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Abstract—Video understanding has received more attention in
the past few years due to the availability of several large-scale
video datasets and improvement in the computational power of
computers. However, annotating large-scale video datasets are
cost-intensive due to their complexity. In this work, we propose
a time-efficient video annotation method using spatio-temporal
feature similarity and t-SNE dimensionality reduction to make
the annotation process more efficient. Placing the same actions
from different videos near each other in the two-dimensional
space based on feature similarity helps the oracle to group label
the video clips. We evaluate the performance of our method
on two subsets of the ActivityNet (v1.3) dataset. We show
that our method can outperform conventional video labeling
tools time-wise while maintaining a reasonable test accuracy on
video classification task compared to the ground-truth labels. To
further evaluate the generalization of our method, we test our
performance on Sports-1M and Breakfast datasets.

I. INTRODUCTION
Availability of large-scale video datasets [1]–[3] and in-

crease in computational power of GPUs, has made video
understanding in different tasks such as action recognition
[4]–[6], object tracking [7]–[9] anomaly detection [10]–[12]
an attractive topic of research. Various supervised methods,
[5], [6], [13], have improved video classification and temporal
localization accuracy on large-scale video datasets such as
ActivityNet (v1.3) [1]; however, labeling videos on such a
large-scale dataset, requires a lot of human work. Therefore
other methods try to train the networks for tasks such as video
action recognition in a semi-supervised [14]–[16] manner
without having the full labels. To decrease the dependency
on the quality and amount of annotated data, [17], [18]
investigated pre-training features with internet videos with
noisy labels in a weakly supervised manner. Later the model is
fine-tuned on the target dataset in a supervised manner. Self-
supervised methods have also been proposed [19], where the
frame order in unlabeled videos can help the learning process.
However, these methods are unable to achieve higher accuracy
on video classification tasks than supervised models on large-
scale video datasets such as Kinetics [2].

Fully-supervised models require much annotated data that is
unavailable as videos are naturally unlabeled, and annotating
them is labor-intensive. Large scale datasets [1], [2], [20]
use crowdsourcing strategies like Amazon Mechanical Turk
(AMT) to annotate the videos. [2] uses majority voting be-
tween multiple AMT workers to accept annotation of a single
video. Using such methods is not efficient for video annotation
on a large scale as it requires a lot of time and money. Other
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Fig. 1: Comparison of time of annotation (ToA) using different
tools versus video time for the ActivityNet [1] subset-1. Our
annotation method outperforms the conventional (no specific
tools) annotation and MuViLab [21] in annotation time. With
a window size of 128 time-steps (128-TS), our method can
annotate 769 minutes of video in 21 minutes while MuViLab
can do the same in 170 minutes, and conventional annotation
can do in 255 minutes. The MuViLab and conventional
annotation numbers are extrapolated.

tools have been proposed [21] to make the annotation process
easier by providing open-source software such as MuViLab
that enables the oracle to annotate multiple parts of a video
at the same time. However, none of these methods exploit the
structure of the video data.

In this work, we introduce a smart annotation tool that can
help the oracle group label the videos based on their latent
space feature similarity in two-dimensional space. Transferring
the high dimensional features to two dimensions using t-SNE,
gives the annotator an easy view to group label the videos
both temporal labels and classification labels. The annotation
speed depends on the quality of the extracted features and how
well they are placed together in the t-SNE plot. The better the
classes are separated in the t-SNE plot, group labeling is faster
for the oracle.

We evaluated our method on two subsets of ActivityNet
(v1.3 datasets ) [1]. We further evaluate our annotation method

1



a) Getting a haircut

b) Pole vault

c) Cooking egg

Fig. 2: Example videos from short-range (a) and mid-range
(b) actions of ActivityNet (v1.3) [1] and complex action from
the Breakfast dataset (c). Short-range actions can be detected
using a single frames. Mid-range actions need more frames
compared to short-range actions to unfold and complex actions
need more time than mid-range action to happen since they
contain multiple sub-actions [23]

on 15 random classes of Sports-1M dataset [3]. Finally, to test
the generalization of our method, we conduct experiments on
a subset of Breakfast [22] dataset, where the videos contain
complex actions. An example of complex action compared
to short and mid-range actions can be seen in Figure 2.
Consecutive frames of a short-range action show a repetitive
visual pattern. Therefore an action such as the one in Figure 2-
a can be classified even with a few frames as Getting a haircut.
However, it can be seen in Figure 2-b, the mid-range action
needs more time (a few seconds) to unfold, and the action
can not be categorized just by looking at the first few frames
because it might be High jump or Low jump in this case. The
video in Figure 2-c is an instructional video of making eggs
from the Breakfast dataset. 2-c needs more time compared to
a and b to unfold since there is a sequence of sub-actions in
the video such as putting oil in the pan, cracking egg.

We show that our annotation method outperforms conven-
tional annotation techniques (with no specific tools) and a
open-source software called MuViLab [21] in time of annota-
tion (ToA) by a large margin on the ActivityNet dataset while
still being able to keep the test accuracy on video classification
task within a 5% range of the ground truth. Conventional
annotation refers to oracle watching the videos and annotating
the temporal boundaries of the actions in the video without
any specific tool. MuViLab is a more advanced open-source
tool that extracts short clips from each video and plays them
simultaneously in a grid-like figure beside each other. Oracle
can annotate the video by selecting multiple short clips at the
same time and assigning the specific class.

II. RELATED WORK

Video Understanding has been under lots of development
in the past few years. In the past the focus was on the use of
specific hand-designed features such as HOG3D [24] SIFT-3D
[25], optical flow [26] and iDT [27]. Among these methods,
iDT and optical flow have been considered state of the art in
hand-designed features and are still being used in combination
with CNNs in different architectures such as two-stream

networks [28]. Later many attempts have been made to use
2D CNNs and extract features from video frames and combine
them with different temporal integration functions [29], [30].
[31] gives an analysis of how to integrate temporal information
of video frames with different fusion methods ( "late fusion",
"slow fusion", etc.) by using temporal convolutions on top of
the spatial convolutions.

Introduction of 3D convolution [5], [32] in CNNs which ex-
tends the 2D CNNs in temporal dimension showed promising
results in the task of action recognition in large-scale video
datasets. At the time of writing this paper using 3D CNNs
in different variations such as single stream and multiple-
stream are among the state of the art in the task of video
understanding [23], [33]–[38]. While some of these methods
use computationally expensive features such as optical flow
and iDT, other works has also been done to make these
approaches faster in training and inference such as [23], [39].

Our method uses extracted features from a 3D Resnet-34
[40] because it is faster compared to two-stream networks with
hand-designed features, and it shows promising results.

Dimensionality Reduction Dimensionality reduction (DR)
has been an essential tool for high-dimensional data analysis.
Linear DR method such as PCA is easier to understand since
the lower-dimension representation is a linear combination
of the high-dimensional axes. Non-linear methods, on the
other hand, are not so easy to explain but are more useful
to capture a more complex high-dimensional pattern [41]. In
general non-linear DR tries to maintain the local structure
of the data in the transition from high-dimension to low-
dimension and tends to ignore larger distances between the
features [42]. t-Distributed Stochastic Neighbor Embedding
(t-SNE) introduced by [43] is a non-linear DR technique
which is used more for the visualization purposes. However,
t-SNE has raised some concerns regarding the reliability and
interpret-ability of the results. [44] mentions some of the
disadvantages of using t-SNE such as 1) reliability of the
results on the hyper-parameter choice 2) The fact that the
cluster size might not mean anything 3) Distance between
clusters might be deceiving. However, the data used in [44]
is artificial data in which the distribution is known before
applying t-SNE. [45] proves that t-SNE is able to distinct
well-separable clusters in low-dimensional space. Moreover,
some works have been proposed for more effective use of t-
SNE. [42] proposes an interactive tool to support interactive
exploration and visualization of high-dimensional data. More
recent work introduced UMAP algorithm for dimensionality
reduction [46]. UMAP minimises the cross-entropy between
two fuzzy topological representation to decrease the execu-
tion time compared to t-SNE. However, t-SNE shows better
results in reducing feature dimensions while keeping the local
homogeneity for our dataset which is reported in the ablation
study. Moreover, it has been well studied and the complexity
has been reduced further to linear using [47]. Therefore, t-
SNE is used as the primary method to visualize and inspect
high-dimensional features in two dimensions in this work.

Data Annotation is essential for supervised models. Differ-
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Fig. 3: Proposed pipeline for the smart annotation tool: 1) Video clips are extracted from n consecutive frames [t0-tn] (time-
steps) of the video. 2) Spatio-temporal features are extracted from the last layer of a 3D ConvNet before the classifier layer. 3)
High dimensional features are projected to two dimensions using t-SNE, and are plotted on a scatter plot. 4) Oracle annotates
the clips represented in the scatter plot using a lasso tool. 5) The newly annotated data is added to the labeled pool. 6) The
network is fine-tuned for a certain number of epochs. This cycle is repeated until all the videos are labeled.

ent tools have been proposed for making an easy annotation
tool for videos and images, but they usually do not exploit
the structure of the data, which is especially useful in videos
[21], [48], [49]. Some works [50]–[53] have been done to
make the process of image annotation easier. [50] offers a
real-time framework for annotating internet images, and [51]
uses multi-instances learning to learn the classes and image
attributes together; however, none of these methods use a
deep representation of data. In more recent works [52] uses
Deep Multiple Instance Learning to automatically annotate
images and [53] uses semi-supervised t-SNE and feature space
visualization in lower dimension to provide an interactive
annotation environment for images. [54] proposed a general
framework for annotating images and videos. However, to best
of our knowledge, our method is the first video annotation
platform that can exploit the structure of video data to increase
the annotation speed.

III. METHOD

A. Pipeline

In Figure 3, we propose a pipeline for incremental labeling
with t-SNE based on feature similarity. In the beginning, a
certain number of videos are randomly selected from the
unlabeled pool, and the spatio-temporal features are extracted
using a 3D ConvNet. Afterward, The features embedding
are transferred to a two-dimensional space using t-SNE and
visualized on a 2D plot. The oracle has two subplots for
annotation: (i) A scatter plot in which the oracle can use a
lasso tool to group videos (ii) A scatter plot with the middle
frame of each clip in which the oracle can move and zoom
with the cursor on the plot and observe where to annotate.

After annotating the first set of videos, the video clips are
moved to the labeled pool, and the 3D network is fine-tuned
for a certain number of epochs on the newly labeled videos.
We continue this process until all the videos are labeled.

B. 3D Convolutional Neural Network
To annotate the videos as fast as possible, we avoid cal-

culating features such as iDT and Optical Flow, which are
computationally intensive. Instead, we use 3D ConvNets with
convolution kernels along the spatial and temporal dimensions
to extract features from the videos. Then, we split each video
v into k shorter clips vi = [clip1, ..., clipk] by sampling every
n non-overlapping frames clipi = [frame1, ..., framen].
Sampling in multiple time-steps enables us to capture different
lengths of actions in the dataset. Later each clip ci is fed
into the 3D ConvNet, for feature extraction. The features
are extracted from the last average pooling layer before the
classification layer.

C. Temporal Feature Enhancement
Using single-stream 3D ConvNets, we can extract short

and mid-range actions from datasets such as the ActivityNet
(v1.3) and Sports-1M; however, 3D ConvNets fail to model
complex action of such in Breakfast dataset [23]. The rea-
son is that complex actions contain multiple sub-actions and
need a longer duration than short and mid-range actions to
happen. Moreover the temporal ordering between the sub-
actions diminishes after extracting the features from a 3D
ConvNet which can be a helpful cue for the sub-activity level
annotation. Therefore, to obtain better temporal coherency
through learning the order of sub-actions in the video, we use
the method proposed by [55] to train a two-layer multi-layer
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perceptron (MLP) to learn the temporal ordering of the sub-
actions in complex action. In principle, similar sub-actions can
happen in the same order in different videos (e.g. crack the
egg before frying the egg). Therefore, we can train a two-layer
MLP on the videos belonging to a single complex action to
predict the relative time of the sub-actions in the video. We call
this method temporal enhancement of the features extracted
from the 3D ConvNet. The training loss of the MLP can be
seen in Equation 1, which is the mean squared error (Lossmlp)
of the predicted time (tpred) and the actual time (tactual) of
each of the N inputs. No sub-action label is used for training,
and the MLP only needs to be trained once using video level
labels and extracted features as inputs. Later the features are
extracted from the second layer of the MLP.

Lossmlp =
1

N

N∑

t=1

(tpred − tactual)
2 (1)

D. Dimensionality Reduction
The output of the extracted features is a matrix X with

dimensions n×dim. The parameter dim is the feature vector
size from the 3D ConvNet, which depends on the architecture
and n is the total number of clips generated by the videos.

In t-SNE, the pair-wise distance between each data-point
[(xi, xj) | 1 6 i, j 6 n] is transferred to a probability
distribution pij to represent similarity [6].

pij =
exp(− ‖ xi − xj ‖2)/2σ2

i )∑
k 6=i exp(− ‖ xi − xk ‖2)/2σ2

i )
(2)

pij =
pi|j + pj|i

2n
(3)

σi is the variance of a Gaussian distribution that is centered
around xi and its value is found iteratively through trial and
error using a binary search [43]. The pair-wise similarity in the
high-dimensional space is calculated with Equation 2 and 3.
Each pair of low-dimensional data-point [(yi, yj) | 1 6 i, j 6
n] is also modeled as a t-Distribution student with one degree
of freedom called qij and is calculated using the Equation 4.

qij =
(1+ ‖ yi − yj ‖2)−1∑
k 6=l(1+ ‖ yk − yl ‖2)−1

(4)

To find a proper joint probability distribution Q in low di-
mensions that represents the high-dimensional joint probability
distribution P, a cost function C has been defined in Equation
5 using Kullback-Leibler (KL) divergence between the prob-
ability distributions. The cost function is later optimized with
gradient descend in a certain number of iterations.

KL(Pi ‖ Qi) =
∑

j

pij log
pij
qij

(5)

This is the original t-SNE algorithm and has an O(N2)
complexity where N is the number of data-points. To increase
the speed of calculation of low-dimensional representation
different methods has been proposed in [47], [56], [57]. In

this paper, we use the Barnes-Hut optimized version, which
reduces the complexity of O(NlogN) where N is the number
of data-points.

E. How to Annotate?
Figure 4 shows an overview of the annotation tool, which

works in the following way. First, the oracle sees the scatter
plot with all points with the same color representing the
unlabeled pool (Figure 4 left) and the corresponding middle
frame of each clip in the video (Figure 4 middle). Second, by
using the lasso tool, the oracle can draw a lasso around the
scatter plots based on the visual similarity and inspection of the
video frames. Third, labels are assigned by the oracle, and the
network is fine-tuned for a certain number of epochs. Fourth,
the same process repeats until all the videos are annotated.

IV. EXPERIMENTS

In this section, we first explain the benchmark dataset and
evaluation metrics. Further, we empirically show how our
method can speed up annotation for the ActivityNet dataset
while keeping the video classification accuracy in a close
range to the ground truth. We also compare our results with
other annotation tools, such as MuViLab [21]. Further, we
qualitatively show how our method can help to annotate the
Sports1-M [3] and Breakfast datasets [22].

A. Datasets
ActivityNet (v1.3) is an untrimmed video dataset with a

wide range of human activities [1]. It comprises of 203 classes
with an average of 137 untrimmed videos per class in about
849 hours of video. We use two subsets of the ActivityNet
dataset. The first subset comprises 10 random classes, namely
Preparing salad, Kayaking, Fixing bicycle, Mixing drinks,
Bathing dog, Getting a haircut, Snatch, Installing carpet,
Hopscotch, Zumba consisting of 607 videos with 407 training
videos and 200 testing videos. The second subset adds another
5 handpicked classes, which are Playing water polo, High
jump, Discus throw, Rock climbing, Using parallel bars, and
they are visually close to some of the 10 random classes
to make the classification task harder. The second subset
comprises 950 videos with 639 videos in training and 311
videos in the test set.

Sports-1M is a large-scale public video dataset with 1.1
million YouTube videos of 487 fine-grained sports classes
[3]. We choose a subset of 15 random classes of the Sports-
1M dataset namely boxing, kyūdō, rings (gymnastics), yoga,
judo, skiing, dachshund racing, snooker, drag racing, olympic
weightlifting, motocross, team handball, hockey, paintball,
beach soccer with 702 videos in total. The dataset provides
video level annotation for the entire untrimmed video; how-
ever, the temporal boundaries of the actions in the video are
not identified. Approximately 5% of the videos contain more
than one label.

Breakfast is a dataset for human cooking activities from
multiple cameras with multiple view-points [22]. It includes
1712 videos with an average length of 2.3 minutes per video.

4



Fig. 4: A minimal representation of the annotation tool. 1) The oracle can see the scatter plot (left) and the corresponding
frames from the videos (middle) in separate figures. 2) Based on the inspection of the figures, the oracle can detect different
clusters of an action class (kayaking) and use the lasso tool to select the cluster. 3) In the end, the oracle assigns a label, and
based on the assigned class name, the selected points in the scatter plot change color.

It contains 10 breakfast preparation classes from 18 different
kitchens. Each video represents only one activity class, but
it contains sub-actions such as "put oil in pan", "cracking
egg", "frying egg", "putting egg in dish" under "fried egg".
The creators of the dataset have provided temporal boundary
annotation for each sub-action.

B. Evaluation Metrics

To evaluate our method on ActivityNet subsets, we report
the time of annotation (ToA) as a metric to measure how fast
the oracle can annotate a certain number of videos. ToA for
conventional annotation and MuViLab on ActivityNet subset-1
is extrapolated since annotating 13 hours of video using these
methods was not feasible. We also report video classification
accuracy in the form of mean average precision (mAP) for
the ActivityNet subsets to measure the quality of annotation
when the network is fine-tuned with our annotation versus
when fine-tuned with the ground truth annotation. The mAP
(%) is used instead of a confusion matrix because some videos
of ActivityNet contain more than one action [1].

For the Sports-1M [3] and the Breakfast [22] dataset,
we perform a qualitative analysis of the t-SNE projections.
Following [55], we also report the accuracy of our method
using mean over frames (MoF) for the Breakfast dataset.
Mean over frame measures on average how much the temporal
boundaries acquired by our annotation matches of those in the
ground truth annotation.

To motivate our design choices beyond qualitative results,
we introduce a realistic annotation emulation metric to esti-
mate the quality of t-SNE projections on a global and local
level. To report how well the t-SNE projection can separate
the classes at a global level, we use a measure of cluster
homogeneity and completeness. Homogeneity measures if the
points in a cluster only belong to one class and completeness

measures if all points from one class are grouped in the same
cluster. In an ideal t-SNE projection, all the points in each clus-
ter belong to one class (homogeneity=1.0), and all the points
from a class are in the same cluster (completeness=1.0), which
makes the annotation process much faster. For clustering, K-
Means clustering with K being the number of classes is used.
We use K-Means because it is fast and has a low number of
parameters to select from.

Furthermore, following [53] to emulate the oracle’s annota-
tion speed, we also use a measure of local homogeneity using
K-nearest neighbors (KNN) with K=4. KNN can estimate the
lower-dimension local homogeneity between the features in
the scatter plot. The higher the KNN accuracy, the higher
the local homogeneity and better grouping, which means the
oracle can annotate the points faster.

C. Implementation Details
Feature Extraction. We use the ResNet-34 3D architecture

[40] pre-trained on Kinetics-400 as a feature extractor for all
the experiments owing to their good performance and usage
of RGB frames only. Following [40], each frame is resized
spatially to 112×112 pixels from the original resolution. Each
video is transferred to clips by sampling every 32 consecutive
frames. The feature extractor in every forward pass takes a clip
in the form of a 5D tensor as an input. Each dimension of the
input tensor represents the batch size, input color channels,
number of frames, spatial height, and width, respectively.
Namely, an input tensor for a clip sampled at 32 frames can be
shown as (1, 3, 32, 112, 112). The features are extracted after
the final 3D average pooling with an (8, 4, 4) kernel before
the classifier layer (fully connected layers and softmax). The
dimensions of the feature vectors are k×512 with k being the
total number of clips and later reduced to k×2 using t-SNE.

t-SNE. For dimensionality reduction, a Barnes-Hut imple-
mentation of t-SNE with two components are used from the

5



scikit-learn library [58]. The perplexity is set to 30, and the
early exaggeration parameter is 12, with a learning rate of 200.
The cost function is optimized for 2500 iteration.

Training. After annotating each set of videos, the network
is fine-tuned for a certain number of epochs. For training the
ResNet-34 3D implementation from [40] is used. The sample
duration is 32 frames for each clip, and the input batch size is
32 as well. The 3D ConvNet takes a 5D tensor as an input. The
parameters are the same as in the feature extractor. Stochastic
gradient descends (SGD) is used as the optimizer with a
learning rate of 0.1, weight decay of 1e-3, and momentum
of 0.9.

Temporal Enhancement. For temporal enhancement of the
features, we use the ResNet-34 features of a single complex
action to train a two-layer MLP to learn the sub-action
coherency. For optimization, Adam optimizer, with a learning
rate of 1e-3, is used. After training the network for 100 epochs
on features belonging to one complex action, we extract the
features from the second layer of the MLP.

D. Results on ActivityNet

ActivityNet Subset-1. First, we put all the 407 videos
in the unlabeled pool. Then we divide the videos into four
different sets of unlabeled videos. The clips are generated with
32 consecutive frames, and the features are extracted using
the Resnet-34 3D. Later the videos are annotated, and after
annotation of every set of unlabeled videos, the network is
fine-tuned for 20 epochs with the labeled videos. The process
continues until the network reaches 100 epochs. The videos are
annotated incrementally and Table I, shows that the annotation
time drops after every iteration of annotation and fine-tuning.
Because of incremental labeling and fine-tuning, the network
learns to extract better features from the videos, which can
be better grouped in the t-SNE plot. It is also expected that
the oracle spends more time annotating the first few unlabeled
set as the network is not yet fine-tuned, and the quality of
annotation at the early stage has a significant impact on the
next iterations of extracted features.

Epoch 0 20 40 60 80 100

ToA (seconds) 600 552 516 450 240 180

TABLE I: Oracle’s time of annotation (ToA) is shown on sub-
set 1 of ActivityNet (v1.3) dataset with 10 classes containing
407 videos ( 13 hours). At every iteration from 0 to 60, 102
new videos are annotated, and the network is fine-tuned for
20 epochs. From epoch 60 to 100, no new video is added,
and the network is fin-tuned on the existing label videos. It
can be seen with incremental annotation and fine-tuning the
annotation time in the later epochs drops.

Figure 5 shows the video classification accuracy on the test
set. It can be seen in Figure 5, annotating the videos with our
method can achieve a classification accuracy of 67.2%, which
is comparable to the ground truth (blue) accuracy of 69.7%.
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Fig. 5: Comparison of video classification accuracy in form of
mAP (%) between fine-tuning the 3D ConvNet on ground truth
label versus fine-tuning with our annotation acquired using
different time-steps (TS). Fine-tuning the 3D ConvNet on the
annotation generated by our method, can achieve comparable
video classification accuracy to the ground truth (5% range).

Annotation Speed. In the following we compare our an-
notation speed with conventional method and an open source
tool called MuViLab [21] on the ActivityNet subset-1 dataset.

Table II shows the result of the comparison between the
conventional labeling and MuViLab versus our method in
different time-steps. Our method outperforms both techniques
on ActivityNet subset-1 in annotation speed by a large margin
(4 to 6 times faster). Because most annotation tools do not
take advantage of the temporal aspect of the videos at the
annotation stage, but our method exploits the spatio-temporal
features to place similar actions near each other in the 2D
t-SNE plot for the oracle to group-label.

Table III shows, our method can achieve almost the same
test accuracy on video classification task when trained on the
ground-truth label, but much faster.

Conventional MuViLab Our-32 Our-64 Our-128

Time Gain 3 x 4.5 x 18 x 24 x 36 x

TABLE II: Comparison of time gain when annotating with
different methods on a subset-1 of ActivityNet containing 769
minutes of video. Our method with 128 time-steps (Ours-128)
outperforms conventional and MuViLab [21] methods with
labeling 769 minutes of video in 21 minutes.

Increasing Annotation Speed. We further investigate in-
creasing the time-steps in each clip to increase the annotation
speed. One way to increase the annotation speed is by putting
more videos on the screen for the oracle to annotate. However,
since ActivityNet videos on average have 30 frames per second
(FPS), every 32 time-steps that we sample represent almost
1 second (∼ 32

30 ) of video. Putting all of the 407 videos
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(13 hours) overflows the screen with the frames and makes
the annotation harder for the oracle. One way to prevent
overflowing the figures with thousands of frames is to increase
the time-steps for sampling frames for each clip to the point
that the network can still preserve the temporal coherency
between the clips. This way we can show all of the videos
on the 2D plot in less number of points.

The experiments indicate that it is possible to increase the
clip time-steps to 128 frames without losing much of the
temporal coherency between the clips of the videos. 128 time-
steps are almost equal to 4 seconds (∼ 128

30 ) of video, which is
almost the average length of a mid-range action of ActivityNet.

Figure 5 shows the test accuracy of Resnet-34 3D fine-tuned
with ground truth labels, fine-tuned with labels provided by
the oracle using our method with three different time-steps.
Moreover, Table III shows that incremental annotation and
fine-tuning with 32 time-steps (32-TS) gives a very close mAP
to the ground truth accuracy. Using 128 time-steps (128-TS)
reduces test accuracy while increasing the annotation speed.
The decrease in accuracy compared to the 32-TS version is
expected since the annotation is more prone to noise when
time-step is increased to 128 frames. With 128-TS for each
clip, every point in the scatter plot represents 4 seconds of
the video while it represents 1 second in the 32-TS version.
Which means miss-labeling points in the 128 version comes
with more significant consequences in the fine-tuning process.
However, Table III shows using 128-TS compared to the 32-
TS, it increases the annotation speed twice while the mAP
decreases less than 2%.

Method GT 32-TS 64-TS 128-TS

mAP 69.7 % 67.2 % 65.9 % 65.4 %
ToA (minutes) - 42 31 21

TABLE III: Comparison of video classification accuracy
(mAP) and ToA (time of annotation) on ActivityNet subset-1.
This subset contains 407 videos in about 13 hours of video.
Our method in 32 time-steps (32-TS) and 128-TS (128-TS)
achieves comparable test accuracy to the ground truth accuracy
and requires a much shorter time to annotate.

E. Generalization
To further demonstrate the generalization of our method, we

conduct the same annotation experiment on a more challenging
subset of ActivityNet (v1.3) with 15 classes. Moreover, we
evaluate our method on a subset of Sports-1M [3] with 15
random classes. We also test our method in a different setting;
we try to annotate the Breakfast dataset [22] which includes
complex actions on a sub-activity level and investigate the
effect of temporal enhancement module on Breakfast dataset.

ActivityNet (v1.3) Subset-2. Subset 2 of ActivityNet (v1.3)
contains 637 training videos and 311 test videos. The first
iteration of features is extracted from the 637 training videos
and is annotated in 15 minutes by the oracle. After 20
epochs of fine-tuning the ResNet-34 3D, the new features are
extracted, and the labels are fine-tuned again by the oracle.

Fig. 6: t-SNE projection of extracted features from 200 videos
from the Sports-1M [3] dataset with ground truth labels as
colors. 200 videos are from 15 random classes; however,
some videos contain more than one activity class. The 4-
NN accuracy, which emulates the quality of the projection
through measuring local homogeneity, is 92.3%, indicating
such a figure is annotate-able by the oracle.

After this stage, the network is fine-tuned for 80 epochs. After
fine-tuning for 100 epochs, our method reaches a test accuracy
of 66.4%, while the training with ground-truth labels achieves
an accuracy of 68.3% on the video classification task.

To emulate the annotation speed in form of local homogene-
ity, we report KNN accuracy. The 4-NN accuracy of the final
features is 92.4%, which shows the quality of the extracted
features is enough for the oracle to annotate. This validates
our method on the ActivityNet subset-2 and shows our method
is not over-fitting on subset-1 of ActivityNet and can still
perform well with more fine-grained classes.

Sports-1M. We further validate our method on a subset of
Sports-1M [3] dataset with 15 random classes. We randomly
sample 200 videos ( 860 minutes) from the total 702 videos
available in the 15 classes. The features are extracted from 200
videos, and ground truth labels of the two-dimensional features
can be seen in Figure 6. The 4-NN accuracy is 92.3%, which
shows the features can be annotated based on similarity. Using
our method, we were able to annotate 860 minutes of video
in 28 minutes giving us a time gain of 30.7.

Breakfast. Different subsets of Breakfast are used to eval-
uate the generalization of our method on complex actions.
The first subset is 36 minutes of videos of 3 classes (cereals,
fried egg, and sandwich) in 5 different kitchens. Figure 8
shows that our method groups similar kitchens together instead
of grouping similar actions. The reason is that the Breakfast
dataset is a in-the-wild dataset in where most of the kitchens
have different viewpoints, and the 3D features alone can not
separate the actions in the different videos. Therefore, our
method can not be used with the same setting as ActivityNet
and Sports-1M for sub-action annotation with group labeling
in the Breakfast dataset. However, our method can be used for
video level annotation, as can be seen in Figure 8 that different
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Fig. 7: Temporal feature enhancement. The 3D ConvNet
features of a single complex activity (e.g., frying egg) are
used to train a two-layer MLP to learn the temporal coherency
between the sub-actions. After training the MLP, new features
are extracted from the second layer of the MLP and aggregated
in the form of summation with the max-pooled version of the
3D ConvNet features. Aggregating the features adds temporal
coherency to the t-SNE projection of a single video.

actions in the same kitchen can be separated.

Fig. 8: 2D t-SNE projection of high dimensional features of 3
complex actions in 5 different kitchens with different camera
viewpoint. Our method can not place the same actions from
different videos near each other and instead place the same
kitchens together due to the complexity of the dataset.

Since group labeling, multiple videos containing multiple
sub-action in different kitchens is not feasible at a sub-activity
level using our method, in a more realistic setting, we aim to
annotate the sub-actions in a single video instead of multiple
videos. Besides, to exploit the temporal coherency of the sub-
actions, we temporally enhance the features using an MLP-
based method we adapt from [55]. The MLP is trained on the
extracted features of one complex activity (fried egg) to learn
the ordering of the sub-actions (putting oil in the pan, cracking
egg) in complex actions. Finally, the extracted features from
the second layer of the MLP are aggregated in the form of

summation with the 3D ConvNet features. The goal of feature
aggregation is to increase the temporal coherency between the
ResNet-34 3D features vectors.

It can be seen in Figure 7 that the new features are extracted
from the second layer of the MLP. The dimensions of the
MLP feature vector is n × 128. Where n is the number of
feature vectors from the 3D ConvNet. To aggregate the MLP
features with the ResNet features, the ResNet-34 3D features
are reduced in spatial dimension using a max pooling kernel
and later added to the MLP feature vectors.

Figure 10 shows the effect of using and MLP to temporally
enhance the features. The color-coding in the scatter plot
represents the relative time of the clips in the video. Lighter
points in the scatter plots represent early clips and the darker
colors represent later clips in the video. It can be seen in Figure
10-a, there is no temporal ordering of sub-actions in the scatter
plot. After temporally enhancing the features using the MLP,
Figure 10-b shows that the temporal ordering of clips appears
in the scatter plot.

To quantitatively evaluate the effect of the temporal en-
hancement, in an experiment, a video of fried egg, 196
seconds long, is annotated with four different methods using
conventional annotation, MuViLab, our method with ResNet-
34 3D features (RN-34) and our method with the temporally
enhanced features. The maximum annotation budget for anno-
tating thefried egg video is 3 minutes. It can be seen in Table
IV, temporal enhancement increases the annotation quality in
the form of mean over frame (MoF) percentage compared
to using only 3D ResNet-34 features. The reason is that the
new features are temporally enhanced based of the temporal
coherency between the sub-actions in the video. However, our
method can not excel MuViLab and conventional annotation
techniques for such a dataset in annotation speed and accuracy.
The reason is that our method’s power is in grouping the
same actions from multiple videos, which can not be done
on the Breakfast dataset due to the difficulty of the dataset
and multiple viewpoints. The qualitative results of using our
annotation method compared to ground truth annotation can
be seen in Figure 9.

Conventional MuViLab RN-34 Time Enhanced

ToA (minutes) 2.19 2 3 3
MoF 96% 95.2% 52% 63.4%

TABLE IV: Time of annotation (ToA) and mean over frame
(MoF) comparison between different annotation methods on
one video of the Breakfast dataset. Temporally enhancing the
ResNet-34 3D (RN-34) features can increase the mean over
frames (MoF) with the same annotation budget (3 minutes) but
can not achieve a comparable result with conventional anno-
tation and MuViLab. Conventional annotation and MuViLab
can achieve higher MoF in shorter time of annotation.

V. ABLATION STUDY

In this section, we conduct an ablation study to motivate
our design choices in the following aspects: (i) dimensionality
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Fig. 9: Qualitative comparison of annotation quality on a video
of fried egg from the Breakfast dataset [22]. Our annotation
method using temporally enhanced features can label the video
so that the temporal ordering of sub-actions is still intact.

4-NN Exec Time

t-SNE 94% 160
UMAP 83.3% 40

TABLE V: Comparison of quality of projection and execution
time (Exec Time) of t-SNE versus UMAP through measuring
4-NN accuracy to estimate local homogeneity. UMAP has a
faster execution time than BH-t-SNE but t-SNE can give a
better projection with higher local homogeneity which can
speed up the annotation process.

reduction method,(ii) t-SNE parameter selection and (iii) 2D
versus 3D backbone for feature extraction.

A. Dimensionality Reduction
We investigate using PCA as a linear dimensionality method

and t-SNE as a non-linear dimensionality method for visualiz-
ing the high-dimensional features in two dimensions. We use
the extracted feature from the ActivityNet subset-1 with 407
videos. Figure 11-b shows qualitatively that PCA is not able
to group similar features and separate unalike features from
the videos in the transition to a lower dimension, making the
annotation more difficult. However, Figure 11-a, shows that t-
SNE projection can maintain the local structure of each class
while separating the features from different classes. To report
the quality of projection in quantitative measures, we use KNN
with K=4. The 4-NN classification accuracy in Figure 11 for
the t-SNE projection is 80.6% and for the PCA projection
is 58.2%. Therefore, PCA, a linear dimensionality method,
cannot reduce the feature dimension while placing similar
classes near each other.

We further compare our result with UMAP [46] versus
Barnes-Hut t-SNE [56] for ActivityNet subset-1. It can be
seen in Table V, UMAP offers a faster computation time
than Barnes-Hut t-SNE which is not an issue since faster
implementations of t-SNE are available such as [47], [59].

B. t-SNE Parameters
We investigate using different perplexity parameters for the

t-SNE projection. [43] recommend using perplexity parameter
between [5-50], however larger and denser datasets requires

px-5 px-15 px-30 px-50 px-100 px-120

Homogeneity 44.7% 58.7% 62.5% 61.3% 61.7% 61.5%
Completeness 42.5% 56.1% 60% 58.5% 59% 58.8%

TABLE VI: Comparison of homogeneity and completeness
scores as a measure to emulate the quality of t-SNE projection
in a global-level. Higher homogeneity means all the points in a
cluster belongs to the same class. Higher completeness means
all the points belonging to a class are in the same cluster.
Perplexity 30 gives the highest homogeneity and completeness
score and is used for the t-SNE projection.

relatively higher perplexity. With low perplexity, the local
structure of data in each video dominates the action grouping
from multiple video [44], but our goal is to group multiple
actions from different videos. To emulate the t-SNE projection
quality for the annotation, we report homogeneity and com-
pleteness scores with different perplexities in Table VI. As
Table VI shows, perplexity 30 shows the highest homogeneity
and completeness scores meaning that t-SNE projection with
perplexity 30 can separate the classes in a better way than
projecting with the other perplexity parameters. Therefore,
using t-SNE with perplexity 30 makes the group labeling
process easier for the oracle.

C. 2D-3D Comparison

We investigate replacing the 3D ConvNet with a 2D CNN
to compare the quality of the feature embedding. For 3D
ConvNet, ResNet-34 3D pre-trained on Kinetics [2] and for
the 2D CNN ResNet-50 pre-trained on Kinetics [2] are used.
The reason we chose Resnet-50 instead of Resnet-34 for
the 2D CNN was that the Kinetics pre-trained weights was
only available for ResNet-50. To conduct the experiment, we
sample every 32 consecutive frames (time-steps) as a clip
in the 3D ConvNet, and for the 2D CNN, we choose one
frame for every 32 frames to represent that specific window.
The experiment is done on the subset-1 of the Activity-Net
dataset with 10 classes. It can be seen in Figure 12 that we
start the experiments with 32 time-steps. Later we gradually
increase the time-steps to the point that either we lose temporal
information or we run out of data-points (whichever comes
first). With 32 time-steps, Figure 12, we can see the 2D CNN
can capture the same action in different videos but can not
place them together as well as the 3D ConvNet. Therefore the
colors representing the classes are better gathered in a close
proximity in the 3D ConvNet which makes the annotation
process faster than the 2D CNN projection. Moreover, Figure
12 shows, by increasing the time-steps for frame sampling, the
2D CNN, even with deeper architecture, 50 compared to 34,
starts losing the temporal coherency between the data-points as
it only focuses on the spatial information between the frames.
Focusing only on spatial information can still work in lower
time-steps (32-TS) because the frames from the same action
contain similar spatial information. However, using spatial
information alone becomes problematic in higher time-steps as
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a) ResNet-34 3D Features b) Temporally Enhanced Features
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Fig. 10: Color-coded t-SNE projection of a complex action video from the Breakfast dataset [22]. Lighter colors belong to
the early clip in the video, and darker colors belong to the videos later in the video. a) Shows the t-SNE projection of the
ResNet34 3D features, which shows the temporal coherency between the sub-actions is lost. b) Shows the t-SNE projection
of the temporally enhance features. It can be seen in b, the MLP can add the temporal coherency to the features in low
dimensional space which make annotating the complex action in a sub-activity level easier.

Fig. 11: Visual comparison of the projection quality of high-dimensional features to two dimensions using t-SNE (a) and PCA
(b). Linear DR methods such as PCA are unable to maintain the structure of the high-dimensional data in two dimensions.

increasing the time-steps reduces the spatial similarity between
the frames.

Moreover, to evaluate our findings quantitatively, we use
KNN accuracy as a quantitative emulation for the quality of
features for annotation. Table VII shows that increasing the
number of frames in the clips, degrades the 4-NN accuracy.
Therefore, the local homogeneity decreases more drastically
in 2D CNNs compared to 3D CNNs, which makes annotation
more difficult for the oracle. In other words, the 2D CNN
alone can not maintain the temporal structure of the data in
higher time-steps. Therefore, in our method, 3D features are
extracted to be used for group labeling.

VI. CONCLUSION

In this work, we introduced a smart annotation tool that
can help the oracle group label the videos based on their

2D CNN 3D CNN

32-TS 93.1 % 100 %
64-TS 89.3 % 97.6 %
128-TS 74.6 % 95.2 %

TABLE VII: Comparison of 4-NN accuracy of extracted
features from a 2D CNN (ResNet-50) and a 3D ConvNet
(ResNet-34 3D) on subset-1 of ActivityNet [1]. Increasing
time-steps cause the 2D CNN to lose the spatial similarity
between the frames and fail to group them in the t-SNE plot
while the 3D ConvNet can still group similar actions even in
higher time-steps.

latent space feature similarity in two-dimensional space. The
method can be useful in annotating large-scale video datasets,
especially if the annotation budget and time are limited. Our
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Fig. 12: Comparison of t-SNE projection of extracted features from a 2D CNN versus a 3D ConvNet for videos from 3 action
classes of ActivityNet dataset [1]. Increasing the time-steps for sampling clips from the videos causes the 2D CNN to lose the
clips’ spatial information. However, the features from the 3D ConvNet can maintain the coherency between the clips as they
take time into account in the convolution kernels.

method can outperform conventional annotation and MuViLab
[21] time-wise in order of magnitude. However, we showed
that our technique could not achieve the same result on a
complex action dataset such as Breakfast [22]. We specu-
late that the reason is the number of multiple challenges
in the Breakfast dataset. These challenges include multiple
viewpoints, temporal variation in the sub-actions, and spatial
similarity of sub-actions, which makes using feature sim-
ilarity for action gathering a challenging task. In a more
straightforward problem to annotate one video, we adapted
a temporal enhancement method from [55] to increase the
temporal coherency between the features from the sub-actions.
The temporal feature enhancement helps the annotation speed
compared to using ResNet-34 3D features only; however, it
can not outperform the time and quality of annotation in MuVi-
Lab and conventional annotation methods. For future work, we
expect using a viewpoint invariant network in combination
with a way of capturing the local and global dynamics of
the actions, e.g. Multi-scale Temporal Convolutions, can help
group labeling complex action datasets at a sub-activity level.
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2
INTRODUCTION

With the introduction of large-scale video dataset such as [1, 2], and increase in the com-
putational power of GPUs video understanding became an attractive topic of research in
the past few years. Different supervised methods, such as C3D [3], T3D [4], TSN [5], have
improved the accuracy on the video understanding tasks such as video classification,
temporal segmentation, etc. However, all the mentioned models are fully-supervised,
and supervised models require much annotated data that is unavailable as videos are
naturally unlabeled, and annotating them takes much effort.

Some works have been done to decrease the dependency on the quality and amount
of annotated data. [6, 7] investigated pre-training features with large-scale internet videos
with noisy labels in a weakly supervised manner. Later the model has been fine-tuned on
the target dataset in a supervised manner. [8] proposes a self-supervised method where
the frame order in unlabeled videos can help the learning process. Other methods tried
to train the networks for action recognition in a semi-supervised [9] [10] manner without
having the full labels. [11] proposed UntrimmedNets using video-level annotation with
attention mechanisms instead of temporal labels for the task of temporal action recog-
nition. However, these methods were unable to achieve higher accuracy compared to
supervised models.

The main ways that the research community annotate such datasets are 1- Outsourc-
ing it to the annotation companies 2- Annotating the videos using conventional methods
(with no specific tools) 3- Annotating the video dataset using available software such as
MuViLab [12]. The first method usually requires proper funding. (Charades [13] authors
spent 1 USD per video for annotation). The second and third methods are time consum-
ing since it is not efficient to label hundreds of hours of video data manually. Most of
these methods do not take advantage of the structure and similarity of the data.
In this work, we introduce a framework that can speed up the video annotation up to 36
times faster than the mentioned annotation tools.
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3
BACKGROUND ON DEEP LEARNING

Deep learning is a subset of machine learning that has been used in a wide variety of
tasks such as object detection [1], activity recognition [2], person re-identification [3],
etc. Feed forward neural networks or multi-layer perceptrons (MLP) are an essential
ports of the deep learning models. If we consider the feed forward model as a module,
the goal of this module is to approximate a function f* that can produce an output y* =
f*(x) where y* should be close to the actual output y [4]. A MLP can learn such a function
that can map an input x to a category y = f(x ; θ) to come up with the closest approxima-
tion to the reality y = y*. θ is a set of learn-able parameters for each network based on the
network architecture. Feed-forward networks are the basis of the deep learning architec-
tures. Most of the other models such as convolutions neural networks (CNN), recurrent
neural networks (RNN), etc. are a variation of feed-forward networks which are widely
used in image recognition and natural language processing (NLP) tasks respectively.

In the following sections Neural Networks, CNNs, and tips and tricks for a better ap-
proximation function are explained in more detail.

3.1. NEURAL NETWORKS

3.1.1. SINGLE PERCEPTRON

Neural networks(NN) are called neural because they were inspired by neuroscience [4].
A single-layer NN is called a perceptron, which can be seen in Figure 3.1. The input vec-
tor is shown with X = x0, ..., xn , which are multiplied by the weight vector W = w0, ..., wn

in a forward pass. The value of weighted inputs is later added to a bias term and is fed
into an activation function f. An activation function is an essential tool to a perceptron
since it adds non-linearity to the summation of inputs, which enables a perceptron to
learn complicated functions. Some of the most used activation functions are Sigmoid
and Relu 3.2. An overview of different activation functions are given in [5].
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Figure 3.1: Single perceptron that takes an input vector, calculates the weighted sum and feeds it into an
activation function to add non-linearity.

Figure 3.2: Two most used activation functions.

3.1.2. MULTI-LAYER PERCEPTRON
One can increase the complexity of the NN by adding more perceptrons to a single layer
(making the network wider) or adding more layers (making the network deeper) to make
a multi-layer perceptron (MLP). MLPs are also called feed-forward networks because
they usually are a combination of multiple approximation functions
y∗ = f n(f n−1(...f 1(x))) that form a network [4] where f 1 is called the first layer and f n is
called the n-th layer of the neural network. n indicates the depth of the model, which
is a hyper-parameter that needs to be carefully selected. During the training, learn-able
parameters in the layers are pushed so that the network output y* matches the desired
output y. Figure 3.3 shows a MLP with 1 hidden layer with 4 neurons. The output y* is
calculated as follows:

~h = w1 ∗~x +b1 (3.1)

~y∗= w2 ∗~h +b2 (3.2)

3.1.3. TRAINING
The process of training for an MLP refers to finding the best learn-able parameters for the
weights and biases. These parameters are usually randomly initialized at the beginning
and later updated during the training process to minimize a loss function. Different loss
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Figure 3.3: Fully connected artificial neural network (ANN) with one hidden layer.

functions have been used in different settings [6]. One of the most used functions is
mean squared error (MSE), which is shown in Equation 3.3.

MSE = 1

n

N∑
i=1

(yi − y∗
i )2 (3.3)

The loss is defined based on the difference between the target output and the NN
output. Methods such as gradient descents are used to solve this optimization problem
by finding the best parameters to reduce the loss function. In deeper architectures to
update the weights in the earlier layers Backpropagation is used. The name refers to
the fact that the calculation of the gradients start from the output layer and proceeds
backward to the first layer. Some parts of each gradient calculation is used from one
layer to another. Therefore, backpropagation is a more efficient approach rather than
calculating the gradients of each layer separately [7].

3.2. CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (CNN) are a specific type of NNs that use more for pro-
cessing data with a grid structure such as image (2D grid) or video (3D grid). As the name
indicates, CNNs use convolution operations in at least one of their hidden layers [4]. As
can be seen in Figure 3.4, deep CNNs are usually a cascade of multiple convulsions and
pooling layers and non-linearity. Convolution filters in different sizes slide over the im-
age to extract feature maps, and later pooling layers are used to disregard the non-useful
information and reduce the spatial information to what is important for classifying an
image. Moreover, activation functions such as RELU are used to add non-linearity to the
structure of the network.
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Figure 3.4: Architecture of AlexNet [8], a breakthrough for ImageNet [9] classification

Later in this section, various parts of a CNN and the training process are discussed in
more detail.

3.2.1. CONVOLUTIONS

Convolutions are used to extract useful information from the input data. Different filters
can be chosen to apply the convolution operating on it based on the need. For example,
in image processing, some filters are designed to extract the edges from the images. The
weights of the filters in CNN are learn-able parameters which are randomly initialized at
the beginning and later updated during the training process to minimize a loss function.

CNNs have some advantages over MLPs, which make them a better choice for cer-
tain applications like image and video processing. CNNs are translation invariant, which
means changing the location of an object in an image does not affect the output after ap-
plying the convolution layer. Therefore, one filter can be used to detect a certain object
in an image regardless of the object’s position. In deep learning applications, convolu-
tions are multiplications and additions. As can be seen in the Figure 3.5 the 3*3 kernel
with weights [[-1, 0, 1],[-2, 0, 2], [-1, 0, 1]] slides on the input to generate the feature map
on the right side of Figure 3.5. In the first layers of the CNN, the filters usually try to learn
general structures such as edges and lines, etc. Deeper in the network, the filters learn
complicated structures.

Figure 3.5: Demonstration of applying a two-dimensional convolution filter [10]
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3.2.2. POOLING LAYER
After feeding the input to the convolution layers, we get the linear activation maps. The
linear activation is later fed into the non-linear activation functions such as RELU. Fur-
ther, the output of the activation function is fed to a layer called pooling. Different pool-
ing operations, Max Pooling, Average Pooling, is used to decrease the spatial resolution of
the input and to capture the collective information in a neighborhood of the input. Sim-
ilar to the convolution operation, pooling is done using a sliding window on top of the
feature map. For a pooling operation, the stride of the window determines how much the
spatial resolution will be reduced. Max Pooling and Average Pooling outputs the maxi-
mum and average value of the k*k window, respectively. Figure 3.6 shows a summary of
all mentioned layers.

Figure 3.6: Example of feeding an input image to a convolutional neural network [10].

Some network architectures are fully convolutions [11]. Some networks, such as [8]
used the convolutions network as a feature extractor and connected a fully connected
layer at the end for the classification of the features. A function such as Softmax can be
used on the output of the MLP to produce class probabilities for the input.

3.2.3. REGULARIZATION
The CNN can be trained in the same way the MLP training was explained in Chapter 2
and it should generalize well on the unseen data. Otherwise, a model that performs wells
on the training data but fails to perform well on the validation data is called to be over-
fitting on the training data. Many parameters can cause over-fitting of the NN, such as
choosing the wrong hyper-parameters or small size of training data. More complex net-
works with deeper architectures have high representational capabilities and need more
training data for a successful approximation function. Therefore if providing more train-
ing data for the model is not possible, it makes sense to reduce the complexity of the
network. Regularization techniques add a penalization factor that forces the model to
learn a more generalize-able representation of the training data. Some of the different
regularisation methods are mentioned in the following sections.
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EARLY STOPPING

Early stopping refers to the process of stopping the training before the network gets close
to overfitting. This can be done by comparing the accuracy of the training set and the
validation set every few epochs.

DROPOUT

As can be seen in Figure 3.7, the main idea behind dropout is that at every iteration of
training with a probability p, a certain amount of the neurons are ignored (dropped) [12].
Dropping random neurons force the surviving ones to learn a mapping from the input
to the target output using a smaller architecture.

More regularisation methods have been discussed in more detail in [4].

Figure 3.7: Left: Fully connect NN architecture Right: NN with dropout some random neurons [12]
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4
VIDEO UNDERSTANDING

The goal of this chapter is to introduce the reader with 3D convolution and ReNet3D fea-
ture extractor.

4.1. INTRODUCTION

Video understanding has been under development in the past few years. With large
GPUs and enough data, video understanding has been able to achieve good results in
applications such as [1] and group activity recognition [2]. In the past the focus was on
the use of specific hand-designed features such as HOG3D [3] SIFT-3D [4], optical flow
[5] and iDT [6]. Among these methods, iDT and optical flow have been considered state
of the art in hand-designed featured and are still being used in combination with CNNs
in different architectures such as two-stream networks [7]. Later many attempts have
been made to use 2D CNNs and extract features from video frames and combine the
extracted features with some temporal integration function [8, 9]. [10] gives an analysis
of how to integrate temporal information of video frames with different fusion methods
(e.g. "late fusion", "slow fusion", etc.) by using temporal convolutions on top of the spa-
tial convolutions.

With the introduction of 3D convolution [11, 12] in CNNs which extends the 2D
CNNs in temporal dimension showed promising results in the task of action recognition
in large-scale video datasets. At the time of writing this paper using 3D CNNs in differ-
ent variations such as single stream and multiple-stream are state of the art in the task
of video understanding [13–19]. However some of these methods use computationally
expensive features such as optical flow and iDT. Some other works has also been done to
make these approaches fast in training and inference such as [16, 20].
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4.2. DATASETS
Introduction of large scale video datasets such as ActivityNet [21], Kinetics 400 [22],
Breakfast [23] and many other datasets for different tasks with variation in length of ac-
tion, type of activity, etc. enabled a great acceleration in research for video understand-
ing tasks. Two datasets that have been used in our research paper are ActivityNet and
Breakfast dataset.

ActivityNet is an untrimmed video dataset with a wide range of complex human ac-
tivities. It comprises 203 classes with an average of 137 untrimmed videos per class in
about 849 hours of video. ActivityNet is used as a benchmark dataset for different video
understanding tasks such as untrimmed video classification, trimmed activity classifi-
cation, and activity detection. In our research paper, untrimmed video classification
accuracy has been used as a metric to compare the classification result obtained with
our method vs. the ground truth labels.

Breakfast is a dataset for human cooking activities from multiple cameras and view-
points. It contains 1712 videos with an average length of 2.3 minutes per video. It con-
tains 12 breakfast preparation activities. Each video represents only one activity class,
but it contains sub-actions such as "Getting the bowl" under "Making cereal." Temporal
annotation for each sub-action has been provided. In this work, we qualitatively show
how our method can help to label this dataset and how temporal feature enhancement
can help the process.

4.3. METHODS
In this section, we focus more on the task of activity recognition in videos. Action recog-
nition is the process of detecting specific actions from consecutive frames in a video
where there is also some background (non-action) parts in the video. In our research
paper 3D convolutions are used from a C3D network [12] to extract Spatio-temporal fea-
tures from videos. A more in-depth analysis of C3D and Resnet-3D is given in the follow-
ing section.

4.3.1. C3D
3D convolution extends 2D convolutions among the video’s temporal aspect, enabling
the network to model temporal information better than 2D CNNs. Figure 4.1 shows the
difference between a 2D convolution vs a 3D convolution. 2D convolution while applied
on a single or multiple frames output and image and therefore lost the temporal infor-
mation of the video [12]. Their results also show that using the C3D with iDT features
and a linear classifier yields the highest classification results.

Later other researches such as [24] extended the work from the original C3D paper
[12] by using the Resnet architecture and replacing the 2D convolution and pooling lay-
ers with their respective 3D version. 3D residual blocks are based on the 2D version from
[25] that bypasses the input from one layer to the next. Table 4.2 shows the proposed
architecture of the 3D ResNet.

The input clips’ size is 16*3*112*112, meaning that after reducing the resolution to
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Figure 4.1: Comparison of different convolution kernels [12]

Figure 4.2: 3D ResNet architecture [12]

112*112, 16 consecutive frames are used as an input clip to the 3D network. After train-
ing, the ResNet-34 3D shows better accuracy than the original C3D on the video classifi-
cation task on the Kinetics dataset.

The acceptable accuracy of video classification and the ease of feature extraction
compared to two-stream methods caused us to use Resnet-34 3D as the feature extractor
for our research.

4.3.2. I3D
Two-Stream Inflated 3D ConvNet (I3D) [26] unlike C3D [12] use two-stream networks to
achieve a higher accuracy in action recognition. I3D uses the structure of well-studied
2D CNN by inflating the 2D pooling and kernels to their 3D version by adding an extra
temporal dimension. They also show that 3D models can be pre-trained on 2D datasets
like ImageNet by repeatedly copying a single frame and making a video sequence out
of it. As can be seen in Figure 4.3 I3D uses an ImageNet pre-trained 3D ConvNet and a
3D ConvNet for the optical flow features, which are trained separately and average their
prediction in the testing phase.

Figure 4.3: Two-stream 3D ConvNet [26]
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4.3.3. T-C3D
T-C3D [27] claims that C3D [24] is not capable to model long-term features in the videos
where actions take more time to unfold (High jump, Long jump, etc.) and extends the
work done on the 3D ConvNets with adding a temporal encoding method to capture the
features across the video.

As can be seen in Figure 4.4 after transforming the video into smaller clips and ex-
tracting the short-term temporal motion. Later the Spatio-temporal features are fed into
the temporal encoding module to model the long-range motion across the entire video.
The temporal encoding module aggregates the features with functions such as (average
pooling, max pooling, etc.) computed from different clips of the video.

Figure 4.4: Encoding temporal information for long-range motion across the video with feature aggregation
[27]
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5
DIMENSIONALITY REDUCTION

This chapter aims to give a general overview of the most used dimensionality reduction
methods.

5.1. INTRODUCTION
Dimensionality reduction (DR) has been an essential tool for high-dimensional data
analysis. Linear DR method such as PCA is easier to understand since the lower-dimension
representation is a linear combination of the high-dimensional axes. Non-linear meth-
ods, on the other hand, are not so easy to explain but are more useful to capture a more
complex high-dimensional pattern [1]. In general non-linear DR tries to minimize the
local structure of the data from high-dimension to low dimension and tends to ignore
more considerable distances between data points [2].

5.2. T-SNE
t-Distributed Stochastic Neighbor Embedding (t-SNE) introduced by [3] is a non-linear
DR technique which is used more for the visualization purposes as it raised some con-
cerns regarding the reliability and interpretability of the results. [4] mentions some of the
disadvantages of using t-SNE such as 1) Reliability of the results on the hyper-parameter
choice 2) The fact that the cluster size might not mean anything 3) Distance between
clusters might be deceiving. However, the data used in [4] is artificial data in which the
distribution is known before applying t-SNE. Some works have been done to avoid these
issues and use t-SNE more effectively. [2] proposes an interactive tool to support inter-
active exploration and visualization of high-dimensional data. In our research paper, a
Barnes-Hut variation [5] of t-SNE has been used to reduce the algorithm complexity from
O(N 2) to O(N log N) where N is the number of data-points. t-SNE has shown satisfactory
results in reducing feature dimensions while keeping the local homogeneity; therefore,
it is used as the primary method to visualize high-dimensional data in this work.
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Figure 5.1: t-SNE projection of extracted features from 407 videos of a ActivityNet subset using extracted
features from ResNet-34 3D

In t-SNE, the pair-wise distance between the data-points is transferred to a probabil-
ity distribution to represent similarity.

pij =
exp(− ∥ xi −x j ∥2)/2σ2)∑

k 6=i exp(− ∥ xk −xi ∥2)/2σ2)
(5.1)

pij =
pi | j +p j |i

2n
(5.2)

The pair-wise similarity in the high dimensional space is calculated with Equation 5.1
and 5.2. Each low-dimensional points are also modeled as a probability distribution
called q_ij and is calculated using the Equation 5.3

qij =
(1+ ∥ yi − y j ∥2)−1∑

k 6=L(1+ ∥ yk − yl ∥2)−1 (5.3)

To find the proper low-dimensional(Q) representation of the high-dimensional rep-
resentation (P), a cost function (C) has been defined in Equation 5.4 using Kullback-
Leibler (KL) divergence between the probability distributions. The cost function is later
optimized with gradient descend in a certain number of iterations.

KL(Pi ∥ Qi) =
∑

j
pi j log

pi j

qi j
(5.4)
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6
DATA ANNOTATION

This chapter aims to familiarize the reader with some of the most used data annotation
methods.

6.1. INTRODUCTION
Data to machine learning is like oxygen to human beings; without sufficient and high-
quality data, machine learning models can not achieve the proper accuracy; however,
annotating is a labour intensive task for the oracle. Different tools have been proposed
for making an easy annotation tool for videos and images. However, they usually do not
exploit the structure of the data, which is especially useful in videos. In the past decades,
some works have been done to make the process of image annotation easier. [1] offers a
real-time framework for annotating internet images and [2] uses multi-instances learn-
ing to learn the classes and image attributes together; however, none of these methods
use a deep representation of data.

In more recent works [3] uses Deep Multiple Instance Learning to annotate images
automatically, and [4] uses semi-supervised t-SNE and feature-space visualization in
lower dimension to provide an interactive annotation environment. Some works, such
as [5] proposed a general framework for annotating images and videos. However, to our
understanding, no video annotation platform has been proposed which exploits the data
structure.

6.2. ANNOTATION TOOLS

6.2.1. IMAGE ANNOTATION

There are many image annotation tools available that can output the annotation based
on different dataset styles, such as PascalVOC or YOLO [6]. However, only a few tools
exploit the feature similarity between the images to reduce the work done by the ora-
cle. [4] proposes a framework on top of the Tensorboard Projector based on the feature
similarity between images for active learning purposes.
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Figure 6.1: a) Tensorboard Projector b)3D t-SNE projection of CIFAR-10) [4]

VIDEO ANNOTATION

The conventional way of labeling video data that is still being done on some of the re-
search is playing the video by oracle in a typical video player, and the oracle can pause
the video at any time and label the temporal boundaries of the action. This is usually
done in the form of crowdsourcing the job through Amazon Turk or other platforms.
Such methods are frustrating; however, some open-source tools make the annotation
process easier with small tricks.

MuViLab is an open-source video annotation tool that can be used for temporal and
class label annotation of videos faster than the conventional method. As can be seen in
Figure 6.2, MuViLab shows the entire video in the form of smaller clips near each other
in one figure so that it is more manageable for the oracle to see the similarity between
the clips and make the annotation easier. However, even such software does not exploit
the video’s temporal aspect to its fullest, which is what we propose in our research paper.

Figure 6.2: MuViLab [7] for video annotation
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