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Deep Reinforcement Learning With Dynamic Graphs
for Adaptive Informative Path Planning

Apoorva Vashisth , Julius Rückin , Graduate Student Member, IEEE,
Federico Magistri , Graduate Student Member, IEEE, Cyrill Stachniss , Member, IEEE,

and Marija Popović , Member, IEEE

Abstract—Autonomousrobots are often employed for data col-
lection due to their efficiency and low labour costs. A key task in
robotic data acquisition is planning paths through an initially un-
known environment to collect observations given platform-specific
resource constraints, such as limited battery life. Adaptive on-
line path planning in 3D environments is challenging due to the
large set of valid actions and the presence of unknown occlusions.
To address these issues, we propose a novel deep reinforcement
learning approach for adaptively replanning robot paths to map
targets of interest in unknown 3D environments. A key aspect of
our approach is a dynamically constructed graph that restricts
planning actions local to the robot, allowing us to react to newly
discovered static obstacles and targets of interest. For replanning,
we propose a new reward function that balances between exploring
the unknown environment and exploiting online-discovered targets
of interest. Our experiments show that our method enables more
efficient target discovery compared to state-of-the-art learning and
non-learning baselines. We also showcase our approach for orchard
monitoring using an unmanned aerial vehicle in a photorealistic
simulator.

Index Terms—Motion and path planning, reinforcement
learning, robotics and automation in agriculture and forestry.

I. INTRODUCTION

E FFICIENT data collection is a key requirement in many
monitoring tasks, such as environmental mapping [1],
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[2], [3], [4], [5], precision agriculture [6], [7], [8], and explo-
ration [9], [10], [11]. Autonomous robots are becoming popular
tools for mobile sensing applications since they offer labour-
and cost-effective alternatives to using conventional platforms,
manual approaches [12], or static sensing methods [13]. A key
challenge in this context is planning paths that maximise the
information value of collected data in large environments with
limited onboard resources, e.g. mission time or battery capacity.

In this work, our goal is to map a set of targets of interest
in an initially unknown 3D environment using an unmanned
aerial vehicle (UAV) with a unidirectional sensor as efficiently
as possible. Possible applications for such a system are finding
apples in an orchard, victims in a search and rescue scenario,
or components in a warehouse. We cast this problem as the
informative path planning problem, which aims to maximise
the information value of obtained sensor observations subject to
resource constraints, e.g. maximum path length or battery capac-
ity. Our problem considers adaptively replanning robot paths to
account for observations collected online. In our setting, adap-
tive replanning is challenging due to unknown view-dependent
occlusions in the 4D action space, i.e. the UAV 3D position and
yaw angle.

Classical approaches for this problem precompute a path
before the mission starts [9], [14], [15], [16] without considering
online-collected observations for replanning, likely leading to
sub-optimal performance. In contrast, adaptive informative path
planning approaches allow robots to replan their paths online
based on newly collected data [4], [10], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28]. However, these
methods are typically computationally inefficient in complex
environments involving high-dimensional action spaces, such
as UAV-based applications. Recently, approaches using deep
reinforcement learning have been proposed for adaptive in-
formative planning that outperform non-learning methods in
various scenarios [29], [30], [31], [32]. These methods are not
directly applicable to our problem setting as they do not adjust
the sensor orientation [29], [30], [31] or assume obstacle-free
workspaces [30], [32]. Extending these approaches for obstacle
avoidance is non-trivial, requiring updating the action space as
the obstacles are discovered.

The main contribution of this letter is a deep reinforcement
learning-based approach for adaptive replanning in unknown
3D environments to maximise the discovered targets of interest.
A key aspect of our approach is a dynamically constructed
graph representing the action space, which supports sequen-
tially selecting the next best waypoint for the robot to visit.
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Fig. 1. Our reinforcement learning approach for adaptive informative path
planning applied in an orchard monitoring scenario using an unmanned aerial
vehicle (UAV). Blue squares are candidate waypoints output by our planner,
while the green square is the chosen next waypoint to visit. The inset windows
show the onboard camera view and semantic segmentation for discovering
apples. By planning collision-free paths for the UAV online, we maximise the
number of apple fruits discovered under flight-length constraints.

Our dynamic graph restricts planning to actions in the robot’s
local region at each timestep of the mission. In contrast to
previous works [10], [17], [30] reasoning about static predefined
action spaces, this enables us to plan informative collision-free
paths, even without prior knowledge about the environment.
Combining our dynamic graph with sequential decision-making
through reinforcement learning allows us to plan long-horizon
paths. To capture the adaptive informative planning objective,
we propose a new reward function that encourages the robot to
both explore unknown regions and exploit discovered targets.
Fig. 1 exemplifies our approach applied on a UAV to discover
fruits in an orchard.

In sum, we make the following three claims. First, our ap-
proach enables more efficiently discovering targets of interest
compared to state-of-the-art non-learning-based and learning-
based planning methods, including in previously unseen en-
vironments. Second, by adapting the action space online, our
dynamic graph ensures collision-free navigation in initially
unknown environments while performing on par with or out-
performing static global representations. Third, our proposed
reward function outperforms using purely exploratory rewards.
We validate the performance of our approach in a realistic
orchard monitoring UAV application.

II. RELATED WORK

Informative path planning approaches are extensively ap-
plied in autonomous exploration and monitoring tasks. Classical
methods [9], [14], [15], [16] either plan a path offline or opti-
mise paths to cover the complete robot workspace [33]. These
combinatorial methods do not allow for online replanning due
to the large computational burden incurred when exhaustively
evaluating all possible paths through the environment.

Generally, computational complexity is reduced by discretis-
ing the continuous action space by sampling and connecting
candidate waypoints through platform-dependent paths. The
robot visits only the sampled waypoints, traversing predefined
paths formed by static global graphs representing the entire
environment. Recent approaches [34], [35], [36] incrementally

build the graph based on the current robot pose, reducing the
replanning time. However, like classical approaches, these meth-
ods are non-adaptive to already collected observations for online
replanning during a mission.

Adaptive informative path planning approaches [4], [10],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28] replan robot paths online and consider gathered observa-
tions to inform subsequent decision steps. Several studies apply
evolutionary algorithms to optimise paths for UAVs [18], [23],
[27], autonomous surface vehicles [10], or autonomous ground
vehicles [26] for adaptive replanning in a receding-horizon
manner. Meera et al. [23] utilise covariance matrix adaptation
evolution strategy (CMA-ES) to optimise the global path to
map 2D target distributions using downward-facing cameras.
Bouman et al. [26] maximise the environment coverage, plan-
ning in the robot’s local region over 2D action spaces using
omnidirectional sensors. Ercolani et al. [17] map gas distribu-
tions using nano aerial vehicles, separating path planning into
global and local stages reasoning over clusters of waypoints.
Similarly, Lim et al. [19] cluster waypoints by solving a group
Steiner problem and frame UAV path planning as a travelling
salesman problem over clusters. Oßwald et al. [28] combine
globally optimal travelling salesman problem solutions on a
coarse scale with effective local exploration adapting to the
environment. Rückin et al. [4] and Mascarich et al. [21] derive
information-theoretic planning objective to guide a UAV to cater
for sensing uncertainty assuming obstacle-free workspaces.
Schmid et al. [20] propose new techniques for node rewiring
in sampling-based path planning strategies utilising a point
sensor. A major limitation of adaptive replanning methods is
the computationally expensive online evaluation of information
values of many candidate paths in complex environments.

Recent studies combine neural networks and reinforcement
learning to solve the informative path planning problem [29],
[30], [31], [32], [37]. Reinforcement learning-based solutions
offer the benefits of computational efficiency at deployment
and the ability to generalise to similar environments not seen
during training. While Rückin et al. [32] combine Monte Carlo
tree search with a convolutional neural network, Choi and
Cielniak [31] consider advantages of paths planned by multiple
low-level controllers. A further work by Cao et al. [30] propose
an attention-based neural network to achieve context-aware path
planning in 2D workspaces, whereas Wei and Zheng [29] use
recurrent neural networks trained with Q-learning to plan the
path. These methods are not directly applicable to our problem
setup as they assume obstacle-free environments [29], [30],
[31], [32], map 2D information distributions [30], [32], or do
not account for UAV yaw [29], [30], [31]. Our approach is
most similar to Cao et al. [30], which plans over a probabilistic
roadmap-based environment representation in obstacle-free 2D
workspaces. A key difference with respect to their work is
our reinforcement learning-based framework restricting robot’s
actions to local area, enabling planning in the presence of
unknown obstacles. Moreover, our proposed reward function
not only encourages exploratory behaviour, as done in previous
studies [29], [30], but also incentivises exploiting newly col-
lected information. We show that policies learned on our reward
function outperform the ones learned on purely exploratory
rewards.
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Fig. 2. At each mission timestep t, our approach samples collision-free waypoints in the robot’s local environment. These waypoints, with considered yaw
directions, generate action nodes. Each action node is associated with utility value and uncertainty of the utility value, regressed from the Gaussian process, to
generate the dynamic graph. Our actor-critic network uses the dynamic graph to output the robot’s state value and predicts the next action to execute, which
generates a reward and observations from the environment. Blue arrows indicate the robot control loop and green indicate variables stored in the experience buffer
to train the actor-critic network via on-policy learning.

III. OUR APPROACH

We propose a novel deep reinforcement learning-based in-
formative path planning approach for maximising the number
of discovered targets of interest in unknown 3D environments.
Fig. 2 overviews our method. A key aspect of our approach is a
graph restricting planning to actions in the robot’s known local
workspace, ensuring collision-free action transitions and allow-
ing generation of collision-free paths. We call this environment
representation a dynamic graph as it evolves to account for newly
gathered observations. We estimate each action’s utility value in
the current dynamic graph as the number of targets observed
upon executing it and its corresponding uncertainty using a
Gaussian process. At each timestep, our policy network outputs
a probability distribution over the actions in the dynamic graph.
We use the obtained observations to train the Gaussian process,
update the occupancy map, and generate rewards reflecting the
informative planning objective. We develop a new reward func-
tion that considers both the reduction in utility uncertainty and
the number of observed targets. An experience buffer collects
the robot’s dynamic graph, sampled action, predicted state value,
and reward over several training episodes to train the actor-critic
network using on-policy reinforcement learning.

A. Environment Modelling

Our aim is to map the distribution of targets of interest
in a 3D environment with unknown obstacles assumed to be
static, non-moving. We use Gaussian processes to model the
view-dependent number of observed targets. We also maintain
an occupancy map to plan collision-free paths. Our mission
budgetB ∈ R

+ is defined as the maximum cost of the traversed
path. We define the robot workspace A as a set of actions ai =
[xi, yi, zi, di]

�, where xi, yi, zi ∈ R are the robot 3D position
coordinates within environment bounds and dt ∈ D is the yaw of
the unidirectional onboard sensor, e.g., an RGB-D camera. The
robot takes observations at each distance interval h as it travels.
The set D denotes a user-defined set of possible robot yaw
directions. During planning, at each mission timestep t, we plan
over a set of L candidate actions in the set At ⊆ A, |At| = L.
The candidate actions are sampled uniformly at random from
the C-neighbourhood around at−1 within known free space
and are checked for collision-free reachability along straight
lines, where C is a constant specifying the extent of the robot’s
local region. In this work, we assume quasi-holonomic motion
constraints for evaluating reachability of candidate actions. The

reachability check can be adapted for non-holonomic motion
constraints.

After executing an action at, the robot observes a certain
number of targets. Each action at ∈ A in the robot workspace
is associated with its utility value u(at) ∈ R

+ reflecting the
number of targets observed. The number of observed targets
is normalised by the total number of targets in the environment
for stable policy training.

As the utility function u : A → R
+ is (partially) unknown

for actions at, we need to estimate it. To this end, we utilise
Gaussian processes widely used to estimate spatially correlated
phenomena [10], [29], [30], [38]. We train a Gaussian process
on the utility values of the actions executed in the past and
exploit its utility estimates to inform the planning policy. The
estimated variance allows our policy to consider the uncertainty
over estimated utilities during planning.

A Gaussian process is characterised by a mean
function m(ai) � E[u(ai)] and a covariance function
k(ai,a

′
i) � E[(u(ai)−m(ai))(u(a

′
i)−m(a′i))] as u(ai) ∼

GP (m(ai), k(ai,a
′
i)), where E[·] is the expectation operator

and ai,a
′
i ∈ A. Hence, considering a set of candidate actions

At at timestep t for which we wish to infer the utility, let the
actions in set At correspond to a feature matrix At, where each
ith row corresponds to the action vector ait ∈ At. The set of all
previously executed actions {a0,a2, . . . ,at−1} is represented
by feature matrix A′

t−1. Utility values corresponding to
previously executed actions are represented by the vector
u′
t−1 = [u(a1), . . . , u(at−1)]

�. We predict the utility values of
candidate action set At by conditioning the Gaussian process
on the observed utility values ut | A′

t−1,u
′
t−1,At ∼ N (µ,P):

µ
(
At,A

′
t−1

)
= m (At) +K

(
At,A

′
t−1

) [
K

(
A′
t−1,A

′
t−1

)

+σ2
nI
]−1 (

u′
t−1 −m(A′

t−1)
)

, (1)

P
(
At,A

′
t−1

)
= K (At,At)−K

(
At,A

′
t−1

) [
K

(
A′
t−1,

A′
t−1

)
+ σ2

nI
]−1

K
(
At,A

′
t−1

)�
, (2)

where σ2
n ∈ R

+ is a hyperparameter describing the measure-
ment noise variance, I is an n× n identity matrix where n =
t− 1, and K(·, ·) corresponds to the covariance matrix.

B. Adaptive Informative Path Planning

We model the path followed by the robot as a sequence of
consecutively executed actions ψT0 = (a0,a1, . . . ,aT ) where
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a0 denotes the start action, i.e. the initial robot pose, and aT
is the final action upon depletion of the budget B. The general
informative path planning problem aims to find an optimal path
ψ∗T

0 ∈ Ψ in the space of all possible paths Ψ to optimise an
information-theoretic objective function:

ψ∗T
0 = argmax

ψ∈Ψ
I (ψ), s.t. C(ψ) ≤ B , (3)

where I : ψT0 → R
+ is the information gained from observa-

tions obtained along path ψT0 , the cost functionC : ψT0 → R
+

maps path ψT0 to its execution cost.
Our robot traverses a straight line between two consecutive

actions. Observations are equidistantly collected along the path
ψT0 at a frequency h and are used to update the Gaussian process
and generate a reward. Hence, we model the informative path
planning problem as a sequential decision-making process. As
we aim to maximise the number of observed targets, we define
a function ν : A×Ψ → R

+ as the number of new targets ob-
served upon executing an action at ∈ A after following the path
ψt−1
0 . Note that information ν(at, ψt−1

0 ) and utility u(at) differ
as the utility measures the number of all targets observed upon
executing an action, whereas information considers only targets
that were newly observed after executing the action. Hence,
modelling ν(at, ψt−1

0 ) with a Gaussian process would require
including the temporal variations of an action’s utility value,
increasing the Gaussian process and policy training complexity.
We therefore choose to model utility with a Gaussian process,
as it only depends on a single action at.

We define the information obtained along a path as:

I
(
ψT0

)
=

T∑
t=1

ν
(
at, ψ

t−1
0

)
, (4)

where we aim to plan a path ψT0 to maximise information I .
For informative planning, we leverage our Gaussian process

defined in Section III-A to regress the utility and uncertainty
associated with actions. We apply an upper confidence bound to
the set of candidate actions At to obtain a subset of high-interest
actions Ât used in our reward function:

Ât = {ai,t ∈ At |m(ai,t) + βk(ai,t,ai,t) ≥ μth} , (5)

wherem(ai,t) and k(ai,t,ai,t) are the mean utility of action ai,t
and corresponding variance inferred from the Gaussian process.
The parameter β ∈ R controls the confidence interval width and
μth is a user-defined threshold.

We introduce a new reward function that balances explor-
ing the environment and exploiting collected information. The
information criteria in previous works [29], [30] consider en-
vironment exploration only. However, our problem considers
discovering targets, therefore requiring a measure of information
value in the reward. At each timestep t, the robot executes action
at, collects observations and receives a reward rt ∈ R

+. Our
reward function consists of an exploration term re,t and an
information term ru,t:

rt

(
Ât,A

′
t−1,A

′
t,at, ψ

t−1
0

)

= αre,t

(
Ât,A

′
t−1, A′

t

)
+ βru,t

(
at, ψ

t−1
0

)
, (6)

with:

re,t

(
Ât,A

′
t−1,A

′
t

)

=
Tr

(
P
(
Ât,A

′
t−1

))
− Tr

(
P
(
Ât,A

′
t

))

Tr
(
P
(
Ât,A′

t−1

)) ,

ru,t
(
at, ψ

t−1
0

)
= ν

(
at, ψ

t−1
0

)
, (7)

where Tr(·) is the trace operator of a matrix and α and β are
constants used to trade off exploration and exploitation.

The variance reduction of the Gaussian process measures
exploration re,t. To this end, we maximise the decrease in the
covariance matrix trace following the A-optimal design crite-
rion [39]. Scaling the reward by Tr(P (Ât,A

′
t−1)) stabilises the

actor-critic network training [30]. The term ru,t measures the
new information gained after executing at.

C. Dynamic Graph Representation

Adaptive informative path planning requires reasoning about
the information distribution in the environment. We propose a
dynamic graph that models the collision-free reachable action
space and information distribution in the robot’s neighbourhood
by sampling actions as defined in Section III-A, as opposed to a
static global non-obstacle-aware representation [10], [17], [30].
Our robot’s policy relies on the representation of the current
knowledge about the environment in the dynamic graph to
predict next action Section III-D.

At each timestep t, we (re-)build a fully connected graph
Gt = (Nt, Et), where the node set Nt is the set of candidate
actions At defined in Section III-A, to account for newly gath-
ered observations. We randomly sample K candidate positions
[xi, yi, zi]

� within a C-neighbourhood of the current robot
position and create L = K × |D| nodes by associating each
position with possible yaws D. The edge set Et connects each
pair of actions such that ei,j,t = (i, j, ci,j) ∈ Et, where the cost
ci,j is the edge weight, i, j ≤ L, and i �= j. The edge set Et and
the cost ci,j are based on the robot’s motion constraints, defining
the path traversed from action ai to aj . In this work, we consider
a holonomic UAV travelling between two actions on a straight
line, hence the cost ci,j is defined as the sum of the actions’
Euclidean distance and a small constant costCs if the robot yaw
changes.

To better inform the planning policy, we leverage our Gaus-
sian process to create node features utilised in our actor-critic
network. At each timestep t, the node feature matrix Mt of
graph Gt consists of the robot’s candidate actions and the mean
and variance values queried from the Gaussian process. The ith

row of Mt relates to the ith action:

Mt(i) = [ai,t, m(ai,t), k(ai,t,ai,t)] , (8)

where ai,t = [xi,t, yi,t, zi,t, di,t]
�, and m(ai,t) and k(ai,t,

ai,t) are the regressed action’s utility and variance.

D. Actor-Critic Neural Network for Reinforcement Learning

We exploit the dynamic graph to model collision-free actions
for the planning policy to reason about and represent the current
knowledge of the information distribution in the environment.
As the Gaussian process only predicts the utility of greedily
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executing a single next action, we use reinforcement learning to
train our policy for informative path planning over long-horizon
paths.

We use an attention-based neural network to parameterise our
stochastic planning policy π(Gt, ψt−1

0 , Br, μth) ∈ [0, 1]L that
predicts a probability distribution over allL actions At based on
the current dynamic graph Gt, previously executed path ψt−1

0 ,
remaining budget Br, and the mean threshold μth defining ac-
tions of interest in (5). We follow the network structure proposed
by Cao et al. [30] consisting of an encoder and a decoder module.
The attention-based encoder learns the dependencies between
actions inGt. We condition the learned actions’ latent dependen-
cies on a planning state consisting of previously executed actions
ψt−1
0 , the remaining budgetBr, and the threshold μth. A budget

mask filters out actions not reachable within the remaining
budget. Based on the conditioned latent action dependencies, a
decoder outputs a probabilistic policy reasoning over all actions
in the dynamic graph. During training, the decoder also estimates
the value function V (Gt, ψt−1

0 , Br, μth) ∈ R following the
current policy at ∼ π(Gt, ψt−1

0 , Br, μth). The estimated values,
sampled actions, dynamic graphs, planning states, and rewards
are stored in the experience buffer utilised to train the policy with
an on-policy actor-critic reinforcement algorithm. In this work,
we use proximal policy optimisation [40]. During deployment,
at each time step t, we choose the most informative action from
π(Gt, ψt−1

0 , Br, μth).

IV. EXPERIMENTAL RESULTS

We experimentally validate our three claims on the task of
UAV-based fruit monitoring in apple orchards. First, our ap-
proach enables more efficiently discovering targets of interest
compared to non-learning baselines and learning-based meth-
ods. Second, our dynamic graph action space enables collision-
free path planning in unknown environments while performing
on par with state-of-the-art static global graph representations.
Third, our new reward function more effectively manages the
exploration-exploitation trade-off compared to using purely ex-
ploratory rewards, leading to more efficient targeted mapping.
We demonstrate the performance of our approach in a realistic
orchard simulation, showcasing its applicability for a practical
monitoring task in a previously unseen environment.

A. Experimental Setup

Environment: Our environment consists of trees and fruits
bounded in a scale-agnostic unit cube. We maintain an occu-
pancy map with 50× 50× 50 voxels. During test phase, trees
are generated at random positions in the environment but are
arranged in a regularly spaced 5× 5 array during training. Fig. 3
shows examples of a training and a testing environment. In both
cases, fruits are attached to generated trees at random positions.
The occupancy grid map of the environment is initialised as
unknown space and is updated via sensor observations with
free space, observed fruits, and trees. For each observation, the
utility value is used to train the Gaussian process detailed in
Section III-A. We tune the hyperparameters in a small represen-
tative environment using the Matérn 1/2 kernel with μth = 0.4
and β = 1 in (5). For our reward function defined in (3), we set

Fig. 3. Examples of testing and training orchard environments used in our
experiments. Left: Testing environment with trees placed at random locations.
Right: Training environment with trees placed in a regular square array. Thin
and dark blue lines represent tree outlines and tree bases, respectively. Green
stars indicate fruits.

α = 1.0 and δ = 0.01 to keep values of both terms numerically
similar to balance between exploration and exploitation.

We consider a UAV platform with an onboard RGB-D camera
of 90◦ field of view (FoV). Since the confidence in discovered
targets decreases with distance, we constrain the maximum
detection range to 24% of the environment size. The UAV can
choose between yaw angles of [0, π2 , π,

3π
2 ] rad at the current

altitude. Note that our method can be easily extended to finer
discretisations.

Training: An episode consists of a UAV mission with a budget
B. We train in a grid-based environment as a randomly initialised
policy learns efficiently from this structure and transfers to
randomised test environments. The total number of fruits varies
between 200 and 250. We fix the number of positions K in the
dynamic graph and set the initial UAV pose to [0, 0, 0, π2 ]

�. To
keep our policy scale-agnostic, we normalise the robot’s internal
environment representation and action coordinates. Hence, the
budget B is unitless and randomly generated for each episode
within the range [7, 9]. We fuse an observation into the occu-
pancy map and Gaussian process each time the UAV travels 0.2
units from the position of the previous observation.

We terminate an episode if the maximum number of executed
actions exceeds 256. To speed up training, we run 12 environ-
ments in parallel. The policy is trained for 8 epochs using a batch
size of 64 and the Adam optimiser with a learning rate of 10−4,
which decays by a factor of 0.96 each 32 optimisation steps. The
policy gradient epsilon-clip parameter is set to 0.2. Our model
is trained on a workstation equipped with an Intel(R) Xeon(R)
W-2133 CPU @ 3.60 GHz and one NVIDIA Quadro RTX
5000 GPU. Our policy is trained for ∼ 440, 000 environment
interactions.

B. Comparison Against Baselines

The first set of experiments shows that our dynamic graph-
based reinforcement learning approach outperforms state-of-
the-art baselines. We generate 25 test environments correspond-
ing to different random seeds and run 20 trials on each environ-
ment instance with a budget of 10 units.

For our approach, we consider K = 20 sampled waypoints,
L = 80 nodes in the dynamic graph, and the reward function
described in (3). The learning-based baseline for evaluation
is CAtNIPP [30], the state-of-the-art approach closest to our
work which uses global graph-based planning. Since CAtNIPP
considers obstacle-free environments and modifying its global
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Fig. 4. Comparison of our approach against baselines in a UAV-based fruit
monitoring scenario. Solid lines indicate means over 500 trials and shaded
regions show standard deviations. In our approach, using our exploration-
exploitation reward function with a dynamic graph action space for reinforce-
ment learning enables more efficiently discovering targets of interest (fruit)
during a mission.

TABLE I
COMPARISON OF OUR APPROACH AGAINST BASELINES IN A UAV-BASED FRUIT

MONITORING SCENARIO

graph to account for unknown obstacles is a non-trivial task,
we allow the UAV to pass through obstacles to ensure a fair
comparison.

We compare against: (i) CAtNIPP with a zero-shot policy
(CAtNIPP g.) where the highest probability action is executed;
(ii) CAtNIPP with a trajectory sampling policy [30] (CAtNIPP
ts.) where four 8-step paths are planned and the path with highest
uncertainty reduction is executed for 3 steps; (iii) a random
policy on K = 20 dynamic graph construction (random agent);
(iv) non-learning rapidly exploring random information gather-
ing trees [34] applied in a receding-horizon manner (RIG-tree
Re.H.); (v) non-learning Monte Carlo Tree Search [41] (MCTS);
and (vi) non-learning Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [42]. To evaluate planning performance, we
measure the percentage of discovered targets of interest (apples)
during the test. We also report average replanning time per step.

Fig. 4 and Table I illustrate our results. Our approach out-
performs all baselines by a significant margin. This can be
attributed to the new reward function that balances between
exploring the environment and exploiting collected information.
Both CAtNIPP variants perform worse than our method since
they only focus on utility variance reduction. In Table I, the
approaches using reinforcement learning require significantly
less replanning time than non-learning methods, justifying the
use of learning-based strategies. Our proposed approach is more
compute-efficient than CAtNIPP (ts.), and almost as efficient as

Fig. 5. Comparison of paths planned by (a) the global graph-based CAt-
NIPP [30] baseline and (b) our dynamic graph-based reinforcement learning
approach with K = 20 in a fruit monitoring scenario. The blue line shows the
executed UAV path, with the brown and pink circles indicating start and end
positions. Red dots are targets not yet observed, while green stars are observed
targets.

CAtNIPP (g.), which facilitates its deployment in real-world
scenarios.

Fig. 5 qualitatively compares the paths planned by our ap-
proach and CAtNIPP g. for the ground truth environment illus-
trated in Section IV-A. The visualisations correspond to paths
executed at 50% of the budget. Our approach favours actions
that discover more targets. This is because CAtNIPP considers a
purely exploratory objective, assuming a continuous distribution
of utility, which leads to re-observing the high-interest regions
in an oscillatory manner. Our approach does not encounter
this issue. Since we reduce both uncertainty and maximise the
number of discovered targets using our reward function, we
obtain a more widespread distribution of observations in the
environment.

C. Ablation Studies

Next, we systematically study the impact of our dynamic
graph action space and proposed reward function on the informa-
tiveness of the planned paths to demonstrate their benefits. Our
test environment is the same as in Section IV-B. We compare our
approach against CAtNIPP [30], which uses a static graph action
space based on probabilistic roadmaps and a purely exploratory
reward function.

Graph Structure: To investigate the influence of the num-
ber of sampled waypoints K on planning performance, we
compare our approach using dynamic graphs with K ∈
{10, 20, 30, 40, 50} against CAtNIPP. Here, we use our new
reward function that combines both exploitation of obtained
information and exploration of unknown regions, as described
in (6), ensuring that the performance variations can be attributed
to the graph structure alone. Table II summarises the results. We
observe performance improvements from K = 10 to K = 20
and similar performance for K ≥ 20 at the cost of increas-
ing computation time. The performance of our dynamic graph
structure withK ≥ 20 is slightly better than the global graph of
CAtNIPP. Hence, our dynamic graph can actively account for
unknown obstacles while performing similarly to, or better than,
the global graph structure.

Reward Function: Next, we investigate the effects of training
a policy on our reward function against a purely exploratory
reward function. We compare our dynamic graph-based ap-
proach trained onK = 20waypoints and 80 action nodes against
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TABLE II
GRAPH STRUCTURE ABLATION STUDY

TABLE III
REWARD FUNCTION ABLATION STUDY

CAtNIPP trained onK = 200 waypoints and 800 action nodes.
We tune the hyperparameters for best performance and consider
two variants of each method with the different reward functions.
For the purely exploratory reward, we setα = 1 and δ = 0 in (6).
Table III summarises the results. Both our dynamic graph and
the CAtNIPP global graph trained on our new reward function
outperform the corresponding policies trained using purely ex-
ploratory rewards. This confirms that learning from exploration
rewards alone cannot guide the robot to adaptively focus on
targets of interest since it incentivises actions that reduce overall
utility variance. In contrast, our reward function incorporating
both uncertainty reduction and targeted information gathering
yields better target discovery performance as it allows the policy
to learn the trade-off between exploration and exploitation. The
new reward function benefits both our dynamic graph and the
global graph, showing its general applicability for different
informative planning algorithms.

D. Realistic Simulation

We demonstrate the applicability of our dynamic graph-
based reinforcement learning approach with K = 20 sampled
waypoints in an orchard environment simulator created with
Unreal Engine and AirSim. The Airsim simulator resembles
real-world UAV dynamics, while Unreal Engine provides pho-
torealistic imagery. Our apple orchard environment is bounded
by a 95 m × 95 m × 18 m cuboid with 9 trees arranged in a
3× 3 array and a total of 225 red apples at random locations on
the trees as illustrated in Fig. 1. We assume perfect localisation
and use ground truth apple object discovery. The UAV moves at
a maximum speed of 2 m/s.

We compare our approach trained in the synthetic simulation
described in Section IV-A against (i) a random planner over
our K = 20 dynamic graph and (ii) a near-optimal planner to
reflect performance upper bound using the metric of percentage
discovered fruits. We record the coordinates of discovered fruits

Fig. 6. Comparison of our reinforcement learning-based approach against
baselines in a photorealistic fruit monitoring simulator. Solid lines indicate
means over ten trials and shaded regions show standard deviations. Our approach
performs almost as well as the near-optimal baseline, despite being trained in
different environments and not relying on ground truth knowledge.

to ensure that the same fruit is not counted multiple times.
We design the near-optimal planner to exploit ground truth
information of the environment, such as tree coordinates, size,
and best altitude, to generate a coverage-like path for observing
maximum fruits. We run several instances of this planner and
choose the three best-performing paths to compare against our
approach. For our planner and the random planner, results are
reported over 10 trials in the environment with a mission budget
of 7.5 units.

Fig. 6 compares the three planners. Our approach outper-
forms non-informative random planning. The near-optimal plan-
ner performs best since it exploits ground truth knowledge to
avoid viewpoint-dependent occlusions. However, our approach
reaches similar performance without relying on any prior knowl-
edge, making it suitable for unknown fruit distributions. Fig. 1
visualises the path executed by our planner. These findings
support the applicability of our method on a UAV platform in a
practical monitoring scenario.

V. CONCLUSION AND FUTURE WORK

We present a deep reinforcement learning approach for adap-
tively discovering targets of interest in unknown 3D environ-
ments. A key aspect of our method is a dynamic graph con-
structing a detailed environment representation to constrain
planning in the robot’s local region. We also present a new
reward function enabling our learned policy to balance explor-
ing the environment and exploiting obtained information. Our
experimental results support our three claims: (i) our approach
outperforms the state-of-the-art learning-based approaches and
non-learning baselines in environments unseen during training;
(ii) our dynamic graph approach leads to performance on
par, or better, than static global graph based state-of-the-art
methods; (iii) our new reward function outperforms a purely
exploratory reward function. We validate our approach in a
UAV-based fruit monitoring scenario to demonstrate its practical
applicability. Future work includes developing advanced sam-
pling strategies, considering dynamic obstacles, and transferring
our policy to a real robot under localisation and perception
uncertainty.
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planning framework for active learning in UAV-based semantic mapping,”
IEEE Trans. Robot., vol. 39, no. 6, pp. 4279–4296, Dec. 2023.

[5] Y. Wang, Y. Wang, Y. Cao, and G. Sartoretti, “Spatio-temporal attention
network for persistent monitoring of multiple mobile targets,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2023, pp. 3903–3910.

[6] F. Magistri, N. Chebrolu, and C. Stachniss, “Segmentation-based 4D
registration of plants point clouds for phenotyping,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), 2020, pp. 2433–2439.

[7] C. Carbone et al., “Monitoring and mapping of crop fields with UAV
swarms based on information gain,” in Proc. Distrib. Auton. Robotic Syst.,
2022, pp. 306–319.

[8] F. Magistri, D. Nardi, and V. Trianni, “Using prior information to improve
crop/weed classification by MAV swarms,” in Proc. Int. Micro Air Veh.
Competition Conf., 2019, pp. 67–75.

[9] J. Binney, A. Krause, and G. S. Sukhatme, “Informative path planning
for an autonomous underwater vehicle,” in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA), 2010, pp. 4791–4796.

[10] G. Hitz, E. Galceran, M.-È. Garneau, F. Pomerleau, and R. Siegwart,
“Adaptive continuous-space informative path planning for online environ-
mental monitoring,” J. Field Robot. (JFR), vol. 34, no. 8, pp. 1427–1449,
2017.

[11] Y. Cao, T. Hou, Y. Wang, X. Yi, and G. Sartoretti, “ARiADNE: A re-
inforcement learning approach using attention-based deep networks for
exploration,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), 2023,
pp. 10219–10225.

[12] J. Su, X. Zhu, S. Li, and W.-H. Chen, “AI meets UAVs: A survey on AI
empowered UAV perception systems for precision agriculture,” Neuro-
computing, vol. 518, pp. 242–270, 2022.

[13] F. M. Al-Turjman, H. S. Hassanein, and M. A. Ibnkahla, “Efficient
deployment of wireless sensor networks targeting environment moni-
toring applications,” Comput. Commun., vol. 36, no. 2, pp. 135–148,
2013.

[14] J. Binney and G. S. Sukhatme, “Branch and bound for informative
path planning,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), 2012,
pp. 2147–2154.

[15] S. Arora and S. Scherer, “Randomized algorithm for informative path plan-
ning with budget constraints,” in Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), 2017, pp. 4997–5004.

[16] R. Marchant and F. Ramos, “Bayesian optimisation for informative con-
tinuous path planning,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
2014, pp. 6136–6143.

[17] C. Ercolani, L. Tang, A. A. Humne, and A. Martinoli, “Clustering and
informative path planning for 3D gas distribution mapping: Algorithms
and performance evaluation,” IEEE Robot. Automat. Lett., vol. 7, no. 2,
pp. 5310–5317, Apr. 2022.
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