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Abstract
Mechanical characterization of three-dimensional (3D) printed meta-biomaterials is rapidly becoming a crucial 
step in the development of novel medical device concepts, including those used in functionally graded implants 
for orthopedic applications. Finite element simulations are a valid, FDA-acknowledged alternative to experimental 
tests, which are time-consuming, expensive, and labor-intensive. However, when applied to 3D-printed meta-
biomaterials, state-of-the-art finite element modeling approaches are becoming increasingly complex, while 
their accuracy remains limited. A critical condition for accurate simulation results is the identification of correct 
modelling parameters. This study proposes a machine learning-based strategy for identifying model parameters, 
including material properties and model boundary conditions, to enable accurate simulations of macro-scale 
mechanical behavior. To achieve this goal, a physics-informed artificial neural network model (PIANN) was 
developed and trained using data generated through a fully automated finite element modeling workflow. 
Subsequently, the PIANN model was then tested using real experimental force-displacement data as its input. The 
experimental data from 3D-printed structures were used to predict the associated parameters for finite element 
modeling. Finally, the workflow was validated by qualitatively and quantitatively comparing simulation results to 
the experimental data. Based on these results, we concluded that the proposed workflow could identify model 
parameters such that the predictions of associated finite element simulations are in agreement with experimental 
observations. Furthermore, resulting finite element models were found to outperform state-of-the-art models in 
terms of both quantitative and qualitative accuracy. Therefore, the proposed strategy has the potential to facilitate 
the broader application of finite element simulations in evaluating 3D-printed parts, in general, and 3D-printed 
meta-biomaterials, in particular.

Keywords  3D printing, Finite element simulation, Functionally graded implant, Machine learning, Physics-informed 
artificial neural network
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   Introduction
Three-dimensional (3D) printing offers immense design 
freedom compared to conventional manufacturing tech-
niques, enabling the design of parts with complex geom-
etries in a wide range of materials and across various 
industries. Metal 3D printing is gaining popularity, par-
ticularly in areas where this design freedom can be lever-
aged to create parts that offer superior performance and 
unique functional properties. One of the first applications 
in orthopedics was the fabrication of fully personalized 
implants for the treatment of complex skeletal patholo-
gies, where off-the-shelf implants can often not provide 
adequate solutions [1, 2]. More recently, the concept of 
meta-biomaterials has emerged, leading to the develop-
ment of porous biomaterials with unusual combinations 
of mechanical, mass transport, and biological proper-
ties, which can enhance the performance of orthopedic 
(regenerative) implants [3, 4]. In such designer biomate-
rials, the micro-architecture of the lattice structure, its 
relative density, porosity, pore size, and the chosen mate-
rial type can all be adjusted to achieve favorable macro-
scale properties. Several potential concepts using these 
materials have already been proposed in the literature, 
indicating the potential of meta-biomaterials to improve 
implant fixation and bony in-growth, thereby improving 
implant longevity [3, 5, 6].

However, bringing these concepts from bench to 
bedside is challenging and requires the accurate char-
acterization and optimization of their mechanical perfor-
mance. Characterization of 3D printed lattice structures 
through experimental testing is, however, time-consum-
ing, expensive, and laborious [7]. The fact that the param-
eters of the 3D printing process, such as powder bed 
fusion (PBF), can influence the geometry of the struts 
and the effective compressive properties of the result-
ing meta-biomaterials further complicates this process. 
Indeed, these variables, including laser scanning speed, 
laser power, build direction, the (flow) properties of the 
metal powder, and layer thickness, all affect the micro-
scale geometry of lattice structures in terms of their 
strut thickness variability, strut waviness, unfused pow-
der particles, and porosities [8–11]. In silico approaches, 
especially finite element (FE) modeling, offer a cheaper 
and more efficient alternative to experimental testing 
for such purposes [12–14]. Recently, researchers have 
created FE models that aim to replicate the experimen-
tal testing conditions and the as-manufactured speci-
men geometries as closely as possible. However, model 
improvements significantly complicate the creation of FE 
models and often require costly imaging modalities, such 
as micro-CT scanners, which complicates their applica-
tion [15].

As an intermediate solution, many studies suggest a 
heuristic approach to determine at least some of the 

modelling parameters, such as friction coefficients, which 
are difficult to determine experimentally. This process of 
inverse parameter identification, however, is time-con-
suming. While semi-automatic parameter optimization 
algorithms can be used for this purpose, the success of 
these algorithms is highly dependent on their initializa-
tion point. Given that the best initialization points are 
typically unknown, such processes require expert knowl-
edge to obtain acceptable results [16]. Furthermore, if the 
parameters of the 3D printing process or the base mate-
rial are changed, the process of parameter tuning is iden-
tified all over again [17].

An alternative solution for identifying the parameters 
of in silico models is to utilize machine learning (ML) 
approaches. Here, an ML model is trained and subse-
quently used to predict modeling parameters of FE mod-
els based on the mechanical response of a structure as 
input. The ML model thus provides a nonlinear mapping 
from the mechanical response space to the space of pos-
sible modeling parameters. Artificial neural networks 
(ANNs), specifically a physics-informed artificial neural 
network (PIANN) model, are typically well-suited for this 
type of regression problem. Indeed, these networks have 
already been used to predict the constitutive behavior of 
materials [17, 18]. However, none of these studies include 
all the necessary modelling parameters, such as friction 
coefficients and boundary conditions.

As a consequence, there is a need for more comprehen-
sive models that enable the integral parameter identifi-
cation process [17–21]. We, therefore, aimed to develop 
a strategy that utilizes an ANN model for the direct 
identification of FE model parameters to simulate the 
mechanical behavior of 3D printed meta-biomaterials. 
To achieve this aim, we first developed a semi-automated 
finite element (FE) modeling workflow to create a library 
of model-predicted force-displacement curves. Subse-
quently, we utilized this library to train and validate an 
artificial neural network (ANN) model. Finally, we vali-
dated the proposed approach by applying it to the prob-
lem of identifying FE model parameters of highly porous 
3D printed meta-biomaterials and comparing the result-
ing simulation results with experimental data.

Methods
Artificial neural network
ANNs are regularly chosen for their ability to solve non-
linear regression problems [22]. The objective of the 
implemented ANN was to predict the optimized FE 
model parameters that yield the best match between sim-
ulated and experimentally obtained force-displacement 
data. While different neural network architectures can 
be used for regression problems, we employed the most 
widely applied network architecture: a multilayer per-
ceptron consisting of an input layer, one or more hidden 
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layers, and an output layer (Fig.  1). Each layer, except 
for the input layer, consisted of nodes (= neurons) work-
ing with nonlinear activation functions. Each of these 
nodes is connected to all the nodes of the previous layer, 
receiving the output of the last layer as input. The num-
ber of nodes in the hidden layer is a design variable of the 
PIANN. While a high number of hidden neurons allows 
for capturing complex relationships between the input 
and output spaces, it could also lead to overfitting of the 
PIANN to the training data. The network architecture 
and its training parameters were, therefore, defined using 
several hyperparameters. The effects of these hyperpa-
rameters on the performance of the PIANN were then 
systematically studied in a 4-fold cross-validation study. 
The parameters studied included the number of nodes 
in the hidden layers, the number of training epochs, 
and the batch size used to train the network. A total of 
1350 parameter combinations were considered (Table 2). 
The network architecture was implemented using Keras 
version 2.5.0, with cross-validation performed with 
Scikit-learn version 0.24 [23, 24]. The hyperparameter 
optimization process resulted in a network with three 
hidden layers, whose neurons were activated by rectified 
linear unit (ReLU) activation functions.

The training of the ANN is the process of tuning the 
learnable network parameters, consisting of the weights 
and biases of the activation functions. The goal of the 
training process is to determine the network parameters 
that minimize the error between the predicted finite 
element (FE) model and the actual finite element (FE) 
parameters for a given force-displacement curve, using a 
cost function. A mean squared error was chosen as the 
cost function as it is the most commonly used for regres-
sion problems. The optimization of the cost function was 
performed using the adaptive stochastic gradient descent 

algorithm, Adam [25]. The number of epochs and batch 
size used for the final training of the model were already 
identified in the above-described cross-validation study. 
The complete dataset was randomly split into a training 
set (85%) and a validation set (15%) to evaluate the vali-
dation error. We did not consider a separate test dataset, 
since the ANN will be validated using real experimental 
data.

Additionally, the performance of the ANN was com-
pared to that of two other machine learning models. 
First, a multi-target support vector regressor (SVR) was 
implemented. SVRs are a generalization of support vec-
tor classifiers for solving regression problems [26]. By 
design, this algorithm is used for single-target regression 
problems. Therefore, a multi-regression model consisting 
of multiple single support vector regressors (SVRs) was 
implemented. The model employs a radial basis function 
as its kernel, utilizing regularization. Second, a random 
forest regression (RFR) model was chosen as an alterna-
tive model. RFR models combine multiple regression 
trees and can be used for multi-target regression prob-
lems [27]. An advantage of RFR models is their interpret-
ability and simplicity in comparison to ANNs. In this 
study, we implemented an RFR model with 100 trees and 
a maximum tree depth of 30. These model parameters 
were chosen heuristically and not optimized further.

Finite element model
This section describes the FE model that simulates the 
compression behavior of 3D-printed meta-biomaterials. 
Several FE modeling techniques have already been con-
sidered and tested to model the behavior of porous lattice 
structures [28]. To achieve this, we developed a semi-
automated workflow utilizing Abaqus Python scripts 

Fig. 1  An overview of the ANN approach used for the estimation of the modelling parameters needed for the FE modeling of 3D printed meta-biomate-
rials. An ANN model was trained using FE-generated training data to predict the modelling parameters. The performances of ANN architectures with both 
two and three hidden layers were evaluated. The testing and evaluation of the resulting ANN model were performed using previously unseen simulation 
data, as well as experimental force-displacement curves measured during compression tests
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(version 2017, Dassault Systèmes, Vélizy-Villacoublay, 
France).

The goal of the workflow was to capture the entire 
experimental process as closely as possible, consisting of 
both the specimens and the uniaxial compression testing 
protocol. The starting point of the workflow was the 3D 
geometry of the specimens. An idealized representation 
of the as-manufactured sample geometry was modelled 
in 3D. The average diameter of the strut cross-section 
was derived from a micro-CT scan, as described in the 

Table 1  An overview of the range of modelling parameters that 
were sampled using a Latin hypercube sampling method
Model parameter Range
Stiffness scaling parameter 40,000–120,000 MPa
Necking parameter 0.5–1.0 x original slope
Plastic stress modifier 0.8–1.4 x original stress magnitude
Plastic strain modifier 0.5–1.1 x original strain magnitude
Strut-Strut friction coefficient 0.1–0.5
Plate-Strut friction coefficient 0.1–0.5

Fig. 2  The scatter plots indicate the actual value vs. the predicted value for each of the model parameters. Whereas the model did not accurately predict 
the necking and strut friction parameters, the PIANN model accurately predicted all the other parameters. The predictions were most accurate for the 
Young’s modulus, closely followed by the plastic stress multiplier
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supplementary document. This geometry was then con-
verted to a FE element mesh, using modified quadratic 
(C3D10M) elements (Fig.  3a). These elements are pre-
ferred over standard quadratic (C3D10) elements in 
applications with contact scenarios and large strains. Ele-
ment size was determined based on a mesh convergence 
study, where the mesh was refined until the change in the 
peak reaction force was less than 2.5%. Next, the uniaxial 
compression tester was modelled as two rigid compres-
sion plates, which were automatically generated based on 
the geometry of the underlying lattice structure.

As this study concerns explicitly the behavior of 
3D-printed meta-biomaterials fabricated from commer-
cially pure titanium, reference material properties were 
derived from a uniaxial tensile test of the bulk material 
performed and provided by the manufacturer, 3D Sys-
tems (Leuven, Belgium). The associated force-displace-
ment curve of the bulk material was then parameterized 
using four parameters, enabling the efficient subsequent 
variation of the implemented properties. Firstly, Young’s 
modulus variations were modeled using a stiffness scaling 
parameter. Secondly, a ‘necking’ parameter was imple-
mented to capture variability in softening behavior exhib-
ited by the material when loaded beyond its ultimate 
strength. Thirdly, a ‘plastic stress modifier’ was imple-
mented, which adjusts the material’s strength in the plas-
tic region. Lastly, a ‘plastic strain modifier’ adjusted the 
ductility of the material. These four parameters enable 
us to alter the constituent relationships of the material 
and model the associated variability in the deformation 
behavior of 3D-printed meta-biomaterials. Additional 
parameter variations include the coefficients of friction 
between the compression plates and the lattice struc-
ture, as well as the friction coefficients between the struts 
themselves. All models were simulated using the explicit 
solver of Abaqus. Uniform mass scaling was employed to 
enhance simulation speed. The mass scaling coefficient 
was determined based on a preliminary convergence 

study, ensuring that the kinetic energy was less than 5% 
of the total energy.

Data generation
The resulting training dataset for the ANN consisted of 
250 force-displacement curves from FE simulations with 
varying model parameters. The modeling parameters for 
these simulations were chosen using a Latin hypercube 
sampling method in pyDOE (version 0.3.8). The sample 
ranges for each parameter were selected empirically 
(Table 1). Hereafter, the Abaqus input files were automat-
ically generated with the corresponding parameters.

The resulting force-displacement curves were aug-
mented with Gaussian noise data, having a zero mean 
and a standard deviation of 5. This noise was added to 
account for some of the randomness in the experimental 
data, as well as in the metal printing process (i.e., PBF). 
Both input and output parameters of the ANN were 
scaled using a min-max scaler to confine all the values 
to the range between 0 and 1. The scaling of the training 
and validation data was performed independently of each 
other.

Validation
Experimental data were available from prior experiments 
and served as the validation dataset for the PIANN model 
[5]. During the experiments, four types of diamond-type 
specimens with a porosity of 98% were compressed, and 
their force-displacement response was recorded. The 
mean force-displacement curve from the four samples 
was calculated and was subsequently introduced as input 
to the PIANN model. The predicted modelling param-
eters were then used in an FE simulation, and the simu-
lation results were compared to real experimental data. 
We compared the mechanical behavior of the structures 
both quantitatively, by analyzing their force-displacement 
responses and elastic gradients, and qualitatively, by 
examining their corresponding deformations at the end 
of the test against the deformed simulation results.

Table 2  Five best and worst performing network architectures and training hyperparameters based on the cross-validation study. The 
values evaluated for each hyperparameter are presented within parentheses
Batch Size Epochs # Neurons L1 # Neurons L2 # Neurons L3 MSE
(500,1000,5000) (250,500,1000) (64,48,32,24,16) (64,48,32,24,16) (48,32,24,12,6)
1000 500 16 8 48 0,028
500 1000 16 8 0 0,029
1000 500 48 48 6 0,030
1000 500 32 24 6 0,030
500 500 24 8 0 0,031
500 1000 16 48 48 0,064
500 1000 32 48 48 0,064
5000 250 16 24 6 0,066
5000 250 48 48 6 0,071
5000 250 64 8 6 0,080
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Results
The results of the five best and worst hyperparameter 
combinations from the 4-fold cross-validation study are 
presented in Table 2. Subtle differences in accuracy were 
observed between the different network architectures. 
Based on these findings, an architecture with three hid-
den layers (16, 8, and 48) was chosen, and training was 
performed with a batch size of 1000 samples and 500 
training epochs.

The Adam optimizer was found to exhibit good conver-
gence behavior, with both training and validation losses 

decreasing over the training iterations. The optimized 
training loss was 2.7%, and the respective validation loss 
was 3.2%. The PIANN model outperformed the alterna-
tive SVR and RFR models for the validation dataset. The 
root mean square error (RMSE) of the PIANN model was 
0.18, whereas the RMSE of the SVR model (0.21) was 14% 
higher. The RFR was the worst-performing model, with 
an RMSE of 0.26, representing a 31% increase compared 
to the prediction error of PIANN.

The accuracy of the predicted model parameters var-
ied between parameters, as shown in Fig. 2. The material 
necking parameter and strut friction coefficient could not 

Fig. 3  The experimental data were used to generate an FE model. The deformation behavior of the experimental specimen (a) was similar to the behavior 
observed in the simulations. The maximal strain values were found near the strut connections. The force-displacement curves (b) showed almost perfect 
agreement between the experimental results and the FE simulation
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be accurately predicted by the neural network, as indi-
cated by their respective Pearson’s correlation coefficient 
of -0.007 and 0.12. In contrast, the bulk material prop-
erties were predicted accurately by the neural network. 
The same held for the friction coefficient between the 
compression plates and the lattice structure. The highest 
accuracy was found for the Young’s moduli (r = 0.999).

Figure 3 (a) illustrates the typical deformation of the 
considered meta-biomaterials, which is characterized 
by the diagonal collapse of the lattice struts. A quali-
tatively similar pattern was observed in the simulation 
results, although a quantitative comparison is challeng-
ing due to the geometric complexity before and after test-
ing. The highest maximal principal strain values of 40% 
were found near the connection points of the struts. The 
experimental and simulated force-displacement curves 
are presented in Fig. 3 (b). The simulation data is derived 
from a model whose parameters were predicted by the 
PIANN model after being fed the experimental force-
displacement curve. The quantitative agreement between 
both curves was found to be excellent, with a relative 
error of 2.5% at the point of peak experimental force. The 
RMSE between both curves was 7.67  N. The simulated 
elastic gradient was 15.87 MPa, compared to an experi-
mental elastic gradient of 15.78 MPa, yielding an error of 
0.6%.

Discussion
We proposed a novel inverse model parameter identi-
fication method to accurately simulate the behavior of 
3D printed meta-biomaterials based on a single force-
displacement curve. Parameter identification was per-
formed using ML models. This approach provides an 
alternative to trial-and-error-based and optimization-
based inverse methods that have been previously pro-
posed in the literature [29]. The main disadvantage of 
the latter methods is that they require iterative computa-
tions to find the best matching parameters. For compu-
tationally demanding models, which is the case for 3D 
printed meta-biomaterials, the associated time cost could 
significantly limit their potential use [17]. Trial-and-
error-based approaches require a high degree of expert 
knowledge [16, 17, 29]. The presented ML approaches, 
which are sometimes referred to as direct inverse meth-
ods, bypass the computational cost once the dataset for 
model training is available. The reusable trained model 
can then predict the optimized model parameters for 
geometrically similar structures in real-time, without 
incurring additional computational requirements. Our 
study demonstrates that this method can effectively iden-
tify model parameters of highly porous titanium lattice 
structures and that the resulting parameters yield accu-
rate simulation results.

Current research efforts aim to develop accurate 
simulations of the compressive behavior of metallic lat-
tice structures [30]. Many of these approaches require 
advanced imaging techniques and material testing equip-
ment to obtain the geometry of the specimens [12, 31–
33]. Nonetheless, even then, many of these approaches 
fail to capture the actual mechanical behavior of the 
specimens, and obtaining accurate simulation results 
remains a challenge. The documented error in the elastic 
gradient using these approaches can reach 50% or more, 
whereas the approach presented in this study achieves 
an error of less than 1% [7, 15, 33–35]. Furthermore, in 
the vast majority of the recently validated approaches, 
the strain range on which the simulations are validated 
is limited to only a small range (i.e., sub-5% strains), 
whereas our validation range covers strains of up to 
40% [36]. The presented approach prioritizes the accu-
racy of the macro-behavior over the exact modelling of 
the micro-scale model parameters. The predicted model 
parameters are, therefore, of a practical nature, mean-
ing that they compensate for confounding factors, such 
as strut variability, porosities, or unfused material par-
ticles, which are consequently not explicitly captured 
in our FE model. It should be noted, however, that our 
approach excludes some application types, such as a 
detailed analysis of the micro-scale (i.e., sub-strut level) 
behavior of the meta-biomaterials. In many applications, 
however, one is interested in the macro-scale behavior of 
a structure, such as its strength and stiffness. The alterna-
tive approach of modeling the part as a solid part based 
on the experimental force-displacement curve is often 
unsatisfactory because it does not account for strut fail-
ure or the deformation behavior of the structure. In con-
trast, the proposed methodology still accounts for these 
aspects and, as such, can be expected to be a more accu-
rate tool to evaluate the macro-scale behavior of porous 
lattice structures.

Different ML methods can be used to identify model-
ling parameters directly [37]. Three different ML models 
were implemented in this study. Among these models, 
the PIANN model outperformed the others. In addition 
to this better performance, neural network architectures 
like this are highly scalable and adaptable to more com-
plex input or output parameters. In this study, we applied 
the PIANN model to predict the modeling parameters of 
highly porous metallic lattice structures consisting of dia-
mond unit cells. However, the presented approach is not 
limited to this specific lattice design. It could be modi-
fied with relative ease for application to different unit cell 
types, porosities, or simulations of different experimen-
tal setups. A well-known issue with ANN models is their 
lack of interpretability. Despite recent efforts, they are 
still considered “black box” algorithms, especially in deep 
learning applications [38]. This is indeed where both the 
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SVR and RFR models are advantageous, as they allow 
for the calculation of the feature importance, enabling a 
degree of interpretability.

A notable point of interest is the PIANN model’s inabil-
ity to accurately predict the necking parameter and the 
strut-strut friction coefficient. While the force-displace-
ment curves derived from the predicted parameters 
showed near-perfect agreement with experimental data, 
the individual predictions for these two parameters were 
poor. This discrepancy suggests either a limited sensi-
tivity of the force-displacement response to variations 
in these parameters or a potential compensatory rela-
tionship between them. In other words, changes in one 
parameter may be offset by changes in the other, leading 
to multiple parameter combinations that result in indis-
tinguishable global mechanical behaviour. This could 
explain the low correlation observed during validation, 
indicating that the inverse problem may be ill-posed for 
these specific parameters. Further work is needed to dis-
entangle their contributions, potentially through a sen-
sitivity analysis, to better understand their role in the 
overall mechanical response.

A critical consideration in the development of our 
PIANN model was the prevention of overfitting, par-
ticularly given the training dataset of 250 samples for 
predicting six model parameters. Several strategies were 
employed to mitigate the risk of overfitting. The 4-fold 
cross-validation study ensured robust model selection, 
while the training and validation loss curves demon-
strate healthy convergence behavior without evidence 
of overfitting. Data augmentation through the addition 
of Gaussian noise proved essential for improving model 
generalization. Many ML algorithms generalize better 
to unseen data when this step is performed (Wen et al., 
2021) and omitting this augmentation leads to inaccurate 
model predictions, suggesting that the model has over-
fitted to the clean simulation data. Indeed, for specific 
regions of the material response, the training dataset will 
inherently differ from the real dataset. One such example 
is the ‘toe region’, a characteristic initial nonlinear portion 
of the force-displacement curve where the force increases 
gradually before reaching the linear elastic region. This 
region is present in experimental data, even when com-
pression experiments are correctly executed, due to 
factors such as initial contact irregularities and speci-
men alignment, but is absent in the idealized simulation 
data. Adding noise to the model-generated training data 
enabled the model to better generalize to these discrep-
ancies. The close agreement between validation perfor-
mance on simulation data (RMSE = 0.18) and subsequent 
performance on real experimental data (2.5% peak force 
error) provides evidence that the model generalizes well 
beyond its training domain. However, the modest dataset 
size remains a limitation, and future work should focus 

on expanding the training data to enhance model robust-
ness further.

Several additional decisions were made during the 
development of this approach that might have affected its 
accuracy or limited its future applicability. First, we chose 
an FE model consisting of solid continuum elements, 
based on our previous experiences with beam and solid 
elements. We found that beam elements were unable to 
fully capture the mechanical effects of the increased strut 
thickness near the connection points. Previous stud-
ies have proposed adjusting the beam element thick-
ness near the connection points [13, 36]. This thickness 
adjustment could be included in the PIANN model as a 
parameter to be identified. Such a PIANN model would 
enable the use of beams instead of solid continuum ele-
ments, thereby reducing the computational burden asso-
ciated with generating the training dataset. Secondly, the 
cross-section of the struts in our FE model was approxi-
mated using perfect circles. However, it is well-known 
that these cross-sections of thin struts, as a result of 
the PBF fabrication process, are better approximated 
by an ellipse [39]. Also, this ellipse’s eccentricity could 
be included as an additional FE model parameter in the 
PIANN model. Finally, titanium was modelled using 
homogeneous elastoplastic material properties without a 
failure criterion. These properties describe the mechani-
cal behavior of the bulk material from which the meta-
biomaterials are made. The application of more advanced 
constitutive models, such as the Johnson-Cook damage 
model, would enable a more accurate simulation of the 
strain hardening and ductile damage phenomena that 
occur during experimental tests [40–42].

The approach presented in this study can predict mod-
eling parameters that enable the accurate simulation 
of the mechanical behavior of a specific, highly porous 
titanium structure. Currently, it is unknown how well 
this approach generalizes to other lattice configurations. 
Therefore, future research should aim to expand the 
developed model with additional training data and model 
parameters, thereby enabling its application to other 
types of 3D-printed meta-biomaterials. This includes 
variations in lattice porosities, unit cell architecture, and 
bulk materials. Furthermore, the process parameters of 
the PBF process could also be included in the PIANN 
model to further improve the accuracy of the predicted 
modeling parameters.

Conclusion
We developed a novel ML-based model to simulate the 
mechanical behavior of 3D-printed meta-biomateri-
als. To achieve this, a PIANN model performing direct 
parameter optimization was trained using model-gen-
erated data. This model could accurately predict the 
required FE modelling parameters based on experimental 
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data. The PIANN model was also found to outperform 
some other commonly used ML-based regressors. The 
developed model is expandable to account for varying 
model parameters and lattice configurations. The model 
was corroborated using experimental data available for 
highly porous titanium lattice structures, yielding good 
quantitative and qualitative agreement between the 
experimental and simulated results. The peak force and 
elastic gradient were predicted with higher accuracy than 
comparable studies available in the literature.

Furthermore, excellent visual agreement was obtained 
for the deformed structure. Taken together, our results 
suggest that the use of ML-based parameter estimation 
to model the mechanical behavior of 3D-printed meta-
biomaterials has the potential to be a valuable tool for 
evaluating 3D-printed parts and can facilitate a rational 
design process using FE modeling. As such, the proposed 
approach has the potential to increase accessibility to FE 
modeling of 3D printed products by simplifying model 
creation and validation, thereby unleashing the potential 
of these models for more efficient design and testing of 
3D printed products across various applications.
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