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1 Introduction

Consider the following problem: We have three phones that need charging, and
two chargers. For now, we will assume the phones have identical charging time,
say, two hours. The goal is to charge all phones as quickly as possible. To
achieve this, we can divide them over the chargers as shown in figure 1.

0 2 4

charger1

charger2

1 3

2 1

Figure 1: Charging three phones on two chargers

We start out with phone 1 and phone 2, then, when phone 1 is charged
halfway, we replace it with phone 3. After phone 2 is done charging, we continue
with phone 1 until all phones are fully charged. This problem is an example of
a scheduling problem, which this report revolves around.

1.1 Literature review

An in-depth introduction to scheduling problems can be found in Pinedo, 2008.
In general, scheduling problems can be described in terms of tasks (charging
phones) that need to be executed on machines (chargers). Scheduling problems
can have many restrictions and conditions. The scheduling problems in this
report share these properties:

• We want to minimize the total makespan, which is the time needed to
finish all tasks,

• there are two machines, m1 and m2,

• there are a finite number of tasks to be scheduled,

• tasks can not be preempted (i.e. put on hold), for example task/phone 1
in figure 1,

• tasks must be executed one after another, without a gap in between,
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• the task durations have a lower and upper bound, but are not known
beforehand.

This report revolves around the last property, which tries to model reality by
introducing uncertainty.

1.2 Goal of the report

In this report, we will be looking at ways to solve scheduling problems, where the
task durations are not known beforehand. We will investigate the performance
of some heuristics, following Cohen et al., 2021, which typically will not give the
optimal solution, and finding the best heuristic comes down to some speculation.

2 Modeling uncertainty

To model uncertainty, we will use the lower and upper bounds of the task
durations to make a budgeted uncertainty set. This type of uncertainty set has
been inspired by Li and Floudas, 2011, and Cohen et al., 2021. We have n tasks,
where for each i ∈ [n], we have

d̂i ≤ di ≤ d̂i + ẑi.

where di is the duration of task i, in an arbitrary time unit, and the lower and
upper bounds are given by d̂i and d̂i + ẑi respectively. In other words,

di = d̂i + ri, 0 ≤ ri ≤ ẑi, (1)

where ri describes the part of di we are uncertain about. We need some more
constraints on ri to make some meaningful observations. Suppose the weighted
sum of ri can not exceed a maximum value.

n∑
i=1

wiri ≤M, wi > 0,M ≥ 0. (2)

When we make M smaller, it limits the possibilities for values of ri. There is no
point in making M >

∑n
i=1 wiẑi, since then for any ri, the condition in equation

(2) will be met. Let us now define M in the following way.

Mα = α

n∑
i=1

wiẑi, α ∈ [0, 1].

The budget Mα is parametrized by α. Substituting Mα in equation (2) yields

n∑
i=1

wiri ≤ α
n∑
i=1

wiẑi, α ∈ [0, 1]. (3)

If α = 1, this equation will be true for all ri, since 0 ≤ ri ≤ ẑi.
If 0 < α < 1, it will limit the possibilities for values of ri.
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If α = 0, then all ri = 0.
We can write equations (1) and (3) in vector notation.

d = d̂ + r (4)

0 ≤ r ≤ ẑ (5)

wr ≤ αwẑ, α ∈ [0, 1] (6)

where r, w and ẑ represent the vectors containing all ri, wi and ẑi respectively.
We can use these equations to make our budgeted uncertainty set.

2.1 Budgeted uncertainty set and some simplifications

To generate a budgeted uncertainty set, we will use equations (5) and (6) from
section 2. Let us first, for a given w > 0, α ∈ [0, 1] and ẑ > 0, define the set

Y = {r ∈ Rn : 0 ≤ r ≤ ẑ, wr ≤ αwẑ}.

It describes a polytope in Rn, where α gives the location of the cutting plane
with normal vector w.
Next, we will make two simplifications.

1. Of the polytope described by Y , we will only look at the vertices.

2. Of these vertices, we will only consider the non-dominated vertices.

For the first simplification, define a set Ŷ , containing only vertices of the poly-
tope described by Y .
For the second simplification, we want to have the non-dominated vertices.
Which comes down to vertices r with the highest value for wr. We take the set
Ŷ , and define

R = {r ∈ Ŷ : wr ≥ wy, y ∈ Ŷ }.

This set R contains values for r, and since d = d̂+r, these will be used to make
our uncertainty set U :

U = {d̂ + r : r ∈ R}.

This will be the uncertainty set we will be using for our simulations.
From this point on, we will be representing U as a matrix in the following way:

U =
[
u1 u2 · · · us

]
,

with the elements of U as vectors uj .
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3 Description of the system state

During scheduling, we keep track of the system state using the following infor-
mation:

Symbol Description
n, s Number of tasks, number of scenarios respectively.
[n] {1, 2, 3, · · · , n} These are the indices for the tasks.
i Almost always signifies the index of a task, i ∈ [n].

P , S, F Sets containing indices of planned tasks, started tasks.
and finished tasks, respectively. {P, S, F} forms a partition on [n].

p, s, f Vectors in {0, 1}n such that pi = 1⇔ i ∈ P . Idem for s and f.
the set and vector representation are used for convenience.

M1, M2 Sets containing indices of tasks (started or finished) on machine 1 or
machine 2 respectively. {M1,M2} forms a partition on S ∪ F .

m1, m2 Vectors in {0, 1}n such that mki = 1⇔ i ∈Mk, k ∈ {1, 2}.
U Matrix representation of the uncertainty set,

U =
[
u1 u2 · · · us

]
. Duration of task i in scenario j = uij

d Vector containing observed durations,
di is the observed duration of task i.

U(d) Uncertainty set containing only feasible scenarios given d.
See below.

t A specific point in time after start of scheduling. Depends on context

We have some more definitions, which will be important later on.

3.1 Feasible scenarios U(d).

Given observed durations d, and uncertainty set U , U(d) is defined as follows:

U(d) = {u ∈ U : di < ui, i ∈ S, dj = uj , j ∈ F}.

In other words, U(d) contains only scenarios u, where the duration of running
tasks is less than the duration given in u, and where the duration of the finished
tasks is exactly equal to u.

3.2 Makespan

The makespan is the amount of time needed to finish all tasks. Suppose we
have a system that has finished all tasks. The makespan is defined as follows.

t = max (m1d,m2d),

where mkd (using shorthand dot product notation) is the total time machine k
has been active.
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3.3 True scenario

At the start of scheduling, we have an uncertainty set U . From this set, one
scenario û will be the true scenario, meaning that any task i will have its
execution time di = ûi. The scheduler will not know which scenario will be the
true scenario.

4 Lower bound

In section 5, we will be looking at heuristics and comparing their performance.
We can determine a lower bound for the total makespan of a scheduling problem.
This lower bound will help us in determining an upper bound for the makespan
of some specific scheduling problems.

Lemma 4.1. For any scenario u ∈ U ,

1. the lower bound tmin of the makespan t = max (m1d,m2d) is given by:

tmin =
1

2
||u||1,

where ||u||1 =
∑
i∈[n] ui is the sum of all execution times in u;

2. t = tmin if and only if m1d = m2d.

Proof. Pick a true scenario û ∈ U . Its makespan is given by

t = max (m1d,m2d).

1. Since we picked the true scenario ourselves, we know for any finished task
i, di = ûi. So t can be described by

t = max(m1û,m2û).

Since all tasks are finished after t. we have F = [n]. that means {M1,M2}
is a partition over [n]. From this it follows that m1 + m2 = 1 ∈ {0, 1}n.
We now rewrite max(a, b).

max(a, b) =
a+ b+ |a− b|

2
≥ a+ b

2
.

We substitute m1û and m2û:

t = max(m1û,m2û) ≥ (m1 + m2)û

2
=

1

2
||û||1, (7)

using 1û = ||û||1. From this we get

t ≥ 1

2
||û||1 = tmin.
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2. We have seen that d = û. Now following from equation 7 we get:

t = tmin ⇔
(m1 + m2)û + |m1û−m2û|

2
=

(m1 + m2)û

2
⇔

|m1û−m2û| = 0 ⇔
m1û = m2û ⇔
m1d = m2d.

The lower bound tmin can be attained, take for example

û =

[
1
1

]
,m1 =

[
1
0

]
,m2 =

[
0
1

]
.

Then

tmin =
1

2
||û||1 =

1

2
× 2 = 1,

t = max(m1û,m2û) = max(1, 1) = 1.

5 Heuristics

Typically, these kinds of scheduling problems, where durations of tasks are not
known, will be solved using integer linear programming, and every time a new
task needs to be chosen, the worst case scenario will be assumed to be true. In
Cohen et al., 2021, the approach was to recursively go through all different task
orders, and minimize the worst case scenario. Due to the uncertainty present
in this kind of scheduling problem, linear programming alone will not be able
to find the best solution in most cases. Our goal is to find a heuristic, whose
performance exceeds linear programming. The heuristics we will be using can
be described as a function that maps the state to a task index.

H (U,d,p, s, f) = h,

where

U : Set of all scenarios,

d : Vector of durations of all tasks,

p : Vector of planned tasks,

s : Vector of started tasks,

f : Vector of finished tasks,

h : Index of next task chosen by the heuristic.
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The heuristics we will be looking at, will all be implemented in the same way.
When scheduling begins, the scheduler asks the heuristic function which task
to schedule, and provides it with the system state. The task returned by this
heuristic will be started.
For the upcoming heuristics, we will be using the uncertainty set in table 1.

sc. 1 sc. 2 sc. 3 sc. 4
task 1 8 8 8 7
task 2 3 2 3 2
task 3 6 6 4 4
task 4 7 9 9 10

Table 1: Uncertainty set for the heuristic examples.

5.1 Blind heuristic

This heuristic will not be tested, but is useful for finding an upper bound for
the total makespan. It starts the tasks based on their index in the uncertainty
set.

h(U,d,p, s, f) = min{i : pi = 1}

This heuristic would choose task 1 from the example uncertainty set.

5.1.1 Upper bound for Blind heuristic

We already know, from lemma 4.1, that for any scenario û ∈ U ,

t ≥ 1

2
||û||1 = tmin

is a lower bound. We now try to find an upper bound for the makespan given
any scenario in U .

Theorem 5.1. For any scenario u ∈ Rn>0, if u meets the condition

ui
2
≤ ui+1, ∀i ∈ [n− 1],

then

t ≤ ||u||1
2

+
un
2
. (8)

Proof. Let u be an arbitrary element of Rn>0, satisfying the condition

ui
2
≤ ui+1, ∀i ∈ [n− 1],

where we also define

uk =
[
u1 u2 · · · uk

]>
, k ≤ n.
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The proof will be done using induction. We use the induction hypothesis

P (k) : If k = 1,

or k ≥ 2, and
uki
2
≤ uki+1, i ∈ [k − 1],

then, for the makespan we have t ≤ ||u
k||1
2

+
ukk
2
.

We will first prove P for k = 1. In this case u1 = u1 ⇒ ||u1||1 = u1. There is
only one task, so when this finishes, t = u1. According to P (1),

t ≤ ||u
1||1
2

+
u11
2

=
u1
2

+
u1
2

= u1.

So this shows P (1) is true.
For the inductive step, suppose P (p) is true for a particular p < n. We now
need to show P (p+ 1) is true as well.

From P (p), we know that for up, t ≤ ||up||1
2 +

up

2 . We also know

mp
1u

p + mp
2u

p = ||up||1, (9)

||up||1
2
≤ t. (fom lemma 4.1) (10)

Suppose w.l.o.g., that mp
1u

p ≥ mp
2u

p. This means that mp
1u

p = t, since t =
max(mp

1u
p,mp

2u
p). From this it follows that

||up||1
2
≤mp

1u
p ≤ ||u

p||1
2

+
up
2
, (these are the bounds for t) (11)

||up||1
2
≥mp

2u
p ≥ ||u

p||1
2
− up

2
. (since mp

2u
p = ||up||1 −mp

1u
p) (12)

Next, we start the new task. It starts on machine 2, since

mp
2u

p ≤mp
1u

p,

which means machine 2 has had tasks that have a total duration shorter than
those of machine 1. Starting the next task p+ 1 on machine 2 has no effect on
machine 1:

mp+1
1 up+1 = mp

1u
p

mp+1
2 up+1 = mp

2u
p + up+1

We now update the equations (11) and (12).

||up||1
2
≤mp+1

1 up+1 ≤ ||u
p||1
2

+
up
2
, (13)

||up||1
2

+ up+1 ≥mp+1
2 up+1 ≥ ||u

p||1
2
− up

2
+ up+1. (14)
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We now calculate the difference:

−up+1 ≤mp+1
1 up+1 −mp+1

2 up+1 ≤ up − up+1. (15)

On the right side, we notice the expression up − up+1. By our assumption
that P (p) is true, we have

up

2 ≤ up+1. In other words: up ≤ 2up+1. So now
up − up+1 ≤ 2up+1 − up+1 = up+1. Equation (15) becomes

−up+1 ≤mp+1
1 up+1 −mp+1

2 up+1 ≤ up+1.

Or equivalently
|mp+1

1 up+1 −mp+1
2 up+1| ≤ up+1 (16)

As seen before, we can write t = max (mp+1
1 up+1,mp+1

2 up+1) as

t =
mp+1

1 up+1 + mp+1
2 up+1 + |mp+1

1 up+1 −mp+1
2 up+1|

2

Using equation (9) and (16) we get

t ≤ ||u
p+1||1 + up+1

2

Which is equivalent to

t ≤ ||u
p+1||1
2

+
up+1

2

This shows that P (p+ 1) holds.

This means, that if we can find a sequence (ai) of the tasks, such that
uai+1,j ≥ 1

2uai,j , for all i ∈ [n − 1], j ∈ [s], we can conclude that, given a
scenario û ∈ U ,

||û||1
2
≤ t ≤ ||û||1

2
+
ûan
2
.

Ideally, we want to have a heuristic which chooses the shortest task last. since
uan determines the upper bound for t.

5.2 Longest first

Following the findings of section 5.1.1, we introduce the longest first heuristic.
Whenever a task needs to be scheduled, the heuristic considers all possible
scenarios, and chooses the task which has the highest possible duration. In the
uncertainty set given in table 1, the first task to be scheduled would be task 4,
after that comes task 1.
This heuristic can be described using the system state as follows:

hLF(U,d,p, s, f) = h ∈ p : max(U(d)h) ≥ max(U(d)i), i ∈ p.

max(U(d)i) describes the maximum duration across all feasible scenarios of task
i.
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5.3 Decisiveness-based heuristics

When a task finishes it reveals information about which scenarios are feasible
and which are not, and this can be used to our advantage to narrow down the
amount of possible scenarios to consider. Some tasks give us more information
about possible remaining scenarios than others. This property will be referred
to as decisiveness.
The point of trying to schedule more decisive tasks, is to reduce the number of
feasible scenarios to 1, and then switching to linear programming, since this will
definitely be the optimal solution from that point on. The sooner we are left
with only one feasible scenario, the more options the the linear program has for
optimizing. How to determine which task reveals most information? There are
a few different ways.

5.3.1 Decisive first I: Maximum different outcomes

The first approach is to count for each task individually, how many different
duration times are possible, and choose the task where this is maximised. In
the example uncertainty set this would be (2, 2, 2, 3) for the respective tasks,
only task 4 has three different possible durations, this heuristic would choose
task 4.

5.3.2 Decisive first II: Minimum leftover scenarios

This heuristic will first calculate for every task the maximum amount of sce-
narios left after each task has finished, and then chooses the task where this
number is lowest. In the example this would give (3, 2, 2, 2) for the respective
tasks. In this case it chooses the first occurrence of the minimum, which is task
2.

5.3.3 Decisive first III: Minimum expected value of leftover scenar-
ios

This heuristic functions very similar to the previous one, except this one finds
for every task the expected value of leftover scenarios (assuming uniform prob-
ability) and takes the minimum. In the example this would give (2.5, 2, 2, 1.5)
for the respective scenarios. The heuristic would choose task 4.

6 Comparison of heuristics

In this section we will have a look at the performance of the heuristics above.
They have been tested using an uncertainty set U , given by the following pa-
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rameters, and obtained as described in section 2 and 2.1:

d̂ =
[
5 5 6 6 5 6 7 5 6 8

]
,

w =
[
4 1 1 2 5 2 2 3 4 1

]
,

ẑ =
[
3 4 5 7 2 3 6 4 1 1

]
,

α = 0.55.

The resulting uncertainty set U contains 1007 scenarios. Every scenario has been
given to the heuristics, which did not know the scenario beforehand. Their per-
formance has been compared to a linear program, which did know the scenario,
and this will give the optimal solution, which serves as the lower bound for the
makespan t of a given scenario û and will be referred to as the answer.

Figure 2: Histogram of heuristics, compared with the answer (opimal solution).

In figure 2 we can see the performance of the heuristics, with U as given
before. On the horizontal axis we have the makespan t, on the vertical axis we
have frequency. From this plot, it seems that decisiveFirst gets closest to the
answer most of the time, since we see it has the highest frequency of the first
bin (36 ≤ t ≤ 37).

13



Figure 3: Same data as image 2, cumulative plot.

In figure 3, we have the same data as in figure 2, this time in a cumulative
plot. We see that longFirst starts out as the worse heuristic, and then ends up
on top. This means that the worst case scenarios for longFirst give a better
makespan than the worst case scenarios for the other heuristics. This probably
because the longFirst eliminates all tasks with the longest duration first. So in
the end, when there are only a few tasks left, it is not such a problem when it
picks the wrong task (as concluded in section 5.1.1). The other heuristics all
have the same issue that they can keep the task with the longest duration until
the very end of the scheduling, and because of this the makespan ends up a lot
higher.

7 Conclusion

In conclusion, we have seen that there many different kinds of heuristics to
try and minimize the total makespan of scheduling problems with uncertainty.
The simplest heuristic, longestFirst, performed the best for worst case scenarios,
with the given uncertainty set. This is probably a consequence of the fact that
this heuristic puts the tasks with shorter duration last, and this minimizes the
risk for making a mistake in scheduling. Also, if the condition in theorem 5.1 is
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met, we can say that for any given scenario û,

||û||1
2
≤ t ≤ ||û||1

2
+
ûan
2
,

where ûan is the duration fo the task chosen last.

8 Discussion

Other possibilities of heuristics that can still be investigated include more di-
versifications or ’mash-ups’ of heuristics mentioned in this paper. For example,
start out using one particular heuristic, and switching to another halfway. We
have already seen this in the decisive heuristics, which switch to linear program-
ming when there is only one scenario left.
Theorem 5.1 can be generalized to:
If

∀i ∈ [n− 1],∃m ∈ [n− i] :

m∑
j=1

ui+j ≥
m

m+ 1
ui,

then
||u||1

2
≤ t ≤ ||u||1

2
+
un
2
.

This proof is a bit more involved than the proof for the special case m = 1,
given in theorem 5.1. However when generalized, it is much stronger.
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