is highly skewed towards the front car during the
morning peak hour (Figure 3). On average, 41% of the on-board passengers occupy the front train car,
while the rear car is occupied by only 25% of the passengers.

4.2. Network representation

The transit network representation in BusMezzo includes both directions of themetro line 14 in Stock-
holm that serve 38 stops i.e. rail platforms. The stops are served by 72 vehicle trips over the 3-hour
morning peak period. Each train is composed of three cars and hence, each transit stop is divided into
three platform sections. According to the train manufacturer, the design capacity of a car unit is 126
seated passengers and 288 standees. The transit network is represented in BusMezzo with detailed
train scheduling, the connectivity of stops bywalking aswell as the shortest section-to-sectionwalking

Figure 2. Map of the studied segment of Stockholmmetro network.
Source: OpenStreetMap
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Figure 3. Average on-board passenger distribution based on historical data (morning rush hour (06:00-09:00am) in October 2016).

path between these stops, required to compute the section-to-section distance of the walking links. A
six-stop-segment of the metro line 14 has been selected as a case study.

4.3. Demand representation

Passenger demand is simulated for the morning peak hour. The OD travel demand data for the morn-
ing peak period at the station-to-station level are taken from the transit assignment model Visum,
based on the official planning zonal OD matrix. For each OD pair, a platform section demand matrix
indicating the probability that a passenger starts and ends the trip at a certain platform section at the
origin and destination stop, respectively, was produced based on the total incoming and outgoing
passenger flows at each entrance point of the station, which are obtained through passenger counts
in the morning peak hour.

4.4. Scenarios design

We simulate the following three scenarios in BusMezzo:

(1) Base scenario, where the case study is simulated with the current average morning peak hour
demand.

(2) Increased demand scenario, where the case study is simulated with the current average morning
peak hour demand increased by 50%.

(3) Intervention scenario, where an infrastructure change is considered at one of the metro stations,
namely Danderyds sjukhus (DAS), which is a station with two access points located at the south
and north ends. The south, which is the most popular access point, is considered as temporarily
unavailable in this scenario. Elevator and escalator maintenance is one of the factors that might
require the temporary closure of a station entrance point.

5. Results

We first study the performance of the model in the studied metro line segment to assess the valid-
ity of the model, and then investigate the effect of demand and infrastructure changes on crowding
unevenness using simulation scenarios.
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Figure 4. Average car passenger load of the simulation output for different walking time valuations and empirical data.

5.1. Model validation

The simulation outputs are tested against an empirical data set of car load data to investigate the
validity of the simulation model (Figure 4). Empirical car load data estimated through the car weight
measurements, based on an average of 78 kg per passenger including luggage, are available at train
departure from each stop on the studied line segment for the morning peak period in October 2016.
The outputs of a simulation hour are tested for the highest peak hour of the morning rush period
(07:30–08:30 am). The relation between in-vehicle and walking time valuation is calibrated to investi-
gate the sensitivity of themodel andassess thegoodness of fit.We find that themodel,which accounts
for day-to-day learningand takes the crowdingeffect into account in thedecisionmakingprocess, best
reproduces the empirical car passenger loads when passengers value walking time higher.

The impact of modeling car-specific perceived in-vehicle travel times on train crowding uneven-
ness, based on the Gini coefficient, is illustrated in Figure 5(a). Lower Gini coefficient values, indicating
more even average passenger distribution inside the train, are observed when car-specific perceived
in-vehicle travel times are taken into account in the iterative network loading process. In particular,
the average on-board crowding unevenness decreases by 4 percentage points. A t-test at 5% signifi-
cance level shows that this is a statistically significant difference between single and iterative network
loading. The average perceived in-vehicle time per passenger is 0.3% shorter when car-specific per-
ceived in-vehicle travel times are accounted for in passengers’ decisions; the decrease in passengers’
experienced discomfort is statistically significant (Figure 5 b).

Experienced passengers are expected to alter their travel behavior aiming to minimize car-specific
discomfort when train passenger volumes are higher. In increased demand conditions, experienced
passengers walk more, making trade-offs between on-platform walking and on-board crowding level
(Figures 6 a,b). The average walking time significantly increases by 22%, leading to passengers expe-
riencing 3% lower on-board discomfort due to the more even passenger distribution. In particular,
we find a statistically significant decrease by 7 percentage points in crowding unevenness at 5%
significance level.

5.2. Model application

5.2.1. Crowding unevenness
Figure 7(a) shows the average unevenness of boarding passengers, for the three simulated scenar-
ios: the Base scenario, the Increased demand scenario and the Intervention scenario (Section 4.4). In all
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Figure 5. (a) Average on-board train crowding unevenness, given by the Gini coefficient; (b) Average generalized travel time
components per passenger; (with and without day-to-day dynamics).

simulated scenarios, day-to-day learning is used to incorporate car-specific perceived in-vehicle travel
times in passengers’ train car choices.

On average, boarding passenger unevenness drops by 5 percentage points under increased
demand conditions. Considering the large passenger volumes in some of the cars of the arriving
train, experienced boarding passengers are skewed towards the next closest cars, leading to a more
even passenger distribution. This stems from the increasing discomfort associated with increased
crowding as implied by the established values of in-vehicle time multipliers in the literature. The
intervention scenario has a significant impact on the distribution of boarding passengers at DAS,
leading to higher unevenness, since passengers’ preference has switched to the car located close
to the single access point. Moreover, passengers’ car choice at Universitetet (UNT), a station with a
single access point at the south part, is significantly affected by the intervention at the upstream
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Figure 6. (a) Average on-board train crowding unevenness, given by the Gini coefficient; (b) Average generalized travel time
components per passenger; (with and without day-to-day dynamics) in increased demand conditions (150%).

station. Experienced passengers at UNT, who have a preference for the front car located close to the
access point, expect different on-board crowding conditions, i.e. less crowded front car, due to pas-
sengers’ switched car preference at DAS, which explains the highly skewed distribution of boarding
passengers.

Figure 7(b) presents the average crowding unevenness on-board trains upon departure from each
stop which is the result of the distribution of boarding passengers at the same stop, since walking
between train cars is not possible in the Stockholm’s metro system. We find that under increased
demand conditions the average train crowding unevenness decreases by 3 percentage point at the
studied stops, explained by passengers’ car boarding choices shown in figure 7(a). On average, 12%
of the train seats are available in the base scenario, showing a highly uneven distribution of passen-
gers even when the total load exceeds train seated capacity. Experienced passengers adapt their car
choices based on their crowding expectations and hence the seated capacity utilization increases by
5 percentage points in the increased demand scenario. Crowding unevenness is large on-board trains
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Figure 7. Average (a) boarding passengers unevenness; (b) on-board train crowding unevenness; for base, increased demand and
intervention scenarios.

departing from DAS due to the increased passengers’ preference for the rear train car caused by the
closure of the southern station entrance point, but it gradually decreases at the downstream stops
where boarding passenger distribution is on average skewed towards the front car (Figure 7 b). The
infrastructure intervention has the most significant impact at the two most crowded stops, Tekniska
högskolan (TEH) and Stadion (STD), where train crowding unevenness halved with a drop of approxi-
mately 3.3 percentage points, leading to amuchmore even passenger load distribution (Figure 8). The
impact of the infrastructure intervention arguably depends on the entrance point which is disrupted
as well as the unevenness of crowding at the downstream stops.

5.2.2. Generalized travel cost
The average generalized time components per passenger are used to evaluate the effects of the
simulated scenarios on user cost (Figure 9).
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Figure 8. Average car passenger load for base, increased demand and intervention scenarios.

Figure 9. Average generalized travel time components per passenger for base, increased demand and intervention scenarios.

In the increased demand scenario, the average perceived in-vehicle time per passenger increases
by 78%. This finding suggests that the more even passenger distribution among individual train
cars, partially counteracts the increased disutility caused by higher passenger volumes. In increased
demand conditions, experienced passengers walk more to attain lower on-board discomfort. The
highly skewed demand distribution towards the rear train car at DAS, due to the closure of the most
popular entrance point, cancels out the crowding unevenness at the downstream stops. As expected,
passengers experience lower crowding discomfort at the downstream stops and consequently the
average perceived in-vehicle time per passenger decreases by 0.6% when compared to the base
scenario. The effectiveness of the infrastructure intervention with respect to passenger’s experienced
discomfort is statistically significant at the 5% significance level.

If individual train cars were not modeled, the average generalized travel time per passenger would
be20%shorter for theBase scenario, indicating that theuser cost is significantlyunderestimated,when
passenger distribution among cars is not accounted for.
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6. Discussion and conclusion

Wepropose amodeling framework that evaluates and forecasts crowdingdistributionon-board trains.
Each train car is modeled as a separate unit with its own capacity constraints, which enables captur-
ing on-board crowding unevenness. The path choice modeling implemented in a transit assignment
simulation model has been extended to allow for the inclusion of platform section and car unit in the
walking and boarding decision making process, respectively.

An application of the proposed modeling framework to a six-stop segment of the southbound
direction of metro line 14 in Stockholm, where on-board crowding is on average highly skewed
towards the front train car, is conducted. The developed model accounts for day-to-day dynamics,
where platform section and eventually car choices are affected by passengers’ expectations about
car-specific on-board crowding based on the experience they gain during the course of successive
network loadings. The validity of the model and its sensitivity to time valuations as well as day-to-day
learning has been examined. We conclude that themodel can better reproduce the average empirical
car passenger load data when crowding effect is taken into account in the iterative network loading
model andwalking time induces a higher disutility than typically assumed in transit route choicemod-
els. This finding suggests that passengers may dislike walking along the platform more than walking
from/to the station. Walking disutility may be affected by the conditions in whichwalking is spent and
hence, it may increase with crowding on platforms and around the access points of the rail stations.
There is, however, limited empirical knowledge concerning the valuation of within-station walking
times under different circumstances (see suggested values and discussion in Hänseler et al. 2020). A
stated-preference study by Douglas (2006) shows that the within-station walking time is valuedmore
than 6 times in-vehicle time under very high crowding conditions along the platform, reflecting the
greater effort involved.

In our case study, increased demand level reduces crowding unevenness on-board trains upon
departure from the studied stops. This finding suggests that experienced passengers choose a spe-
cific car, making trade-offs between walking and waiting to minimize on-board discomfort under
high demand conditions, in line with results reported by Pownall, Prior, and Segal (2008) and Kim
et al. (2015). Although passengers aremore evenly distributed among individual train carswhen travel
demand increases, the perception of in-vehicle travel time increases, due to more severe on-board
car crowding conditions. The closure of a popular station entrance point due to, for example, mainte-
nancework required, leads to uneven distribution of boarding passengers at the specific stop, which is
skewed towards the single access point, but it cancels out the crowding unevenness on-board trains
when departing from the downstream stops. We find that for the same demand level, passengers’
experienced discomfort is lower when crowding is more evenly distributed across the train. However,
the effectiveness of such infrastructure intervention is critically affected by the disrupted access point
and the distribution of boarding passengers at the downstream stops. Alternative crowdingmanage-
ment strategies, such as controlling passenger flow to station platforms through different gates (Xu
et al. 2016) could be evaluated.

The developed model can be used for decision support by public transport authorities and oper-
ators at the planning stage of possible infrastructure or operational changes to evaluate their impact
on crowding on-board trains. Crowding effects are evaluated by taking into account that passengers
are not evenly loaded among individual cars. Emerging data sources, such as pedestrian counts and
pedestrian density measurements available from cameras and sensors, can be utilized in the future to
further calibrate and validate the developed car-specific transit assignment model.

The simulationmodel implementation is currently limited to situations where each transit stop (i.e.
rail platform) is served by transit lines with a fixed number of car units per train. However, we can han-
dle situations where trains that serve different transit lines do not have the same number of cars as
long as they serve different platforms even at the same rail station. Future developmentsmay consider
parallel virtual queues for different lines and line combinations with different vehicle compositions or
an integration with a pedestrian simulation model with a continuous-space representation. There is
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lack of behavioral knowledge on the trade-off betweenwalking andwaiting when those are not exact
substitutes, i.e. whether passengers choose to walk while waiting on the platform at the origin station
as opposed to walking on the platform at the destination station. Future research on the disutility of
walkingwhen it is substitutingwaitingwill thus allow for refiningmodel specification. Future research
should also include the modeling of passenger movements along the platform in order to evaluate
on-platform crowding unevenness and its interaction with on-board crowding unevenness. Another
direction for future research is to evaluate the impact of novel solutions, such as real-time crowding
information systems on passengers’ travel behavior and car boarding choices. Such a passenger infor-
mation system has been tested in a pilot study, finding that real-time crowding information provision
has a statistically significant impact on the car choice (Zhang, Jenelius, and Kottenhoff 2017). From
a simulation perspective, Drabicki et al. (2020) formulated a path choice model accounting for pas-
sengers’ access to crowding information at the vehicle level that is consistent with the agent-based
modeling approach adopted in this study. This model was applied to Krakow public transport net-
work, showing that real-time crowding information has the potential to reduce passengers’ perceived
travel disutility by 3%. However, passengers’ access to car-specific crowding information is expected
to result in amore efficient vehicle capacity utilization and hence, larger improvements of passengers’
travel experience. Thus modeling the effects of car-specific real-time crowding information would be
an interesting research direction.
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